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Abstract-The cable-stayed bridges (CSBs) had become the
most important structure for long span bridges. Modern cable
stayed bridges are more acceptable and flexible enough to resist
wind and traffic loads. A typical cable-stayed bridge has a deck
with a number of pylons and cables arranged in harp, radiating,
and semi-fan bridge configurations. The bridges' static analysis
was carried out using a FORTRAN finite element
program based on the minimization of Total Potential Energy
"TPE" applying the method of conjugate gradient [1]. The
analysis is carried out for five spans CSBs with considering three
shapes of pylons H, A and Y shape. Four popular connection
cases have been shown to describe the effect of connections
between pylons and floor beams. The effect of initial tension in
cables and various heights of pylons are taken into consideration
as parametric study. Also all above requirements are applied on
Harp, Radiating, and Semi-Fan bridges.

Keywords: Cable arrangement, Cable stayed, Bridges, Pylon
shape, connection, initial tension.

l. INTRODUCTION

cable stayed bridge is known as the bridge that has
Cone or more towers from which cables support the
floor beam. A large amount of compression forces
transfers from the deck to foundations through cables and
pylons. Cable-stayed bridges are effective in resisting
earthquakes. It provides an outstanding architectural
appearance due to their small diameter cables and unique
overhead structure. Using large computers, the static and
dynamic analysis of those types of bridges became easy to
choose the optimum design taking in mind the financial part.
The most common types of cable arrangements are harp,
radiating and semi fan bridges. The various possible types of
tower construction may take the form of: A-Shape, Diamond
Shape, H-shape, Trapezoidal portal frames (modified A-
shape), Single plane tower, Y-shape and Inverted Y -shape.
A comparison between three arrangement types, in terms of
lateral displacement, vertical deflection, normal force and
bending moment is carried out. A cable stayed bridge (CBS)
is analyzed by changing the cables’ arrangement with
different shapes of pylons. The three cables’ arrangement
taken is  harp, radiating and semi fan arrangement. The
pylons are of two laterals of stays (H — A — Y) towers.

I.LMETHOD OF ANALYSIS

The energy method is a unifying approach to the analysis of
both linear and non-linear structures. It is an indirect method
of analysis and valid for structures having both small and/or
large deformations. The energy method is used to analyze
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general pin-ended truss and cable structures. By accounting
for significant displacements and strains, as well as
configuration changes due to structural response, both
geometric and material nonlinearities are directly integrated
within the formulation [2]. A summary together with step-by-
step iterative procedure is presented. The obtained numerical
results for all cases are discussed and compared.

The loaded structure’s equilibrium position is defined by the
point where W "total potential energy” is at its lowest value.
Where W is constant for all points. The condition for
equilibrium in the i direction at joint j may be expressed as:

oW
[gi]=0 ,i=12and3 1)

ani

Where: x;;= The displacement of joint j corresponding to a
degree of freedom in direction i, and g; = the corresponding
gradient of the energy surface.

By moving down the energy surface along a decent vector
v a distance Sv until W is a minimum in that direction gives
the location "where W is a minimum."”, that is, to a point
where:

(2)

From this point by using an iterative process, a new descent
vector is calculated. The step length S is the length when the
descent vector v is a unit vector, along v direction. When v is
a unit vector, S will be referred to as the step length for
convenience. At the (k+ 1) iteration, the displacement
vector can be expressed as:
[(X]kr1 = [X]k + Sevi

Where:

v, is the descent vector at the K, iteration from x; in
displacement space,

Sy is the step length determining the distance along v, to
the point of Wmin.

Summary of the iterative procedures:

The following are the main steps in the iterative processes
required to achieve structural equilibrium by minimizing total
potential energy:

1. First, before the start of the iteration scheme

a) Calculate the tension coefficients for the pretension
forces in the cables by:

EA
tjn = [(TO + L_ e) /LO]
0 jn

Where:
tin = the tension force coefficient in member jn,
e = the elongation of cables due to applied load,
T, = initial tension in cable due to pretension,

(3)
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E = /modulus of elasticity,
A = area of the cable element, and
L, = the unstrained initial length of the cable.

b) Assume the elements in the initial displacement vector to
be zero.

c) Calculate the lengths of all the elements in the pretension
structure using the following equation:

3

12 = Z(Xm- ~X;)" (5)

Where: X = element in displacement vector due to applied
load only.

d) For the method of conjugate gradients i, calculate the
elements in the scaling matrix:
H = diag{K; ">, K;;"/%, ... K"?

Where:

n = total number of degrees of freedom of all joints,

k = the 12 x 12 stiffness matrix for elements in global
coordinates.

2. The steps in the iterative procedure are summarized
as:

Step (1) Calculate the elements in the gradient vector of the
TPE using:

fa 12

w= Y Gty + Z by (X =

n=1r=1
- [F; ]n (7)
Step (2) Calculate the Euclidean norm of the gradient
vector, R, = [gF g,]*/? and check if the problem has
converged. If R, < R, Stop the calculations and print the
results. If not, proceed to the next step.
Step (3) Calculate the elements in the descent vector v

(6)

i+ Xni — in)

using:
[V]ks1 = —[H][glr+1 + Brlv]k ®
Where; [v]‘} = —A[g]0 9
By = M (10)

g]£ [1?] [glk
Step (4) Calculate the coefficients in the strep length
polynomial from:

P
EAa?
C‘*ZZ 213
0 /n

(11.a)
n=1
P
EAa,a;
Cs = Z : (11.b)
Ly
n=1 n
d EA(a? + 2a,a3)
c =Z 2 143
2 [t0a3 + 2L3
n=1
12 12
+ZZZ( Vs srvr) (11.¢)
n=1s=17r=1
P 12 12
EAa1a2
¢, = Z toa, + ZZZ(xs srvs)n
n=1 n n=1s=1r=
N
E,v, (11.d)
n=1

Where;
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1
X]l) + E (Xn,: - x]-i)] (xm- - x]',:) (12 a)

a; = i [(Xni -

a, = Z[(an X]l) + (Xn,: - x]-i)](vm- - x'l]ﬁ) (12b)

3
=D 5
=1
Where
f = No. of flexural members,
P = No. of pin-jointed members and cables,
F = Element in applied load vector, and
ks, = Element of stiffness matrix in global coordinates of a
flexural element.
Step (5) Calculate the step length S using Newton’s
approximate formula as:
4C,S3 + 3C35% + 2C,S + (4 1
12C,S% + 6C3S + 2C, (13)
Where: k is an iteration suffix and S,_, is taken as zero.
Step (6) Update the tension coefficients using the following
equation:

p_x

Uni — Uji)z] (126')

Sks1 = Sk —

EA ,
(tjn)k+1 = (tjn)k + @ (a; + azs + azs?)j, (14)

Step (7) Update the displacement vector using equation (4).
Step (8) Repeat the above iteration by returning to step (1).

IILANALYSIS CONSIDERATIONS

The static analysis is carried out for CSBs having five
spans. The bridge has two equal exterior spans of 160 m long
each, and three equal interior spans of 320 m long each. The
pylons with harp, radiating and semi-fan cable arrangements
are shown in Fig. (1).

The pylon is taken as reinforced concrete with hollow
rectangular section with properties given in Fig. (2). The top
transverse member between the pylons has a reinforced
concrete cross section with dimension 1.0 x 1.0 m.

The deck was taken as steel box girder in orthotropic plate
shape with properties given in Fig. (3).

The cross girder was taken as built I-section with
A=0.12m?, Ix = 0.0544 m*, Iy = 0.0104 m*, 1, = 0.0648 m*and
E = 2100 t/cm?.

The deck girder has a total length of 1280 m and total width
of 10 m. Double plane of cables with pylons having H, A and
Y shapes are considered which having ten cables on each side
of pylons as shown in Fig. (4).

The pylon height relative to the span length of the bridge
(H/L) varies between 0.2 and 0.5, with an interval of 0.05.
Four common cases of connections between pylon and floor
beam are considered as shown in Fig. (5).

The cables were spiral strand bridge cables having a
diameter of 13.7 cm with an area of 110.15 cm2, the own
weight of 0.089 t/m, the modulus of elasticity of 1472 t/cm?
and the maximum breaking load of 1506.82 tons. The initial
tension of cables in all cases are taken as (5%, 7.5%, 10%,
12.5%, 15%, 17.5%, and 20%) of the maximum breaking
load.
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The total equivalent live load including impact on the
bridge with 10 m as road width is 5.28 t/m for the width of the
bridge.
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320 m
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160 m 320m 320m
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320m
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Fig. 1: Five span CSB with various arrangements
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Fig. 2: Cross sectional properties of pylon
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Fig. 3: Cross sectional properties of floor beam
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ig. 4: Examples for H, A and Y towers
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Fig. 5: Four types of connections between pylon and floor beam.

IV.RESULTS AND DISCUSSIONS

In this section, the results for the analysis of the three
arrangements of cable-stayed brides including harp, radiating
and semi-fan arrangements with different shapes of tower are
presented. The variation of maximum response in pylons and
floor beams is given in Table (1) and Table (2) respectively.
They show that the maximum response in pylon occurs when
using harp arrangement, H-Tower, connection type case A,
decreasing the initial tension and increasing the height of the
pylon. While the maximum response in floor beam occurs
when using harp arrangement, Y-Tower, connection type case
A, decreasing both the initial tension and the height of the
pylon.

Figures (6) to (20) show some of the obtained results for
pylon and floor beam.

The relations between the sway ratios (A/H) “the maximum
lateral displacements at the top of the first pylon to the height
of pylons” to the height ratio (H/L) are given in Figs. (6) to
(8). Which show that the maximum lateral displacement
occurs in Y-tower with harp arrangement.

The relations between the deflection ratios (A/L) “the
maximum vertical deflection which occurs in the second span
to the length of the main span” to the height ratio (H/L) are
given in Figs. (9) to (11). Which show that the maximum
vertical deflection occurs in Y-tower with harp arrangement.

Figures (12) to (14) contain the variations of normal force
along the first pylon, while Figs. (15) to (17) contain the
variations of normal force along floor beam. They show that
the maximum normal force in pylon occurs in H-Tower with
radiating arrangement while the maximum normal force along
floor beam occurs in H-Tower with harp arrangement.

The bending moments along the first pylon height and floor
beam are given in Figs. (18) to (20) and Figs. (21) to (23)
respectively. They show that the maximum bending moment
in pylon occurs in H-Tower with harp arrangement while the
maximum bending moment along floor beam occurs in A-
Tower with radiating arrangement.
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Table 1: Maximum response in Pylon
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Table 2: Maximum response in Floor beam

Max. Max. Max. Max. Max.
Max. lateral Normal  Bending vertical Normal Bending
Case Study Parameter Dlspl(anc:;ment Force Moment Case Study Parameter Deflection Force Moment
(ton) (m.t) (m) (ton) (m.t)
.. S$< Hap 0.254 -5053.79  485.32 S . $< Harp -0.401 -1574.23 4230.73
EEE{EQC E2$<»'—°Qc
°§>§ 2 §‘H" I Radiating 0.243 -5131.99  133.56 fg’vg 2 §2.‘ I Radiating -0.373 -1105.28 4392.73
mq_‘fon: mu_*T‘Un:
E 5T 2T semiran 0.245 -4978.97  91.37 E 5T 2T semiFan -0.379 -1192.36 4379.80
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25850 28318
%;E g o ATower 0.199 -5040.06  422.82 %;E g ol ATower -0.214 -1542.75 4311.73
570 < YTower 0273 504693  360.32 570 < Y.Tower 0495  -1511.89  4271.23
g _g_ CaseA 0.254 -5053.79  485.32 g ¢ CaseA -0.401 -1574.23 4230.73
; % g g DS CaseB 0.170 -5040.06  435.32 g % g § QS CaseB -0.374 -1584.25 4213.01
(5] [}
S cf i W= CaseC 0.220 -4994.63  2860.63 S €T i W= CaseC -0.382 -1601.17 4056.91
o ol o ol
O = Case D 0.196 -5040.06  1170.95 ) = Case D -0.355 -1567.32 4221.81
g 5% 0.372 -4950.68  479.95 g 5% -0.682 -1568.23 5214.04
E 7.5% 0.333 -4985.21 48151 S 7.5% -0.588 -1571.50 4887.03
R 10% 0.293 -5019.76  483.95 A 10% -0.495 -1573.75 4560.01
c o g <o G:) o g < o
£Fs38" 12.5% 0.254 -5053.79  485.32 £Es538" 12.5% -0.401 -1574.23 4230.73
IS5 8= -T2 sd
g7 T OF 15% 0.214 -5087.07  488.06 £ T OF 15% -0.307 -1576.99 3902.74
TC| 17.5% 0.175 512217 489.68 I—‘f 17.5% -0.214 -1579.02  3575.14
2 20% 0.135 -5154.76  491.82 2 20% -0.120 -1581.04 3243.41
0.20 0.235 -4108.44  597.76 0.20 -0.930 -3077.37 6435.94
j 0.25 0.240 -4339.85 60457 - 0.25 -0.691 -2534.47 5431.63
< .5 <3 0.30 0.244 457411  568.13 ] <5 0.30 -0.550  -2159.35  4824.79
g5 5 3 S 0.35 0.249 -4819.15  526.46 g5 5 8 3 0.35 -0.460 -1820.12 4474.38
~ T 1] T H 1]
71T © e 0.40 0.254 -5053.79  485.32 71T © o 0.40 -0.401 -1574.23 4230.73
& 0.45 0.256 -5275.84  451.57 & 0.45 -0.360 -1325.89 4090.87
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Fig. 6.1: Max. Lateral Displacement at the pylon’s top, with various
arrangements, Case A

Fig. 6.2: Max. Lateral Displacement at the pylon’s top, with various
arrangements, Case B
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Fig. 6.3: Max. Lateral Displacement at the pylon’s top, with various
arrangements, Case C
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Fig. 6.4: Max. Lateral Displacement at the pylon’s top, with various
arrangements, Case D
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Fig. 8.2: Max. Lateral Displacement at the pylon’s top, with various
initial tension, Case A, Radiating
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Fig. 7.2: Max. Lateral Displacement at the pylon’s top, with various
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Fig. 8.3: Max. Lateral Displacement at the pylon’s top, with various
initial tension, Case A, Radiating
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Fig. 9.1: Max. Vertical Deflection at floor beam, with various
arrangements, Case A
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Fig. 8.1: Max. Lateral Displacement at the pylon’s top, with various
initial tension, Case A, Harp
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Fig. 9.2: Max. Vertical Deflection at floor beam, with various
arrangements, Case B
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Fig. 10.3: Max. Vertical Deflection at floor beam, with various Pylons,
Case A, Semi-Fan
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Fig. 11.3: Max. Vertical Deflection at floor beam, with various Initial
tension, Case A, Semi-Fan
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V.CONCLUSIONS

In this paper, various cases along with dead load and live
load for the different cable arrangement with H, A and Y
shape tower for analysis have been considered. Following are
the conclusions of this study:

1. Radiating shape decreases the lateral displacement of the
pylon by 5% and the maximum deflection of the floor beam
by 7%, but it has the maximum normal force along the pylon
height.

2. The A-tower is more effective in decreasing both the
lateral displacement of the pylon by 17% and the vertical
deflection of the floor beam by 57%.

3. The connection type between pylons and floor beam has
a significant influence on all various responses. In all phases
of comparisons, the connection type case B is the best choice.

4. Increasing the height ratio (H/L) causes an increase for
the lateral displacement and the normal force of the pylon
although it decreases the bending moment along the pylon
height, the deflection, moment and normal force in the floor
beam.

5. Increasing the pretension forces in cables decreases the
lateral displacement of pylons, vertical deflection and bending
moment of floor beam but increases the normal force along
floor beam. Also, the normal force and bending moment of
the pylon increases.
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