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Abstract

Collecting software requirements typically involve users through interviews,
focus groups, and workshops. Recently, software operators started to collect
software requirements, users' feedback, and bug reports from reviews and feedback
systems. However, The users usually do not pay attention to review applications
after downloading them, and regular users may not know how to report bugs to the

software operator, and they might write many useless reviews.

Application distributed systems (known as App stores) allows users to submit
their reviews on the app they downloaded in several forms: score rating, like or
dislike, and text reviews. Recent studies show that the text reviews could include
informative information for the app developers, such as potential software bugs,
user requirements, sentiments about the application, or some ideas for
improvements.

In this thesis, | propose an automatic method to analyze and classify user text
reviews into five main classes: Software bugs, Software users' requirements,
Nonfunctional software requirements, not clear ( which includes all the reviews that
I think it is informative for the app stockholders) and not relevant. | built a corpus
of about 10k Arabic reviews collected from 5 different applications and classified
them into 33 classes. Then, | fine-tuned an Arabic pre-trained BERT model (state-
of-the-art Deep learning architecture for NLP) using the corpus and conducted three
experiments on three different versions of the dataset where two versions were
generated by grouping the original 33 classes into five classes and three classes.

The model achieved 99%, 94%, 95% accuracy in the three different experiments.
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Chapter 1

Introduction



Software reviews are an essential part of the software development life
cycle (SDLC). They help software owners and developers validate the software's
quality and make sure user's needs are fulfilled. They also help in improving the
software and focusing on the most features used by the users. However, in App
Store reviews, several significant difficulties can limit the ability of the software
analysts to analyze the software reviews. First, many reviews are added to the app
stores every day, which requires a large amount of effort to be analyzed. A recent
study found that iOS users submit on average 22 reviews per day per app [1]. Top-
rated apps such as Facebook get more than 4000 reviews per day [2]. Second, the
text reviews vary widely, which makes it challenging to analyze and classify the

reviews.

1.1 Introduction and Motivation

According to App Annie statistical report in 2020 [3], by the end of 2019 and
with over 2.7 billion smartphone users, there were 204 billion downloads for mobile
apps worldwide (grown by 45% since 2016), 120 billion dollars were spent on the
mobile application by the consumer, users spend 3.7 hours in average using mobile
application per day. The statistics also show that the number of applications on the
primary two App stores is over 5 million applications (2.2 available on the Apple
App Store, and 2.8 available on Google Play Store). The vast increase in the mobile
application industry introduced a high level of competition. Therefore, app review
plays a crucial role in the success of the mobile application by helping the
application stockholders improving the application, understand the user needs and
discover any existing issues that bother the application users.

A group of researchers in 2017 [4] conducted a survey study to describe and

compare the areas of research that have been done on analyzing different aspects of



the app stores such as API, Feature, Releases, Security, and mining the reviews in
app stores by searching specific terms in the following search repository: Google
Scholar, Scopus, JSTOR, ACM, IEEE, and arXiv. Their study shows strong growth
in the number of published papers related to the app stores in 2015 compared with
the past few years.

Collecting customer feedback helps the application stockholders improve their
application and provide a better user experience; it also helps increase the user's
retention by valuing the users' opinions and making the application fulfill their
needs. Customer feedback helps the application developers identify their roadmap
and priorities the app requirements to increase customer satisfaction, which also
helps them improve the app marketing by focusing on the features and
improvements requested and needed by the customers.

Analyzing software reviews manually is a complex process [5] due to several
reasons:

e Expensive: users add millions of reviews daily, which requires many

resources to analyze and filter their reviews.

e Time Consuming: many of the reviews do not contain any valuable
information for the software analysts; filtering these reviews might take
much time.

e Languages, dialects, and culture differences: App stores allow the users to
add reviews in any language or dialect. Which makes it harder for the
software stockholders to understand these reviews, which come from
millions of people worldwide in different dialects and cultures.

The Arabic language has an enormous number of users on the internet [6].

Reviews in the Arabic language in App stores are expected to be informative
regarding software requirement engineering [7]. Some of these reviews could

automatically report bugs in large and standard software



systems used by Arab users. | chose to work with the Arabic language due to two

factors. First, Arabic language analysis is of growing importance due to its already

large-scale audience. Second, the Arabic language is challenging due to multiple
dialects and diversity, which resulted in fewer tools available currently to analyze,
mine, and classify Arabic texts compared to other languages. The Arabic language
is striking because of its history, the strategic importance of its people, the region
they occupy, and its cultural and literary heritage [8].

This thesis propose an automatic method to analyze and classify Arabic reviews
from 5 applications in 5 different business domains, the applications were selected
from Google Play and App Store based on the high number of Arabic reviews added
to them according to Appbot! (a tool to analyze app stores reviews). 10K reviews
were collected and will be manually analyzed and annotated with one or more
classes of each review. Then | will apply the proposed automatic method to these
reviews to identify the performance of the automated method against the manual

classification.

1.2 Research objectives and Problem statement

Due to the complexity in the manual analysis of the mobile app's reviews and
the difficulties in analyzing the Arabic language [9] [10] [11], | propose this
automatic method to help the app stakeholders to analyze the Arabic user reviews
on their application in an efficient, accurate, and cost-effective way. The app

owners will see the reviews classified into different classes, which will help them
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understand the user's needs, fix the undiscovered bugs, and improve the application

roadmap to satisfy user's requirements and achieve success.

The main objectives for this research are:

1.3

Identifying how the App Store reviews could be meaningful and useful for
the application Quality Assurance and Requirements engineers by
extracting only the reviews that contain some potential bugs or user needs
and comparing these reviews to the total number of reviews.

Understands and analyzes users' reviews into classes, which will help the
application owners to improve the application and satisfy the user's needs.
The currently available tools and research on analyzing and
classifying Arabic text are limited due to the complexity of the language
and the diversity in its dialects. In this research, I will focus on the Arabic
language and dialects and measure the performance of the proposed

automated method.

Research Overview

The rest of this thesis is divided into the following:

Background: A review of the theory and tools and behind this thesis, in this
section, | will cover several topics, including Neural networks, some
optimization algorithms used in this thesis, BERT Architecture [12], and
some Al and ML concepts.

Related Work: This chapter focuses on the other studies related to the fields
| focus on in this thesis; this includes other papers about collecting user's
requirements, analyzing Arabic language, and other papers about Neural

networks in general and BERT models in particular. In this chapter, I also
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the areas where improvements can be made and discuss the limitations of

these studies.

Data collection, analysis: This chapter describes and discusses the data
collected in this research regarding methodology, quality, and quantity. All
the manual classification and classes will be described in this section, along
with examples.

Research Methodology And Experiment Setup: This chapter describes
how this thesis will answer the research question by describing the
experiments | did and link each one to a research question. In addition to
that, this chapter will also describe the experiment setup.

Experiments Results and Analysis: This chapter presents the results of the
experiment.

Conclusion and Discussion: In this chapter, I will discuss how the results
from the previous section answered the research question. In addition, |
will discuss threats to validity and discuss the future work and some

recommendations.

Research Activities

To ensure the diversity in the reviews and user’s requirements, reviews were

collected from different Arabic business domains and different app stores stores

(the stores of the most common mobile operating systems: 10S and Android [13]).

The following activities will also be carried out:

Annotate the dataset manually and build a corpus of 33 classes.
Grouping the 33 classes into five main classes (Software bugs, Non-

functional requirements. User’s requirements, not relevant, and not clear —



see section 4.2 for more details) and prepare a different version of the
dataset where the classes are the main five groups.

e Grouping the 33 classes into three main classes: Informative reviews
(reviews that can be meaningfully useful for app Quality Assurance and
requirements Engineers to identify potential bugs or user needs),
Uninformative reviews, and not clear — see section 4.2 for more details) and
prepare a different version of the dataset where the classes are the main five
groups. The results of this experiment (see section 6.6) answer the first
research question of whether the Apps reviews can include some helpful
information for the App stockholders or not.

e Setup the experiment and conduct it for the three versions of the dataset (the
main dataset annotated with the 33 corpus, the main dataset annotated with
the 5 grouped classes and the main dataset annotated with the 3 grouped
classes). Each experiment was conducted several times with different

configurations to get the best results.

All the experiments were conducted using ColLab? (Colaboratory) under the
same circumstances with the exact GPU resource specification and the same RAM

limitation, see section 5.1 for details.




Chapter 2

Background



2.1 App distribution platform

App distributed platforms are the electronic software distributed markets for
several mobile devices like smartphones and tablets [9]. According to App Annie
statistical report in 2020 [3], by the end of 2019 and with over 2.7 billion
smartphone users, there were 204 billion downloads for mobile apps worldwide
(grown by 45% since 2016), 120 billion dollars were spent on mobile applications
by the consumer, users spends 3.7 hours on average using mobile applications per
day. App Annie statistical report also shows that the number of applications on the
primary two App stores is over 5 million applications (2.2 available on the Apple
App Store, and 2.8 available on Google Play Store [3]).

Analyzing the users' reviews and feedback on the apps in the app platforms is a
necessary process to improve the app development and increase user satisfaction
[5]. Some of these reviews could contain informative information for the app
developers. This research focused on classifying the reviews into Users
requirements, Non-functional requirements, and Software bugs to make it easier for

app developers to analyze these reviews and take action.

2.2 Software requirements and bugs

Creating and collecting software requirements is a complex task as it consists
of several processes such as elicitation, analysis, specification, validation, and

management. It is one of the primary and vital stages in any software development
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process where high-quality and precise requirements help mitigating the financial

risks and keeps the project on the specified road map [2].
Software requirements are usually divided into three types:

e Business Requirements: This includes the high-level goals and
objectives of the software [14].

e Users’ requirements: This describes what the user needs the software to
do, user requirements are usually collected from the users, or it comes
in a specific user requirements document where the user of the software
signs this document [15].

e System requirements: This describes the specifications of the software
that must meet both business and user requirements. It can be functional
or nonfunctional [15] [16]:

o Functional: which describes how the software must be
functioning and the features needed to achieve the goal of the
software and satisfy the user's needs.

o Nonfunctional: which describes the quality attributes of the

system.

In this research, | collected the data from the user reviews from 2 different
public app platforms (Google play and App Store). As | was not aware of the
software features in detail and the development road map, | will be focusing on two
types of requirements (user requirements and Non-functional requirements) as these
are the common and relevant types of requirements one can find in app stores
reviews [17] [18].
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2.2.1 User requirements:

User requirement is one of the keys in human-centered design as it describes
the basis for a good design and its evaluation [19]. User requirements specification
is typically collected and documented during the validation process of the software
[20]. However, it is crucial for app developers to align and validate the initial user
requirements with the users' feedback they get from the actual system users.
Collecting users' feedback and transferring them to requirements helps to improve

product development, marketing, and operation [21].

2.2.2 Nonfunctional requirements:

Nonfunctional requirements (NFRs) define system attributes such as reliability,
security, performance, scalability, maintainability, and usability. They serve as
restrictions or constraints on the design of the system. NFRs are just as critical as
functional requirements as they ensure a good user experience and ease of use
operating the software. It can also help improve users' trust when they feel safe and

secure while using the software [22].

NFRs covers different aspects of the software:
e Operational aspects: such as Security, availability, integrity,
accessibility, usability reliability, safety, efficiency, and reliability.
¢ Reuvisional aspects: such as maintainability, flexibility, scalability, and
modifiability.

e Transitional aspects: such as portability, reusability, and installability.
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2.2.3 Software bugs:

"A software bug is a flaw, failure, error or fault in a computer software or system
that causes it to return unexpected or incorrect results.” [23] Software bugs are
usually a result of human errors or mistakes during the development process, they
should be identified and fixed during the testing phase of the SDLC, but sometimes
they can go through the development process and appears to users after deployment.
Software bugs can vary from a slight effect on the user to catastrophic effects in
critical software.

Software bugs that pass through the testing phase are usually hard to detect after
deployment from the app developers [23] as they can happen in particular and
complicated scenarios or can only happen in specific circumstances like different
environments. It is crucial to have a reporting mechanism in the software to allow
the users to report any issues or bugs they face while using the application. It helps

the developers identifying and fixing them according to their priorities and impacts.

2.3 Neural network:

Like humans, artificial intelligence (Al) systems were not born perfect; they
need to learn and adapt by taking in information or data continuously, process it,
and keep it for future use, All Al parts are inspired by the human mind, but Neural
network is the clearest example for that; it was inspired by the billions of neural and
trillions of synapses in the human brain as shown in Figure 2.1, Neural network is

part of the deep learning science [24].
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Artificial
Intelligence

Machine
Learning

Neural Nets

Deep
Learning

Figure 2. 1: Neural Network position among other sciences®.

Neural networks are a collection of connected nodes or units called neurons
where each node can send signals and information to the other node, the signal
transmitted between the nodes the numbers and can move from node to another
forward or backward. Neural network nodes and edges have weights usually used
to adjust the learning process by having thresholds in neurons to identify the

learning rate and improve it. Typically, neurons are packed into layers. The first

layer is called the input layer, which receives the inputs, the last layer in the neural
network is called the output layer, which has the final prediction for the output, and

in between, there are several hidden layers to do the computation.

How it works
To explain how NNs works in a simple example, let us assume | am building a
neural network to differentiate between circle, triangle, and rectangle. The first step

is to split the shape image into pexels and feed them to the input layer. Each node

4 Source:
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in the input layer is connected to one or more nodes from the second layer (one of

the hidden layers) through channels where each channel is assigned to a numeric
value called weight, the sum of each channel per node will be sent to the
corresponding node, each node in the second layer has a value called bias. The
summation result from this value with the summation from the channels per node
identifies if a node should be activated or not. Only the active nodes transmit data
to the subsequent layers in a process called Forward Propagation, which eventually
will be sent to the output layer as probabilities.

The neural network also has the output fed to it, the final predictions in the
output layer are compared with the actual value, and in case of any error, the
information will be sent back to the hidden layer, and based on this information, the
weight can be adjusted in what is called Backward Propagation, the same forward,
and backward propagation, each forward and backward propagation called EPOC,
and usually number of Epocs is one of the significant factors to improve the model

quality.
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Figure 2. 2: NNs simple example.®

NNs are time and resources consuming; sometimes, it is hard to train a neural
network model with low resources because an EPOC is too big to feed to the
computer at once. Batches could solve this issue sometimes by splitting one Epoc
into several smaller batches, where each batch holds a total number of examples in
the train data set (called batch size).

Iteration represents the number of batched are required to complete on Epoc.

Training examples = 1000
Batch size = 500

el Batchl
500
1 Epoch 2
_ -
500 Batch 2  Iterations |
Figure 2. 3: Explain Epocs, batches, and iterations.®
5 Source:

6 Source:


https://www.youtube.com/watch?v=bfmFfD2RIcg&t=257s
https://www.youtube.com/watch?v=K20lVDVjPn4&t=2s
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There are several applications on the neural network these days, such as:

e Facial recognition: smartphones these days have cameras and apps that
can predict your age. This is an application of a neural network where it
separates the face from the background and then correlating the lines
and spots on the face to predict the age.

e Forecasting: neural network can be trained to understand the patterns
and predict the possibility of a specific event (such as a rise in stock
prices) with high accuracy.

e Music composition: Neural network can also learn patterns in music and

train itself to compose a fresh tune.

2.3.1 BERT

BERT (Bidirectional Encoder Representations from Transformers) was
published recently in 2018 by researchers from Google Al [25]. It caused a
revolution in machine learning science by presenting a state-of-the-art result in
several NLP tasks, including Questing answering, natural language interface, and
others [25].

The key innovation in BERT is applying Bidirectional training of transforms,
unlike previous efforts which took the text sequence either from right to left, or
from left to right, or combined right-to-left and left-to-right training, the models
present a deeper meaning of the language context and flow compared to the
previous Unidirectional models, BERT also introduces a novel technique called

Masked Language Modeling "MLM™ to allow bidirectional training models [12].
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How BERT works?

As opposed to previous directional models, which reads the sentence from right
to left or left to right, the transformers encoders in BERT reads the entire sequence
of words at once (bidirectional), which allows the model to learn the context of a
word based on what is surrounding the word in all directions.

BERT uses the transformers encoders to replace the words with mase and
embedding them into vectors, which eventually will be processed in a neural
network. The prediction goal could be a challenge for context learning in the
directional model. To overcome this challenge, BERT used two training strategies:

e Masked LM (MLM): 15% of the words in each sentence are replaced
with the token [mask] before feeding them into BERT; BERT tries to
predict the original word depending on the other non-masked word in
the sentence and using the classification layer on top of the encoder,
BERT predicts and assign probabilities to the possible word for the
masked token, where the validation loss on BERT takes only the masked
words and ignore the other non-masked one, which also makes it slower

than the other directional model.
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Figure 2. 4: BERT Masked LM (MLM).”

Next sentence prediction (NSP): in the process of training, BERT
receives pairs of sentences as input to learn and predict if the second
sentence in the pair is the subsequent sentence in the original document.

50% of the pairs are in pairs as they are in the original document, and

the other 50 are paired randomly where the model should predict that
they are not subsequent and separate them. To distinguish between
sentences, the model processes the input before starting the training
process by adding a [CLS] token at the beginning of the first sentence
and a [SEP] token at the end of each sentence. To predict if the two
sentences are connected, BERT transfers the CLS tokens' output into a
2*1 shaped vector using a classification layer and then calculates the

probability of the IsNextSequence with SoftMax.

7 Source:


https://towardsdatascience.com/bert-explained-state-of-the-art-language-model-for-nlp-f8b21a9b6270
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Fine-tune BERT:

BERT can be used in several language tasks:
o Classification tasks: This can be done similarly to NSP by adding a
classification layer on top of the transformers.
e Question Answering tasks (Q&A): This can be done by training BERT
on two extra vectors that identify the beginning and end of the answer.
e Named Entity Recognition tasks (NER): This can be done by feeding
the output vector of every token into a classification layer that predicts

the entity label.

2.4 Logistics regression:

Linear classifier classifies the data based on a linear combination of input
features by separating data using a line or plane. Linear classifiers can only be
used when the data can be split linearly. Perceptron, logistics regressions, and

SVM are the primary three algorithms in Linear Binary Classifiers.

While perceptions output only a Boolean result on where the input feature
should be, logistics regressions pass the weighted linear combination of the

input feature through a sigmoid function which returns a result between 0 and
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1; this value indicates where the value should be on the plane. The probability

of classification of points very close to the plane is close to 0.5 [26].

',-'(u‘ _,"“‘2 QW Wy '".:w, ‘-‘-"Ng

Figure 2. 5: Logistics regressions Linear classifier.®

8 Source:


https://sites.google.com/site/machinelearningnotebook2/classification/binary-classification/linear-classifiers
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2.5 Warmup steps:

In the case of a highly differentiated dataset or unbalanced classes in the
dataset, the model can suffer from early Overfitting. Warmup steps are a way
to reduce the primacy effect of the early training examples by focusing on the
learning rate during these steps and modify it per iteration. Let us say the target
learning rate is p and the warmup period is n, then the first batch iteration uses
1p/n as its learning rate, and the second batch iteration uses 2p/n and so on till
the model hits its nominal rate at iteration n. This means that the first iteration
gets only 1/n of the primacy effect. This does a reasonable job of balancing that

influence.

2.6 Learning rate:

Learning rate is a hyperparameter that controls how much the model should
be changed according to the error after each iteration (when the weights are
changed). It is usually a tiny positive number between 0.0 and 0.1. Choosing

the most suitable learning rate is a challenging and experimental configuration
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as a low learning rate can cause a very long training process, and a high rate can

cause speedy and unreliable results.

low learning rate

high learning rate

\

good learning rate

f.

epoch

Figure 2. 6: Explain the effect of high/low learning rate.®

2.7 Early stopping:

Early stopping is a concept in machine learning that refers to stop training
the model before it starts suffering from the over-fitting; I can use early stopping
by splitting the dataset into a train, test, and validation dataset and keep an eye
on both test and validation loss after each epoch where the model should be
stopped if the accuracy of validation in decreasing the training accuracy is

increasing (the model is overfitting). Overfitting means the model is working

9 Source:


https://towardsdatascience.com/understanding-learning-rates-and-how-it-improves-performance-in-deep-learning-d0d4059c1c10
https://towardsdatascience.com/understanding-learning-rates-and-how-it-improves-performance-in-deep-learning-d0d4059c1c10
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perfectly on your training set but not on other datasets. The model is closer to

the perfect point when the training loss is close to the validation loss.

Accuracy

>

Training Set Accuracy

Overfitting

Validation Set
Accuracy

Early Stopping
Epoch

/ )
Epoch

Figure 2. 7: Explain the concept of Early stopping.°

2.8 AdamW:

Adam optimizer first introduced in 2014 with a simple and intuitive idea:

why should we use the same learning rate for every parameter while some

parameter needs to move faster and further than others, some studies after Adam

released shown 200% speed in training, but later in 2017 Ilya Loshchilov and

Frank Hutter [27] pointed that the way weight decay is implemented in Adam

is wrong, and proposed a simple solution called AdamW, and provided some

charts to show the improvements in AdamW above Adam along several Epocs.

10 source:


https://www.oreilly.com/library/view/tensorflow-for-deep/9781491980446/ch04.html
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Adam and AdamW with LR=0.001 and different weight decays
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Figure 2. 8: The difference between Adam and Adamw.!

2.9 Sigmoid function:

Sigmoid is a mathematical function with the characteristics of an S-shaped

or sigmoid curve, and it is a bounded and differentiable function that takes input

values and transforms them into a number between 0 and 1 or -1 and 1 (called

probability). Logistics Regression is one of the most common cases where the

sigmoid function is used where it takes input values and transform them into

probabilities between 0 and 1 according to the formula 2.1.

S(a)

(=

o

1L+ e =

e 4+ 1

Equation 2. 1: Sigmoid Formula.

Where x represents the input value.

11 source:


https://www.fast.ai/2018/07/02/adam-weight-decay/
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2.10 Colab:

Collaboratory, or "Colab" for short 2, is a product from Google that allows
anybody to write and execute Python code through the client's browser. Colab
is very suitable for machine learning, data analysis, research, and education.
Colab presents its copy of the jupyter notebook service, which requires no
installation or setup to use. Colab also provides free access to computation
resources such as CPUs, GPUs, TPUs. Although it provides free access to
resources, it still has limitations, where the resources in Colab are shared
between the users with some limitations per user. Colab also provides a
premium edition for users who are interested in more reliable and better

resources.

12



26

Chapter 3

Related Work
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In this chapter, a detailed review of the previous related work is presented.
In order to make this section more organized and readable, and since | could not
find any previous work for analyzing Arabic reviews from App platforms using
BERT architecture, this chapter will be divided into three sections to cover the
related work from 3 sides: The first section will present the work related to
analyzing reviews from Google Play and App Store regardless the language of
the reviews or the techniques used to analyze these reviews, the second section
will cover the previous work related to analyzing Arabic regardless the
techniques or the origin of the text being analyzed. The last section of this
chapter will cover the previous work that is related to using the BERT
architecture with more focus on the work that overlaps with the other two

sections (the Arabic language and the app platforms reviews).

3.1 App platform reviews analysis

Several machine learning and natural language processing techniques were
used to classify a text into different classes in literature. For example, Al Kilani,
Tailakh, and Hanani in [5] used four different machine learning algorithms to
classify App stores review into five categories: Bugs, Usability, new features,
performance, and security. They retrieved around 90000 English reviews on ten
different applications from google play. They employed ten software experts to
do the manual classification, and they were able to conduct their experiment on
7500 reviews. For each review, the software experts were asked to assign a class
among the mention five categories and to support their decision with a

confidence level (high, medium, low) in order to train the classifiers on the
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confidence levels and compare the performance of the systems trained using
classes with high, medium, and low confidence. Naive Bayes Multinomial was
used as their baseline technique which shown the best performance among other
techniques (Naive Bayes, Random Forest, and Support Vector Machine). They
were able to improve the results concerning accuracy metrics by employing
some other features like sentiment analysis. Some NLP techniques (such as n-
grams modeling, TF-1DF features, and noise removal) were also used in the pre-
processing data stages to improve the accuracy.

Similarly, Maalej and Nabil in [28] used several probabilistic techniques to
classify app reviews into four types: bug reports, feature requests, user
experiences, and ratings. They also used some metadata (such as star rating,
tense, and text length) to improve the accuracy of their results. They used String
Matching and Document classification (Bag of words) as the primary classifier
and two NLP techniques: Stop-words removing and lemmatization. Their
model achieved 97% accuracy (comparing with the manual classification) after
employing the metadata in their model.

Moreover, Otoom, Sara, and Maen in [29] achieved an average accuracy of
93.1% using the Support Vector Machine classification algorithm to classify the
newly reported bugs into two classes: corrective and perfective bug reports.
They collected the bug reports data set from three open-source projects and fed
these bugs into their automated classifier after they classified them manually.
They also used some NLP techniques such as Tokenization and stemming steps
to improve the accuracy of their automated tool. Among the three machine
learning techniques they used (Naive Bayes: average accuracy of 92.9%,
Random Trees: average accuracy of 89.6%, SVM: average accuracy of 93.1%),

SVM was the most accurate technique in their case.
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Pagano and Maalej conducted a similar empirical study in 2013. They
analyzed over one million reviews from Apple AppStore to study how and when
the users add feedback, inspect the feedback content, and study its impact on
the user’s community. They found that feedback is added chiefly after the new
releases, and they usually contain user experience, bug reports, and feature
requests [30]. Another study was conducted in 2013 to extract new changes in
requirements from users’ comments in third-party applications [31].

In 2014, Guzman and Maalej conducted a study on 7 Apps from Apple
AppStore and Google Play to identify the fine-grained app features by
extracting the user’s sentiment about the identified features and give them a
general score, their automated approach has a precision of 0.59 and recall of
0.51 (compared with manual analysis), and the extracted features in their
approach were coherent and relevant to requirements evolution tasks [32].

Yang and Liang in [33] presented an approach to classify user reviews from
a popular app iBook in the Apple App Store into functional and non-functional
requirements. They used several retrievals and NLP techniques such as TF-IDF
and regular expressions to build their classifier. They also investigated the cost
and returned for the proposed approach, and the results show a relatively stable
recall, precision, and F-measure when selecting an appropriate size of sampled
reviews.

lacob and Harrison in [34] designed a prototype named MARA (Mobile
App Review Analyzer) to support the process of analyzing a large number of
reviews to extract the functional requests on a mobile application. Using their
model, they were able to show that 23.3% of the reviews submitted on the App
stores are functional feature requests. They analyzed 136,998 reviews using

Linguistic rules and several NLP techniques to extract the feature requests.
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They used LDA (Latent Dirichlet Allocation) model to assign topics from their
corpus to each request.

Chaochang Chiu in [35] investigated the analysis of the Chinese review in
some android game apps. He extracted 207,048 reviews of 4,268 games and
analyzed them, including different factors like the game type and attributes. He
found a high dependency between the type of the game and the gender of the

user; males and females have differing opinions on game attributes.

3.2 Arabic language classification and analysis

Despite the difficulties in analyzing the Arabic language [36] [37], there are
several kinds of research where Arabic language texts were analyzed and
classified. For example, researchers in [38] build an opinion mining model that
accepts an Arabic social media comment as input and identifies whether that
comment is subjective or objective, positive or negative, and strong or weak.
They built several algorithms to achieve their desired results, such as the
Subjectively algorithm, Strength/Intensity Algorithm, and Polarity Algorithm.
They used 66% of their dataset as training data and 34% as testing data. Finally,
there were able to achieve the following accuracy using different algorithm:
e Subjectively analysis (Naive Bayes — the most effective technique):
93%.

e Polarity Evaluation (K-NN Classifier — the most effective technique):
90%.

e Intensity Evaluation (Naive Bayes — the most effective technique):
96.9%.
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Different dialects are one of the most common difficulties in analyzing and
classifying Arabic text [39]. However, several studies have been published to
remove this difficulty by proposing automated tools and models that use some
NLP techniques such as Lemmatization. For example, Jarrar and a group of
research in [40] [39] presented Curras, an annotated corpus consisting of 55960
tokens for the Arabic Palestinian dialect and rich morphological and semantic
information.

Ashraf, Yasmin, and Anas in [41] introduced a new dataset, and they named
it HARD (Hotels Arabic Reviews Dataset), a large dataset with more than 370K
Arabic reviews from the booking site. In order to examine their dataset, they
have applied six machine learning classifiers to test the polarity and the rating
of the reviews. The SVM and logistics regressions classifiers produced the best
results, ranging from 94 to 97% for polarity and 72 to 75% for rating. They have
also used the constructed lexicon on their dataset and achieved 89% accuracy.

A group of researchers in [42] presented an experiment to categorize Arabic
text automatically. They have selected five main categories from popular Arabic
datasets and generated three different versions of the dataset: stemmed, root-
based stemmed, and light10. They applied four machine learning classifiers of
the three datasets, SVM, NB, Decision Tree, and KNN. They got the best result
on the light10 dataset using the SVM classifier, which achieved 98.4% accuracy
using the RapidMiner tool, and 98% using the Weka tool.

Asma, Leila, and Abdesselam in [7] collected a dataset of 50 reviews from
the Google Play Store. They have collected reviews only in French, Arabic, and
Algerian dialects and analyzed these reviews to train a model that can predict
sentiment analysis using two approaches, machine learning-based and Lexicon-

based based. They achieved 80% using the Lexicon-based approach and 72%
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using the machine learning approach, where the SVM classifier achieved the
best results.

Sufyan, Omar, Bilal, and Khaled in [43] proposed an Arabic Aspect-Based
Sentiment Analysis (ABSA) that combines both lexicon with rule-based models
to classify the Arabic reviews from the governmental mobile apps after
classifying them manually and five a sentiment score for each review. Their
experiment approved that applying rules setting showed some improvements in
both accuracy and f1 score, where the accuracy increased by 6% and the f1 score
showed 17% improvement.

A recent study by Ahlam and Maha in [44] showed that many Arabic Apps
in Google play are miscategorized. They refer to this for two reasons: the
misunderstanding of Google play categorization schema or the lack of
categories available for Arabic Apps. After collecting 13279 Arabic apps in
Google play from different domains like Education, Family, Books, Lifestyle
and classifying those apps using the LDA algorithm, they came up with this

statement and predicted each app's category.

3.3 BERT and AraBERT

BERT [12] is a paper published in 2018 by researchers at Google Al, and it
caused a storm in the machine learning community; it presented some
extortionary results in several NLP tasks like Question Answering, Entity
Recognition, and Natural Language Inference and others.

The key innovation in BERT is applying bidirectional training of

transforms, unlike previous efforts which took the text sequence either from
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right to left, or from left to right, or combined right-to-left and left-to-right
training, the models present a deeper meaning of the language context and flow
compared to the previous single directional models, BERT also introduces a
novel technique called Masked LM "MLM" to allow bidirectional training
models [12]. AraBERT appeared for the first time in 2020; it is a pre-trained
language model based on Google’s BERT architecture and uses the same
BERT-Base config.

Till the moment of writing this research, the last AraBERT version is 2.
AraBERT version 2 was trained on a large dataset (77 GB) with around 8.6
billion words and 200 million sentences. AraBERT v2 comes with two different
pre-segmented models: AraBERTV0.2-base and AraBERTVO0.2-large [45].
AraBERT will be used in this research, and previous work on AraBERT will be
focused on in this section.

Recently, a group of researchers in [46] proposed a model to detect Hate
Speech and offensive language. They have used different versions of the
AraBERT model and fine-tune it on a total of 10K tweets. They labeled the data
with HS and NOT_HS (HS stands for Hate Speech) and OFF and NOT_OFF
(OFF stands for offensive language), the divided the dataset into training (70%),
testing (30%) and validation (10%), and fine-tuned the model in two
approaches: multi-labels and multi-tasks, they have found that the results of the
multi-task AraBERT model outperformed the multi-label mode where the
multi-task model showed 90.15% Macro-F1 for the offensive language and
83.41% for the Hate speech. Meanwhile, the best version of the multi-label
model showed 89.55% Macro-F1 for the offensive language and 80.81% for the
Hate speech. One of the main challenges they have faced is the imbalanced
classes in the training data where they have 6489 tweets labeled as NOT HS and

only 350 labeled as HS, they tried to solve this imbalance in different methods
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like using the weight loss function or by resampling the data, but none of these

methods showed any improvement in their experiment.

Dalya and Malak in [47] used AraBERT to build that detects sarcasm
tweets, and they named it sarcasmDet. They have used the prelabeled Shared
Task on Sarcasm and Sentiment Detection in Arabic from WANLP 2021 [48]
as their dataset and used different versions of the AraBERT model with one
single Boolean class identifies in the tweet is sarcastic or not, and they have
achieved 0.5989 F1-score for the large version of AraBERT and 0.3993 for the
base version.

An interesting paper was published recently by Ahmad, Nada, and Ammar
in [49], where they propose an effective to fight the COVID-19 Infodemic
tweets. They used the NLP4IF 2021 [50] dataset and classified its 2556 tweets
manually into seven labels indicates if the tweet has false information, verifiable
claims, harmful, needs verification, harmful to society, requires governmental
attention, or has some interesting information for the general public, their model
achieved 67.7 accuracy using the base version of AraBERT.

Anshul in [51] proposed an approach to identify Arabic dialects in Nuanced
Arabic Tweets Using Farasa Segmentation and AraBERT, he used a prelabeled
training dataset that contains a total of 21000 tweets, validation, and test dataset
contains 5000 tweets, he has applied both large and base AraBERT and
achieved 0.433 accuracy as the best result.

Abdullah, Eric, and Abdulrahman in [52] used a prelabeled dataset called
QurSim to binary classify pairs of verses provided by the dataset to check if the
pairs are semantically related or not. They have used different versions of
AraBERT, where the best result they achieved from AraBERTV0.2 with 92%

accuracy.
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Chapter 4

Data collection and analysis
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This chapter describes how | got the reviews from the app platforms and
how they are classified manually into three different. It also describes the corpus
built and how the classes are categorized into users’ requirements, bugs, and

non-functional requirements.

4.1 Data collection

Up to my knowledge, there are no available annotated/classified datasets for
the Arabic reviews of applications from google play and the Apple App Store.
I also could not use any available APIs to fetch the reviews from Google Play
or Apple App Store. However, | was able to modify and use some of the open-
source crawling tools to collect a dataset from both Google Play and the App
Store. This process took much time between modifying the tools to satisfy the
needs and doing some workaround to prevent browser crashing or hanging
through the crawling process due to the massive number of reviews in some
applications. However, | was able to modify this tool with techniques to fetch a
large number of reviews, including: (Appld, review author, review date, score
rating, review text ...etc.).

In this research, | focused only on the Arabic reviews, so | picked five
applications from the most common application in the Arabic region from
various categories. | collected over 90000 reviews, but I reduced that number to
10000 reviews (the most recent reviews from each app) to do the manual
classification. | noticed that the number of reviews on Google play is much

larger than the one in Apple App Store.
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App name Domain Reviews collected
App Store reviews Google play reviews
Altibbi Health 132 4000
Careem Car booking 800 1000
Shahed Video streaming 621 1000
Waze Navigation and live traffic 447 1000
Yamsafer Hotels and flight booking 0 1000
Totals: 2000 8000
10000

Table 4. 1: The list of Arabic applications used to create the dataset.

4.2 Data manual classification and categorization

113 started the manual classification process by reading each review and
assign it to one of the classes if its suites any of the classes in the corpus; if not, |
extend the corpus with a new class and assign the review to it*4. The criteria | used
to classify the reviews and build the corpus are depending on the repeatability of
issues and requirements in app’s reviews where | added a new class for an issue or
requirement only if it’s repeated by 10 or more users in different reviews:

e Repeated meaningful issue: this means that 10 or more people reported

it as a potential meaningful issue or bug to a software tester.

13 A master student in software engineering with over 6 years of experience as a software engineer.
14 29% of the corpus was discussed in a face-to-face with an external expert. The aim of this
meeting was not to measure agreement or disagreement on the classification but to have an
external opinion about understanding reviews which | took into account while classifying the rest
of the corpus.
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o Repeated meaningful requirements: it’s a user need that frequently

repeated (in 10 or more reviews) and identified meaningfully useful to

a software tester and/or requirement engineer, by the expert annotator.
Although these criteria were practical in classifying the corpus, but there
might be some reviews that are vague. By the end of this process, | was able to
classify around 10K reviews and build the corpus with 33 classes that were
found arbitrarily as they are patterns in the reviews. Table 4.2 shows the classes,

description, example, and the count for each class in the dataset.

Class Description Example

Count

Not relevant e Describes all the comments that did not CRSY ) Sl 93 e dll 5 Aadd Adlall oSulamy )
have any informative information for the Alabay g Aadlal) lany il apiall daal
develops.

e It’s not a repeated meaningful issue or

requirement that need to be resolved.

7138

Issues appeared after e Describe all the bugs specifically after Osi) 8 el e Jamy Y AN Cunatl xr

updates updates, and also some feature removed
with the new updates.

e Repeated meaningful potential issues

that needs to be resolved by app testers.

120

Missing business features e Describes all the domain feature that are | “esdll alie duald ¢sauny o S5 jlies il
(user suggestions) request by users. Dl Sy ala )l Jisha
e Repeated meaningful requirement that

needs to be added to the app according to

user’s needs.

116

Annoying ads e Describes the user requests to remove or | £© 4sbu lgise dils i il 1) 4idlse ¢ 53 L s
reduce the number of ads on the app. Clible ) JlL 488
e Repeated meaningful potential issues

that needs to be resolved by app testers.

143
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UI/UX issues/suggestions

Describes all the issues with the app user
interface or user experience, or some
user suggestions.

Repeated meaningful potential
issues/requirements related to UI/UX

that need to be resolved/Added.

) g s A g € 5 Ol Gan s dgn) st Gl
ALl sl

17

Notifications

Describes all the issues related to app
notification or some feature requested by
the user related to notifications.

Repeated meaningful potential issues

that need to be resolved by app testers.

Jsaall aie KTyl jladl aa g adl Heday Laila
Al el ax Y Gulaill

13

Availability

Describes all the issues related to app
availability.

Repeated meaningful potential issues
regarding the app availability that needs
to be resolved.

Y o A gl kil e oSile 2Ol
O U dall J s e cand Y Sl o aalaid
Ok (e e a8 ) 4 3l el 5 Ly 81 Jad
Ol g Uil 3] a2y ) Gaadail) A 5228
oSile

195

Performance

Describes all the issues related to app
performance.

Repeated meaningful potential issues
regarding the app performance that needs

to be resolved.

(il (any (b S Jaeas mali 0

137

Work offline

Describes all the reviews, suggestions, or
complaints about app functionality in
offline mode.

Repeated meaningful requirement that
needs to be added to the app according to

user’s needs.

i o s il Hall Jy 3 il

37

Bugs related to the app
features

Describes all issues user faced in domain
features.

Repeated meaningful potential issues
regarding the app functional features that

needs to be resolved.

7 o alall 5alid  tallay aSa 8 (33l llal

15 s € o8l jaiel ga 5 4% o sia S

180
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Compatibility Describes all the bugs and user requests e aedl il Apple TV | 113
for the app compatibility with other third
parties.
Repeated meaningful potential
issues/requirements related to app
compatibility that need to be
resolved/Added.

Issues related to the app Describes all the reviews where users | st WY dp jall dgal ol 5uS fpuat M zlsy 55

languages complaining about issues in languages, Agalsll Sl 53 88 4 alail S e
or request supporting new language. Lo gead JI ) ) ¥ a3 () 7l 5 4 Sl
Repeated meaningful potential issues lll elall vie
regarding the app supported languages
that needs to be resolved.

Political and racism reviews Describes all reviews related to political IV b po (ilaly (5 paic Gubi | 147
and racism. Sseall,,
Repeated meaningful comments from
users about Political and racism issues.

Suddenly crash Describes all reviews mentioning the 3 i 2l Gl Jaol Le S s Jli (Sae | 125
App stopped or crashed. pSie Callal ALl () Gl 2L e 2 58
Repeated meaningful potential issues Dl Sl Sl Sy ACEA 18 glas
regarding the app crashing issue that
needs to be resolved.

Privacy Describes all reviews related to user’s S et @il o ya 4S) Lo gy o gy (gl 16
privacy. Ll aiis (Al i) o glaill Gaal auai
Repeated meaningful potential issues Lpna gradll ey o oan bt
regarding the app privacy that needs to
be resolved.

Usability Describes all reviews related to app ease | <« s b duss 4uals o Gkl 46

of use.

Repeated meaningful potential

issues/requirements regarding the app

Osld b jele dly g Connia (o alla Al ()
oLl




41

Usability that needs to  be

resolved/added.

Lack of instructions and

guidance

Describes all reviews related to lack of
information or guidance.

Repeated meaningful potential
issues/requirements regarding the app
instructions  that needs to be

resolved/added.

Dy el 5 A5V ol (K1 Gkl il
e A Ol salas lae 5o Ja g cudall
PUIEY]

171

Internet connection and

coverage issues

Describes all reviews related app
connection to internet while the phone is
connected.

Repeated meaningful potential issues
regarding the app connectivity that needs

to be resolved.

Jeatie e il J gy Jamy ¥ gali ) (3
Sleadb Adll J 55 e e I o iYL

69

Business limitations

Describes all reviews related to app
feature limitations.

Repeated meaningful  requirements
regarding the app limitations that needs

to be added.

L e Sl A G sallaae saly ey
e Gl oL §)

10

Human and technical

support issues

Describes all reviews related to human’s
agent and technical support.

Repeated meaningful potential issues
regarding the app support issues that

needs to be resolved.

S48 oo yine e bl S e 2l e
Juadl o S e

273

High cost

Describes all reviews related to user
complaining about app cost.

Repeated meaningful potential
issues/requirements regarding the app

cost that needs to be resolved/added.

s Tl IS g ¥ Al A by
) LI g Ul ] Ll (€ S
) o) o allall | pnil 5 it 3 pue il sla | pnas

Yy Jid Jie Jatdie day g geali ) Jesinl i€

Ansa g el Y1 gl

193

Subscription

Describes all reviews related to

subscription issues.

Lo Ll g 5 pald SI 531 g3l (I du ) (o5 sl
J2iilag g gunld (oSG ll REN Oy g g pald

208
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Repeated meaningful potential
issues/requirements regarding the app
subscription  that needs to be

resolved/added.

OV st (S aa¥1 5 Gl 1 e dual 53 ¢ sansl W
e lae dadd | gl Jaidy La |58 g Jmda i) 1111

Payment issues & voucher

Describes all reviews related to Payment
issues.

Repeated meaningful potential
issues/requirements regarding the app
payment and voucher issues that needs to

be resolved/added.

Dl (8 Jly 7 (I35 (il ) sl cudl 131
@L’d\

267

App content issues

Describes all reviews where users are
complaining about app content.

Repeated meaningful potential issues
regarding the app content issues that

needs to be resolved.

i A0 el ) ) Oldad) (e (Sl 2
LS8l e gl L, g 8l g Lpa je day Lgaim je

DUl g el U 4y jas (g ye 3 5 Ll

105

App size

Describes all reviews related to app size.
Repeated meaningful potential issues
regarding the app size issues that needs

to be resolved.

Glag mY g B jla (gudaill

11

Login, registration,
password reset, and

activation issues

Describes all reviews related to users
Authentication.

Repeated meaningful potential issues
regarding the app authentication panels

issues that needs to be resolved.

AT ) o) ) 33l Al e AKe 48
Jraa¥) =

138

Download & installation

issues

Describes all the issues users are facing
in downloading and installing the app.

Repeated meaningful potential issues
regarding the app download and
installation issues that needs to be

resolved.

851590 Joa s Jandy oy e

10
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No Free edition

Describes all the reviews where users are
complaining about no fermium version
of the app.

Repeated meaningful potential
issues/requirements regarding the app
freemium edition that needs to be

resolved/added.

Dbea cpall Ga addle 53 s g Ulae 4l 4 Jlall o)<
Sl Ui iy 5l

52

Communication issues

Describes all the reviews where users are
complaining communication issues.

Repeated meaningful potential issues
regarding communication issues that

needs to be resolved.

V- A, On Jeal 538 )l o 8y 0a Y
AL,
Yo Sl aal Jlae o) ey S i Y,

232

Supportability

Describes all the reviews related to app
supportability.
Repeated meaningful potential
issues/requirements regarding the app
supportability that needs to be
resolved/added.

48y (ppeddiiee e Jadiy e 4 el 3 (R ste
S0 s (4l (g0 i) e Al LES gl
BV e il

42

High internet consumption

Describes all the reviews related to the
app high internet consumption.

Repeated meaningful potential issues
regarding the app internet consumption

issues that needs to be resolved.

L.):“‘ﬁg;é‘“—b‘)@i' Qd\ﬁ‘kéﬁa

17

Security

Describes all the reviews related to the
app security.

Repeated meaningful potential
issues/requirements regarding the app

security that needs to be resolved/added.

ST (S G lall el (&l jad aa g
o) 5 81 48 5o (50 Al el 5 e DU
i Coa Gaa Loy S Sle ) 09 5 A ol
8 e el jall padlll (e 4 JuatV)
i and) eW 5 Sl any 5 S (S
Cage g dua ) aglle Jlae Juand 5 5 RYI 5 il
ol () 65 38 5 88 gall elgl] g 2agill i adad
o lad 5 Dsall 5 aladll i 2 a8 Gl e S
szl

11
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Not clear

e Describes all the reviews where the users

were complaining about some issues, but

Jas las las e k_\.‘u\ ‘55 cadl Laila

it was not clearly mentioned
e [t’s a repeated issue or requirement,
however, what’s need to be resolved is

not clear.

142

Table 4. 2: The original 33 classes with their description and example on each class.

After the manual classification for the 33 classes, | found that some of the
classes do not have many reviews to support them during the training process,
so | generated two different datasets from the original one with different
labeling. The first one is by categorizing the 33 classes into five parent classes:

e Software bugs: 1370 reviews.

¢ Non-functional requirements: 1725 reviews.

e Users Requirement: 845 reviews.

e Not Relevant: 7138 reviews.

e Not clear: 142 reviews.

To address all the research objectives mentioned in section 1.2, | have
created another third dataset to find how informative Google Play and App Store
reviews can be. The third dataset had only three classes:

e Informative reviews: 2720 reviews.

e Uninformative reviews: 7138 reviews.

e Not clear: 142 reviews.

Figure 4.1 shows all the classes, and how | generated the second and third
data set from the first dataset classes where the green nodes represent the classes
of the third dataset, the blue ones represent the classes in the second dataset, and

the gray nodes represent the original classes in the first dataset.
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Figure 4. 1: Categorizing the original classes into two other different versions of classification.
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Chapter 5

Research Methodology And
Experimental Setup
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In order to fulfill the objectives of this research which were introduced in
the first chapter, Reviews in Arabic language were collected from Google play
and App store and annotated with the 33 classes mentioned earlier. In this
chapter | will explain how the data were pre-processed and will show the tools

used in the experiments.

5.1 Environment setup

Due to the massive number of recourses and computation power need to
fine-tune a BERT model, Collaboratory was a good available solution to run the
experiments due to its easy usage and high computation power. However, the
Free version of Colab has many limitations (especially RAM) that prevented
the model from completion due to memory crashes and lack of resources. The
solution was the premium version of Colab with a more considerable amount of
RAM and access to larger GPUs and TPUS.

Three Colab projects were prepared to run three experiments with the three
datasets mentioned earlier, and | made sure that all the three experiments run on
the same hardware resources and the same BERT configurations, which will be
presented later in this chapter. | have also connected Colab projects to Google
drive to save all the logs, results, and training checkpoints for later use to predict
and evaluate the results after the training process.

In all the experiment, it was hard to get a chance to run the experiment on
Tensor processing units (TPUs) even with the pro version to the limited number
of TPUs and the high
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demand and usage on them, so | ran all the experiments with the exact Nvidia
CUDA GPU specifications:

e GPU version: Tesla P100 PCI-E

e Memory: 16280 MiB

e Driver Version: 460.32.03

e CUDA Version: 11.2

5.2 AraBERT

Although Google introduced their multilanguage model with the BERT
architecture and it supports the Arabic language. However, researchers found
that the performance could improve with a pre-trained BERT model on specific
language, which was the case in AraBERT where the authors pre-trained BERT
on a large set of Arabic words and outperformed the original Multilanguage
model after fine-tuning their model on several NLP tasks such as NER, question
answering and sentiment analysis [53].

AraBERT appeared for the first time in 2020 [45]. It is a pre-trained
language model based on Google’s BERT architecture and uses the same
BERT-Base config. Till the moment of writing this research, the last AraBERT
version is 2. AraBERT version 2 was trained on a large dataset (77 GB) with
around 8.6 billion words and 200 million sentences. AraBERT v2 comes with
two different pre-segmented models: AraBERTV0.2-base and AraBERTVO0.2-
large [45]. The first model will be used in this research due to the enormous

number of resources and time needed to fine-tune the second large model.
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AraBERT Dataset combines several datasets such as the Arabic Wikipedia
dump, the 1.5B words Arabic corpus, OSCAR, the OSIAN corpus, and the

Assafir news articles. It consists of more than 8.6 billion words before using the

Farasa segmentation [53]; Farasa is an Arabic segmenter. Segmentation

involves breaking Arabic words into their constituent clitics [54].

AraBERT comes with a well-implemented preprocessor to process the

Arabic text before starting the training to improve the model's final results.

AraBERT preprocessor performs the following operations on the text [45]:

Stripping the words from the Arabic Tashkeel.

Stripping the words from the Arabic Tatweel.

Replace URLs and emails with Arabic tokens.

Remove any HTML markups.

Remove non-digits repetition (removes any characters or special
characters that are repeated more than two times).

Remove emojis.

Insert whitespace before and after all non-Arabic digits or English Digits
and Alphabet and the two brackets.

Replace slash with a dash.

After reviewing several BERT pre-trained models, AraBERT achieved the

best performance among all. Thus, it will be used in this research along with its

text preprocessor.
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5.3 Used tools

In order to achieve the desired results for the experiments, many libraries
were used to prepare and preprocess the data and to work along with the BERT

to provide the best results:

PyArabic'®: is an open-source python library that provides the
essential functions to manipulate Arabic text and letters, such as
removing diacritics, detecting Arabic letters, and stripping Arabic
words (removing Tashkeel). This library was required and used
heavily by the AraBERT to perform the text preprocessing and helps
in internal functionalities.
Torch?8: Torch is an open-source scientific computing framework
with excellent support for Al and machine learning algorithms and
models that requires a lot of computation power. It has many utilities
and machine learning algorithms, and optimizers that utilize the
computation power and make the process of running complex deep-
learning projects easy and fast. Among all the utilities and
algorithms in torch, the following were used in this research:
o Linear: Is the classifier that will serve as a way to get the
output of BERT model and convert them into the classes we
want to predict [55].
o Sigmoid: As mentioned earlier in the background section, |

have used the sigmoid from the torch with the logistics

15
16
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regression Linear classifier to get the probabilities per class
[56].
o BCE Loss function: It stands from Binary Cross-Entropy. It

is used in this research to measure the error in each class by

combining it with the probabilities from the sigmoid
function.

o Dataset: An abstract class in a torch that torch Dataloader
heavily uses, it is used in this experiment with custom
implementation for the length and the getltems functions to
prepare the dataset and feed it to the DatalLoader.

o DatalLoader: a torch class that uses the Dataset class and
provides many functionalities on the data. In this research, it
is used to fetch the data from the dataset in the form of
batches and feed it to BERT. It is also used to identify the
number of workers used per batch.

Pytorch lightning'’ is an open-source python library developed by
William Falcon. It is a library built on top of a torch and designed to
make research projects more scalable and quicker to iterate. The
following PyTorch lightening functionalities were used in this
research:

o Metrics: several metrics were used to evaluate the results,
such as accuracy, F1, precision, recall, and AUROC.
AUROC stands for Area Under the Receiver Operating
Characteristic Curve. The curve is created by plotting the
true positive rate (TPR) vs. the false positive rate (FPR),

17
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where the closest curve to one is the better results. In this
research, | use it to measure the performance of each class.

Early Stopping: a function that takes the monitoring matrix
and another numeric parameter to stop the training if the
monitoring matrix did not improve after a number of Epocs,

which is identified by the second numeric parameter (called:

patience). In this research, | used the validation loss as the
monitoring matrix and five as the patience.

Model Checkpoints: training the model is both resource and
time-consuming process, and it is frustrating to restart this
process in case of any interruption for the training process.
Checkpoints can be used to save a checkpoint after training
each Epoc to come back and resume the model training
process from the last saved checkpoint.

Tensor Board Logger: This tool provides several
measurements and visualization during the training process;
it provides and visualizes some important matrices like
accuracy. It is used in this research to provide some crucial

graphs for each class.

Transformers®®: is an open-source library provided by hugging-face,
which provides thousands of pre-trained models to perform tasks on
texts such as classification. It is used in this research to help in fine-
tuning the AraBERT model. The tools used in this research are:

o AdamW: implements AdamW optimizer to adjust and

optimize the learning rate during the training.

18
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o Auto tokenizer: it is used to create a model that is an instance
of the BERT Model from a specific pre-trained model. In our
case, it was the AraBERT version 2 model.

o Get linear schedule with warmup: a function that uses the
AdamW optimizer, the number of the warmup steps, and the
number of the training steps to prepare the schedular with a
learning rate the decreases in early from the initial learning

rate set in the optimizer to O, after a warmup period during

which it increases linearly from 0 to the initial learning rate
set in the optimizer.
Sklearn'®: an open-source library that contains many efficient tools
for statistical modeling and machine learning, including clustering,
regression, and classification, the following tools from Sklearn were
used in this research:
o Train test split: a function used for splitting data arrays into
two subsets, testing and training data. It was used twice in
this research to split the datasets first to train dataset (0.7)
and test dataset (0.3) and used a second time to split the test
dataset and generate a validation dataset (0.1) and leave the
other 0.2 for the test dataset.
o Classification report: a function used to print a text report
that shows the main classification metrics (precision, recall,
f1-score, support, macro avg, micro avg, and weighted avg)

for each class.

19
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e Matplotlib 2 : an open-source python library that works like
MATLAB, used in this research to visualize the results of the
experiments, and provide some graphs.

e TQDM?: an open-source library, the name was derived from the
Arabic word (), which mean progress in English, it is used in this

research to visualize the progress of training per Epoc.

5.4 Code explanation

The experiment code is written on Colab, and the link can be found in the
Appendix. The Colab project contains explanation and documentation for each
step and is supported with examples and charts. However, in this section, | will
explain the main steps in the code at an abstract level.

The first step after linking the Colab project to a google drive account and
reserving the resources in Colab is importing the utilities needed for the
experiment, which was explained in the previous section.

The second section in the code starts with loading the dataset from Google
drive and split it into three datasets randomly, training dataset (70%), which
will be used to train the model, test dataset (20%), which will be used to test
and evaluate the model and validation dataset (10%) which will be used to fine-
tune the hyperparameters of the model during training such as learning rate and
optimizers.

The third section of the code starts with identifying the AraBERT model

version used for the experiment and uses its text pre-processor to pre-process

20
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the reviews in the training, test, and validation datasets. It also pulls the classes
from the dataset and finds the number of reviews for each class to detect any
unbalanced classes in the training dataset and take samples of the unbalanced

classes.

The first step in the fourth section of the code identifies the tokenizer used
in the experiment from the pre-trained AraBERT model, followed by some
examples of how the tokenization works, and explains the input ids and
attention mask concepts. It also shows some examples of how each sentence is
wrapped with the CLS and SEP tokens. The last step in this section iterates over
the training dataset and finds the number of tokens per sentence and visualizes
that in a graph. The maximum number of tokens per sentence in the training
dataset was 370 tokens; this number will be fed to the model to limit the number
of tokens and improve the model performance.

The sixth section of the code is all about preparing the datasets in a flexible
way where they can be fed to the model in batches by using the torch lightning
dataset and data loaders | explained in the previous section, many examples
were provided on how the data can be fetched in batched and shows the input
ids, attention masks and label for a sample review. This section also contains a
step to download the AraBERT model and prepare it for the next section. It also
has some steps to show the number of hidden layers and the shape of a sample
model. The last step in this section is for identifying the number of Epocs that
will be used, the batch size, and instantiating an instance of the data loader class.

The model section has the main class of the model, which is a lightening
module with overriding the following hooks:

e Init: in this function, | assign the BERT model (the AraBERT
instance from the previous section), the classifies (the logistics

regression linear classifier will be used as discussed earlier), training
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and warmup steps (will be calculated later and passed to the model
as parameters) and the criterion which will be the BCELoss function.
e Forward: is the core step of the model where it takes the input ids

and attention mask for a review, pass them to the BERT model and

apply the linear classification, sigmoid on the BERT results to get
the probabilities for each class; it also uses the loss function to find
the loss for each class.

e Training step: this is the training in the module where it takes a batch
of reviews and passes the reviews one by one to the forward step;
this step returns the outputs and the loss for the whole batch. It also
logs the training loss per batch to keep an eye on it during the
training.

e Validation step: this step is similar to the training step except that it
takes batches from the validation dataset and calculates and logs the
validation loss.

e Test step: the testing step is also the same as the training and
validation step except that it takes its baches from the test dataset
and calculates and logs the test loss.

e Training Epoch end: This hook gets fired at the end of each Epoc. It
combines the prediction for each label from all batches into one
array and calculates the AUROC for each label.

e Configure optimizers: this hook holds the optimizer (AdamW) and
the warmup steps configurations to adjust the learning rate and
improve the performance model.

The training section starts with clearing all previous logs and identifying the
folders where the logs will be saved to link them to the tensor board.

Checkpoints are also defined in this section to reduce the time and effort by



57

allowing the model to resume training from the last saved Epoc if any

interruption happened. Once the loggers and checkpoints are ready, | can start

instantiating a trainer instance from the lightning module explained in the
previous section and start training the model by passing the model and data
module to the fit function in the trainer. During the training process and after
each Epoc, the Epoc number, number of steps, and the validation loss will be
printed for the whole Epoc, and a new checkpoint will be saved. After each
Epoc, the early stopping will check if the validation loss is improving from the
last Epoc or not, it will continue the training if it is improving, or it will stop the
training process if the loss did not improve for the past specific number of Epocs
(the number is 5 in this experiment). The final step of this section is to find the
training loss for the last saved Epoc (which has the best validation loss). The
closes the test loss to the validation loss, the better the model.

The Prediction section loads the model from the last saved checkpoint (the
Epoc with best validation loss) and provides two examples of providing any
random review to the model to get the probabilities predictions for each class.

The last section of the code is all about evaluating the model's performance
by using the reviews in the test dataset to get the model predictions for each
review and compare with the actual values and calculate all the needed matrices.

The evaluation results will be shown in detail in the next chapter.
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Chapter 6

Experiments Results and Analysis
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After preparing the datasets, the experiment environment, and code, this
chapter will present the results of the three-experiment performed and discuss
the results:

e Experiment I: Performed on the original dataset with 33 classes.

e Experiment I1: Performed on a generated dataset of 5 classes: User’s
requirements, Non-functional requirements, Software bugs, not
clear and not relevant.

e Experiment Ill: Performed on a generated dataset of 3 classes:

Informative, no clear, and not relevant.

6.1 Hyperparameter values

Hyperparameters are a set of parameters or configurations that controls the
learning process. After reviewing the theory behind these parameters and some
similar experiments, | found that some of these parameters are experimental
parameter where the best value of the parameter can be found by running the
experiments with different values and monitor the results, an example for that
is the learning rate where | ran the experiment with five different values of
learning rate (the most used values in the other previous research) to find the
best result in this experiment.

Max token count is an essential parameter in BERT where it identifies the
amount of memory needed to be reserved to handle one review. If this value is
not identified, the BERT will take the default value of 512 tokens and truncate
all the tokens above 512. Due to the memory limitation in this experiment, |

found that most of the review in the dataset have less than 200 tokens, only a
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few of them have above 200, and the maximum token length was 370 token
which was used in the experiment as shown in Figure 6.1 where the horizontal

axes represent the number of tokens while the vertical axes represent the number

of reviews,

800

700

200

100

0 100 200 300 400 500

Figure 6. 1: The number of tokens vs review count.

The number of Epocs is a crucial factor in BERT, where a small amount of
Epocs can produce a lousy accuracy and learning, and many Epocs could
produce an overfitting model. In this research, I used Early stopping to stop the
training process before the model begins to over-fit. After few experiments, |
noticed that the model usually keeps improving till 5 to 15 Epocs, and then it
begins overfitting. 15 Epocs was the number of Epocs in this research, but only

9 Epocs reached before the model stopped.



61

The batch size value is highly recommended to be a power of 2; this is
related to the alignment between the virtual and the physical processors where
the physical process is usually a power of 2 and using a different number for
virtual processors can lead to bad performance. In this research, and due to the
limitation in processing and RAM resources, the value of 8 was selected to be
the batch size.

The learning rate might be the most crucial hyperparameter in the model;
the linear with the warmup schedular was the most recommended schedular for
BERT models where the models learning rate starts improving during the
specified warmup steps until it reaches the specified initial learning, then the
learning rate starts going down from the initial rate till it reaches zero during
the training steps. The total number of steps per Epoc is the number of the
reviews in the dataset, while the number of the total steps in the model is the
number of steps per Epoc multiplied by the number of Epoc specified for the
model. After reviewing the theory and the previous work, 3 and 5 was the
number of steps that were usually used as the warmup steps and achieved the
best results, and both numbers were tested in this experiment along with
different learning rates (le-5, 2e-5, 3e-5) and five warmup steps with 2e-5
achieved the best results. Figure 6.2 shows an example of the linear learning
rate with warmup steps behaves with a hundred total training steps and two

warmup steps:
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Figure 6. 2: Warmup and learning rate graph.

Early stopping is used in this experiment to prevent the model from
overfitting, stopping the training process when the model is not improving for
a specific number of Epocs. After reviewing the previous similar experiment
and perform out an experiment with different values, | found that usually after
a specific number of Epocs, the validation loss stops improving, and making
sure that the validation loss will not get improved after, 5 EPOCs were used to
monitor if there is any improvement can be found on the validation loss. The
best Epoc is saved in this experiment as a checkpoint where it can be loaded
and used later as the best result the model can produce. Table 6.1 shows a

summary of the hyperparameters used in this research for all experiments.
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Hyperparameter value
Max token count 370
Epocs 50
Batch size 8
AdamW learning rate 2e-5
Total training steps 30800
Warmup steps 6160
Early stopping monitor Validation loss
Early stopping patience 5
Checkpoint save the top value 1

Table 6. 1: The hyperparameters values used in all experiments.

6.2 Datasets and text preprocessing and Tokenization

6.2.1 Splitting dataset and solve the unbalanced class issue

In order to get the hyperparameters works to optimize the model, a
validation dataset was added along with the train and test datasets with a portion
of 10% of the original dataset. The total number of reviews in the original
dataset was 10000 reviews, and table 6.2 shows the number of reviews used for

train, test and validation datasets.

dataset train test validate
count 7000 2000 1000

Table 6. 2: Train, test and validate datasets.
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After analyzing the classes in the training dataset, one unbalanced class was
found in all three experiments, which is the not relevant class. The three figures

below (6.3, 6.4, 6.5) show the number of reviews per class in each experiment.

Not relevant

Human and technical support issues we=
Payment issues & voucher =
Communication issues =
Subscription ==

Availability ==

High cost ==

Bugs related to the aﬂ: features -
Lake of instructions and guidance =
Political and racism reviews =
Annoying ads =

ot Clear m

Login, registration, password reset, and activation issues =
Performance =

Suddenly crash =

Issues appeared after updates =
Missing business features (user suggestions) =
Compatability =

App content issues =

Internet connection and coverage issues *
Issues related to the app languages *
No Free edifion *

Usability »

Supportability

ork offline

Hlah internet cunsumptmn

|/UX issues/suggestions

Privacy

Notifications

App size

Business limitations

Download & installation issues
Security

0 1000 2000 3000 4000 5000 6000 7000

Figure 6. 3: The reviews distribution in the train dataset of Exp. I.

ot Relevent _
Not Relevant
Informative
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Figure 6. 4: The reviews distribution in the train dataset of Exp. II. Figure 6. 5: The reviews distribution in the train dataset of Exp. IlI.
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o 1000 2000 3000 4000 5000 6000 7000
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Imbalanced classes can cause severe issues in the model performance where
the model can simply guess and always classify any review to the unbalanced
class and get high accuracy [57]. For example, if 95% of the reviews belong to
the not relevant class, then the model can predict any review to be not relevant
and get an accuracy of 95%. There are many techniques to solve unbalanced
class issues, such as changing the performance metric, changing the algorithm,
and different resampling techniques [57].

e Changing the performance metric: Accuracy could not be the best
metric to use when there is an unbalanced class in the dataset as it
could be misleading. Different other evaluation matrices were used
in this research and will be presented later in the following sections
of this chapter:

o Precision: precision measures the model exactness where it
represents the number of true positives divided by all
positive predictions. Lower precision means a higher number
of false positives.

o Recall: recall measures the model completeness where it
represents the number of true positives divided by all
positive values in the test dataset. Low recall means a higher
number of false negatives.

o F1 score: the weighted average of precision and recall.

Changing the algorithm: Changing the classifying algorithm could
be a solution to resolve the imbalanced classes issue, but not in this
research where the Linear classifier gave the best results.

e Resampling techniques: two types of resampling can be used to

balance the number of reviews assigned to each class.
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o Oversampling: This can be done by replicating the minority

classes as much as needed to reach a close ratio of data points

for each class.

o Under-sampling: This can be done by removing some of the

reviews assigned to the majority classes as much as needed

to reach a close ratio of data points for each class. The under-

sampling technique was used in this research on the training

dataset by considering only 3000 reviews of the not relevant

class and remove the others.

Table 6.3 shows the number of reviews per dataset in Experiment | after

resampling the not-relevant class. The same technique was used in all the

experiments.

dataset

train

test

validate

count

5026

2000

1000

Table 6. 3: Train, test and validation datasets after resampling.

6.2.2 Text preprocessing and tokenization

Data Preprocessing is an essential step as it improves the data quality and

improves the extraction of meaningful text from the data. In this research, I used

the pre-processor introduced by AraBERT (explained in detail in the previous
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chapter). It was highly recommended to use the processor provided by the
model itself as the model was trained on a large amount of text preprocessed by
the same pre-processor.

BERT was trained using the word piece tokenization, which means that one
word can be broken into more than one sub-word. A whole sentence in BERT
is represented by one vector before being fed to the classifier where the first
token in the vector represents the whole vector; to achieve this, a [CLS] token
will be added as the first token for each review. [SEP] token will also be added
at the end of each review to inform the model about the sentence end.
Meanwhile, a [PAD] token is added to fill the rest of the vector if the number
of tokens in a vector is less than the specified max token size. [UNK] is another
token in BERT, representing the tokens that are new to the model (the model
was not trained on this token and did not recognize it). UNK stands for the
unknown token, while this problem is known as the out of vocabulary problem
(O0V).

During the training process of the BERT model, each token will be assigned
to a unique id, so when the model is being used and fine-tuned as a pre-trained
model, all the vectors need to be generated as a vector of ids where each it
represents its corresponding token. An attention mask is a mask that will be

used if the token length is smaller than the specified max token length. It is

the mask that is typically used for attention when the dataset has varying length
sentences.

Table 6.4 shows an example of a sentence with a specified max token length
of 12 where the first row shows the original sentence, the second row shows
how the AraBERT pre-processor stripped the word from Taskeel, Tatweel and
removing the duplicate characters and emojis. The third line shows the tokens
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that AraBERT generated from the sentence, while the last two lines represent

the generated token ids and attention mask.

original 448444086 Gl Aol g =l ...

Pre-processed 4 Gl PDlol 52

Tokenized - ['[CLST, "' "2 Gudaddl" '] ' 9=))', ', ', '[SEP]', '[PAD]', '[PAD]', '[PAD]']
vector shape: 1 * 12

Input ids - [2, 43104, 6714, 11818, 138, 195, 20, 20, 3,0, 0, 0]

vector shape: 1 * 12

Attention mask — (1,1,1,1,1,1,1,1,1,0,0,0]

vector shape: 1 * 12

Table 6. 4: Example of AraBERT pre-processor and tokenizer.

6.3 Model training:

Figure 6.6 is an example from the first experiment that shows the executed
Epocs against the total number of steps where the horizontal axes represent the
number of steps while the vertical axes represent the number of Epocs. It is also

important to mention that this graph is a visualization of only the Epocs

considered in the training process, and it does not show the Epocs that were

ignored by the Early stopping.
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Figure 6. 6: The number of Epoc against the number of steps.

As the model started training, logs were configured to print the validation
loss after each Epoc to monitor the validation loss and the early stopping during
the training process. Table 6.5 summarizes the Epocs executed and the
validation loss after each Epoc for the three conducted experiments. It is
noticeable that all experiment started with a relatively high validation loss Epoc
and started improving after each Epoc. 14 Epocs were Executed for the first
experiment while the validation loss kept improving till the ninth Epoc, the next
5 Epocs were executed, but none of them provided a better value of validation
loss. Hence, the model stopped learning and considered the ninth Epoc is the
end of the model training process. 10 Epocs were executed for both the second
and the third experiments, and they both got the best result and stopped training
at the fifth Epoc.

EPOC # Global steps Validation loss

Experiment | | Experiment | Experiment
11 ]
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0 616 0.24660 0.30627 0.27402

1 1233 0.12045 0.21443 0.20466

2 1850 0.08107 0.20298 0.14673

3 2467 0.06350 0.19601 0.13667

4 3084 0.05338 0.14396 Not the best
5 3701 0.04579 0.13933 0.11721

6 4318 0.03581 Not the best Not the best
7 4935 0.03261 Not the best Not the best
8 5552 0.02999 Not the best Not the best
9 6169 0.02869 Not the best Not the best
10 6786 Not the best Not the best Not the best
11 7403 Not the best - -

12 8020 Not the best - -

13 8537 Not the best - -

14 9254 Not the best - -

Table 6. 5: Validation loss per Epoc for the three experiments.

After training the model, the test loss can be used compared to the validation
loss to evaluate the model. Table 6.6 shows the final test and validation loss for
each experiment.

Experiment Experiment | Experiment 11 Experiment 111
Test loss 0.03244 0.13505 0.11721
Val loss 0.02869 0.13933 0.11210

Table 6. 6: Test and validation loss for the three experiments.
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6.4 Experiment I result

6.4.1 AUROC per class

Aria Under the Receiver Operating Characteristic (AUROC) is one of the
most important matrices to measure the model performance, especially in multi-
class cases, it is also known as the AUC-ROC curve, where Aria Under Curve
(AUC) represents the measure of separability or degree, and the AUC represents
the probability. AUROC tells how the model can distinguish between
multiclass. The higher AUROC, the better the model is in distinguishing
between the classes. AUROC is plotted with the True positive rate (TPR) on the
vertical axes against the false positive rate (FPR) on the horizontal axes. The
AUROC value is between 1 and 0, where 1 represents the perfect model [58].

Figure 6.7 shows an example of a perfect model where the model can
entirely distinguish the two classes without overlapping. Meanwhile, the two
classes in the second example (figure 6.8) show that the two classes overlap by
30%, which means that the model has a chance of 70% to distinguish between

the two classes, which means that the AUROC result for each class is 0.7.

ROC

AUuC=1
TN TP TPR

0 0.5 1 o
Threshold 0 s 1

Figure 6. 7: An example of a perfect AUROC curve.
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AUC=0.7
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Figure 6. 8: An example of a 0.7 AUROC curve.

Table 6.7 shows a summary of the AUROC values achieved in the first
experiment for each class. Most of the classes have good AUROC values above
0.9, except two classes got less than 0.9. These classes were focused on by re-
visiting the reviews that represent these classes in the dataset. It was found that
most of the reviews assigned to these two classes are written and described with
general words in Arabic that could also be used in other classes. Furthermore,
most of the reviews assigned to these two classes are also assigned to other
classes (have multi-labels) because it was unclear whether these reviews belong

to a specific class during the manual classification process.

Class AUROC
Not relevant 0.9838
Issues appeared after updates 0.9453
Missing business features (user suggestions) 0.8831
annoying ads 0.9880
UI/UX issues/suggestions 0.9898
Notifications 0.9969
Availability 0.9871
Performance 0.9573
Work offline 0.9996
Bugs related to the app features 0.9588
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Compatability 0.9836
Issues related to the app languages 0.9998
Political and racism reviews 0.9993
Suddenly crash 0.9912
Privacy 0.9944
Usability 0.9532
Lack of instructions and guidance 0.9507
Internet connection and coverage issues 0.9998
Business limitations 0.9751
Human and technical support issues 0.9758
High cost 0.9686
Subscription 0.9838
Payment issues & voucher 0.9867
App content issues 0.9560
App size 0.8673
Login, registration, password reset, and activation issues | 0.9958
Download & installation issues 0.9300
No Free edition 0.9044
Communication issues 0.9753
Supportability 0.9963
High internet consumption 0.9326
Security 0.9149
Not clear 0.9129

Table 6. 7: AUROC values per class in Exp. I.

Figure 6.9 shows the AUROC curve for only one class which is the not
relevant class from the first experiment. The rest of the graphs for all the other

classes can be found in the Colab project in Appendix A.
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Exp. I, the not relevant class AUROC curve.

4

lgigure 6.9:

6.4.2 Train vs validation loss

The validation and training loss comparison is an essential step since it is
one of the primary keys to identify if your model is Overfitting or Underfitting,
where the higher train loss indicates a possibility of underfitting. In contrast, a
higher validation loss indicated the possibility of an overfitting model. Figure
6.10, 6.11 and Table 6.8 shows a comparison between the validation and
training loss in this experiment at the best Epoc of the model, the difference
between the two values is less than 0.6% for the training loss (underfitting)

which indicates a good model comparing with the other similar experiments.

Matrix At the best Epoc #9
Validation loss 0.02869

Training loss 0.0351

difference 0.00641

Table 6. 8: Train vs Validation loss in Exp I.
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Figure 6. 10: Exp. I, training loss curve.
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Figure 6. 11: Exp. I, validation loss curve.
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6.4.3 Prediction

After training the model, I have used the saved checkpoint of the last saved

Epoc (best result) to feed the model with random Arabic sentences and let the

model predicts the classes for them. Table 6.9 shows the example and the top

three classes predicted by the model, along with their probabilities.

Text Prediction

Class Probability

| K5 oSl b s ua 30dai | Not relevant 0.9906

Issues appeared after updates 0.0009

Missing business features (user 0.0007

suggestions)

2l Uiy s = sl e ubaill | Not clear 0.8425

= J&i% | Not relevant 0.0730

Compatability 0.0444

GBlay shian g oy JSLA 43 (sulaill | [ssues related to the app languages 00.6598
dn e Al pedy Le JSU i 4085 | Performance 0.0705
(ithauddll (5 giadll o jlay @adai JlS 5 | Political and racism reviews 0.0561

Table 6. 9: Model predications in Exp .

6.4.4 Experiment result

The final results of the model per class are shown in table 6.10. The last

column shows the number of reviews from the dataset used to support its

corresponding class and produce the results. | noticed that some of the classes

have a precision, accuracy, and F1 of zero; most of these classes have less than

six reviews to support them. Usually, the small number of reviews is not enough

to train the model for a specific class and produce results, so these classes with
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less than six reviews are not reliable and cannot be counted on. The solution for

such cases is to remove these classes from the classes set or enrich the dataset

with more reviews to increase the number of reviews labeled with these classes.

The final result for the whole model is presented in table 6.11.

Class Precision | Recall Fl-score | Support
Not relevant 0.93 0.98 0.95 1455
Issues appeared after updates 0.25 0.07 0.11 30
Missing business features (user suggestions) | 1.00 0.08 0.15 24
annoying ads 0.92 0.96 0.94 23
UI/UX issues/suggestions 0.00 0.00 0.00 3
Notifications 1.00 0.25 0.40 4
Availability 0.82 0.90 0.86 40
Performance 0.58 0.72 0.64 25
Work offline 0.50 1.00 0.67 5
Bugs related to the app features 0.29 0.72 041 36
Compatability 0.47 0.70 0.56 23
Issues related to the app languages 0.79 1.00 0.88 11
Political and racism reviews 0.72 1.00 0.84 21
Suddenly crash 0.22 0.92 0.36 12
Privacy 0.00 0.00 0.00 1
Usability 0.50 0.10 0.17 10
Lack of instructions and guidance 0.33 0.47 0.39 34
Internet connection and coverage issues 0.75 1.00 0.86 6
Business limitations 0.00 0.00 0.00 3
Human and technical support issues 0.39 0.89 0.54 56
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High cost 0.60 0.69 0.64 35
Subscription 0.61 0.69 0.65 45
Payment issues & voucher 0.50 0.90 0.64 61
App content issues 0.34 0.55 0.42 20
App size 0.00 0.00 0.00 2
Login,_regi_stration, password reset, and 0.61 0.77 0.68 26
activation issues
Download & installation issues 0.00 0.00 0.00 3
No Free edition 0.24 0.57 0.33 7
Communication issues 0.68 0.78 0.72 54
Supportability 0.50 0.71 0.59 7
High internet consumption 0.00 0.00 0.00 6
Security 0.00 0.00 0.00 1
Not clear 0.27 0.52 0.36 27
micro avg 0.76 0.88 0.82 2116
macro avg 0.45 0.54 0.45 2116
weighted avg 0.80 0.88 0.83 2116
samples avg 0.85 0.90 0.86 2116
Table 6. 10: Results per class in Exp I.
Matrix Accuracy Precision Recall F1
Value 0.99 0.92 0.80 0.86

Table 6. 11: Final results in Exp 1.
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6.5 Experiment Il result

For the second experiment, the same model, hyperparameters, and
optimization techniques were used; the only difference between the two

experiments is the number of classes.

6.5.1 AUROC per class

Table 6.12 show the AUROC results for each class in the second
experiment, and figures 6.13, 6.14, 6.15, 6.16, 6.17 shows the AUROC curve
for each class where the horizontal axes represent the number of Epocs while
the vertical axes represent the AUROC value, note that the values in table 6.12
represent the value on the curve at the best Epoc which was the fifth Epoc in

this experiment.

Class AUROC
Functional Requirements 0.9795
Non Functional Requirements 0.9607
Bugs 0.9687
Not Relevant 0.9839
Not Clear 0.8291

Table 6. 12: AUROC values per class in Exp. 1.

Figure 6. 13: Exp. II, AUROC curve for the Bugs class. Figure 6. 12: Exp. I, AUROC curve for the Users requirements
class.
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"
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Figure 6. 14: Exp. Il, AUROC curve for the non-functional requirements ) ' ' ' ' '
Figure 6. 15: Exp. I, AUROC curve for the not clear class.

class.

8 S 10

Figure 6. 16: Exp. 1I, AUROC curve for the not relevant class.

6.5.2 Train vs validation loss

Table 6.13 shows the validation and the training loss in the second

experiment, while figures 6.18, 6.19 show the validation and train loss graphs.
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The validation loss in this experiment is higher than the training loss, which

means the model is overfitting by 9.6%.

Matrix At the best Epoc #5
Validation loss 0.13933

Training loss 0.0432

difference 0.09613

Table 6. 13: Train vs Validation loss in Exp I1.

o o
2 © @» ©

o
2

3K 4 £ 6k 7k

Figure 6. 17: Exp. 1, the training loss curve.

4k Sk Bk

Figure 6. 18: Exp. Il, the validation loss curve.
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6.5.3 Prediction

As mentioned in the first experiment, | have used three sentences and fed

them to the model and see the model’s predictions. Table 6.14 shows the model

results.
Text Prediction

Class Probability

| S5 oSl &L as s sukai | Not relevant 0.9956

Not Clear 0.0055

Non Functional Requirements | 0.0052

2l ey S = sl e bl | Not clear 0.7098

= J&3% | Not relevant 0.2053

Bugs 0.1740

Gl shays ¢y JSLie 48 30kl | Non Functional Requirements | 0.9804

4o Al acny e JSLie S 40d s | Bugs 0.4194

G sinall sy (3ukai S5 | Not Clear 0.0552

uhuddl)

Table 6. 14: Model predications in Exp II.

6.5.4 Experiment result

Table 6.15 shows the matrix score per class, while table 6.16 shows the final

matrices results of the whole model. | noticed that the final Recall and F1-score
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were improved compared to the first experiment, while Accuracy and Precision

were better in the first experiment than this one.

Class Precision | Recall | Fl-score | Support
Functional Requirements 0.78 0.75 0.77 181
Non Functional Requirements 0.81 0.68 0.74 333
Bugs 0.82 0.68 0.74 275
Not Relevant 0.96 0.96 0.96 1455
Not Clear 0.33 0.15 0.21 27
micro avg 0.91 0.86 0.88 2271
macro avg 0.74 0.64 0.68 2271
weighted avg 0.90 0.86 0.88 2271
samples avg 0.89 0.88 0.88 2271
Table 6. 15: Results per class in Exp Il.
Matrix Accuracy Precision Recall F1l-score
Value 0.94 0.90 0.86 0.88

Table 6. 16: Final results in Exp II.

6.6 Experiment Il result

For the third experiment, the same model,

hyperparameters, and

optimization techniques were used. The only difference between the

experiments is the number of classes.

6.6.1 AUROC per class

Table 6.17 show the AUROC results for each class in the third experiment,
and figures 6.21, 6.22, 6.23 shows the AUROC curve for each class where the
horizontal axes represent the number of Epocs while the vertical axes represent
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the AUROC value, note that the values in table 6.17 represent the value on the

curve at the best Epoc which was the fifth Epoc in this experiment.

Class AUROC
Informative 0.9821
Not Relevant 0.9834
Not Clear 0.9247

Table 6. 17: AUROC values per class in Exp. 111

Figure 6. 19: Exp. I1l, AUROC curve for the informative class. Figure 6. 20: Exp. I, AUROC curve for the not clear class.

0 0 0.2 03

Figure 6. 21: Exp. 111, AUROC curve for the not relevant class.
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6.6.2 Train vs validation loss

Table 6.18 shows the validation and the training loss in the second
experiment, while figures 6.24, 6.25 show the validation and train loss graphs.
The validation loss in this experiment is higher than the training loss, which

means the model is overfitting by 8.5%.

Matrix At the best Epoc #5
Validation loss 0.11721

Training loss 0.03171

difference 0.0855

Table 6. 18: Train vs Validation loss in Exp 1.

Figure 6. 22: Exp. 111, the training loss curve.

015 0.2 0.2¢ 03 0.3 04 0.4 0.5 0.55

Figure 6. 23: Exp. 111, the validation loss curve.
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6.6.3 Prediction

Like the first and second experiments, | used three sentences, fed them to the

model, and saw the model’s predictions. Table 6.19 shows the model results.

Text Prediction

Class Probability

1SS oS08 il &)l las 1 (udas | Not relevant 0.9973

Not Clear 0.0030

Informative 0.0023

=) Ues sl 3 e e (ubaill | Not Clear 0.6601

= J&% | Informative 0.2958

Not Relevant 0.1505

Glay shimy g o Jay JSUie 48 kil | Informative 0.9877

A e Ll acay e JSUik S 4985 | Not Clear 0.0088

baldl) (g sl ol ki LS5 | Not relevant 0.0082

Table 6. 19: Model predications in Exp IlI.

6.6.4 Experiment Results

Table 6.20 shows the matrix score per class, while table 6.21 shows the final
matrices results of the whole model. After re-visiting the first and second
experiment results, this experiment outperformed the second experiment by
Accuracy, Precision, Recall, and F1-score while it also outperformed the first

experiment by Precision, Recall, and F1-score.

Class Precision Recall F1-score | Support
Informative 0.89 0.88 0.88 518
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Not Relevant 0.97 0.96 0.96 1455
Not Clear 0.41 0.26 0.32 27
micro avg 0.94 0.93 0.93 2000
macro avg 0.76 0.72 0.72 2000
weighted avg 0.94 0.93 0.93 2000
samples avg 0.93 0.93 0.93 2000
Table 6. 20: Results per class in Exp Il1.
Matrix Accuracy Precision Recall F1-score
Value 0.95 0.94 0.92 0.93

Table 6. 21: Final results in Exp I11.
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Chapter 7

Conclusion
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7.1 Conclusions

This thesis presents fully automated approach that helps mobile app
developers classify users’ feedback on their applications into different classes.
Three different experiments were conducted in this thesis using a dataset of 10K
reviews collected from different apps belongs to different business domains.

The First experiment aims to classify the reviews to a corpus of 33 classes
that describe a different set of users’ requirements, potential software bugs, and
some non-functional requirements and achieved an accuracy of 99% and 86%
F1-score while the model was underfitting by only 0.06%. The second
experiment aims to classy the reviews into five main classes: not relevant, not
clear, user requirement, non-functional requirement, and software bugs, and
achieved accuracy of 94% and 88% F1-score while the model was overfitting
by 9.6%. The third experiment aims to classify the reviews into three parent
classes: Informative reviews, not relevant and not clear, and achieved an
accuracy of 95% and 93% F1-score while the model was overfitting by 8.5%.

During the manual classification process and after conducting the three
experiments, it was found that the reviews on App platforms can be beneficial
and could hold some vital information about missing feature or critical issues,
or even to get the app developers attention to some new issues appeared after
an App update for example. I also found that it is hard to manually analyze and
classify every single review added to the App due to the enormous number of
reviews, the number of reviews that are not informative and could be
misleading, the differences in users’ dialects, the typos in user’s feedback, the
long reviews that refer to different information and many other reasons. This
accurate automated approach saves a lot of time and effort for the app developer

to improve their application and align it with their users’ needs.
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7.2 Future work

In the future, the intent is to enrich the data with extra reviews from a
different domain with different classes to improve the model performance. On
the other hand, this model can be hosted on a server and exposed for external
usage in the form of APIs or even a web application where the app developers
can identify their application and get an analysis of the reviews continuously. It
can also be integrated with another tool to continuously scrap all the new
reviews from specific apps and feed them to the model to get the results for the
App developers. Continuous learning is also an important feature that can be
implemented to continuously feed and train the model and convert it to an expert
model.

Other Ideas can also be implemented in the future, such as integrating the
model with other open-source sentiment analysis tools and link the analysis of

the users' reviews in this model to their sentiments.
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Appendix A

= Dataset:

Available at:
https://drive.google.com/file/d/1m2i7kjAiLFsH7u41Gg8vyyD6EtI70K7c/view?us

p=sharing

= Colab Experiments:

Experiment | is available at:
https://colab.research.google.com/drive/ladkyK7i3ROTDycdOKQT168gYk7yke
VRF?usp=sharing

Experiment 11 is available at:
https://colab.research.google.com/drive/1jQW9wUPi5nIH7OHzsExQKCPEM HP
R7sU?usp=sharing

Experiment 111 is available at:
https://colab.research.google.com/drive/10Ep1CijpOkDMIdOXX HdGaJNXlaFW
diD4?usp=sharing



https://drive.google.com/file/d/1m2i7kjAiLFsH7u41Gg8vyyD6Etl70K7c/view?usp=sharing
https://drive.google.com/file/d/1m2i7kjAiLFsH7u41Gg8vyyD6Etl70K7c/view?usp=sharing
https://colab.research.google.com/drive/1adkyK7i3R0TDycdOKQT168gYk7ykeVRF?usp=sharing
https://colab.research.google.com/drive/1adkyK7i3R0TDycdOKQT168gYk7ykeVRF?usp=sharing
https://colab.research.google.com/drive/1jQW9wUPi5nIH7OHzsExQkCPEM_HPR7sU?usp=sharing
https://colab.research.google.com/drive/1jQW9wUPi5nIH7OHzsExQkCPEM_HPR7sU?usp=sharing
https://colab.research.google.com/drive/10Ep1CjpOkDMId0XX_HdGaJNX1aFWdjD4?usp=sharing
https://colab.research.google.com/drive/10Ep1CjpOkDMId0XX_HdGaJNX1aFWdjD4?usp=sharing
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