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Abstract

In this paper, we generalize many earlier differential operators which were
studied by other researchers using our differential operator. We also obtain a new
subclass of starlike functions to utilize some interesting properties.
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1. Introduction
Let A represents the class of all analytic functions ¢ defined in the open unit disk

®= {z eC: |Z| <1} , and normalized by the conditions ¢(0)=0 and (p/ (0) =1. Therefore, each

@ € A has a Taylor-Maclaurin series extension of the form:

o(2) = z+iahz“,(z €0) (1.1)

Furthermore, let S represents the class of all functions @ € A which are univalent in ®. The
quantum calculus (henceforth g — calculus) is considered as a crucial tool that is used to explore the
subclasses of analytic functions. q-— calculus operators were used by Kanas and Raducanu to
investigate some significant classes of functions which are analyticin ® [1]. The importance of the
fractional calculus applications is obvious in many topics of mathematics, such as in the fields of q—

transform analysis, ordinary fractional calculus, and operator theory. Recently, researchers paid more
attention to the area of ( — calculus and several new operators have been proposed. The application

of - calculus was first founded by Jackson who developed the (- integral and ¢ — derivative in

a systematic way [2]. After that, through several studies on quantum groups, the geometrical
interpretation of g — analysis was identified. Unlike the typical calculus, this calculus has no limits

notion. A good detailed work on the calculus and it's applications in operator theory is found in
aprevious report [3], while more information were provided in other articles [4, 5].

The main structure of (p, Q) — calculus was established on only one parameter, but since then it was
generalized to the post-quantum calculus (represented by (p,q)— calculus). In this section, we
assume that we can obtain calculus by substituting p =1 in calculus.

To be fulfilled, some brief notations and definitions of (p, Q) — calculus are provided below: For
Jackson's derivative where 0< p<q<1 and @€ A, the following is provided [2]:
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—“?”‘ﬁ“‘” for z#0.
D, p(2)={ " (1.2)
o (0) for z=0.

From (1.2), we have

D, »(2) =1+>[n], ,a,2"" (1.3)
h=2
Where
hl. = pht4 p"2 h-3.2 h-2 | ~hd_ p"—q"
[]p,q—p +p q+p q +..+pq +q = 0—q (1.4)

is named (P,q)— bracket. It’s notable that when p =1, the bracket is an obvious generalization of

the g — number, that is
h

1-q
[hl., =ﬁ=[h]q,q #1

For p=1, one can notice that the Jackson's (P,q)— derivative will be reduced to the Q-
derivative, as previously described [2]. It was clearly proved that for a function y(z)= z" | the

D, 7(2)=D, 2" = % 2"* =[h], ,2"" isobtained. For pe A |, the
Salagean (p,q)— differential operator is defined as follows [6]:
0.0(2) = 9(2),

I, 0(2)=2D, 0(2),
(1.5)

Tq0(2) =T, (T q0(2)),

=z+ > [h1s,a,2", (keN,=NU{0},z€0)
h=2

It’s observable when p =1 and Iimq_ﬂ, , the well-known Silagean operator is obtained [6]:

I p(2) = z+ihkahz“, (z€0O) (1.6)
h=2

Now let
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A% 00@(D) =T% 0(2),
N5 1.0.00(D) = (U= B(E = N, 40(2) + S5 - D)2 (M(2))

= 24 SN I+ A6 - A)(h-D]a, 2" 17)

A5 00 @@ = (L= BE = )N 0 0(2)+ B = )2 (NS 4. 4,00(2))

=2+ Y []; [1+ B(6 - A)(h-D)Fa,z".
h=2
In general, we have

A5 5 (2) = (A BE-ANDASE, , (0(2) + P~ 202 (A5, 0(@)

=7 +i[h];q [+ B -A)(h-1)]az"

Where £2>0,420,6>0 and £ e N,.

(1.8)

It is observable that we have A%, 0(z)=¢(z), and Alﬁ’?myp'q(p(z):Zgo'(z). It is

noticeable that when p =1, the differential operator Afjjzgo(z) that was defined and studied by
Frasin and Murugusundaramoorthy is obtained [7]. Also, it is noticeable that when p=1 and

lim,_, , the following differential operator is obtained:

A p(z)=17+ ihk [+ B -A)(h-D)°a,z"

It is noticeable that when 6 =1 and A =0, we find the differential operator A;:?q(o(z) that

was defined and studied by Feras Yousef [8]. Furthermore, when k=0 we find the differential
operator Ai, s, that was defined and studied by Ibrahim and Darus [9, 10], and when &6 =1,
A=0 and k=0 we identify the differential operator A% defined and studied by Al-Oboudi [10],
whileif ¢ =0 , we identify Salagean differential operator A° [6].

By using the differential operator Ai‘,;ivp'qgo(z) , we say that a function @(z) belongingto A
isin the class Q5 (8,6, 4, 4,b) if and only if

(L= B - ANZ(AS ,a0(2)) + B -A)2(ALSS , 0(2)
(L= B = DALY @D+ BE =N , , 0(2)

A-BE-D2(A54L, 0@)) +BE-D2(ATEE, 0(2)
(1_ ﬂ(5 - i))/\/ilgi p,q¢(z) + ﬂ(5 - A)Aigﬂ p,qw(z)

(1.9
forsome w(0<u<1), £,6,4>0, and 0<b<1 forall ze®.
Let T denotes the subclass of A consisting of functions of the form

—b, (k,é/E NO)

p(2)=1 —Zw:ahz“ (a,>0,z€0) (1.10)
h=2
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Further, we define the class P“(ﬂ o0, A, 1,b) by

P (8,6, 2, 1,0) = Q5w (8,8, A, p1,0) N T
The main target of thls paper is to provide a systematic investigation of some important features
and characteristics of the class P“(,B 0, A, 1,b) . Some interesting corollaries and natural

consequences of the main findings are also considered. Some important techniques used earlier by
many researchers were applied in this work (see Al-Hawary et al. [11, 12], Aouf and Srivastava [13],
and Frasin et al. [14- 19]).
2. Coefficient inequality

In this section, we find the coefficient inequality for the class Pg “(B,6,, 1,b) .

Theorem 2.1. Let the function ¢(z) be defined by (1.10). Then ¢(z) € Pg k(,B o, A, u,b) if
and only if

IR {hIN], o @+ 1)~ b ~Lh[L+ (h—D A~ A &, < u(1—b) (2.1)

The result is sharp.
f(Z):Z :u(l b) h
[hI§ o {hIh], o 0+ ) — b =1} [1+ (D B(5 - or

(2.2)

Proof. Suppose that the inequality (2.1) holds. Then we have for ze€® and |z|<1:
(W= PO-2D2(AG 0(2)) + BO-22(AF, 0(2) -

(L= B = ADALY o a0(2) = BE=A)AGK ,  (0(2)]-

U= BE-ANZ(AFEE 0(D)) + BE-D2(AFE, 0(2)) -
b(L-B(S - A)ASS (@) -bBE AT, , 0(2)

= i[hlﬁ,q(h[h]p,q ~DlL+(h-DA(E - a,2"| -

|2@-b) = Y INT, ([N, , ~D)L+ (h-DBE - A a,2"

< DAL, (@ phlh], o ~1-bar) L+ (h-D) A6~ D 82" - u(1-b)

<0
where A% @(2) isgiven by (1.8).
This |mpI|es

SUNE o {@+ ONIN], o ~1-bul L+ (h—D A - AF a,2" < u(L-b)

which shows that ¢@(z) € Pg k(ﬂ 0,4, u,b). For the converse, assume that
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(W-B-AN2(AGS 5 40 (2)) +(6- z)z(A,;M 0.0?(2)) _1
A-BE-2NAGE ;. a@@D+BE-2AYK ;o 0(2)

-p(s- A))z(A;Ei pqu(z)) +B(5- A)z(A* 5L pq(pm)
H (1-p(o- l))Aﬂ 5.2,p,q?(2)+B(5- l)A/} .2,p.q?(2)

=z IhTs (BTN, , - DI+ (h-DAG - )T a2

2.3
p|z(1=b) =T [h] . (h[h], , —b)[1+(h-1) B(5 - A))* ahzh‘ &9
<1
Since the Re(z)<|z| forall z, it follows from (2.3) that
© k _ _ _ 4 h
Re Zh:z[h]p,q(h[ﬁ]p,q DA+(h-DB[-A)I a,z g 2.4)
z2(1-b) g — pX [N o ([N, , =D)L+ (h=D) B(5 - V)] &,z

By choosing values of z on the real axis and letting |z| — 1" through the real values, we obtain

i[h]f),q (h[h],  —DIL+(h-DBE - T a,

<(-b)u- ﬂi[h]ﬁq (h[h], o ~b)IL+(h-D B[S - A)] &,

This gives the réquired condition.
Corollary 2.2. Let the function ¢(z) , defined by (1.10), be in the class P§ k(,b’ O, A, 1,b). Then

< u(1-b) s 05
[h];q {h[h]p,q L+ 40) — wib —1} [L+(h-D B[ -]
The inequality in (2.1) is obtained for the function ¢(z) given by (2.2).

3. Growth and Distortion Theorems
Theorem 3.1. Let the function ¢(z), defined by (1.10), be in the class P (83,8, 4, 4,b). Then for

ay

7| =r<1,

‘AQ&AM¢Uﬂ2r

#(1-b) B -
[215 {2021, 4 L+ ) - ub =1} [+ B(S - e
and
D) o
[215 4 {2021, oL+ ) — o -1} [L+ B - A" (32)
(0<i<{,0<j<k,z€0)
The inequalities in (3.1) and (3.2) are obtained for ¢(z) given by

‘Aﬂ 5,4,p, q(”(z)‘ <r+

L, u(1-b)
PO = 22, W )b L[ (B AT &9

Proof. Note that the function ¢(z) € Pp%k (8,0, 4, u,b) if and only if

NG 0.q0(2) €PS(B,S, A, 11,b)
and that

N a(2) = 2= S0, [+ (1D (6 222 =
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By the theorem 2.1

[215 o {22, o1+ 1) — b —1} [1+<ﬂ(5—z)]4i[h]g,,q(1+ﬂ(5—z))‘ a,
h=2 (3.5)

< N (2020, 0+ )~ b~y [1+ (N-D B~ A &, < @-b)
Which implies,
S Th]E [1+ A5 —A)] & 2" < #(1-D) _ 3.6
2 afh+ fl0 =203 [21}, o {2021, L+ ) — b =L} [L+ (B(S ~ D) o

The assertions (3.1) and (3.2) of Theorem4.1 would now follow readily from (3.4) and (3.6).
Finally, we note that the equalities (3.1) and (3.2) are achieved for the function ¢(z), defined by

A _ #(1-b) 2 3.7
pis.10.0P(2) [ ]pq{z[z]pq(1+y) b — 1}[1+(ﬂ(5 ]b)]gI o

Hence, the proof has been completed.
Taking i= j=0 in Theorem 2.1, we obtain this corollary.
Corollary 3.2.
Let ¢(z), defined by (1.10), be inthe class P (3,8, 4, u,b). Then, for |z|=r <1,

u(l-b) r2
PO GE T, @ - - SO AF | e

and
u#(1-b) 2

(21, {2021, , @+ 1) -1} L+ A A)T
The equalities in (3.8) and (3.9) are achieved for the function ¢@(z) given by (4.3).

4. Inclusion properties
We begin this section by showing the following inclusion relation.
Theorem 4.1. Let the hypotheses of theorem thl be satisfied. Then

Poo (B8, 4, 14,0) 2 Py (55,8, A, 1,b)

Py (8,6, 4, 1,0) D P (8,6, 2, p1,b)

Pso (8,6, 4, 11,0) D P (B,6, 2, 11,b)

P;:ak(ﬂ,g,ﬂ,,ﬂl,b) 2 Ppéjak(ﬂ,é‘,/l,ﬂz,b)
Proof. Let the function ¢(z), defined by (1.10), be in the class P,f’;}k (B,0,4,1,b) and let S, > f3,.
Then, by theorem 2.1, we have

SIhTS  {hihl, o @+ ) - b -1} L+ (h—D A5 - D &,

(3.9)

lp(2)|<r+

< SUNT,  {hih], o L+ ) - b -L L+ (-DA G- A a,

< u(l-b)
Hence, Ps (8,8, 4, 14,0) 2 Ps X (8,, 8, 4, u1,0).
and
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ST (], 4 @+ ) - b~ [1+ (-1 A, - A &,

< TN {hihl, o @+ ) - b1} L+ (h-D B(S, - A &,

< u(l-b)
Hence, PS:(8,6,, 4, 11,0) 2 Ps (8,8, A, p1,0).

S, (I, o @+ 22) — b~} L+ (- S - 2) &,

< SN {hih], o @+ ) - o~ [+ (DA - ) a,

<1-u(l-b)
Hence, PS:(8,8, 4, 11,0) 2 Ps (8,8, 2y, 11,0).
Employing a similar procedure, we can prove that Pg . (8,8, 4, 14,b) 2 PS (8,8, 4, 115, b).
5. Closure Theorems
This section has begun with proving that the class PC k(ﬂ 0,4, 1,b) is closed under convex
linear combinations.
Theorem 5.1. The class P, (8,6, 4, ,b) is a convex set.
Proof. Let the functions

0. (2)=17- Zaéhz (a,,206=122€0) (5.1)
be in the class Pg k(ﬂ 0, A, 1,b). ltis sufficient to show that the function y(z) defined by
7(2) =S (2)+ (-, (2) (5.2)
is also in the class P“(ﬂ 0,4, 1,b). Since, for 0< & <],
@) =2-3 {¢a, + -y, 7" (5.3)
h=2

by using theorem 2.1, we have
Z[h]t,,q {h[N], o (L+ 1) — b~ 1+ (h—D B(S - A))* {&a,, + (1-E)a, | < u(L—b) (5.4)

which means that y(z) € PS5 (8,8, 4, 11,b) . Hence PS:(8,8, 4, u1,b) is a convex set.
Theorem5.2. Let ¢ (z)=z and

p(L-b) "
[hT5 o {hih], o @+ 1) — o —U[L+ (=D BE-AF

e (2)=12- (h>2;k, eN,)

(5.5)
for 0<u<1 and 0<B(0—A4)<1. Then ¢(z) isin the class P4 k(ﬁ’ 0,2, 1,b) if and only
if it could be expressed in the form:
p(2) = th(Ph (2), (5.6)
h=1
where

@, >0 (h>1) and Za)h =1 (5.7)

h=1
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Proof. Assume that
P(z) = thq’h (2)
h=1

R p(1-=b) o
20T, {hIh], o @+ ) - b -1+ (W=D BE - )

Then it follows that

= [h]§ o {hlh], o L+ 1) — ub =1} [1+ (=D B - M)

2,

h=2 ,U(l —b)

=7

p(1-b) .
[Nl , (NN, o0+ ) - b -L L+ (-DBE-AF 2on=l-a

Thus, by Theorem 2.1, ¢(z) € PS5 (8,6, 4, 11,b).

Conversely, suppose that ¢(z), defined by (1.10), is in the class Pﬁk(ﬂ,&l,,u,b). Then

L < p(1-b) . (h=2:k,ceN,).
] 0I5 o {hIh], o 0+ ) — b =1} [1+ (W=D B - D)) ( e e
considering

k —ub— _ _ N
a%:mhﬂ%mhﬂa+u);m U[+V-1)B(5-2)] o (hazkleN)

u(1-b)

and
a)lzl—ia)h

It’s observable that @(z) can be expressed in (5.6). Which completes the proof.

6. Radii of close-to-convexity, starlikenss, and convexity
In this section, we shall determine the radii of close-to-convexity, starlikeness, and convexity for

the functions belonging to the class P (8,6, 4, 11,b).
Theorem 6.1. Let the function ¢(z), defined by (1.10), be in the class pr‘qk (B,0,A,1,b). Then

¢(z) is close-to-convex of order o(0<o <1) in |z|<r, , where

_ -1 k _ _ _ _ gﬁ
E:"ﬁ{a o) [T o {hih], o @+ 1) — b —1} [L+ (h—1) B(S zn:} 2

u(@-b)
(6.1)
The result is sharp, with the extremal function @(z) given by (2.2).
Proof. We need to show that

‘go' (z)—l‘ <l-o for |z|<r,

where 1, is given by (6.1). Then we yield from definition (1.10)
‘gp' (z)—l‘ < ghah 17"

Thus,

‘go' (z)—l‘ <l-o
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i(%) a, |7 <1 6.2)

But, by Theorem 6.1, (6.2) holds true if
(ijhl < [h]:,q {h[h]p,q(]nL 1) — 1b _1} [+ (h—1) B[S - D

l1-o p(1-b)
that is, if
— o) hT _ah_ — AN "
» (=), {hIN], o @+ ) — b -1} [L+ (=1 B(S - A)] (h2) 6.3)
u(l-b)

Theorem 6.1 follows readily form (6.4).
Theorem 6.2. Let ¢(z), defined by (1.10), be in the class pr;qk (B,0,A,11,b). Then ¢(z) isa

starlike of order o(0< o <1) in |z|<r, , where

R b _ N AL
(. Zinf (1 0)[h]p,q{h[h]p,q(1+/l) 1o 1}[1+(h DB -A)] (h=2)
u(h—o)(d-b)

The result is sharp, with the extremal function @(z) given by (2.2).
Proof. We need to show that

29 (2)
9(2)
where 1, is given by (6.4). Indeed, definition (1.10) implies that
29 (@) | Tih-Dal7"”
o@ | 1-3rald”
Thus,
29 (2)

@(2)
if

(6.4)

|

<l-o for |z|<r,

<l-o

i(h_—aj a,|z"" <1 (6.5)

2\l-o
But, by Theorem 2.1, (6.5) holds true if
(h_ajmhl _[01;,q {hIh], o @+ ) - o -1+ (h-D B - A
1-6 )"~ u(h-o)(L-b)

(6.6)

that is, if

|Z|<£(1a)[h]t,,q{h[h]p,q(lw)ybl}[1+(h1)ﬂ(6z)]4j T o)

u(h-o)(1-D)

Theorem 6.2 follows readily form (6.7).

Corollary 6.3. Let the function ¢(z), defined by (1.10), be in the class P}f’;‘k (B,0,A,1,b). Then

(6.7)

¢(z) isaconvex of order o(0<o <1) in |z|<r, , where
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_ -1 k _ _ _ _ e ﬁ
rSsz{a o) [N]E o {h[N], o @+ ) - b ~1} [+ (h—D) (5 - A)] } 2 69

u(h-o)(1-b)
The result is sharp, with the extremal function @(z) given by (2.2).

7. Integral means inequality
For any two functions, g and I', analytic in ®, ¢ is said to be subordinate to " in ®, written as

¢(z) < T'(z), if there exists a Schwarz function @(z), analyticin ©®, with
w(0)=0and |a(z)|<1forallze®,

such that @(z) =T'(w(z)) for all ze®. Furthermore, if the function T is univalent in ®, then
we have the following equivalence [10]:

9(2) < y(2) = ¢(0) = 7(0) and ¢(®) < y(©).

To prove the integral means inequality for functions belonging to the class Prf;]k (B,0,4, 1,b), we
need the following subordination result found by Littlewood [16].
Lemma 7.1. If the functions ¢ and T" are analytic in © with ¢(z)<T(z) , then for n >0 and
z=re" (0<r<),

j§”|¢(z)|” do < jz”|y(z)|” do (7.1)

By applying Theorem 2.1 with the extremal function and Lemma 7.1, we achieve the following
theorem.

Theorem 7.2. Let {[h]‘;q{h[h]p]q(l+y)—/,lb—l}[1+(h—1),B(5—/1)]g}(::2 be a non-decreasing
sequence. If  ¢(z) € P, (8,6, 4, 14,b), then
jo P degjz”\y(re“’)\”de O<r<L n>0), (7.2)

where
u1(1-b) /2

[215 o {2021, o L+ 1) — o1} [L+ (B(5 - r

p.(2)=12- (7.3)

Proof. Let the function @(z), defined by (1.10), be in the class P§ k(,B 0, A, 1,b). Then we need
to show that
p(A-b)

27 >
1-Sa, 2"
I 200 [21% , {221, o (L+ 1) - b~} [L+(B(S - r
Thus, by applying Lemma 7.1, it would suffice to show that
1-b
1-Fa7 <1- #(-b) = 7.5
R 1§ o {2021, o1+ 1) — b =1 [L+ (B(5 - )]
If the subordination (7.5) holds true, then there exists an analytic function @ with @(0)=0 and
o(z) <1

7 2r
do< jo (7.4)

such that
1-Ya 2" =1- #1-b) 76
2t = o 2tz o - a1 (56 AF o

Using Theorem 2.1, we have
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= [205 o {2021, U+ 1) - o L[+ (BGE-AF |

joo(2)] = hZZZZ b a,z

2 [21 4 12120, o A+ 1) = pb =L [1+ (B(5 ~ A))
s|z|hZ:; { D) } a, <|z|<1,

which proves the subordination (7.5). So the proof is completed.
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