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ABSTRACT

Let R be a commutative ring with identity. We consider T';(R) an annihilator
graph of the commutative ring R. In this paper, we find Hosoya polynomial, Wiener
index, Coloring, and Planar annihilator graph of Z,, denote I';(Z,,), withn =p™ orn =
p™q, where p,q are distinct prime numbers and m is an integer with m > 1.

Keywords: Annihilator graph of ring, Zero-divisor graph, Hosoya polynomial, Wiener
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1. Introduction

Let R be a commutative ring with identity the annihilator of R is the set of all
element x € R satisfy ann(R) = {x € R:x.y = 0,V y € R} [6], and let ann(R) be the
set of all annihilator in R. We consider a simple graph T (R) to R with vertices
ann(R), for every two distinct vertices x,y are adjacent if and only if {x.y =
0:x,y e ann(R)}, and let Z(R) be the set of all zero-divisors in R, and Z(R)* is the set
of all non-zero zero-divisors in it. A simple graph I'(R) with vertices Z(R)*, for every
two distinct vertices x,y are adjacent if and only if {x.y = 0:x,y € Z(R)"}.
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The notion of an annihilator graph of a commutative ring was first introduced in
1988 by Beck [5], where he was interested in colorings, this investigation was then
continued by Anderson and Nasser [3] zero-divisor graph of a commutative ring, further
that Anderson and Livingston [2]. They denoted that by TI'(R). It is clear that from
Beck’s definition of annihilator graph of a commutative ring and Anderson’s definition
of a zero-divisor graph of a commutative ring can be defined Annihilator graph of a
commutative ring can be defined I';(R) = (('(R) U {ann(R*) — Z(R)*}) + k, ). Such
that: T(R) zero-divisor graph of the ring, ann(R*) set of all vertices in R non-zero,
Z(R)* set of all non-zero zero-divisors in R and k; = 0.

A graph G is called a connected graph if there is at least one path between any
pair of vertices in G, otherwise it is called disconnected [7]. For vertices x,y of G, let
d(x,y) be the length of the shortest path from x to y (and it is called distance between
two vertices x,y in G). The maximum distance between any two vertices x,y in G is
called the diameter graph G [7], that is diam(G) = x;}ré%a){d(x, )}, where V(G) is the

set of all vertices of G. A graph G is complete if every two of its vertices are adjacent,
so the complete graph of order n is denoted by k,,. If the vertex set of a graph G can be
split into two disjoint sets A and B (such that the induced subgraph that generated by
either A or B is null graph), then we said G is a bipartite graph. This graph is also said to
be a complete bipartite graph is a bipartite graph in graph if each vertex in the set A has
joined to every vertex in the set B with just one edge.

Hosoya polynomial of the graph G is defined by H(G; x) = Y0 ™ a(G, k)x,
where d(G, k) is the number of pairs of vertices of a graph G, that are at distance k
apart, for k = 0,1,2, ..., diam(G). The Wiener index of G is defined as the sum of all
distances between vertices of the graph G, and denoted by W (G), we can also find this
index by differentiating Hosoya polynomial with respect to x at x =1, by symbols we
can write: W(G) = %H(G;x)|x_1, See [8,12].

Let X' (G) denote the chromatic number of vertices, i.e., the minimal number of
colors, which can be assigned to the vertices of G in such a way that every two adjacent
vertices have different colors [7]. We let X (G) denote the chromatic number of edges,
i.e., the minimal number of colors, which can be assigned to the edges of G in such a
way that every two adjacent edges have different colors [7]. And last we assumed f(G)
denote the chromatic number of faces, i.e., the minimal number of colors, that can be
assigned to the faces of planar graph G in such a way that every two adjacent faces have
different colors [7]. A planar graph G is a graph that can be drawn in the plane without
crossings for any two edges in G [7]. There are many studies in the graph properties and
commutative ring. See [1],[4],[10]&[11].

2. Some Properties of Graph I';(Z,m)
We will start this item by a lemma.

Lemma 2.1: The vertex (0) connect with every vertex of the graph T'; (Z,,).
Proof: Since 0.a =0,V a € Z,, so it is the vertex (0) connect with every vertex of the

graph ' (Z,).
Lemma 2.2 [7]: Let G be a connected graph of order p, then:
o @dG, k) = (i) =—pp +1).
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Theorem 2.3: The Hosoya polynomial of graph FB(me) where p is a prime number
and m is an integer with m > 1.
H(Tg(Zym); ) = p™ + [(m +Dp™ —mp™ ™t — pl%l] x
+ % [pzm —(m+2)p™+mp™ 1+ pl%J] x2.

Proof: From the definition of the graph I';(R), since the vertex (0) connect with every
vertex of the graph I';(Z,,), so the order of the graph I';(Z,,) which represents absolute
term of Hosoya polynomial of the graph I'; (Z,,m).

Now, we find the coefficient of x that represent size of the graph T'; (me) using
the definition of the graph I';(R) is the sum of (p™ — 1) of the edges (since the vertex

(0) connect with every vertex the graph FB(me) from the Lemma (2.1), with a, of the

graph F(me) [9] where as (a1 =2 [(m — Dp™ —mp™1 - pl%l + 2]) SO we get.

ay+ (@™ — 1) = 2o - Dp™ —mpmt —pla] 4 2] + - 1)
= Lem + Dp™ — mpmt - plz]].

Now, we find the coefficient of x? as the diameter of the graph I'y(Z,m) is two
from the Lemma (2.1) and using Lemma (2.2) so we get:

diam(FB(me)) pm +1
Zk:o d(FB(me)' k) = ( 2 )

= 20T — 4Ty (Zym),0) + d(Ty(Zym), 1) + d(Ty (Zym),2)
d(Ty(Zym),2) = 20 — d(T (Z,m),0) — d(Ty(Zym), 1)

_ pm(p2m+1) _ pm _ % [(m + 1)pm _ mpm—l _ pl%l]

— %[pZm + pm _ me _ mpm _ pm + mpm—l + pl%]]
= %[pzm —(m+2)p™+mp™ 1+ pl%l] .u

1 m
w HTg(Zym)ix) =p™ + = [(m +Dp™ —mp™! - pl7l] x

+ % [pzm —(m+2)p™ +mp™ 1t + pl%J] x2.

Corollary 2.4: The Wiener index of graph FB(me) where p is prime number and m is
an integer withm > 1.
W (T (Zpm)) = %[szm —(m+3)p™+mp™ ! + pH].

Proof: Since wiener index is the first derivative polynomial of Hosoya after
compensation for a value x = 1 so we get:

Wy (Zym)) = %H(FB(me);x)h:l
W(FB(me)) _ %(pm + % [(m + Dp™ — mpm—l — pl%]] X
+— [pzm —(m+2)p™ +mp™ ' + P[%J] x2)|x=1

=0+ % [(m + Dp™ —mp™ ! — pl%l]
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+ [pzm —(m+2)p™+mp™ ! + pl%J] x

x=1

+2mp™t + Zplgj]
= %[szm —(m+3)p™+mp™ !+ pl%l] .u

Example 1: The Hosoya polynomial and wiener index of graph I';(Z1).
The graph is clear I';(Z;¢) of formula FB(me), where p = 2 and m = 4.

¢ H(Ty(Zym); %) = p™ + = [(m + Dp™ — mp™? — pl?l] x

+%[p2m —(m+2)p™+mp™ ! + ng] x2.

~ H(Ty(Z16);x) = 16 + 22x + 98x2.
W(FB(me)) = %[szm —(m+ 3)pm + mpm_l + pl?]]
o W(FB(ZIG)) = 218.

Theorem 2.5: (Coloring of graph I‘B(me)).

m-—1
2

p 4+ 1 ,misan odd.

A- Chromatic number of vertices of the graph I',(Z,m) =
pz ,mis an even.

B- Chromatic number of edges of the graph FB(me) is p™ —1.
Proof: A- Case 1: if m is an odd.

m+1

Since the multiplication of the number p 2 by one of its complication

m+1 m+1 m-—1 m+1

(ZpT, 3pz,.,pz.pz = O), that the product is one of its complications of the
number p™ which is equal to (0) in the ring Z,m. Or multiplication one complication of

m+1 m+1

the number p 2 in another complication of the number p™ 2 that the product is one of
the complications of the number p™ which is equal to (0) in the ring Z,m= as in the
Figure (2.1).

p 2
o m-1
p 2z
1
|
m-—1
| 2p 2
|
p™ -1
4 2 m+1 m-1
The graph I';(Z,m) w2z -—pz

Fig (2.1)
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Clearly the complete graph k m-1 be subgraph from the graph I';(Z,m) (when
D 2

m—1
m is an odd), and also the multiplication of the number p™ 2 or one of its complications

m-—1 m-—1 m+1 m—1 m+1

(ZpT, 3p 2 ,..,p 2 .p2z = 0) by the number p—2 or one of its complications is
the product p™ or one of its complications which is equal to (0), in the ring Z,m=. And

thus the complete graph k m-1 is the largest complete subgraph that exist in the graph
p 2 +1

I';(Z,m). And since the chromatic number of vertices of a complete graph kme—1+1 is
(me_1 + 1) [7], so it is the chromatic number of the graph I';(Z,m) is (pm__1 + 1) and
also of vertices (when m is an odd).
A- Case 2: if m is an even:

Since the multiplication of the number p% by one of its complications
(Zp%, Sp%, p% p% = 0), that the product is one of its complications of the number

p™ which is equal to (0) in the ring Z,=. Or multiplying one complication of the

number pz in another complication of the number pz, that the product is one of its
complications of the number p™, which is equal to (0) in the ring Z,= as in the Figure
(2.2). m

p 2

m -
The graph I';(Z,m)
Fig (2.2)

Clearly the complete graph k m is the largest complete subgraph that exist in the
p
graph FB(me) (when m is an even). And since the chromatic number of vertices of a
complete graph k = is p% [7], so it is the chromatic number of the graph I';(Z,m) is
p2

p2 and also of vertices (when m is an even).
B- From the Lemma (2.1) the vertex (0) connect with every vertex in the graph

I';(Z,m) then the degree of the vertex (0) is (p™ — 1) so the chromatic number of the
edgesis (p™ — 1).

Theorem 2.6 [7]: (kuratowski’s Theorem), The graph G is planar if and only if it does
not contain G on subgraph that is homeomorphic to ks or k3 3.
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Theorem 2.7:
a- The graph [';(Z,m=) contains a subgraph that is homeomorphic to k m-2  and

p 2 +1
K/ m+1 m-1\ m-1 (When m is an Odd)
(P— —> p 2z

2 -p 2 2
b- The graph T';(Z,m) contains a subgraph that is homeomorphic to k m and
14

k< m+2 m_—z) m-2 (When m is an even).
p P

2 —p 2 2

Proof:
a- From the Theorem (2.5-A-1) we get the first part of the Theorem directly.

m+1

Since the multiplication of the number p 2 or one of its complications

(Zp 2,3p 2 ,..,p 2 .p 2 =0) by number p or one of its complications
m-—1 m-—1 m+1 m—1
(ZpT, 3p 2 ,..,p2.pz = O) be the product p™ or one of its complications of the
number p™ which is equal to (0) in the ring Z,m. Thus, the graph FB(me) contains a
subgraph homeomorphic with complete bipartite graph k< m+1 m__1> m-1 it IS the
p2 —-p2 |p 2

largest complete bipartite graph there is in the graph I'; (Z,m) as in the Figure (2.3).

m+1 m+1 m+l T -1
p
1
|
I
— p"—1
m-1 -1 m-1 m+1 m-1
p 2 2p 2 3p 2 2z -1p2
The graph I';(Z,=)
Fig (2.3)

b- From the Theorem (2.5-A-2) we get the first part of the Theorem directly.

m+2

Since the multiplication of the number p 2 or one of its complications

(Zp 2,3p2,.,p2.p 2 =O) by number p 2 or one of its complications
m-—2 m-—2 m+2 m-—2
2

(ZpT_, 3p 2 ,..,p 2 . pT_ = O) be the product p™ or one of its complications of the

number p™ which is equal to (0) in the ring Z,m. Thus, the graph T';(Z,=) contains a

subgraph homeomorphic complete bipartite graph k, m+2 m-2y m—2 it is the largest
<p 2 —p 2 >p 2

complete bipartite graph there is in the graph I';(Z,m) as in the Figure (2.4).
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m+2 m+2 m+2 o =2 _ 1)pm2+2
p
1
|
I
I
J _ p" -1
== -2 m=2 m+2 m-2
p 2 2p 2 3p 2 2 -Dp
The graph I’ (Z,m)
Fig (2.4)

Remarks:
1. From the Theorem (2.7-a), the only graphs I';(Z,) and I';(Zg) from the formula

[';(Zp,m) when m is an odd it does not contain subgraph homeomorphic ks or k5 3
therefore it is planar graphs by kuratowski’s Theorem.
2. From the Theorem (2.7-b), the only graphs I'y(Z,), I';(Zs) and I';(Z;6) from the

formula I';(Z,m) when m is an even it does not contain subgraph homeomorphic
ks or kj 3 therefore it is planar graphs by kuratowski’s Theorem.

3. Theonly graphs I';(Z,), Ty (Zs), [3(Zs), '3 (Z16) and I';(Z),) they are colorable for
faces.

Example 2: The chromatic number of the graphs I';(Z¢) and [';(Z37).

The graph is clear I';(Z;) of formula I';(Z,m), where p = 2 and m = 4 and the graph
is clear I'y(Z,,) of formula T;(Z,m), where p = 3 and m = 3.

The chromatic number of vertices the graph FB(me) is p% (when m is an even).
X(FB(Zl6)) = 4.
The chromatic number of edges the graph I';(Z,m) isp™ — 1.
n X(T5(Z16)) = 15.
From Theorem (2.7-b) we get the graph I (Z,¢) contains a subgraph that is

homeomorphic to k, and kg, then the graph I';(Zy¢) it is planar by kuratowski’s
Theorem.

~ f(Tg(Z16)) = 3.

The chromatic number of vertices the graph I'y(Z,m) is me_l + 1 (when m is an
odd).

= X (Tg(Z27)) = 4

The chromatic number of edges the graph ', (Z,m) is p™ — 1.

. X(T(Z,7)) = 26.
From Theorem (2.7-a) we get the graph [;(Z;;) contains a subgraph that is
homeomorphic to kg 5 then the graph I';(Z37) it is not planar by kuratowski’s Theorem.
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3. Some Properties of graph I';(Z,m).

Theorem 3.1: The Hosoya polynomial of graph FB(meq) where p, q are distinct prime

numbers and m is an integer with m > 1.

H(Ty(Zpymg);x) = p™q + (% [2qg(mp —m +p) — (m+ Dp + m]p™~! — %pgj)x
+ (% l[a(p™""q —3p — 2mp + 2m) + (m + Dp —m]p™ " + %pl?J) x2.

Proof: From the definition of the graph I';(R) since the vertex (0) connect with every

vertex the graph T';(Z,m,) so the order of the graph I';(Z,m,) which represents

absolute term Hosoya polynomial of graph I';(Z,mg).

Now, we find the coefficient of x that represent size of the graph FB(meq)
using the definition of the graph I';(R) is the sum of (Z,m, — 1) of the edges (since the
vertex (0) connect with every vertex the graph I';(Z,m,) from the Lemma (2.1), with
a, of the graph T'(Z,m,) [9] where as (a1 = %[qu(p -1 —-(m+Dp+m]p™?* -

pl%J + 1) so we get.

@+ (™ —1) = —[2mq(p— 1) — (m+ Dp +mlp™ 1 — plzl £ 14 pmg -1
1

= ~[2q(mp —m+p) — (m + 1)p + m]p™~* — %pl?l_
Now, we find the coefficient of x? as the diameter of the graph Iy (meq) is two

from the Lemma (2.1) and using Lemma (2.2) so we get.

diam(FB(meq)) pmq +1
Zk:o d(FB(meq)' k) = ( 2 )

m ( m +1)
N pz a+1) _ d(Ty(Zpmg),0) + d(T5(Zymg), 1) + d(Ty(Zymg),2)
p™q(p™q+1)
d(FB(meQ)’ 2) == 5,  ~ d(FB (meq)' O) — d(Tz(Zpmg) 1)
m mg41) 1 _ 1 m
= PR _ pmg — (S [2q(mp — m + p) +m]p™ " — ;plzJ).
= Llqp™*1q - 3p — 2mp + 2m) + (m + Dp —mlp™! +2pl].m
1 _ 1 m
» H(Tg(Zpmg); x) = p™q + (; [2g(mp —m+p) —(m+ Dp + mp™ ! — 7plzj)x
! _ m
+ (; [q(p™*'q —3p —2mp + 2m) + (m + Dp —m]p™ ' + %plzj)xz.
Corollary 3.2: The Wiener index of FB(meq) where p, g are distinct prime numbers
and m is an integer with m > 1.
1 _ 1 |
w (FB(ZPmQ)) = ~[2q(@™q —mp —2p +m) + (m+ D)p —m]p™ ' + ?plzJ

Proof: Since wiener index is the first derivative polynomial of Hosoya after
compensation for a value x = 1 so we get:

v W(T(Zpmg)) = %H(FB(meq);x)lxﬂ
d

W) = o (7a + (21200mp = m o+ p) = m+ Dp + mlp™? = 2pl3]) x

+ (% [q(p™*tq —3p — 2mp +2m) + (m + Dp —m]p™* + %pl%J)x2)|

x=1
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= (0+ (2 129(mp —m+p) — (m+ Dp + mlp™ - Lplz])
([q(pm+1 —3p-2mp+2m)+(m+ Dp—m]p™ !+ %pl%]) x|

x=1

= L129(p™* g —mp—2p +m) + (m + Dp — mlp™ + 2 pl2]. m

Example 3: The Hosoya polynomial and wiener index of graph I';(Z1).
The graph is clear T';(Zyg) of formula T, (Z,m,), wherep = 3,9 = 2 and m = 2.

 H(T(Zymq)s x) = p™q + (5 [2q(mp = m +p) = (m + Dp + mlp™* —
;plzj)x + (3 [2a@™q —mp — 2p +m) + (m + Dp —
m]p™~! +%p[%J)x2
H(r (Z1g); x) = 18 + 30x + 123x2.

W (Ty(Zymg)) = 5 [2q(p™ g — mp — 2p + m) + (m + Dp — m]p™ ™ +— plmJ
& W, (Zeg)) = 276,

Theorem 3.3: (Coloring of graph FB(meq)).
A- Chromatic number of vertices of the graph

m-1
p 2 +2 ,misanodd.
Iy (meq) = m
p2 +1 ,misaneven.
B- Chromatic number of edges of the graph I';(Z,m,) is p™q — 1.

Proof: A- Case 1: if m is an even:
From the Theorem (2.5-A-1). Since the subgraph k m-1  is the largest

p 2 +1
complete subgraph exist in the graph I'; (me) (when m is an odd). It is also clear that

the number p™q product of multiplication the number p™ or one of its complications in
the number q or one of its complications thus a new vertex will be added to the

complete graph k m-1 so we have the complete graph k m-1 is the largest
T2 +1 p 2 +2

complete subgraph exist in the graph FB(meq) hence the chromatic number of the

graph Ty (Z,mg) is (p 2 +2) [7].
A- Case 2: if m is an even:
From the Theorem (2.5-A-2). Since the subgraph k %is the largest complete
14

subgraph, exist in the graph T';(Z,m) (when m is an even). It is also clear that the

number p™q product of multiplication the number p™ or one of its complications in the

number g or one of its complications thus a new vertex will be added to the complete

graph k m so we have the complete graph k m . is the largest complete subgraph exist
1% 2 1% 2 +

in the graph I';(Z,,m4) hence the chromatic number of the graph T'(Z,m,) is (p% + 1)
[7].
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B- From the Lemma (2.1) so it is the vertex (0) connect with every vertex the graph
FB(meq) then the degree of the vertex (0) is (p™q — 1) so it is the chromatic number
of the edges is (p™q — 1).

Theorem 3.4: The graph I';(Z,m,) contains a subgraph that is homeomorphic to
k(pm -1),q and k(p_q_ pm—1)pm-1.

Proof: The first part, since the multiplying the number p™ or one of its complications
2p™, 3p™,...,(q — 1).p™,p™q =0) by number g or one of its complications
(2q,3q,...,(p™ —1).q,p™q = 0) be the product p™q or one a complications of the
number p™q which is equal to (0) in the ring Z,m,. Thus the graph FB(meq) contains
a subgraph homeomorphic complete bipartite graph k,m _yy 4, as in the Figure (3.1).

Fig (3.1)

The second part, since the multiplying the number pq or one of its complications
(2pq,3pq, ..., ™t — 1)pq,p™q = 0) by number p™1 or one of its complications
2p™ L 3p™ L, .., (pqg— Dp™ L, p™g=0) be the product p™qg or one a
complications of the number p™q which is equal to (0) in the ring Z,,m,. Thus the graph
FB(meq) contains a subgraph homeomorphic complete bipartite graph

k(pq_pm—l),pm—l, as in the Figure (3.2).

The graph I'y(Z,m,)
Fig (3.2)

Remark:

From the Theorem (3.4), the only graphs of the formula I'y(Z,m,) when g = 2
and m = 1 does not contain a subgraph homeomorphic k3 3 or ks therefore it is planar
and colorable for faces. Otherwise, the graphs of the formula I'y(Z,m,) contain a
subgraph homeomorphic k33 or ks therefore it is not planar graphs by kuratowski’s
Theorem.

Example 4: The chromatic number of the graphs I';(Z15) and I';(Z52)
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The graph is clear I';(Zg) of formula FB(meq), where p = 3,q = 2 and m = 2 and
the graph is clear ', (Z,) of formula T';(Z,m,), wherep = 11,¢ = 2 and m = 1.

The chromatic number of vertices of the graph I'y(Z,mq) is p% + 1 (when m is an
even).

=~ X (Tp(Zeg)) = 4

The chromatic number of edges the graph I';(Z,mq) is p™q — 1.

o X(FB(le)) = 17-

From Theorem (3.4) we get the graph [;(Zyg) contains a subgraph that is
homeomorphic to k5 5 then the graph I';(Z3g) it is not planar by kuratowski’s Theorem.

m-—1
The chromatic number of vertices the graph FB(meq) isp 2z + 2 (whenm isan odd).
» X([Tp(Z22)) = 3.
The chromatic number of edges the graph I';(Z,mq) is p™q — 1.
X(FB(ZZZ)) =21
From Theorem (3.4) we get the graph I;(Z;;) contains a subgraph that is
homeomorphic to k,,, it is the largest complete bipartite graph there is in the graph
5 (Z22) then the graph I';(Z3,) it is planar by kuratowski’s Theorem.

f(FB(Zzz)) = 3.
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