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 Lead (Pb) is a pervasive industrial and environmental pollutant that seriously impairs the 

central nervous system, primarily by disrupting the redox balance. The current research 

was conducted to explore the possible beneficial action of thymoquinone (TQ), the main 

active component in Nigella sativa seed volatile oil, against brain oxidative stress and 

DNA damage caused by Pb. Wistar adult male rats were treated with TQ (5 mg/kg/day, 

per os) and/or Pb (2000 ppm of Pb acetate in drinking water) for five weeks. Results 

showed that Pb exposure significantly increased metal content, malondialdehyde 

concentration and DNA damage (assessed by comet assay), but significantly decreased 

the level of reduced glutathione and the activities of catalase, glutathione peroxidase, 

and superoxide dismutase in the brain tissue. These detrimental effects Pb-induced, 

except tissue metal accumulation, were significantly improved by TQ supplementation. 

In conclusion, our findings suggested that TQ might be a promising therapeutic 

alternative in Pb neurotoxicity. 
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1. INTRODUCTION 

Lead (Pb) is an omnipresent heavy metal that 

affects virtually all bodily systems, primarily the 

central nervous system (Sanders et al., 2009). 

Within the brain, the damage induced by Pb in the 

cerebellum, hippocampus, and prefrontal cerebral 

cortex can lead to various neurological disorders, 

such as nerve damage, behavioral problems, mental 

retardation, and possibly schizophrenia, Parkinson 

and Alzheimer diseases (Liu et al., 2013). The main 

molecular mechanism proposed in Pb neurotoxicity 

is oxidative stress, a disturbance in 

antioxidant/prooxidant balance (Liu et al., 2014). 

The cellular antioxidant defense arsenal 

includes enzymatic and non-enzymatic components, 

primarily superoxide dismutase (SOD), glutathione 

peroxidase (GPX), catalase (CAT) and reduced 

glutathione (GSH). Under oxidative stress, excess 

reactive oxygen species (ROS) oxidatively attacks 

the various critical biomolecules like membrane 

lipids, nucleic acids and proteins, thus causing 

cellular, tissue, organ and system damage (Matović 

et al., 2015). Lipid peroxidation (LPO), the major 

consequence of oxidative stress, consists of an 

alteration of the cellular membrane phospholipids 

polyunsaturated fatty acids (Matović et al., 2015). 

Pb is known as a genotoxic agent; it induces 

chromosomal aberrations, sister chromatid 

exchanges, micronuclei formation, DNA-DNA and 

DNA-protein cross-links, and DNA single- and 

double-strand breaks (García-Lestón et al., 2010). 

Medicinal plants are nowadays very 

important in the pharmaceutical industry field, as 

they contribute to the production of at least a third 

of the current drugs (Bent, 2008). Thymoquinone 

(TQ) (2-isopropyl-5-methyl-1,4-benzoquinone), the 

major active ingredient in Nigella sativa seed 

essential oil, has several medicinal benefits, such as 

anti-cancer (El-Far, 2015), anti-inflammatory (Taka 

et al., 2015), anti-hypertensive (Azzubaidi et al., 

2015), anti-diabetic (El-Ameen et al., 2015) and 

analgesic effects (Amin and Hosseinzadeh, 2016). 

The strong antioxidant ability is also an interesting 

property of TQ (Darakhshan et al., 2015). TQ can be 

used as an effective therapeutic alternative since its 

systemic toxicity is low and its biological activity is 

high (Darakhshan et al., 2015). 

Since Pb damages the brain through oxidative 

stress, the use of antioxidants will be effective in the 
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case of Pb cerebral hazards. Few research have been 

devoted to the beneficial effect of TQ against the 

brain toxicity of Pb (Radad et al., 2014). Thus, the 

current study aimed to evaluate the possible impact 

of TQ on Pb brain damage in rats using tissue metal 

accumulation, oxidative stress markers and DNA 

strand breaks. 

 

2. MATERIALS AND METHODS 

2.1. Chemicals 

TQ (2-isopropyl-5-methyl-1,4-benzoquinone) 

and Pb acetate trihydrate [(C2H3O2)2Pb. 3H2O] were 

obtained from Sigma-Aldrich Chemical Co. (St. 

Louis, Missouri, USA). The other chemicals utilized 

were of the highest quality. 

2.2. Animals 

The thirty-two Wistar male adult (4-months-

old) healthy rats (200-230 g) used in this study were 

purchased from the Tunisian Society of 

Pharmaceutical Industries (SIPHAT). Animals 

housed in plastic cages (not chemically 

contaminated) were allowed access to standard diet 

and water ad libitum, and were maintained under 

ventilation system, with 55% humidity, in natural 

light/dark cycle, and at 22 ± 3°C. The present 

research was carried out according to the European 

regulation (Directive 86/609/EEC) for the 

laboratory animal’s use and care, and with the 

approval of the Institutional Bioethics Committee. 

2.3. Experimental design  

After a week of acclimatization, animals were 

randomly divided into four equal groups and were 

treated for five weeks as follows: control group 

receiving non treatment, Pb group received 2000 

ppm of lead acetate in the drinking water (Çaylak 

and Halifeoğlu, 2007; Çaylak et al., 2007; Lalith 

Kumar and Muralidhara, 2014), Pb-TQ group 

receiving both Pb and TQ (5 mg/kg body 

weight/day) (Al-Majed et al., 2006; El-Sayed, 2011; 

Kurt et al., 2015)  and TQ group treated with TQ (5 

mg/kg body weight/day) only. TQ was given as 

aqueous solution by oral gavage in the morning at 

the same time. After experimental period, the rats 

were anesthetized with diethyl ether and then 

exsanguinated through intracardiac puncture. 

2.4. Tissue collection   

The rat brain was dissected out, rinsed in ice-

cold saline, divided into three parts, and was 

maintained at -80°C until analyzed.  

2.5. Pb analysis 

Brain Pb levels were determined by atomic 

absorption spectrophotometry (Analytik Jena - 

novAA® 400 P AAS) at the National Institute of 

Research and Physical and Chemical Analysis - 

(INRAP) (BiotechPole Sidi Thabet, Ariana, 

Tunisia). Pb concentration values were given as 

ppm (µg/g of wet tissue). 

2.6.  Oxidative stress parameters 

determination   

Phosphate buffered saline (136.75 mM NaCl, 

2.68 mM KCl, 10.14 mM Na2HPO4, 1.76 mM 

KH2PO4, pH 7.4) was used to homogenize the brain 

tissue (10%, w/v). The supernatants obtained after 

centrifugation (3500 × g, 4°C, 15 min) of the 

homogenates were used for oxidative stress 

evaluation. 

The determination of brain SOD and GPX 

activities were performed according to the methods 

of Arthur and Boyne (1985) and Paglia and 

Valentine (1967), respectively, using commercial 

kits (Randox laboratories Ltd., Crumlin, UK). The 

activity of CAT was measured from ferrithiocyanate 

production (Cohen et al., 1996). These three 

activities were given as units/g of wet tissue. GSH 

content was assayed according to the 

spectrophotometric procedure of Ellman (1959) and 

was expressed as mg/g of wet tissue. The 

measurement of malondialdehyde (MDA), a product 

of LPO, was carried out according to the 

spectrophotometric method of Todorova et al. 

(2005) which is based on that of Placer et al. (1966). 

MDA was given as nmol/g of wet tissue. 

2.7. DNA damage analysis 

DNA strand breaks in brain samples were 

evaluated according to the Singh alkaline comet 

assay (Singh et al., 1988). Comet image observation 

was performed with fluorescence microscopy (Zeiss 

Axiolab). For each group, 100 randomly selected 

cells were acquired using Axiovision 3.1 software. 

The DNA damage was measured as % Tail DNA 

(percentage of comet tail genomic DNA) thinks to 

TriTek CometScore Freeware 1.6.1.13, a comet 

scoring software.  

2.8. Statistical analysis 

All data were presented as mean ± SEM. All 

data were evaluated by one-way analysis of variance 

(ANOVA), followed by Tukey’s multiple 

comparison post-hoc test. P < 0.05 considered the 

differences to be statistically significant. 

 

3. RESULTS 

3.1. Pb concentration 

Treatment with metal for five weeks 

significantly increased (P < 0.05) the brain Pb level 

compared to control group. Pb tissue accumulation 

was not significantly changed (P > 0.05) after TQ 

supplementation (Fig. 1). 

3.2.  Antioxidant enzyme activities 
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SOD, GPX, and CAT brain activities were 

significantly similar (P > 0.05) in the control and 

TQ groups (Fig. 2). In Pb-treated rats, the enzyme 

activities were significantly decreased (P < 0.05). 

Interestingly, TQ supplementation significantly 

reduced (P < 0.05) these metal adverse effects. 

3.3.  GSH content 

Animals receiving TQ alone had a brain GSH 

concentration similar (P > 0.05) to that of control 

group (Fig. 3). In contrast, the level of this non-

enzymatic antioxidant was significantly reduced (P 

< 0.05) with Pb poisoning, while administration of 

TQ to Pb-treated rats totally reversed (P < 0.05) the 

harmful effect of this metal. 

3.4.  LPO level 

TQ alone had no significant effect (P > 0.05) 

on MDA brain concentration, while Pb significantly 

increased (P < 0.05) it, compared to the control rats. 

TQ supplementation to metal-treated animals 

perfectly attenuated (P < 0.05) the elevated brain 

MDA content (Fig. 4). 

 

Fig. 1. Thymoquinone (TQ) had no effect on brain lead (Pb) level in rats for five-week treatment period. Each bar represents the mean 

± SEM of eight rats. *, P < 0.05 vs. control; #, P < 0.05 vs. TQ (One-way ANOVA and Tukey’s post-hoc test) 

 

Fig. 2. Thymoquinone (TQ) protected against Pb-induced superoxide dismutase (SOD), glutathione peroxidase (GPX),  and catalase 

(CAT) brain activities alteration in rats for five-week treatment period. Each bar represents the mean ± SEM of eight rats. *, P < 0.05 

vs. control; #, P < 0.05 vs. TQ; †, P < 0.05 vs. Pb. (One-way ANOVA and Tukey’s post-hoc test) 
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Fig. 3. Thymoquinone (TQ) protected against lead (Pb)-induced brain reduced glutathione (GSH) depletion in rats for five-week 

treatment period. Each bar represents the mean ± SEM of eight rats. *, P < 0.05 vs. control; #, P < 0.05 vs. TQ; †, P < 0.05 vs. Pb 

(One-way ANOVA and Tukey’s post-hoc test) 

 

 
Fig. 4. Thymoquinone (TQ) protected against lead (Pb)-induced malondialdehyde (MDA) brain overproduction in rats for five-week 

treatment period. Each bar represents the mean ± SEM of eight rats. *, P < 0.05 vs. control; #, P < 0.05 vs. TQ; †, P < 0.05 vs. Pb 

(One-way ANOVA and Tukey’s post-hoc test) 

 
Fig. 5. Thymoquinone (TQ) protected against lead (Pb)-induced brain DNA damage (as % tail DNA) in rats for five-

week treatment period. Each bar represents the mean ± SEM of eight rats. *, P < 0.05 vs. control; #, P < 0.05 vs. TQ; †, P 

< 0.05 vs. Pb (One-way ANOVA and Tukey’s post-hoc test) 

 

3.5.  DNA damage 

Comet assay indicated that TQ administration 

did not alter brain DNA expressed in % tail DNA (P 

> 0.05), while it was significantly increased (P < 

0.05) after Pb exposure, in comparison with control 

rats (Fig. 5). TQ supplementation significantly 

reduced (P < 0.05) the metal-induced DNA damage.  

4. DISCUSSION  

Subchronic treatment with Pb resulted in it 

significant brain metal deposition. The same 

outcome in rat’s brain under Pb acetate intoxication 

was reported by Agrawal et al. (2015) and 

Hernández-Plata et al. (2015). In fact, Pb, thinks to 

its calcium ion substitute ability, can cross the blood 

brain barrier (Sanders et al., 2009). The privileged 

metal distribution can also be explained by the brain 

presence of Pb-binding non-enzyme proteins of 

high-affinity like metallothioneins, acyl-CoA 

binding protein, thymosin β4, and calcium-sensing 

receptor (Handlogten et al., 2000; ATSDR, 2005). 

Our investigations are in line with those of 

Dewanjee et al. (2013), Kalender et al. (2014), 

Ashafaq et al. (2016) and Wang et al. (2016) and 

indicated that brain SOD, GPX, CAT and GSH 

levels were significantly depleted in Pb-exposed rats 

compared with control group. The enzymatic and 

non-enzymatic antioxidant alterations in brain can 

be attributed to the inactivation of their functional 

sulfhydryl groups by irreversible binding to Pb or by 

oxidation through ROS Pb-overproduced (Valko et 

al., 2005, Matović et al., 2015). Also it can be 

related to the interference of Pb with cerebral 

metabolism of essential trace elements needed for 

antioxidant enzyme activity and molecular structure, 

downregulation of brain antioxidant enzyme mRNA 

expression (Baranowska-Bosiacka et al., 2012) and 

to the inhibition of the activity of enzymes 

influencing the GSH concentration especially 

glutathione reductase and glucose-6-phosphate 

dehydrogenase (Sivaprasad et al., 2004). 

According to the present study and those of 

Kalender et al. (2014) and Abdulmajeed et al. 

(2016), Pb treatment significantly stimulated rat 

brain LPO as shown by the increase in the MDA 

concentration. 

The comet assay is a highly sensitive method 

for single- and double-strand DNA breakage 

detection (Lee and Steinert, 2003). Along with this, 

Pb treatment markedly increased the % tail DNA in 
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rat brain. Valverde et al. (2002) and Youbin et al. 

(2013) reported similar results in Pb-intoxicated 

mice.  

Pb-induced brain LPO and DNA damage are 

most probably due to excess generation of ROS as a 

consequence of the cerebral endogenous antioxidant 

defense system depletion as previously shown. In 

this respect, a highly ROS production increase has 

been reported in brain of Pb orally treated rats 

(Pachauri et al., 2012; Liu et al., 2014).  

Despite the current numerous studies looking 

at herbal products as an alternative medicine, our 

results demonstrated for the first time that TQ 

protected effectively against Pb-induced brain 

damage by improving the altered antioxidant 

defense system and preventing the LPO and the 

DNA strand breakage in brain. Our findings are in 

consonance with those of previous investigations 

showing the TQ effectiveness against free radical 

generating agents-induced brain oxidative stress 

(Abdel-Zaher et al., 2013; Sedaghat et al., 2014; 

Gülşen et al., 2016) and  leukocyte genotoxicity 

(Naga et al., 2013; Al-Shdefat et al., 2014; Fouda et 

al., 2014).  

TQ has been shown to diminish oxidative 

stress by strong free radical scavenging action (Kruk 

et al., 2000; Mansour et al., 2002; Badary et al., 

2003; Khalife and Lupidi, 2007; Khattab and Nagi, 

2007) and by antioxidant enzyme gene expression 

upregulation (Ismail et al., 2010; Sayed-Ahmed et 

al., 2010; El-sayed, 2011). The considerable 

potential of ROS neutralization may be explained by 

the redox properties of the quinone structure of TQ 

molecule and by its unrestricted crossing of 

morphophysiological barriers to access to 

subcellular compartments (Badary et al., 2003). 

 

5. CONCLUSION 

For the first time, the current findings 

indicated that TQ protected against subchronic Pb-

induced DNA damage and oxidative stress in rat 

brain, without affecting tissue metal content, and 

open new perspectives for the clinical use of this 

component in Pb neurotoxicity. However, 

subsequent experiments are required to explore the 

impact of TQ in combination with chelating agents 

in Pb brain toxicity. 
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