a_%.?*tiv/‘; \v

BIRZEIT UNIVERSITY

Faculty of Engineering and Technology
Master of Software Engineering (SWEN)
Master Thesis

Comparative Analysis of Mobile Software Development

Frameworks: React Native and Native iOS

By

Student Name: Bisan Abubaker
Student Number: 1175468

Supervised
By
Dr Adel Taweel

Dr Samer Zain

A thesis submitted in fulfillment of the requirements for the degree of

Master of Software Engineering at Birzeit University, Palestine

August 5, 2020

B A ! ‘VL‘;
E353 (Wl p ¢

BIRZEIT UNIVERSITY

-

Comparative Analysis of Mobile Software Development Frameworks:
React Native and Native iOS

Author: Bisan Abubaker

This thesis was prepared under the supervision of Dr.Adel Taweel and has been
approved by all members of the examination committee

Dr. Adel Taweel, Birzeit University

=1

Sy

Dr. Radi Jarrar, Birzeit University

2t

Dr. Mohammed Hussien, Birzeit University

M . A,

Date of defense:
25 July 2020

Declaration of Authorship

I, Bisan Abubaker, declare that this thesis titled, “Comparative Analysis of Mobile Software
Development Frameworks: React Native and Native i0S” and the work presented in it are my

own.

I confirm that:
= This work was done wholly or mainly while in candidature for a master degree at
Birzeit University.
= Where any part of this thesis has previously been submitted for a degree or any other
qualification at this University or any other institution, this has been clearly stated.
= Where [have consulted the published work of others, this is always clearly attributed.
= Where I have quoted from the work of others, the source is always given. With the
exception of such quotations, this thesis is entirely my own work.
= | have acknowledged all main sources of help.
= Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself.

Signed: Bisan Abubaker
Date: July 25, 2020

Abstract

Mobile applications market is divided between limited number of distinct platforms,
mainly i10OS and Android, which makes mobile application development problematic
and difficult.

Developers are required to having knowledge about development differences and tools
for both platforms, which demands more development and maintenance effort,
multiplatform-skilled software engineers, increased budget and multiple programming
language skills. Several approaches have attempted to address this issue, including the
use of hybrid development frameworks, such as ionic [1] and PhoneGap [2], but they
were not able to provide a native user interface (UI) feeling. A newly released hybrid
framework that addresses the user interface problem by providing a native Ul feeling
is React Native.

React Native is a cross-platform framework that enables developing mobile
applications that works on both iOS and Android platforms, using a single code written
in JavaScript, with native Ul feeling. However, its cross-platform capabilities have not
been studied enough to understand its characteristics to make an informed software
development choice. This thesis evaluates the performance and efficiency of
applications written in the new React Native framework and proposes a software
engineering method that improves performance of React Native applications. For the
former, it conducts a comparative study between applications developed using iOS and
React Native with respect to execution and CPU time, memory and battery usage,
frames per second and application launch time. Our focus is on the data centric apps,
i.e. apps that process, read and write data to back-end server as well as local storage
and files.

For the later, based on the outcome of the comparative study, a study of React Native
development features was conducted to identify its comparative deficiencies to provide
software development guidelines on mechanisms to improve React Native applications

development.

Results are promising for React Native. They show a big similarity, on application
performance, between both i0OS and React Native platforms. Which means, there is no
significant difference between performance in the two frameworks on the studied
software features and applications, with a difference in performance ranging between
3%- 10%. However, a major performance difference was found in React Native,
compared to i10S, on image processing. For this feature, i10S was found three times
faster than React Native, for the studied applications. A code improvement solution is
proposed to address this React Native performance issue and improve its execution time

to as nearly as i0S.

ii

oaildl

o 5 V) bl S (Gl dadail (e 2530 230 Jseaall Cailgdl il ghai (3 as andily
Lo le 5 dina g Coa al A ganall (il gell lEnlaill y ghai g gum g (o Jrng 138 5 e 5 Y 5

(o) 5 Vs s A el el g ol Aadiiunall) 5a1 a5 5l) g jmy o) shaal) e oy
Sl dadail S Gaaiin (radiga) ALaVL Alaa s e 2 Goals (e SIS A jea 3 sean il 14
A el (B 3aly 5 Ul

Osll 5 el V) Al Jie 3 yulel) 48k aladiuly skl Lgie (JSURAD 238 Jal Cilga 535 3k sae ollia
0583l AlSiall s Bapas A elld amy G jeka peddinall aglial) sadidgal 5 elhae) (A UL LagiSl 5 el
i KLl a5 eadiuall sl) e e 5 il

A panall i sell lipdali sk e (e el OSS S o) 830 (a5 S Uiy Jani Ay o i Sl
Dl glae] ae g S LAl Aaly o 5iS 2al 5 35S aladily S8 gl iy (gl 5) (W) 5 25)05 ity Jaad
il shall 4y Hlal FaY) jlall eUac Y S S Gl 2l o2 <l 508 (S cCpardiadl Ll
Lewlatinly # gaidll

Al Al peg cdaaall Caiy Sl Ak 84 Sl cliudaill 1oV g Aladl) agity V) a5 caad) a8
4 jlie Al 5 Jamy s o5V ol it Sl Il Ay Sl il ¢ ol] dda oasia - i agaiy
3 SIAN dallaall iy il Cle anls e Gl 5 oY1y i S N ity b jcdaal) cilagladl g
Gle Ua UHS i gadaill ey <55 A0 8 Gaa g peall ol Uyl dae D) 4dlaVl oy jUaddl DDl 5
(slne Cr A5 Sl e e clilul) ode iS5 1 5 ellad Ledl LS 5 S iy e (g it Al il
ila

L 3 shaal) cliplail) ¢l (o] 3aclise Ja ghad apaty Liad A5 laall 4 o dagis e ol ¢ Sl Cagll
i Sl

i U Sl aladinly 5) shaall cilpdaill ¢ 1aY) S 4l < jelal 85 ey S Il alatly dylay) sl
V73 O) e gy B 5 i) el (e (o 808 58 an g Y Al g 1 el 5l g5
O ot ¢ gaal) Andlaa il (g Gl gl (Y5 it S G sl (38 25 381 Jla Al e L 710)
i S I o il 3 Sy ghatl i A8y yla 005 o 5 i 8L el Ay g pusl)) (Y

09 3l Y A s e lan Ay B Ao s raal

O e g K&

cAal) Jand) oy g il 138 Slady (8855 alall Aty gl anil (3 Ja g Je dl SN 5 daal)
1 Ao ol gl doshall Jale) giSall 1 Gliia¥) g el Gaac 5 Sl Galliy 4a sl

e IS S il Uaa Dl (e o e Lo e (EE) daad) el KEIL 4aa 6 WS
AT) 5 Jaadl 138 alail e e (e JS g el slaall agai g 4 jaill 2 8 & LS

A 995) ga pual g

slaa)

i 5 U se L so LIS (1AL ¢ 3y 3adl ol 553 3 el Sall 5 () ¢l) aga 8 5 oalid) 328)
é laas a sled S c‘._.;

) il g g e SN ae Jasd g cbnall e g o Sl gha e (ad g Jaibe e)
Dol o) Sl s HAl

Canll 1aa dlae) L Lgiad) syl Alde cileas A Al S5 (2K 330)

& sl s acall S Lad AN ¢ a5y coall 5 SN oall 55 Al Sall g 6 3 3l ke)
i Jal ek UIS Gaadl 5 i Al

ALY A il g il g il g a5 a8 ol ¢ e Juadl) Jal s il)

Al g Uiaay g 4o Uiy o) L)l DUl ¢ aoal siall Jandl 128 agoaal oY sa JS)

iv

Table of Contents

ADSIFACE ..ot e i
LiSt Of FIGUFES...............oooeeeiiiieeeeeee et ix
LISt Of TADIES ...t X
List of ADDreviations.......................cccccoeiieiiiiiiiiiiiiiiiiieee e xi
ACKkNOWIedGEMENLESccccueiieiiiii et xii
Chapter 1 INtroductionccccooeeeeeeiveiiiieeiiiiiiieeeeeeciee e 1

1.1 Introduction and Motivationceceeeeeisieeecissneeecssneecsssneeecssssencssnns 2
1.2 Research Objectives and Problem Statementcceevvueeecrinneecnnnne 4
1.3 Overview of this ThesiS.....cccuveeiinseercisnneenissneecsssnneccssneecsssneeecsssseecssnns 5
Chapter 2 Background...................ccccooveiiiiiiiiiiiiiiieeee e, 6

2.1 DefinItiONS cocueeeeecisneecisseeecsssnnecsssnneecssssnescssseessssssescsssssesssssssssssssanssssssans 6
2.1.1 Mobile APPLICALION .ccceeiiiiiieiresssscsssssrnensnsneniesscsssssssssssssssssssssssssssesssses 6
2.1.2 Native develoOpmENntcccccereirnscssrvsnnnneneeeieeccscsssssssssssssssssssssssssssssss 6
2.1.3 Cross-platform developmentcceeeeeeeeeiiiiccccccsssssssssssnssnsssssessesssces 7
2.2 Mobile Platforms and Development..........eeeeeeieicccicssssscsssnnssnssssessesceces 7
22,1 HOS.uuiiiiiinticsnicnsneiessnnecssnessssnesssnsssssnessssssssssessssssssssssssssssssssessssssssssens 7
2.2.1.1 OS SErUCLULC. couuueeeersneeecssneeesssnneecssssneecsssnsesssssseessssssnssssssasssnns 7
2.2.1.2 APP SEIUCLUTE. cccoerrrrrssrsrrrrnnsessreeseescsssssssssssesssssssssssssssssssssssssssee 8
2.2.2 REACK. wuuueeeernreecisneencsinneencssnnnecssssneecssssnessssssssssssssssssssssessssssssssssssassssnns 9
2.2.2.1 Real DOM. ...uuiiiiuiiinneicsnnecnsnnecsssescssncssssncssesssssscsssssssssesns 10
2.2.2.2 Virtual DOMu....uuiiieiicseeinsneecsssecssssecsssnncsssecsssssssssssssssssssns 10
2.2.3 ReaCt NALIVE. cecvvveeecrssnneesssneecsssneecsssnnesssssnescsssssessssssessssssssssssssassssnns 10
Chapter 3 Literature Review................cccccovvuviiieieciiiiiieeeeiiiieeeeeeeienn 12

3.1 INtrOdUCTION...ccceceeeeeiineeecsineencssnneecssssnencsssnesssssseecsssssessssssanssssssessssnns 12

3.2 Criterion based comparative StUdieS.....eeeeeeeiiiieccscsssscsscrnsnnenseeeeeeccces 13
3.3 TimeStamps based comparative StUdiescccceeeersscccscnnennenneeeeeececes 15
3.4 Tools based comparative STUAIEScccvvveeereereiicccsssssscssssrensssssessesscces 16
3.5 [Emergence of React Native ...ccccceerrecciicsnnrrccssscsnnereccssssnssnncssssnssssees 18
3.6 Performance improvement StUAIeS....cccceeeeeeieeicccssssssssssrensssssessescsces 20
3.7 Highlight the gap of Knowledgecccccouerriiirvcnnericcssicnnnereccsscnnnences 21
IR TN 11111 11721 o O 22
Chapter 4 Research Methodologycccccoeveoiiiaiiiiiaaiiiieeeeeenn 23

4.1 INtrodUCHION...cccecieeieeiisneeecisneenissnneecsssnnencsssnnesssssseecsssssnesssssanssssssassssnns 23
4.2 Experimental Desi@N.......ueeeicericcsnnrrccisscsnnrnccssscsnssrnccssssnssssessssssnssssees 23
4.3 Identification of Prevalent Software Featuresccccocecverecciscnnnnne 24
4.4 Mobile Applications Selection (Development).......ccccccvvrnnneeeeeeeccceces 25
4.4.1 Internal StOrage.cccveereecsscsnnrreccsscsnsrrecssssssssncssssssssssssssssssssssees 26
4.4.2 File StOrage......uuueeeicessevnnrreccssssnerneccsssssssnnesssssssssssesssssssssssssssssssssens 27
4.4.3 Database StOrage.c.eeeereccsscsnnrrcccsscsnnrrecssssssssnncsssssssssssssssssnssssees 27
4.5 EXperiment SetUP....eeeeceeeeeeccccssssssssssssrssssssssssesssssssssssssssssssssssssssssssssss 27
4.5.1 Data Processing EXperiment.ccccoecceerrecesccsnerecccscsnsnneccsscnssenees 27
4.5.2 File Processing EXPeriment.cccoevccnerreccsccsnneneccssscnssseccsssnsssnees 28
4.5.3 Data Retrieval from Remote Server Experiment.eeeeeeeeeeeeceens 28
4.5.4 Processing of Images EXperiment.ccceevevnerreccscccnnnrcccsscnnsenees 29
4.5.5 Search EXperiment.cccccceernsscsscssrnnnnnnnnneesccccsssssssssssssssssssssssssssssss 30
4.6 Performance Evaluation.........eeeenneeeeciineeccssneecsssnncecssnseeccssnnencsnnne 30
4.7 Test EXPEriMENLS. ..uuueeeeeeeeieiecccsssssssssssrssssssssssessssssssssssssssssssssssssssssssss 32
4.7.1 Number of Runs Test.uueeeiiseeeiisneecissneecssneecsssnneecssneecsssssescssnn 32
4.7.2 Battery Level Test....iriiiricssnrriccsscsnnriccsssssnnsnnccssssnssssscssssnsssnees 33
4.8 Parameter Measurements and Data Collection.cccceereeeeccnnnnnee 33
4.8.1 App Launch Time........ccccceeeernnncsscsssnnnnnennneescesscssssssssssssssssssssssssssssss 33
4.8.2 CPU USAGE..cccrrvrnrrricisscssnnrrecsssssassrnecsses 34
4.8.3 MemOry USAGE. ...cccicerrccsnrreccssssnsrnecsssssssssnsssssssssssssssssssssssssssssssssssses 34

vi

4.8.4 Frames Per SECONM.ueueeeeeeierenereencereneceeeecereeecssesscssssssssssssssssssssses 34

4.8.5 Battery ConSUMPLION.cceeiervevnnrreccsscsnnernecssssssssrecsssssssssssssssssnssssecs 35
4.8.6 Execution Time.ieineeiiiiseencissnnecissneecsssneecssssneecssseescssssescssnns 35
4.9 Data Collection and ANalySis. c...cccceeeerscvnericcssicsnnereccssssnserecssssnssssees 35
4.10 EXperiment SCENATIOSccceeiecersssssssssssrssssssssssesscssssssssssssssssssssssssssssssss 35
Chapter 5 Experiments and ReSUILSccccevuveeeeeecciieeeeaeecnnnnnn. 37

5.1 Mobile Application Development.eeeeeeeieiccccccsssssscssnsssnssessesseccccss 37
5.1.1 Data Processing (Application 1&2)......cccccevvcvnerrcccsccsnneencccssccnnsenees 37
5.1.2 File Processing (Applications 3&4).cccevvcvmerreccsccsnnenecccsssnnsenees 38
5.1.3 Data Retrieval from MySQL (Applications 5&6).cccceeuueeeeee 38
5.1.4 Processing of Images (Applications 7&8).......eeeeeeeevccnnerreccsccnnnenees 39
5.1.5 Search (Application 9&10). ...eeeeeeeeeeiiiiiccsssssssssssrsnnsssseeseescssssssssnnes 39
5.1.6 Run ENVIronment.cceeeeiisseeecsssnnencsssneeccssneecsssssesssssseecsssssescssnns 40
5.2 Performance Evaluation: Results.cceeinueiecnnneecssnneecssneeccsannees 41
5.2.1 App Launch Time.....ccccoiiinnnvrrrrnnneeeiiciccccsssssssssssssssssssssssssssssssssssones 41

43

5.2.2 CPU USAGE..cuuuuuurrrriisssssnnrnecsssssssssnccsses 44
5.2.3 Memory USAGE. ...ccccervvvnrrrccsssssnnsenccsssssssssnscssssssssssssssssssssssssssssnsssssses 45
5.2.4 Frames Per Second.ueeeiiueeresineencssneenissneecsssnneccssnneecssssescssnns 46
5.2.5 Battery ConSUMPLION.ccccerrvvneerccsssssnnernccsssssssssnecssssnssssecssssssssssees 47
5.2.6 Execution Time.eeeiieeeeiissnencsssnencsssnnencssneecssssseecsssseesssssescssnns 48
5.3 Performance IMProvement.ccccccvvvsneeeeeereeccccccsssssssssessssssssssssssssscss 49
Chapter 6 CONCIUSIONcccccveeiiieeecciiiiieeeeeeee e 55

6.1 INtroduCtion......ueeeeeiieeeeciieeenissneecsssnnencssneecssssneecsssseessssssescsssanssssssene 55
6.2 Results DISCUSSION. couueeeecrireeencsinencsssnnencssnnecssssneecsssseessssssescssssaessssssene 55
6.3 Threats and CONSLrAINLS.ccecvvueeeessinencsineecissneecsssneecssssnescsssseescssssene 57
6.4 Difficulties and Obstacles faced throughout your research............ 57
6.5 Future WorkK....eeeiecnieeinininencnsnnnencsssneecsssnneecssseessssssescsssssescssssene 57
REfOFONCES ... 58

vii

APPDONAICES ..ot 64

Appendix A: APP StOre StUAY.....eeeeeceiiisserriccsssssnseneccssssssenncssssssssssecsssssses 65
Appendix B: Applications Screenshots.ccccoeecveeeeeccssccnnercccsssssnnnncccsssnnnes 69
Appendix C: Test EXPeriments.ccccevvcveeeeccsssssnneecccssssssenecssssssssssecsssssses 79
Appendix D: Instruments Tool Screenshots.cccceevcvneereccssccneeneccssinnnes 85

viii

List of Figures

Figure 2-1: i0S Operating System Layersccccceccvererccscccneereccssscnnseenes 8
Figure 2-2: Model-View-Controller Architecture [30].ccccceeeecunnnenees 9
Figure 4-1 city table with teXt.......cieeirieeiissneeciisneencssneccsssnneecssnneenens 28
Figure 4-2 city table with text and image........ccccecueeecsueeecssneencssnneenens 29
Figure 4-3 Instruments Tool........uiiviueeeiinneeninsneeecssneecsssnnencssnneenens 32
Figure 4-4 Methodology Phases.ccoouveeiiicinicnnnnneccssscnnnreccsssnnssnnes 36
Figure 5-1 App Launch Time cold run all AppsS.......cccoevvvuerreccccccnnnences 42
Figure 5-2 App Launch Time hot run on all Apps....ccccceeerecccvcnnnnne 43
Figure 5-3 CPU Usage on all APPS....cccceevvvnmricccsicsnnnriccssscnsnneccsssnssseees 44
Figure 5-4 Memory used on all AppS.......ceecneeeeciineeecisnneecsssneencssnneeeens 45
Figure 5-5 Frames Per second on all Apps......cceereicisccnnnrecccccnnnnnces 46
Figure 5-6 Percentage of main thread execution time all Apps. 48
Figure 5-7 Execution time for i0OS image AppP....ccccceeecccccnnnrecccsccnnnnenes 51
Figure 5-8 Execution time for React Native image App.ccceeeueeeeeee 52

Figure 5-9 Execution time for improved React Native image App....52
Figure 5-10 React Native Code Before Modification.ccuuueee.. 53
Figure 5-11 React Native Code After Modification.cccceeeeerneeeeee. 53
Figure 5-12 Execution Time for iOS & RN before and after

IMNOMITICALION. cuureerreerreeeeeneerecereeossesssessseccssssssssssesssesssesssssssssssssssssons 54

ix

List of Tables

Table 4-1 Prevalent Features

ooo

List of Abbreviations

Apps: applications

10S: iPhone Operating System

RN: React Native

JS: Java Script

FPS: Frames Per Second

IDE: Integrated Development Environment
SDK: Software Development Kit

OS: Operating System

UI: User Interface

MVC: Model View Controller

XML: Extensible Mark-up Language
JSX: JavaScript XML

DOM: Document Object Model

API: Application Programming Interface
GPU: Graphics Processing Unit

xi

Acknowledgements

I would first like to thank my thesis supervisors, Dr Adel Taweel and Dr Samer Zain of
the Master of Software Engineering program at Birzeit University. They helped me a

lot whenever I ran into a trouble spot or had a question about my research or writing.

I would also like to acknowledge Dr Radi Jarrar and Dr Mohammad Hussein as the
readers of this thesis, and I am gratefully indebted to their very valuable comments on

this thesis.

Finally, I must express my very profound gratitude to my parents and to my spouse, for
providing me with unfailing support and continuous encouragement throughout my
years of study and through the process of researching and writing this thesis. This

accomplishment would not have been possible without them. Thank you.

Author,

Bisan Abubaker

xii

Chapter1 Introduction

The number of smartphone users and consequently applications are increasing at
enormous speeds. In fact, the number of users has crossed over 3.2 billion users, and
some studies report it at more than 5 billion users and it is expected to reach about 3.8
billion users by 2021 [3]. Similarly, the number of tablet users is reported at 1.35 billion
users [4]. Smartphones are widely used at home, work and on the streets with
applications covering most, if not all, of human life aspects. Approximately, 90% of the
time spent on smartphones is on the applications downloaded on the mobiles from the
stores [S]. The number of available mobile applications available for download is
increasing surprisingly; it reached about 2.2 million applications for the Apple App
Store, and 2.47 million applications for the Google Play Store [6]. In addition to that,
because of the popularity and wide usage of mobile applications, the number of mobile
applications downloads has reached more than 194 billion downloads [7]. Those
applications need to be not just supported by their operating systems, but also by robust
software development frameworks. However, due to the large user base for both
Android and i0S, most applications are made available for both operating systems.
Consequently, programmers need to develop two separate applications using different
tools and programming languages for each platform in order to reach majority of mobile
applications’ users, even though the application itself is the same, which is a more
expensive process.

Many attempts solve the problem by giving the ability to write a single code using one
tool to work on both iOS and Android platforms. However, the code is written using
HTML, CSS and a web browser, which are embedded into the application, such
application is known as a hybrid app [8]. In this case, most of the code is shared between
the two development platforms, but there is a shortage in achieving a native Ul feeling
and usually the performance of the apps developed using this method is very poor. As
a result, a newly released framework called React Native born to enhance both the
performance, to become closer to the native OS, and the UI feeling, to become almost
as a native U, instead of using web components. Therefore, this thesis aims to study
the performance and efficiency of applications written in the new React Native

framework and proposes a software engineering method that attempts to improve

performance of React Native applications. The study focuses on the data centric apps,
due to their performance demanding, which handle data processing, reads and writes to
both a back-end server and local storage and files.

From our study, we found that the performance parameters including application launch
time, CPU and memory usage, battery consumption and frames per second are very
close for both i10S and React Native. The major difference was found is in the execution
time. 10S was faster by three times than React Native. However, we were able to
enhance the execution time to become very close to iOS by modifying the code of React

Native.

1.1 Introduction and Motivation

After the retreat of Windows Phone [9], two main dominants remain in the world of
smartphones, which are i0OS and Android. Normally, two separate frameworks are used
for the development of mobile applications, one for the i0S, which uses Xcode with
Swift or Objective-c language, and the other is the Android, which uses the Android
Studio with Java or Kotlin language. Actually, this is time, resource and budget
consuming process because, potentially, two separate teams with different skills would
be needed to develop two separate copies of the same mobile application. New
frameworks or tools have thus become available and widely popular to reduce the three
main factors, which are time, resource and budget. These tools are called mobile cross-
platform development frameworks [10, 11, 12].

There are several cross-platform development frameworks in use [10, 11, 12], including
Titanium, PhoneGap, RhoMobile, WidgetPad, and Xamarin [13]. One of the latest and
most preferred is React native [10], which is a JavaScript framework for building
mobile application with native look and feel for applications to work on both iOS and
Android [14]. It was introduced by Facebook in 2015 [15].

With cross-platform, a mobile application is developed once and it can run on any
operating system, which utilises the concept of “learn once, write everywhere” [16]. In
contrast, a native application is developed using a specific programming language, e.g.
Java, Kotlin, Swift or Objective-C, to work on a particular operating system, e.g.

Android or i0S respectively.

The decision to use a native or a cross-platform development framework is relative
somehow and depends on several factors. On the one hand, native development
provides higher levels of reliability and performance and delivers superior user
experience. On the other hand, companies need at least twice the time and resources to
launch their product on all types of mobile devices, this is because each operating
system must be supported by a discrete version of the application.

Moreover, for native platform development, programmers have to be skilled in multiple
programming languages, frameworks, and tools to support each of the sought native
operating systems. However, for a cross platform development, such as React Native,
developers do not build a “mobile web app”, an “HTMLS app”, or a “hybrid app”, but
they usually develop a mobile application, which is indistinguishable from a single-
platform application, built using java or swift. It simply requires putting the building
blocks of the application together using JavaScript or React [16]. Actually, there are
several advantages for cross-platform development, including improved time to market,

overall development cost, portability and maintainability and many more.

In addition to the advantages mentioned above, of using cross-platform frameworks,
more specifically, there are several reasons for choosing React Native for our study.
React Native is a single code base, completely free and open source, and supported by
Facebook. Also, generally, it has a well-supported and faster development and
application delivery than other frameworks with large community backing. Moreover,
the user interface is rendered using actual native views, which enables better final user
experience and better integrated solution than other solutions that simply render a web
component inside a WebView. Further, React Native has excellent user experience
because of the interaction with native controllers and the potential to achieve a near-
native performance because of the direct access to native APIs [16]. As a conclusion, it
is recommended to start development using React Native if the development team can

learn new technology [17].

1.2 Research Objectives and Problem Statement

The market of smartphone applications is enormous and rapidly rising. Moreover,
developing applications with good efficiency and performance have become very
important and really matter [18]. In fact, React Native is one of the newly released
frameworks that has not much previous research yet. Particularly, the performance of
the applications developed in it, in comparison to native ones, is not clearly determined.
Therefore, understanding the performance differences between native and React Native
is vital in order to decide which development path to choose.

The overall purpose of this thesis is to compare two particular features, namely
efficiency and performance, of applications between native and cross-platform
development. It focus, however, on i10OS and React Native platforms. Specifically, the
work will conduct a comparative analysis, of efficiency and performance, of
applications developed in XCode framework using objective-c language as a native i0S
programming language, against applications developed in React Native as a cross-
platform development framework. Notably, efficiency and performance include several
parameters to consider, including for example cpu usage, memory usage, application
launch time, battery consumption, framerate and many more. Another purpose is to
enhance React Native code development to improve its performance to become closer
to native 10S resulting into a guideline for more efficient React native code writing.
Our focus is on the data centric apps, such apps read and write data to back-end server

as well as local storage and files.

To fulfil the above purposes, the thesis attempts to answer the following questions:

1) RQ1: What are the differences between native iOS and React Native, as
development frameworks, on performance and efficiency of developed
applications?

2) RQ2: How can we improve the performance and efficiency of application

developed in React Native to become closer to native ones?

In our study, we have two hypothesis:
Hypothesis-1: React Native developed application features (specifically performance
and efficiency) are analogous to iOS developed application features. [Task-1:

Comparative study].

Hypothesis-2: Utilising code-modification engineering on React Native (as a cross-
platform framework) application development would result into improvement in
software features of applications (such as performance and efficiency), to become

comparable to native ones. [Task-2: Code- modification engineering guideline].

1.3 Overview of this Thesis

The remainder of the thesis is divided into four chapters. Chapter 2 gives a background
and description of both native and cross-platform development focusing on iOS and
React Native. Chapter 3 discusses the pertinent literature and sources available, and
identifies the research gap on the topic, to where other researchers have stopped.
Chapter 4 outlines the research methodology, which was followed to collect and analyse
the data. Chapter 5 summarizes the results achieved so far. Finally, chapter 6 shows a
small conclusion about the research so far and the findings on the literature review,

difficulties and obstacles, recommendation and future work.

Chapter2 Background

This chapter describes a brief background about native development, specifically iOS.
In addition to cross-platform development, specifically React Native. It also displays

the structure for both iOS and React Native.

2.1 Definitions
2.1.1 Mobile Application

A mobile Application is a software program that is intended to work on smart devices
such as mobiles, watches and tablets with a specific purpose [19]. There are several
categories of mobile apps! such as news, sport, entertainment and games. Those Apps
are found on the stores like Apple App Store or Android Google Play. They can be
either paid or free for download.

In fact, the trend for mobile applications came from the first generation of iPhone in
2010, which is led to the idea of the App store. Consequently, Apple released its App
store with 552 applications, 135 of them is free for download. After just one week, ten
million applications were downloaded and the popularity of the word ‘apps’ has

increased dramatically [20].

2.1.2 Native development

Native application development is the process of writing software that works on a single
platform with a specific operating system, processor and hardware. Application
development results into executable files that run on a specific type of mobile devices
(either iOS or Android), with a full access to the device hardware and functionalities
due to the direct interaction with the operating system [21].

For 108, developers need a Mac device with Xcode IDE [22] installed on it. In addition,
they need a physical device with compatible iOS to test the application on it.

For Android, developers need a Windows computer with Android SDK [23] bundled
with Android Studio IDE, in addition to a physical device for testing.

! The terms “mobile applications” and “mobile apps”, or “applications” or “apps” will

be used interchangeably throughout the thesis.

6

2.1.3 Cross-platform development

Cross-platform development is the process of writing software that works on multiple
platforms with multiple operating systems. In other words, the same code will work on
several platforms, like 10S, Android and Windows Phone [24]. Previously, if the
application operates on a single platform it was seen as sufficient. However, to expand
the users base, the application needs to work on all types of devices with different
platforms. Actually, there are many different tools and approaches for this type of
development which are interpreted, hybrid, cross-complied, component-based and

model driven development. Each with its own advantages and disadvantages.

2.2 Mobile Platforms and Development
2.2.1 10S

i0S is a mobile operating system specific for Apple hardware. It was developed by
Apple company in 2007. There are many versions of i0S, the latest version is 10S
13.2.2, which was released on the seventh of November, 2019. Actually, we will use

this version in our experiment [25].

2.2.1.1 OS Structure.

The type of the architecture of i0OS operating system is layered architecture. It consists
of four main layers. Those layers are built on top of each other. The first upper layer is
the Cocoa Touch layer, which is responsible for deriving the user interface like widget
and controllers, giving access to the main system functions like Camera, other apps and
Contacts. The second layer is the Media Layer, which handles audio, video and graphics
using several technologies like OpenGL, AV Foundation and Core graphic. The third
layer is the Core Services, which is responsible about the core system services needed
by the i0S application like location and networking. There are several frameworks exist
in this layer, such as Cloudkit framework, Core Location and Core Motion. The last
lower layer is the Core OS, which includes the low-level features that other frameworks
use and kernel operations. Usually, developers will not use this layer. Examples on the
technologies used in this layer are Bluetooth, External Accessory and Security Services

[26] [27]. Figure 2-1 below shows the layers of the i0OS OS.

Cocoa Touch

Media Layer

Core Services

Core OS

Figure 2-1: i0S Operating System Layers

2.2.1.2 App Structure.

It is recommended to use the model view control (MVC) [28] in the development of
10S applications in order to separate the presentation apart from the data and business
logic. In fact, using MVC makes it easy to use several screen sizes with different
resolutions without the need for big alteration in the code. This is because the view
component, which responsible for the presentation is separated from the data and
business logic. Therefore, the modification will be only in the view component. Below

is the description for each part.

e Model: it is responsible for the data in the mobile app, which includes
organizing, sorting and validating data. It notifies the controller when any
change in the data happens. This can be done in iOS using data objects, which

can be a database [29].

e View: it is responsible for the presentation and user interaction, i.e. it is what
the user sees and can interact with on the mobile screen. It also notifies the
controller when any user action happens. We can either create custom views or

use the default views provided by UIKit framework [29].

e Controller: it is responsible for the management process between the model and
the view, it takes data from the model and return it to the view for the
presentation process. On the other hand, after user interaction, it takes the
modified data from the view to the mode. Model and view do not interact with

each other. Figure 2-2 illustrates the MVC architecture.

User action .

Figure 2-2: Model-View-Controller Architecture [30].

2.2.2 React.

React is a JavaScript library intended to build user interfaces, it was created by
Facebook in 2013 [31]. The main contribution for React is to automate the update
process of the UL Previously, updating the UI of an application to reflect changes was
one of the developer’s responsibilities, which means that the developer must manually
modify the web browser’s Document Object Model (DOM) using JavaScript to update
the UI of an application. However, with React, all you need to do is to inform React the
current presentation of the application according to the current state. In fact, developers
just notify React that the state has changed in order to trigger UI updates by making
vital DOM changes.

Components are the heart of any React application. Actually, a component is a module
that renders specific output. In addition, it might contain one or more component in the
components’ output. Examples on components are button, input field and slider [32].
React uses Virtual DOM feature instead of working directly on the browser’s DOM, in
order to handle the process of re-rendering efficiently. Virtual DOM exists in memory

and it represents the browser’s DOM. Therefore, writing will not be directly to the

DOM, instead it will be written on the Virtual DOM and react will intelligently decide

which changes to reflect on the browser’s DOM.

2.2.2.1 Real DOM.

DOM stands for “Document Object Model”. The DOM in simple words represents the
user interface of the application. Every time there is a specific change in the state of the
UI of an application. As a result, the DOM gets updated to represent that specific
change. However, manipulating the DOM frequently directly affects performance by
making it very slow.

In fact, DOM represents the document as objects and nodes. Using this way, the
programming languages can connect to the page. It is an object-oriented representation
of a web page that can be manipulated with a scripting language like JavaScript.
Anything found in a HTML document can be accessed, changed, deleted, or added
using the Document Object Model [33].

2.2.2.2 Virtual DOM.

Virtual DOM is a collection of modules designed to give a declarative way of
representing the DOM for any application. Actually, instead of updating the overall
DOM when the state of an application is changed, virtual tree which looks like the DOM
state is created. After that, this Virtual DOM will figure out how to make the DOM look
like this efficiently without recreating all of the DOM nodes. Hence, the performance
will be improved in comparison with the real DOM. A virtual DOM is like a lightweight
copy of the real DOM. In fact, virtual DOM used in React Native, so this makes the
framework with higher performance that other web and hybrid frameworks that use real

DOM.

2.2.3 React Native.

React Native is built on top of React, which means that it is working on the same way
React work, but it renders Ul building blocks of the native (iOS or Android) platform
instead of rendering HTML elements. A mix of XML and JavaScript (JSX) is used to
develop React Native applications. After that, React Native ‘bridge’ calls the native

application programming interfaces in Java language for Android and Objective-C for

10

i0S, thus the final mobile application will render using native user interface
components instead of webviews, so it will look like any other application developed
natively. Moreover, applications developed using React Native gives you the ability to
access platform specific features like camera, Bluetooth and GPS. In fact, there are
many advantages for React Native, the main advantage which makes it better than other
cross-platform techniques like ionic [1] and Cordova [34] that depends on webviews
rendering, is the native Ul rendering. Actually, both webview and native Ul are working
but with drawback on the webview performance, so it is better to use React native rather
than any other cross-platform technique when the performance is a big matter. In
addition, applications developed using React Native can maintain high performance
without sacrificing capability, this is because React works separately from the main Ul
thread. Regarding the update cycle, similar to React, React Native re-renders the views
when state or props change.

From developer experience point of view, if any developer will start building a mobile
application using React Native for the first time, s/he will be surprised about the
simplicity of the work, in addition to the strength of the developer tools and meaningful
error messages. Also, the hot reload feature makes React Native unique from all other
cross platform frameworks; which means in order to see your code changes all you need
to do is press command + R instead of building your application again and wait until it
re-runs. Additionally, React Native developer has the freedom to either use any text
editor like Atom [35], Sublime text [36] or XCode, Android studio.

From code and knowledge sharing point of view, approximately most of the code is
shared between 10S and Android platforms, excepts for the pieces of functionality that
requires native code then you need to dive into objective-c for iOS and Java for
Android. In addition, React Native increase knowledge sharing between the team
members because you can target Web, i0S and Android using only one language and a
team with the same background, so they can share their knowledge with each other’s

[37].

11

chapter3 Literature Review

This chapter describes the previous studies that are related to the topic of mobile
applications and comparative studies. In addition, it highlights the gap of knowledge

for our research.

3.1 Introduction

In this part, we mention the previous studies that are related to our field of study. The
first section displays previous studies that depends on a specific set of criteria taken
from practitioners and domain experts to compare either between native and cross
platform approach or between more than one cross platform frameworks. Examples on
criterions are: maintainability, number of line codes, ease of development, license and
cost, access to device data and hardware. Those criterions were measured by using
specific mobile app, then asking to put a number from a specific range to reflect the
degree of criteria fulfilment with minor additions in the study like performance. The
second section lists studies that uses stopwatches to measure the execution time to
access device capabilities like compass, microphone, images, videos and geolocation.
It also uses questionnaire and interviews to collect information about the developers
experience in several frameworks and programming languages. The third section
displays studies that uses several tools to measure multiple performance parameters like
memory and CPU usage and response time. Power Tutor [38], Terpn profiler [39] for
android and Instruments [40] for iOS. The fourth section displays all papers that studied
React Native for any purpose, weather it is for comparison or it is for classification
purpose. Because the number of papers is very limited, we mention thesis that includes
React Native in their study.

The last section includes previous studies that stated the importance of mobile
application performance in both iOS and Android platforms. In addition, studies
showed that most of the errors and bugs are of type performance errors. Moreover, there
is a study that indicate the way Android developers fix their performance issues in the

mobile apps.

12

3.2 Criterion based comparative studies

On the one hand, several studies compared cross-platform development with both
native 10S and native android. Heitkotter et al. [41] compared the development of
native applications to a number of cross-platform application development frameworks,
which are web apps, PhoneGap and Titanium, based on several important criteria taken
from practitioners and domain experts, that is widely used when evaluating mobile
frameworks. The evaluation was made in two steps, the first one is by developing a
small prototypical application for task management and evaluate the specified criterions
on it textually in tables. The second one is by evaluating the degree of fulfillment for
each one of the criterions from 1 which means very good to 6 which means very poor.
The result was displayed in tables, two tables for each framework, one for the
development like maintainability, which is measured by number of line code and ease
of development, which is measured by the time it took in development and the existence
of user comments, and the other for the infrastructure criteria like the license and cost,
supported platforms and access to platform specific features. However, the authors did
not include React Native in their study, because it was released after the study. The
authors concluded that PhoneGap is applicable if a very close similarity to a native user
interface look and feel can be ignored. On the other hand, other studies limited the circle
by comparing several cross-platform tools and ended up with the appropriate
framework for development. One of them is Dalmasso et al. (2013) [42] , who made an
assessment that evaluate several cross-platform development frameworks, which are
PhoneGap, Titanium, Rhomobile and JQuery Mobile. The authors proposed several
decision criteria regarding portability concerns to take into account when choosing
cross-platform development framework, like application development cost, ease of
updating and time to market. Moreover, the authors defined the important requirement
that must be exist in a good cross-platform framework. Also, they analysed the
architecture of the cross-platform framework in general. In addition to criteria
evaluation like Heitkdtter et al. [41], they made an experimental approach, which
concentrated on a performance comparison from several sides like battery consumption,
CPU and memory usage. They made the measurements on a developed android
application as a test application with four specific measurement tools for android. They

use the Power Tutor [38] app in order to measure the battery consumption, which is a

13

famous application to measure power consumption in android devices. In contrast, two
different approaches were used to measure the CPU usage. The first one is to monitor
the state change and take a CPU snapshot at each change in the state during the overall
activity life cycle of the application. The states are onCreate, onStart, onStop, onPause
and onDestroy. The second approach is to read the top result every one second during
the overall application life cycle, then compute the average for each state. Regarding
memory usage, it was measured using a plugin added to the android studio. However,
they did not use a native application as a baseline to compare it with cross-platform
frameworks, nor did they include iOS specific measurement tools for evaluation on i0S
platform in their study. They reported that the power, CPU and memory consumption
is less in PhoneGap because it does not include dedicated user interface components.

Spyros and Stelios [43] presented the most famous cross-platform categories, which are
web apps, hybrid, generated and interpreted with a description, advantages and
disadvantages for each one of them. In addition, the authors made a comparative
analysis between the four mentioned approaches. They took subset of the criteria from
Heitk otter et al. [41]. The criteria are market place deployment, which measure if it is
easy or hard to deploy the application on the store. Second, the widespread technology,
which assess if the application can be created by a common, widely used technology.
Third is the data and hardware access, which measure the degree to which the
application can access the data and hardware of the device. Moreover, the user
perceived performance, which measures the degree of performance (low, medium,
high). The measurements were taken by trial, while the final one was taken from the
shared information on the web and the author’s personal experience. In addition, the
authors made a case study in which they developed a simple RSS feed application that
will get back the latest apple’s news and present the data on the mobile screen. They
used Titanium as an interpreted approach in their development. The result of the
comparative analysis showed that the generated application is the most favorable
approach although there is no non-commercial development framework for it.
Interpreted and hybrid came after the generated. Also, the case study showed that the
development of the application was easy using javascript and it worked well on both
10S and android without the need to write either iOS or android specific code. After
developing the application some criteria were verified on the application. But

unfortunately, there is a complete dependence between the application and the

14

framework, so if there is a need for new feature, it must be supported by the

development framework.

3.3 TimeStamps based comparative studies

Palsson (2014) [44], studied the execution time as a performance parameter on two
cross-platform frameworks, which are phone Gap as a hybrid framework and MoSync
as a source code translator tool, and compared them with both native iOS and android
development. The execution time measurement was done on a developed application
for each cross-platform framework. Actually, the application contains a set of buttons,
each button specialized with one feature, when pressing a button, a method is called to
make access specific feature, a time stamp is recorded when requesting the method and
another one is recorded when completion. The features under study are compass,
geolocation and file systems. Several calculations were made to compare the results
accurately. The author also conducted a cost evaluation to examine costs involved when
adapting cross-platform frameworks. In order to do this, a questionnaire with scale from
1 to 5 was made and distributed among many developers. It contains questions about
their skills in several programming languages like java, objective-c and c++. Moreover,
questions about the programmer’s experience in many IDE’s like XCode, android
studio and visual studio. Also, interviews were made to examine how the companies
organize the teams to work on specific project. After analysing the questionnaire and
interviews, the author reported that the choice on which approach to use is difficult and
relative, and depends mostly on the skills and competences the target organisation has,
and what kind of applications they are going to make. While MoSync gives better
performance than Phone Gap, but Phone Gap is more flexible, so it depends. In contrast,
other studies limited the circle by comparing cross-platform development with one
native type either iOS or android instead of both. For example, Seung-Ho Lim (2015)
[45] reported a study that compares between Android as a native framework and one
cross-platform which is PhoneGap as a hybrid framework by developing a social
network service and concentrating on the efficient utilization of device capabilities and
the graphical user interface in order to evaluate the better framework in aspect of
performance and development cost. The social network service application contains
several screens, each one with specific features. First of all is the personal user profile.

Second, friends list. Third, timeline new feeds, and Finally the messaging screen, which

15

enables voice, image and video chatting. The measurements were made using time
stamps, in the same way Palsson [44] made. The author concluded that the response
time as a performance parameter is less in case of native android, but unfortunately
because the hybrid framework can’t access the hardware, Lim could not evaluate how
efficient the device capabilities were. However, the author study just android as a native

framework, so we can’t generalize the results to iOS.

3.4 Tools based comparative studies

While Seung-Ho Lim (2015) [45] study the response time as a performance parameter
on one cross-platform, Arnesson [46] studied more performance parameters, which are
memory and cpu usage, energy consumption, and application size in addition to the
response time on two different cross-platforms types, which are phoneGap as a hybrid
frame work and codename one as cross-compiler framework, in comparative with the
android as native one. The goal of the paper was to show the performance variations
between the three frameworks and determine which cross-platform tool has the best
performance. The author made an experiment where three android applications were
developed wusing the three frameworks respectively. Then, the performance
measurements were taken using PowerTutor [38] and Trepn Profiler 5.1 [39] tools. The
application contains functionalities like sort random numbers, print the prime number
and write to SQL database. The author concluded that there isn’t a very big performance
difference between the two cross-platform frameworks but Phone Gap was the best.

Moreover, Willocx et al. [47] made a comparative experiment between cross platform,
native ios and native android. Their experiment was a quantitative assessment of
performance in mobile app development tools. They chose two cross platform tools
from different categories, which are PhoneGap and Xamarin. They studied several
performance parameters like cpu usage, memory usage, response time, disk space and
memory consumption on a small demo application that make search according to the
GPS location and return the searched values. Response time was measured in different
situations, when starting the application, resuming and pausing the application using
DDMS tool for android and instruments tool for iOS. However, CPU usage was
measured only during the start of the application using TOP command for android and
instruments tool for i0S. In contrast, memory usage was measured two times, the first

one is when the application starts and the second is when the application went to the

16

background using ADB command in android and instruments tool in i10S. Disk space
was measured by simply reading the size of the application. The final results from the
tools were written in tables for the purpose of comparison. The authors concluded that
cross platform tools always add performance overhead over native ones. However, this
overhead is frequently acceptable for specific applications. Moreover, behavioral
aspects can determine the choice of cross-platform framework. For example, phoneGap
could be chose if complex GUI design is needed, while Xamarin [13] might be
prioritized for CPU comprehensive applications. The authors repeated their study in
2016 with several enhancements. First, more cross-platform frameworks are included
in their study. Actually, they compared ten cross-platform frameworks with native 10S
and native android in order to draw more general conclusion. Second, a detailed
summary is determined for cross-platform development framework selection.
However, the authors did not include React Native as a cross-platform framework in
their study.

Another previous study was by Xiaoping et al. (2018) [48], who made an experiment
that study the following performance parameters: building time, Ul response time,
memory usage, application size on different cross platform tools, which are Xamarin
[13] as cross-complied framework, Apache Cordova as a hybrid framework, Titanium
as proxy native framework and both native iOS and android, but they did not study react
native. The authors developed identical mobile applications in each framework in order
to compare them. Basically, the application contains two main screens, the first one is
the initial screen, which is a configuration screen for setting up the required parameters.
While the second screen is the main screen, which show many contents on the screen
with variable sizes according to the configured parameters in the first screen. Actually,
they concluded that there are significant differences in the performance characteristics
of applications developed using different approaches. For example, building time,
which was measured by the time it took to build the application, is less in cross-platform
than it is in native. Regarding rendering time, native android and Xamarin [13] showed
nearly constant rendering time regardless the view size. However, native i0OS, Apache
Cordova and Titanium showed an increasing in the rendering time with respect to the
view size. Memory usage was measured with the same tools used in [48], with a result
of increasing required memory when the view size increased. Finally, the size of the
application, which was measured by reading the application size, was found to be less

in case of native android and iOS than it is in cross-platform framework.

17

3.5 Emergence of React Native

As mentioned earlier, React Native framework has not been widely studied in previous
research. In fact, small number of papers studied React Native, one of the notable ones
is by Majchrzak et al. (2017) [49]. The authors discussed the success factors and
features of three cross-platform frameworks: React Native, lonic and Fuse, outlining
their potential strengths and weakness points. The Design-Science Research [50]
methodology was used in the research, a short survey with ten questions was used to
collect data about the frameworks popularity and the responses, which were analyzed
to provide the first round of evaluation. A prototype application was developed with
several features such as making http request, access device camera, access device
contact and make phone call. They found that the most popular issues regarding the
development of cross-platform applications are remote data fetching, user experience,
application performance and technical implementation. In addition, Nunkesser [51]
suggested a new taxonomy for mobile app development instead of the original
classification, which is web, native, interpreted and hybrid. The new classification is
endemic apps, pandemic apps and ecdemic apps. The authors used mobile OS
supportability as a main criterion for the classification. Endemic apps include all
applications built with IDEs and SDKs that are provided by mobile OS vendors like
Apple’s XCode and Google’s Android studio. However, pandemic apps include
applications developed using technologies that are supported by every major mobile
operating system, such as HTML, CSS and JavaScript. React Native is classified as
pandemic app because it uses JavaScript language. The last one is the ecdemic apps
which includes applications built in a framework that uses a language that is not
endemic to the mobile OS, such as Xamarin [13] that uses C# programming language.
Ghinea and Biern-Hansen [52] studied how interpreted and hybrid apps facilitate using
device native features such as camera, Bluetooth and device storage, and how
communication bridges are developed and then integrated. The authors made the study
as a result of a questionnaire that was distributed among several companies, with most
of the respondent said that according to their experience, it is hard to integrate with
device API’s. React Native and lonic frameworks were chosen for the study. Two
applications were developed, one for each approach. The application is called
FetchImage, it fetches an image from the device storage and return it back to the

application side in order to display it in an image preview. The execution time of both

18

bridges was measured using performance.now() [53]. It was found that the
implementation of communication bridges is fast and easy. In fact, it is five times faster

in case of hybrid applications.

There are some recent theses that studied React Native, however it is based on single
mobile application and compared React Native to native Android or to other cross
platform tools. For example, Furuskog and Wemyss (2016) [54] conducted a study to
assess React Native to more conventional parallel development. The authors compared
the execution time of both Xamarin [13] framework and React Native [11], they used
stopwatches to measure the execution time. In fact, their study was simple because it
took a hello word program. They concluded that React Native could potentially be used
successfully in order to develop cross-platform applications. However, their evaluation
was based on the studied example and thus limited in scalability. For future work, they
suggested to conduct performance test on more complicated applications. In addition,
they suggested to make the study between React native and another native platform
such as android or i10S to compare between native and React Native. Another work by
Danielsson (2016) [55] reported a study that compares between Android as a native
framework and React Native as a cross-platform framework on several features like
user experience and performance. An application called Budget Watch was developed,
which helps the users to manage their budget. After developing the application, many
users asked to use both React Native and Android version, then answer some user
experience questions to see if there is a big difference between them. Then, to study the
performance, the author used Android specific tool, which is Trepn profiler [39] to
measure GPU frequency, CPU load, memory usage and battery power on both versions
of the application. The answers from the users were analysed and plotted in a graph.
The performance tests were repeated three times and the mean values were calculated.
The author found two main results, the first one is that despite some differences, but
most users could distinguish the React Native app from Android app on the studied
features. Secondly, React Native application does not have as good performance as
native applications. However, the performance differences are very small. For future
work, the author suggested to make another thesis that compares between React Native

and 108 platform because it is not included in the study.

19

3.6 Performance improvement studies

Mobile application performance is one of the top concerns for both software engineers
and mobile end users, a recent study was done by Khalid et al. [56] . The authors studied
the user reviews on a set of free and most popular iOS apps that are available on the
app store. The authors used a web service called Appcomments that has the
responsibility of collecting all user reviews, then parse them into app name, review title
and comment. After collecting reviews, they analyzed 6K+ of them and they found that
unresponsiveness and heavy resource usage are among the major reasons for the
negative user reviews. In addition, Liu et al. [57] conducted a study of a set of
performance bugs collected form 8 popular android apps. They studied in depth the type
of the bug and how it occurred, then they identified common bug patterns. The authors
reported that 11K+ out of 60K Android apps have suffered or are suffering from
performance bugs.

For the best of our knowledge, there is no previous studies that concerned with
improving the performance of applications developed using React Native framework
or any other cross-platform tool. On the other hand, Linares-Vésquez et al. [S8]
analyzed real practices that are followed and actual tools that are used by developers to
fix performance related bugs. The authors had surveyed 485 open source Android app
and library developers. After that, they manually analyzed performance bugs and fixes
in their app repositories hosted on GitHub. They concluded that developers rely on both
user reviews, manual execution of app and profiling measurements tools to fix

performance problems.

20

3.7 Highlight the gap of knowledge

While most of the above studies reported generally the advantages of native frameworks
over cross-platforms, the counter-values and advantages of developing in cross-
platform are very attractive that include improved time-to-market, overall development
costs, portability and maintainability. Although the above studies mainly conducted
comparative studies in attempt to understand the capabilities and features of the two
different types of platforms, there has not been reported work that studies the
performance of React Native code in comparison to native iOS or considers how to
improve the development, in terms of application engineering, of cross-platform
applications to become as much as comparable to native ones. Therefore, to address
this gap, this thesis, will undertake two main research tasks, with greater focus on the
first:

1) Will conduct a more detailed comparative study of a cross-platform framework,
specifically React Native, and a native-platform framework, specifically iOS,
on specific development engineering features, with focus on performance and
efficiency (e.g. CPU usage, memory usage, application size). To the best of our
knowledge, a detailed analytical comparative study on React Native and iOS,
has not been reported previously, thus such study will produce useful results by
its own.

2) Will develop a software development engineering guideline that will aim to
improve cross-platform applications to become, as much as possible,
comparable to native ones on some of the studied features in task 1 above. The
method will utilise code-modification engineering, similar to the concept of
code-transplantation [59], techniques to improve cross-platform development.
Actually, code- modification has been shown that it has potential of identifying
software features and aspects and inducing code observation and replacement.
To the best of our knowledge, we are not aware of any other method or

technique that may provide a potential solution to this above problem.

21

3.8 Summary

As we saw from previous studies, most of the concentration is on other frameworks,
such as Titanium and phoneGap, very few papers mentioned React Native in their
studies. In addition, from the native point of view, most research was done on Android
as a native platform not iOS. Several studies have been conducted to compare React
Native to Android development [55]. Thus, React Native framework and i0S platform
are particularly interesting for further study since they mark a new step of approaches
that also introduce paradigmatic shifts. Therefore, this thesis studies React Native
application development, as a cross-platform software development framework,
compared to iOS application development, as a native software development
framework. Specifically, it studies performance capabilities of applications developed
in React Native compared to those developed in the iOS to provide a better informed

software engineering decision for mobile development.

22

Chapter4 Research Methodology

This chapter describes the used research methodology, including mobile application
selection and software prevalent features, measure software characteristics or

parameters, measurement metrics and data collections.

4.1 Introduction

In order to approach the problem statement and answer the research questions to reach
a valid conclusion, a set of research methods have been employed. These include
identifying research gaps conducted in the related work in chapter two. It also includes
detailed steps to obtain results. In this chapter, we describe the approach used for
designing the comparative study and how the data were collected. We describe the
experimental design, the identified prevalent software features for the study and the
different developed applications employed for each of the designed experiments. Also,
we describe how the experiments’ data were collected and results were analyzed, the
tools that were used for measurement and the justification for choosing the selected

tools.

4.2 Experimental Design

To conduct a comparative study between mobile applications, we undertook the
following steps:

1- identification of software features of importance or prevalence to study: this step
aims to identify and obtain the most important (prevalent) software features in mobile
apps, ones that are most commonly used or developed in most mobile applications. The
significance is to identify software features of value and importance to software
engineers, that has high performance implications and are frequently developed and
exists in mobile applications, for which to understand React Native performance
implication and behavior, opposed to studying software features that are seldomly
developed or exists in mobile applications or has low performance implication.

2- identification and selection of suitable mobile applications: this step aims to identify
and select suitable mobile applications that have or implements the identified prevalent

software features of interest.

23

3- Experiment design and setup: this step aims to design experiments to evaluate of the
chosen applications for each of the identified prevalent software features. To measure
performance for each of the prevalent software features correctly, this involves setting
up an experiment for each, including choosing or developing a suitable experiment, and
using the correct measurement tools and data collection method for each of the

performance factors, e.g. execution time, CPU, battery usage, etc.

These are described in more details in the sections below.

4.3 Identification of Prevalent Software Features

To identify prevalent software features, we conducted a study on the most popular
mobile apps in the App Store. As a first step, we took the top five categories that has
the largest number of applications from the App Store. We found that App Store has a
total of 27 categories. After categories analyzation [60], we concluded that business,
education, games, utilities and lifestyle are the top five categories. Next, we scanned
the applications in each category in order to take the top ten rated applications,
downloaded them and analyzed them well. After, we studied each of the chosen
applications and identified the functional features that each application provides. Each
software feature was given a unique id and since our comparative study focuses on
performance, the degree of each feature’s implication on performance is identified as
low, medium or high. The implication of a feature on performance was estimated by
how frequently it is executed (i.e. frequency of executions) within the application in a
session (i.e. rate of execution), thus its increased potential implication on CPU usage
and battery usage. For example, the “sign in” functional feature is executed only one
time when the application is launched, while “Data retrieval from remote database
server” is executed many times in any given session. Then, we calculated how
frequently each of the identified functional features is used in amongst studied
applications. Functional features that are most frequently used in applications (i.e. has
high frequency of use) with high performance implications (i.e. high rate of execution)
are the most prevalent features, i.e. the ones that are repeated in most of the applications
and has high performance implications. Details of the study is shown in Appendix A.

The top five prevalent features, identified from the results of the study, is shown in

Table 4-1. As shown, for example, “sign in/up” feature has the highest frequency of

24

use, which means that it repeatedly existed in almost all applications. However, it has
low performance implication, since it has a low rate of execution, thus it was ignored.
While, “Data retrieval from remote database server”, which has high frequency of use
and high rate of execution, thus has high performance implication.

In addition, we found that “processing of images” has high frequency of use in
applications and high rate of execution or high-performance implications. Additionally,
it is used within or interlinked with other functional features, e.g. search and scrolling.

Further, displaying text or numbers, scrolling and search were found as prevalent

features.
Number Prevalent Feature
1 Processing of local data
2 Processing of file data
3 Data retrieval from remote database server
4 Processing of images
5 Search through texts and images

Table 4-1 Prevalent Features.

4.4 Mobile Applications Selection (Development).

After identifying prevalent features which are the ones that are repeated in most of the
applications and has high performance implications, we searched for applications that
have or implements similar prevalent features from relevant Internet repositories, in
both languages, but unfortunately, we could not find identical or sufficiently software-
feature similar mobile applications with the required components. Thus, we developed
and built the applications from scratch. For this, we have taken a similar approach to
Willocx et al. [47] and Xiaoping et al. (2018) [48]. However, instead of developing only
one small demo application for each platform, the aim is to develop several applications
for each platform to make results more scalable, reliable and generalizable.

To study different features and capabilities of the two mobile frameworks, a set of two
separate applications need to be developed, one for each framework, i.e. one developed
in React Native, and one developed in native i0S. Each set of the two developed
applications implements a specific software feature in order to make sure that all

prevalent features are studied separately. This helps to study performance

25

characteristics of each prevalent software feature and measure them correctly, isolating
influencing independent variables or factors and/or minimizing their effect. The
following five software features will be considered:

1- To develop two applications that implement “data processing”, stored and
processed inside the application itself without the need for external storage (i.e.
internal storage).

2- To develop two applications that implement the functional feature “file
processing”, as a local storage.

3- To develop two applications that implement the functional feature “data
retrieval from remote server”, such as a database server, e.g. SQLite [61] and
MySQL.

4- To develop two applications that implement “processing of images”, such as
loading and displaying of images, through searching or scrolling, using remote
MySQL database.

5- To develop two application that implement a functional feature of “search”,

such as searching through a list of texts, using internal storage.

These applications are described in more details below.

4.4.1 Internal Storage.

As a first step, we started with applications with static data, which means data is stored
inside the application itself, i.e. it does not use external storage, local or remote. We
developed two mobile applications, one of them is native iOS app using XCode with
objective-c language and the other is React Native app using Atom with JavaScript
language. These applications contain two main tabs. It aims to sort a dynamic list of
numbers using two known sorting methods, which are insertion and merge sort. Since
the general functionality on data processing, sorting function was used since it is a data-
intensive function and heavily utilise the device memory. The numbers are stored
statically inside the application itself; the numbers are displayed inside a list view; the
numbers count will be changed to measure performance behavior on scalable list of

numbers.

26

4.4.2 File Storage.

The second step in the research is to develop the same applications in the previous

section but the difference is that data is stored inside files, which are local storage.

4.43 Database Storage.

In this step, we will develop applications that deal with database, which is remote
storage. For study scalability, we will build more than one application for each platform,
we will use MySQL database server. We will start by developing application that
retrieve only texts from the database. The text will be names of cities. After that, we
will develop application that retrieve names of cities with images. The last step is to
add the search functionality to both text and images. After developing those

applications, it will be ensured that all prevalent features are included in our study.

4.5 Experiment Setup.

In this section, we describe how exactly we are going to test each prevalent feature. For
each experiment, we will define the independent variable and list all the dependent
variables and how will we fix them to not affect the results. In general, for all
experiments, we will use the same mobile device and the same computer machine in all
of the experiments below in order to remove any dependent factor of the mobile device
used for testing or the computer machine used for development. Specifications of both
is mentioned in section 4.6. More details about each experiment are described in the

subsections below.

4.5.1 Data Processing Experiment.

In this experiment, we want to measure the effect of data processing feature on the
performance of applications. The application is developed to implement number-
sorting. The independent variable in this case is the list size, which means the count of
numbers to be sorted. We will use power of 10 for the list size. However, there are many
independent factors that may affect results, but are fixed. One of them is the sorting
methodology, to overcome this factor we will use the same sorting methodology in both
10S and React Native. Another one is the internal device memory; we will use the same

device with large memory (32GB) to not affect results.

27

4.5.2 File Processing Experiment.

In this experiment, we want to measure the effect of file processing applications on the
performance. The application implements number-sorting application. The independent
variable in this case is the list size, which means the count of numbers to be sorted. We
will use power of 10 for the list size. Other independent factors are fixed. For example,
the type of file (.txt .pdf .docx etc.), we will use .txt file in both i0OS and React Native.
In addition, we will use the same sorting algorithm on both platforms to make sure that

list size is the only factor.

4.5.3 Data Retrieval from Remote Server Experiment.

In this experiment, we want to measure the effect of remote data retrieval applications
on the performance. The application retrieves the name of cities around the world from
a database server and displays them. The used server is MySQL. The independent
variable in this case is the size of the database table, we will change it by modifying the
number of records in the table. Power of 10 records will be used. However, there are
many other independent variables that may affect the experiment, one of them is the
network connection, to eliminate its effect, we will use locally hosted server. Another
factor is the type of the server used, we will use the same server, which is MySQL, for
both iOS and React Native, to make sure that the experiment is being done on the same
server. In addition, the maximum limit of database memory being transferred through
the server. In order to solve this, we make it infinity. Also, the internal memory of the

device, which is very large and the same for both platforms.

The database table consists of two basic columns, one for the id of the city and the other
for the name of the city. The size of the table is 6KB, 16KB, 64KB, 400KB, 4.5MB,
36MB, 360MB, for which the number of records/rows is 10 to the power 1, 10 to the
power 2, 10 to the power 3, 10 to the power 4, 10 to the power 5, 10 to the power 6 and

10 to the power 7 respectively. The structure of the table is shown in figure 4-1, below.

Name Type Collation Attributes Null Default Comments Extra Action
1 id int(11) No None AUTO_INCREMENT 7 Change @ Drop = More
2 hame vyarchar(200) utf8mb4_general_ci No None »~ Change @ Drop = More

Figure 4-1 city table with text.

28

4.5.4 Processing of Images Experiment.

In this experiment, we want to measure the effect of processing images on the
performance. The application retrieves the name of cities around the world alongwith
their images from a database server and displays them. The used server is MySQL. The
independent variable in this case is the size of the database table, we will change it by
modifying the number of records in the table. Power of 10 records will be used
However, there are many other independent variables that may affect the experiment,
one of them is the network connection, to eliminate this effect, we will use a locally
hosted server. Another factor is the type of the server used, we will use the same server,
which is MySQL. In addition, the maximum limit of memory being transferred through
the server. In order to solve this, we make it infinity. Also, the size of image is another
independent factor, we will choose the same size for all images which is 31KB to
neutralize this factor. Another dependent variable is the type of image (i.e. image
extension) used. We found that png is the best extension for mobile apps, so we will

use only png extension for all images in both iOS and React Native [62].

The database table consists of three basic columns, the first one is for the id of the city
and the second one is for the name of the city. While the third one is for the image of
the city. The size of the table is 6KB, 16KB, 128KB, 1.5MB, 8.5MB, 81MB, for which
the number of records/rows is 10 to the power 1, 10 to the power 2, 10 to the power 3,
10 to the power 4, 10 to the power 5 and 10 to the power 6 respectively. The structure

of the table is shown in figure 4-2, below.

Name Type Collation Attributes Null Default Comments Extra Action

1 id int(11) No None AUTO_INCREMENT 7 Change @ Drop = More
2 hame vyarchar(200) utf8mb4_general_ci No None & Change (@ Drop = More
3 image blob No None &7 Change @ Drop + More

Figure 4-2 city table with text and image

29

4.5.5 Search Experiment.

In this experiment, we want to measure the effect of search functionality on the
performance. The application displays cities with their images with addition of search
bar that enables to search on internal storage for specific city. The result of the search

is both the city name and its image

Studied independent variables:
- Number of rows/records: each row contains <CityID, CityName, CityImage>. The

number of rows (or cities) is changed x"1 to x*10.

Fixed independent Variables:
- size of image: is fixed at 31KB
- type of image: png (We found that png is the best extension for mobile apps, so we

will use only png extension for all images in both iOS and React Native).

4.6 Performance Evaluation.

The focus of the study will be on performance and efficiency of mobile applications
developed using React Native and native i0S, as mentioned in section 1.1. Performance
and efficiency include several parameters to measure. However, before start conducting
measurements, we must first choose a set of parameters that are considered the most
important. According to Corral et al. [63], there are a number of different parameters to
choose from when evaluating the performance of a mobile application. They argue that
execution time, memory usage and battery consumption are all useful aspects to
consider in performance and efficiency assessment. Dalmasso et al. [42] additionally
evaluated the CPU usage. In addition, Willocx et al. [47] studied several performance
parameters including cpu usage, memory usage, response time, disk space and memory
consumption on a small demo app. Also, Xiaoping et al. (2018) [48] studied building
time, Ul response time, memory usage, and application size on a very small basic

mobile application.

30

For the purpose of this thesis, the focus will be on CPU and memory usage, execution
time and battery consumption. Additional focus will be on the number of screen frames
rendered per second, because it affects the rendering speed which is an important factor
especially in videos and scrolling through a list view. And finally, the application
launch time will be measured, because it gives a first impression about the performance

of the mobile app.

In order to take measurements, several tools are reported in the literature. Some
researchers used stopwatches [44] [45] [54] to measure the execution time. Others [47]
[48] used Instruments tool [40] that is bundled with the XCode to measure other
performance parameters of an i0OS application. On the other hand, we found that [46]
used Power Tutor [38] and Terpn profiler [39] to measure the performance parameters

of Android application.

For the purpose of this thesis, Instruments tool will be used for making measurements.
In fact, it contains many packages, each package is specialized with one or more
parameters. Examples of the packages are: Activity Monitor, Time Profiler and Core
Animation [40]. Figure 4-3 below shows the main screen of the Instruments tool with

its packages. Screenshots for each package is found in Appendix D.

Regarding the measurement environment, each parameter will be measured using both
the simulator and real iPhone device. In order to generalize results, more than one
simulator will be used and more than one device will be used. iPhone8, iPhonel 1 will
be used as simulators and iPhone7 and iPhone8 as a real device. The same computer
machine will be used in the experiment. The specification of both mobiles and computer
machine are exist in the next chapter. No other applications, in the run environment,
will be active before recording to make sure that they did not affect the results. Local
host server will be used as remote server to eliminate the emergence of additional

factors such as network connection issues which is not always stable.

31

Choose a profiling template for: I Bisan’s iPhone (13.2.3)) FirstApp

SIELHGEIGGM Custom Recent
|
LA
|
u ‘
|
|

. 4

@
Q

CIEN =

Blank Activity Monitor Allocations App Launch Core Animation Core Data
Counters Energy Log File Activity Game Leaks Metal System
Performance Trace

D

g O

” Activity Monitor
u Monitors CPU, memory, disk, and network usage statistics for processes and the system.

¢
B
c

&

Open an Existing File... Cancel

Figure 4-3 Instruments Tool.

4.7 Test Experiments.
In this section, we list some test experiments we undertook in order to determine
optimal values for run parameters. More details and screenshots for each test

experiment are shown in Appendix C.

4.7.1 Number of Runs Test.

To determine the optimal number of runs for performance parameters, we made three
test experiments on all performance parameters. The first one is with five runs, while
the second is with 10 runs and the third is with 20 runs. We found that there is no major
change in the obtained results when we increased the number of runs to ten or twenty,
the differences were very minor. So, results are obtained and averaged for five runs for

each experiment. Screenshots for the 5, 15 and 20 runs are shown in Appendix C.1.

32

4.7.2 Battery Level Test.

To study the effect of the battery level on the performance parameters, we made test
experiments on the three battery levels (low, medium, high). Low level is less than 20%,
Medium level is between 40% and 70%, High level is above 80%. We took the
Application Launch Time as performance parameter and took the measurements in each
of the three levels. However, we found that there is no difference in the results
regardless the level of battery. So, it doesn’t matter. Screenshots of this experiment are

shown in Appendix C.2.

4.8 Parameter Measurements and Data Collection.

In this section, a brief description and the way data is collected for each performance

parameter in the study is described.

4.8.1 App Launch Time.

This parameter tracks the amount of time the application needs from performing action
to open the application until the application renders the first frame and then ready for
use. It also tracks the application life cycle, which includes all the setup and
initialization process to end up with the application in the foreground. We will use App
launch package from Instruments Tool to measure this parameter. Actually, It shows
the application life cycle in details and the time required for each phase to be completed.
The first phase is the system interface initialization. The second one is Ulkit
initialization and then Ulkit creation. After that, the initial frame rendering phase then
the application will be in the foreground. We will repeat the test for each application
five times. five times will be used because we made test experiments and concluded
that five is the optimal number of runs. We will make cold and hot launch to compare
the behavior in each state. Cold launch means opening the application for the first time
after rebooting the device, which means that the app process does not exist in the
system’s kernel buffer cache. While hot launch means opening the application after it

has been gone to the background [64].

33

4.8.2 CPU Usage.

This parameter tracks the percentage of the total CPU capacity of the mobile device
used by an application in a specific time interval. For our evaluation, the CPU usage at
the start of the app will be measured, because it gives an interesting benchmark to
compare between i0S and React Native. In addition, CPU percentage during the app
usage will be measured. Activity Monitor will be used to measure this parameter. It is
one of the packages that comes with the Instruments tool.

We will collect the percentage of CPU usage by each application by making five times

of runs on each application.

4.8.3 Memory Usage.

This parameter tracks the amount of RAM consumed by the application during the
application’s operating time. It will be measured when the application starts and
become in the foreground, and when it goes to the background. In addition, we will
measure the usage of RAM memory used while the application is in use. We will make

five runs on each application.

4.8.4 Frames Per Second.

This parameter tracks the number of frames that are rendered per second and the
percentage of GPU hardware utilization. In addition, it tracks the minimum and
maximum FPS, the minimum and maximum for the percentage of GPU hardware
utilization. Also, the standard deviation for both FPS and GPU hardware utilization
percentage. We will measure FPS by making stressed test. We will use Core Animation
package from Instruments tool to measure this parameter. In order to collect data, we

will make five times run for each application.

34

4.8.5 Battery Consumption.

This parameter tracks the usage of the device battery. For sure, mobile users don’t want
apps to drain their batteries. So, it is vital to check the battery usage. We will use Energy
Log package in the Instruments tool to measure this parameter, we will repeat the test

on each size list five times. We will make the test on both low and normal power mode.

4.8.6 Execution Time.

This parameter tracks the time it takes for the threads to be executed. We will measure
the execution time for the main thread in both iOS and React Native and compare
between them. In addition, we will measure the execution time for the bridge in case of
React Native. We will use Time Profiler package. We will repeat the recoding on Time

profiler five times to get accurate results.

4.9 Data Collection and Analysis.

All the collected data above will be exported in excel sheets and tables. They will be
analyzed regarding mean, medium, minimum and maximum values. They will also be

plotted in statistical charts for the purpose of comparison.

4.10 Experiment Scenarios
Below is a list of the repeated experiment scenarios performed in order to take
measurements:
1. Made cold and hot Launch for all applications to measure launch time
2. For each software prevalent feature, run each developed respective application
for changing values of the respective independent variable, e.g. list size, table
size, to measure CPU usage.
3. For each software prevalent feature, run each developed respective application
for changing values of the respective independent variable, e.g. list size, table

size, to measure memory usage.

35

4. Scroll in the list for 60 seconds to measure the frames rendered per second. 60

seconds was chosen as a measurement timeframe, because the ideal rendering

is 3600 frames per 60 seconds.

Run each application on both low and normal power mode to measure power

consumption.

For each software prevalent feature, run each developed respective application

for changing values of the respective independent variable, e.g. list size, table

size, to measure execution time.

The figure below summarizes the overall phases that we will follow in our research

o

Study App Store apps to

A 4

determine prelevant features.

Application development on both
iOS and React Native.

Profile the applications using XCode
tool.

Start

|

make test experiments (num of runs
+ battery level)

|

choose the suitable packege from
Instruments tool according to the
required performance parameter.

}

Analyse the results by calculating
average, min and max value for
each parameter.

le—

Repeat each test Scenrio for
each performance parameter
ten times.

le—

Collect data for each parameter by
applying specific test scenrio on each
app.

A

Plot each performance parameter in
a diagram to compare behaviour

Repeat for the remaining

v

applications

Figure 4-4 Methodology Phases.

36

—@

End

Chapter 5 Experiments and Results

This chapter presents the results that were recorded from the run experiments as
described in the previous chapter. All measurements have been conducted five times to
make sure the results are correct. Also, mean, medium, minimum and maximum values
are listed for each test scenario. In addition, a statistical chart is included for each

measurement.

5.1 Mobile Application Development.

Based on the results of the prevalent features study, for which the top five prevalent
features were considered, as described in chapter 4, five sets of, each with two separate,
mobile applications were developed, which resulted in ten mobile applications. Five of
them were written in Objective-C for the native i0OS platform, and the other five were
written in JavaScript for the React Native.

Each two applications, i.e. each set, were developed to implement a prevalent feature.
Two of the developed apps used the application’s specific data to store the list of
numbers and the other two used file systems to store data. The reminder of the
developed applications deals with MySQL database server. In addition, to generalize
our results the applications deal with texts and images, not only numbers. Also, we
developed applications that include search functionality on both text and images.

In fact, the development results showed that the two versions of the developed
applications are very similar in the Ul, this is because React Native renders native Ul

components. Screenshots of the developed applications can be found in Appendix B.

The following sections describe the categories for the top five prevalent features and

the applications developed to study each feature in more details.

5.1.1 Data Processing (Application 1&2).

In order to test the data processing feature, two applications were developed, the first
one is Internal Sorting i0S (Application 1), which is an iOS mobile application that has
two tabs, in each tab there is a list view, which renders array of unsorted numbers that

are generated randomly, the array size can be varied. Each tab is concerned with specific

37

sorting algorithm. The first tab is for insertion sort while the second is for merge sort.
After the numbers are sorted, they will be rendered in the list view. The second
application is Internal Sorting RN (Application 2), which is the same as the previous
one but it is the React Native version. To make sure that the two tasks (applications)
measure the performance of the data processing feature, we designed them to deal and
process only internal data. Sorting, as a computational process, can be one of the high
CPU demanding tasks, for data processing, thus was selected. The sorting process was
designed to start after pressing the sort button to make sure that it doesn’t affect the

launch time for the applications.

5.1.2 File Processing (Applications 3&4).

The goal of this experiment is to measure the performance of the file processing feature.
In order to do this, two mobile applications (tasks) were developed, one of them is File
Sorting i0OS (Application 3) and the other one is File Sorting RN (Application 4). The
apps are the same as the previous two, but the numbers are loaded from external files
instead of an internal array. To make sure that file processing feature is measured
correctly, we read from more than one external file, but only one file is opened at a time
in the same experiment. The size of the file was changed each time. The experiment
was repeated for several file sizes to study the effect of changing the size of the file. In

addition, a button is used to load the file to not affect the application launch time.

5.1.3 Data Retrieval from MySQL (Applications 5&6).

This feature study the effect of remote data retrieval. The data is stored in a remote
database, which is MySQL. In order to measure this feature effect on performance
parameters, we developed two mobile applications, one of them is i0S, Database Text
i0S (Application 5), while the other is React Native, Database Text RN (Application
6). Both applications make connection with MySQL database, then retrieves names of
cities and displays them in a list. The size of the database table, or more precisely the
number of rows in the table, is varied by changing the number of cities to be displayed.

The applications were designed specifically to measure only the performance of remote

38

data retrieval by implementing the communication part with the database after loading

the views and come into foreground.

5.1.4 Processing of Images (Applications 7&8).

To measure the effect of processing images feature on performance parameters, we
developed two mobile applications: one is Database Image 10S (Application 7) and the
other is Database Image RN (Application 8). Both applications make connection with
MySQL database, then retrieves names of cities with their images and displays them in
a list. The size of the database table will be varied by changing the number of cities to
be listed. The two applications were designed to measure the image processing feature,
opposed to just text processing as in done in Applications 5&6. To ensure performance
parameters are correctly and accurately measured, measurements are taken after the
applications retrieve and add the image, at the right place in the screen, and after loading
and displaying the image and come into the foreground. The image extension “.png”

was used for images, since it is the most commonly used image format.

5.1.5 Search (Application 9&10).

The goal for this is to measure the effect of performance parameters on the search
feature. To do this, two applications were developed which are Search i0S (Application
9) and Search RN (Application 10). The developed applications were designed to
provide the ability to search from internal storage through the cities and retrieve the
name and image of the cities that starts with or contains specific characters. The size of
the database table, or more precisely the number of rows in the table, is varied by

changing the number of cities and images to be displayed.

39

Each application in i0OS was compared to its counterpart in React Native. Applications
was compared on the following performance parameters: launch time, CPU and
memory usage, frames per second and battery consumption. Both sets of applications
were compared according to the test scenarios described in the previous chapter. Size
of lists, files or tables, as appropriate, were variably changed in magnitude of power of
10, i.e. 10 ” x, where the value of x changed from 1 to 7,1i.e. 10~ 1, 10" 2,10 ~ 3, 10
~4,1075,107 6,10~ 7, which are 10, 100, 1000, 10k, 100K, 1M, 10M respectively.

5.1.6 Run Environment.

For the purpose of this thesis, we used the run environment described below:
e A recal iPhone device was used, which is iPhone7 with the latest iOS released,
10S version 13.2. Its specifications are 2.34GHz dual core CPU, 2GB RAM,
276MB wired RAM and a total storage of 32GB. The ten applications were
individually installed on the device. During the experiments, all other applications
were terminated to minimize or remove any potential effect on the applications
under study. Additionally, the device was set to the “airplane mode” to avoid any
side effects from Wi-Fi or Bluetooth or other type of external connection.
e A recal iPhone device was used, which is iPhone8 with the latest iOS released,
10S version 13.3. Its specifications are 3.39GHz dual core CPU, 2GB RAM,
372MB wired RAM and a total storage of 64GB. The ten applications were
individually installed on the device.
e A MacBook Pro computer machine with the latest version of XCode and
Instruments, which is 11.3. In addition to Atom IDE versionl.4.1 . The Mac OS is
Catalina 10.15 , 2.6 GHz six core intel core i7 and 16GB of memory. All
applications in the Mac were terminated during experiments, except Instruments, in
order to not affect any of the parameters like CPU and memory Usage. In addition,

Wi-Fi was turned off to not affect battery consumption.

40

5.2 Performance Evaluation: Results.

This section presents and discusses obtained results from the experiments. As a first
step for each experiment, we have conducted dry-runs and tested the experiment design,
experiment setup and data collection method to ensure their correctness before
conducting wet runs. After making sure that all things worked fine, we started running
the actual experiments, i.e. wet runs. For size variability, we stopped at a size of 10M,
for list, file or table sizes for respective tasks or applications, because from test runs,
we found that results still increase with the same pattern, thus larger sizes would not

provide any additional information.

5.2.1 App Launch Time.

Application launch time was measured in both iOS and React Native. App Launch Time
package was used for both platforms. In each recording, it makes 5 seconds run and
displays the amount of time needed for the application to launch. Also, the time interval
for each phase in the application life cycle with the phase description was displayed.
Results of making the first test scenario are shown below.

Figure 5-1 shows the average results of applying the first test scenario, which is the
cold run, after applying it on all developed apps (Application 1 to 10) with variable
sizes (power of ten) for the list of numbers, texts and images repeated five times for
each size.

Figure 5-2 shows the average result of the hot run on variable sizes for the list of

numbers, texts and images applied on all developed apps (Application 1 to 10).

41

Launch Time /ms

9000

8000

7000

6000

5000

4000

3000

2000

1000

Cold App Launch Time

:j -8 m— a
0
10 100 1000 10000 100000 1000000 10000000
List Size
=8 DataProcessingiOS ==#==DataProcessingRN FileiOS FileRN «#—SQLiOS =#==SQLRN «=f==|magesiOS e=B==|magesRN «=B==SearchiOS ==@==SearchRN

Figure 5-1 App Launch Time cold run all Apps.

As we can see, from the above figure, the first four apps have close results for both 10S
and React Native for list sizes up to 100K. However, the result for iOS increased rapidly
when the size become 1M, so we increased the list to become 10M but we obtained
more than 5 seconds, so we stopped. In comparison to i0S, React Native application’s
run time still have the same value for 1M, which mean it didn’t increase rapidly as iOS,
we also tried 10M and 100M and it still didn’t increase, so it is better than iOS on big
list sizes for the first four apps. However, for the rest of apps which deal with remote
database server, React Native apps have lower application launch time than iOS; there
is a big difference especially in search and image apps. This because iOS is a secure
platform and it needs additional time because of the handshaking made before
connecting to remote server. In case of React Native, apps have less launch time
because there is not as much security handshake like 10S, this leads to lower time for

application launch.

42

Launch Time /ms

9000

8000

7000

6000

5000

4000

3000

2000

1000

0

Hot App Launch Time

1 10 100 1000 10000 100000 1000000 10000000
List Size

=8 DataProcessingiOS =®=DataProcessingRN FileiOS FileRN =8=SQLi0S ==#==SQLRN ==l==|magesiOS ==l==|magesRN ==B==SearchiOS ==@==SearchRN

Figure 5-2 App Launch Time hot run on all Apps.

In the above figure, i10S is faster than React Native in the apps that deals with internal
storage. However, React Native is faster in case of the apps that deal with remote server.
In addition, we noticed that in the case of the cold run, which is in Figure 5-1, more
time is required to launch the app than the hot run. This is simply because the app is
launched for the first time and the app process does not exist in the system’s kernel
buffer cache, while in the case of the hot launch in Figure 5-2, the app is not killed but
it exists in the background, so the app process still exists in memory.

As a conclusion, Application Launch Time is less in React Native than iOS for most
applications. This is because of the hot reload feature which exists in React Native

rather than 10S, which needs less time to start the application.

43

CPU Usage (%)

100

90

80

70

60

50

40

30

20

10

5.2.2 CPU Usage.

CPU usage was measured for both iOS and React Native platforms. It was measured
by applying the second test scenario, during the usage of the app on all developed
Applications with varied size for the numbers list, file and database table. The runs were
repeated five times on each size. The average of CPU usage percentage for each list

size is displayed in Figure 5-3 below.

% CPU Usage

|

. B —— r'y '}
=— -
< ® 2 ——— iy
[}
1 10 100 1000 10000 100000 1000000 10000000
List Size
=@ DataProcessingiOS «==®= DataProcessingRN FileiOS FileRN =#=SQLiOS =#==SQLRN e=l==|magesiOS ====|magesRN «==B==SearchiOS ==@==SearchRN

Figure 5-3 CPU Usage on all Apps.

As shown, CPU usage percentage is a little bit higher in React Native than iOS for most
applications. However, the differences are minor. This is could be attributed to that i0S
applications, developed natively, are making more efficient use of the CPU than RN
applications. Also, this could be because React Native has more than one thread, this
adds more overhead in the CPU than iOS which has only one thread. However, as
shown, RN applications are relatively doing very well on CPU usage compared iOS

applications, even for large size processing.

44

Memory Used /GB

18

16

14

1.2

0.8

0.6

04

0.2

5.2.3 Memory Usage.

Memory usage was measured for both i0OS and React Native platforms. It was measured
by applying the third test scenario, which is to run each developed respective
application for changing values of the respective independent variable, e.g. list size,
table size, to measure memory usage for each one of the prevalent features. The test
was repeated five times on each size, then the average of used memory was calculated

and displayed in Figure 5-4.

Memory Usage

10 100 1000 10000 100000 1000000
List Size

10000000

=8 DataProcessingiOS === DataProcessingRN FileiOS FileRN =#==SQLi0S ==8#==SQLRN ==l==|magesiOS ==l==|magesRN ==B==SearchiOS ==@==SearchRN

Figure 5-4 Memory used on all Apps.

As shown, memory usage percentage is a little bit higher in React Native than 10S for
most applications. However, the differences are minor. This is could be attributed to
that 10S applications, developed natively, are making more efficient use of the memory
than RN applications. In addition, this because React Native has more than one thread

and there is a communication between them, which leads to more memory usage.

45

Frames rendered per second

70

60

50

40

30

20

10

5.2.4 Frames Per Second.

The numbers of frames that are rendered per second was measured on both i0OS and
React Native platforms. The ideal is 60FPS. It was measured on all developed
applications by applying the fourth test scenario which is a stress test that aims to check
the number of frames rendered when scrolling on variable list size is made. The test

was repeated on each size five times and the average was calculated and displayed in

Figure 5-5.
Frames Per Second
Py — a
ry ——l
; S—
ry ry ry
ry
10 100 1000 10000 100000 1000000 10000000
List Size
==@—DataProcessingiOS === DataProcessingRN FileiOS FileRN ==8==SQLi0S ==#==SQLRN ==l==|magesiOS ==le==|magesRN ==B==SearchiOS ==@==SearchRN

Figure 5-5 Frames Per second on all Apps.

As we can see from the above figure, the results are the same for both iOS and React
Native. In case of 108, it is the normal result we expected because it is a native platform.
However, the reason that the result is the same in React Native is because of the specific
thread that is responsible for only rendering, thus the logic is separated from rendering

which makes the rendering to be around 55-60 FPS.

46

5.2.5 Battery Consumption.

Battery consumption was measured on both iOS and React Native platforms. It was
measured by applying the fifth test scenario, which is running each developed
respective application for changing values of the respective independent variable, e.g.
list size, table size, to measure the power consumption. Energy Log was used to take
measurements. The Energy Log distributes the energy into 20 levels, zero means very
low power consumption and 20 means very high. We applied the test on all developed

applications in normal and low power mode.

As shown, the results are very low power consumption for all applications in the low
power mode and low power consumption for the applications under normal power
mode. However, as shown, applications with implements image processing consume
more than apps without image processing. This could be due to image rendering

processing, which requires additional processing time.

47

Main Threas Execution Time (%)

120

100

80

60

40

5.2.6 Execution Time.

Execution time was measured on both iOS and React Native platforms for the main
thread. It was measured by applying the sixth test scenario, which is for each software
prevalent feature, by running each developed respective application for changing values
of the respective independent variable, e.g. list size, table size, to measure execution

time. Time profiler tool was used. The results are shown in Figure 5-6 below.

Main Thread Execution Time

2000000 4000000 6000000 8000000 10000000
List Size

== DataProcessingiOS ==®== DataProcessingRN FileiOS FileRN ==8==SQLi0S =#==SQLRN e===|magesiOS e==l==|magesRN ==B==SearchiOS ==@==SearchRN

Figure 5-6 Percentage of main thread execution time all Apps.

The program structure for the i0OS consists of only main thread. However, the program
structure of React Native consists of the main thread, JavaScript thread and the bridge.
As can be seen from the results below, the execution time for the main thread is higher
for the 108, it is almost 90-100% of the total time. However, in React native it is only
around 25% of the execution time of the total time. This is because Native iOS has only
one thread, which is the main thread, but for the React Native, it has also the bridge
thread, which is responsible for the communication between the native side and react

native side.

48

5.3 Performance Improvement.

This section presents the second task of our thesis, which is to attempt to improve the
performance of React Native, where needed and possible, and to provide a guideline to
help software engineers avoid React Native performance issues and develop React
Native applications as comparably close as possible to the Native iOS.

Others have reported

Based on the outcome of the experiment results, as shown, applications developed in
10S and React Native are comparably similar on many of the performance parameters
and changes to React Native, where possible, would not cause any significant
performance difference. However, as shown in Table 5-25 to 5-30 and Figure 5-25 to
5-30, noticeably i1OS outperforms React Native in Applications that implement image
processing, e.g. Applications 9&10. To address this issue, this required further study
and investigation of React Native programmable structure and ways to improve its

performance.

As a first step, we tried to understand how React Native works under the hood and how
it differed from Native i10S. We found an important difference in React Native that
makes it different from Native iOS is that React Native code is being executed by more
than one thread. It contains the main thread, javaScript thread, and the bridge thread.
The latter thread, namely the bridge thread, has the responsibility of communication
between the native side and the cross-platform side. Performance in the main thread
and javaScript thread are excellent. However, performance of the bridge is not as good
as the other threads. This is because the bridge is responsible for the communication
between threads. Each thread is separated from the other one, and if we have to send
data from one thread to another one, we need to serialize it; which adds performance
overhead. In order to improve the performance of React Native App and to become
comparable to Native i0S, the overhead caused by bridge communication must be
reduced as much as possible, because it is a considerable process that affect

performance.

49

In general, applications that deal with images will communicate heavily between native
and cross-platform side. This is because the bridge will serialize the data from the
javaScript thread to the main thread for each image in order to render the image and

this will lead to a poorer performance.

As a second step, in an attempt to improve performance, specifically execution time,
we made an experiment on two developed applications that displays large number of
images, one of them using iOS and the other using React Native. We measured the
execution time of both applications. We found that React Native is three times slower
than 10S. We tried to understand the reason behind this, we found that because of the
need for passing data through the bridge for each image; this will make the application
slower as the number of images increases. In other words, as the size of the data being
passed through or processed by the bridge thread increases, the execution time of the
respective implemented feature in the React Native application increases, potentially

worsening the performance of the application as a whole.

A possible solution to this performance problem is to store images in the native side, so
that there is no need for the communication between the javaScript thread and the main
thread; this because the images are already in the main thread. After making this change,
in an another experiment, we found that the execution time for React Native has
improved to become very close to each i0S’. As shown, in Figure 5-36, before the
introduced solution, the execution time was 960ms and 3.65s for iOS’s and React
Native’s applications respectively. However, after the introduced solution, the
execution time reduced to 1.17s for the improved React Native app. Below are

screenshots from the results for the experiment.

50

Therefore, as a guideline to React Native software developers, especially for

applications that implement relatively intensive or large data communication between

React Native and the Native operating system, e.g. image processing, are advised that:

1-

Time Profiler

Instrument |

| @ Points of Interest

Clear identification of software features in an Application that require intensive
data processing by the bridge thread, and their performance implication on the
application as a whole. Images are found as an example of such data, however,
other types of data, that require serialization e.g. binary data, would need to be
further studied to confirm their performance impact.

Communication of large data over the bridge thread is avoided or reduced.
Data that needed to be processed, e.g. images, by the bridge thread is advisably
need to be stored, manually, in the Native side during development, to overcome
the unnecessary data processing by this thread. In this case, data need to be

stored in the native side

| Trac Instruments CPUs Threads

$0:00.000 00:10.000 00:20.000 00
-

00:50.000 01:00.000 01:10

CPU Usage

Points
o Thermal State
Current Nominal
@ Details) Profile) Root
Weightv Self Weight Symbol Name
3.50s 100.0% Os VimageiOS (24741)
960.00 ms 27.3% Os »Main Thread Ox2a8ddb
321.00ms 9.1% Os »_dispatch_worker_thread2 Ox2a8fba
305.00ms 8.7% Os »_dispatch_worker_thread2 0x2a8fb8
| 301.00ms 8.5% Os > _dispatch_worker_thread2 0x2a8fbb
| 258.00ms 7.3% Os »_dispatch_worker_thread2 Ox2a8fc4
255.00ms 7.2% Os »_dispatch_worker_thread2 O0x2a8fc7
241.00ms 6.8% Os »_dispatch_worker_thread2 0x2a8fc3
218.00 ms 6.2% Os »_dispatch_worker_thread2 Ox2a8fbe
168.00 ms 4.7% Os »_dispatch_worker_thread2 0x2a8fb9
158.00 ms 4.5% Os »_dispatch_worker_thread2 0x2a8fc5
112.00 ms 3.1% Os »_dispatch_worker_thread2 0x2a8fc6
| 103.00ms 2.9% Os > _dispatch_worker_thread2 Ox2a8fbd
| 102.00ms 2.9% Os »_dispatch_worker_thread2 0x2a8fc8
2.00ms 0.0% Os » -[UIEventFetcher setupForRunLoop:] 0x2a8fbc

Figure 5-7 Execution time for iOS image App.

51

® PARICEY Instruments CPUs Threads

$0:00.000 00:10.000 00:20.000 00:30.000 00:40.000 00:50.000 01:00.000 01:1C
-

Time Profiler

CPU Usage

@ Points of Interest

Instrument

Points

@ Thermal State

Current
— I
@® Time Profiler) Profile) Root
Weightv Self Weight Symbol Name
3.82's 100.0% Os ‘VimageRN (26453)
3.65s 95.5% Os »Main Thread Ox2aa6b3
107.00 ms 2.7% Os » +[RCTCxxBridge runRunLoop] 0x2aa8c6

13.00ms 0.3% Os »_dispatch_workloop_worker_thread Ox2aa8ba

10.00 ms 0.2% Os »WTF::Detail::C: apper<WTF::AL icThread::start Ox2aa8cf
7.00ms 0.1% Os »_dispatch_worker_thread2 O0x2aa8b9
7.00ms 0.1% Os »WTF::Detail::C apper<WTF::AL icThread::start Ox2aa8ce
6.00ms 0.1% Os »WTF::Detail::C apper<WTF::AL icThread::start Ox2aa8d7
5.00ms 0.1% Os »_dispatch_worker_thread2 0x2aa8b8
5.00ms 0.1% Os »_dispatch_workloop_worker_thread Ox2aa8bb
2.00ms 0.0% Os > WTF::Detail::CallableWrapper<WTF::AutomaticThread::start 0x2aa8d0
1.00ms 0.0% Os »WTF::Detail::C apper<WTF::AL icThread::start Ox2aa8d5
1.00ms 0.0% Os »WTF::Detail::C apper<WTF::AL icThread::start Ox2aa8d4
1.00ms 0.0% Os » ger:: yPoint 0x2aa8c7
1.00ms 0.0% Os > WTF::Detail::C apper<WTF::AL icThread::start Ox2aa8d6
1.00 ms 0.0% Os » -[UIEventFetcher setupForRunLoop:] Ox2aa8bc
1.00ms 0.0% Os »WTF::Detail::C: apper<WTF::AL icThread::start Ox2aa8d3
1.00 ms 0.0% Os »WTF::Detail::C apper<WTF::AL icThread::start Ox2aa8d2

Figure 5-8 Execution time for React Native image App.

[S) VANIEISEY Instruments CPUs Threads
]i £0:00.000 00:10.000 00:20.000 00:30.000 00:40.000 00:50.000 01:00.000 0
-

CPU Usage

© Points of Interest

.

Points

4] Thermal State

Current

@ Time Profiler) Profile) Root

Weightv Self Weight Symbol Name
3.82's 100.0% Os VimageRN2 (30717)
1.17s 30.6% Os »Main Thread 0x2d198c

335.00ms 8.7% Os »_dispatch_worker_thread2 0x2d1b58

323.00ms 8.4% Os »_dispatch_worker_thread2 0x2d1b77

306.00 ms 8.0% Os »_dispatch_worker_thread2 0x2d1b55

274.00ms 7.1% Os »_dispatch_worker_thread2 0x2d1b75

200.00ms 5.2% Os »_dispatch_worker_thread2 0x2d1b74

197.00ms 5.1% Os »_dispatch_worker_thread2 0x2d1b73

197.00ms 5.1% Os »_pthread_tsd_cleanup 0x2d1b59

175.00 ms 4.5% Os »_dispatch_worker_thread2 0x2d1b78

165.00 ms 4.3% Os »_dispatch_worker_thread2 0x2d1b57

163.00ms 4.2% Os »_dispatch_worker_thread2 0x2d1b76

145.00 ms 3.7% Os »_dispatch_worker_thread2 0x2d1b79

79.00 ms 2.0% Os » +[RCTCxxBridge runRunLoop] 0x2d1b63
72.00ms 1.8% Os »_dispatch_worker_thread2 0x2d1b7a

5.00ms 0.1% Os » WTF::Detail::C apper<WTF::AL icThread::start 0x2d1b69
2.00ms 0.0% Os P -[UIEventFetcher setupForRunLoop:] 0x2d1b5a
2.00ms 0.0% Os »WTF::Detail::C apper<WTF::Al icThread::start Ox2d1b6e
2.00ms 0.0% Os »WTF::Detail::C apper<WTF::AL icThread::start Ox2d1b6a
1.00ms 0.0% Os »bmalloc::Scavenger::threadRunLoop 0x2d1b64
1.00 ms 0.0% Os » WTF::Detail::C: apper<WTF::AL icThread::start Ox2d1b6f
1.00ms 0.0% Os »WTF::Detail::C apper<WTF::AL icThread::start 0x2d1b6b
1.00ms 0.0% Os »WTF::Detail::C apper<WTF::AL icThread::start Ox2d1b6c

Figure 5-9 Execution time for improved React Native image App.

52

Below are screenshots from the code and the graph for React Native before and after

the code modification.

import React from 'react';

import { Text,

View,

Alert,

Image,

StyleSheet,

SafeAreaView,

ScrollView } from 'react-native';
export default class App extends React.

render() {

return(
<SafeAreaView style={styles.
<Scrollview style={styles.
<Image
style={{ : 50, he : 50}
source={require('./assets/1.png"')
/>
<Image
style={{width: 50, height: 50}
source={require('./assets/2.png"')
Vad

Figure 5-10 React Native Code Before Modification.

import React from 'react';

import { Text,
View,
Alert,
Image,
StyleSheet,
SafeAreaView,
Scrollview }
from 'react-native';

export default class App extends React.

render() {

return(

<SafeAreaView style={styles.containe
<ScrollView style={styles.s
<Image
style={{width: 50,
source={{uri:'1'}

/>

<Image
style={{ : 50,

source={{uri:'2'}

/>

Figure 5-11 React Native Code After Modification.

53

Execution Time

16000
14000
12000
10000

8000

6000

Execution Time /ms

4000

2000

1 10 100 1000 10000 100000 1000000 10000000

List Size m RNAfter mRNBefore miOS

Figure 5-12 Execution Time for iOS & RN before and after modification.

54

Chapter 6 Conclusion

This chapter displays an overall conclusion about the study. It includes a discussion for
the results obtained so far. In addition, the threats and constraints of the study. Also, it
presents the difficulties and obstacles that were faced during the research. Finally, it

presents the future work for the study.

6.1 Introduction.

This thesis studies the comparative performance of applications developed in React
Native, as a cross-platform mobile software development framework, to applications in
developed in Native frameworks. Specifically, it seeks to study and evaluate the
different performance parameters, including execution time, and CPU and battery
usage, of React Native in comparison to the performance of Native iOS and attempt to

find ways to overcome any arising performance deficiencies.

Ten applications were developed to conduct this study and comparison. In addition, two
applications were developed for the case of performance improvement. Performance
measurements were taken for all the developed applications. The results were
promising for React Native, as there was no significant difference found in the

performance between applications in the two platforms.

6.2 Results Discussion.

In this research, prevalent mobile software features were identified, ten applications
were developed, 10 main experiments were conducted, and data were collected and
analysed. CPU and memory usage, frames per second, battery consumption and
application run time were measured for five different prevalent software features, in six
specified test scenarios using the Instruments tool. Data was collected, and results were

analysed and plotted in diagrams for each performance parameter.

55

Below is a brief description of the results:

e For the Application Launch Time, we found that both iOS and React Native
have similar results, but iOS is a little bit faster than React Native for the first
four applications (Applications 1,2,3,4), that deal with file and internal memory
data processing. However, we found that React Native is faster than iOS in the
applications that deal with communicating with database (Application 5,6,7,8).
In the Search applications (Application 9,10), we found that React Native is
faster than 10S, with relatively a significant difference in Launch time, which

perhaps makes React Native a more suitable choice a search functionality.

e For the CPU Usage, we found that both iOS and React Native have similar
results. However, React Native apps use more CPU percentage than i0S, but

the difference is minor in most of the apps.

e For Memory Usage, we found that React Native apps use a little bit more
memory than i0S applications, but there is a big similarity between both

frameworks.

e For the Frames rendered per second, both React Native and iOS renders around

57 frames per second which is very close to the ideal rendering rate of 60FPS.

e For Battery Consumption, both consumes the same level of battery in both

normal and low power mode.

e For Execution Time, iOS outperformed React Native. React Native employs an
additional thread for bridge communication for data processing, which adds an
additional execution overhead. We solved this performance difference and
obtained almost the same execution time by overcoming the data processing and

reducing processing of bridge communication.

56

6.3 Threats and constraints.

Two main threats and constraints in our research can be identified. Firstly, ten
applications were developed to evaluate performance across 5 most common prevalent
software features. However, only two identical applications were developed to evaluate
each prevalent software feature, one for each framework, which adds a threat on the
scalability of the results. Evaluating performance across more software features and
more applications would improve the generalisability of the results. Secondly,
experiments were run on one computer machine and two mobile devices, however
running experiments on more different types of mobile devices, with different
specifications, would improve scalability of results and would eliminate differences that

may arise due to operating system versions or devices.

6.4 Difficulties and Obstacles faced throughout your research.

In fact, many obstacles were faced during this research. First, as React Native is a new
framework, the number of papers that studied react native are limited. Moreover, there
is only one paper that studied the performance. In addition, there was a difficulty in the

development process and it took a lot amount of time.

6.5 Future Work.

For future work, there are several extensions that could be made to improve the study

outcome, these include:

1- The research would benefit from studying additional software features o identify
exact performance deficiencies in React Native or i0S.

2- React Native was found to have a performance deficiency and, a corresponding
solution was found, for large image data processing, and could benefit from
investigating other large data types.

3- Although there are some limited research to study React Native in comparison to
Android, as another native framework, this research could be replicated to improve
our understanding of React Native development on Android.

4- For scalability and generalisability, experiments could be conducted on more

prevalent software features as well as applications that examines them.

57

References

“lonic Framework” 17 October 2019. [Online]. Available:
https://ionicframework.com/docs. [Accessed 26 11 2019].

“Adobe PhoneGap” [Online]. Available:
http://docs.phonegap.com/. [Accessed 21 November 2019].
“Statista” 5 7 2019. [Online]. Available:

https://www.statista.com/statistics/330695/number-of-
smartphone-users-worldwide/. [Accessed 4 11 2019].

“Statista” [Online]. Available:
https://www.statista.com/statistics/377977/tablet-users-
worldwide-forecast/. [Accessed 4 11 2019].

“Mobile marketing statistics compilation” Smart Insights, [Online].
Available: https://www.smartinsights.com/mobile-
marketing/mobile-marketing-analytics/mobile-marketing-
statistics/. [Accessed 4 11 2019].

M. Igbal, “Buisness of Apps” 7 8 2019. [Online]. Available:
https://www.businessofapps.com/data/app-statistics/. [Accessed 5
112019].

“Statista” 18 9 2019. [Online]. Available:
https://www.statista.com/statistics/271644/worldwide-free-and-
paid-mobile-app-store-downloads/. [Accessed 4 11 2019].

J. Cowart, “What is a Hybrid Mobile App?” Progress, [Online].
Available: https://www.telerik.com/blogs/what-is-a-hybrid-
mobile-app-. [Accessed 29 11 2019].

E. Spence, “Windows Phone Is Dead, Long Live Microsoft's
Smartphone Dream” Forbes, 12 July 2017. [Online]. Available:
https://www.forbes.com/sites/ewanspence/2017/07/12/microsoft-
windows-phone-windows10-mobile-strategy/#81alb1d172c5.
[Accessed 29 11 2019].

G. R, “Top Technologies Used to Develop Mobile App” Fingent,
19 December 2018. [Online]. Available:
https://www.fingent.com/blog/top-technologies-used-to-develop-
mobile-app. [Accessed 2 5 2019].

Hermes and Dan, “Xamarin Mobile Application Development
Cross-Platform C# and Xamarin.Forms Fundamentals”, apress,
2015.

C. Griffith, “Mobile App Development with Ionic, Revised

Edition: Cross-Platform Apps with Ionic, Angular, and Cordova”,
O'Reilly Media, Inc, 2017.

58

[16]

“Xamarin” Microsoft, [Online]. Available:
https://dotnet.microsoft.com/apps/xamarin. [Accessed 1 12 2019].

A. Bento, “Android and 10S” 14 April 2014. [Online]. Available:
https://home.ubalt.edu/abento/315/android-i0s/index.html.
[Accessed 1 52019].

Shoutem, “A brief history of React Native” Medium, 3 October
2016. [Online]. Awvailable: https://medium.com/react-native-
development/a-brief-history-of-react-native-aael 1f4ca39.
[Accessed 1 52019].

Ideamotive Team, “Choosing React Native for Your Mobile Tech
Stack” Idea Motive, 22 February 2019. [Online]. Available:
https://ideamotive.co/react-native-development-guide/#what-is-rn.
[Accessed 1 52019].

R. Mehul, “React Native—Is it Really the Future of Mobile App
Development?” Hackernoon, 13 September 2018. [Online].
Available: https://hackernoon.com/react-native-is-it-really-the-
future-of-mobile-app-development-31cb2¢531747. [Accessed 1 5
2019].

R. O'Connor, “Why Mobile App Performance Matters” Progress,
[Online]. Available: https://www.progress.com/blogs/why-mobile-
app-performance-matters. [Accessed 5 11 2019].

“Mobile App” Wikipedia, [Online]. Available:
https://en.wikipedia.org/wiki/Mobile app. [Accessed 7 11 2019].
J. Agency, “Brief History of Mobile Apps” [Online]. Available:
https://expertise.jetruby.com/brief-history-of-mobile-apps-
2861bbf766a9. [Accessed 7 11 2019].

A. Monus, “Understanding native app development - what you
need to know in 20197 19 3 2019. [Online]. Available:
https://raygun.com/blog/native-app-development/. [Accessed 6 11
2019].

“Xcode” Apple Developer, [Online]. Available:
https://developer.apple.com/xcode/. [Accessed 6 11 2019].
“Android Studio” Android Developers, [Online]. Available:
https://developer.android.com/studio/. [Accessed 7 11 2019].
“Cross-platform development” [Online]. Available:
https://www.sapho.com/glossary/cross-platform-development/.
[Accessed 7 11 2019].

“108” Wikipedia, [Online]. Available:
https://en.wikipedia.org/wiki/IOS version_history. [Accessed 9 11
2019].

59

“Apple 10S Architecture” Tutorials Point, [Online]. Available:
https://www.tutorialspoint.com/apple-ios-architecture. [Accessed
10 11 2019].

“108 Architecture” [Online]. Available:
https://intellipaat.com/blog/tutorial/ios-tutorial/ios-architecture/.
[Accessed 10 11 2019].

“Model-View-Controller” Apple Developer, [Online]. Available:
https://developer.apple.com/library/archive/documentation/Gener
al/Conceptual/DevPedia-CocoaCore/MVC.html. [Accessed 10 11
2019].

“How To Make iPhone Apps — MVC, One Pattern To Rule Them
All” [Online]. Available: https://codewithchris.com/how-to-make-
iphone-apps-mvc-one-pattern-to-rule-them-all/. [Accessed 10 11
2019].

“Testing Apples MvC” [Online]. Available:
https://medium.com/mobile-quality/testing-apples-mvc-
dab15830139a. [Accessed 1 December 2019].

“The History of React.js on a Timeline” RsisingStack, [Online].
Available: https://blog.risingstack.com/the-history-of-react-js-on-
a-timeline/. [Accessed 12 11 2019].

A. Lerner, “What is React?” FullStack React, [Online]. Available:
https://www.fullstackreact.com/30-days-of-react/day-1/.
[Accessed 12 11 2019].

A. Haseeb, “Virtual DOM vs Real DOM” Medium, 10 Augest
2018. [Online]. Available:
https://medium.com/@ahaseeb12251998/virtual-dom-vs-real-
dom-angular-vs-react-framework-vs-libraries-spas-vs-mpa-s-
946fceb70955. [Accessed 13 12 2019].

“CORDOVA” [Online]. Available: https://cordova.apache.org/.
[Accessed 26 11 2019].

“ATOM” [Online]. Available: https://atom.io/docs. [Accessed 26
112019].

“Sublime Text” [Online]. Available:
https://www.sublimetext.com/. [Accessed 26 11 2019].

B. Eisenman, “Learning React Native” O'Reilly Media, Inc., 2015.

“PowerTutor” [Online]. Available:
http://ziyang.eecs.umich.edu/projects/powertutor/. [Accessed 29 9
2019].

60

[44]

[50]

“Trepen Profiler” [Online]. Available:
https://www.apkmirror.com/apk/qualcomm-innovation-center-
inc/trepn-profiler/. [Accessed 29 9 2019].

“Instruments Help” Apple, [Online]. Available:
https://help.apple.com/instruments/mac/current/#/. [Accessed 3 12
2019].

. H. Heitk"otter, S. Hanschke and T. . A. Majchrzak, “Evaluating
Cross-Platform Development” in Proc. 8th WEBIST, 2012.

I. Dalmasso, S. K. Datta, C. Bonnet and N. Nikaein, “Survey,
comparison and evaluation of cross-platform mobile application
development tools” in Wireless Communications and Mobile
Computing Conference 9th, 2013.

X. Spyros and . X. Stelios, “A Comparative Analysis of Cross-
platform Development Approaches for Mobile Applications” ACM
Proceedings of the 6th Balkan Conference in Informatics, pp. 213-
220, 2013.

M. PALSSON, “Cross Platform Development tools for mobile” HS
Universty of Skovde, [Online]. Available: http://kth.diva-
portal.org/smash/get/diva2:754436/FULLTEXTO1.pdf. [Accessed
12 52019].

Seung-HoLim, “Experimental Comparison of Hybrid and Native
Applications for Mobile Systems” [International Journal of
Multimedia and Ubiquitous Engineering, pp. 1-12, 2015.

A. Arnesson, “Codename one and PhoneGap, a performance
comparison” 2015.

W. Michiel, V. Jan and N. Vincent, “A Quantitative Assessment of
Performance in Mobile App Development Tools” in [EEE
International Conference on Mobile Services, 2015.

J. Xiaoping, E. Aline and . T. Yongshan, “A Performance
Evaluation of Cross-Platform Mobile Application Development
Approaches” ACM/IEEE 5th International Conference on Mobile
Software Engineering and Systems, 2018.

T. Majchrzak, B. Hansen and T.-M. Gronli, “Comprehensive
Analysis of Innovative Cross-platform App Development
Frameworks” in Hawaii Internetional Conference on System
Sciences, 2017.

V. K. Vaishnavi and W. Kuechler, “Design Science Research
Methods and Patterns: Innovating Information and Communication
Technology, 2nd Edition”, 2015.

61

R. Nunkesser, “Beyond Web/Native/Hybrid: A New Taxonomy for
Mobile App Development” in ACM/IEEE 5th International
Conference on Mobile Software Engineering and Systems, 2018.

A. Bigrn-Hansen and G. Ghinea, “Bridging the Gap: Investigating
Device-Feature Exposure in Cross-Platform Development” in
Proceedings of the 51st Hawaii International Conference on
System Sciences, 2018.

“performance.now()” [Online]. Available:
https://developer.mozilla.org/en-
US/docs/Web/API/Performance/now. [Accessed 3 12 2019].

M. Furuskog and S. Wemyss, “Cross-platform development of
smartphone application An evaluation of React Native” 2016.

W. Danielsson, “A comparison between native Android and React
Native” 2016.

H. Khalid, E. Shihab, M. Nagappan and A. E. Hassan, “What Do
Mobile App Users Complain About?”.

Y. Liu, C. Xu* and S.-C. Cheung, “Characterizing and Detecting
Performance Bugs for Smartphone Applications”.

M. Linares-Vasquez, C. Vendome, Q. Luo and D. Poshyvanyk,
“How Developers Detect and Fix Performance Bottlenecks in
Android Apps” in IEEE International Conference on Software
Maintenance and Evolution (ICSME)., 2015.

E. Barr, M. Harman, Y. Jia, A. Marginean and J. Petke, “Automated
Software Transplantation” in Proceedings of the 2015
International Symposium on Software Testing and Analysis, 2015.

“42 MATTERS” [Online]. Available: https://42matters.com/stats.
[Accessed 25 3 2020].

13 February 2019. [Online]. Available:
https://ourcodeworld.com/articles/read/737/everything-you-need-
to-know-about-sqlite-mobile-database. [Accessed 11 12 2109].

“React Native Performance: Major issues and insights on
improving your app’s performance” SIMFORM, [Online].
Available: https://www.simform.com/react-native-app-
performance/. [Accessed 5 5 2020].

L. Corral, A. Sillitti and G. Succi, “Mobile multiplatform
development: An experiment for performance analysis™ in The 9th
International Conference on Mobile Web Information Systems
(MobiWIS) , 2012.

A. Dutta, “10OS App Launch time analysis and optimizations” 27
Augest 2017. [Online]. Available:

62

https://medium.com/@avijeet.duttal 3/ios-app-launch-time-
analysis-and-optimization-a219ee81447c. [Accessed 12 12 2019].

63

Appendices

64

Appendix A: App Store Study.

category Number of apps | percentage
games 230271 22.3%
business 179576 10.07%
education 151152 8.82%
lifestyle 156809 8.61%
utilities 133543 6.31%
Feature Feature ID Performance
Implication
Video conferencing F1 high
Data retrieval from remote server F2 high
Voice calls F3 high
Processing of texts F4 high
Sign in/up F5 low
search F6 medium
chat F7 medium
Add/follow friends/team member F8 medium
Record and play voice calls F9 low
Send money be email address F10 low
Pay on sites F11 low
Translate unknown words F12 low
Processing of image F13 high
Communicate and Compete courses with | F14 low
others
Access hundreds of games and activities | F15 medium
and lessons
Track evolution and progress F16 high

65

Enroll in courses F17 medium

download F18 high

Ask for free delivery F19 low

Find artist near you F20 high

Design with full control F21 medium

Choose ring metrics and diameter F22 low

View leaked passwords F23 low

Detect wifi security problem F24 low

Identify image F25 medium

Send message F26 low

Create track F27 low

Upload image F28 high

Open website F29 low

Hide image F30 medium

category App name Functional feature

business | Zoom F1, F2, F3, F5

business | Adobe acrobat reader | F4, F5, F6

business | Linked In F2, F4, F5, F6, F8

business | Skype F1, F2, F3, F5, F6, F7, F8

business | Call recorder for me F2, F5, F9

business | Slack F2, F4, F5, F6, F§, F13

business | PayPal F2, F5, F7,F10, F11

business | WhatsApp for | F1, F2, F3, F5, F6, F7, F8
business

education | EWA learn English F2, F4, F5,F12,F13,F14

education | Google classroom F5,F14

education | Lingokids F2, F5,F15,F16

education | Yousician F2, F4, F5,F13

66

education

PictureThis

F2,F5, F7,F13, F25

education | Peak- Brain training F2, F5, F15,F16
education | edX: courses by | F5, F14, F17, F26
Harvard and
MIT
education | Mondly: Learn 33| F2, F5, F13
languages
education | LinkedIn learning F2, F5, F6, F18, F26
lifestyle Pinterest: LifeStyle | F2, F5, F13, F18
ideas
lifestyle Tinder — Match Chat | F2, F5, F8, F13
Date
lifestyle | Live wallpapers F2,F13,F18
lifestyle Castro F2, F5, F13, F19
lifestyle Perfect365 F2, F5, F13, F20
lifestyle Décor Matters F2, F5, F13, F21
lifestyle Piksu F2, F5, F8, F27, F28
lifestyle Yoosee F2, F5, F13
utilities Google Chrome F2, F5, F29
utilities Fonts Gallery F13
utilities FoxFM F4, F18
utilities Ring Sizer F2,F13, F22
utilities AVG Mobile Security | F2, F5, F23, F24, F30
utilities Collage Maker F2, F5, F8, F13
utilities Pokémon Home F2, F5, F13

67

Feature ID

Frequency

F1

3

F2

27

F3

F4

F5

Fo6

F7

F8

F9

F10

F11

F12

F13

F14

F15

F16

F17

F18

F19

F20

F21

F22

F23

F24

F25

F26

F27

F28

F29

F30

68

Appendix B: Applications Screenshots.

B.1 Screenshots from Internal Sorting iOS+RN (Application 1and 2).
1. iOS.

Carrier 2 2:05 PM
MakeMergeSort

Numbers List

930
958
837
976
785
231

316

316

432
602
470

277

aTaYe)

In Merge Sort

69

2. React Native.

Carrier & 4:06 PM (-

Make Insertion Sort

Numbers List

915
316
432
922
295

223

InsertionSort MergeSort

70

B.2 Screenshots from File Sorting iOS+RN (Application 3 and 4).
1. iOS.

Carrier 2 2:05 PM ()
MakeMergeSort

Numbers List

930
958
837
976
785
231

316

316

432
602
470

277

aYa¥el

In)n Sort Merge Sort

71

2. React Native.

Carrier @ 4:06 PM C_J

Make Insertion Sort

Numbers List

915
316
432
922
295

223

InsertionSort MergeSort

72

B.3 Screenshots from Database Text iOS+RN (Application 5 and 6).
1. iOS.

Carrier & 1:42 PM -)
Khawr FakkfAn
Dubai
Dibba Al-Fujairah
Dibba Al-Hisn
Sharjah
Ar Ruways
Al Fujayrah
Al Ain
Ajman
Adh Dhayd
Abu Dhabi
Zaran|

Talogan

73

2. React Native.

< version1l0S 9 1:55 PM (-

Khawr FakkfAn

Dubai

Dibba Al-Fujairah

Dibba Al-Hisn

Sharjah

Ar Ruways

Al Fujayrah

Al Ain

Ajman

Adh Dhayd

Abu Dhabi

Zaranj

Talogan

Shf n-Tfean-T[é

74

B.4 Screenshots from Database Image iOS+RN (Application 7 and 8).
1. iOS.

Carrier 2 1:34 PM (-)

Salfeet

Ramallah

Rawabi

75

2. React Native.

Carrier = 1:47 PM

Betlahem

[l

Jenin

JL!.! .

Tulkarem

Il

Nablus

' ’

Salfeet

n

Ramallah

'lLt.! .

Hebron

il

Jerusalem

Jericho

Il

Yafa

76

B.5 Screenshots from Search iOS+RN (Application 9 and 10).
1. iOS.

Carrier 2 6:34 PM &%)

Q Enter City Name

>
e Stk

Betlahem

Nablus

Salfeet

Ramallah

Hebron

Jerusalem

77

2. React Native.

< version110S 9 6:43 PM &%)

Q Enter City Name

Betlahem

Tulkarem

A

Nablus

,
' '

Salfeet

m

Ramallah

mq .

Hebron

[l

Jerusalem

(S
[

Jericho

78

Appendix C: Test Experiments.

C.1 Screenshots from Number of Runs test.

1. iOS (Application Launch Time).

[B Bisan's iPhone (13.2.3)) [version110S

target All Tracks

INSTRUMENT v Time Profiler TRACK ATTRIBUTE

® Time Profiler

< Run2of 20 | 00:00:00 »

+ OO

Duplicate

P CPU Usage
@ » version110s.app CPU Usage
Process | 3086 ; o ——
L Process J PYSYRYM initializing - System Interface Initialization

Launching - UIKit Initialization

Laun... Launching - UIKit Scene Creation

Details) App Life Cycle
Start~ Narrative
0,000 The system took 6.52 ms to create the process.
7 The system frameworks took 271.92 ms to initialize.
0 Initializing (Static Runtime Initialization)
3 Launching (UIKit Initialization)
1 Launching (UIKit Scene Creation)
Launching (didFinishLaunchingWithOptions())
Launching (UIKit Scene Creation)
2 Launching (sceneWillConnectTo())
9 Launching (UIKit Scene Creation)

Run Number

Application Launch Time /ms

485

480

478

481

D B~ W N

480

Run Number

Application Launch Time /ms

1

480

486

485

486

485

482

481

486

O| 0 Q| | | K| Wl N

482

p—
S

490

79

11 478
12 481
13 488
14 495
15 487
Run Number Application Launch Time /ms
1 488
2 485
3 478
4 480
5 482
6 481
7 475
8 477
9 476
10 479
11 480
12 480
13 482
14 488
15 485
16 488
17 482
18 483
19 481
20 480

80

2. React Native (Application Launch Time).

(.- 0 Bisan's iPhone (13.2.3)) | version1 < Run40f 20 | 00:00:05 »
INSTRUMENT v Time Profiler TRACK ATTRIBUTE v target B8 All Tracks
00:00.000 00:01.000 00:02.000 00:03.000
Time Profiler
v |
Instrument r
| |

CPU Usage

App Life C...
L

Details) App Life Cycle

Start~ Narrative
00:00.000.000 The system took 5.77 ms to create the process.
00:00.005.767 The system frameworks took 276.10 ms to initialize.
00:00.281.870 Initializing (Static Runtime Initialization)
00:00.285.731 Launching (UIKit Initialization)
00:00.473.329 Launching (UIKit Scene Creation)
00:00.475.760 Launching (didFinishLaunchingWithOptions())
00:00.524.284 Launching (UIKit Scene Creation)
00:00.525.659 Launching (Initial Frame Rendering)

00:00.553.962 Currently running in the foreground...

Run Number Application Launch Time /ms
1 550

565

553

553

557

DN B W N

Run Number Application Launch Time /ms
1 480
565
553
553
550
549
542
559
555
554
550

O| 0 Q| | | K| Wl N

p—
S

[a—
[a—

81

12 559
13 541
14 561
15 543
Run Number Application Launch Time /ms
1 550
2 549
3 553
4 553
5 543
6 557
7 540
8 555
9 543
10 550
11 551
12 550
13 549
14 551
15 550
16 553
17 551
18 552
19 549
20 555

82

C.2 Screenshots from Battery Level test.
1

10S (Application Launch Time).
e Low Battery Level.

INSTRUMENT v Time Profiler | TRACK ATTRIBUTE v target Target JIFNRIETTS
00:00.000 00:01.000 00:02.000 00:02.000

@® Time Profiler

@8 » version110s.app CPU Usage
[(Process | 3634

App Life C..

version1l0S.app) App Life Cycle

Start~ Narrative
00:00.000.000 The system took 8.02 ms to create the process.
00:00.008015 The system frameworks took 156.04 ms to initialize.
00:00.164.055 Initializing (Static Runtime Initialization)
00:00.166.008 Launching (UIKit Initialization)

00:00.249.070 Launching (UIKit Scene Creation)

00:00.249.690 Launching (didFinishLaunchingWithOptions())
00:00.249.691 Launching (UIKit Scene Creation)

00:00.261.353 Launching (sceneWillConnectTo())

00:00.261.356 Launching (UIKit Scene Creation)

00:00.392.496 Launching (sceneWillEnterForeground ()
00:00.393.501 Launching (UIKit Scene Creation)

00:00.394.209 Launching (Initial Frame Rendering)

00:00.413.295 Currently running in the foreground..

e Medium Battery Level.

NV-) INSTRUMENT v Time Profiler TRACK ATTRIBUTE v target Target MFNIRIEEIS

00:00.000 00:01.000 00:02.000

0:03.000

@® Time Profiler

@8 » version10s.app CPU Usage
[Process | 3620

App Life C...

Details) App Life Cycle
Start~ Narrative

00:00.000.000 The system took 58.44 ms to create the process.

00:00.058.442 The system frameworks took 160.63 ms to initialize.

0000219073 Initializing (Static Runtime Initialization)

00:00.221053 Launching (UIKit Initialization)

00:00.310.0689 Launching (UIKit Scene Creation)
00:00.310.663 Launching (didFinishLaunchingWithOptions())
00:00.310.664 Launching (UIKit Scene Creation)
00:00.322733 Launching (sceneWillConnectTo()

00:00.322 735 Launching (UIKit Scene Creation)
00:00.409.024 Launching (sceneWillEnterForeground())
00:00.409.028 Launching (UIKit Scene Creation)
00:00.409.629 Launching (Initial Frame Rendering)
00:00.426.804 Currently running in the foreground...

e High Battery Level.

INSTRUMENT v Time Profiler TRACK ATTRIBUTE v target RETEE® All Tracks

00:00.000 00:01.000 00:02.000 00:03.000

@® Time Profiler

CPU Usage

@8 » version110s.app CPU Usage
rocess) 3680

App Life C...

version1l0S.app) App Life Cycle

Starta Narrative
00:00.000.000 The system took 7.93 ms to create the process.
00:00.007.928 The system frameworks took 162.54 ms to initialize.
00:00.170.463 Initializing (Static Runtime Initialization)
00:00.172233 Launching (UIKit Initialization)
00:00.256.002 Launching (UIKit Scene Creation)
00:00.256. 524 Launching (didFinishLaunchingWithOptions())
00:00.256.526 Launching (UIKit Scene Creation)
00:00.267.455 Launching (sceneWillConnectTo())
00:00.267.459 Launching (UIKit Scene Creation)
00:00.394.870 Launching (sceneWillEnterForeground ()
00:00.394.975 Launching (UIKit Scene Creation)
00:00.395.602 Launching (Initial Frame Rendering)
00:00.412.358 Currently running in the foreground...

83

2. React Native (Application Launch Time).
e Low Battery Level.

NY INSTRUMENT v Time Profiler TRACK ATTRIBUTE v target JELC® All Tracks

00:00.000 00:01.000 00:02.000 00:03.000

® Time Profiler

(instrument] U Usage H

@ » versiont.app CPU Usage
(3216

App Life C.

Details App Life Cycle

Start~ Narrative

00:00.000.000 The system took 7.64 ms to create the process.

00:00.007.641 The system frameworks took 264.13 ms to initialize.
00:00.271.767 Initializing (Static Runtime Initialization)
00:00.275.701 Launching (UIKit Initialization)

00:00.450.929 Launching (UIKit Scene Creation)

00:00.463.244 Launching (didFinishLaunchingWithOptions())
00:00512.776 Launching (UIKit Scene Creation)

00:00513.934 Launching (Initial Frame Rendering)

00:00.543.395 Currently running in the foreground...

e Medium Battery Level.

| \NY v INSTRUMENT v Time Profiler TRACK ATTRIBUTE v target JEICEY All Tracks

00:00.000 00:01.000 00:02.000 00:03.000

@® Time Profiler

CPU Usage

@8 » versiont.app CPU Usage

[Process] 3215 App Life C...

|| Details) App Life Cycle

Starta Narrative
| 00:00.000.000 The system took 6.00 ms to create the process.
00:00.005.995 The system frameworks took 266.22 ms to initialize.
00:00.272217 Initializing (Static Runtime Initialization)
00:00.276.075 Launching (UIKit Initialization)
| o000.058.705 Launching (UIKit Scene Creation)
00:00.462.057 Launching (didFinishLaunchingWithOptions())
00:00511.487 Launching (UIKit Scene Creation)
00:00.512.771 Launching (Initial Frame Rendering)
00:00540.706 Currently running in the foregroun

e High Battery Level.

INSTRUMENT v Time Profiler TRACK ATTRIBUTE v target Target JNIRIENS
00:00.000 100:01.000 00:02.000 00:03.000
® Time Profiler
) o | |
» versionl.app CPU Usage 1 A]

| 3213

App Life C...

| Details) App Life Cycle

Start~ Narrative
00:00.000.000 The system took 7.45 ms to create the process.
00:00.007.449 The system frameworks took 267.14 ms to initialize.
00:00.274.586 Initializing (Static Runtime Initialization)
00:00.278.493 Launching (UIKit Initialization)
00:00.460.734 Launching (UIKit Scene Creation)
00:00.463.17¢ Launching (didFinishLaunchingWithOptions())
0000513362 Launching (UIKit Scene Creation)

00:00.514.528 Launching (Initial Frame Rendering)

00:00543.065 Currently running in the foreground...

84

Appendix D: Instruments Tool Screenshots.

D.1 Some Screenshots from Internal Sorting iOS + RN (App 1 and 2).

1- Cold Application Launch.

o0 @ & final

| n B Bisan's iPhone (13.2.3)) FirstApp Run 10f 23 | 00:00:05 » + 0 O

|

| INSTRUMENT v Time Profiler TRACKATTRIBUTE v target QEIFE® Al Tracks Duplicate
| £0:00.000 00:01.000 00:02.000 00:03.000 00:04.000

® Time Profiler

| CPU Usage

@B » Firstapp CPU Usage
(

3548

App Life C.

Details) App Life Cycle ® 0
Start~ Narrative

00:00.000.000 The system took 29.54 ms to create the process.

00:00.029.543 The system frameworks took 131.54 ms to initialize.

00:00.161.084 Initializing (Static Runtime Initialization)

00:00.162.849 Launching (UIKit Initialization)

00:00248.874 Launching (UIKit Scene Creation)

00:00.249.418 Launching (didFinishLaunchingWithOptions())

00:00249.420 Launching (UIKit Scene Creation)

00:00268.890 Launching (sceneWillConnectTo())

00:00.268.893 Launching (UIKit Scene Creation)

00:00.278.652 Launching (sceneWillEnterForeground())

00:00.278.656 Launching (UIKit Scene Creation)

00:00.279.221 Launching (Initial Frame Rendering)

00:00.303.977 Currently running in the foreground...

Input Fiter | ®

CPU Usage.

[XOX) B Instruments
] B Bisan's iPhone (13.2.3)) FirstApp 4 Run5of5 | 00:00:19 + O O
® All Tracks Duplicate
%0:00.000 00:10.000 00:20.000 00:30.000 00:40.000 00:50.000 01:00.000 01:10.000 0120.000 01:30.000

CPU Total.

CPU User...
CPU Syste...
Thermal State
Current

& Activity Monitor) System CPU Summary ® D0
Start Time~ Duration Total Load % User Load % System Load % Threads
00:00.000.000 8.39 ms 0.0% 1,160
00:00.008.385 1.30s 66.9% 1,329
00:01.311.454 918.71ms 63.1% 1,330
00:02.230.164 112s 109.4% 1,329
00:03.348.708 922.41ms 88.0% 1,329
00:04.271.114 1.03s 100.0% 1,322
00:05.300.922 913.06 ms 91.2% 1,133
00:06.213.983 112s 91.1% 1,120
00:07.335.892 877.67 ms 37.4% 1,110
00:08.213.566 1.01s 36.6% 1,073
00:09.226.043 1.156s 32.5% 1,072
00:10.371.346 825.29 ms 38.7% 1,069
00:11.196.640 1.32s 25.8% 1,065
00:12.615.161 678.51 ms 42.6% 1,068
00:13.193.673 1.32s 28.8% 1,068
00:14.515.177 920.19 ms 34.8% 1,067
00:15.435.368 1.08s 30.6% 1,068
00:16.514.938 971.34ms 33.7% 1,070
00:17.486.278 1.03s 38.1% 1,068
00:18.5615.028 999.02 ms 46.2% 1,067

®

85

3- Memory Usage.

W Bisan's iPhone (13.2.3)) | FirstApp Run10f8 | 00:00:30 » + |0 O
® All Tracks Duplicate
%0:00.000 00110000 00:20.000 00:30.000 00:40.000 00550000 01:00.000 0110.000 0120000 0130000
Activity Monitor CPU Total...
(nstrument)
CPU User..
CPU Syste...
(4] Thermal State
Corrent
nstrument
& Details) System Memory Summary ® 0
StartTimen Duration App Memory Cached Files Compressed Memory Used Wired Memory Swap Used
00:09.020.700 131s 563.09 MiB 396.70 Mig 249.16 MiB 1.15GiB 271.05 Mig 0Bytes
00:10.328.599 922.44ms 563.73 Mi 397.02 MiB 249.16 MiB 1.15GiB 271.05 MiB 0Bytes
00:11.261.039 946.72 ms 567.75 MiB 397.02 MiB 249.16 MiB 1.15 GiB 267.05 MiB 0Bytes
00:12.197.754 1.02s 569.22 MiB 397.03 MiB 248.73 MiB 1.15 GiB 267.05 MiB 0Bytes
00:13.218.044 111s 569.05 MiB 397.03 MiB 248.73 MiB 1.15 GiB 267.05 MiB 0Bytes
00:14.329.475 985.41 ms 565.41 MiB 397.03 MiB 248.73 MiB 1.15 GiB 267.05 MiB 0Bytes
00:15.314.888 912.92 ms 565.47 Mig 397.03 Mig 248.73 MiB 1.15GiB 267.05 Mig 0Bytes
00:16.227.813 118 565.41 Mi 397.03 MiB 248.73 MiB 1.15GiB 267.05 Mig 0Bytes
00:17.411.691 906.18 ms 565.28 MiB 397.12 MiB 248.73 MiB 1.15GiB 267.05 MiB 0Bytes
00:18.317.868 1115 565.30 MiB 397.12 MiB 248.73 MiB 1.14GiB 267.05 MiB 0Bytes
00119.432.374 983.24 ms 565.11 MiB 397.16 MiB 248.73 MiB 1.14GiB 267.03 MiB 0Bytes
00:20.415.618 812.19 ms 565.06 MiB 397.17 MiB 248.73 MiB 1.15 GiB 267.03 MiB 0Bytes
00:21.227.813 1335 564.89 Mig 397.19 MiB 248.73 MiB 1.14 Gi8 267.03 MiB 0Bytes
00:22.553.844 857.38 ms 564.78 MiB 397.19 MiB 248.73 MiB 1.14Gi8 267.03 MiB 0Bytes
00:23.411.224 1.10s 564.91 Mi 397.19 MiB 248.73 MiB 1.14Gi8 267.03 MiB 0Bytes
00:24.514.5681 998.90 ms 564.81 Mi 397.19 MiB 248.73 MiB 1.15 GiB 267.05 MiB 0Bytes
00:25.513.478 1.00s 564.80 MiB 397.42 MiB 248.73 MiB 1.15 GiB 267.05 MiB 0Bytes
00:26.515.255 1.01s 564.80 MiB 397.44 MiB 248.73 MiB 1.14 68 267.05 Mig 0Bytes
00:27.530.250 984.64 ms 564.95 Mig 397.45 Mig 248.73 MiB 1.14 68 267.05 Mig 0Bytes
00:28.514.890 999.25 ms 564.92 MiB 397.45 MiB 248.73 MiB 1.14Gi8 267.05 Mig 0Bytes
®
[XOX) B FirstApp
n B Bisan's iPhone (13.2.3)) FirstApp < Run190f 19 | 00:00:21 + | O O
[S) JYRICS® Instruments CPUs Threads Duplicate
%0:00.000 00:10.000 00:20.000 00:30.000 100:40.000 00:50.000 01:00.000 01:10.000 01:20.000
5

@ Ccore Animation FPS

(imstrument) Frame Per Second

Device Utilization

® Time Profiler h

Core Animation FPS Measurements

Interval~ Frames Per Second GPU Hardware Utilization
00:01.004.935 58 FPS 0.0%
00:02.011.364 58 FPS 0.0%
00:03.015.059 59 FPS 0.0%
00:04.023.862 59 FPS 0.0%
00:05.031.937 59 FPS 0.0%
00:06.035.220 60 FPS 0.0%
00:07.041.571 59 FPS 0.0%
00:08.049.999 59 FPS 0.0%
00:09.063.544 60 FPS 0.0%
00:10.069.679 57 FPS 0.0%
00:11.065.937 58 FPS 0.0%
00:12.069.608 60 FPS 0.0%
00:13.077.759 58 FPS 0.0%
00:14.086.058 6 FPS 0.0%
00:16.094.378 38 FPS 6.0%
00:16.103.161 60 FPS 0.0%
00:17.111.340 59 FPS 0.0%
00:18.115.518 59 FPS 0.0%
00:19.119.676 59 FPS 0.0%
00:20.126.279 59 FPS 0.0%

Input Filter @

86

