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Abstract 

Wind Energy Forecasting Using Artificial Neural Network 

Osama Nizar AL-Sbou 

Mutah University, 2023 

Accurate modeling and simulation of the dynamic performance of wind 

turbines is essential to improve their operational performance and progress 

in the production of sustainable energy. This thesis presents models with 

accurate simulation of wind turbines using one of the best neural network 

techniques, which is the dynamic neural network. The network based 

model has been built Dynamic neural networks through an autonomous 

neural network provided with external inputs, or what is called NARX 

.MATLAB software was used to build the NARX model, This thesis is 

based on a group of readings or data extracted from the wind power plant 

in Jordan. which are data for several variables taken from the sensor 

systems at this station. Since the main objective of this thesis is to predict 

performance and describe system dynamics, Four variables directly related 

to the operation and performance of the wind turbine were taken into 

account the first of which is wind speed and direction, temperature and 

humidity, This data was collected over a period of 24 operating hours for 

the wind turbine, Accurately, 2042 data sets were taken for each of the 

previously mentioned variables. The sets of data were prepared using 

network training and validation methods: Actual data , standardization data 

and normalization data. This is in addition to conducting extensive 

experiments for this model by changing and experimenting with all 

variables that have a significant impact on network performance, which 

ultimately leads to satisfactory results. 

Keywords: wind turbine, Dynamic Neural Network, ANN, NARX model, 

Dynamic modeling. 
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 الطلخص
 أسامة نزار السبهع :إعداد

 0202مؤتة، ة جامع
محطة طاقة الرياح في الأردن. وهي بيانات لعدة متغيرات مأخهذة من أنظمة  

الهدف الرئيدي من هذه الأطروحة هه التنبؤ وبما أن  الاستذعار في هذه المحطة.
بالأداء ووصف ديناميكيات النظام، فقد روعيت أربعة متغيرات مرتبطة مباشرة بتذغيل 
وأداء تهربينات الرياح أولها سرعة الرياح واتجاهها ودرجة الحرارة والرطهبة، وقد تم 

بدقة ، تم أخذ ساعة تذغيل لتهربينات الرياح،   42جمع هذه البيانات على مدار 
تم إعداد مجمهعات  مجمهعة بيانات لكل من المتغيرات المذكهرة سابقا. 4424

البيانات باستخدام أساليب التدريب والتحقق من صحة الذبكة: البيانات الفعلية وبيانات 
التقييس وبيانات التطبيع. هذا بالإضافة إلى إجراء تجارب مكثفة لهذا النمهذج من 

ب جميع المتغيرات التي لها تأثير كبير على أداء الذبكة ، مما خلال تغيير وتجري
 يؤدي في النهاية إلى نتائج مرضية.

، نمهذج  ANNالكلمات المفتاحية: تهربينات الرياح ، الذبكة العربية الديناميكية ، 
NARX .النمذجة الديناميكية ، 
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Chapter One 

Introduction 

1.1 Wind Energy  

 In fact the requirement for energy in the world demand is increasing, 

so the related research gives a wide range of models for forecasting future 

energy requirements. 

 Many factors have pressured the world to use the green energies, 

such as climatic and environmental. In European, many states have 

demonstrated their interest in green energy topics. These states have 

enacted and changed their policies, rules, and laws to come up with the 

green energy models (Sun et al., 2019). 

 Some cities are designated as green cities because they have a low 

level of greenhouse gas emissions( Abdmouleh, Alammari and Gastli, 

2015)(Newton and Rogers, 2020). 

 Some regions have already proposed annual targets to exploit the 

renewable energy sources to cover a certain percentage of their energy 

demand. Consequently, renewable energy is considered as a popular issue 

in this century. The most popular renewable energy sources in use are 

solar, wind, biomass, geothermal, hydropower, and ocean waves. 

Approximately, renewable energies provided 27.2% of the world's energy 

demand on average in 2021, with the percentage expected to rise to 45% by 

2040 (Peiris, Jayasinghe and Rathnayake, 2021). 

 Wind energy can be considered as one of the best solutions for 

global warming, as it does not produces pollution and does not have 

greenhouse gas emissions (Peiris, Jayasinghe and Rathnayake, 2021). 

 Wind is considered as the most favorable renewable energy source 

because it is the only natural source of energy that is available every 

where.Its contribution to the increase in global energy demand is expected 

to increased in the future as the new age of fossil fuels comes to an 

end(Rahman et al., 2021). 

 According to the global energy report, wind power generation 

reached 790 GW of installed capacity in 2020. According to installed 

capacity, China and the USA are in the leading. Fig.(1.1) shows the amount 

of wind energy installed globally between 2001 and 2020. 
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1.2 Wind Energy Forecasting 

 Wind energy forecasting technology plays an important role; it 

provides information about the amount of the expected wind power at any 

point and during the next few days. Wind energy forecasting incorporates 

in facilitating the mixing of wind energy into the main electricity supply 

systems. Some difficulties could face the energy mixing process; these 

difficulties are due the irregularity of wind speed. This causes difficulties 

with planning and regulation due to sudden changes in wind speed, which 

affects the accuracy of predictions for the power system. For planning wind 

power generation and reliability, it is essential to have fast and strong wind 

speed predictions and responses to system dynamics (Awan and Khan, 

2014). 

  Due to the ability to accurately predict wind speed, nations such as 

Germany and India are demonstrating a strong desire for the production of 

wind energy (Iessa et al., 2017). 

 Wind energy forecasting methods can be categorized as: firstly 

physical methods and secondly statistical methods. Typically, the former is 

better at making short- and long-term predictions, while the latter exhibits 

advantages when making quick predictions. 

 Artificial intelligence techniques play a crucial role in the prediction 

process, it involves artificial neural networks (ANN), fuzzy logic, neuro-

fuzzy, evolutionary algorithms, and some hybrid techniques, which are 

more sophisticated methods based on artificial intelligence. 

Fig. (1.1) shows the amount of wind energy installed globally between 2001 and 2022 

(World Wind Energy Association 2022) 
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1.3 Problem Statement 

 Renewable energy resources now play a major role in global energy 

generation, with wind energy being one of the fastest-growing energy 

sources due to its environmental and financial benefits. However, as wind 

turbines improve in terms of flexibility and dependability, it becomes more 

difficult to monitor turbine-generator power using verified mathematical 

equations without reliable modeling. . Thus, modeling tools can be 

investigated in order to simplify turbine monitoring, prediction, and 

control. Accurate wind power estimate is one of the most difficult 

challenges in wind power. The variability of prevailing wind speeds over 

different seasons affects the feasibility of wind availability regions, making 

predicting total wind availability difficult. 

       Estimating and predicting wind power is a function approximation 

challenge. Artificial Neural Networks (ANN).and some other nonlinear 

programming techniques can be used to solve this problem. An 

sophisticated computing approach known as artificial neural networks 

(ANN) may be utilized to accurately anticipate wind power generation. 

ANN models are created for various situations of wind power estimate and 

forecasting in this research. These models are built using data from wind 

monitoring stations and wind turbines that is both global and temporal. 

 

1.4 Research Importance  

      Wind energy estimate and forecasting is an approach for dealing with 

wind intermittence. System operators will be able to recognize shifting 

wind patterns and corresponding wind energy output, allowing them to 

avoid grid integration problems. 

 We may use modeling techniques to apply any experiment that 

would be too expensive or dangerous to undertake in real life and minimize 

the time it takes to do so; we can even test the design to correct any 

problems that may arise before the turbine is built. 

 In this thesis machine learning approaches are employed for time 

wind power prediction. Machine learning is one of the major branches of 

computer science, it uses statistical approaches to enable computer 

programs to learn from data and apply it to some tasks such as prediction. 

The usage of machine learning improves the performance measure of a task 

through a training procedure. 

 Realizing the importance of forecasting wind power output, 

engineers have developed prediction models using a numerous of 

statistical, data mining, and machine learning approaches. The research in 

the field of wind power prediction using artificial neural networks (ANN) 

is quite popular. 
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1.5 Research Aims and Objectives 

 The main goal of this thesis is to use statistics and machine learning 

approaches to improve forecasting strategies for wind power prediction in 

complicated terrain. In particular, artificial neural network (ANN) model is 

employed to determine the most efficient parameters for estimating 

produced power from projected wind speed. To achieve this, historical data 

from both observations and projections of climatic factors, as well as 

turbine availability and associated power outputs, are employed. So the 

wind power is forecasted for each overlapping pair of months of the year, 

as well as for the whole year. The overlapping months are used to provide a 

better transition between predictions made from various training datasets. 

Furthermore, the data are separated into twelve groups, where each group 

of two months interval rather than single month, this will increase each 

sample size and at the same time gives a greater variable range for each 

training interval. In this thesis each group of months was trained 

independently. So the experiments are started with observations and then 

with forecasts as predictors as an input into the ANN. This gives the 

appropriate model with accurate forecast. The validation of the result of the 

appropriate model results are based on the comparison to linear-model fits 

which can prove the capacity of artificial neural network models and to 

capture nonlinearity effects. 
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Chapter Two 

Literature Review 

 

 Modeling and simulation techniques are considered as the successful 

strategies that can be used to develop wind turbines. These strategies 

provide the wind turbine with higher efficiency, durability, and reliability. 

Modeling and simulation techniques can also be employed for condition 

monitoring, optimization and forecasting, fault detection, sensor validation, 

and maintenance scheduling. According to these benefits of modeling 

strategies, the researchers have been motivated to make more study and 

research in this topic. 

 In the literature there are many research and studies that concerns in 

the field of data-driven modeling and simulation of wind turbines. This 

chapter explores the most significant aspects related to the research field 

over the last several decades. 

 Wind power forecasting began in the late 1980s, corresponding with 

the rising penetration of wind power in electrical power generation. The 

number of research articles published in this topic has grown since then. 

This section will explore some of the most related research for this thesis.  

 Research objectives are prepared after correlating the various works 

done by contemporary researchers. The majority of the researchers have 

developed methods for predicting based on wind speed. Many additional 

criteria necessary to determine the wind energy potential are investigated in 

addition to wind speed forecasts. For wind power estimation at a specific 

location, meteorological and climatological data, as well as topographical 

data, must be used. The power curves of wind turbines must then be plotted 

against the wind parameters. 

 Statistical models like the autoregressive (AR) and the ARMA 

dominated the research on short-term forecasting until the 2000s. Standard 

statistical time series models in to predict wind power output up to 6 hours 

ahead of time using an ARMA model. 

  Their research intends to see if statistical forecasting approaches that 

do not require any data other than historical wind power generating data are 

feasible. 

 Recently, more attention have been concerned to machine learning 

and hybrid methods, where ANN was used to  forecast daily wind power in 

Germany (Lu et al., 2013).  

 For training of the ANN, The physical coherence of wind speed and 

wind power production is learned using previous forecasted meteorological 

factors and recently observed power data.  In a deep LSTM network, the 

primary components of NWP data such as wind speed, air density, 

temperature, pressure, and wind direction is used as input data (Qu et al., 

2016). 
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 Based on a LSTM method, a deep neural network is used to predict 

wind turbine power, while the error of short-term power forecasting is 

evaluated based on a Gaussian mixture model (GMM) (Zhang et al., 2019). 

 The neural network were used to predict short-term wind power for a 

wind power plant, where the neural network was trained on historical wind 

speed and wind direction data. The process of predicting wind power 

consists of two steps. The first step involves the collection of the raw data 

which can be filtered by using a probabilistic neural network. This valid 

data is used in the construction of a prediction model. Secondly, a 

complex-valued recurrent neural network is used to create a wind power 

prediction model. This paper describes a method for using neural networks 

to predict the total output of a wind power plant (WPP). The raw wind data 

was classified and screened using a probabilistic neural network (PNN) to 

train neural network prediction models. Then, to simplify the model's input 

signals, certain representative wind turbines were chosen as an input data 

source for modeling. Finally, the total output of WPP with high accuracy 

was predicted based on a complex valued recurrent neural network 

(CRNN) model which was chosen based on previous wind power 

prediction experience (Liu et al., 2012). 

 In (Chinedu, 2019) the author illustrated in the scientists, investors, 

and policymakers have realized the value of providing near-perfect 

predictions of green sources. As a result, current research demonstrates 

advances in methodologies for providing more precise energy forecasting. 

In this paper the wind energy was linked to variations in wind speed, where 

the wind speed is irregular parameter in erratic weather. Various model 

technologies were employed to predict wind power output for different 

period such as short, ultra-short, medium, and long term predictions, these 

model technologies involves autoregressive integrated moving average 

(ARIMA), variants of ARIMA, hybrid models that included ARIMA and 

artificial neural networks (ANN), Kalman filters, and support vector 

regressions (SVR).For short and ultra-short terms (two to three hours) it is 

better to integrate between ARIMA and ANN. On the other hand, for 

medium-term wind speed predictions SVR, Kalman filters, and their 

ensembles have demonstrated good performance. For time series 

predictions, especially for the medium and long term recurrent neural 

networks (RNN) have achieved enormous success, due to its retentive 

memory-mapping capabilities in fitting sequence in series. As a result, 

RNNs are used to improve wind-farm power output prediction(Chinedu, 

2019). 

 Most countries have significant environmental impacts; renewable 

energy such as wind energy can be employed to reduce these impacts as it 

can be considered as the most promising solution for reducing these 
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impacts. However, the use of offshore wind energy is growing rapidly to 

cover the rising in electricity requirements. 

 The random forest regress or algorithm is used to predict the output 

power from the wind turbine. The dataset for this experiment was collected 

from a wind farm in France for two years. In this study, various parameters 

such as wind direction, wind speed, and outdoor temperature were used as 

inputs to predict output power. The model used two different capacity 

factors. The result of the study presented that the estimated mean absolute 

errors for the proposed model were 3.6% and 7.3% for different capacity 

factors. The proposed model provided an efficient method for predicting 

wind turbine output power with a low error(Rashid, Haider and Batunlu, 

2020). 

 Wind power is primarily affected by wind speed. Many approaches 

such as artificial neural network (ANN), fuzzy logic (FL), and Neuro-

Fuzzy, have been proposed to obtain the maximum power point (MPPT) of 

the wind. G.Q.BAO and Y.F. REN G.Q.BAO and Y.F. REN introduced a 

variable speed wind generator MPPT depending on ANN. The proposed 

model combined the generator speed forecasting model with a neural 

network, where ANN was employed to predict the optimal rotation speed 

by varying the wind speed and generator speed.  

 A wind energy control system was proposed; it used a permanent 

magnet synchronous generator connected to a DC bus via a power 

converter, also the performance of the control system was evaluated for 

variant wind speed. The functionality and performance of this method have 

been confirmed by system simulation results. For small wind turbines, the 

ANN is presented. System of directly driven permanent magnet 

synchronous generators The new method has the following advantages over 

traditional control strategies:(1) The most The mechanical power of a wind 

turbine can be accurately measured; (2) A neural network based on both 

dynamic and steady states The wind velocity estimator was created to 

provide quick and accurate results.   (3) This method incorporates generator 

speed forecasting based on the algorithm and the wind speed measurement 

model The neural network Only the output voltage is used in the entire 

system. The rectifier's voltage and current values were tested. This method 

reduced system failure rates while lowering design costs. The simulation 

study of the PMSG system validated the theoretical concept of the control 

system (Ren and Bao, 2010). 

 Nicolus Kibet Rotich Nicholas illustrated in his thesis wind speeds 

and directions were designed in order to create models suitable for hourly, 

daily, weekly, and monthly forecasting. The forecasts were made using 

Artificial Neural Networks implemented in MATLAB software. Various 

main types of artificial neural network were built, which are: feed forward 

neural networks, Jordan Elman neural networks and cascade forward neural 
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networks. For both wind speeds and directions, four sub models of each of 

these neural networks were created, one for each of the four forecast 

horizons. Regardless of model type, a single neural network topology was 

used for all forecast horizons. All of the models were then trained using 

real-world wind speed and direction data collected over a two-year period 

in the Finnish municipality of Puumala in Finland. Only 70% of the data 

was used for model training, validation, and testing, with the remaining 

15% being presented to the trained models for verification. The model 

outputs were then compared to the final 15% of the original data by 

calculating the mean square and sum square errors. According to the 

results, feed forward networks produced the lowest generalization errors 

for hourly, weekly, and monthly wind speed forecasts, while Jordan Elman 

networks produced the lowest errors when used for daily wind speed 

forecasting. Cascade forward networks produced the lowest errors when 

forecasting daily, weekly, and monthly wind directions; Jordan Elman 

networks produced the lowest errors when forecasting hourly wind 

directions. The errors were significantly small during model training but 

skyrocketed during simulation with new inputs. Furthermore, a 

combination of hyperbolic tangent transfer functions for both the hidden 

and output layers produced better results than other transfer function 

combinations. In general, wind speeds were more predictable than wind 

directions, allowing for more research into improving existing models for 

wind direction forecasting (Kibet and Nicholas, no date). 

 Wind energy is considered as a free and easily accessible source of 

energy. Different states such as Canada integrated the wind power into 

their power generation systems. 

 The forecasting of wind power production has many difficulties. 

These difficulties are due the variation of wind speed as well weather 

conditions, terrain factors, and turbine height. There are traditional physical 

and statistical methods for prediction; also there are some advanced 

artificial intelligence-based methods which have been recently examined to 

achieve more reliable wind-power forecasts. In Banafsheh Bolouri Afshar's 

study, (ANN) models were used to determine the most important 

parameters that affected the wind output generated power in mountainous 

Canada .In the study, historical data from both observations and forecasts 

of weather characteristics, as well as turbine availability and reported 

power production were employed. Experiments were conducted in order to 

determine the best structure for the artificial neural network. The results of 

ANN models were compared to linear-model fits to demonstrate ANN 

models' ability to capture nonlinearity impacts. Another comparison is 

made between the results of artificial neural network models and the 

current operational strategy used by a utility company. A three-layered 

feed-forward back-propagation ANN model with eight hidden neurons was 
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chosen as the architecture. The ANN method can improve day-ahead wind-

power forecasts by up to 56% compared to the current operational 

approach, according to verification results using an independent dataset 

(Bolouri Afshar, 2016). 

 An artificial neural network (ANN) is a type of information-

processing system that uses the neural structure of the human brain to 

analyze data, detect patterns, classify, and forecast using a sequence of 

mathematical equations. An artificial neural network is made up of 

numerous layers of neurons (nodes). Each layer receives multiple inputs to 

its nodes and then sends the information to the next layer after performing 

certain mathematical computations. As a result, each layer feeds 

information to the next layer — this is the fundamental principle of a feed-

forward neural network. In an artificial neural network, there are three 

types of layers: input, hidden, and output. The capacity to tackle nonlinear 

problems is the primary benefit of an artificial neural network with 

numerous layers over a single-layer model (Svensson, no date)(Tu, 1996). 

 A hybrid neural network-based approach was suggested for 

simulation that combines ARIMA and ANN. The neural networks based on 

ARIMA and ANN are run on a month's worth of wind speed time series 

data. Statistical errors were computed, showing that the model can properly 

estimate the wind speed of a new site (Cadenas and Rivera, 2010) . 

 ANNs have been effectively used in a variety of application 

engineering areas, including function approximation, pattern association, 

and associative memory (Abiodun et al., 2018). ANNs have been 

effectively used in a variety of application engineering areas, including 

function approximation, pattern association, and associative memory. They 

also show fault tolerance and robustness (Kibet and Nicholas, no date). The 

mapping of numerous inputs to a single input is referred to as function 

approximation. Statistical approaches estimate parameter values to tackle 

these difficulties. When ANNs are used as function approximation solvers, 

the parameters of the output function are approximated using a model. 

Activation functions are used in such models to connect inputs and 

outputs. Various activation functions will be selected and tried by the 

programmer or designer of ANN. 
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Chapter Three 

Artificial Neural Networks 

 

 Since the 1950s, when Bernard Widrow of Stanford University 

presented the first artificial neural network, researchers have been 

encouraged to find optimal ANN-based solutions for designing, 

manufacturing, developing, and operating new generations of computers 

industrial systems as efficiently, dependably, and durably as possible 

(Ahmad et al., 2022). 

 The first stage in the system identification and modeling process is 

obtaining enough information about the system to be modeled. A clear 

definition of the modeling aims is also required for the development of an 

efficient model. Modeling and simulation of industrial systems can be used 

for condition monitoring, fault detection and diagnosis, sensor validation, 

system identification, and the optimization and design of control systems 

(Ahmad et al., 2022). 

 So far, a number of analytical and experimental approaches to 

industrial system modeling have been proposed. One of the novel 

approaches for system identification and modeling of wind and gas turbines 

is the use of ANN-based techniques. ANN is able to solve a wide range of 

complex problems. It is possible to do function fitting, approximation, 

pattern recognition, clustering, image matching, classification, feature 

extraction, noise reduction, extrapolation (based on the historical data), 

dynamic modeling, and prediction (Asgari, 2014). This chapter gives a 

brief overview of artificial neural networks, focusing on the two proposed 

neural network methodologies, NARX and CNN techniques, as well as the 

main idea behind them and the main elements, structures, and training and 

validation algorithms that are used to fit their architectures. 

 

3.1 Artificial Neural Network (ANN) 

 The primary goal of developing artificial neural networks was 

always to mimic the human brain in order to solve challenging problems in 

a wide range of scientific fields such as engineering, psychology, 

linguistics, philosophy, economics, neurology, and more (Asgari, 2014). 

(ANN) is a computational system made up of simple, highly interconnected 

processing elements (neurons) with linear or nonlinear transfer functions 

[104].These neurons process information by adapting their dynamic state in 

response to external 31 inputs. Nervous system is divided into layers, that 

include an input layer, a hidden layer or layers, and an output layer. 

 The number of neurons and layers in an ANN model is determined 

by the complexity of the system dynamics. An ANN learns the relationship 

between the system's inputs and outputs through an iterative process known 

as training. Each neuron input has its own associated weight (Asgari, 
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2014).These weights are adjustable values which are computed during the 

training step to achieve the best performance of the network. In order to 

create a reliable and accurate design, it is critical to select the appropriate 

parameters for ANN inputs and outputs. The availability of information and 

data for the selected parameters, system knowledge for identifying 

interconnections between different parameters, and the goals for creating a 

model are all important variables in determining acceptable inputs and 

outputs. Sensitivity analysis can be used to evaluate the accuracy of the 

output parameters that have been chosen.Figure 3.1 shows the typical 

ANN's general structure, which includes three inputs, two outputs, and four 

neurons in two hidden layers. 

 
 

 

 This study, on the other hand, aims to model the dynamics behavior 

of a practical wind turbine using the two aforementioned ANN 

methodologies. As a result, it is more informative to focus on the NARX 

ANN and deep CNN-based modeling methods, and the following two 

sections provide a thorough overview of these two techniques. 

 

3.2 Nonlinear Autoregressive with Exogenous Inputs (NARX)  

       Dynamic Neural Network 

 NARX, or nonlinear autoregressive model with exogenous inputs, is 

a type of dynamic recurrent neural network used mostly for complex 

nonlinear modeling of different systems. Autoregressive indicates that the 

network output parameters are computed from the network's previous 

inputs and outputs as well as the network's current input and output 

variables. In other words, each layer of a dynamic neural network contains 

a recurrent connection with a time delay. This enables the NARX model to 

propagate data forward and backward, from later stages of processing to 

earlier ones, resulting in an infinitely dynamic response to the input data. 

Figure 3.1: the typical ANN's general structure 
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Feed forward neural networks, in contrast to static neural networks, lack 

feedback components and delays; the output is determined solely by the 

current value of the network's input. 

 NARX networks' dynamic topology create them excellent for 

mapping inputs to outputs of nonlinear dynamic systems like as wind 

turbine power plants. The NARX model's mathematical expression is 

shown in Eq (3.1)(Liu et al., 2020). 

 ̂(    [

 
 (    (           (        

 (           (    )
]   (   (3.1) 

 

 Where ŷ(t) and y(t) are the actual and estimated output variables, 

respectively;  ( ) is the input variable of  the network;    is the time delays 

of the input variables and    is the tapped delay time of the output 

variables; and  ( ) is the model error between the target and prediction. In 

other words, y and u are the equation's output and externally selected 

parameters, respectively. y(t) is the dependent output signal's next value, 

that is regressed on last values of the output signal and an independent 

(exogenous) input signal. In Eq. (3.1), the function f(..) should have been 

parameterized. It demonstrates that a search should have been performed 

across the GT parameters specification to find a function that matches the 

wind turbine data .A NARX model can be implemented by using a 

feedforward neural network to approximate the function f(.) , Since the 

machine learning function classes are able to adapt enough to mimic a 

variety of functions. A two-layer feedforward network is used for the 

approximation, as shown in the network's diagram in Fig. 3.2.A vector 

ARX model, with multidimensional input and output, is also supported by 

this implementation (Howard and Mark, 2004). 

 
 Figure 3.2:The structure of dynamic NARX ANN with mathematical functions 
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The network is fed with the input and output values from the past 

using the tapped delay line (TDL). The output from the hidden layer at time 

t is calculated using the input variable u(t) in Equation (3.1), the typical 

formation, and the figure above as well as the following(Liu et al., 2020) : 

 (      [∑   

  

   

 (     ∑    (       

  

   

]               (                 

 Where wij is the weight of the connection between the ith hidden 

neuron and the input neuron u(t - j); Wij is the strength of the connection 

weight between the ith hidden neuron and the delayed output feedback 

loop;ai is the bias of the neurons in the hidden layer. The hidden layer 

transfer function is f1(. ),that is, an activation function that can be used to 

determine the output value of a hidden layer (Liu et al., 2020).where, in the 

proposed code, a tangent sigmoid function has been used as a hidden layer 

activation function to conduct the non-linear transformation to the input 

and thus allowing it capable of learning and performing in a more effective 

manner, i.e. to avoid any complexity while implementing any back-

propagation techniques for weights and biases adjusting. The mathematical 

expression of the tangent sigmoid function (Liu et al., 2020) is shown in 

Eq. (3.3): 

   
 

      
                                         (     

 By integrating the hidden layer outputs as shown in (Liu et al., 

2020), the final NARX prediction value network can be obtained. Equ(3.4) 

  (     [∑   

  

   

 (      ]               (     

 Where wli is the weight of the connection between the i
th
 hidden 

neuron and the l
th

 estimated output nh; bl is the bias i
th
 forecasted output; 

The number of hidden neurons is denoted by nh; and f2(.) is the output 

layer activation function which will parameterize the forecasted value of 

the output. The mathematical representation of the linear activation 

function f2 is shown in Eq. (3.5) (Liu et al., 2020): 

                                                                               (     
 Where X is the variable which will be replaced by the output of the 

hidden layer, implying that the output of the hidden layer will only be 

multiplied by one in the output layer. 

 Nonlinear Autoregressive models with exogenous input (NARX 

model) and Recurrent Neural Network (RNN model) were also two models 

that are widely used in system identification, time series forecasting, and 

system control (Khan and Ahmad, 2021), but the Recurrent Neural 

Network does not have feedback connections from the output to the input 
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Only neurons in the hidden layer have a feedback connection (Khan and 

Ahmad, 2021).However, using the hidden layer transfer function (Khan 

and Ahmad, 2021), any NARX model can be transformed into an RNN 

model. 

 Before demonstrating NARX network training, a critical training 

configuration must be explained. The output of the NARX network can be 

assumed of as an estimate of the output of some non-linear dynamic 

system, such as Wind Turbine system that this study is trying to model.As 

shown in Fig 3.3 (Howard and Mark, 2004), the estimated outputs are fed 

back to the feedforward neural network's input data as part of the typical 

NARX structure. However, because the actual output values have become 

available during the network's training phase, it will be more accurate and 

reliable to design the NARX network in series-parallel structure, i.e. open 

loop mode, so that the true outputs are used instead of feeding back the 

feedforward neural network with the estimated ones, as shown in Fig (3.3). 

This has two advantages. The first advantage is that the feedforward 

network's inputs are more accurate. The second benefit is that the resulting 

network is purely feedforward and can be trained using static back-

propagation. 

 
 

 Finally, the NARX network does have a dynamic nature with 

independent (exogenous) inputs, making it an excellent choice for 

forecasting. Furthermore, feedback connections encircle several layers of 

the network in a NARX model. When handling with time series 

forecasting, a NARX network can be organized as a feedforward time 

delay neural network (TDNN) without the feedback loop from the expected 

delayed outputs. In this case, it can significantly improve system 

performance. More information on the dynamic NARX ANN will be 

provided in the following chapter. 

 

 

 

Figure (3.3):closed-loop mode NARX model i.e. with parallel structure 
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3.3 Deep Convolutional Neural Network (CNN) 

 Convolutional neural networks (CNNs) have become state-of-the-art 

in computer vision issues in the last decade (e.g., see (Lecun, Bengio and 

Hinton, 2015) for many examples of successes and a discussion of the 

history of deep learning).They were proposed in 1989 [109] and are based 

on biological brain structure for visual processing, in which a single neuron 

is only engaged by a small region of input (a "local receptive 

field").Handwritten digit recognition is now one of their first real-world 

applications (Edelen et al., 2016), but is still taught in introductory courses 

today using the Modified National Institute of Standards (MNIST) 

handwritten digit dataset (Edelen et al., 2016).Despite their early debut, 

CNNs did not achieve contemporary state-of-the-art achievement in 

computer vision until the early to mid-2010s. CNNs learn to process 

images through the use of hierarchical features. 

 Early layers, for example, learn to recognize basic lines and curves, 

whereas later layers learn more intricate compound structures (e.g., eyes 

and noses in the case of facial recognition). [110] contains a few examples. 

 Among the various deep learning approaches, CNN is one of the 

most widely used. CNN has shown significant superiority in fault feature 

extraction and is thus widely used in industrial fault diagnosis. Liu et al. 

(Liu et al., 2018) used a CNN model to detect faults in a wind turbine and 

gas turbine combustor and had good detection performance. However, 

there is no evidence that it cannot be used to simulate the dynamic behavior 

of a WT& GT; thus, this study presents a novel methodology based on the 

CNN technique for time-based modeling purposes in order to study the 

dynamic behavior of a practical wind turbine generation unit and evaluate 

the capability of this technique for such applications. Figure 3.4 illustrates a 

simplified representation of the basic CNN concept, while Figure 3.5 

illustrates the basic convolution process. Individually, in the CNN layer, 

the learned filters (or "kernels") are convolved across the image (e.g., left-

to-right, top-to-bottom), and the dot product (element-wise multiplication 

and summation) of the filter matrix and image patch for each yields the 

actual output matrix value (Edelen et al., 2016).Each layer in a CNN 

network does have some number of unique filters (e.g., 16, 32 are the most 

common options), these filters stride through to the image in two main 

ways, either scanning the image pixel-by-pixel and otherwise skipping a 

range of pixels each time, and the most common filter size choices are 33 

and 55.The output of a specific intermediate layer is then converted into 

another set of matrices (also known as "feature maps") using a non-linear 

activation function (the most common choice is the ReLU activation 

function). Padding the datasets (adding null pixels around the outside) may 

also be used to increase the output size of the dataset after the convolution 

process, which improves their ability to extract significant features. CNN 
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hyper-parameters (number of layers, filters, filter sizes, pooling procedures, 

and so on) are typically computed using the image's predicted features 

(e.g., estimated feature size, sparsity, and so on) and empirical tuning 

(Edelen et al., 2016). The main idea behind hyper parameter tweaking is to 

take a publicly-acceptable and reliable CNN-based structure and set of 

weights which have been trained on large datasets (many of which are now 

freely available) and adapt it to a specific issue by simply changing the last 

few layers of weights on new data (Edelen et al., 2016). (e.g., see (Edelen 

et al., 2016)). This enables the application of smaller data sets by utilizing 

previously learned basic filters. 

 
 

 

 Cascaded filters are convolved over input datasets to produce output 

features. The output size can then be minimized by using pooling layers 

(for example, trying to take the maximum of a set of adjacent features or 

averaging a set of adjacent features). 

 After several iterations of convolution and pooling processes, a few 

densely connected layers with decreasing numbers of nodes are typically 

formed. Finally, an output layer provides the network's final output, which 

could be a series of numbers coding for specific objects detected in the 

image by the neural network. However, as this study intends, the output 

layer can also be used for regression and time-series prediction. More 

information on the regression using CNN will be provided in the following 

chapter. 

Figure (3.4): CNN Structure 
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 Figure 3.6 depicts the first two steps of a convolution process in an 

input dataset. The dataset features are convolved with a filter, and the dot 

product of the filter and dataset patch (element-wise multiplication and 

summation) yields a processed feature output. This example has a 55 input, 

a 33 filter, and a stride of 1. The stride value specifies that the filter moves 

one step horizontally between rows and one step downward at the 

beginning of each subsequent row. Pooling operations work similarly, but 

they take the maximum or average value in a batch.Max pooling (see Fig. 

3.6) can obtain the most significant features. In this study, the max pooling 

operation is used. 

 
 

Figure (3.5):convolution operation 

Figure (3.6): Max-pooling operation. 
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 More information about the CNN activation function, CNN training 

algorithm, and fully connected layer will be covered in the following 

chapter. 
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Chapter Four 

Methodology 

 

 The wind turbines are divided into four inputs and three outputs. The 

goal is to create the best model by which the inputs are mapped to its 

corresponding outputs precisely. The reliability of the obtained must be 

taken into consideration during the training process and when selecting the 

best model. In order to reach this goal, NARX and CNN constructions have 

been studied across a wide range of trials as well as the resulting models 

have been compared in terms of high precision, reliability, and 

generalization. For this objective, several CNN and NARX designs with 

hyper-parameter adjustment were used and analyzed across a large variety 

of trials, i.e. trial and error criteria were used. Given the huge amount of 

gas turbine data, four out of five records are utilized for training, the other 

record is employed to validate and test the model. To accomplish this, 

Matlab software used was used to construct the required NARX model to 

implement experiments. 

 

4.1 ANN Model Set up 

 ANN has often been considered as one of the potential option 

techniques as a data-driven model. Because of the many network designs, 

training procedures, types of activation functions, neurons number, hidden 

layers, biases and weights, ANN models for wind turbines can be 

developed utilizing a variety of ways(Asgari, 2014).  

 

4.2 Data Acquisition and preparation 

 Data points and information were collected as discrete time signals 

from the Ma'an wind station in southern Jordan, this data was taken for one 

wind turbine every ten minutes and the power generated from this turbine 

is approximately 2 MW which were collected from 1
st
 December in 2020 to 

1
st
January in 2021. One of these data set was used for a training phase and 

the other two sets was used for verification and testing the model. The 

inputs to the system were also identified from a control point of view, i.e.,  

wind speed, direction, pitch angle, finally temperature (    and humidity. 

The output is output power in MW of the turbine.  

 After the definition of both input and output variables based on the 

collected datasets, related data was separated into 2 groups. This includes 

training and testing groups which will facilitate the assessment of the 

generated model and avoid over-fitting while training phase. 

 The first set of the collected data was employed to train and prepare 

the model. The second set was used to assess the models' performance by 

which these data was not included in the training phase. The architecture of 

the system is illustrated in figure 4.1. 
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 Scale variations between model parameters may enhance the 

complexity of the modeled task (Ahmad et al., 2022). Because of the 

enormous input and output numbers, certain models may learn high 

weights which will typically create unstable models. This means that these 

models, and during training, may perform badly which will make them 

sensitive to any change in inputs. As a result, models with high MSE will 

be created. As a result, in the data pre-processing stage, a features-rescaling 

approach must be used to the WT's variables. 

 The most often used pre-scaling approaches are standardization and 

normalization. Both techniques preprocess data properties in a way that 

enables the model to accurately map every input to its corresponding 

output. Nevertheless, the way each approach works differs, and each has its 

own set of applications. In this study, the gathered data from the WT 

station were resampled to obtain more data points, and then they were 

preprocessed into two groups. After that, standardized and preprocessed 

data (min-max normalization) as well as normalized data are used for 

training and validation of the proposed model. In the followings, brief 

discussion of the resampling and pre-processing approaches so that the 

reader may understand what happens and why the given data is resampled, 

standardized, and normalized. 

 

4.2.1 Data Resampling 

 The WT datasets obtained are considered long-term data, to every 

sample lasting 10 minutes in the actual world. In this research, the data was 

rescaled in order to gain more datasets for training the NARX model. The 

resampled data was created by recalculating the time frame period of ten 

min in thirty second increments. This is accomplished by sending the data 

to the Simulink working space with a sample frequency of 1/120. This will 

be divided into 20 samples per 10 minutes, with each sample representing 

thirty seconds. 

 

 

Fig(4.1): input and output parameter of the model in this study 
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4.2.2 Data Normalization 

 Normalization is a process of scaling data to be in the range of either 

0 or 1 or the range of -1 and +1. Normalization is used if a big discrepancy 

in the given data set. In addition, this normalization is necessary if the 

collected data do not follow a specific distribution, such as a Gaussian 

distribution. As a result, because it does not require any data distribution, 

this method may be greatly effective in building the ANN algorithm. This 

technique is usually called min-max scaling. The mathematical formula 

used to normalize given data is based on Equation (4.1) (Ahmad et al., 

2022). 

    
          

                 
                   ( 4.1) 

 

 Where               are the largest and lowest values in the given 

model's data features, respectively. Based on the aforementioned equation, 

it is clear that the range of data for every variable will be in the range of 0 

and 1. In addition, using the equation (4.1), there are3 main conditions: 

1. If x is the same as the lowest value,    will be zero 

2. when x equals the maximum value , then    equal 1 

3. if x is among( max and min ) , the    will be among zero and one 

 

4.2.3 Data Standardization 

 Another frequent rescaling method is to rescale the dataset to be 

approximately equal to means but with standard deviation equals to 1. 

Based on this, the mean will be zero and the ensuing distribution will have 

standard deviation of 1. Standardization, in contrast, may be advantageous 

if the dataset has a Gaussian distribution. In addition, unlike normalization, 

standardization process is not limited or restricted to a given range. This 

means that, when the obtained data contains outliers, standardization has 

not an influence on these outliers. Equation (4.2) depicts standardization 

technique's related formula (Ahmad et al., 2022). 

    
   

 
   (4.2) 

 Where   is the standard deviation of the given data and   is the data 

mean.The preceding equation shows that the output and input value are not 

limited to a specific range. 

 Moreover, the use of standardization or normalization will be 

determined by the type of dataset and the training-based approach used.  In 

fact, no rule is used to state if data must be standardized / normalized. 

 To obtain best results, actual, standardized and normalized data were 

used in comparing the performance between the 3 types of the data 

preprocessing. This may be useful criteria in the employment of a WT 

power model. In Figure 4.2, it is focused to the model construction 

technique in this study. 
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Fig(4.2): flowchart which shows the model building in this study  

 

4.3 The NARXS Model 

 Various designs may be evaluated across a large variety of trials to 

put up a precise WT power plant NARX system with adequate prediction 

accuracy, much as other dynamic neural networks. Inputs and outputs (the 

multi inputs multi-outputs (MIMO)) or multi-inputs single outputs (MISO) 

architecture, training techniques; hidden layers number; neurons number in 

every hidden layer; activation functions; epochs maximum number 

(iterations); feedback connections number;  inputs delays or time delays in 
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these feedback connections. These all different factors have an influence of 

the structure. In addition, the structure of data, in other words, data format, 

is added as an essential element in this study. The NARX model 

constructed based on the above parameters is shown in Fig 4.3. Here, the 

Tapped Delay Line (TDL) is employed to provide the previous values of 

both inputs and outputs to the network. As shown in the Figure, the 

proposed NARX model includes 4 inputs, 1 hidden layer, 1 output. 
 

 

w 

w1 

w2 

w3 

w4 

 

  

Fig 4.3: The structure of NARX model developed for the WT generation 

 In which the variables ( x-  ) are the inputs, and the weights 

connection are ( w-   , and the    symbolized for tangent sigmoid, and 

the   (.) represents the linear function symbol, and the  (t) is the expected 

output which is feedback to the system by the TDL and weighing 

connection. MATLAB programming code was used to build the NARX 

model with the complex generalization features. MathWorks created and 

developed MATLAB, a widely used programming environment for 

numerical computation in scientific and engineering industries. Several 

hyper parameters are included in the resulting code to train and customize 

the developed models for modeling the wind turbine generating station. 

 The following parameters which were used in building the NARX 

model which includes: hidden layer neurons Number, time delays, model 

structure (MIMO and MISO configurations), in addition to the data set kind 

(standardized, normalized, or real) are all variables that will be modified to 

get the best design. In the generated code, each of the aforementioned 

parameters has been taken into consideration as a combination of several 

settings. Additionally, our study uses a feed-forward multilayer dynamic 

ANN structure of1 input, 1 hidden, and 1 output layers using both a linear 

activation function a tangent sigmoid functions for the output layer. 

Furthermore, several NARX architectures were trained using the developed 

code, which uses 3 techniques in the training phase which are: Levenberg-
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Marquardt (LM) technique, Bayesian regularization technique (BR), and 

Scaled Conjugate technique (SCG). Eventually, after adjusting all of these 

settings and parameters as well as the training method, the optimal 

performance and associated NARX model are obtained. 

 As stated in the developed code by the network performance 

function, the NARX training phase includes changing the weights and 

biases to enhance the NARX performance. Usually, the MSE will be used 

as the performance measure for feed-forward networks. MSE, as given 

below in Equation 4.3, measures the difference between the predicted 

outputs and the actual outputs [114]: 

            
 

 
∑(   

  
 

 
∑( (    (                                          (    

 

   

 

   

 

 Generally, two ways are used to perform training: whether gradually 

or in batches. After every input is applied to the NARX, the gradient is 

computed then weights are adapted in an incremental mode. Before the 

weights are changed in the batch process, each one of the inputs of the 

training dataset is fed to the network. With the train command in the 

MATLAB software, batch training with the three aforementioned training 

methods has been used in this study. 

 Any conventional numerical optimization approach may be used to 

train the NARX structure, however the three applied optimization 

techniques are selected because they have demonstrated an outstanding 

performance for training of ANN networks. These optimization techniques 

either based on Jacobian of network errors with respect to weights or based 

on the gradient of network performance relative to network weights. Both, 

Jacobian and gradient are determined with the back-propagation (BP) 

approach that includes performing calculations backward through the 

network. 

 It might be difficult to predict that training approach would be most 

effective in a certain situation. The amount of data in the training phase, the 

weights and biases numbers used, the target MSE, as well as if the 

developed NARX is employed for pattern recognition or function 

approximation are all variables that influence the regression. To get the 

best performance and the appropriate NARX network, the proposed model 

of the wind turbine power station was trained via wide varieties of trials, 

together with three distinct optimization approaches. 

 

4.3.1 Taxonomy of the Used Training Algorithms 

 The process of selecting an ideal bias and weight for the ANN is 

called training. To achieve this, error between both the output of the ANN 

and the proposed target must be identified, which needs to be minimized 

relative to the weights. The BP training approach for feedforward neural 

networks (FFNN) is the main topic of the thesis. The supervised learning 
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technique for MLP FFNN employs BP techniques. The name hints to the 

error BP that occurs while training the network. These machine learning 

techniques use the chain rule repeatedly to determine the partial derivative 

of the error function with regard to weights of the network. This is 

achieved by initial calculations at the output layer and then propagating 

them back in order for each weight connection to be adapted 

independently. Depending on difficulty of the problem and the network 

architecture, there are various variations of BP training algorithms; each 

one has its own advantages and weakness. 

 As mentioned earlier, our study will employ three kinds of training 

algorithms. These algorithms include LM, SCG, and BR. In addition, a 

comparison among them will be conducted in order to determine their 

performance and accuracy in predicting ahead of WT's parameters. These 

training algorithms are described mathematically in the following section. 

 

4.3.1.1 Levenberg-Marquardt (LM) algorithm 

 The LM technique was created to achieve the 2
nd

 order training 

speed without the requirement to calculate Hessian matrix, much like the 

quasi-Newton methods. Hessian matrix can be estimated as in Eq. (4.4)  

where the performance function is a sum of squares (customary in training 

FFNN) (Howard and Mark, 2004). 
                                                                                                                (     

Then gradient may then be obtained using eq. (4.5) 
                                                                                                                (     

 In the above equation, (e) represents a vector of network errors. J 

represents a Jacobian matrix. It is far easier to compute the Jacobian matrix 

using a conventional back propagation method than it is to determine the 

Hessian matrix. This Hessian matrix estimation is used by the LM method 

in the following Newton-like upgrade, where x is an indicator of 

connection weights. 

 This is merely Newton's approach, employing the approximate 

Hessian matrix, where scalar  is zero which varies gradient drop with a 

small step size when  becomes large. The target is to switch as fast as 

possible to Newton's method due its quicker and accurate approaching to 

minimum errors. Based on this,  is decreased after each good step and then 

raised when an uncertain step would get better performance. The network 

error (i.e., performance) function will always be decreased in this way and  

at each iteration. Compared to traditional gradient descent methods, the LM 

optimization model is more effective (Demirbaş and Çakır, 2019). The LM 

technique showed to be the best for training moderately sized NARX 

networks (i.e. few hundred weights), which is easily implemented in 

through the command train lm. 

                       (     
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4.3.1.2 Bayesian regularization algorithm 

 A training algorithm called Bayesian regularization(BR)is based on 

modification the bias and weight values according to the LM technique 

[118](MacKay, 1992). For the BP to create a network, it first determines 

the optimal combination of squared errors and weights. In this algorithm, 

the training objective function, F( ) and stated by (Khan et al., 2020), is 

modified by BR to include network weights as given in Eq. (4.7). 

 

Where    is the total of network errors and   is the squared total of 

network weights.The objective function variables are both   and  .The 

weights of the network are handled as random variables in the BR 

approach, and the distribution of both the network weights , training and 

testing sets is regarded as a Gaussian distribution . 

 The Bayes' theorem is used to define the both   and   parameters. 

Here, two variables are related by the Bayes' theorem, Based on A and B's 

prior (or marginal) and posterior (or conditional) probabilities, respectively, 

as shown in (4.8)(Khan et al., 2020): 

 P(( |  ) denotes the posterior probability of (a) given that (b) exists, 

P(( |  ) denotes the prior probability of b given that (a) exists, and  (   

denotes the non-zero prior probability of event (b), that also serves as a 

normalizing constant. The objective function has to be minimized to find 

the ideal weight space that is equivalent to enhancing the posterior 

probability function specified in (4.9)(Khan et al., 2020): 

 Where, (d) is the weight distribution, (m) is the specific ANN, 

P(d|m) is the normalization factor, P(     |m) is the uniform prior density 

for the regularization parameters, and P(d|    , m) is the probability 

function of (d) for given     M.The probability function P(d|    , M) is 

maximized in the same way that the posterior function P(    |D, M) is 

maximized. This procedure yields the best values for  and  for a particular 

weight space. The algorithm then enters the LM phase, in which Hessian 

matrix calculations are performed and also the weights are updated as 

necessary to minimize the forecasting. If the convergence condition is not 

satisfied, so the algorithm will estimates new values for   and   andrepeats 

the process until convergence is achieved (Khan et al., 2020). Finally, the 

train br function in the MATLAB software effectively implements the BR 

training algorithm. 
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4.3.1.3 Scaled Conjugate Gradient (SCG) algorithm 

 The legacy BP algorithm varies the weights toward the negative 

gradient direction, or toward the extreme negative value. This means that 

the performance function is also decaying in a fast manner in the same 

direction. Despite the fact that this function ultimately degrades when the 

gradient is negative, it turns out that this doesn't always lead to the fastest 

convergence (Ahmad et al., 2022). In conjugate gradient methods, the error 

mitigation attained in each preceding step is preserved while a search is 

conducted in a direction which typically provides a fast convergence 

compared to that of the steepest descent direction (Choudhary and 

Chauhan, 2014).The conjugate direction is what this movement is known 

as. Every iteration in the majority of CG methods involves adjusting the 

step size. To find the step size that will eliminate the performance function 

along that line, a search is performed on the conjugate gradient direction. 

All CG methods start their search along the direction of the steepest 

descent (Eq4.10) .Commonly, line search is frequently combined with CG 

algorithms. This shows that instead of computing the Hessian matrix in 

order to find the best distance to keep moving on the present search 

direction (Eq. 4.11) (Khan et al., 2020), where the step size will be 

determined by a line search approach. Afterward, it is revealed that the next 

search direction is conjugate along the previous search direction (Eq. 4.12) 

(Khan et al., 2020). Typically, the previous search direction and the new 

steepest descent path are combined to determine the current search 

direction . 

 The method used to calculate the factor   serves as a defining 

characteristic of the various CG methods (Khan et al., 2020). 

 Moreover, step size can be estimated by a different method other 

than the line search method. This method is based on the combination of 

the CG approach with the model trust region method of the LM method. 

The resulted technique, also referred to as SCG, which was the first to be 

discussed in the literature by (Buduma and Locascio, 2017). In this 

approach and as it is explained in Eq. 4.13, where s represents the 

approximate Hessian matrix, E represents the overall error function, and E 

represents the gradient of E, scaling variables The user initializes    and 

  at the start of the algorithm so that they are 0<  <     and 
0<  <    to approximate the Hessian matrix. In Eq. 4.14 and Eq. 4.15, 

(Buduma and Locascio, 2017), the computation of both the    factor and 

the new search's direction are shown for SCG. 

       (      

             (      

              

  

    (      
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 Iterative adjustments of the design factors separately are crucial to 

the algorithm's achievement. Compared to algorithms based on line 

searches, this is a significant benefit. Figure 4.4 summarizes the 

requirements for configuring the NARX model. 

 

 

 

 

 

 

 

 

 

 

4.4 Performance Metrics 

 The output of the model for one output parameter is compared to the 

related actual values, or testing values, through the MSE, that indicates the 

gap between the expected and actual output, in addition to the 

determination of (  ) for each of the three output variables, which assesses 

whether the model fits the data appropriately or not. This comparison is 

done to select the best model between all of the trained and developed 

NARX structures. The most effective model will be chosen from all the 

models under investigation based on its low MSE as well as high 

  accuracy . 

 

4.4.1Mean Squared Error 

 The main goal of NNs training is to reduce errors as much as 

possible. Error reduction essentially entails improving training efficiency 

and getting a more precise model. While training a NN, different concepts 

and kinds of error may be considered. The gap between both the desired 
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output (target) and the measured (actual) output, for instance, is called 

absolute error (Asgari, 2014).However, when training (NNs), MSE or 

RMSE are frequently used. As shown in the equation 4.21 and 4.22, 

respectively, MSE and RMSE are calculated (Asgari, 2014). Here,    is 

the measured (collected) data,   is the predicted (forecasted) output 

obtained from developed model,    is the size of data. By adjusting the 

weights and/or training techniques, errors can be minimized. 

 In particular, when comparing the developed models, both the MSE 

and RMSE are mathematical measures to determine both reliability and 

accuracy of a given model in terms of the differences between the actual 

and predicted data values. MSE is used to find out how near a regression 

line is to a known line of points. The distances between both the known 

line and the regression line is called the error. If these values of errors are 

squared, the obtained value is called MSE (as given in Eq. 4.21). 

sometimes, negative error values may be obtained. These values should be 

squared to remove negative signs. As the MSE value approaches zero, then 

model has powerful predictive capabilities of the dependent variable. The 

smaller the MSE is, the better the model in predicting. Therefore, different 

models will be assessed and used based on their obtained MSE value. 

 

4.4.2 The Regression Factor (    
 The regression coefficient or factor, also known as   , is a statistical 

criterion usually employed for assessing the accuracy of prediction 

depending on the variances values of the actual data and estimated ones. In 

addition, it is used to compare models and evaluate how close a given line 

fits a predicted data-set. Particularly, when contrasting models, regression 

provides the % of output differences which a model is able to consider and 

offers a measure of how well a line tracks the variations in a set of data. 

  (Asgari, 2014) is expressed mathematically in equation (4.23).  

 In this equation, the    is the available data , ̂  is the model estimated 

value ,   number of data,      represents the remaining sum of SE of the 

regression, while      denotes the sum of  total of SE.  has a value in the 

range of 0 and 1.When      equal zero the regretion equal 1 That is if the 
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modeled values perfectly match observed values.   in a base model, which 

consistently estimates ̅ . As the computed    nears one, as the model's 

prediction capabilities will be better (Asgari, 2014). 

 

4.5 Results, Discussion and Analysis 
 The dynamic behavior of a wind turbine has been captured by 

applying the proposed NARX models. Based on the obtained results, it is 

expected that the station efficiency, control, and general efficiency will be 

improved. 

 The NARX structure had been chosen because it can deal with noisy 

data from of the actual world, like the data from a wind turbine. It is also 

straightforward and simple to setup on various software. A number of 

hyper-parameters for NARX model has been adjusted for this reason in 

order to produce an ideal model which can be generalized and is a 

nominate to model such wind turbine systems with satisfactory results. 

Additionally, the (MIMO) architecture and the (MISO) architecture of the 

NARX model has been designed and evaluated. Building a MIMO 

architecture involves feeding the network with the predetermined 4 input 

factors and the one chosen output-output power from of the wind turbine, 

while simulating output parameters simultaneously. The MISO 

architecture, on the other hand, feeds every output variable to the network 

independently and simulates them all at once. When both architectures are 

evaluated, it will be possible to make a solid case for which one is more 

appropriate for certain uses based on computing, accuracy and complexity. 

In this study, collected data sets were split to 80% for training phase and 

20% for testing phase, meaning that during the wind turbine operational 

hours, the network was tested for two hours and a half and the remaining 

data were used for the training phase. This section performed exceptionally 

well and produced good results, in part because the testing set was adequate 

in terms of the WT's operational hours for assessing the performance of the 

models. 

 In MATLAB programming, thorough computer code has been 

created to run up and operate the NARX model with complex 

generalization features. 

 

4.5.1 Results of the Dynamic NARX NN Simulation Analysis 

 The written code in MATLAB programming indicates that the 

number's early ending condition was disabled and the total number of 

epochs have been set to 1000. If any of the mentioned below scenarios 

actually occur, the training process will stop directly. 

i. The desired number of repeats, or epochs, has been reached. 

ii. The time allotted has passed. 
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iii. There are no more enhancements because the performance has been 

reduced to the desired level. 

iv. Performance gradient decreases to a value that is less than min grad. 

v. The training process has been stopped when there was any 

overfitting using the written code on the validation set. 

    The practical WT data points were split into two groupings: the training 

set (80%) used to train the model while the other 20% for testing it as a 

new data for model generalization and accuracy assessment. Because the 

true output data seem to be accessible during in the training period, the split 

data points have been implemented to train an open-loop NARX structure 

to guarantee an efficient learning process.  

      Then, the best open-loop system will easily be transformed into a 

closed-loop structure for multiphase predicting after being identified as the 

optimum open-loop NARX system as a result of number of experiments. 

Several open-loop NARX structures using MIMO and parallel MISO have 

been tested in this research. 

     The following subsections discuss the MIMO and MISO NARX 

architectures which have been built to simulate a wind turbine, their 

construction experiments, and their MSE and   coefficient investigations. 

 

4.5.1.1 Numerical Results for the Parallel MISO NARX Model 

 The MISO NARX wind turbine-based structure have been created 

including one hidden layer, a different tapped delay time values, a variety 

of hidden neurons and various data formats. The network had to have an 

output layer with one neuron. The three learning strategies: LM, Bayesian 

regularization, and SGC have all been implemented. The examples of 

attempts to build the MISO NARX design in terms of MSE performance 

and    of the produced MISO NARX structures are extracted and shown in 

Table (4.1) . 

Hidden 

layer 

neurons 

 

Time 

delay 

Training 

algorithm 

Data 

format 

 

Performance 

MSE 
   

Training Validation Test Training Validation Test 

20 5 BR Norm 5.0971E-05  5.4E-03 0.99963  0.87297 

9 5 BR Norm 4.5968E-04 
 1.6E-03 0.99665  0.9245 

10 10 BR Norm 2.5287E-04  2.1E-03 0.9981  0.91775 

11 15 BR Norm 1.2397E-04  1.6E-03 0.99908  0.91305 

15 25 BR Norm 2.1905E-06  2.2E-03 0.99998  0.93569 

20 30 BR Norm 1.9452E-13  1.5E-03 1  0.95937 

5 2 BR Norm 8.7808E-04  1.6E-03 0.99293  0.953 

2 5 BR Norm 2.002E-03  2.4E-03 0.98435  0.97707 

2 7 BR Norm 1.874E-03  2.4E-03 0.9859  0.97199 

2 2 BR Norm 1.6806E-03  2.6E-0-3 0.98722  0.96384 

30 20 BR Norm 1.5535E-12  1.9E-03 1  0.95461 

Table 4.1: The output power P (MW) results for MISO NARX systems (MW). Bold is used to highlight the best. 

n 
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Hidden 

layer  

neurons 

 

Time 

delay 

Training 

algorithm 

Data 

format 

 

Performance 

MSE 
   

Training Validation Test Training Validation Test 

5 2 SCG Stand 3.11E-02 9.6097E-03 4.5E-02 0.97618 0.93797 0.95703 

9 5 SCG Stand 5.01E-02 
7.9147E-03 5.9E-02 0.95617 0.95188 0.95637 

10 10 SCG Stand 5.29E-02 9.9716E-03 6.9E-02 0.95703 0.92604 0.94689 

11 15 SCG Stand 3.26E-02 4.3298E-03 3.9E-02 0.9743 0.96318 0.96551 

15 25 SCG Stand 3.54E-02 4.2691E-03 4.3E-02 0.97056 0.96931 0.95989 

20 30 SCG Stand 2.97E-02 4.008E-03 4.6E-02 0.9753 0.97401 0.94047 

5 2 BR Actual 1.2102E-01  6.7434E-06 1  1 

9 5 BR Actual 2.5613E-01  6.7436E-06 0.9524  0.9368 

10 10 BR Actual 1.4497E-01  2.5060E-07 1  1 

11 15 BR Actual 1.7642E-01  3.3149E-07 1  1 

15 25 BR Actual 1.4258E-01  1.4642E-07 1  1 

This table shows the output power forecast readings with Actual and 

Stand data type but the error rate is high, so we used normalized data. 

 According to the table (5.1), It is noticeable that all MISO NARX 

structures that used the normalized data format performed well in terms of 

MSE performance in addition to regression. By averaging the test subset 

MSE performance for each WT's output parameter across all algorithm 

iterations, Table 4.3 shows the best outcomes for each training procedure. 
Table 4.3: The average performance of the three MISO structures. 

Training 

algorithm 

 

LM 

BR 

SCG 

Average 

performance MSE 

 
   

Number of 

hidden layer 

neurons 

Data type 

2.2618E-03 

1.874E-03 

3.26E-03 

0.98148 

0.9859 

0.9743 

2 

2 

11 

Norm 

Norm 

Norm 

2 7 LM Norm 2.2618E-03 3.3448E-03 2.9E-03 0.98474 0.98164 0.97688 

2 5 LM Norm 2.8551E-04 3.113E-03 2.7E-03 0.98148 0.97813 0.97646 

5 10 LM Norm 1.4E-03 4.3362E-03 2.7E-03 0.98677 0.96343 0.97224 

10 10 LM Norm 9.08E-04 3.4247E-03 2.5E-03 0.98705 0.97659 0.97235 

11 15 LM Norm 4.43E-04 5.0999E-03 2.2E-03 0.99088 0.96419 0.97688 

15 25 LM Norm 2.51E-04 5.1525E-03 2.7E-03 0.98963 0.96177 0.96839 

20 30 LM Norm 3.05e-05 

 

5.5777E-03 3.4E-03 0.98554 0.95016 0.95972 

5 2 SCG Norm 3.11E-03 9.6097E-03 4.5E-03 0.97618 0.93797 0.95703 

9 5 SCG Norm 5.01E-03 7.9147E-03 5.9E-03 0.95617 0.95188 0.95637 

10 10 SCG Norm 5.29E-03 9.9716E-03 6.9E-03 0.95703 0.92604 0.94689 

11 15 SCG Norm 3.26E-03 4.3298E-03 3.9E-03 0.9743 0.96318 0.96551 

15 25 SCG Norm 3.54E-03 4.2691E-03 4.3E-03 0.97056 0.96931 0.95989 

20 30 SCG Norm 2.97E-03 4.008E-03 4.6E-03 0.9753 0.97401 0.94047 

Table 4.2: The output power P (MW) results for MISO NARX systems (MW). With Stand and Actual data type. 
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 According to all tables, using a normalized data type, Scaled 

Conjugate Gradient (SCG) method, and a 15-sample time delay, the best 

MSE and R
2
 of the 3 WT's factors were identified in the architecture of the 

11 hidden layer neurons. As shown in Figure (4.5), the best training 

performance with an average MSE of 3.26E-03 was achieved after 1000 

epochs. As the max number of epochs has been achieved, the same NARX 

network also included the best regression coefficient. 

 

 
 

 

     The three outputs (P) represented by y(t) can be seen connected with the 

input layer through a tapped delay line linked with adaptable weights in 

addition to the system's previously defined inputs, which are represented by 

x(t), indicating that the network has additional inputs that will be a function 

of weights optimization. 

       The ideal open loop MISO NARX model in Figure 5.1 has 11 neurons 

in the hidden layer. This figure shows that in addition to the four main 

system inputs, one output was also simultaneously fed into the output layer 

and 1 output was fed through into input layer.  

     Although the MIMO NARX structures have relatively high regression 

coefficients and prediction performance, attempting to deal with single 

output at a time is more effective within the NARX system which may 

produce sufficient forecasting accuracy for each output parameter of the 

WT unit. 

     Figures (4.6 , 4.7, 4.8, 4.9) show the learning curve and regressions lines 

for every proposed MISO NARX model. These models were implemented 

using 4 inputs and single output. these figures show the test sets as well as 

their    coefficient and the MSE trend of the training. 

     It is important to note that the SCG training algorithm's superiority in 

terms of computations can be attributed to the lack of an earlier stopping 

point and their optimization method, which is based on the previously 

discussed combination of weight values and the MSE performance 

function. Even though the SCG algorithm performed better than the BR 

and LM algorithms As shown in the figure (5.1), but the results from those 

Figure 4.5: The optimal MIMO NARX system MATLAB schematic 
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methods were still very good and trustworthy.  In addition to that, dealing 

with Normalized data in the ANN NARX system is much better than both 

actual and standardization data because of the harmonious relationship 

between the upper and lower limits of WT output in normalized values.  

 
 

 
 

 

 
 

a) MSE from SCG method 

b)  MSE from LM method 

c)  MSE from BR method 

Figure4.6: Learning curve of the three MISO models 
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Fig(4.7):   from BR method  
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 The declining MSE trend shows that the proposed MISO NARX 

model does not exhibit overfitting. Because the datasets are offset from the 

line where all of the outputs are equal to the targets, the R
2
 lines show that 

the model produced the best fits. 

 

Fig(4.8):  from LM method 
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4.5.2 MIMO and MISO Topologies 

 For NARX structures, MIMO results were less precise than MISO 

results, This is because of the way the parameters are handled; managing 

just one parameter will simplify the training process and/or weight 

optimization in relation to error. Accordingly, feeding a network by one 

parameter at a time results in smooth and precise network training. For 

instance, in the NARX structure, output parameter is feedback toward the 

input layer and it will be a function of adapting weights and biases. 

 

 

 

Fig(4.9):    from SCG method 
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4.5.3 Time-based Simulation Results and Discussion 

Figures (4.10–4.11) show the structures and best simulation results 

for the NARX technique. Based on the outcomes and the related computed 

MSEs from of the prior analysis, It is clear that the dynamic NARX ANN 

have performed satisfactorily when applied to WTs. This means that these 

may be utilized to produce short- or long-term estimations, improving 

controllers, checking performance when a measurement device 

malfunctions, determining WT characteristics of various types, and more. 

 

 
 

 
 

 
 
 

 

Figure 4.11: Zoomed power response  

 

Figure 4.10: Norm power (MISO performance system) 
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 The NARX approach (ranges: 0-1 normalized and 2 MW actual 

power range for each WT) successfully tracks the trends, very small errors. 

For the accepted long operational hours of the WT, MSE have been 

achieved over a variety of trials. 

 Because wind turbine noise sources and unknowns are of large 

values and variations in realistic conditions, such accuracy rates in the 

responses of WTs may be challenging to achieve. The methods suggested 

in this study had already successfully operated for longer periods of time 

than those previously reported, covering more than 24 hours 0of operation. 

 Additionally, NARX model demonstrated marginal advantage in 

terms of absolute error and in increasing the outcomes of parallel MISO 

system; this may be due to followings: 

1. Simplified design that shows a direct relationship between outputs 

and inputs, it produces more accurate responses of the inputs on the 

outputs. 

2. As an example, sampling interval between the GT factor patterns in 

this study is 10 seconds, that indicates that the TDL in the NARX 

model can be set up using the same value to get the actual dynamic 

path of all these trends. The use of TDL in the NARX networks 

improves their ability to imitate for every parameter. 

3. Using of feedback delayed output results as an another inputs to the 

system. This raises the inputs used and improves the accuracy of the 

output representation. 

4. The current techniques, like SCG, BR, and LM which incorporate 

NARX to assess the ideal weight values, are marginally superior to 

other approaches because they depend on finding the best results in 

terms of MSE coefficient as well as gradient reasonable algorithm. 

 Generally, it can be concluded that the dynamic ANN is still a best 

available option for modeling and simulating WTs because of its low 

simulation error and high simulation performance of WT variation trends. 

Instead of using time-based simulations, the reader can refer to the 

references (Bai et al., 2021)(Ragab et al., 2020)(Wunsch, Liesch and 

Broda, 2021)(Wang and Chen, 2019) for more information on other 

successful applications of NARX ANN. 
 

4.5.4 Conclusion 

     In this thesis, ANNs were employed to evaluate novel modeling and 

simulation methods for wind turbines. Dynamic NARX systems has 

delivered precise results using the most recent trends. These results support 

the scientific research in the area of dynamic ANNs in experimenting the 

performance of the WT station. The design and production of WTs that are 

more efficient, reliable, and durable may be facilitated by the new 

approaches that are presented. The models which are developed for this 
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thesis could also be employed for wind turbine fault finding, monitoring, 

detector validation, optimization, and problem resolution. 

     Operational data sets were used to show how well the presented neural 

networks could capture the complex nonlinear dynamics of wind turbines, 

particularly in the absence of sufficient physics data. In conclusion, this 

thesis argued that, although some troublesome challenges associated with 

the application of ANNs for industrial uses, ANNs possess strong ability to 

be taken into consideration as a dependable approach compared to 

traditional modeling and simulation approaches. 

     The following improvements to wind turbine modeling and simulation 

are a result of this thesis:  

1) This research provided a thorough analysis of the wind turbine 

modeling literature [Ch 2]. There were black-box models discussed. The 

most pertinent research projects for various types of WTs, in terms of 

methodology, benefits, and drawbacks, were studied and discussed. It 

was shown that despite outstanding research in the field, more study is 

still needed to address unexpected difficulties that crop up during 

manufacturing processes or the operation of industrial plants. These 

issues can arise during the design, commissioning, condition 

monitoring, fault detection, problem resolution, maintenance, detector 

validation, and control processes. 

2) The structure of two cutting-edge ANNs techniques—dynamic 

(NARX) architectural style and deep (CNN)—was extensively 

discussed in this thesis. The research discusses all information related to 

the hyper parameters, such as the training algorithms' layers, and all 

significant mathematics, as well as their optimization approach. It [Ch 

3] explained benefits of this approach and examined various difficulties 

that can occur while using ANN-based models for industrial systems. 

3) It was demonstrated which the WT time-based dynamic performance 

can be accurately predicted using NARX ANN, with very minimal 

errors for NARX technique. The dynamic (NARX) methodology [Ch 4] 

and [Ch 5] can thus be used to model this particular class of wind 

turbine systems in a befitting manner. 

4) When using ANNs techniques [ch5], it is typically actually advised to 

normalize the data of WTs other than working with actual and stand 

datasets. 

5) the SCG training algorithm performs better than other training 

algorithms when setting up the NARX structure than the above- 

mentioned previous ones (BR and LM) [Ch 4] & [Ch 5]. 
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4.5.5 Recommendations for Further Research 

 A very broad range of research tasks are covered by wind turbine 

simulation and modeling. There are many types of wind turbines, as 

well as numerous simulation and modeling systems and techniques. 

Numerous techniques and structures are taken into account, even when 

using an artificial neural network approach. A very broad range of 

research tasks are covered by gas turbine modeling and simulation. 

There are numerous types of gas turbines, as well as numerous 

simulation and modeling systems and methodologies. Numerous 

techniques and structures are taken into account, even when using an 

artificial neural network approach. However, the purpose of future 

initiatives and forthcoming research outputs in this line of work can be 

illustrated in relation to the focus and results of this thesis: 

1) Despite the thesis's goals being met, there are still some deep learning 

approaches which have not yet been researched in the literature. These 

approaches may perform similarly, which prompts the mention of a few 

potential areas for future research. 

2) Utilizing additional techniques for deep learning and suitably 

comparing them with advanced models is one of the most obvious 

future developments. Locally connected NNS and sophisticated deep 

RNN may be examples of this. 

3) Another realistic future scenario involves creating a supervisory 

controller for the created ANN models and using it to control the premix 

and diffusion modes while aiming for greater efficiency. It may be 

helpful to conduct a comparison with other forecasting philosophies, 

like physics-based approach, and to High concentration on performance 

measures than just the accuracy's numerical value. 
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