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Abstract

This paper is concerned with the study of the T-norms and the quantum logic
functions on BL-algebra, respectively, along with their association with the classical
probability space. The proposed constructions depend on demonstrating each type of
the T-norms with respect to the basic probability of binary operation. On the other
hand, we showed each quantum logic function with respect to some binary
operations in probability space, such as intersection, union, and symmetric
difference. Finally, we demonstrated the main results that explain the relationships
among the T-norms and quantum logic functions. In order to show those relations
and their related properties, different examples were built.

Keywords: BL-algebra, T-norms, Quantum Logic Functions, Probability Space,
States.
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Introduction

Basic Logic (BL) was introduced by Hajek in 1990 to construct an algebra proof of the theory of
basic logic's completeness which has been taken a place in the continuous t-norms and the fuzzy logic
topic [1].
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BL-algebras are certain types of residual lattices [2] and they were examined in several papers by
Turunen [3, 4, 5, 6]. Indeed, various kinds of algebras were examined among these algebras, for
example, MV-algebras, G-algebras and BCK-algebras [1]. The structure (4, <,©,-,V,A, 0, 1) of BL-
algebra is said to be an MV-algebra if the complement operation *: A — A is involutive, which means
that y**= 1 or equivalently (y = 1) A=A - y) >y forall P,1e A where p* = p - 0 [1].
Also, a BL-algebra is called a G-algebra if Y Oy =1 (i.e idempotent). A Boolean algebra is a BL-
algebra which is both an MV-algebra and a G-algebra [4].

On other hand, triangular norms are the operations that looked to be suitable as well as possible to
the notion of conjunction. When continuity is also required to be connectives, then the common part of
all possible that have many-valued logics has been defined and called basic logic [7, 8].

Triangular norms started by Menger's paper "Statistical metrics" [9]. The first idea was to study
metric spaces where probability distributions rather than numbers are used to model the distance
between elements of the space in question. Triangular norms are derived into the form in the path of
generalization of the classical triangle inequality which is the interesting condition in "metric space"”.
There are four types of T-norms , namely the drastic product, the minimum, the product, and the
Lukasiewicz.

Thus, the top field where T-norms play a remarkable role was the theory of probabilistic metric
spaces (or statistical metric spaces as called after 1964). Schweizer and Sklar [10] redefined and
developed statistical metric spaces.

Triangular norms (for short T-norms) are an important system for version of the conjunction in
fuzzy logics and for the intersection of fuzzy sets [1, 11]. It is important to know that the left
continuity of the T-norm corresponds to BL-algebras, and for more interesting details, one can refer to
previous articles [7, 12] which described the relationship between continuous T-norms and Boolean
algebra.

There are many quantum logic functions that were defined on quantum structure, for example, the
quantum logic functions that were presented by Nanasiova in (2003). These maps, such as s-map and
g-map, play a major role in this study and in the finding of the appropriate ways of association of T-
norms formulas and the quantum logic functions. An essential notion that has a main part in our
constructions is known as the state, the definition and properties of which are equivalent to those of
the probability space.

Essentially, this study is organized as follows: section two deals with some basic concepts of T-
norms, BL-algebra, state, probability space, quantum logics functions, and their properties. Section
three is devoted to demonstrate the most proposed notions of generalization of t-norms and T-conorms
on BL-algebra, their relationship to probability space, and their relationship to quantum logic
functions. Finally, some conclusions and future works are presented.

2 Basic concepts

There are several basic concepts that need to be presented in this part. It involves definitions and

properties that represent the foundations of our constructions on BL-algebra.

We firstly start with basic T-norm definitions.

Definition 2.1 [12]. A binary operation T on the unit interval [0,1] such that T:[0,1]? — [0,1] is said
to be a triangular norm (T-norm) where 1 is an identity element and T satisfies the following
conditions for each ¥, A and y € [0,1]:

1L TW,A) =TAY);

2. T@W,TA,y)) =TT, ,7);

3. TW,A) <T@, A) whenever 1 < v;

4. T@,1) =1.

Definition 2.2 [12]. A binary operation T*on the unit interval [0,1] such that T*:[0,1]? - [0,1] is said
to be a triangular conorm (T-conorm) where 0 is an identity element (i.e ). It is a function which has
the same conditions (1-3) for all ¥, 4 and y € [0,1] and satisfies that T* (1, 0) = ¢ .

Definition 2.3 [7, 9]. An algebra (4, <,©,—=,V,A, 0,1) of type (2,2,2,2, O, I) is said to be BL-algebra
if the following conditions hold:

1. (AV,A0,1)is abounded lattice;

2. (4,0, is a commutative monoid, such that ® is an associative and commutative binary
operation, and | is a neutral element with respect to ©;
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3. Y Aoy 10y <y,

4. AIANy=10 A ->Y);

5. A-=ypVv@Ey-21)=1IL

Forall ,A andy € A and consider A* = 1 - 0

It is essential to show some common properties of BL-algebra. In each BL-algebras, the following
relations hold [1, 3]:

LYyO@W-) <4

2Y <A iff y->21=1;

3YvaA=[(p->21)->AUA[A-> ) ->Y];

I->yp=ypp->yp=LYp<i->¢yp->I1=I

Y OyY=0;

YOA=0,iff Y <2 and Y < A implies 1 <YP*;

YVvaA=1I implies p OA= P AL

W->D->W->N=0A1) >y

Yy<Y*r,0r =1, I"=0;

10.(p O H)™ =9 O

1L If ™ < Y™ - 9, thenyp™ = 1.

Example 2.1 [24] Let A = {0, Y, A, I} such that i < A. Define on A the following operations
explaining that A is a BL-algebra:

4.
5.
6.
7.
8.
9.

O |0 |y |4 | I | | > |0 |y | r | I
o | o | o | o | o0 o | I |1 | I | I
Yy | 0 | 0 | ¥ | Y v |y | T | ]
A0 | ¢ | A | 2 Ao | v | I |
r oy | A | I | | 1|0 | v | 2| I
Al o |y | oA |
o o |0 |0 | o
Yy |0 | Y | Y | Y
Ao | Y | 2| 2
I o | v | A | I

Example 2.2. On BL-algebra A = {0, ¥, Y¥*, 4,1 7,1}, define O, = ,A and V as the following implies
< A:

Ololywlywlalr]l S oyl 2]
olololololo]lo o | 11111111
Y |0 Y |0 | |X ]|y L2 N N 0 I IR Y
Y10 |0 | P | A A | Y L2 I 2 Y A S A I |
Alolyl A la]lo] 2 Al w1 [ a1
»Y]lolaxxr]olxx Yl alaly a1 |1
I oy |y 221 I oyl | 2|1

~ > e =

~[>e Q<
~ > |Q|0
~ e
NN~~~
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Alo |y |y | a]laxr]|l VIO Yy || aA A1
olo|lo|lo|o|o]o 0O 10 |y |y 4| A |1
vy |o|yv|lo|o|o]|y L2 2 20 A 7 " ¢
vlolo|y|a]o]y LN A N A "2 Y A A O |
A10 vl Al 0] 2 Al alalr a1 |1
10 o 7 o 7 7~ rlarly |1 a1
FTo v v | Alx] 1 r V1|

Definition 2.4. [13] Let A be a BL-algebra. Two elements i, A € A are said to be orthogonal and
denoted by y L A, ifyp™ <A™

Definition 2.5 [13]. Let A be a BL-algebra. A function s: A — [0,1] is said to be a state if the
following conditions hold:

1.s(0)=0

2. 1fp L A, thens(y v L) =s@)+s(r).

Some properties of state:

1.s(D) =1,

2. s(p)=1—s() forany €A4;

3.s(Y)=s(yp*™)forany P e A;

4.1f P <A,s(A) —s(@@) =1—s(v ") which means that 1 — s(ivA*) =1 —s(y*v "), then
s@) < s(A).

Example 2.3. If A = {0, Y, A, I} is a BL-algebra Example 2.1, then according to the table below a
function s: 4 — [0,1] is a state. ol w ]| A1l

s()/0 [01]09]1

Another definition that should be recalled is the definition of classical probability space.

Definition 2.6 [14, 15]. Let (Q, F) be a measurable space. A map n: F — [0,1] is said to be a measure
if the following conditions hold:
(1)n(H) =0forall H € F;
(2 n(@) = 0;
(3) If Hy, Hy,... € F , then H; N H;= @ for i # j then
(U2, H) = T2, H;.

A measure nis is said to be finite, if there is k € R such that n(Q) = k.
Remark 2.1. It has been mentioned that probability space is homomorphism to BL-algebra [16]. This
means taht the systems (Q, F, P,n,U, ®) and A = (4, <, O, -,V,A) are homomorphism. Then U=V,
N=O0=A AUB=a-b.
Definition 2.7 [14]. Let (Q, F, P)be a probability space. The elements of c-algebra F are said to be
events, which are the set of outcomes of an experiment for which one can ask a probability.
It is a well-known fact that for all H, G € F:
H=HNG)U(HN G).
This property means that all events are simultaneously measurable in a probability space. In this case,
we say that H and G are compatible.
3 T-norms and Quantum Logic Functions on BL-algebra

This part is devoted to demonstrate the constructions of T-norms and quantum logic functions on
BL-algebras, respectively, and to show their relationships to probability space. We firstly begin with
the definition of T-norm on BL-algebra.
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Definition 3.1. Let A be a BL-algebra. A bivariate T-norm on BL-algebra, briefly s-T-norm, is a
function BT: A x A — [0,1] that fulfills the following conditions:

1. Foreach ¢, A €A, BT, (y,0) = BT, (0,¢) =0;

2. Foreach y,A €A, BTy (Y, A) = BTs (4,¢);

3. Foreachy,A,y e A, BT, (W,A) < BT, (Y, y),ifA < y;

4. BT,(.,1) and BT,(1,.) are states.

Indeed, the generalization within this definition and its properties represent the essential brick that
many of the properties and concepts are relevant to. The above definition can be modified to have a
one more important property which is related to the notion of state.

Example 3.1. From Example 2.1, A is BL-algebra, then the following table satisfies s-T-norm
conditions such that BT (i, 4) = min(s(y), s(4)) where s is a state.

BT,(,.) | o | v | 2 I
0 0 0 0 0
Y 0 |03 ]03 |03
A 0 (03|05 0.5
I 0 |03 |05 1

Definition 3.2. Let A be a BL-algebra. A bivariate T-norm on BL-algebra, briefly s-T-norm, is a
function BT,: A x A — [0,1] that fulfills the following conditions:
1. Foreach yY,1 € A, BTy (,1) = BT{(I,¢) =1,
2. Foreach y,A € A, BTy (y,A) = BTy (4, ¢);
3. Foreachy, A,y € A, BT (Y,A) < BTy (Y, y),ifA < y;
4. BTS¢ (.,0) and BT (0, .) are states.
Example 3.2 From example (2.1), A is a BL-algebra, if BT (y, 4) = max(s(y), s(4)), where s isa
state, so that BT, satisfies s -T-conorm.
Solution
1. Let Y,AeA, BTy (Y, I) = max(s(y), s(I))= 1 = BTy (1,¢);
2. Let Y, A€ A, BT{ (¥, A) = max(s (), (1)) = max(s (1),s(¥))) =BTs (A, Y)
3.If A < ysuchthat € A, then BTy (¥, 1) = max(s(y),s(1)) < max(s(y),s(y)) = BTy (¥, v),
since s is a monotone;
4. BTy (.,0) and BT, (0, .) are states.
For BT (., 0) we have:
i) BT, (0, 0) = max(s(0),5(0))=0
)BT, (0,1) = max(s(0),s(I)) =1
iii) If ¢ L A then BT (y¥vA4,0) =BT, (y, 0) + BT (4, 0)
BT (1, 0) = max(s(1),s(0)) = s(¥))
BT{ (A, 0) = max(s(4),s(0)) = s(4)
BTy (v, 0) = max(s(yva),s(0)) = max(s(y),s(0)) + max(s(2),s(0))
=s(y) + s(1) = BTs (¥, 0) + BT{(A,0).
Similarly, we can obtain BT (0, .).
Therefore BT (¥, A) = max(s(y), s(1)) is an s-T-conorm.
Remark 3.1. Note that the s-T norm and s-T-conorm cannot fulfill the associative condition of
classical T-norms because of the difference between the domains and the range of these new functions.
Indeed, we can leave this as an open problem to our next study. Nevertheless, it is interesting to focus
on other properties of these constructions because they are rich and yield many modified
constructions.

Now, turn to the notions of quantum logic functions and their structures on BL-algebra. Indeed,
these functions and their concepts were previously discussed in detail [17, 18] and constructed on
an orthomodular lattice. According to the notions demonstrated in the literatures above, the
system of the orthomodular lattice and its related properties are a homomorphism to BL-
algebra. In fact, this would help to reconstruct the quantum logic functions such as s-map, j-
map, and d-map on BL-algebra.
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Definition 3.3. Let A be a BL-algebra. Amap p: A x A — [0,1] is called a bivariate s-map if the
following conditions hold.

SYpd,D=1;

(S2) Forevery iy, A € A, ify L A then p(y, A1) =0;

(S3)If yp L A thenforanyy € A,

. p@vAy) =p@,y) +p(4Y);

i.p(y,yvd) = py,¥) + p(, D).
Example 3.3. Let A ={0, ¢y, P*, 1,1 7,1} be a BL-algebra Example 2.2. Then the table below shows

that p is a bivariate s-map.

p(LYl 0 [ v [ v [ 2 [ 21
o |0 o [0 [0 [o |o
w | 0 |03 | 0 |02 |01 |03
v | 0 | 0 |07 |03 |04 |07
2 | 0 |012 038 [05 | 0 |05
2* | 0 [018 032 | 0 |05 |05
I |0 |03 [07 |05 |05 | 1

Definition 3.4. Let A be a BL-algebra. A join map (for short j-map) isamap ¢g:Ax A —
[0,1] such that the following conditions hold:

(91) q(0,0) =0and q(1,1) = 1;

(92) Foreachyp,A € A, ifyp L Athen q(y,A) = q(, ) + q(4, D) ;

(g3) If ¥ L A then foreache A,

a@Wvay) =q@W,y) +q4y) —q@,y)

q@, v = q(v, ) + q(v, 1) — q(y, v).
Example 3.4. Let A = {0, Y, Y*, 4,1 7,1} be a BL-algebra Example 2.2. Then the table below shows

that g is a bivariate j-map.

q(,)] o " e 2 P i
0 0 |07 |03 |067 |033 | 1
v |07 |07 1 |09 |08 1
v |03 1 |03 077 [053 | 1
2 | 067 [088 [079 |0.67 1 1
2* 033 |[082 |051 1 033 | 1
I 1 1 1 1 1 1

Definition 3.5. Let A be a BL-algebra. A difference map (d-map) isamapd: A x A — [0,1] such
that the following conditions hold:

(d1) d(1,0) = d(0,1) =1, forally € 4, d(, ) = 0;

(d2) d(y, ) = d(,0) + d(0,A) whenever L A ;

d3)Ifp LAand y €A,

d@vay) =d@,y) +d,y) —d(0,y)

Example 3.5. Let A = {0, Y, Y*, 4,17, I} be a BL-algebra Example 2.2. Then the table below shows
that d is a bivariate d-map.

di,)]| o U R I
0 0 |048 |052 |086 |014 | 1
w048 | 0 1 |013 |087 |052
v 052 | 1 0 |087 |013 |048
1 086 |03 | 07 0 1 | 014
A+ 1014 |07 | 03 1 0 |0.86
I 1 |052 |048 |014 |086 | O
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Now, it is convenient to build the constructions that connect BT, and BT, to BL-algebra functions
(s-map and j-map) through probability space. Note that each element a belongs to A is equivalent to
each event that belong to F.

Theorem 3.1. Let BT, be an s-T-norm on a BL-algebra A with a probability space (Q, F, P). Then:
BT,(H,G) = P(H N G)

Proof

The proof should show that the relation above satisfies the conditions of BT, function.

1. BT,(H,®) = P(H N @) = P(®) = 0;

2. BT4(H,G) = P(HN G) = P(G N H) =BT,(G,H) (N is commutative);

3.LetG < C. Then, BT;(H,G) = P(H N G), and BT;(H,C) = P(H n C), but

P(HN G) < P(HNC), (N isamonotone). Therefore, BT;(H,G) < BTs(H, C);

4. To prove that BT, (£, .) and BT, (., () are states, we need to prove the following.

For BT, (., ), we have:

i) BT,(Q,Q) =P(QNQ) =1;

i) BT;(®9,Q) = P(@NQ)) =P(®) =0,

iii) Let H,G € Asuchthat H N G = @, then BT,(H U G,Q) = BT,(H,Q) + BT,(G,Q)
BT,(HUG,Q)=P((HUG) N Q)=P(HN Q) + P(Gn Q)=BT, (H, Q)+ BT,(G,Q)

Hence, BT, (., Q) is a state

Similarly, BT,(Q,.) is a state too.

Therefore, BT;(H,G) = P(H N G) is an s-T-norm.

Theorem 3.2. Let BT be an s-T-conorm on a BL-algebra A with a probability space (2, F, P). Then

BT;(H,G) = P(H U G).

Proof
The proof should show that the relation above satisfies the conditions of BT, function.
1. BTy (H,®)=P(HU Q) =P(Q) = 1;
2. BTy (H,G) = P(H U G) = P(G U H) = BT (G H) (Uiscommutative);
3.Let G € C.Then, BT;(H,G) = P(H U G)and BT;(H,C) = P(H U C), but
P(H U G) <P(H v C) (U isamonotone). Therefore, BT, (H,G) < BT, (H,C);
4. To prove that BT, (@,.) and BT, (., @) are states, we need to prove the following.
For BTy (., @) we have:
i) BTs (9,0)=P(@U Q) =0;
ii) BT, (Q,0) = P(Q U 0)) =P(Q) =1,
iii) Let H,G € A such that HhG= @, then BT, (HUG, @)= BT, (H, @)+ BT, (G, 0)
BT{ (HUG, §)=P((HUG)U @)=P(H U @)+P(G U @)= BT, (H,0)+ BT, (G,0 )
Hence, BTy (., @) is a state
Similarly, BT, (@,.) is a state too.
Therefore, BT, (H,G) = P(H U G) is an s-T-conorm.
On the other hand, s-map, j-map, and d-map can be modified in terms of probability space as follow:

Theorem 3.3. Let p be an s-map on a BL-algebra with a probability space (2, F, P).Then
p(H,G) = P(H N G).

Proof
It has to be shown that the conditions of the s-map are satisfied within the above relation.
That is:
1L.p(Q,Q)=POQNQ)=1;
2. Forevery H,G € A, ifHN G =@, then p(H,G) = P(HN G) = P(@) = 0 = p(G,H);
3.IfH N G=0@,and C € A. Then

p(HUG,C)=P((HUG)NC)=P((HNC)U (GNC))

=P((HNC)+P(GNC)=p(HC)+p(GC).
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Similarly, p(CCHU G) = p(C,H) + p(C, G).
Theorem 3.4. Let q be an j-map on a BL-algebra with a probability space (Q, F, P).
Then q(H,G) = P(HU G).

Proof
Again, it is essential to show that the conditions of the j-map hold:
1. q(@,8) =P(@U®) =P(@) =0 and q(Q,Q) = P(QUQ) = P(Q) = 1;
2.ForeveryH,Ge A, ifHN G =@, then p(H,G) =P(HUG) =P(HUH) + P(G U G);
3. LetH,G € A,suchthat HN G = @. Then foreach Ce A
q(HUGC)=P((HUGUC)=P((HUG)U(CUC))
P(HUC)+P(GUC)—P((HUCO)N(GUC))=PHUC)+P(GUC)—P((HNG)UC)
=PHUC)+P(GUC)-P(@UC)
but C=Cu C
Hence, gq(HU G,C) = P(HUC) + P(GU C) — P(C U C)
therefore, q(HU G,C) = q(H,C) + q(G,C) — q(C, C).
Similarly, q(C,HU G) = q(C,H) + q(C,G) — q(C, C).
Also, the relationship between the d-map and the the probability space of difference could be shown as
follows:
Theorem 3.5. Let d be a d-map on a BL-algebra with a probability space (Q, F, P). Then
d(H,G) = P(HA G).
Proof
It is essential to show that the conditions of the d-map hold:
1.d(9,Q) = P(QA Q) = P(QAD = d(QAP)=P(Q2) = 1, where foreach H € A, d(H,H) =
P(HAH) = 0;
2.Let H,G € A,suchthat HN G = @. d(H,G) = P(HAG) = P[(H° N G) U (H N G)]
=P[(H°NG)UH)N ((H°NG) VU G°)]
=P[((HUH)N(GUH)N((H°UG)N(GUG))]
=P[(AN(GUH)N((HCUG)NQ)],but HC U G¢ = (H N G)°
Thus
=P[GUH)N(HNG)’] =P[(GUH)N@P] =P[(GUH)NQ] =P(GUH) =P(G)+P(H)
= P(HA®) + P(OAG) = d(H,®) + d(0,G);
3.LetH,G € A,suchthat HN G = @ . Then for each C € A,
d(HUG,C) =P((HUG)AC) =P((HAC)U (GAC))
=P(HAC)+P(GAC)—P(HAC)N(GACQ))
=P(HAC)+P(GAC)—P(HNG)AC)
=PHAC) +P(GAC)—P(@AC)
=d(H,C)+d(G,C)—d(o,0).
Similarly, d(C,HU G) = P(CA(HU G)) = d(C, H) +d(C,6) — d(C, ©).
This completes the proof.
In fact, the theorems above directly lead us to the following results.
Corollary 3.1. If BT be an s-T-norm, and p be an s-map on a BL-algebra , respectively,
then each s-map p is BT.
Proof
It is easy to see that the proof directly follows from Theorem (3.1) and Theorem (3.3). Then th
proof is complete.
Corollary 3.2. If BT be an s-T-conorm, and q be a j-map on a BL-algebra A, respectively, then each
j-map q is BT5.
Proof
From Theorem 3.2 and Theorem 3.4, the prove is complete.
Remark 3.2. According to the notions above (Corollary 3.1, and Corollary 3.2), it is important to
know that each s-map and j-map are s-T-norms s-T-conorms, respectively. But the converse is not true
and each type of s-T-norm is not need to fulfill the conditions of quantum logic functions (s-map,

j-map).
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4 Conclusions

There are several properties that can be summarized in the following sentences. First of all,
it is clear that T-norms, and the quantum logic functions on BL-algebra, have much
complicated structures than the classical ones because of the nature of BL-algebra. As a type
of a generalization of T-norm and T-conorm, we showed several different properties that
associate different situations of T-norm and quantum logic functions to the classical
probability space. Also, it is essential to refer to the role of the state in our constructions and
how it is useful in each case of generalization. Moreover, the proofs of many properties and
facts associated with the calculations that have been obtained in the tables show different
properties of each map on BL-algebra. Indeed, there are some open problems that we are
working on, such as generalizing these concepts in the case of conditional events or
independent events. Finally, it is good to investigate the associative conditions of T-norms
and T-conorms on BL-algebra.
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