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ABSTRACT

The restricted detour distance D*(u,v) between two vertices u and v of a
connected graph G is the length of a longest u — v path P in G such that (V(P)) =P .
The main goal of this paper is to obtain the restricted detour polynomial of the theta
graph. Moreover, the restricted detour index of the theta graph will also be obtained.
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1 Introduction

In this paper, we are concerned only with finite connected simple graphs. We refer
the reader to [1,3,4,5,6] for details on graphs, distances in graphs and graph based
polynomials. The idea of the restricted detour polynomials was first introduced by
Abdullah and Muhammed-Salih[2]. They obtained the restricted detour polynomials
and restricted detour indices of some compound graphs.

Let G be a connected graph, the (standard) distance between two vertices u and v
of G, denoted d (u, v), is the number of edges in a shortest u-v path in G. The restricted
detour distance D*(u, v) between two vertices u and v of G is the length of a longest
u—v path P in G such that (V(P)) = P . An induced u-v path of length D*(u,v) is
called a detour path [4]. The restricted detour polynomial [2,8] of the graph G,
denoted by D*(G; x) is defined as follows

D*(G; x)= Zu,v xD* D) ]
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where the summation is taken over all unordered pairs u,v of vertices of
G.Moreover, one easily notice that D*(G; x) = Y=o C*(G, k)x¥, in which C*(G, k) is
the number of unordered pairs of vertices u, v of G such that D (u, v) = k.

Let u be any vertex of G, and let C*(u, G; k)be the number of vertices v of G such
that D*(u, v) = k. Then, the polynomial defined by

D*(u,G;x) = Yk=0 C*(u, G; k)x¥,

is called the restricted detour polynomial of vertex u.

Itis clear that D*(G; x) = %(Zuev(a) D*(u,G; x) +p).

Let Px and Ci denote the path and the cycle with k vertices, respectively. The
restricted detour polynomials of Py and Cy is obtained in [2] and given in the following
proposition.

Proposition 1.1
(1) D*(P; x) = XiZg (k — D,
k(1+x+ Z;‘_‘éxi) if kis odd,
(2) D*(Ciix) = B

k(1+x+ %x"/z + Z;‘_‘ki xY) if kis even.
2

1

2 The Restricted Detour Polynomial of the Theta Graph

The theta graph[7] 8(l, m,n) is the graph consisting of three internally disjoint
paths with common endpoints z and y and lengths [ + 1, m — 1 and n — 1 as depicted in
Figure 2.1(a). In this paper, we focus our attention on the theta graph 6(0,m,n) or
simply 6(m,n), as shown in Figure 2.1(b). Without loss of generality, we assume
m<n.
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Figure 2.1: The Theta Graph
By simple calculations, we obtain
D*(6(3,3);x) = 4 + 5x + x?,
D*(0(3,4);x) = 5+ 6x + 2x2 + 2x3,
D*(0(4,4);x) = 6 + 7x + 4x? + 2x3 + 2x*%,
D*(0(4,5);x) = 7 + 8x + 2x? + 5x3 + 4x* + 2x°,
D*(0(5,5); x) = 8+ 9x + 10x3 + 2x* + 5x° + 2x°, and
D*(0(5,6); x) = 9 + 10x + 8x3 + 6x* + 4x° + 6x° + 2x7.

The restricted detour polynomials of the theta graph 6(m,n) are obtained in the
next results.

Theorem 2.1 For even m,n = 6, we have

m n
2 2

D*(8(m,n);x) = D*(Cp;x) + D*(Cpyx) —x — 2 —2x™"" 1 42 ZZ xmAn=(i+))
i=2 j=2

m .z (it LS SR z 3y

42 Zi2=3 j=3xm+n+ (i+)) +22j=22 xJ+L 22;=m+3xm +j

2
2 —3+i
+2 ZL.Z=2 xnst
in which, C, isacycle of p vertices.

Proof. Let u and v be any two vertices of V(6(m, n)). We refer to Figure 2.1(c), and
denote
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V= {uz,u3, ...,um},Vl = {u’z,u’g, ...,u’m},Vz = {vz,v3, ...,vg} and V, =
2 2 2

{v, v, ..., v},
2

Two main cases can be distinguished for u and v

Case | For all possibilities of u,v € V; UV, U {ug,u;} (or u,v € V, UV, U {vy,9;})
and notice that the pair (z,y) with D*(z,y) = 1 and each of the vertices z and y are
counted twice, we have the corresponding polynomial D*(C,,; x) + D*(Cp; x) — x — 2.

Case Il If ue VyuV,and v € V,UV,, then there are four subcases can be
distinguished for u and v
(1) If u € Vyand v € V,,then it is obvious that the path P,
Piiu = U, Ujpq, oony, Um, Um, oo Up, Uy, Vg, e, U, Um0 = 0 is a longest u — v path
2 2 2 2
with(P;) =P, ,fori =2,..,m/2andj = 2,...,n/2.
Evidently, D*(u,v) = D" (uj,vj)) =m—i+n—j=m+n—(i+)).
Similarly, if u € V, and v € V,, we have
D*(w,v) = D*(W, o)) =m+n—(i+j),fori=2,..,m/2andj = 2,..,n/2.
Now, for all values of i and j, the corresponding polynomial is

Fl(x) =2 Z z m+n—(i+j).
) Ifu e v, — {uz} and v €V, — {14,}, then the path P,
Py u = Uy, Ujpq, vy Um, Um, o, Up, Uy, Uy (5 V1), Vg, oo, Un, Uy s, U = U is a longest
2 2 2 2
u — v path with (P,) = P,, fori = 3,...,m/2andj = 3, ...,n/2.
In this case, D*(w,v) = D*(w;, v)) =m+n— (i +j) + 1.
Similarly, if u € V;, — {ui,} and v € V, — {v,}, then
D*(w,v) = D*(d,v;)) =m+n—(+j)+1,fori=3,..,m/2andj =3,..,n/2.
Now, for all possible values of i and j, the corresponding polynomial is

Fz(x) =2 Z 2 m+n+1—(i+j)l
3 fu=u, and v e V,; and since m <n then there are two subcases can be

distinguished

(a) For j =2,. —+ 2, the path P;: u = uy, uy (= v1), vy, . vn 1’7n A
a Iongest u—v path with (P;) = P; and has Iength n ] + 1. Hence,
D*(u,v) = D*(up, ¥j) =n—j+ 1.

(b) For ] :%‘l‘ 3,,%, the path P3:u = uz,u3,...,um,u'r_n,...,liz,lil(=

2

2
V1),V ..., 0 = vis a longest u—v path with (P;) =P;, and has length
m—3+].
Hence, D*(w, v) = D*(up, ¥;) = m — 3 + .
Similarly, if u = u, and v € V, then
n-m

n—j+1ifj=2,...,T+2,

m=3+jif j=""43,..,7

Notice that, each of the pairs (u,, v,) and (u,, v,) are counted twice with
D*(uZ, 17,2) = D*(dz, vz) =Nn- 1.

Now, for all possible values of i and j, the corresponding polynomial is

D*(u,v) = D*(up,vj) =
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Fy(x) = 22j=22 +2 X+ 4 22;=%+3 xM=3+j _ 9 4n-1
@ Ifue Viandv =v, (or u € V; andv = v, ), then
D*(u,v) = D*(U,v,) =D*(u;,v,) =n—-2+i—1=n—-3+1, for [ =
2,..,m/2

This produces the polynomial F,(x) = 2 Z?:z X3+
Adding the polynomials obtained from the cases | and Il and simplifying, we get the
required result.m

Theorem 2.2 For odd m,n > 7, we have
D*(6(m,n);x) = D*(Cyy; x) + D*(Cpp;x) +
m

m—-1n-1

j=Tm o i=2 j=3 i=3

Proof. Let u and v be any two vertices of V(8(m,n)). We refer to Figure 2.1(d), and
denote

V]_ == {uz ,u3 ) ...,um—1},V1 == {ulz, 7.1:3, ...,llm—1},V2 = {vz, vz y ...,vn_—l} and V2 =

2 2 2

{17,2, 17,3, ey 1,711_—1
2

Two main cases can be distinguished for u and v

Case | For all possibilities of u,v € V; UV, U {ug,u;} (or u,v € V, UV, U {vy,9;})
and notice that the pair (z,y) with D*(x,y) = 1 and each of the vertices are counted
twice, we have the corresponding polynomial D*(C,,; x) + D*(Cy; x) — x — 2.

Case Il If ue VyuV,andv € V,UV,, then there are nine subcases can be
distinguished for u and v
(1) If u € Vyand v € V,,then it is obvious that the path P,
Pyiu =y, Uiy q, ony, Um=1, Um+1, Um-1, ..., Uy, Uy, Vy, oo, Un-1, Unit, Un-1, ., U = is a
2 2 2 2 2 2
longest u—v path with (P;)=P, for i=2,..,(m—1)/2 and
j=2..,(n—1)/2.
Evidently,D*(u, v) = D*(ui,vj) =m-—-i+n—j=m+n—(>+)).
Similarly, if u € V, and v € V,, we have D*(u,v) = D*(1;, V) =m+n— (i +)),
fori=2,..,(m—-1)/2andj =2,..,(n—1)/2.
Now, for all such possible values of i and j, the corresponding polynomial is

m-1 n-1 o
Fl(x) =2 Zizzz jiz xm+n—(1+])_

(2 Ifu € V; —{u,}and v €V, — {v,}, then the path P,

Pyiu = Uj, Ujyq, oory Um=1, Um+1, Um-—1, ..., Uy, Up, Uy (=
2 2 2
V1), Vg, o, Un=1, Un+1, Un-1, ..., U; = v is a longest u — v path with (P,) = P, , for

2 2 2
i=3,..,(m—1)/2andj=3,..,(n—1)/2.
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In this case, D*(w,v) = D*(u;, ) =m+n—(i+j) + 1.

Similarly, if u € V; — {u,} and v € V, — {v,}, then

D*(w,v) = D*(,v)) =m+n—(i+j)+1, for i=3,..,(m—1)/2 andj =
3,..,(n—1)/2.

Now, for all such possible values of i and j, the corresponding polynomial is

m—1 n—1
Fz(x) =2 Zi=23 ji3 xm+n+1—(1+1)_
B) If =u,andv eV, ; and since m <n then there are two subcases can be
distinguished
(a) Forj = 2, % + 2, the path
P3: U = Uy, Uy = Vq, Vg, wn, Un=1, Unt1, Un-1, .., U = 0IS @ longest u — v path

2 2 2
with (P;) = P; and has lengthn —j + 1.
Hence, D*(w,v) = D*(up, v;)) =n—j + 1.

. — -1
(b) For j = ==+ 3, ..., the path
P3:u = Uy, Us, ..., Um-1, Umt1, Um—1, ..., Uy, Uy (= V1), ¥y, ..., U = Vis @ longest

u — v path with (1523) = 1253, anzd has length m —3 +j. Hence, D*(u,v) =
D*(uy, ) = m— 3+ j. Similarly, if u = 1, and v € V;, then
n—j+1lifj=2.,~-+2

m—3+jif j="""+3,.,—.

Notice that, each of the pairs (u,,v,) and (u,,v,) are counted twice with
D*(uy,v,) = D*(Uy,vy) =n—1.

Now, for all such possible values of i and j, the corresponding polynomial is

n-m n-1
Fy(0) =232, ami*h 4 szig”xm_w — 2%,
(4)Ifue Vyandv = v, (or u € V; and v = v, ), then
D*(u,v) = D*(;,v,) = D*(u;,v,) =n—2+i—1=n—-3+1, for i
2,3, ..., (m—1)/2

D*(u,v) = D*(up,vj) =

m-—1

This produces the polynomial F,(x) =232, X3+,

(5) If u = um+1 and v = vn+1, then,
2 2

D*(u,v) = D*(ums1 , Un+1) = mT_l +1+ "T_l = mTJr" ,and the polynomial is
2 2
m+n
Fs(x)=x 2 .
6)If u = um+1 andv = v, (Oru = um+1 and v = v, ), then,
2 2

D*(u,v) = D*(um+1 ,v,) = D*(um+1 ,v,) = mT_1+n -2.
2 2
m-—1
This produces the polynomial Fy(x) =2x z "2
(7) Ifu =um+1 andv € V, — {v,} (0r u = um+1 and v € V, — {1,}), then,
2 2
D*(u,v) = D*(um+1 ,vj) = D" (um+1 ,v)) = mT_l +n+ 1 —j,and the polynomial is
2 2
n-1 gpe1 ,
F()=2%2xz ™

(8) If u =uyand v = vn+1 (OFr u = 11, and v = vn+1 ), then
2 2
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d*(u,v) = D*(uy, vn+1) = nT_l + m — 2, and this gives us the polynomial
2

n—-1
Fe(x) =2xz "™2,
Q) IfueV,—{u}andv = vns1 (or u € V; — {{l,} and v = wvn+1 ), then
2 2

D*(u,v) = D*(u;, vn+1) = D* (U, Un+1) = nT_1+m + 1 —1i, and this gives us the
2 2

polynomial

m-—

F9 (X) Z 3 +m+1 l

Now, adding the polynomials obtained from the Cases I and Il and simplifying,
we get the required result.m

Using the same procedure followed inproving Theorem 2.1 and Theorem 2.2 we
obtain the following results.

Theorem 2.3 For odd m > 7 and even n > 8, we have
-1
D*(8(m,n);x) = D*(C,y; x) + D* (Cn,x)—x—Z— 2x™ 1 4+ 2x T T2
m1 TL n-m-1
1— ——t2
42 Z 2 2xm+n (l+])+2 Z : 3xm+n+ (i+)) +22j=2 XM Jj+
m1

. n m-1 ,
+2 z;_n_m_1+3xm—3+1 + 2 Zijz x"3 42 Y2 x TN g

2

Theorem 2.4 For even m > 6 and odd n > 7, we have
n—-1
D*( 9("1 n)'x) =D*(Cp;x) + D*(Cyx) —x —2—2x""142x2 T2 4
m n-—1

n—-i-m

. — — . — 42 .
2 Z z m+n—(l+]) +2 Zz ]z3xm+n+1—(1+1)+ 22- ; xn—]+1+

m
a4 > i+
szin—1—m+3xm 3+j + 22i2= XM= 3+i +22 m—i m

2

The following results are direct consequences of the Theorems 2.1 and 2.2.

Corollary 2.5 Forevenm = 6

D*((m,m);x) = 2D*(Coyj %) +2 T2, N2, x> 4D 2 312 32 y2mHi=(+)

+ 4Zf=3xm‘3+j —x+2x™t - 2.m

Corollary 2.6 Forodd m > 7
m-1 m-1 m-1 m-1

D*(8(m,m);x) = 2D*(Crj %) +2 X2, 3,2, x*m 0D 4 2 3.2 57 2 x2m1=(it)
m-1 m-1 3m41 3m-s

+4ngm"3+i +4 %2 x 2 T ot 4x 2 42Xl xm—x—2.m

3 The Restricted Detour Index of the Theta Graph

The detour_index dd*(G) of a connected graph G is the Wiener index with
respect to the restricted detour distance, that is
dd*(G) = Xyu»D*(u, v),
where the summation is taken over all unordered pairs u, v of vertices of the graph G[2].
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Itis clear that dd*(G)= %D*(G; X)|x=1-
Taking the derivatives of D*(6(m,n); x) given in the results in Section 2 at x =

1, we get the restricted detour index of the theta graph 6(m,n) as is given in the next
corollary.

Corollary 3.1
(1) For even m,n > 6, we have
dd*(8(m,n)) = %(m +n) (m2 +n?+mn +%) — 3(m? +n?) —%mn —11.
(2) For odd m,n > 7, we have
. 3 2 | 2 83 2, oy 11 27
dd (B(m,n)) —g(m+n) (m +n +mn+?) —3(m*+n )—?mn—7
(3) Forodd m = 7 and even n > 8, we have
dd*(8(m,n)) = %(m3 + n3) — 3(m? + n?) +%(m2n + n*m) + %m +%n —
11 23
PRy
(4) Foreven m > 6 and odd n > 7, we have
dd*(8(m,n)) = %(mg' +n3) — 3(m? + n?) +%(m2n +n®’m) + %n + %m -
11 23
—mn—— .
2 2

(5) For even m > 6 we have

dd*(8(m,m)) = zmg‘ - 22—3m2 +20m —11.

(6) For odd m > 7, we have
23 5, 83 27

dd*(6(m,m)) = zm3 —Smi+m—- .
Proof. Obvious.m
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