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ABSTRACT 

By applying Ruscheweyh - type harmonic function on the class ASH(λ,α,k,γ), a new 

subclass ℋRq(m, α, k, γ) for harmonic univalent function in the unit disk D is 

introduced, Furthermore, some geometric properties are obtained such as distortion 

theorem, sufficient coefficient bounds ,extreme points and convex combination 

conditions for aforementioned subclass. 
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1. Introduction. 

Let ℋ  be denoted to  the class of all harmonic functions, consider      ̅  are 

univalent and orientation  preserving in   *  | |   +  
 ( )      ∑      

     and  ( )    ∑            |  |
 
                        (   ) 

Normalized by ( )      ( )    where   ( ) denotes the derivative of  ( ) at z=0 

with h and g holomorphic part and co-holomorphic part of   respectively, the necessary 

and sufficient condition make the function f  to be both locally univalent and orientation 

preserving in    is that |  ( )|  |  ( )| in    (see [1]), we recall the notation of q-

difference operator where Jackson[6] in 1909 initiated the application of q-calculus 

holomorphic univalent functions. 

For      , Jackson's q-derivative of the  ( )    ∑     
   

    where h is 

normalized holomorphic univalent functions. 

   ( )  {

 ( )  (  )

(   ) 
        

  ( )        
}   

where      ( )    ∑ , -         
     and , -  

    

   
 . 

Kanas and Răducanu [5] introduced the Ruscheweyh type q- differential operator 

and investigated some properties for it. This operator has been studied by many 

researchers [2,7,8], Ruscheweyh type q-differential operator shown below. 

  
  ( )   ( )        ( )    ∑

  (   )

(   )   (   )
       

                         

and have 

      ( )=   ∑
  (   )

(   )   (   )
 
                       

Let  (   )   
  (   )

(   )   (   )
   

So   
  ( )    ∑   (   )                      

          
Also, 
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 ( ( )     ∑ , -  (   )       

 

   
    

   (       
 ( ( ))   ∑ , - (   )  (   )        

 

   
    

       
 ( ( ))   ∑ , -  (   )      

 

   
     

   .      
 ( ( ))/  ∑ , - ,   -  (   )   

   
 

   
                                    (   )   

Juma and Kulkarni in [4] applied Ruscheweyh derivatives on the class 

ASH(       ). They obtained several geometric properties. We define a class of 

Ruscheweyh-type q-differential harmonic function ℋ  
 (       ) consisting of 

functions     satisfying      ̅ where  

R 4(      )
     

 .  
  ( )/     .  

  ( )/      
 .  

  ( )/      .  
  ( )/

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

     .  
  ( )/      .  

  ( )/
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   5     

where 0                                                                                          (   )     

Let  ̅  denoted to a subfamily of   consisting of the harmonic function, we define a 

subclass  ℋ̅  
 (       )  ℋ  

 (       )   ℋ̅  consisting harmonic function of  

the form.                   

 ( )    ∑      
     and  ( )  ∑      

   ,                                     (1.4) 
 

2. Main Result. 

Theorem 2.1.  Let        ̅̅ ̅       

(∑, -  (   )
[(   ) ,   -       ]

(       )  (   )|  |

 

   

+ |  | 

 (∑, -  (   )
[(   ) ,   -     ]

(       )  (   )|  |

 

   

+ |  |               (   ) 

where   =1, 0                      .Then      
 (       )  

Proof. We will show that the coefficient estimate of the harmonic function        ̅̅ ̅ 

    satisfy inequality (2.1), therefore,        ̅̅ ̅ satisfies the condition (1.2), 

  ((      )
     

 .  
  ( )/      .  

  ( )/       
 .  

  ( )/       .  
  ( )/

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

     .  
  ( )/       .  

  ( )/
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

  )    

Thus 

R2
 ( )

 ( )
3                                                                                                    …(2.2) 

where  ( )  (      )     
 .  

  ( )/      .  
  ( )/ 

      
 .  

  ( )/       .  
  ( )/

̅̅̅ ̅̅̅ ̅̅̅̅ ̅̅̅ ̅̅̅ ̅̅̅ ̅̅̅̅ ̅̅̅ ̅̅̅ ̅̅̅ ̅̅̅̅ ̅̅̅ ̅̅
      .  

  ( )/       .  
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 ( )  (      )         ̅ ̅  ∑, - 

 

   

 (   )[(      ),   -   

     ]     ∑, -  (   )[(      ),   -      ]

 

   

  
̅̅ ̅ ̅   
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 ( )       .  
  ( )/     .  

  ( )/
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

 

       ̅  ̅   ∑, - 

 

   

 (   )     ∑, -  (   )

 

   

  
̅̅ ̅ ̅   

Using the fact that R* +    if and only if |     |  |     |  to prove that it 

is  equivalent to show that 

 | ( )  (   ) ( )|  | ( )  (   ) ( )|     
We simplify the part  | ( )  (   ) ( )| 

 |(      )        ̅  ̅  ∑, -  (   )[(      ),   -        ]    

 

   

 

 ∑, -  (   )[(      ),   -      ]  
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 ∑, -  (   )  
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 ∑, -  (   )[(   ),   -       ]|  || | 
 

   

 

 ∑, -  (   )[(   ),   -       ]|  || | 
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  ,(      )  (   )|  |-| | 

 ∑, -  (   ) 0.(   ),   -       /1 |  || | 
 

   

 ∑, -  (   ) 0.(   ),   -     /1 |  || | 
 

   

 

  ,(      )  (   )|  |-| | * 
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, -  (   ) 0.(   ),   -       /1 |  |

,(      )  (   )|  |-

 

   

 
, -  (   ) 0.(   ),   -     /1 |  |

,(      )  (   )|  |-
+ | |              

The expression shown above is non-negative from the inequality (2.1) and so 

      
 (       ).   

Theorem 2.2. Let       ̅ given by  

 ( )    ∑      ∑     ̅̅ ̅̅ ̅̅ 
   

 
        ̅   

 (       ) if and only if  : 

∑
0.(   ),   -       /1

,(      )(   )|  |-
   , -  (   )

 

   

 

 ∑
, -  (   ) 0.(   ),   -     /1    

,(      )  (   )|  |-
   

 

   

                                     (   ) 

           where       and                                                             

Proof. Since     
 (   )        

 (       ), if condition will satisfy, to prove the 

converse part. Start with function      ̅ in     
 (       )  we must have  

R 4(      )
     

 .  
  ( )/     .  

  ( )/      
 .  

  ( )/      .  
  ( )/

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

     .  
  ( )/      .  

  ( )/
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   5    

or equivalently : 

 4
 ( )     ( )

 ( )
5    

 (
((      )(   ) |  |  ∑ , -  (   ) 0.(   ),   -       /1 

       *

     ̅̅̅̅   ̅  ∑ , -  (   ), -      ∑ , -  (   ), -   
̅̅ ̅     ̅̅ ̅ 

   
 
    

, 

 When the condition (2.3) not hold, the numerator in the above inequality will be 

negative for r goes to 1. This condition for  ( )    ̅   
 (       ).  
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Recall that in [2] for a topological vector space X over the field   of complex 

numbers, let    , the smallest convex set containing E is called the closed convex 

hull of E and denoted by Clco(E).  

Theorem 2.3. A function  ( )   ̅   
 (       ) if and only if  

 ( )   ∑(    ( )      ( )) 

 

   

                                                                                 (   ) 

where   ( )     

  ( )    
,(       )  (    )|  |-| |

[(   ),    -        ] (   ), - 
     

           

  ( )    
,(      )  (   )|  |-| |

[(   ),   -     ] (   ), - 
   ̅̅ ̅ 

           

∑(     )   

 

   

                

In special case , the extreme point of   ̅   
 (       ) are *  +     *  +  

Proof. Let f  be the  function which can be written as (2.4), we have  

 ( )  ∑(     )   ∑
,(      )  (   )|  |-

[(   ),   -       ] (   )
     

 

   

 

 

   

  ∑  
,(      )  (   )|  |-

[(   ),   -     ] (   )
     ̅̅ ̅

 

   

 

   ∑      ∑     ̅̅ ̅

 

   

 

 

   

 

Therefore,,  

∑, -  (   )
[(   ),   -     ]|  |

,(      )  (   )|  |-| |

 

   

  ∑, -  (   )
[(   ),   -     ]|  |

,(      )  (   )|  |-| |

 

   

 

 ∑    ∑   

 

   

  

 

   

        

And so f         ̅   
 (       )    

Conversely assume that f         ̅   
 (       ) Set.  

    
[(   ),   -       ]  

,(      )  (   )|  |-| |
 , -  (   )  

            

    
[(   ),   -     ]  

,(      )  (   )|  |-| |
 , -  (   )  

            
Where ∑    ∑   

 
      

   , so  
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     ∑    ∑   
 
   

 
   . Therefore,,  ( ) can be written as  

 ( )    ∑      ∑   
̅̅ ̅   ̅̅ ̅ 

   
 
     

   ∑
,(      )  (   )|  |-

[(   ),   -       ] (   )

 

   

     

 ∑
,(      )  (   )|  |-

[(   ),   -       ] (   )

 

   

    ̅̅ ̅ 

   ∑(  ( )   )

 

   

   ∑(  ( )   )

 

   

   

  [  ∑    ∑   

 

   

 

   

]  ∑(  ( )   )

 

   

   ∑(  ( )   )

 

   

   

 ∑ (    ( )      ( ))  
              

Theorem 2.4. Let  ( )   ̅   
 (       ) then : 

 (    )  
,(      ) (   )-  

, -  (   ),      )
   | ( )|  (    )  

,(      ) (   )-  

, -  (   ),      )
      

Proof. 
We shall prove only one side, let us take the right side inequality because the 

proof for the left side inequality is similar way.  

At first take the absolute value of the function  ( ), we have 

| ( )|  
,(      ) (   )-   (   )  

,(      ) (   )-  
  

| ( )|  |  ∑      ∑     ̅̅ ̅

 

   

 

 

   

 | 

 (    )| |  ∑(      )| | 
 

   

 

 (    )  ∑(      )  

 

   

 

 (    )  
,(      )  (   )|  |-

 (   ), - ,      -
 ∑ 4

 (   ), - ,      -

,(      )  (   )|  |-
   

 

   

 
 (   ), - ,      -

,(      )  (   )|  |-
5     

Then | ( )|  
,(      ) (   )-   (   )  

,(      ) (   )-  
                

Theorem 2.5. The family  ̅   
 (       )  is closed for the convex combinations. 

Proof. For           let   ( )   ̅   
 (       )  

 where   ( )    ∑   ̅       ∑   ̅   
 
     ̅̅ ̅  

    

Then by theorem   
 ( )

 ( )
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∑, -  (   )
[(   ),   -       ] 

,(      )  (   )|  |-| |

 

   

     

  ∑, -  (   )[(   ),   -       ]

 

   

         

For ∑               
    the convex combinations of functions    may be written as 

: 

∑  

 

   

   ( )    ∑ (∑  

 

   

     +    ∑ (∑  

 

   

     +    ̅̅ ̅̅

 

   

 

   

 

Using the inequality (2.4) we have : 

∑, -  (   )
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     +
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     +

 

   

 

 ∑  
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