

Faculty of Engineering and Technology

Master of Software Engineering (SWEN)

Master Thesis

Comparative Analysis of Mobile Software Development

Frameworks: React Native and Native iOS

By

Student Name: Bisan Abubaker

Student Number: 1175468

Supervised

By

Dr Adel Taweel

Dr Samer Zain

A thesis submitted in fulfillment of the requirements for the degree of

Master of Software Engineering at Birzeit University, Palestine

August 5, 2020

Comparative Analysis of Mobile Software Development Frameworks:
React Native and Native iOS

Author: Bisan Abubaker

This thesis was prepared under the supervision of Dr.Adel Taweel and has been
approved by all members of the examination committee

Dr. Adel Taweel, Birzeit University

Dr. Radi Jarrar, Birzeit University

Dr. Mohammed Hussien, Birzeit University

Date of defense:
25 July 2020

Declaration of Authorship

I, Bisan Abubaker, declare that this thesis titled, “Comparative Analysis of Mobile Software

Development Frameworks: React Native and Native iOS” and the work presented in it are my

own.

 I confirm that:

▪ This work was done wholly or mainly while in candidature for a master degree at

Birzeit University.

▪ Where any part of this thesis has previously been submitted for a degree or any other

qualification at this University or any other institution, this has been clearly stated.

 ▪ Where I have consulted the published work of others, this is always clearly attributed.

 ▪ Where I have quoted from the work of others, the source is always given. With the

exception of such quotations, this thesis is entirely my own work.

▪ I have acknowledged all main sources of help.

▪ Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself.

Signed: Bisan Abubaker

Date: July 25, 2020

 i

Abstract

Mobile applications market is divided between limited number of distinct platforms,

mainly iOS and Android, which makes mobile application development problematic

and difficult.

Developers are required to having knowledge about development differences and tools

for both platforms, which demands more development and maintenance effort,

multiplatform-skilled software engineers, increased budget and multiple programming

language skills. Several approaches have attempted to address this issue, including the

use of hybrid development frameworks, such as ionic [1] and PhoneGap [2], but they

were not able to provide a native user interface (UI) feeling. A newly released hybrid

framework that addresses the user interface problem by providing a native UI feeling

is React Native.

React Native is a cross-platform framework that enables developing mobile

applications that works on both iOS and Android platforms, using a single code written

in JavaScript, with native UI feeling. However, its cross-platform capabilities have not

been studied enough to understand its characteristics to make an informed software

development choice. This thesis evaluates the performance and efficiency of

applications written in the new React Native framework and proposes a software

engineering method that improves performance of React Native applications. For the

former, it conducts a comparative study between applications developed using iOS and

React Native with respect to execution and CPU time, memory and battery usage,

frames per second and application launch time. Our focus is on the data centric apps,

i.e. apps that process, read and write data to back-end server as well as local storage

and files.

 For the later, based on the outcome of the comparative study, a study of React Native

development features was conducted to identify its comparative deficiencies to provide

software development guidelines on mechanisms to improve React Native applications

development.

 ii

Results are promising for React Native. They show a big similarity, on application

performance, between both iOS and React Native platforms. Which means, there is no

significant difference between performance in the two frameworks on the studied

software features and applications, with a difference in performance ranging between

3%- 10%. However, a major performance difference was found in React Native,

compared to iOS, on image processing. For this feature, iOS was found three times

faster than React Native, for the studied applications. A code improvement solution is

proposed to address this React Native performance issue and improve its execution time

to as nearly as iOS.

 iii

صخلملا

 سا وا يلاا يساسأ لكشب ،لیغشتلا ةمظنأ نم دودحم ددع نیب لومحملا فتاھلا تاقیبطت ریوطت قوس مسقنی

 .ام اعون دقعمو بعص رمأ ةلومحملا فتاوھلل تاقیبطتلا ریوطت عوضوم نم لعجی اذھو ،دیوردنلااو

 ،سا وا يلااو دیوردنلاا لیغشتلا يماظن ریوطتل ةمدختسملا تاودلأا نیب تاقورفلا اوفرعی نأ نیروطملا ىلع بجی

 لیغشتلا ھمظنا لاكب نیصتخم نیسدنھم ىلا ھفاضلااب ةنایصو ةجمرب ةیحان نم رثكأ ةیفرعم دوھج بلطتی اذھو

 .ةینازیملا يف ةدایز يلاتلابو

 نوفلاو كینویلاا ةئیب لثم دربیاھلا ةقیرط مادختساب ریوطتلا اھنم ،لكاشملا هذھ لحل تاھجوتو قرط ةدع كانھ

 روكذملا ھلكشملا تلح ةدیدج ةئیب كلذ دعب ترھظ .نیمدختسملل ھیلصا روعش ھھجاو ءاطعإ يف اتلشف امھنكلو ،باج

 .فتین تكایرلا يھو نیمدختسملل يلصأ روعش تطعأو اقباس

 ةلومحملا فتاوھلل تاقیبطت ریوطت نم نیجمربملا نكمت ثیحب مروفتلاب سوركلا ماظنب لمعت ةئیب يھ فتین تكایر

 روعش ءاطعإ عم تبركس افاجلا ةغلب بوتكم دحاو دوك مادختساب تقولا سفنب سا وا يلااو دیوردنلاا يماظنب لمعت

 ىلثملا ریوطتلا ھقیرطل لثملأا رایخلا ءاطعلإ يفاك لكشب سردت مل ةئیبلا هذھ تاردق نكلو ،نیمدختسملل يلصأ

 .اھمادختساب حوصنملا

 موقن مث نمو ،ةدیدجلا فتین تكایرلا ھئیب يف ةبوتكملا تاقیبطتلل ءادلأاو ةیلاعفلا مییقتب لاوا موقن ،ثحبلا اذھ يف

 ةنراقم ةسارد لمعب موقن ،لولأا فدھلل .فتین تكایرلاب ةبوتكملا تاقیبطتلا ءادأ نیسحتل دیدج يسدنھ حرتقم میدقتب

 ةركاذلا ،ةجلاعملا تقو ،ذیفنتلا تق، ھیحان نم سا وا يلااو فتین تاكیرلا مادختساب ةر،طملا تاقیبطتلا نیب

 ىلع انھ انزیكرت .قیبطتلا ءدب تقوو ةیناثلا يف ةضورعملا تاراطلإا ددع ىلا ھفاضلااب ،ةیراطبلا كلاھتساو

 يلحم نیزختو تارفریس ىلع تانایبلا هذھ بتكتو أرقتو جلاعت اھنا امك ةریثك تانایب ىلع يوتحت يتلا تاقیبطتلا

 .تافلمو

 ةئیبب ةروطملا تاقیبطتلا ءادأ نیسحتل ةدعاسم طوطخ میدقتب انمق ،ةنراقملا ةسارد ةجیتن ىلع ءانب ،يناثلا فدھلل

 .فتین تكایرلا

 فتین تكایرلا مادختساب ةروطملا تاقیبطتلل ءادلأا نیب ریبك ھباشت ترھظأ دقو ،فتین تكایرلا هاجتاب ةیباجیإ جئاتنلا

 ىلا ٪3 نیب حوارتت، ھطیسب تاقورفلا ،نیتئیبلا نیتاھ نیب ةریبك تاقورف دجوی لا ھنأ ينعی اذھو ،سا وا يلااو

 نأ نیبت ،روصلا ةجلاعم ةیحان نم سا وا يلااو فتین تكایرلا نیب يساسأ قرف دجو دقل ،لاح ةیأ ىلع .طقف 10٪

 فتین تكایرلاب بوتكملا دوكلا ریوطتل ةیسدنھ ةقیرط میدقت متو ،فتین تكایرلا نم تارم ةثلاثب عرسأ سا وا يلاا

 .سا وا يلاا ھعرس نم ادج ةبیرق ھتعرس حبصتل

 iv

نافرعو ركش

 ،ھیلإ لیبسلا رسیو ثحبلا اذھ زاجنلإ ينقفوو ملعلا ةمعنب يّلع معنأ يذلا لجو زع ¶ ركشلاو دمحلا

 اذھ ىلع فرشأ يذلا لیوطلا لداع روتكدلا ىلا نانتملااو ریدقتلا قیمعو ركشلا صلاخب ھجوتأ

 .تاداشرلإاو حئاصنلاب يندوزو هزاجنإ لحارم عیمج يف يعم فقوو لمعلا

 نم لك ركشأو ،ةمیق تاظحلام نم هومدق ام ىلع شاقنلا ةنجل ىلإ ریدقتلاو ركشلاب ھجوتأ امك

 رخآ ىلإ ھلامكإو لمعلا اذھ مامتإ ىلع ينعجش نم لكو ،تامولعملا میدقتو ةبرجتلا ذیفنت يف كراش

 .ھجوو ةروص نسحأو

ءادھإ

 ادنسو انوع امود اناك ناذللا ،زیزعلا يدلاوو ةزیزعلا يتدلاو ىلإ ،يبلق ىلإ مھبرقأو سانلا زعأ ىلإ

 .يل ادمم مھؤاعد ناكو ،يل

 ىلا يبناجب فقوو ،ریثكلا يعم لمحتو ،باعصلا يل رسیو ،يتاوطخ يعم ىطخو يندناس نم ىلإ

 .زیزعلا يجوز ىلإ ،ةوطخ رخآ

 .ثحبلا اذھ دادعإ يف اھتیضق يتلا ةرتفلا ةلیط تلمحت يتلا ةسام يتنب ،يدبك ةذلف ىلإ

 يل نوعلاو معدلا لك امدق ناذللا ،يجوز يّدلاو يناثلا يدلاوو ةیناثلا يتدلاو ،ةزیزعلا يتلئاع ىلإ

 .دنسو لھأ ریخ اناكو ثحبلا ةرتف ةلیط

 .داشرلإاو ھیجوتلاو حصنلاو ریدقتلاو بحلاب ينورمغ نیذلا ،يلع لضفلا لھأو يتذتاسأ ىلإ

 .ھقیفوتب اندمیو ھب انعفنی نأ ریدقلا يلعلا الله لائاس ،عضاوتملا لمعلا اذھ مھیدھأ ،ءلاؤھ لك ىلإ

 v

Table of Contents

Abstract .. i

List of Figures ... ix

List of Tables .. x

List of Abbreviations ... xi

Acknowledgements ... xii

Chapter 1 Introduction ... 1

1.1 Introduction and Motivation ... 2

1.2 Research Objectives and Problem Statement 4

1.3 Overview of this Thesis ... 5

Chapter 2 Background .. 6

2.1 Definitions .. 6

2.1.1 Mobile Application .. 6

2.1.2 Native development ... 6

2.1.3 Cross-platform development .. 7

2.2 Mobile Platforms and Development .. 7

2.2.1 iOS ... 7

2.2.1.1 OS Structure. ... 7

2.2.1.2 App Structure. ... 8

2.2.2 React. .. 9

2.2.2.1 Real DOM. ... 10

2.2.2.2 Virtual DOM. ... 10

2.2.3 React Native. .. 10

Chapter 3 Literature Review ... 12

3.1 Introduction ... 12

 vi

3.2 Criterion based comparative studies ... 13

3.3 TimeStamps based comparative studies ... 15

3.4 Tools based comparative studies ... 16

3.5 Emergence of React Native .. 18

3.6 Performance improvement studies .. 20

3.7 Highlight the gap of knowledge ... 21

3.8 Summary .. 22

Chapter 4 Research Methodology .. 23

4.1 Introduction ... 23

4.2 Experimental Design ... 23

4.3 Identification of Prevalent Software Features 24

4.4 Mobile Applications Selection (Development). 25

4.4.1 Internal Storage. .. 26

4.4.2 File Storage. .. 27

4.4.3 Database Storage. .. 27

4.5 Experiment Setup. ... 27

4.5.1 Data Processing Experiment. ... 27

4.5.2 File Processing Experiment. ... 28

4.5.3 Data Retrieval from Remote Server Experiment. 28

4.5.4 Processing of Images Experiment. ... 29

4.5.5 Search Experiment. ... 30

4.6 Performance Evaluation. .. 30

4.7 Test Experiments. ... 32

4.7.1 Number of Runs Test. ... 32

4.7.2 Battery Level Test. ... 33

4.8 Parameter Measurements and Data Collection. 33

4.8.1 App Launch Time. ... 33

4.8.2 CPU Usage. ... 34

4.8.3 Memory Usage. .. 34

 vii

4.8.4 Frames Per Second. ... 34

4.8.5 Battery Consumption. ... 35

4.8.6 Execution Time. ... 35

4.9 Data Collection and Analysis. .. 35

4.10 Experiment Scenarios ... 35

Chapter 5 Experiments and Results .. 37

5.1 Mobile Application Development. ... 37

5.1.1 Data Processing (Application 1&2). ... 37

5.1.2 File Processing (Applications 3&4). ... 38

5.1.3 Data Retrieval from MySQL (Applications 5&6). 38

5.1.4 Processing of Images (Applications 7&8). 39

5.1.5 Search (Application 9&10). .. 39

5.1.6 Run Environment. ... 40

5.2 Performance Evaluation: Results. ... 41

5.2.1 App Launch Time. ... 41

 43

5.2.2 CPU Usage. ... 44

5.2.3 Memory Usage. .. 45

5.2.4 Frames Per Second. ... 46

5.2.5 Battery Consumption. ... 47

5.2.6 Execution Time. ... 48

5.3 Performance Improvement. ... 49

Chapter 6 Conclusion ... 55

6.1 Introduction. .. 55

6.2 Results Discussion. .. 55

6.3 Threats and constraints. ... 57

6.4 Difficulties and Obstacles faced throughout your research. 57

6.5 Future Work. ... 57

References .. 58

 viii

Appendices .. 64

Appendix A: App Store Study. ... 65

Appendix B: Applications Screenshots. .. 69

Appendix C: Test Experiments. ... 79

Appendix D: Instruments Tool Screenshots. .. 85

 ix

List of Figures

Figure 2-1: iOS Operating System Layers ... 8

Figure 2-2: Model-View-Controller Architecture [30]. 9

Figure 4-1 city table with text. ... 28

Figure 4-2 city table with text and image ... 29

Figure 4-3 Instruments Tool. ... 32

Figure 4-4 Methodology Phases. ... 36

Figure 5-1 App Launch Time cold run all Apps. 42

Figure 5-2 App Launch Time hot run on all Apps. 43

Figure 5-3 CPU Usage on all Apps. ... 44

Figure 5-4 Memory used on all Apps. ... 45

Figure 5-5 Frames Per second on all Apps. .. 46

Figure 5-6 Percentage of main thread execution time all Apps. 48

Figure 5-7 Execution time for iOS image App. 51

Figure 5-8 Execution time for React Native image App. 52

Figure 5-9 Execution time for improved React Native image App. ... 52

Figure 5-10 React Native Code Before Modification. 53

Figure 5-11 React Native Code After Modification. 53

Figure 5-12 Execution Time for iOS & RN before and after

modification. ... 54

 x

List of Tables
Table 4-1 Prevalent Features. .. 25

 xi

List of Abbreviations

Apps: applications

iOS: iPhone Operating System

RN: React Native

JS: Java Script

FPS: Frames Per Second

IDE: Integrated Development Environment

SDK: Software Development Kit

OS: Operating System

UI: User Interface

MVC: Model View Controller

XML: Extensible Mark-up Language

JSX: JavaScript XML

DOM: Document Object Model

API: Application Programming Interface

GPU: Graphics Processing Unit

 xii

Acknowledgements

I would first like to thank my thesis supervisors, Dr Adel Taweel and Dr Samer Zain of

the Master of Software Engineering program at Birzeit University. They helped me a

lot whenever I ran into a trouble spot or had a question about my research or writing.

I would also like to acknowledge Dr Radi Jarrar and Dr Mohammad Hussein as the

readers of this thesis, and I am gratefully indebted to their very valuable comments on

this thesis.

Finally, I must express my very profound gratitude to my parents and to my spouse, for

providing me with unfailing support and continuous encouragement throughout my

years of study and through the process of researching and writing this thesis. This

accomplishment would not have been possible without them. Thank you.

Author,

Bisan Abubaker

 1

Chapter 1 Introduction

The number of smartphone users and consequently applications are increasing at

enormous speeds. In fact, the number of users has crossed over 3.2 billion users, and

some studies report it at more than 5 billion users and it is expected to reach about 3.8

billion users by 2021 [3]. Similarly, the number of tablet users is reported at 1.35 billion

users [4]. Smartphones are widely used at home, work and on the streets with

applications covering most, if not all, of human life aspects. Approximately, 90% of the

time spent on smartphones is on the applications downloaded on the mobiles from the

stores [5]. The number of available mobile applications available for download is

increasing surprisingly; it reached about 2.2 million applications for the Apple App

Store, and 2.47 million applications for the Google Play Store [6]. In addition to that,

because of the popularity and wide usage of mobile applications, the number of mobile

applications downloads has reached more than 194 billion downloads [7]. Those

applications need to be not just supported by their operating systems, but also by robust

software development frameworks. However, due to the large user base for both

Android and iOS, most applications are made available for both operating systems.

Consequently, programmers need to develop two separate applications using different

tools and programming languages for each platform in order to reach majority of mobile

applications’ users, even though the application itself is the same, which is a more

expensive process.

Many attempts solve the problem by giving the ability to write a single code using one

tool to work on both iOS and Android platforms. However, the code is written using

HTML, CSS and a web browser, which are embedded into the application, such

application is known as a hybrid app [8]. In this case, most of the code is shared between

the two development platforms, but there is a shortage in achieving a native UI feeling

and usually the performance of the apps developed using this method is very poor. As

a result, a newly released framework called React Native born to enhance both the

performance, to become closer to the native OS, and the UI feeling, to become almost

as a native UI, instead of using web components. Therefore, this thesis aims to study

the performance and efficiency of applications written in the new React Native

framework and proposes a software engineering method that attempts to improve

 2

performance of React Native applications. The study focuses on the data centric apps,

due to their performance demanding, which handle data processing, reads and writes to

both a back-end server and local storage and files.

From our study, we found that the performance parameters including application launch

time, CPU and memory usage, battery consumption and frames per second are very

close for both iOS and React Native. The major difference was found is in the execution

time. iOS was faster by three times than React Native. However, we were able to

enhance the execution time to become very close to iOS by modifying the code of React

Native.

1.1 Introduction and Motivation
After the retreat of Windows Phone [9], two main dominants remain in the world of

smartphones, which are iOS and Android. Normally, two separate frameworks are used

for the development of mobile applications, one for the iOS, which uses Xcode with

Swift or Objective-c language, and the other is the Android, which uses the Android

Studio with Java or Kotlin language. Actually, this is time, resource and budget

consuming process because, potentially, two separate teams with different skills would

be needed to develop two separate copies of the same mobile application. New

frameworks or tools have thus become available and widely popular to reduce the three

main factors, which are time, resource and budget. These tools are called mobile cross-

platform development frameworks [10, 11, 12].

There are several cross-platform development frameworks in use [10, 11, 12], including

Titanium, PhoneGap, RhoMobile, WidgetPad, and Xamarin [13]. One of the latest and

most preferred is React native [10], which is a JavaScript framework for building

mobile application with native look and feel for applications to work on both iOS and

Android [14]. It was introduced by Facebook in 2015 [15].

With cross-platform, a mobile application is developed once and it can run on any

operating system, which utilises the concept of “learn once, write everywhere” [16]. In

contrast, a native application is developed using a specific programming language, e.g.

Java, Kotlin, Swift or Objective-C, to work on a particular operating system, e.g.

Android or iOS respectively.

 3

The decision to use a native or a cross-platform development framework is relative

somehow and depends on several factors. On the one hand, native development

provides higher levels of reliability and performance and delivers superior user

experience. On the other hand, companies need at least twice the time and resources to

launch their product on all types of mobile devices, this is because each operating

system must be supported by a discrete version of the application.

Moreover, for native platform development, programmers have to be skilled in multiple

programming languages, frameworks, and tools to support each of the sought native

operating systems. However, for a cross platform development, such as React Native,

developers do not build a “mobile web app”, an “HTML5 app”, or a “hybrid app”, but

they usually develop a mobile application, which is indistinguishable from a single-

platform application, built using java or swift. It simply requires putting the building

blocks of the application together using JavaScript or React [16]. Actually, there are

several advantages for cross-platform development, including improved time to market,

overall development cost, portability and maintainability and many more.

In addition to the advantages mentioned above, of using cross-platform frameworks,

more specifically, there are several reasons for choosing React Native for our study.

React Native is a single code base, completely free and open source, and supported by

Facebook. Also, generally, it has a well-supported and faster development and

application delivery than other frameworks with large community backing. Moreover,

the user interface is rendered using actual native views, which enables better final user

experience and better integrated solution than other solutions that simply render a web

component inside a WebView. Further, React Native has excellent user experience

because of the interaction with native controllers and the potential to achieve a near-

native performance because of the direct access to native APIs [16]. As a conclusion, it

is recommended to start development using React Native if the development team can

learn new technology [17].

 4

1.2 Research Objectives and Problem Statement
The market of smartphone applications is enormous and rapidly rising. Moreover,

developing applications with good efficiency and performance have become very

important and really matter [18]. In fact, React Native is one of the newly released

frameworks that has not much previous research yet. Particularly, the performance of

the applications developed in it, in comparison to native ones, is not clearly determined.

Therefore, understanding the performance differences between native and React Native

is vital in order to decide which development path to choose.

The overall purpose of this thesis is to compare two particular features, namely

efficiency and performance, of applications between native and cross-platform

development. It focus, however, on iOS and React Native platforms. Specifically, the

work will conduct a comparative analysis, of efficiency and performance, of

applications developed in XCode framework using objective-c language as a native iOS

programming language, against applications developed in React Native as a cross-

platform development framework. Notably, efficiency and performance include several

parameters to consider, including for example cpu usage, memory usage, application

launch time, battery consumption, framerate and many more. Another purpose is to

enhance React Native code development to improve its performance to become closer

to native iOS resulting into a guideline for more efficient React native code writing.

Our focus is on the data centric apps, such apps read and write data to back-end server

as well as local storage and files.

To fulfil the above purposes, the thesis attempts to answer the following questions:

1) RQ1: What are the differences between native iOS and React Native, as

development frameworks, on performance and efficiency of developed

applications?

2) RQ2: How can we improve the performance and efficiency of application

developed in React Native to become closer to native ones?

 5

In our study, we have two hypothesis:

Hypothesis-1: React Native developed application features (specifically performance

and efficiency) are analogous to iOS developed application features. [Task-1:

Comparative study].

Hypothesis-2: Utilising code-modification engineering on React Native (as a cross-

platform framework) application development would result into improvement in

software features of applications (such as performance and efficiency), to become

comparable to native ones. [Task-2: Code- modification engineering guideline].

1.3 Overview of this Thesis
The remainder of the thesis is divided into four chapters. Chapter 2 gives a background

and description of both native and cross-platform development focusing on iOS and

React Native. Chapter 3 discusses the pertinent literature and sources available, and

identifies the research gap on the topic, to where other researchers have stopped.

Chapter 4 outlines the research methodology, which was followed to collect and analyse

the data. Chapter 5 summarizes the results achieved so far. Finally, chapter 6 shows a

small conclusion about the research so far and the findings on the literature review,

difficulties and obstacles, recommendation and future work.

 6

Chapter 2 Background

This chapter describes a brief background about native development, specifically iOS.

In addition to cross-platform development, specifically React Native. It also displays

the structure for both iOS and React Native.

2.1 Definitions

2.1.1 Mobile Application
A mobile Application is a software program that is intended to work on smart devices

such as mobiles, watches and tablets with a specific purpose [19]. There are several

categories of mobile apps1 such as news, sport, entertainment and games. Those Apps

are found on the stores like Apple App Store or Android Google Play. They can be

either paid or free for download.

In fact, the trend for mobile applications came from the first generation of iPhone in

2010, which is led to the idea of the App store. Consequently, Apple released its App

store with 552 applications, 135 of them is free for download. After just one week, ten

million applications were downloaded and the popularity of the word ‘apps’ has

increased dramatically [20].

2.1.2 Native development
Native application development is the process of writing software that works on a single

platform with a specific operating system, processor and hardware. Application

development results into executable files that run on a specific type of mobile devices

(either iOS or Android), with a full access to the device hardware and functionalities

due to the direct interaction with the operating system [21].

For iOS, developers need a Mac device with Xcode IDE [22] installed on it. In addition,

they need a physical device with compatible iOS to test the application on it.

For Android, developers need a Windows computer with Android SDK [23] bundled

with Android Studio IDE, in addition to a physical device for testing.

1 The terms “mobile applications” and “mobile apps”, or “applications” or “apps” will

be used interchangeably throughout the thesis.

 7

2.1.3 Cross-platform development
Cross-platform development is the process of writing software that works on multiple

platforms with multiple operating systems. In other words, the same code will work on

several platforms, like iOS, Android and Windows Phone [24]. Previously, if the

application operates on a single platform it was seen as sufficient. However, to expand

the users base, the application needs to work on all types of devices with different

platforms. Actually, there are many different tools and approaches for this type of

development which are interpreted, hybrid, cross-complied, component-based and

model driven development. Each with its own advantages and disadvantages.

2.2 Mobile Platforms and Development

2.2.1 iOS
iOS is a mobile operating system specific for Apple hardware. It was developed by

Apple company in 2007. There are many versions of iOS, the latest version is iOS

13.2.2, which was released on the seventh of November, 2019. Actually, we will use

this version in our experiment [25].

2.2.1.1 OS Structure.

The type of the architecture of iOS operating system is layered architecture. It consists

of four main layers. Those layers are built on top of each other. The first upper layer is

the Cocoa Touch layer, which is responsible for deriving the user interface like widget

and controllers, giving access to the main system functions like Camera, other apps and

Contacts. The second layer is the Media Layer, which handles audio, video and graphics

using several technologies like OpenGL, AV Foundation and Core graphic. The third

layer is the Core Services, which is responsible about the core system services needed

by the iOS application like location and networking. There are several frameworks exist

in this layer, such as Cloudkit framework, Core Location and Core Motion. The last

lower layer is the Core OS, which includes the low-level features that other frameworks

use and kernel operations. Usually, developers will not use this layer. Examples on the

technologies used in this layer are Bluetooth, External Accessory and Security Services

[26] [27]. Figure 2-1 below shows the layers of the iOS OS.

 8

2.2.1.2 App Structure.

It is recommended to use the model view control (MVC) [28] in the development of

iOS applications in order to separate the presentation apart from the data and business

logic. In fact, using MVC makes it easy to use several screen sizes with different

resolutions without the need for big alteration in the code. This is because the view

component, which responsible for the presentation is separated from the data and

business logic. Therefore, the modification will be only in the view component. Below

is the description for each part.

• Model: it is responsible for the data in the mobile app, which includes

organizing, sorting and validating data. It notifies the controller when any

change in the data happens. This can be done in iOS using data objects, which

can be a database [29].

• View: it is responsible for the presentation and user interaction, i.e. it is what

the user sees and can interact with on the mobile screen. It also notifies the

controller when any user action happens. We can either create custom views or

use the default views provided by UIKit framework [29].

Figure 2-1: iOS Operating System Layers

 9

• Controller: it is responsible for the management process between the model and

the view, it takes data from the model and return it to the view for the

presentation process. On the other hand, after user interaction, it takes the

modified data from the view to the mode. Model and view do not interact with

each other. Figure 2-2 illustrates the MVC architecture.

 Figure 2-2: Model-View-Controller Architecture [30].

2.2.2 React.
React is a JavaScript library intended to build user interfaces, it was created by

Facebook in 2013 [31]. The main contribution for React is to automate the update

process of the UI. Previously, updating the UI of an application to reflect changes was

one of the developer’s responsibilities, which means that the developer must manually

modify the web browser’s Document Object Model (DOM) using JavaScript to update

the UI of an application. However, with React, all you need to do is to inform React the

current presentation of the application according to the current state. In fact, developers

just notify React that the state has changed in order to trigger UI updates by making

vital DOM changes.

Components are the heart of any React application. Actually, a component is a module

that renders specific output. In addition, it might contain one or more component in the

components’ output. Examples on components are button, input field and slider [32].

React uses Virtual DOM feature instead of working directly on the browser’s DOM, in

order to handle the process of re-rendering efficiently. Virtual DOM exists in memory

and it represents the browser’s DOM. Therefore, writing will not be directly to the

 10

DOM, instead it will be written on the Virtual DOM and react will intelligently decide

which changes to reflect on the browser’s DOM.

2.2.2.1 Real DOM.

DOM stands for “Document Object Model”. The DOM in simple words represents the

user interface of the application. Every time there is a specific change in the state of the

UI of an application. As a result, the DOM gets updated to represent that specific

change. However, manipulating the DOM frequently directly affects performance by

making it very slow.

In fact, DOM represents the document as objects and nodes. Using this way, the

programming languages can connect to the page. It is an object-oriented representation

of a web page that can be manipulated with a scripting language like JavaScript.

Anything found in a HTML document can be accessed, changed, deleted, or added

using the Document Object Model [33].

2.2.2.2 Virtual DOM.

Virtual DOM is a collection of modules designed to give a declarative way of

representing the DOM for any application. Actually, instead of updating the overall

DOM when the state of an application is changed, virtual tree which looks like the DOM

state is created. After that, this Virtual DOM will figure out how to make the DOM look

like this efficiently without recreating all of the DOM nodes. Hence, the performance

will be improved in comparison with the real DOM. A virtual DOM is like a lightweight

copy of the real DOM. In fact, virtual DOM used in React Native, so this makes the

framework with higher performance that other web and hybrid frameworks that use real

DOM.

2.2.3 React Native.
React Native is built on top of React, which means that it is working on the same way

React work, but it renders UI building blocks of the native (iOS or Android) platform

instead of rendering HTML elements. A mix of XML and JavaScript (JSX) is used to

develop React Native applications. After that, React Native ‘bridge’ calls the native

application programming interfaces in Java language for Android and Objective-C for

 11

iOS, thus the final mobile application will render using native user interface

components instead of webviews, so it will look like any other application developed

natively. Moreover, applications developed using React Native gives you the ability to

access platform specific features like camera, Bluetooth and GPS. In fact, there are

many advantages for React Native, the main advantage which makes it better than other

cross-platform techniques like ionic [1] and Cordova [34] that depends on webviews

rendering, is the native UI rendering. Actually, both webview and native UI are working

but with drawback on the webview performance, so it is better to use React native rather

than any other cross-platform technique when the performance is a big matter. In

addition, applications developed using React Native can maintain high performance

without sacrificing capability, this is because React works separately from the main UI

thread. Regarding the update cycle, similar to React, React Native re-renders the views

when state or props change.

From developer experience point of view, if any developer will start building a mobile

application using React Native for the first time, s/he will be surprised about the

simplicity of the work, in addition to the strength of the developer tools and meaningful

error messages. Also, the hot reload feature makes React Native unique from all other

cross platform frameworks; which means in order to see your code changes all you need

to do is press command + R instead of building your application again and wait until it

re-runs. Additionally, React Native developer has the freedom to either use any text

editor like Atom [35], Sublime text [36] or XCode, Android studio.

From code and knowledge sharing point of view, approximately most of the code is

shared between iOS and Android platforms, excepts for the pieces of functionality that

requires native code then you need to dive into objective-c for iOS and Java for

Android. In addition, React Native increase knowledge sharing between the team

members because you can target Web, iOS and Android using only one language and a

team with the same background, so they can share their knowledge with each other’s

[37].

 12

Chapter 3 Literature Review

This chapter describes the previous studies that are related to the topic of mobile

applications and comparative studies. In addition, it highlights the gap of knowledge

for our research.

3.1 Introduction
In this part, we mention the previous studies that are related to our field of study. The

first section displays previous studies that depends on a specific set of criteria taken

from practitioners and domain experts to compare either between native and cross

platform approach or between more than one cross platform frameworks. Examples on

criterions are: maintainability, number of line codes, ease of development, license and

cost, access to device data and hardware. Those criterions were measured by using

specific mobile app, then asking to put a number from a specific range to reflect the

degree of criteria fulfilment with minor additions in the study like performance. The

second section lists studies that uses stopwatches to measure the execution time to

access device capabilities like compass, microphone, images, videos and geolocation.

It also uses questionnaire and interviews to collect information about the developers

experience in several frameworks and programming languages. The third section

displays studies that uses several tools to measure multiple performance parameters like

memory and CPU usage and response time. Power Tutor [38], Terpn profiler [39] for

android and Instruments [40] for iOS. The fourth section displays all papers that studied

React Native for any purpose, weather it is for comparison or it is for classification

purpose. Because the number of papers is very limited, we mention thesis that includes

React Native in their study.

The last section includes previous studies that stated the importance of mobile

application performance in both iOS and Android platforms. In addition, studies

showed that most of the errors and bugs are of type performance errors. Moreover, there

is a study that indicate the way Android developers fix their performance issues in the

mobile apps.

 13

3.2 Criterion based comparative studies
On the one hand, several studies compared cross-platform development with both

native iOS and native android. Heitkötter et al. [41] compared the development of

native applications to a number of cross-platform application development frameworks,

which are web apps, PhoneGap and Titanium, based on several important criteria taken

from practitioners and domain experts, that is widely used when evaluating mobile

frameworks. The evaluation was made in two steps, the first one is by developing a

small prototypical application for task management and evaluate the specified criterions

on it textually in tables. The second one is by evaluating the degree of fulfillment for

each one of the criterions from 1 which means very good to 6 which means very poor.

The result was displayed in tables, two tables for each framework, one for the

development like maintainability, which is measured by number of line code and ease

of development, which is measured by the time it took in development and the existence

of user comments, and the other for the infrastructure criteria like the license and cost,

supported platforms and access to platform specific features. However, the authors did

not include React Native in their study, because it was released after the study. The

authors concluded that PhoneGap is applicable if a very close similarity to a native user

interface look and feel can be ignored. On the other hand, other studies limited the circle

by comparing several cross-platform tools and ended up with the appropriate

framework for development. One of them is Dalmasso et al. (2013) [42] , who made an

assessment that evaluate several cross-platform development frameworks, which are

PhoneGap, Titanium, Rhomobile and JQuery Mobile. The authors proposed several

decision criteria regarding portability concerns to take into account when choosing

cross-platform development framework, like application development cost, ease of

updating and time to market. Moreover, the authors defined the important requirement

that must be exist in a good cross-platform framework. Also, they analysed the

architecture of the cross-platform framework in general. In addition to criteria

evaluation like Heitkötter et al. [41], they made an experimental approach, which

concentrated on a performance comparison from several sides like battery consumption,

CPU and memory usage. They made the measurements on a developed android

application as a test application with four specific measurement tools for android. They

use the Power Tutor [38] app in order to measure the battery consumption, which is a

 14

famous application to measure power consumption in android devices. In contrast, two

different approaches were used to measure the CPU usage. The first one is to monitor

the state change and take a CPU snapshot at each change in the state during the overall

activity life cycle of the application. The states are onCreate, onStart, onStop, onPause

and onDestroy. The second approach is to read the top result every one second during

the overall application life cycle, then compute the average for each state. Regarding

memory usage, it was measured using a plugin added to the android studio. However,

they did not use a native application as a baseline to compare it with cross-platform

frameworks, nor did they include iOS specific measurement tools for evaluation on iOS

platform in their study. They reported that the power, CPU and memory consumption

is less in PhoneGap because it does not include dedicated user interface components.

Spyros and Stelios [43] presented the most famous cross-platform categories, which are

web apps, hybrid, generated and interpreted with a description, advantages and

disadvantages for each one of them. In addition, the authors made a comparative

analysis between the four mentioned approaches. They took subset of the criteria from

Heitk¨otter et al. [41]. The criteria are market place deployment, which measure if it is

easy or hard to deploy the application on the store. Second, the widespread technology,

which assess if the application can be created by a common, widely used technology.

Third is the data and hardware access, which measure the degree to which the

application can access the data and hardware of the device. Moreover, the user

perceived performance, which measures the degree of performance (low, medium,

high). The measurements were taken by trial, while the final one was taken from the

shared information on the web and the author’s personal experience. In addition, the

authors made a case study in which they developed a simple RSS feed application that

will get back the latest apple’s news and present the data on the mobile screen. They

used Titanium as an interpreted approach in their development. The result of the

comparative analysis showed that the generated application is the most favorable

approach although there is no non-commercial development framework for it.

Interpreted and hybrid came after the generated. Also, the case study showed that the

development of the application was easy using javascript and it worked well on both

iOS and android without the need to write either iOS or android specific code. After

developing the application some criteria were verified on the application. But

unfortunately, there is a complete dependence between the application and the

 15

framework, so if there is a need for new feature, it must be supported by the

development framework.

3.3 TimeStamps based comparative studies
Pålsson (2014) [44], studied the execution time as a performance parameter on two

cross-platform frameworks, which are phone Gap as a hybrid framework and MoSync

as a source code translator tool, and compared them with both native iOS and android

development. The execution time measurement was done on a developed application

for each cross-platform framework. Actually, the application contains a set of buttons,

each button specialized with one feature, when pressing a button, a method is called to

make access specific feature, a time stamp is recorded when requesting the method and

another one is recorded when completion. The features under study are compass,

geolocation and file systems. Several calculations were made to compare the results

accurately. The author also conducted a cost evaluation to examine costs involved when

adapting cross-platform frameworks. In order to do this, a questionnaire with scale from

1 to 5 was made and distributed among many developers. It contains questions about

their skills in several programming languages like java, objective-c and c++. Moreover,

questions about the programmer’s experience in many IDE’s like XCode, android

studio and visual studio. Also, interviews were made to examine how the companies

organize the teams to work on specific project. After analysing the questionnaire and

interviews, the author reported that the choice on which approach to use is difficult and

relative, and depends mostly on the skills and competences the target organisation has,

and what kind of applications they are going to make. While MoSync gives better

performance than Phone Gap, but Phone Gap is more flexible, so it depends. In contrast,

other studies limited the circle by comparing cross-platform development with one

native type either iOS or android instead of both. For example, Seung-Ho Lim (2015)

[45] reported a study that compares between Android as a native framework and one

cross-platform which is PhoneGap as a hybrid framework by developing a social

network service and concentrating on the efficient utilization of device capabilities and

the graphical user interface in order to evaluate the better framework in aspect of

performance and development cost. The social network service application contains

several screens, each one with specific features. First of all is the personal user profile.

Second, friends list. Third, timeline new feeds, and Finally the messaging screen, which

 16

enables voice, image and video chatting. The measurements were made using time

stamps, in the same way Pålsson [44] made. The author concluded that the response

time as a performance parameter is less in case of native android, but unfortunately

because the hybrid framework can’t access the hardware, Lim could not evaluate how

efficient the device capabilities were. However, the author study just android as a native

framework, so we can’t generalize the results to iOS.

3.4 Tools based comparative studies

While Seung-Ho Lim (2015) [45] study the response time as a performance parameter

on one cross-platform, Arnesson [46] studied more performance parameters, which are

memory and cpu usage, energy consumption, and application size in addition to the

response time on two different cross-platforms types, which are phoneGap as a hybrid

frame work and codename one as cross-compiler framework, in comparative with the

android as native one. The goal of the paper was to show the performance variations

between the three frameworks and determine which cross-platform tool has the best

performance. The author made an experiment where three android applications were

developed using the three frameworks respectively. Then, the performance

measurements were taken using PowerTutor [38] and Trepn Profiler 5.1 [39] tools. The

application contains functionalities like sort random numbers, print the prime number

and write to SQL database. The author concluded that there isn’t a very big performance

difference between the two cross-platform frameworks but Phone Gap was the best.

Moreover, Willocx et al. [47] made a comparative experiment between cross platform,

native ios and native android. Their experiment was a quantitative assessment of

performance in mobile app development tools. They chose two cross platform tools

from different categories, which are PhoneGap and Xamarin. They studied several

performance parameters like cpu usage, memory usage, response time, disk space and

memory consumption on a small demo application that make search according to the

GPS location and return the searched values. Response time was measured in different

situations, when starting the application, resuming and pausing the application using

DDMS tool for android and instruments tool for iOS. However, CPU usage was

measured only during the start of the application using TOP command for android and

instruments tool for iOS. In contrast, memory usage was measured two times, the first

one is when the application starts and the second is when the application went to the

 17

background using ADB command in android and instruments tool in iOS. Disk space

was measured by simply reading the size of the application. The final results from the

tools were written in tables for the purpose of comparison. The authors concluded that

cross platform tools always add performance overhead over native ones. However, this

overhead is frequently acceptable for specific applications. Moreover, behavioral

aspects can determine the choice of cross-platform framework. For example, phoneGap

could be chose if complex GUI design is needed, while Xamarin [13] might be

prioritized for CPU comprehensive applications. The authors repeated their study in

2016 with several enhancements. First, more cross-platform frameworks are included

in their study. Actually, they compared ten cross-platform frameworks with native iOS

and native android in order to draw more general conclusion. Second, a detailed

summary is determined for cross-platform development framework selection.

However, the authors did not include React Native as a cross-platform framework in

their study.

Another previous study was by Xiaoping et al. (2018) [48], who made an experiment

that study the following performance parameters: building time, UI response time,

memory usage, application size on different cross platform tools, which are Xamarin

[13] as cross-complied framework, Apache Cordova as a hybrid framework, Titanium

as proxy native framework and both native iOS and android, but they did not study react

native. The authors developed identical mobile applications in each framework in order

to compare them. Basically, the application contains two main screens, the first one is

the initial screen, which is a configuration screen for setting up the required parameters.

While the second screen is the main screen, which show many contents on the screen

with variable sizes according to the configured parameters in the first screen. Actually,

they concluded that there are significant differences in the performance characteristics

of applications developed using different approaches. For example, building time,

which was measured by the time it took to build the application, is less in cross-platform

than it is in native. Regarding rendering time, native android and Xamarin [13] showed

nearly constant rendering time regardless the view size. However, native iOS, Apache

Cordova and Titanium showed an increasing in the rendering time with respect to the

view size. Memory usage was measured with the same tools used in [48], with a result

of increasing required memory when the view size increased. Finally, the size of the

application, which was measured by reading the application size, was found to be less

in case of native android and iOS than it is in cross-platform framework.

 18

3.5 Emergence of React Native
As mentioned earlier, React Native framework has not been widely studied in previous

research. In fact, small number of papers studied React Native, one of the notable ones

is by Majchrzak et al. (2017) [49]. The authors discussed the success factors and

features of three cross-platform frameworks: React Native, Ionic and Fuse, outlining

their potential strengths and weakness points. The Design-Science Research [50]

methodology was used in the research, a short survey with ten questions was used to

collect data about the frameworks popularity and the responses, which were analyzed

to provide the first round of evaluation. A prototype application was developed with

several features such as making http request, access device camera, access device

contact and make phone call. They found that the most popular issues regarding the

development of cross-platform applications are remote data fetching, user experience,

application performance and technical implementation. In addition, Nunkesser [51]

suggested a new taxonomy for mobile app development instead of the original

classification, which is web, native, interpreted and hybrid. The new classification is

endemic apps, pandemic apps and ecdemic apps. The authors used mobile OS

supportability as a main criterion for the classification. Endemic apps include all

applications built with IDEs and SDKs that are provided by mobile OS vendors like

Apple’s XCode and Google’s Android studio. However, pandemic apps include

applications developed using technologies that are supported by every major mobile

operating system, such as HTML, CSS and JavaScript. React Native is classified as

pandemic app because it uses JavaScript language. The last one is the ecdemic apps

which includes applications built in a framework that uses a language that is not

endemic to the mobile OS, such as Xamarin [13] that uses C# programming language.

Ghinea and Biørn-Hansen [52] studied how interpreted and hybrid apps facilitate using

device native features such as camera, Bluetooth and device storage, and how

communication bridges are developed and then integrated. The authors made the study

as a result of a questionnaire that was distributed among several companies, with most

of the respondent said that according to their experience, it is hard to integrate with

device API’s. React Native and Ionic frameworks were chosen for the study. Two

applications were developed, one for each approach. The application is called

FetchImage, it fetches an image from the device storage and return it back to the

application side in order to display it in an image preview. The execution time of both

 19

bridges was measured using performance.now() [53]. It was found that the

implementation of communication bridges is fast and easy. In fact, it is five times faster

in case of hybrid applications.

There are some recent theses that studied React Native, however it is based on single

mobile application and compared React Native to native Android or to other cross

platform tools. For example, Furuskog and Wemyss (2016) [54] conducted a study to

assess React Native to more conventional parallel development. The authors compared

the execution time of both Xamarin [13] framework and React Native [11], they used

stopwatches to measure the execution time. In fact, their study was simple because it

took a hello word program. They concluded that React Native could potentially be used

successfully in order to develop cross-platform applications. However, their evaluation

was based on the studied example and thus limited in scalability. For future work, they

suggested to conduct performance test on more complicated applications. In addition,

they suggested to make the study between React native and another native platform

such as android or iOS to compare between native and React Native. Another work by

Danielsson (2016) [55] reported a study that compares between Android as a native

framework and React Native as a cross-platform framework on several features like

user experience and performance. An application called Budget Watch was developed,

which helps the users to manage their budget. After developing the application, many

users asked to use both React Native and Android version, then answer some user

experience questions to see if there is a big difference between them. Then, to study the

performance, the author used Android specific tool, which is Trepn profiler [39] to

measure GPU frequency, CPU load, memory usage and battery power on both versions

of the application. The answers from the users were analysed and plotted in a graph.

The performance tests were repeated three times and the mean values were calculated.

The author found two main results, the first one is that despite some differences, but

most users could distinguish the React Native app from Android app on the studied

features. Secondly, React Native application does not have as good performance as

native applications. However, the performance differences are very small. For future

work, the author suggested to make another thesis that compares between React Native

and iOS platform because it is not included in the study.

 20

3.6 Performance improvement studies
Mobile application performance is one of the top concerns for both software engineers

and mobile end users, a recent study was done by Khalid et al. [56] . The authors studied

the user reviews on a set of free and most popular iOS apps that are available on the

app store. The authors used a web service called Appcomments that has the

responsibility of collecting all user reviews, then parse them into app name, review title

and comment. After collecting reviews, they analyzed 6K+ of them and they found that

unresponsiveness and heavy resource usage are among the major reasons for the

negative user reviews. In addition, Liu et al. [57] conducted a study of a set of

performance bugs collected form 8 popular android apps. They studied in depth the type

of the bug and how it occurred, then they identified common bug patterns. The authors

reported that 11K+ out of 60K Android apps have suffered or are suffering from

performance bugs.

For the best of our knowledge, there is no previous studies that concerned with

improving the performance of applications developed using React Native framework

or any other cross-platform tool. On the other hand, Linares-Vásquez et al. [58]

analyzed real practices that are followed and actual tools that are used by developers to

fix performance related bugs. The authors had surveyed 485 open source Android app

and library developers. After that, they manually analyzed performance bugs and fixes

in their app repositories hosted on GitHub. They concluded that developers rely on both

user reviews, manual execution of app and profiling measurements tools to fix

performance problems.

 21

3.7 Highlight the gap of knowledge
While most of the above studies reported generally the advantages of native frameworks

over cross-platforms, the counter-values and advantages of developing in cross-

platform are very attractive that include improved time-to-market, overall development

costs, portability and maintainability. Although the above studies mainly conducted

comparative studies in attempt to understand the capabilities and features of the two

different types of platforms, there has not been reported work that studies the

performance of React Native code in comparison to native iOS or considers how to

improve the development, in terms of application engineering, of cross-platform

applications to become as much as comparable to native ones. Therefore, to address

this gap, this thesis, will undertake two main research tasks, with greater focus on the

first:

1) Will conduct a more detailed comparative study of a cross-platform framework,

specifically React Native, and a native-platform framework, specifically iOS,

on specific development engineering features, with focus on performance and

efficiency (e.g. CPU usage, memory usage, application size). To the best of our

knowledge, a detailed analytical comparative study on React Native and iOS,

has not been reported previously, thus such study will produce useful results by

its own.

2) Will develop a software development engineering guideline that will aim to

improve cross-platform applications to become, as much as possible,

comparable to native ones on some of the studied features in task 1 above. The

method will utilise code-modification engineering, similar to the concept of

code-transplantation [59], techniques to improve cross-platform development.

Actually, code- modification has been shown that it has potential of identifying

software features and aspects and inducing code observation and replacement.

To the best of our knowledge, we are not aware of any other method or

technique that may provide a potential solution to this above problem.

 22

3.8 Summary
As we saw from previous studies, most of the concentration is on other frameworks,

such as Titanium and phoneGap, very few papers mentioned React Native in their

studies. In addition, from the native point of view, most research was done on Android

as a native platform not iOS. Several studies have been conducted to compare React

Native to Android development [55]. Thus, React Native framework and iOS platform

are particularly interesting for further study since they mark a new step of approaches

that also introduce paradigmatic shifts. Therefore, this thesis studies React Native

application development, as a cross-platform software development framework,

compared to iOS application development, as a native software development

framework. Specifically, it studies performance capabilities of applications developed

in React Native compared to those developed in the iOS to provide a better informed

software engineering decision for mobile development.

 23

Chapter 4 Research Methodology

This chapter describes the used research methodology, including mobile application

selection and software prevalent features, measure software characteristics or

parameters, measurement metrics and data collections.

4.1 Introduction
In order to approach the problem statement and answer the research questions to reach

a valid conclusion, a set of research methods have been employed. These include

identifying research gaps conducted in the related work in chapter two. It also includes

detailed steps to obtain results. In this chapter, we describe the approach used for

designing the comparative study and how the data were collected. We describe the

experimental design, the identified prevalent software features for the study and the

different developed applications employed for each of the designed experiments. Also,

we describe how the experiments’ data were collected and results were analyzed, the

tools that were used for measurement and the justification for choosing the selected

tools.

4.2 Experimental Design
To conduct a comparative study between mobile applications, we undertook the

following steps:

1- identification of software features of importance or prevalence to study: this step

aims to identify and obtain the most important (prevalent) software features in mobile

apps, ones that are most commonly used or developed in most mobile applications. The

significance is to identify software features of value and importance to software

engineers, that has high performance implications and are frequently developed and

exists in mobile applications, for which to understand React Native performance

implication and behavior, opposed to studying software features that are seldomly

developed or exists in mobile applications or has low performance implication.

2- identification and selection of suitable mobile applications: this step aims to identify

and select suitable mobile applications that have or implements the identified prevalent

software features of interest.

 24

3- Experiment design and setup: this step aims to design experiments to evaluate of the

chosen applications for each of the identified prevalent software features. To measure

performance for each of the prevalent software features correctly, this involves setting

up an experiment for each, including choosing or developing a suitable experiment, and

using the correct measurement tools and data collection method for each of the

performance factors, e.g. execution time, CPU, battery usage, etc.

These are described in more details in the sections below.

4.3 Identification of Prevalent Software Features
To identify prevalent software features, we conducted a study on the most popular

mobile apps in the App Store. As a first step, we took the top five categories that has

the largest number of applications from the App Store. We found that App Store has a

total of 27 categories. After categories analyzation [60], we concluded that business,

education, games, utilities and lifestyle are the top five categories. Next, we scanned

the applications in each category in order to take the top ten rated applications,

downloaded them and analyzed them well. After, we studied each of the chosen

applications and identified the functional features that each application provides. Each

software feature was given a unique id and since our comparative study focuses on

performance, the degree of each feature’s implication on performance is identified as

low, medium or high. The implication of a feature on performance was estimated by

how frequently it is executed (i.e. frequency of executions) within the application in a

session (i.e. rate of execution), thus its increased potential implication on CPU usage

and battery usage. For example, the “sign in” functional feature is executed only one

time when the application is launched, while “Data retrieval from remote database

server” is executed many times in any given session. Then, we calculated how

frequently each of the identified functional features is used in amongst studied

applications. Functional features that are most frequently used in applications (i.e. has

high frequency of use) with high performance implications (i.e. high rate of execution)

are the most prevalent features, i.e. the ones that are repeated in most of the applications

and has high performance implications. Details of the study is shown in Appendix A.

The top five prevalent features, identified from the results of the study, is shown in

Table 4-1. As shown, for example, “sign in/up” feature has the highest frequency of

 25

use, which means that it repeatedly existed in almost all applications. However, it has

low performance implication, since it has a low rate of execution, thus it was ignored.

While, “Data retrieval from remote database server”, which has high frequency of use

and high rate of execution, thus has high performance implication.

In addition, we found that “processing of images” has high frequency of use in

applications and high rate of execution or high-performance implications. Additionally,

it is used within or interlinked with other functional features, e.g. search and scrolling.

Further, displaying text or numbers, scrolling and search were found as prevalent

features.

Number Prevalent Feature

1 Processing of local data

2 Processing of file data

3 Data retrieval from remote database server

4 Processing of images

5 Search through texts and images

Table 4-1 Prevalent Features.

4.4 Mobile Applications Selection (Development).
After identifying prevalent features which are the ones that are repeated in most of the

applications and has high performance implications, we searched for applications that

have or implements similar prevalent features from relevant Internet repositories, in

both languages, but unfortunately, we could not find identical or sufficiently software-

feature similar mobile applications with the required components. Thus, we developed

and built the applications from scratch. For this, we have taken a similar approach to

Willocx et al. [47] and Xiaoping et al. (2018) [48]. However, instead of developing only

one small demo application for each platform, the aim is to develop several applications

for each platform to make results more scalable, reliable and generalizable.

To study different features and capabilities of the two mobile frameworks, a set of two

separate applications need to be developed, one for each framework, i.e. one developed

in React Native, and one developed in native iOS. Each set of the two developed

applications implements a specific software feature in order to make sure that all

prevalent features are studied separately. This helps to study performance

 26

characteristics of each prevalent software feature and measure them correctly, isolating

influencing independent variables or factors and/or minimizing their effect. The

following five software features will be considered:

1- To develop two applications that implement “data processing”, stored and

processed inside the application itself without the need for external storage (i.e.

internal storage).

2- To develop two applications that implement the functional feature “file

processing”, as a local storage.

3- To develop two applications that implement the functional feature “data

retrieval from remote server”, such as a database server, e.g. SQLite [61] and

MySQL.

4- To develop two applications that implement “processing of images”, such as

loading and displaying of images, through searching or scrolling, using remote

MySQL database.

5- To develop two application that implement a functional feature of “search”,

such as searching through a list of texts, using internal storage.

These applications are described in more details below.

4.4.1 Internal Storage.
As a first step, we started with applications with static data, which means data is stored

inside the application itself, i.e. it does not use external storage, local or remote. We

developed two mobile applications, one of them is native iOS app using XCode with

objective-c language and the other is React Native app using Atom with JavaScript

language. These applications contain two main tabs. It aims to sort a dynamic list of

numbers using two known sorting methods, which are insertion and merge sort. Since

the general functionality on data processing, sorting function was used since it is a data-

intensive function and heavily utilise the device memory. The numbers are stored

statically inside the application itself; the numbers are displayed inside a list view; the

numbers count will be changed to measure performance behavior on scalable list of

numbers.

 27

4.4.2 File Storage.
The second step in the research is to develop the same applications in the previous

section but the difference is that data is stored inside files, which are local storage.

4.4.3 Database Storage.
In this step, we will develop applications that deal with database, which is remote

storage. For study scalability, we will build more than one application for each platform,

we will use MySQL database server. We will start by developing application that

retrieve only texts from the database. The text will be names of cities. After that, we

will develop application that retrieve names of cities with images. The last step is to

add the search functionality to both text and images. After developing those

applications, it will be ensured that all prevalent features are included in our study.

4.5 Experiment Setup.
In this section, we describe how exactly we are going to test each prevalent feature. For

each experiment, we will define the independent variable and list all the dependent

variables and how will we fix them to not affect the results. In general, for all

experiments, we will use the same mobile device and the same computer machine in all

of the experiments below in order to remove any dependent factor of the mobile device

used for testing or the computer machine used for development. Specifications of both

is mentioned in section 4.6. More details about each experiment are described in the

subsections below.

4.5.1 Data Processing Experiment.
In this experiment, we want to measure the effect of data processing feature on the

performance of applications. The application is developed to implement number-

sorting. The independent variable in this case is the list size, which means the count of

numbers to be sorted. We will use power of 10 for the list size. However, there are many

independent factors that may affect results, but are fixed. One of them is the sorting

methodology, to overcome this factor we will use the same sorting methodology in both

iOS and React Native. Another one is the internal device memory; we will use the same

device with large memory (32GB) to not affect results.

 28

4.5.2 File Processing Experiment.
In this experiment, we want to measure the effect of file processing applications on the

performance. The application implements number-sorting application. The independent

variable in this case is the list size, which means the count of numbers to be sorted. We

will use power of 10 for the list size. Other independent factors are fixed. For example,

the type of file (.txt .pdf .docx etc.), we will use .txt file in both iOS and React Native.

In addition, we will use the same sorting algorithm on both platforms to make sure that

list size is the only factor.

4.5.3 Data Retrieval from Remote Server Experiment.
In this experiment, we want to measure the effect of remote data retrieval applications

on the performance. The application retrieves the name of cities around the world from

a database server and displays them. The used server is MySQL. The independent

variable in this case is the size of the database table, we will change it by modifying the

number of records in the table. Power of 10 records will be used. However, there are

many other independent variables that may affect the experiment, one of them is the

network connection, to eliminate its effect, we will use locally hosted server. Another

factor is the type of the server used, we will use the same server, which is MySQL, for

both iOS and React Native, to make sure that the experiment is being done on the same

server. In addition, the maximum limit of database memory being transferred through

the server. In order to solve this, we make it infinity. Also, the internal memory of the

device, which is very large and the same for both platforms.

The database table consists of two basic columns, one for the id of the city and the other

for the name of the city. The size of the table is 6KB, 16KB, 64KB, 400KB, 4.5MB,

36MB, 360MB, for which the number of records/rows is 10 to the power 1, 10 to the

power 2, 10 to the power 3, 10 to the power 4, 10 to the power 5, 10 to the power 6 and

10 to the power 7 respectively. The structure of the table is shown in figure 4-1, below.

Figure 4-1 city table with text.

 29

4.5.4 Processing of Images Experiment.
In this experiment, we want to measure the effect of processing images on the

performance. The application retrieves the name of cities around the world alongwith

their images from a database server and displays them. The used server is MySQL. The

independent variable in this case is the size of the database table, we will change it by

modifying the number of records in the table. Power of 10 records will be used

However, there are many other independent variables that may affect the experiment,

one of them is the network connection, to eliminate this effect, we will use a locally

hosted server. Another factor is the type of the server used, we will use the same server,

which is MySQL. In addition, the maximum limit of memory being transferred through

the server. In order to solve this, we make it infinity. Also, the size of image is another

independent factor, we will choose the same size for all images which is 31KB to

neutralize this factor. Another dependent variable is the type of image (i.e. image

extension) used. We found that png is the best extension for mobile apps, so we will

use only png extension for all images in both iOS and React Native [62].

The database table consists of three basic columns, the first one is for the id of the city

and the second one is for the name of the city. While the third one is for the image of

the city. The size of the table is 6KB, 16KB, 128KB, 1.5MB, 8.5MB, 81MB, for which

the number of records/rows is 10 to the power 1, 10 to the power 2, 10 to the power 3,

10 to the power 4, 10 to the power 5 and 10 to the power 6 respectively. The structure

of the table is shown in figure 4-2, below.

Figure 4-2 city table with text and image

 30

4.5.5 Search Experiment.
In this experiment, we want to measure the effect of search functionality on the

performance. The application displays cities with their images with addition of search

bar that enables to search on internal storage for specific city. The result of the search

is both the city name and its image

Studied independent variables:

- Number of rows/records: each row contains <CityID, CityName, CityImage>. The

number of rows (or cities) is changed x^1 to x^10.

Fixed independent Variables:

- size of image: is fixed at 31KB

- type of image: png (We found that png is the best extension for mobile apps, so we

will use only png extension for all images in both iOS and React Native).

4.6 Performance Evaluation.
The focus of the study will be on performance and efficiency of mobile applications

developed using React Native and native iOS, as mentioned in section 1.1. Performance

and efficiency include several parameters to measure. However, before start conducting

measurements, we must first choose a set of parameters that are considered the most

important. According to Corral et al. [63], there are a number of different parameters to

choose from when evaluating the performance of a mobile application. They argue that

execution time, memory usage and battery consumption are all useful aspects to

consider in performance and efficiency assessment. Dalmasso et al. [42] additionally

evaluated the CPU usage. In addition, Willocx et al. [47] studied several performance

parameters including cpu usage, memory usage, response time, disk space and memory

consumption on a small demo app. Also, Xiaoping et al. (2018) [48] studied building

time, UI response time, memory usage, and application size on a very small basic

mobile application.

 31

For the purpose of this thesis, the focus will be on CPU and memory usage, execution

time and battery consumption. Additional focus will be on the number of screen frames

rendered per second, because it affects the rendering speed which is an important factor

especially in videos and scrolling through a list view. And finally, the application

launch time will be measured, because it gives a first impression about the performance

of the mobile app.

In order to take measurements, several tools are reported in the literature. Some

researchers used stopwatches [44] [45] [54] to measure the execution time. Others [47]

[48] used Instruments tool [40] that is bundled with the XCode to measure other

performance parameters of an iOS application. On the other hand, we found that [46]

used Power Tutor [38] and Terpn profiler [39] to measure the performance parameters

of Android application.

For the purpose of this thesis, Instruments tool will be used for making measurements.

In fact, it contains many packages, each package is specialized with one or more

parameters. Examples of the packages are: Activity Monitor, Time Profiler and Core

Animation [40]. Figure 4-3 below shows the main screen of the Instruments tool with

its packages. Screenshots for each package is found in Appendix D.

Regarding the measurement environment, each parameter will be measured using both

the simulator and real iPhone device. In order to generalize results, more than one

simulator will be used and more than one device will be used. iPhone8, iPhone11 will

be used as simulators and iPhone7 and iPhone8 as a real device. The same computer

machine will be used in the experiment. The specification of both mobiles and computer

machine are exist in the next chapter. No other applications, in the run environment,

will be active before recording to make sure that they did not affect the results. Local

host server will be used as remote server to eliminate the emergence of additional

factors such as network connection issues which is not always stable.

 32

Figure 4-3 Instruments Tool.

4.7 Test Experiments.
In this section, we list some test experiments we undertook in order to determine

optimal values for run parameters. More details and screenshots for each test

experiment are shown in Appendix C.

4.7.1 Number of Runs Test.
To determine the optimal number of runs for performance parameters, we made three

test experiments on all performance parameters. The first one is with five runs, while

the second is with 10 runs and the third is with 20 runs. We found that there is no major

change in the obtained results when we increased the number of runs to ten or twenty,

the differences were very minor. So, results are obtained and averaged for five runs for

each experiment. Screenshots for the 5, 15 and 20 runs are shown in Appendix C.1.

 33

4.7.2 Battery Level Test.
To study the effect of the battery level on the performance parameters, we made test

experiments on the three battery levels (low, medium, high). Low level is less than 20%,

Medium level is between 40% and 70%, High level is above 80%. We took the

Application Launch Time as performance parameter and took the measurements in each

of the three levels. However, we found that there is no difference in the results

regardless the level of battery. So, it doesn’t matter. Screenshots of this experiment are

shown in Appendix C.2.

4.8 Parameter Measurements and Data Collection.
In this section, a brief description and the way data is collected for each performance

parameter in the study is described.

4.8.1 App Launch Time.
This parameter tracks the amount of time the application needs from performing action

to open the application until the application renders the first frame and then ready for

use. It also tracks the application life cycle, which includes all the setup and

initialization process to end up with the application in the foreground. We will use App

launch package from Instruments Tool to measure this parameter. Actually, It shows

the application life cycle in details and the time required for each phase to be completed.

The first phase is the system interface initialization. The second one is UIkit

initialization and then UIkit creation. After that, the initial frame rendering phase then

the application will be in the foreground. We will repeat the test for each application

five times. five times will be used because we made test experiments and concluded

that five is the optimal number of runs. We will make cold and hot launch to compare

the behavior in each state. Cold launch means opening the application for the first time

after rebooting the device, which means that the app process does not exist in the

system’s kernel buffer cache. While hot launch means opening the application after it

has been gone to the background [64].

 34

4.8.2 CPU Usage.
This parameter tracks the percentage of the total CPU capacity of the mobile device

used by an application in a specific time interval. For our evaluation, the CPU usage at

the start of the app will be measured, because it gives an interesting benchmark to

compare between iOS and React Native. In addition, CPU percentage during the app

usage will be measured. Activity Monitor will be used to measure this parameter. It is

one of the packages that comes with the Instruments tool.

We will collect the percentage of CPU usage by each application by making five times

of runs on each application.

4.8.3 Memory Usage.
This parameter tracks the amount of RAM consumed by the application during the

application’s operating time. It will be measured when the application starts and

become in the foreground, and when it goes to the background. In addition, we will

measure the usage of RAM memory used while the application is in use. We will make

five runs on each application.

4.8.4 Frames Per Second.
This parameter tracks the number of frames that are rendered per second and the

percentage of GPU hardware utilization. In addition, it tracks the minimum and

maximum FPS, the minimum and maximum for the percentage of GPU hardware

utilization. Also, the standard deviation for both FPS and GPU hardware utilization

percentage. We will measure FPS by making stressed test. We will use Core Animation

package from Instruments tool to measure this parameter. In order to collect data, we

will make five times run for each application.

 35

4.8.5 Battery Consumption.
This parameter tracks the usage of the device battery. For sure, mobile users don’t want

apps to drain their batteries. So, it is vital to check the battery usage. We will use Energy

Log package in the Instruments tool to measure this parameter, we will repeat the test

on each size list five times. We will make the test on both low and normal power mode.

4.8.6 Execution Time.
This parameter tracks the time it takes for the threads to be executed. We will measure

the execution time for the main thread in both iOS and React Native and compare

between them. In addition, we will measure the execution time for the bridge in case of

React Native. We will use Time Profiler package. We will repeat the recoding on Time

profiler five times to get accurate results.

4.9 Data Collection and Analysis.
All the collected data above will be exported in excel sheets and tables. They will be

analyzed regarding mean, medium, minimum and maximum values. They will also be

plotted in statistical charts for the purpose of comparison.

4.10 Experiment Scenarios
Below is a list of the repeated experiment scenarios performed in order to take

measurements:

1. Made cold and hot Launch for all applications to measure launch time

2. For each software prevalent feature, run each developed respective application

for changing values of the respective independent variable, e.g. list size, table

size, to measure CPU usage.

3. For each software prevalent feature, run each developed respective application

for changing values of the respective independent variable, e.g. list size, table

size, to measure memory usage.

 36

4. Scroll in the list for 60 seconds to measure the frames rendered per second. 60

seconds was chosen as a measurement timeframe, because the ideal rendering

is 3600 frames per 60 seconds.

5. Run each application on both low and normal power mode to measure power

consumption.

6. For each software prevalent feature, run each developed respective application

for changing values of the respective independent variable, e.g. list size, table

size, to measure execution time.

The figure below summarizes the overall phases that we will follow in our research

 Figure 4-4 Methodology Phases.

 37

Chapter 5 Experiments and Results

This chapter presents the results that were recorded from the run experiments as

described in the previous chapter. All measurements have been conducted five times to

make sure the results are correct. Also, mean, medium, minimum and maximum values

are listed for each test scenario. In addition, a statistical chart is included for each

measurement.

5.1 Mobile Application Development.
Based on the results of the prevalent features study, for which the top five prevalent

features were considered, as described in chapter 4, five sets of, each with two separate,

mobile applications were developed, which resulted in ten mobile applications. Five of

them were written in Objective-C for the native iOS platform, and the other five were

written in JavaScript for the React Native.

Each two applications, i.e. each set, were developed to implement a prevalent feature.

Two of the developed apps used the application’s specific data to store the list of

numbers and the other two used file systems to store data. The reminder of the

developed applications deals with MySQL database server. In addition, to generalize

our results the applications deal with texts and images, not only numbers. Also, we

developed applications that include search functionality on both text and images.

In fact, the development results showed that the two versions of the developed

applications are very similar in the UI, this is because React Native renders native UI

components. Screenshots of the developed applications can be found in Appendix B.

The following sections describe the categories for the top five prevalent features and

the applications developed to study each feature in more details.

5.1.1 Data Processing (Application 1&2).
In order to test the data processing feature, two applications were developed, the first

one is Internal Sorting iOS (Application 1), which is an iOS mobile application that has

two tabs, in each tab there is a list view, which renders array of unsorted numbers that

are generated randomly, the array size can be varied. Each tab is concerned with specific

 38

sorting algorithm. The first tab is for insertion sort while the second is for merge sort.

After the numbers are sorted, they will be rendered in the list view. The second

application is Internal Sorting RN (Application 2), which is the same as the previous

one but it is the React Native version. To make sure that the two tasks (applications)

measure the performance of the data processing feature, we designed them to deal and

process only internal data. Sorting, as a computational process, can be one of the high

CPU demanding tasks, for data processing, thus was selected. The sorting process was

designed to start after pressing the sort button to make sure that it doesn’t affect the

launch time for the applications.

5.1.2 File Processing (Applications 3&4).
The goal of this experiment is to measure the performance of the file processing feature.

In order to do this, two mobile applications (tasks) were developed, one of them is File

Sorting iOS (Application 3) and the other one is File Sorting RN (Application 4). The

apps are the same as the previous two, but the numbers are loaded from external files

instead of an internal array. To make sure that file processing feature is measured

correctly, we read from more than one external file, but only one file is opened at a time

in the same experiment. The size of the file was changed each time. The experiment

was repeated for several file sizes to study the effect of changing the size of the file. In

addition, a button is used to load the file to not affect the application launch time.

5.1.3 Data Retrieval from MySQL (Applications 5&6).
This feature study the effect of remote data retrieval. The data is stored in a remote

database, which is MySQL. In order to measure this feature effect on performance

parameters, we developed two mobile applications, one of them is iOS, Database Text

iOS (Application 5), while the other is React Native, Database Text RN (Application

6). Both applications make connection with MySQL database, then retrieves names of

cities and displays them in a list. The size of the database table, or more precisely the

number of rows in the table, is varied by changing the number of cities to be displayed.

The applications were designed specifically to measure only the performance of remote

 39

data retrieval by implementing the communication part with the database after loading

the views and come into foreground.

5.1.4 Processing of Images (Applications 7&8).
To measure the effect of processing images feature on performance parameters, we

developed two mobile applications: one is Database Image iOS (Application 7) and the

other is Database Image RN (Application 8). Both applications make connection with

MySQL database, then retrieves names of cities with their images and displays them in

a list. The size of the database table will be varied by changing the number of cities to

be listed. The two applications were designed to measure the image processing feature,

opposed to just text processing as in done in Applications 5&6. To ensure performance

parameters are correctly and accurately measured, measurements are taken after the

applications retrieve and add the image, at the right place in the screen, and after loading

and displaying the image and come into the foreground. The image extension “.png”

was used for images, since it is the most commonly used image format.

5.1.5 Search (Application 9&10).
The goal for this is to measure the effect of performance parameters on the search

feature. To do this, two applications were developed which are Search iOS (Application

9) and Search RN (Application 10). The developed applications were designed to

provide the ability to search from internal storage through the cities and retrieve the

name and image of the cities that starts with or contains specific characters. The size of

the database table, or more precisely the number of rows in the table, is varied by

changing the number of cities and images to be displayed.

 40

Each application in iOS was compared to its counterpart in React Native. Applications

was compared on the following performance parameters: launch time, CPU and

memory usage, frames per second and battery consumption. Both sets of applications

were compared according to the test scenarios described in the previous chapter. Size

of lists, files or tables, as appropriate, were variably changed in magnitude of power of

10, i.e. 10 ^ x, where the value of x changed from 1 to 7, i.e. 10 ^ 1, 10 ^ 2, 10 ^ 3, 10

^ 4, 10 ^ 5, 10 ^ 6, 10 ^ 7, which are 10, 100, 1000, 10k, 100K, 1M, 10M respectively.

5.1.6 Run Environment.
For the purpose of this thesis, we used the run environment described below:

• A real iPhone device was used, which is iPhone7 with the latest iOS released,

iOS version 13.2. Its specifications are 2.34GHz dual core CPU, 2GB RAM,

276MB wired RAM and a total storage of 32GB. The ten applications were

individually installed on the device. During the experiments, all other applications

were terminated to minimize or remove any potential effect on the applications

under study. Additionally, the device was set to the “airplane mode” to avoid any

side effects from Wi-Fi or Bluetooth or other type of external connection.

• A real iPhone device was used, which is iPhone8 with the latest iOS released,

iOS version 13.3. Its specifications are 3.39GHz dual core CPU, 2GB RAM,

372MB wired RAM and a total storage of 64GB. The ten applications were

individually installed on the device.

• A MacBook Pro computer machine with the latest version of XCode and

Instruments, which is 11.3. In addition to Atom IDE version1.4.1 . The Mac OS is

Catalina 10.15 , 2.6 GHz six core intel core i7 and 16GB of memory. All

applications in the Mac were terminated during experiments, except Instruments, in

order to not affect any of the parameters like CPU and memory Usage. In addition,

Wi-Fi was turned off to not affect battery consumption.

 41

5.2 Performance Evaluation: Results.
 This section presents and discusses obtained results from the experiments. As a first

step for each experiment, we have conducted dry-runs and tested the experiment design,

experiment setup and data collection method to ensure their correctness before

conducting wet runs. After making sure that all things worked fine, we started running

the actual experiments, i.e. wet runs. For size variability, we stopped at a size of 10M,

for list, file or table sizes for respective tasks or applications, because from test runs,

we found that results still increase with the same pattern, thus larger sizes would not

provide any additional information.

5.2.1 App Launch Time.
Application launch time was measured in both iOS and React Native. App Launch Time

package was used for both platforms. In each recording, it makes 5 seconds run and

displays the amount of time needed for the application to launch. Also, the time interval

for each phase in the application life cycle with the phase description was displayed.

Results of making the first test scenario are shown below.

Figure 5-1 shows the average results of applying the first test scenario, which is the

cold run, after applying it on all developed apps (Application 1 to 10) with variable

sizes (power of ten) for the list of numbers, texts and images repeated five times for

each size.

Figure 5-2 shows the average result of the hot run on variable sizes for the list of

numbers, texts and images applied on all developed apps (Application 1 to 10).

 42

As we can see, from the above figure, the first four apps have close results for both iOS

and React Native for list sizes up to 100K. However, the result for iOS increased rapidly

when the size become 1M, so we increased the list to become 10M but we obtained

more than 5 seconds, so we stopped. In comparison to iOS, React Native application’s

run time still have the same value for 1M, which mean it didn’t increase rapidly as iOS,

we also tried 10M and 100M and it still didn’t increase, so it is better than iOS on big

list sizes for the first four apps. However, for the rest of apps which deal with remote

database server, React Native apps have lower application launch time than iOS; there

is a big difference especially in search and image apps. This because iOS is a secure

platform and it needs additional time because of the handshaking made before

connecting to remote server. In case of React Native, apps have less launch time

because there is not as much security handshake like iOS, this leads to lower time for

application launch.

Figure 5-1 App Launch Time cold run all Apps.

 43

In the above figure, iOS is faster than React Native in the apps that deals with internal

storage. However, React Native is faster in case of the apps that deal with remote server.

In addition, we noticed that in the case of the cold run, which is in Figure 5-1, more

time is required to launch the app than the hot run. This is simply because the app is

launched for the first time and the app process does not exist in the system’s kernel

buffer cache, while in the case of the hot launch in Figure 5-2, the app is not killed but

it exists in the background, so the app process still exists in memory.

As a conclusion, Application Launch Time is less in React Native than iOS for most

applications. This is because of the hot reload feature which exists in React Native

rather than iOS, which needs less time to start the application.

Figure 5-2 App Launch Time hot run on all Apps.

 44

5.2.2 CPU Usage.
CPU usage was measured for both iOS and React Native platforms. It was measured

by applying the second test scenario, during the usage of the app on all developed

Applications with varied size for the numbers list, file and database table. The runs were

repeated five times on each size. The average of CPU usage percentage for each list

size is displayed in Figure 5-3 below.

As shown, CPU usage percentage is a little bit higher in React Native than iOS for most

applications. However, the differences are minor. This is could be attributed to that iOS

applications, developed natively, are making more efficient use of the CPU than RN

applications. Also, this could be because React Native has more than one thread, this

adds more overhead in the CPU than iOS which has only one thread. However, as

shown, RN applications are relatively doing very well on CPU usage compared iOS

applications, even for large size processing.

Figure 5-3 CPU Usage on all Apps.

 45

5.2.3 Memory Usage.
Memory usage was measured for both iOS and React Native platforms. It was measured

by applying the third test scenario, which is to run each developed respective

application for changing values of the respective independent variable, e.g. list size,

table size, to measure memory usage for each one of the prevalent features. The test

was repeated five times on each size, then the average of used memory was calculated

and displayed in Figure 5-4.

As shown, memory usage percentage is a little bit higher in React Native than iOS for

most applications. However, the differences are minor. This is could be attributed to

that iOS applications, developed natively, are making more efficient use of the memory

than RN applications. In addition, this because React Native has more than one thread

and there is a communication between them, which leads to more memory usage.

Figure 5-4 Memory used on all Apps.

 46

5.2.4 Frames Per Second.
The numbers of frames that are rendered per second was measured on both iOS and

React Native platforms. The ideal is 60FPS. It was measured on all developed

applications by applying the fourth test scenario which is a stress test that aims to check

the number of frames rendered when scrolling on variable list size is made. The test

was repeated on each size five times and the average was calculated and displayed in

Figure 5-5.

As we can see from the above figure, the results are the same for both iOS and React

Native. In case of iOS, it is the normal result we expected because it is a native platform.

However, the reason that the result is the same in React Native is because of the specific

thread that is responsible for only rendering, thus the logic is separated from rendering

which makes the rendering to be around 55-60 FPS.

Figure 5-5 Frames Per second on all Apps.

 47

5.2.5 Battery Consumption.
Battery consumption was measured on both iOS and React Native platforms. It was

measured by applying the fifth test scenario, which is running each developed

respective application for changing values of the respective independent variable, e.g.

list size, table size, to measure the power consumption. Energy Log was used to take

measurements. The Energy Log distributes the energy into 20 levels, zero means very

low power consumption and 20 means very high. We applied the test on all developed

applications in normal and low power mode.

As shown, the results are very low power consumption for all applications in the low

power mode and low power consumption for the applications under normal power

mode. However, as shown, applications with implements image processing consume

more than apps without image processing. This could be due to image rendering

processing, which requires additional processing time.

 48

5.2.6 Execution Time.
Execution time was measured on both iOS and React Native platforms for the main

thread. It was measured by applying the sixth test scenario, which is for each software

prevalent feature, by running each developed respective application for changing values

of the respective independent variable, e.g. list size, table size, to measure execution

time. Time profiler tool was used. The results are shown in Figure 5-6 below.

Figure 5-6 Percentage of main thread execution time all Apps.

The program structure for the iOS consists of only main thread. However, the program

structure of React Native consists of the main thread, JavaScript thread and the bridge.

As can be seen from the results below, the execution time for the main thread is higher

for the iOS, it is almost 90-100% of the total time. However, in React native it is only

around 25% of the execution time of the total time. This is because Native iOS has only

one thread, which is the main thread, but for the React Native, it has also the bridge

thread, which is responsible for the communication between the native side and react

native side.

 49

5.3 Performance Improvement.
This section presents the second task of our thesis, which is to attempt to improve the

performance of React Native, where needed and possible, and to provide a guideline to

help software engineers avoid React Native performance issues and develop React

Native applications as comparably close as possible to the Native iOS.

Others have reported

Based on the outcome of the experiment results, as shown, applications developed in

iOS and React Native are comparably similar on many of the performance parameters

and changes to React Native, where possible, would not cause any significant

performance difference. However, as shown in Table 5-25 to 5-30 and Figure 5-25 to

5-30, noticeably iOS outperforms React Native in Applications that implement image

processing, e.g. Applications 9&10. To address this issue, this required further study

and investigation of React Native programmable structure and ways to improve its

performance.

As a first step, we tried to understand how React Native works under the hood and how

it differed from Native iOS. We found an important difference in React Native that

makes it different from Native iOS is that React Native code is being executed by more

than one thread. It contains the main thread, javaScript thread, and the bridge thread.

The latter thread, namely the bridge thread, has the responsibility of communication

between the native side and the cross-platform side. Performance in the main thread

and javaScript thread are excellent. However, performance of the bridge is not as good

as the other threads. This is because the bridge is responsible for the communication

between threads. Each thread is separated from the other one, and if we have to send

data from one thread to another one, we need to serialize it; which adds performance

overhead. In order to improve the performance of React Native App and to become

comparable to Native iOS, the overhead caused by bridge communication must be

reduced as much as possible, because it is a considerable process that affect

performance.

 50

In general, applications that deal with images will communicate heavily between native

and cross-platform side. This is because the bridge will serialize the data from the

javaScript thread to the main thread for each image in order to render the image and

this will lead to a poorer performance.

As a second step, in an attempt to improve performance, specifically execution time,

we made an experiment on two developed applications that displays large number of

images, one of them using iOS and the other using React Native. We measured the

execution time of both applications. We found that React Native is three times slower

than iOS. We tried to understand the reason behind this, we found that because of the

need for passing data through the bridge for each image; this will make the application

slower as the number of images increases. In other words, as the size of the data being

passed through or processed by the bridge thread increases, the execution time of the

respective implemented feature in the React Native application increases, potentially

worsening the performance of the application as a whole.

A possible solution to this performance problem is to store images in the native side, so

that there is no need for the communication between the javaScript thread and the main

thread; this because the images are already in the main thread. After making this change,

in an another experiment, we found that the execution time for React Native has

improved to become very close to each iOS’. As shown, in Figure 5-36, before the

introduced solution, the execution time was 960ms and 3.65s for iOS’s and React

Native’s applications respectively. However, after the introduced solution, the

execution time reduced to 1.17s for the improved React Native app. Below are

screenshots from the results for the experiment.

 51

Therefore, as a guideline to React Native software developers, especially for

applications that implement relatively intensive or large data communication between

React Native and the Native operating system, e.g. image processing, are advised that:

1- Clear identification of software features in an Application that require intensive

data processing by the bridge thread, and their performance implication on the

application as a whole. Images are found as an example of such data, however,

other types of data, that require serialization e.g. binary data, would need to be

further studied to confirm their performance impact.

2- Communication of large data over the bridge thread is avoided or reduced.

3- Data that needed to be processed, e.g. images, by the bridge thread is advisably

need to be stored, manually, in the Native side during development, to overcome

the unnecessary data processing by this thread. In this case, data need to be

stored in the native side

Figure 5-7 Execution time for iOS image App.

 52

Figure 5-8 Execution time for React Native image App.

Figure 5-9 Execution time for improved React Native image App.

 53

Below are screenshots from the code and the graph for React Native before and after

the code modification.

Figure 5-10 React Native Code Before Modification.

Figure 5-11 React Native Code After Modification.

 54

Figure 5-12 Execution Time for iOS & RN before and after modification.

 55

Chapter 6 Conclusion

This chapter displays an overall conclusion about the study. It includes a discussion for

the results obtained so far. In addition, the threats and constraints of the study. Also, it

presents the difficulties and obstacles that were faced during the research. Finally, it

presents the future work for the study.

6.1 Introduction.
This thesis studies the comparative performance of applications developed in React

Native, as a cross-platform mobile software development framework, to applications in

developed in Native frameworks. Specifically, it seeks to study and evaluate the

different performance parameters, including execution time, and CPU and battery

usage, of React Native in comparison to the performance of Native iOS and attempt to

find ways to overcome any arising performance deficiencies.

Ten applications were developed to conduct this study and comparison. In addition, two

applications were developed for the case of performance improvement. Performance

measurements were taken for all the developed applications. The results were

promising for React Native, as there was no significant difference found in the

performance between applications in the two platforms.

6.2 Results Discussion.
In this research, prevalent mobile software features were identified, ten applications

were developed, 10 main experiments were conducted, and data were collected and

analysed. CPU and memory usage, frames per second, battery consumption and

application run time were measured for five different prevalent software features, in six

specified test scenarios using the Instruments tool. Data was collected, and results were

analysed and plotted in diagrams for each performance parameter.

 56

Below is a brief description of the results:

• For the Application Launch Time, we found that both iOS and React Native

have similar results, but iOS is a little bit faster than React Native for the first

four applications (Applications 1,2,3,4), that deal with file and internal memory

data processing. However, we found that React Native is faster than iOS in the

applications that deal with communicating with database (Application 5,6,7,8).

In the Search applications (Application 9,10), we found that React Native is

faster than iOS, with relatively a significant difference in Launch time, which

perhaps makes React Native a more suitable choice a search functionality.

• For the CPU Usage, we found that both iOS and React Native have similar

results. However, React Native apps use more CPU percentage than iOS, but

the difference is minor in most of the apps.

• For Memory Usage, we found that React Native apps use a little bit more

memory than iOS applications, but there is a big similarity between both

frameworks.

• For the Frames rendered per second, both React Native and iOS renders around

57 frames per second which is very close to the ideal rendering rate of 60FPS.

• For Battery Consumption, both consumes the same level of battery in both

normal and low power mode.

• For Execution Time, iOS outperformed React Native. React Native employs an

additional thread for bridge communication for data processing, which adds an

additional execution overhead. We solved this performance difference and

obtained almost the same execution time by overcoming the data processing and

reducing processing of bridge communication.

 57

6.3 Threats and constraints.
Two main threats and constraints in our research can be identified. Firstly, ten

applications were developed to evaluate performance across 5 most common prevalent

software features. However, only two identical applications were developed to evaluate

each prevalent software feature, one for each framework, which adds a threat on the

scalability of the results. Evaluating performance across more software features and

more applications would improve the generalisability of the results. Secondly,

experiments were run on one computer machine and two mobile devices, however

running experiments on more different types of mobile devices, with different

specifications, would improve scalability of results and would eliminate differences that

may arise due to operating system versions or devices.

6.4 Difficulties and Obstacles faced throughout your research.
In fact, many obstacles were faced during this research. First, as React Native is a new

framework, the number of papers that studied react native are limited. Moreover, there

is only one paper that studied the performance. In addition, there was a difficulty in the

development process and it took a lot amount of time.

6.5 Future Work.
For future work, there are several extensions that could be made to improve the study

outcome, these include:

1- The research would benefit from studying additional software features o identify

exact performance deficiencies in React Native or iOS.
2- React Native was found to have a performance deficiency and, a corresponding

solution was found, for large image data processing, and could benefit from

investigating other large data types.
3- Although there are some limited research to study React Native in comparison to

Android, as another native framework, this research could be replicated to improve

our understanding of React Native development on Android.
4- For scalability and generalisability, experiments could be conducted on more

prevalent software features as well as applications that examines them.

 58

References

[1] “Ionic Framework” 17 October 2019. [Online]. Available:
https://ionicframework.com/docs. [Accessed 26 11 2019].

[2] “Adobe PhoneGap” [Online]. Available:
http://docs.phonegap.com/. [Accessed 21 November 2019].

[3] “Statista” 5 7 2019. [Online]. Available:
https://www.statista.com/statistics/330695/number-of-
smartphone-users-worldwide/. [Accessed 4 11 2019].

[4] “Statista” [Online]. Available:
https://www.statista.com/statistics/377977/tablet-users-
worldwide-forecast/. [Accessed 4 11 2019].

[5] “Mobile marketing statistics compilation” Smart Insights, [Online].
Available: https://www.smartinsights.com/mobile-
marketing/mobile-marketing-analytics/mobile-marketing-
statistics/. [Accessed 4 11 2019].

[6] M. Iqbal, “Buisness of Apps” 7 8 2019. [Online]. Available:
https://www.businessofapps.com/data/app-statistics/. [Accessed 5
11 2019].

[7] “Statista” 18 9 2019. [Online]. Available:
https://www.statista.com/statistics/271644/worldwide-free-and-
paid-mobile-app-store-downloads/. [Accessed 4 11 2019].

[8] J. Cowart, “What is a Hybrid Mobile App?” Progress, [Online].
Available: https://www.telerik.com/blogs/what-is-a-hybrid-
mobile-app-. [Accessed 29 11 2019].

[9] E. Spence, “Windows Phone Is Dead, Long Live Microsoft's
Smartphone Dream” Forbes, 12 July 2017. [Online]. Available:
https://www.forbes.com/sites/ewanspence/2017/07/12/microsoft-
windows-phone-windows10-mobile-strategy/#81a1b1d172c5.
[Accessed 29 11 2019].

[10] G. R, “Top Technologies Used to Develop Mobile App” Fingent,
19 December 2018. [Online]. Available:
https://www.fingent.com/blog/top-technologies-used-to-develop-
mobile-app. [Accessed 2 5 2019].

[11] Hermes and Dan, “Xamarin Mobile Application Development
Cross-Platform C# and Xamarin.Forms Fundamentals”, apress,
2015.

[12] C. Griffith, “Mobile App Development with Ionic, Revised
Edition: Cross-Platform Apps with Ionic, Angular, and Cordova”,
O'Reilly Media, Inc, 2017.

 59

[13] “Xamarin” Microsoft, [Online]. Available:
https://dotnet.microsoft.com/apps/xamarin. [Accessed 1 12 2019].

[14] A. Bento, “Android and iOS” 14 April 2014. [Online]. Available:
https://home.ubalt.edu/abento/315/android-ios/index.html.
[Accessed 1 5 2019].

[15] Shoutem, “A brief history of React Native” Medium, 3 October
2016. [Online]. Available: https://medium.com/react-native-
development/a-brief-history-of-react-native-aae11f4ca39.
[Accessed 1 5 2019].

[16] Ideamotive Team, “Choosing React Native for Your Mobile Tech
Stack” Idea Motive, 22 February 2019. [Online]. Available:
https://ideamotive.co/react-native-development-guide/#what-is-rn.
[Accessed 1 5 2019].

[17] R. Mehul, “React Native — Is it Really the Future of Mobile App
Development?” Hackernoon, 13 September 2018. [Online].
Available: https://hackernoon.com/react-native-is-it-really-the-
future-of-mobile-app-development-31cb2c531747. [Accessed 1 5
2019].

[18] R. O'Connor, “Why Mobile App Performance Matters” Progress,
[Online]. Available: https://www.progress.com/blogs/why-mobile-
app-performance-matters. [Accessed 5 11 2019].

[19] “Mobile App” Wikipedia, [Online]. Available:
https://en.wikipedia.org/wiki/Mobile_app. [Accessed 7 11 2019].

[20] J. Agency, “Brief History of Mobile Apps” [Online]. Available:
https://expertise.jetruby.com/brief-history-of-mobile-apps-
286fbbf766a9. [Accessed 7 11 2019].

[21] A. Monus, “Understanding native app development - what you
need to know in 2019” 19 3 2019. [Online]. Available:
https://raygun.com/blog/native-app-development/. [Accessed 6 11
2019].

[22] “Xcode” Apple Developer, [Online]. Available:
https://developer.apple.com/xcode/. [Accessed 6 11 2019].

[23] “Android Studio” Android Developers, [Online]. Available:
https://developer.android.com/studio/. [Accessed 7 11 2019].

[24] “Cross-platform development” [Online]. Available:
https://www.sapho.com/glossary/cross-platform-development/.
[Accessed 7 11 2019].

[25] “iOS” Wikipedia, [Online]. Available:
https://en.wikipedia.org/wiki/IOS_version_history. [Accessed 9 11
2019].

 60

[26] “Apple iOS Architecture” Tutorials Point, [Online]. Available:
https://www.tutorialspoint.com/apple-ios-architecture. [Accessed
10 11 2019].

[27] “iOS Architecture” [Online]. Available:
https://intellipaat.com/blog/tutorial/ios-tutorial/ios-architecture/.
[Accessed 10 11 2019].

[28] “Model-View-Controller” Apple Developer, [Online]. Available:
https://developer.apple.com/library/archive/documentation/Gener
al/Conceptual/DevPedia-CocoaCore/MVC.html. [Accessed 10 11
2019].

[29] “How To Make iPhone Apps – MVC, One Pattern To Rule Them
All” [Online]. Available: https://codewithchris.com/how-to-make-
iphone-apps-mvc-one-pattern-to-rule-them-all/. [Accessed 10 11
2019].

[30] “Testing Apples MVC” [Online]. Available:
https://medium.com/mobile-quality/testing-apples-mvc-
dab15830139a. [Accessed 1 December 2019].

[31] “The History of React.js on a Timeline” RsisingStack, [Online].
Available: https://blog.risingstack.com/the-history-of-react-js-on-
a-timeline/. [Accessed 12 11 2019].

[32] A. Lerner, “What is React?” FullStack React, [Online]. Available:
https://www.fullstackreact.com/30-days-of-react/day-1/.
[Accessed 12 11 2019].

[33] A. Haseeb, “Virtual DOM vs Real DOM” Medium, 10 Augest
2018. [Online]. Available:
https://medium.com/@ahaseeb12251998/virtual-dom-vs-real-
dom-angular-vs-react-framework-vs-libraries-spas-vs-mpa-s-
946fceb70955. [Accessed 13 12 2019].

[34] “CORDOVA” [Online]. Available: https://cordova.apache.org/.
[Accessed 26 11 2019].

[35] “ATOM” [Online]. Available: https://atom.io/docs. [Accessed 26
11 2019].

[36] “Sublime Text” [Online]. Available:
https://www.sublimetext.com/. [Accessed 26 11 2019].

[37] B. Eisenman, “Learning React Native” O'Reilly Media, Inc., 2015.

[38] “PowerTutor” [Online]. Available:
http://ziyang.eecs.umich.edu/projects/powertutor/. [Accessed 29 9
2019].

 61

[39] “Trepen Profiler” [Online]. Available:
https://www.apkmirror.com/apk/qualcomm-innovation-center-
inc/trepn-profiler/. [Accessed 29 9 2019].

[40] “Instruments Help” Apple, [Online]. Available:
https://help.apple.com/instruments/mac/current/#/. [Accessed 3 12
2019].

[41] . H. Heitk¨otter, S. Hanschke and T. . A. Majchrzak, “Evaluating
Cross-Platform Development” in Proc. 8th WEBIST, 2012.

[42] I. Dalmasso, S. K. Datta, C. Bonnet and N. Nikaein, “Survey,
comparison and evaluation of cross-platform mobile application
development tools” in Wireless Communications and Mobile
Computing Conference 9th, 2013.

[43] X. Spyros and . X. Stelios, “A Comparative Analysis of Cross-
platform Development Approaches for Mobile Applications” ACM
Proceedings of the 6th Balkan Conference in Informatics, pp. 213-
220, 2013.

[44] M. PÅLSSON, “Cross Platform Development tools for mobile” HS
Universty of Skövde, [Online]. Available: http://kth.diva-
portal.org/smash/get/diva2:754436/FULLTEXT01.pdf. [Accessed
12 5 2019].

[45] Seung-HoLim, “Experimental Comparison of Hybrid and Native
Applications for Mobile Systems” International Journal of
Multimedia and Ubiquitous Engineering, pp. 1-12, 2015.

[46] A. Arnesson, “Codename one and PhoneGap, a performance
comparison” 2015.

[47] W. Michiel, V. Jan and N. Vincent, “A Quantitative Assessment of
Performance in Mobile App Development Tools” in IEEE
International Conference on Mobile Services, 2015.

[48] J. Xiaoping, E. Aline and . T. Yongshan, “A Performance
Evaluation of Cross-Platform Mobile Application Development
Approaches” ACM/IEEE 5th International Conference on Mobile
Software Engineering and Systems, 2018.

[49] T. Majchrzak, B. Hansen and T.-M. Gronli, “Comprehensive
Analysis of Innovative Cross-platform App Development
Frameworks” in Hawaii Internetional Conference on System
Sciences, 2017.

[50] V. K. Vaishnavi and W. Kuechler, “Design Science Research
Methods and Patterns: Innovating Information and Communication
Technology, 2nd Edition”, 2015.

 62

[51] R. Nunkesser, “Beyond Web/Native/Hybrid: A New Taxonomy for
Mobile App Development” in ACM/IEEE 5th International
Conference on Mobile Software Engineering and Systems, 2018.

[52] A. Biørn-Hansen and G. Ghinea, “Bridging the Gap: Investigating
Device-Feature Exposure in Cross-Platform Development” in
Proceedings of the 51st Hawaii International Conference on
System Sciences, 2018.

[53] “performance.now()” [Online]. Available:
https://developer.mozilla.org/en-
US/docs/Web/API/Performance/now. [Accessed 3 12 2019].

[54] M. Furuskog and S. Wemyss, “Cross-platform development of
smartphone application An evaluation of React Native” 2016.

[55] W. Danielsson, “A comparison between native Android and React
Native” 2016.

[56] H. Khalid, E. Shihab, M. Nagappan and A. E. Hassan, “What Do
Mobile App Users Complain About?”.

[57] Y. Liu, C. Xu* and S.-C. Cheung, “Characterizing and Detecting
Performance Bugs for Smartphone Applications”.

[58] M. Linares-Vásquez, C. Vendome, Q. Luo and D. Poshyvanyk,
“How Developers Detect and Fix Performance Bottlenecks in
Android Apps” in IEEE International Conference on Software
Maintenance and Evolution (ICSME)., 2015.

[59] E. Barr, M. Harman, Y. Jia, A. Marginean and J. Petke, “Automated
Software Transplantation” in Proceedings of the 2015
International Symposium on Software Testing and Analysis, 2015.

[6 0] “42 MATTERS” [Online]. Available: https://42matters.com/stats.
[Accessed 25 3 2020].

[61] 13 February 2019. [Online]. Available:
https://ourcodeworld.com/articles/read/737/everything-you-need-
to-know-about-sqlite-mobile-database. [Accessed 11 12 2109].

[62] “React Native Performance: Major issues and insights on
improving your app’s performance” SIMFORM, [Online].
Available: https://www.simform.com/react-native-app-
performance/. [Accessed 5 5 2020].

[63] L. Corral, A. Sillitti and G. Succi, “Mobile multiplatform
development: An experiment for performance analysis” in The 9th
International Conference on Mobile Web Information Systems
(MobiWIS) , 2012.

[64] A. Dutta, “iOS App Launch time analysis and optimizations” 27
Augest 2017. [Online]. Available:

 63

https://medium.com/@avijeet.dutta13/ios-app-launch-time-
analysis-and-optimization-a219ee81447c. [Accessed 12 12 2019].

 64

Appendices

 65

Appendix A: App Store Study.

Feature Feature ID Performance

Implication

Video conferencing F1 high

Data retrieval from remote server F2 high

Voice calls F3 high

Processing of texts F4 high

Sign in/up F5 low

search F6 medium

chat F7 medium

Add/follow friends/team member F8 medium

Record and play voice calls F9 low

Send money be email address F10 low

Pay on sites F11 low

Translate unknown words F12 low

Processing of image F13 high

Communicate and Compete courses with

others

F14 low

Access hundreds of games and activities

and lessons

F15 medium

Track evolution and progress F16 high

category Number of apps percentage

games 230271 22.3%

business 179576 10.07%

education 151152 8.82%

lifestyle 156809 8.61%

utilities 133543 6.31%

 66

Enroll in courses F17 medium

download F18 high

Ask for free delivery F19 low

Find artist near you F20 high

Design with full control F21 medium

Choose ring metrics and diameter F22 low

View leaked passwords F23 low

Detect wifi security problem F24 low

Identify image F25 medium

Send message F26 low

Create track F27 low

Upload image F28 high

Open website F29 low

Hide image F30 medium

category App name Functional feature

business Zoom F1, F2, F3, F5

business Adobe acrobat reader F4, F5, F6

business Linked In F2, F4, F5, F6, F8

business Skype F1, F2, F3, F5, F6, F7, F8

business Call recorder for me F2, F5, F9

business Slack F2, F4, F5, F6, F8, F13

business PayPal F2, F5, F7, F10, F11

business WhatsApp for

business

F1, F2, F3, F5, F6, F7, F8

education EWA learn English F2, F4, F5, F12, F13, F14

education Google classroom F5, F14

education Lingokids F2, F5, F15, F16

education Yousician F2, F4, F5, F13

 67

education PictureThis F2, F5, F7, F13, F25

education Peak- Brain training F2, F5, F15, F16

education edX: courses by

Harvard and

MIT

F5, F14, F17, F26

education Mondly: Learn 33

languages

F2, F5, F13

education LinkedIn learning F2, F5, F6, F18, F26

lifestyle Pinterest: LifeStyle

ideas

F2, F5, F13, F18

lifestyle Tinder – Match Chat

Date

F2, F5, F8, F13

lifestyle Live wallpapers F2, F13, F18

lifestyle Castro F2, F5, F13, F19

lifestyle Perfect365 F2, F5, F13, F20

lifestyle Décor Matters F2, F5, F13, F21

lifestyle Piksu F2, F5, F8, F27, F28

lifestyle Yoosee F2, F5, F13

utilities Google Chrome F2, F5, F29

utilities Fonts Gallery F13

utilities FoxFM F4, F18

utilities Ring Sizer F2, F13, F22

utilities AVG Mobile Security F2, F5, F23, F24, F30

utilities Collage Maker F2, F5, F8, F13

utilities Pokémon Home F2, F5, F13

 68

Feature ID Frequency

F1 3

F2 27

F3 3

F4 6

F5 28

F6 6

F7 4

F8 7

F9 1

F10 1

F11 1

F12 1

F13 16

F14 3

F15 2

F16 2

F17 1

F18 4

F19 1

F20 1

F21 1

F22 1

F23 1

F24 1

F25 1

F26 2

F27 1

F28 1

F29 1

F30 1

 69

Appendix B: Applications Screenshots.

B.1 Screenshots from Internal Sorting iOS+RN (Application 1and 2).

1. iOS.

 70

2. React Native.

 71

B.2 Screenshots from File Sorting iOS+RN (Application 3 and 4).
1. iOS.

 72

2. React Native.

 73

B.3 Screenshots from Database Text iOS+RN (Application 5 and 6).
1. iOS.

 74

2. React Native.

 75

B.4 Screenshots from Database Image iOS+RN (Application 7 and 8).
1. iOS.

 76

2. React Native.

 77

B.5 Screenshots from Search iOS+RN (Application 9 and 10).
1. iOS.

 78

2. React Native.

 79

Appendix C: Test Experiments.

C.1 Screenshots from Number of Runs test.
1. iOS (Application Launch Time).

Run Number Application Launch Time /ms

1 485

2 480

3 478

4 481

5 480

Run Number Application Launch Time /ms

1 480

2 486

3 485

4 486

5 485

6 482

7 481

8 486

9 482

10 490

 80

11 478

12 481

13 488

14 495

15 487

Run Number Application Launch Time /ms

1 488

2 485

3 478

4 480

5 482

6 481

7 475

8 477

9 476

10 479

11 480

12 480

13 482

14 488

15 485

16 488

17 482

18 483

19 481

20 480

 81

2. React Native (Application Launch Time).

Run Number Application Launch Time /ms

1 550

2 565

3 553

4 553

5 557

Run Number Application Launch Time /ms

1 480

2 565

3 553

4 553

5 550

6 549

7 542

8 559

9 555

10 554

11 550

 82

12 559

13 541

14 561

15 543

Run Number Application Launch Time /ms

1 550

2 549

3 553

4 553

5 543

6 557

7 540

8 555

9 543

10 550

11 551

12 550

13 549

14 551

15 550

16 553

17 551

18 552

19 549

20 555

 83

C.2 Screenshots from Battery Level test.
1. iOS (Application Launch Time).

• Low Battery Level.

• Medium Battery Level.

• High Battery Level.

 84

2. React Native (Application Launch Time).

• Low Battery Level.

• Medium Battery Level.

• High Battery Level.

 85

Appendix D: Instruments Tool Screenshots.

D.1 Some Screenshots from Internal Sorting iOS + RN (App 1 and 2).
1- Cold Application Launch.

2- CPU Usage.

 86

3- Memory Usage.

4- Frames Per Second.

