The Restricted Detour Polynomial of the Theta Graph

Herish O. Abdullah

herish_omer69@yahoo.com Dept. of Math., College of Science University of Salahaddin/ Erbil Iraqi Kurdistan Region. Iraq Ivan D. Ali ivan_dler@yahoo.com Dept. of Math., College of Education University of Salahaddin/ Erbil Iraqi Kurdistan Region. Iraq

Received on: 01/12/2013

Accepted on: 12/04/2014

ABSTRACT

The restricted detour distance $D^*(u, v)$ between two vertices u and v of a connected graph G is the length of a longest u - v path P in G such that $\langle V(P) \rangle = P$. The main goal of this paper is to obtain the restricted detour polynomial of the theta graph. Moreover, the restricted detour index of the theta graph will also be obtained. **Keywords:** Restricted detour distance, restricted detour polynomial, Theta graphs.

متعددة حدود الألتفاف المقيدة للبيان ثيتا

ايفان دلير علي
قسم الرياضيات – كلية التربية
جامعة صلاح الدين – أربيل

هیرش عمر عبد الله
قسم الرياضيات – كلية العلوم
جامعة صلاح الدين – أربيل

تاربخ استلام البحث: 2013/12/01

تاريخ قبول البحث: 2014/04/12

الملخص

تعرف مسافة الألتفاف المقيدة $D^*(u,v)$ لرأسين u و v في البيان المتصل G على أنها الطول لأطول درب P في G بين الرأسين u و v والذي يحقق ألشرط $P = \langle V(P) \rangle$. أن الهدف الرئيسي لهذا البحث هو أيجاد متعددة حدود الألتفاف المقيد للبيان ثيتا، وكذلك تم الحصول على دليل الألتفاف المقيدة للبيان ثيتا. الكلمات المفتاحية: مسافة الالتفاف المقيدة، متعددة حدود الالتفاف المقيدة، بيانات ثيتا.

1 Introduction

In this paper, we are concerned only with finite connected simple graphs. We refer the reader to [1,3,4,5,6] for details on graphs, distances in graphs and graph based polynomials. The idea of the restricted detour polynomials was first introduced by Abdullah and Muhammed-Salih[2]. They obtained the restricted detour polynomials and restricted detour indices of some compound graphs.

Let G be a connected graph, the (standard) <u>distance</u> between two vertices u and v of G, denoted d(u, v), is the number of edges in a shortest u-v path in G. The <u>restricted</u> <u>detour distance</u> $D^*(u, v)$ between two vertices u and v of G is the length of a longest u - v path P in G such that $\langle V(P) \rangle = P$. An induced u-v path of length $D^*(u, v)$ is called a <u>detour path</u> [4]. The <u>restricted detour polynomial</u> [2,8] of the graph G, denoted by $D^*(G; x)$ is defined as follows

$$D^*(G; x) = \sum_{u,v} x^{D^*(u,v)}$$

where the summation is taken over all unordered pairs u, v of vertices of *G*. Moreover, one easily notice that $D^*(G; x) = \sum_{k\geq 0} C^*(G, k) x^k$, in which $C^*(G, k)$ is the number of unordered pairs of vertices u, v of *G* such that $D^*_G(u, v) = k$.

Let *u* be any vertex of *G*, and let $C^*(u, G; k)$ be the number of vertices *v* of *G* such that $D^*(u, v) = k$. Then, the polynomial defined by

 $D^*(u,G;x) = \sum_{k\geq 0} C^*(u,G;k) x^k,$

is called the restricted detour polynomial of vertex u.

It is clear that $D^*(G; x) = \frac{1}{2} (\sum_{u \in V(G)} D^*(u, G; x) + p).$

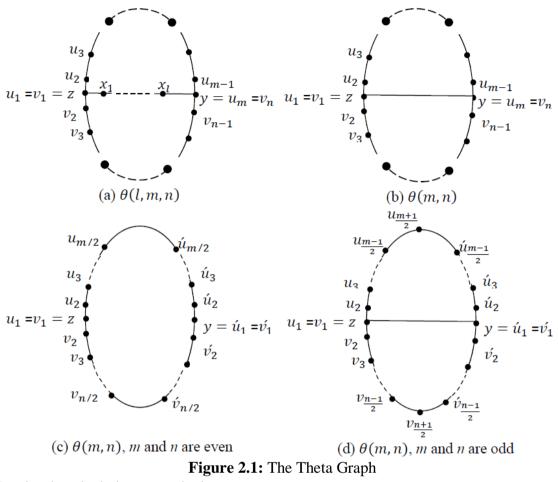
Let P_k and C_k denote the path and the cycle with k vertices, respectively. The restricted detour polynomials of P_k and C_k is obtained in [2] and given in the following proposition.

Proposition 1.1

(1)
$$D^*(P_k; x) = \sum_{i=0}^{k-1} (k-i) x^i$$
.
(2) $D^*(C_k; x) = \begin{cases} k(1+x+\sum_{i=\frac{k+1}{2}}^{k-2} x^i) & \text{if } k \text{ is odd,} \\ k(1+x+\frac{1}{2}x^{k/2}+\sum_{i=\frac{k}{2}+1}^{k-2} x^i) & \text{if } k \text{ is even} \end{cases}$

2 The Restricted Detour Polynomial of the Theta Graph

The <u>theta graph</u>[7] $\theta(l, m, n)$ is the graph consisting of three internally disjoint paths with common endpoints z and y and lengths l + 1, m - 1 and n - 1 as depicted in Figure 2.1(a). In this paper, we focus our attention on the theta graph $\theta(0, m, n)$ or simply $\theta(m, n)$, as shown in Figure 2.1(b). Without loss of generality, we assume $m \le n$.



By simple calculations, we obtain $D^*(\theta(3,3); x) = 4 + 5x + x^2,$ $D^*(\theta(3,4); x) = 5 + 6x + 2x^2 + 2x^3,$ $D^*(\theta(4,4); x) = 6 + 7x + 4x^2 + 2x^3 + 2x^4,$ $D^*(\theta(4,5); x) = 7 + 8x + 2x^2 + 5x^3 + 4x^4 + 2x^5,$ $D^*(\theta(5,5); x) = 8 + 9x + 10x^3 + 2x^4 + 5x^5 + 2x^6,$ and $D^*(\theta(5,6); x) = 9 + 10x + 8x^3 + 6x^4 + 4x^5 + 6x^6 + 2x^7.$

The restricted detour polynomials of the theta graph $\theta(m, n)$ are obtained in the next results.

m n

Theorem 2.1 For even $m, n \ge 6$, we have

$$D^{*}(\theta(m,n);x) = D^{*}(C_{m};x) + D^{*}(C_{n};x) - x - 2 - 2x^{n-1} + 2\sum_{i=2}^{\frac{m}{2}} \sum_{j=2}^{\frac{n}{2}} x^{m+n-(i+j)} + 2\sum_{i=3}^{\frac{m}{2}} \sum_{j=3}^{\frac{n}{2}} x^{m+n-(i+j)} + 2\sum_{j=2}^{\frac{n-m}{2}+2} x^{n-j+1} + 2\sum_{j=\frac{n-m}{2}+3}^{\frac{n}{2}} x^{m-3+j} + 2\sum_{i=2}^{\frac{m}{2}} x^{n-3+i},$$

in which, C_p is a cycle of p vertices.

Proof. Let *u* and *v* be any two vertices of $V(\theta(m, n))$. We refer to Figure 2.1(c), and denote

$$V_1 = \left\{ u_2, u_3, \dots, u_{\frac{m}{2}} \right\}, V_1 = \left\{ u_2, u_3, \dots, u_{\frac{m}{2}} \right\}, V_2 = \left\{ v_2, v_3, \dots, v_{\frac{n}{2}} \right\} \text{ and } V_2 = \left\{ v_2, v_3, \dots, v_{\frac{n}{2}} \right\}$$

 $\left\{ \dot{v}_2, \dot{v}_3, \dots, \dot{v}_{\frac{n}{2}} \right\}.$

Two main cases can be distinguished for u and v

<u>**Case I**</u> For all possibilities of $u, v \in V_1 \cup V_1 \cup \{u_1, u_1\}$ (or $u, v \in V_2 \cup V_2 \cup \{v_1, v_1\}$) and notice that the pair (z, y) with $D^*(z, y) = 1$ and each of the vertices z and y are counted twice, we have the corresponding polynomial $D^*(C_m; x) + D^*(C_n; x) - x - 2$.

<u>Case</u> II If $u \in V_1 \cup V_1$ and $v \in V_2 \cup V_2$, then there are four subcases can be distinguished for *u* and *v*

- (1) If $u \in V_1$ and $v \in V_2$, then it is obvious that the path P_1 , $P_1: u = u_i, u_{i+1}, \dots, u_{\underline{m}}, u_{\underline{m}}, \dots, u_2, u_1, v_2, \dots, v_{\underline{n}}, v_{\underline{n}}, \dots, v_j = v \text{ is a longest } u - v \text{ path}$ with $\langle P_1 \rangle = P_1$, for $i = 2, \dots, m/2$ and $j = 2, \dots, n/2$. Evidently, $D^*(u, v) = D^*(u_i, v_i) = m - i + n - j = m + n - (i + j)$. Similarly, if $u \in V_1$ and $v \in V_2$, we have $D^*(u, v) = D^*(\dot{u}_i, \dot{v}_j) = m + n - (i + j)$, for i = 2, ..., m/2 and j = 2, ..., n/2. Now, for all values of *i* and *j*, the corresponding polynomial is $F_1(x) = 2 \sum_{i=2}^{\frac{m}{2}} \sum_{j=2}^{\frac{n}{2}} x^{m+n-(i+j)}.$ (2) If $u \in V_1 - \{u_2\}$ and $v \in V_2 - \{v_2\}$, then the path P_2 $P_2: u = u_i, u_{i+1}, \dots, u_{\frac{m}{2}}, u_{\frac{m}{2}}, \dots, u_2, u_1, u_1 (= v_1), v_2, \dots, v_{\frac{n}{2}}, v_{\frac{n}{2}}, \dots, v_j = v$ is a longest u - v path with $\langle P_2 \rangle = P_2$, for i = 3, ..., m/2 and j = 3, ..., n/2. In this case, $D^*(u, v) = D^*(u_i, \dot{v}_i) = m + n - (i + j) + 1$. Similarly, if $u \in V_1 - \{u_2\}$ and $v \in V_2 - \{v_2\}$, then $D^*(u, v) = D^*(u_i, v_j) = m + n - (i + j) + 1$, for i = 3, ..., m/2 and j = 3, ..., n/2. Now, for all possible values of *i* and *j*, the corresponding polynomial is $F_2(x) = 2 \sum_{i=3}^{\frac{m}{2}} \sum_{j=3}^{\frac{n}{2}} x^{m+n+1-(i+j)}.$ (3) If $u = u_2$ and $v \in V_2$; and since $m \le n$ then there are two subcases can be
- 3) If $u = u_2$ and $v \in V_2$; and since $m \le n$ then there are two subcases can be distinguished (a) Find $2 = \frac{n-m}{2} + 2$ the meth P_1 to u_2 the meth Q_2 to u_2 to u_2 the meth Q_2 to u_2 t
 - (a) For $j = 2, ..., \frac{n-m}{2} + 2$, the path $P_3: u = u_2, u_1(=v_1), v_2, ..., v_{\frac{n}{2}}, \dot{v}_{\frac{n}{2}}, ..., \dot{v}_j = v$ is a longest u - v path with $\langle P_3 \rangle = P_3$ and has length n - j + 1. Hence, $D^*(u, v) = D^*(u_2, \dot{v}_j) = n - j + 1$.
 - (b) For $j = \frac{n-m}{2} + 3, ..., \frac{n}{2}$, the path $P_3: u = u_2, u_3, ..., u_{\frac{m}{2}}, \frac{u'_{\frac{m}{2}}}{2}, ..., u'_2, u'_1 (= v'_1), v'_2, ..., v'_j = v$ is a longest u v path with $\langle P_3 \rangle = P_3$, and has length m 3 + j. Hence, $D^*(u, v) = D^*(u_2, v'_j) = m - 3 + j$. Similarly, if $u = u'_2$ and $v \in V_2$ then $D^*(u, v) = D^*(u'_2, v_j) = \begin{cases} n - j + 1 \text{ if } j = 2, ..., \frac{n-m}{2} + 2, \\ m - 3 + j \text{ if } j = \frac{n-m}{2} + 3, ..., \frac{n}{2}. \end{cases}$

Notice that, each of the pairs $(u_2, \dot{v_2})$ and $(\dot{u_2}, v_2)$ are counted twice with $D^*(u_2, \dot{v_2}) = D^*(\dot{u_2}, v_2) = n - 1$.

Now, for all possible values of *i* and *j*, the corresponding polynomial is

$$F_3(x) = 2\sum_{j=2}^{\frac{n-m}{2}+2} x^{n-j+1} + 2\sum_{j=\frac{n-m}{2}+3}^{\frac{n}{2}} x^{m-3+j} - 2x^{n-1}.$$

(4) If $u \in V_1$ and $v = v_2$ (or $u \in V_1$ and $v = v_2$), then $D^*(u, v) = D^*(u_i, v_2) = D^*(u_i, v_2) = n - 2 + i - 1 = n - 3 + i$, for i = 2, ..., m/2

This produces the polynomial $F_4(x) = 2\sum_{i=2}^{\frac{m}{2}} x^{n-3+i}$. Adding the polynomials obtained from the cases I and II and simplifying, we get the required result.

Theorem 2.2 For odd $m, n \ge 7$, we have

$$D^{*}(\theta(m,n);x) = D^{*}(C_{m};x) + D^{*}(C_{n};x) + 2x^{\frac{n-1}{2}+m-2} - x - 2 - 2x^{n-1} + x^{\frac{m+n}{2}} + 2x^{\frac{m-1}{2}+n-2} + 2\sum_{i=2}^{\frac{m-1}{2}}\sum_{j=2}^{n-1}x^{m+n-(i+j)} + 2\sum_{i=3}^{\frac{m-1}{2}}\sum_{j=3}^{n-1}x^{m+n+1-(i+j)} + 2\sum_{j=2}^{\frac{n-m}{2}}x^{n-j+1} + 2\sum_{i=3}^{\frac{n-1}{2}}x^{m-1+1-(i+j)} + 2\sum_{i=3}^{\frac{m-1}{2}}x^{m-1+1-(i+j)} + 2\sum_{i=3}^{\frac{m-1}{2}}x^{n-j+1} + 2\sum_{i=3}^{\frac{n-1}{2}}x^{m-1+1-i} + 2\sum_{i=3}^{\frac{m-1}{2}}x^{m-1+1-i} + 2\sum_{i=3}^$$

Proof. Let *u* and *v* be any two vertices of $V(\theta(m, n))$. We refer to Figure 2.1(d), and denote

$$V_{1} = \left\{ u_{2}, u_{3}, \dots, u_{\frac{m-1}{2}} \right\}, V_{1} = \left\{ u_{2}, u_{3}, \dots, u_{\frac{m-1}{2}} \right\}, V_{2} = \left\{ v_{2}, v_{2}, \dots, v_{\frac{n-1}{2}} \right\} \text{ and } V_{2} = \left\{ v_{2}, v_{3}, \dots, v_{\frac{n-1}{2}} \right\}$$

Two main cases can be distinguished for u and v

<u>**Case I**</u> For all possibilities of $u, v \in V_1 \cup V_1 \cup \{u_1, u_1\}$ (or $u, v \in V_2 \cup V_2 \cup \{v_1, v_1\}$) and notice that the pair (z, y) with $D^*(x, y) = 1$ and each of the vertices are counted twice, we have the corresponding polynomial $D^*(C_m; x) + D^*(C_n; x) - x - 2$.

<u>**Case II**</u> If $u \in V_1 \cup V_1$ and $v \in V_2 \cup V_2$, then there are nine subcases can be distinguished for u and v

(1) If $u \in V_1$ and $v \in V_2$, then it is obvious that the path P_1 ,

 $P_{1}: u = u_{i}, u_{i+1}, \dots, u_{\frac{m-1}{2}}, u_{\frac{m+1}{2}}, \dot{u}_{\frac{m-1}{2}}, \dots, \dot{u}_{2}, \dot{u}_{1}, \dot{v}_{2}, \dots, \dot{v}_{\frac{n-1}{2}}, v_{\frac{n+1}{2}}, v_{\frac{n-1}{2}}, \dots, v_{j} = v \text{ is a longest } u - v \text{ path with } \langle P_{1} \rangle = P_{1}, \text{ for } i = 2, \dots, (m-1)/2 \text{ and } j = 2, \dots, (m-1)/2.$ Evidently, $D^{*}(u, v) = D^{*}(u_{i}, v_{j}) = m - i + n - j = m + n - (i + j).$ Similarly, if $u \in \dot{V}_{1}$ and $v \in \dot{V}_{2}$, we have $D^{*}(u, v) = D^{*}(\dot{u}_{i}, \dot{v}_{j}) = m + n - (i + j),$ for $i = 2, \dots, (m-1)/2$ and $j = 2, \dots, (n-1)/2.$ Now, for all such possible values of i and j, the corresponding polynomial is $F_{1}(x) = 2\sum_{i=2}^{\frac{m-1}{2}} \sum_{j=2}^{\frac{n-1}{2}} x^{m+n-(i+j)}.$ (2) If $u \in V_{1} - \{u_{2}\}$ and $v \in \dot{V}_{2} - \{\dot{v}_{2}\}$, then the path P_{2} $P_{2}: u = u_{i}, u_{i+1}, \dots, u_{\frac{m-1}{2}}, u_{\frac{m+1}{2}}, \dot{u}_{\frac{m-1}{2}}, \dots, \dot{u}_{2}, \dot{u}_{1}, u_{1}(= v_{1}), v_{2}, \dots, v_{\frac{n-1}{2}}, v_{\frac{n+1}{2}}, \dot{v}_{\frac{n-1}{2}}, \dots, \dot{v}_{j} = v$ is a longest u - v path with $\langle P_{2} \rangle = P_{2}$, for

$$i = 3, ..., (m-1)/2$$
 and $j = 3, ..., (n-1)/2$.

In this case, $D^*(u, v) = D^*(u_i, v_i) = m + n - (i + j) + 1$. Similarly, if $u \in V_1 - \{u_2\}$ and $v \in V_2 - \{v_2\}$, then $D^*(u, v) = D^*(\dot{u}_i, v_i) = m + n - (i + j) + 1$, for i = 3, ..., (m - 1)/2 and j = 03, ..., (n-1)/2. Now, for all such possible values of *i* and *j*, the corresponding polynomial is $F_2(x) = 2 \sum_{i=3}^{\frac{m-1}{2}} \sum_{j=3}^{\frac{n-1}{2}} x^{m+n+1-(i+j)}.$ (3) If $= u_2$ and $v \in V_2$; and since $m \le n$ then there are two subcases can be distinguished (a) For $j = 2, ..., \frac{n-m}{2} + 2$, the path $P_3: u = u_2, u_1 = v_1, v_2, \dots, v_{\frac{n-1}{2}}, v_{\frac{n+1}{2}}, \dot{v}_{\frac{n-1}{2}}, \dots, \dot{v}_j = v$ is a longest u - v path with $\langle P_3 \rangle = P_3$ and has length n - j + 1. Hence, $D^*(u, v) = D^*(u_2, \dot{v}_j) = n - j + 1.$ (**b**) For $j = \frac{n-m}{2} + 3, \dots, \frac{n-1}{2}$, the path $\dot{P}_3: u = u_2, u_3, \dots, u_{\frac{m-1}{2}}, u_{\frac{m+1}{2}}, \dot{u}_{\frac{m-1}{2}}, \dots, \dot{u}_2, \dot{u}_1 (= \dot{v}_1), \dot{v}_2, \dots, \dot{v}_j = v$ is a longest u-v path with $\langle \dot{P}_3 \rangle = \dot{P}_3$, and has length m-3+j. Hence, $D^*(u,v) = D^*(u_2, \dot{v}_j) = m-3+j$. Similarly, if $u = \dot{u}_2$ and $v \in V_2$ then $D^*(u,v) = D^*(u_2,v_j) = \begin{cases} n-j+1 \text{ if } j = 2, \dots, \frac{n-m}{2} + 2, \\ m-3+j \text{ if } j = \frac{n-m}{2} + 3, \dots, \frac{n-1}{2}. \end{cases}$ Notice that, each of the pairs (u_2, v_2) and (u_2, v_2) are counted twice with $D^*(u_2, v_2) = D^*(u_2, v_2) = n - 1.$ Now, for all such possible values of i and j, the corresponding polynomial is $F_3(x) = 2\sum_{j=2}^{\frac{n-m}{2}+2} x^{n-j+1} + 2\sum_{j=\frac{n-m}{2}+3}^{\frac{n-1}{2}} x^{m-3+j} - 2x^{n-1}.$ (4) If $u \in V_1$ and $v = v_2$ (or $u \in V_1$ and $v = v_2$), then $D^*(u, v) = D^*(\dot{u}_i, v_2) = D^*(u_i, \dot{v}_2) = n - 2 + i - 1 = n - 3 + i,$ for i = $2,3,\ldots,(m-1)/2$ This produces the polynomial $F_4(x) = 2 \sum_{i=2}^{\frac{m-1}{2}} x^{n-3+i}$. (5) If $u = u_{\frac{m+1}{2}}$ and $v = v_{\frac{n+1}{2}}$, then, $D^*(u,v) = D^*(u_{\frac{m+1}{2}}, v_{\frac{n+1}{2}}) = \frac{m-1}{2} + 1 + \frac{n-1}{2} = \frac{m+n}{2}$, and the polynomial is $F_5(x) = x^{\frac{m+n}{2}}$ (6) If $u = u_{\frac{m+1}{2}}$ and $v = v_2$ (or $u = u_{\frac{m+1}{2}}$ and $v = v_2$), then, $D^*(u,v) = D^*(u_{\frac{m+1}{2}}, v_2) = D^*(u_{\frac{m+1}{2}}, v_2) = \frac{m-1}{2} + n - 2.$ This produces the polynomial $F_6(x) = 2 x^{\frac{m-1}{2} + n-2}$. (7) If $u = u_{\frac{m+1}{2}}$ and $v \in V_2 - \{v_2\}$ (or $u = u_{\frac{m+1}{2}}$ and $v \in V_2 - \{v_2\}$), then, $D^*(u, v) = D^*(u_{\frac{m+1}{2}}, v_j) = D^*(u_{\frac{m+1}{2}}, v_j) = \frac{m-1}{2} + n + 1 - j$, and the polynomial is $F_7(\mathbf{x}) = 2 \sum_{j=3}^{\frac{n-1}{2}} x^{\frac{m-1}{2}+n+1-j}.$ (8) If $u = u_2$ and $v = v_{\frac{n+1}{2}}$ (or $u = u_2$ and $v = v_{\frac{n+1}{2}}$), then

$$d^{*}(u, v) = D^{*}(u_{2}, v_{\frac{n+1}{2}}) = \frac{n-1}{2} + m - 2, \text{ and this gives us the polynomial}$$

$$F_{8}(x) = 2 x^{\frac{n-1}{2} + m - 2}.$$
(9) If $u \in V_{1} - \{u_{2}\}$ and $v = v_{\frac{n+1}{2}}$ (or $u \in \acute{V}_{1} - \{\acute{u}_{2}\}$ and $v = v_{\frac{n+1}{2}}$), then
$$D^{*}(u, v) = D^{*}(u_{i}, v_{\frac{n+1}{2}}) = D^{*}(\acute{u}_{i}, v_{\frac{n+1}{2}}) = \frac{n-1}{2} + m + 1 - i, \text{ and this gives us the polynomial}$$

$$F_{9}(x) = 2 \sum_{i=3}^{\frac{m-1}{2}} x^{\frac{n-1}{2} + m + 1 - i}.$$
Now, adding the polynomial from the Cases L and H and simplifying

Now, adding the polynomials obtained from the Cases I and II and simplifying, we get the required result.■

Using the same procedure followed inproving Theorem 2.1 and Theorem 2.2 we obtain the following results.

Theorem 2.3 For odd $m \ge 7$ and even $n \ge 8$, we have

$$D^{*}(\theta(m,n);x) = D^{*}(C_{m};x) + D^{*}(C_{n};x) - x - 2 - 2x^{n-1} + 2x^{\frac{m-1}{2}+n-2} + 2\sum_{i=2}^{\frac{m-1}{2}}\sum_{j=2}^{\frac{n}{2}}x^{m+n-(i+j)} + 2\sum_{i=3}^{\frac{m-1}{2}}\sum_{j=3}^{\frac{n}{2}}x^{m+n+1-(i+j)} + 2\sum_{j=2}^{\frac{n-m-1}{2}+2}x^{n-j+1} + 2\sum_{j=2}^{\frac{n}{2}}x^{m-3+i} + 2\sum_{j=3}^{\frac{n}{2}}x^{\frac{m-1}{2}+1+n-j}.$$

Theorem 2.4 For even $m \ge 6$ and odd $n \ge 7$, we have

$$D^{*}(\theta(m,n);x) = D^{*}(C_{m};x) + D^{*}(C_{n};x) - x - 2 - 2x^{n-1} + 2x^{\frac{n-1}{2} + m-2} + 2\sum_{i=2}^{\frac{m}{2}} \sum_{j=2}^{\frac{n-1}{2}} x^{m+n-(i+j)} + 2\sum_{i=3}^{\frac{m}{2}} \sum_{j=3}^{\frac{n-1}{2}} x^{m+n+1-(i+j)} + 2\sum_{j=2}^{\frac{n-1-m}{2} + 2} x^{n-j+1} + 2\sum_{j=\frac{n-1-m}{2} + 3}^{\frac{m}{2}} x^{m-3+j} + 2\sum_{i=2}^{\frac{m}{2}} x^{n-3+i} + 2\sum_{i=3}^{\frac{m}{2}} x^{\frac{n-1}{2} + 1 + m-i} .$$

The following results are direct consequences of the Theorems 2.1 and 2.2.

Corollary 2.5 For even $m \ge 6$

$$D^*(\theta(m,m);x) = 2D^*(C_m;x) + 2\sum_{i=2}^{\frac{m}{2}}\sum_{j=2}^{\frac{m}{2}}x^{2m-(i+j)} + 2\sum_{i=3}^{\frac{m}{2}}\sum_{j=3}^{\frac{m}{2}}x^{2m+1-(i+j)} + 4\sum_{j=3}^{\frac{m}{2}}x^{m-3+j} - x + 2x^{m-1} - 2.$$

Corollary 2.6 For odd $m \ge 7$

$$D^*(\theta(m,m);x) = 2D^*(C_m;x) + 2\sum_{i=2}^{\frac{m-1}{2}} \sum_{j=2}^{\frac{m-1}{2}} x^{2m-(i+j)} + 2\sum_{i=3}^{\frac{m-1}{2}} \sum_{j=3}^{\frac{m-1}{2}} x^{2m+1-(i+j)} + 4\sum_{i=3}^{\frac{m-1}{2}} x^{m-3+i} + 4\sum_{j=3}^{\frac{m-1}{2}} x^{\frac{3m+1}{2}-j} + 4x^{\frac{3m-5}{2}} + 2x^{m-1} + x^m - x - 2.$$

3 The Restricted Detour Index of the Theta Graph

The <u>detour index</u> $dd^*(G)$ of a connected graph *G* is the Wiener index with respect to the restricted detour distance, that is

 $dd^*(G) = \sum_{u,v} D^*(u,v),$

where the summation is taken over all unordered pairs u, v of vertices of the graph G[2].

It is clear that $dd^*(G) = \frac{d}{dx}D^*(G;x)|_{x=1}$.

Taking the derivatives of $D^*(\theta(m, n); x)$ given in the results in Section 2 at x = 1, we get the restricted detour index of the theta graph $\theta(m, n)$ as is given in the next corollary.

Corollary 3.1

(1) For even $m, n \ge 6$, we have $dd^*(\theta(m, n)) = \frac{3}{8}(m+n)\left(m^2+n^2+mn+\frac{80}{3}\right) - 3(m^2+n^2) - \frac{11}{2}mn - 11$. (2) For odd $m, n \ge 7$, we have $dd^*(\theta(m, n)) = \frac{3}{8}(m+n)\left(m^2+n^2+mn+\frac{83}{3}\right) - 3(m^2+n^2) - \frac{11}{2}mn - \frac{27}{2}$ (3) For odd $m \ge 7$ and even $n \ge 8$, we have $dd^*(\theta(m, n)) = \frac{3}{8}(m^3+n^3) - 3(m^2+n^2) + \frac{3}{4}(m^2n+n^2m) + \frac{81}{8}m + \frac{41}{4}n - \frac{11}{2}mn - \frac{23}{2}$ (4) For even $m \ge 6$ and odd $n \ge 7$, we have $dd^*(\theta(m, n)) = \frac{3}{8}(m^3+n^3) - 3(m^2+n^2) + \frac{3}{4}(m^2n+n^2m) + \frac{81}{8}n + \frac{41}{4}m - \frac{11}{2}mn - \frac{23}{2}$.

(5) For even
$$m \ge 6$$
 we have
 $dd^*(\theta(m,m)) = \frac{9}{4}m^3 - \frac{23}{2}m^2 + 20m - 11$

(6) For odd $m \ge 7$, we have $dd^*(\theta(m,m)) = \frac{9}{4}m^3 - \frac{23}{2}m^2 + \frac{83}{4}m - \frac{27}{2}.$

Proof. Obvious.

<u>REFERENCES</u>

- Ali, A. A. and Mohammed-Saleh, G. A., (2012); "The Restricted Detour polynomials of a Hexagonal Chain and A Ladder graph", J. Math. Comput. Sci, Vol.2, No. 6, p. 1622-1633.
- [2] Abdulla, H. O. and Mohammed-Saleh, G. A., (2010); "Detour Hosoya polynomial of some compound graphs", Rad. J. Comp. Sci. and Maths, Vol.7, No. 1, p. 139-154.
- [3] Buckly, F. and Harary, F. (1990); "Distance in Graphs", Addison-Wesley, Redwood, California. U. S. A.
- [4] Chartrand, G.; Johns, G. L. and Tian S. (1993); "Detour distance in graphs, Annals of Discrete Mathematics", Vol. 55, pp. 127-136.
- [5] Gutman, I. (1993); "Some properties of the Wiener polynomial", Graph Theory Notes of New York, Vol.XXV, pp.13-18.
- [6] Hosoya, H. (1988); "On some counting polynomials in Chemistry", Discrete Applied Mathematics, Vol.19, pp.239-257.
- [7] Liansheng Tan, Zhongxun Zhu (2010); "The extremal θ –Graphs with respect to Hosoya index and Merrifield-Simmons index", MATCH Commun. Math. Comput. Chem., vol. 63, pp. 789-798.

[8] Mohammed-Saleh, G. A. (2013); "On The Detour Distance and Detour polynomials of graphs", Ph.D. Thesis, University of Salahaddin\Erbil, Erbil, Iraq.