Arab Journal of .
Administrative Sciences 2019, Vol. 26, No. 3,413 - 443

Mohammad N. AlMarzouq Repetition as a Strategy to Teach
Kuwait University Business School Students Computer
Kuwait Programming

Abstract

Aim of the Paper: This study investigates the effectiveness of repetition as a
strategy for teaching novices from a non-computer science major computer
programming.

Study Design: The study follows a quasi-experimental approach, using both
OLS regression and simple slopes for data analysis.

Sample and Data: The sample consists of 72 undergraduate business students in
an introductory programming course.

Results: Under the guidance of an instructor, repetitive solving of practical
programming assignments had a positive and significant effect on student
performance. The observed effect was stronger for students with a lower GPA.
Conclusion: Repetition can be a very effective strategy in building programming
competencies, more so for students of lower GPA. The study highlights the
importance of time factors in training, and the need to introduce programming
very early in business school curricula.

Keywords: Information system education, Computer and information systems

training, Novice programmers, Introductory programming education, Program-
ming misconceptions.

Introduction

Can we train students or employees with no background in computer science to
benefit from computer programming? The literature that is relevant to answering
this research question can be classified into two main streams. First, there is the
literature on computer science education devoted to the skill building of computer
programmers that have no prior experience with programming languages (i.e.,
novices). This stream of research informs us of the main challenges and
misconceptions faced by educators and students alike (e.g, Meerbaum-Salant,
Armoni, & Ben-Ari, 2013; Moons & De Backer, 2013; Nuutila, T1, & Malmi, 2005;
Striegel & Rover, 2002). It also highlights the importance of this task due to the

Submitted: 8/5/2019, revised 1: 18/8/2019, revised 2: 1/9/2019, accepted: 5/9/2019.

413

AJ.AS, Vol. 26, No. 3

high failure rates in introductory programming courses, even for computer science
majors (Robins, Rountree, & Rountree, 2003). One might, therefore, imagine that
teaching introductory computer programming to novices in majors other than
computer science - such as business school majors - might pose an even greater
challenge (Forte & Guzdial, 2005; Lahtinen, Ala-Mutka, & J Irvinen, 2005; Mow,
2008; Rist, 1991).

This research stream has also introduced and empirically tested numerous
programming teaching strategies to deal with these challenges and misconcep-
tions. These strategies include the use of natural language (Good & Howland,
2017), flipped classrooms (Hayashi, Fukamachi, & Komatsugawa, 2015), colla-
borative learning (Serrano-Cmara, Paredes-Velasco, Alcover, & Velazquez-
Iturbide, 2014), problem-based learning (PBL) (Nuutila et al, 2005), and
Scratch visual programming language (Meerbaum-Salant et al, 2013). While
these strategies have demonstrated their effectiveness in teaching novices, we have
found them to be impractical to implement in business school settings. Some
strategies, such as PBL, collaborative learning, and flipped classrooms, assume
some level of experience that business school students and teaching staff may lack.
Scratch and the natural language approach, while promising, focus on long-term
programming goals, rather than endowing students with the practical skills
necessary for implementing solutions to business or decision-making problems
within the time frame of a single semester. We, therefore, propose a practice-based
strategy that is unlikely to challenge teaching resources, built simply on the well-
known adage: ““Practice makes perfect™.

This practice-based approach is informed by the second stream of research
relevant to our research questions, which comes from the field of cognitive
psychology. The literature on experience building through deliberate practice
informs us that skill building can be improved through practice under the guidance
of an instructor (Ericsson, Krampe, & Tesch-Romer, 1993; Ericsson, Prietula, &
Cokely, 2007). One of the main findings of this line of research is that a person will
require no less than 10,000 hours of deliberate practice to become an expert, which
cannot be covered within a single semester of instruction (Ericsson et al., 1993).
With our practice-based strategy, we hope to give students and trainees deliberate
practice within a limited timeframe to build the necessary competence to take
advantage of programming languages in solving domain specific problems in their
respective fields. The literature on active control of thought (ACT) theory could
shed some light on how engaging in practice will provide students with practical

414

Mohammad AlMarzouq

experience that cannot be gained by simply attending classes, reading textbooks,
or engaging in written exercises. It suggests that if a programming task is not overly
complex and has deterministic outcomes, then students can be trained to improve
their time and accuracy in repeating such a task (Anderson, 2007). The goal of
introductory programming courses should be to train students to be competent
enough to complete a programming task for problem solving, within a limited
timeframe, and not necessarily become experts.

We integrate in this study the insights from these two lines of research and
present the practice-based strategy for introducing novices from non-computer
science backgrounds to computer programming. We identify the main conditions
necessary for the success of this strategy, as well as the challenges that educators
need to be aware of. One of the main contributions of this work is to bring the
attention of educators to the importance of computer programming as an applied
skill in problem solving even for non-computer science majors. We show, with
empirical support, that a simple practice-based strategy can be effective in building
the necessary competence in such majors to take advantage of programming
languages in problem solving. These findings will be of particular importance to
curriculum designers for non-computing majors - such as business schools - where
introductory computer programming can be introduced early to most majors such
that students can have enough opportunity to practice and apply computer
programming skills in their respective fields. This study also highlights the
important role of instructors as a necessary condition for the success of the
practice-based strategy.

This paper is organized as follows. First, we start with a review of the relevant
literature from novice computer programming education, as well as the literature on
deliberate practice and Active Control of Thought (ACT) theory. We then introduce
the theoretical background that the repetitive strategy is based on, as well as the main
hypotheses of this study. This is followed by a description of the methodology used,
which includes the implementation of the repetition strategy that we have used in our
introductory programming course, as well as our data collection method and
analysis. We then discuss the results of our work, as well as the main contributions
and limitations. Finally, we offer some concluding thoughts.

Literature Review

The literature on computing education has given special attention to the
training of novice programmers in introductory computer programming classes.

415

AJ.AS, Vol. 26, No. 3

A novice programmer is one who is introduced for the first time to computer
programming and is learning his/her first programming language (Robins, 2019).
What is characteristic of a novice programmer is that the knowledge he/she
acquires about programming is fragile (Lowe, 2019; Perkins & Martin, 1986).
Fragile knowledge is newly acquired knowledge that the student fails to apply
consistently. For example, students might acknowledge that they have compre-
hended the concept of variables and assignment operators when they are first
introduced by the instructor. But when asked to solve a problem that requires
variable declaration or assignment, the students might fail to recall these concepts,
or use them incorrectly.

A key concept in computing education is that of notional machines (Du Bou-
lay, 1986). A notional machine is an abstraction, or idealization of the computer
system used to depict what happens when a program is executed. Instructors create
visual depictions of notional machines as a teaching aid to simplify computing
concepts. When novice students learn programming concepts, they create mental
models of these notional machines that might initially be simple and erroneous
(Norman, 1987). These incorrect mental models that novices may have or lack of
a notional system result in various misconceptions about computer programming
and are the main reason why students have fragile knowledge (Perkins, Schwartz,
& Simmons, 1988). Most notable of these misconceptions is the failure to correctly
understand how programs are dynamically executed in a computing environment.
As a result, novices fail to distinguish between a writing code and an executing
code. As the programmer gains more experience, these mental models of notional
machines improve in complexity and correctness, and are a better reflection of the
realities of computer programing and code execution (Sorva, 2013).

The literature also highlights the important role the instructor plays in shaping
the mental models formed by novice students. This important role is highlighted by
showing how the different strategies we reviewed from the computing education
literature can improve the effectiveness of the instructor-student relation through
two main mechanisms. The first are the strategies that require the explicit
involvement of an instructor or bring the student closer to collaborating with an
experienced instructor that can uncover any student held misconceptions about
programming through strategies such as the flipped classroom (Hayashi et al.,
2015), collaborative learning (Serrano-Cmara et al., 2014), or problem-based
learning (PBL) (Nuutila ef al., 2005). The second are the strategies that visualize
the notional machine to both the student and instructor such that they may

416

Mohammad AlMarzouq

uncover misconceptions and create more robust mental models, such as the
Scratch visual language (Meerbaum-Salant et al, 2013), or the use of natural
language to describe program instructions (Good & Howland, 2017).

Our proposed practice based approach would fall into the category of
strategies that require the explicit involvement of the instructor in addressing
student misconceptions about programming, as well as dealing with motivational
issues as students stumble through their journey to learn to program (Sorva, 2013).
This engagement with students to introduce them to concepts and monitor their
practice is known as ’guided practice’ (Ericsson et al., 1993). Guided practice is
based on two principles: the first is to improve what students already know
through practice and the second is to introduce new concepts to students to push
them out of their comfort zones so that they can gain new skills (Ericsson et al.,
2007). As a result, students’ knowledge becomes less fragile as they get closer to
becoming experts. However, the road to becoming an expert is not easy, according
to Ericsson (2007), as a student or trainee needs to put in at least 10,000 hours of
practice before the expert status is attained. The goal of introductory program-
ming classes is not to create experts, but to set the students on their path to being
experts. With enough practice, students would reach their breakthrough moment
and comprehend the core concepts that would make understanding programming
easier (Meyer & Land, 2006). It is this breakthrough moment that we would like
students to attain with practice.

Yet, one of the biggest challenges in teaching novices is that learning about
programming and engaging in its practice are not the same thing. This becomes a
more pronounced problem for novices that are non-computer science majors, as
they lack the motivation to learn to program given its seemingly peripheral role in
their majors. In addition, students might not have received sufficient training on
skills that are known to be related to success in learning to program, such as
mathematical problem solving skills (Konvalina, Wileman, & Stephens, 1983).
Asaresult, students are likely to delay such introductory courses to the end of their
program or be content with obtaining poor grades (Forte & Guzdial, 2005). Even
some of the students we interviewed in this study confirmed this observation by
pointing out that they did not expect themselves to be working in the field of
application development. Therefore, they lacked the motivation to learn and
perform well in introductory programming courses and typically postponed these
courses to their senior year and were content with a passing grade, since they did
not perceive its relevance to their chosen major. Surprisingly, such observations
seem to be the norm amongst IS undergraduate students (Woszczynski, Haddad,

417

AJ.AS, Vol. 26, No. 3

& Zgambo, 2005). Such students would miss the chance to practice programming
early and experience how programming could be relevant to their careers. Rather
unintentionally, the latest curriculum guidelines for undergraduate degrees in IS
published by the Association of Information Systems (AIS) and Association of
Computing Machinery (ACM) may inadvertently reinforce this view by recom-
mending that programming courses be taught as electives (Topi ef al., 2010).

Active Control of Thought (ACT) theory can shed some light on why there is a big
difference between learning about programming and practicing it. The theory
distinguishes between two types of knowledge: procedural knowledge and declarative
knowledge. Declarative knowledge is knowing about a skill or practice, whereas
procedural knowledge is knowing how and when to apply this knowledge in practice.
Procedural knowledge is dependent on declarative knowledge, as it cannot be gained
without the application of declarative knowledge (Anderson, 1982, 2007). The theory
suggests that with practice, an individual goes through three stages of experience:
declarative, procedural, and automatic (Anderson, 2015), which are distinguished by
the nature of the individual’s knowledge at each stage. During the declarative stage,
individuals know about the skill; knowledge is acquired through observation without
performing the action. For example, an individual observing a tennis match might
understand all the rules and actions involved but would not be able to competently
play the game on that basis alone. Individuals enter the procedural stage when they
start imitating a tennis player. During this stage, declarative knowledge is converted
into procedural knowledge through practice. Provided the declarative knowledge is
easily accessed and retrieved by the individual, learning how to rudimentarily perform
the task can be accomplished with little practice, which explains the large gains made
by initial practice according to the power law (Anderson, 2015; DeKeyser, 2014).

A central concept that ACT theory is built upon is the power law of practice
(Newell & Rosenbloom, 1981, 2013). This law suggests that with practice, cognitive
skills with deterministic calculations are replaced by simple memory retrieval. As a
result, the speed, accuracy, and recall of a task should generally improve with
practice. The relationship between the time to perform a task and number of practice
trials follows a power curve, also known as a Pareto distribution, where the graph
initially starts with a steep decline, then smooths out to a flat long tail (See Figure 1).
This means that improvement from practice trials becomes significant when the
individual first starts training, hence the steep decline in the graph. Subsequently, as
the skill of the individual improves, gains in speed and accuracy from practice trials
diminish significantly, producing the long flat tail representing small gains.

418

Mohammad AlMarzouq

Time

o} 10 20 30 40 50
Trails

Figure 1: Power Law Distribution

Rudimentary performance of a task and becoming proficient in it, however,
constitute two different things, and this is where the third stage of automaticity
comes in. With diligent practice, even though there may be few observable gains,
the task becomes like second nature to the individual and is performed almost
automatically as the knowledge associated with it becomes less fragile. That is, the
individual no longer needs to retrieve the declarative knowledge about the task and
simply performs the task correctly without thinking about it or requiring a
reference manual explaining how to correctly perform the task (Anderson, 1992,
2015). It is, however, important to note that achieving this automaticity is also a
gradual process, which can be improved upon, albeit very slowly compared to the
improvement experienced in the procedural stage. Automatic tasks might suffer
from the lack of transferability to other domains because of high degrees of
specificity (Anderson, 2015; DeKeyser, 2014; Singley & Anderson, 1989). Such
specificity in knowledge is expected of students in introductory courses, where the
goal is to apply these skills to specific problems. It is this automaticity in specific
tasks that we would like novice students to achieve with a practice-based strategy
in order to consider them competent users of programming languages. It is with
continued practice and diligence after the introductory course that these novices
will become experts that can consistently apply these skills in more general
situations (Anderson, 2015; DeKeyser, 2014; Ericsson et al., 2007).

The Practice-Based Strategy

Central to the success of the practice-based strategy is the role of the instructor.
The instructor is expected to introduce the students to the declarative knowledge
required to practice programming. This is generally the knowledge available in

419

AJ.AS, Vol. 26, No. 3

textbooks and is introduced during classes. In addition, the instructor plays
a pivotal role in ensuring that the success conditions for a practice-based strategy
are in place. Without upholding these conditions, students would not see any
additional benefit from the practice-based strategy when compared to learning
directly from a textbook or an online resource.

The first of these conditions is that the instructor be aware of the importance of
practice. Based on ACT theory, the practice of programming will be an entirely
different knowledge-gaining experience for students from reading textbooks.
What becomes evident to both students and instructors once engaged in practice, is
that writing computer programs is a complex cognitive task (Robins et al., 2003;
Singley & Anderson, 1989). The literature on computer programming education
we have reviewed focuses mostly on the coding aspect of computer programming.
However, the task involves many elements that programmers need to master,
including problem understanding, design, coding, and maintenance (Pennington
& Grabowski, 1990). All these tasks are interrelated, and programmers might
simultaneously work on multiple different subtasks, which creates a significant
barrier for novices to overcome (Du Boulay, 1986). The programming task cannot
be completed without completing these interrelated subtasks. How well
a programmer performs these subtasks is what sets a competent programmer
apart from a novice one (Winslow, 1996). Therefore, improving programming
skills is tantamount to improving these tasks.

A direct result of the nature of the programming task is that an instructor
should not assume it to be similar to problem solving in other domains, even
though the two skills can be highly related (Konvalina et al., 1983; Wilson &
Shrock, 2001). For one thing, the constructs used in solving programming
problems can be very different and, therefore, students must employ an entirely
different mental model to solve a mathematics problem versus a programming
problem. For programming, lists, dictionaries, recursion, and conditionals are
used in solutions, but similar constructs are obviously not used to solve math-
based problems related to finance or accounting, for example. Transferring
knowledge from the domain of pure problem solving to programming would be
a virtually impossible challenge for a novice programmer without the guidance of
an instructor (Rogalski & Samurgay, 1990).

Another condition is that the instructor should be aware of the misconceptions
that could be held by students. These misconceptions are mental obstacles that

420

Mohammad AlMarzouq

might impede students’ ability to learn, or might result in mistakes that could
prevent them from correctly composing programs (Sorva, 2013). A very important
misconception that became evident to us only when students started to practice
programming is related to how students perceive computer programs to work (i.e.,
their held notional machine). The realization that programmers do not themselves
solve problems, but rather instruct computers on how to solve problems, can be
difficult for novices (Sorva, 2013), who, before programming any solutions must first
understand how computers operate and how to express solutions in ways the
computer will understand (Du Boulay, 1986). For example, how data is loaded into
memory and manipulated using loops and functions are issues not considered in
pure problem-solving domains. To make matters worse, developers also must be
aware of the role the user plays in executing the solution. While the developer might
successfully write a program that instructs the computer to solve a problem, the
problem cannot be solved unless the user executes the program. Considering that
some solutions require user input, and that solutions can be organized into abstract
functions, understanding programming solutions and how the developer, computer,
and user interact with the program can be a daunting task for novices. In the case of
introductory programming classes, application development is often simplified by
treating the developer and user as the same entity. While this may be a useful
simplification for experienced developers, for novices who do not yet understand the
interplay between computers, developers, and users (i.e., the dynamic execution
environment), this kind of simplification might unintentionally lead to more
confusion (Sorva, 2013). Therefore, the guidance of an instructor who understands
these challenges, and their constant monitoring and feedback to students, is
a necessary condition for the success of our proposed practice-based strategy.

Finally, instructors should be aware of the limits of their students and constantly
monitor their progress and how well the students have comprehended new content.
Care should be taken to not overwhelm the students with so much knowledge as
cognitive overload can cause students to fail to learn or perform exercises properly
(Fitzgerald et al., 2008). Instructors should plan some time for the introduction of
new declarative knowledge to students followed by enough practice time to give
students the opportunity to convert this declarative knowledge into procedural,
while keeping an eye for any misconceptions in student understanding.

To avoid misconceptions and cognitive overload, we suggest that any
introductory programming course start with a general overview of how programs
are written and how they are executed. Instructors should also be aware when first

421

AJ.AS, Vol. 26, No. 3

introducing programming, that each of the programming subtasks (i.e., designing,
coding, and maintenance) will also have their own specific declarative knowledge
that students must acquire and convert to procedural knowledge through practice.
Therefore, the first few classes will be overwhelming for the students due to
cognitive overload. Because these first classes are critical, instructors are advised to
take small steps until students have mastered the programming workflow. With
enough practice, the programming task will be second nature to students (i.e.,
automatic). Once students reach this milestone, they would have passed a very
important threshold in which they can make significant progress in learning to
program (Meyer & Land, 2006).

For example, some Integrated Development Environments (IDEs), such as
Visual Studio or Eclipse, provide students with the means to design, code, and
maintain a programming solution. However, the novice user still needs to acquire
the declarative knowledge specific to what the design, coding, and maintenance
tasks entail, as well as the declarative knowledge specific to using the IDE to
perform these tasks, before using such a tool becomes second nature. Therefore,
simplicity in tool choice is important in order to reduce the students’ burden of
learning and practice. However, once the students grasp what design, coding, and
maintenance generally entail, they will no longer have difficulty distinguishing
between the idiosyncratic knowledge related to the used tools and the program-
ming subtasks themselves. As a result, they will be in a better position to
understand the function of more complex tools.

To summarize, assuming that an instructor who is aware of the challenges and
misconceptions faced by novice programmers guides students, and who gradually
introduces students to new concepts to avoid cognitive overload, then the students
will become more competent with practice in using programming languages to solve
domain specific problems. Students need not only internalize the declarative knowl-
edge related to the programming task and code execution, but also the specific
knowledge associated with the tools used to performing each of the programming
subtasks of designing, coding, and debugging. The instructor will play a pivotal role
constantly reminding students and pointing out gaps and misconceptions in their
knowledge. However, with constant reminding of the declarative knowledge and
with more practice repetitions, students will eventually recall declarative knowledge
easily from memory. As a result, declarative knowledge is converted with time and
practice to more consistent procedural knowledge, making students more competent
in using programming languages (Anderson, 2015). Therefore:

422

Mohammad AlMarzouq

H1: With more practice repetitions, novice programmers become more competent
in using programming languages.

Past academic performance has long been shown to be related to the success of
students in introductory programming courses (Bauer, Mehrens, & Vinsonhaler,
1968; Butcher & Muth, 1985; Fowler & Glorfeld, 1981; Karim, Carroll, & Long,
2016; Konvalina et al., 1983; Newsted, 1975). As a result, one would expect that
students with higher GPAs to perform highly in introductory programming
courses regardless of the teaching strategy employed by the instructor. Therefore,
the success of practice-based strategy hinges on its ability to successfully train
students, regardless of their prior academic performance. The importance of
academic ability lies in the fact that instructors have no control over the abilities of
students admitted to the introductory programming course, yet they have a direct
impact on students’ ability to learn. Therefore, instructors need to be aware of
differences between student abilities should there be any differences in how
students react to the practice-based strategy so that they may adapt accordingly.
Therefore, we expect that a successful practice-based strategy would be more
effective in improving the competence of students of low academic ability, than
students with high academic ability, hence:

H2: With more practice repetitions, students that gemnerally perform poor
academically would observe higher improvements in their competence in using
programming languages than those with good academic performance would.

Equally important is to determine whether gender will have an impact on
student learning performance so that instructors can adjust to different student
needs. Prior research suggests that males and females may differ in their attitudes
toward computers (Colley & Comber, 2003; Kay, 2006), may prefer different
learning styles (Lau & Yuen, 2011; Malik & Coldwell-Neilson, 2018), and may
differ in their aptitude toward computer programming (Rubio, Romero-Zaliz,
Ma& de Madrid, 2015; Wagner, 2016). As such, we considered whether there
might be any gender-specific considerations impacting the effectiveness of
repetition as a learning strategy. Should a difference between genders exist, then
we will also observe a differential effect for the practice-based strategy on the
improvement in competence of different gender groups. Therefore:

H3: With more practice repetitions, male students would observe higher improve-
ments in their competence in using programming language than females would.

423

AJ.AS, Vol. 26, No. 3

Methodology

We implemented the practice-based strategy in an undergraduate business
administration course that introduces students to computer programming.
Students were required to implement data-oriented desktop applications.
The requirements of these applications are specific, and students can, therefore,
be trained to recognize and implement the most appropriate programming
solution for a limited set of problems. This strategy required careful planning on
the part of the instructor concerning how topics should be introduced in a way that
consistently challenged the students but never overwhelmed them. Instructors
introduced the relevant material (i.c., declarative knowledge) at the beginning of
each class and ensured that students had ample opportunity to apply this
knowledge in small practice exercises.

In our sample course, the first week of instruction was dedicated to explaining
how computers work and introducing the interplay between the developer,
computer, and user. The students were reminded throughout the course about
this interplay whenever they seemed to be confused about how to write their
solutions. For example, when a student did not understand when to ask for input
or from whom, that signaled that the student needed to be reminded about the
roles the developer, the computer, and the user play when constructing and
executing a program.

The second week was dedicated to teaching the students about the IDE that was
chosen for implementing the programming solutions. In our case, it was Visual
Studio, and the applications that we built were business applications using
Windows Forms projects. Here we explained the main features available to the
students for designing, coding, and maintaining the applications they were
building. In subsequent weeks, the focus was primarily on introducing the language
syntax and building progressively complex applications that take advantage of the
newly introduced language features. The classes are hands-on in nature, and the
features introduced in the initial weeks continued to be used in subsequent weeks.
In this course, we introduced students to business problems that require specific
programming solutions and taught them to recognize which solutions corre-
sponded to which problems. For example, students learned to distinguish between
Ul elements used for specific input and output situations, as well as to distinguish
between the need to use in-memory collections versus visual lists. Students also
learned to recognize user actions and learned how computers should respond to

424

Mohammad AlMarzouq

actions such as button clicks or item selections from a list. The instructor always
began by introducing concepts and providing supporting notes in order to make
the requisite declarative knowledge accessible to students. Then students were
asked on multiple occasions to apply what they had learned, in order to foster the
development of procedural knowledge.

In this course, we started with simple calculator-based applications and built
up to full CRUD applications using flat file systems with rudimentary data
analysis capabilities. Along the way, students learned to use conditionals, loops,
and collections, as well as operators and data types. We dedicated a single week to
each new topic and added one more week for additional practice if the topic was
complex. Our goal was to ensure that the newly introduced knowledge was
converted into procedural knowledge and that the students could perform these
newly introduced skills without the assistance of an instructor or a reference.

In addition to the classroom activities, we also gave students three other
opportunities to repeat what they learned during each week. First, the students
attended a separate hands-on lab session led by a teaching assistant. Second, the
students were given optional assignments to solve over the weekend. Third, the
students were given weekly quizzes that tested what they had learned the previous
week. We continued with this approach of introducing new concepts and
practicing and repeating solutions until the end of the semester.

Sample and Analysis

We take a quasi-experimental approach to answering our research questions
(Cook & Campbell, 1979; Cook, Campbell, & Shadish, 2002), using the repetition
strategy as it played out for a full year on the basis of five different sections of an
undergraduate introductory programming course offered at a business school.
We observed and assessed the progress of 72 undergraduate business students from
the College of Business Administration (CBA) at Kuwait University (the sample
characteristics in Table 1 below). The majority of students were females (72.2%),
which is typical of universities in the GCC region (e.g., Malik & Coldwell-Neilson,
2018). While the introductory course is designed to be taken during a student’s
sophomore year, most students choose to postpone the course to their junior
(40.28%) or senior years (38.89%) as expected (Woszczynski et al., 2005). Most of
the students enrolled are Management Information Systems (MIS) majors
(69.44%) followed by Operations Management (OM) majors (27.78%). Both

majors can be considered non-computer science majors, given that CBA is classified

425

AJ.AS, Vol. 26, No. 3

as a fine arts college and most admitted students do not receive training in math and

programming in high school as would be expected from computer science majors.

Table 1
Sample Characteristics

Count %
Gender
Male 20 27.78%
Female 52 72.22%
Academic Year
Freshman 2 2.78%
Sophomore 13 18.06%
Junior 29 40.28%
Senior 28 38.89%
Major
MIS 50 69.44%
OM 20 27.78%
Other 2 2.78%
Total 72

The students were given a total of seven optional programming assignments
over a period of six weeks, and were then assessed using a practical programming
midterm exam. While we observed students throughout the semester, we noticed
that other factors started to affect student performance during the second half of
the semester-e.g., fatigue and workload pressures from other courses. We felt that
the six-week period early in the semester offered enough time for students to
practice before they became overwhelmed by the pressures of the semester, which
introduced extraneous variability to our quasi-experiment.

We gave the students problems that required building practical business
applications using VB.net. The problems required students to build event-driven
Windows applications and to use language constructs such as variables, functions,
and “if”’ statements. The students were offered optional assignments and asked to
attend weekly lab sessions, as well as take weekly practical quizzes as further means
of repetition. Since almost all students took a total of four quizzes, we excluded the
number of quizzes taken as a study variable, given the lack of variability in the
measure. The problems students worked on continued to progress in complexity
every week and led up to a practical midterm exam that offered a larger problem that

426

Mohammad AlMarzouq

was similar to the prior exercises that students had to solve within 50 minutes,
without using any references other than assistance provided by the IDE. The
student’s grade in the midterm exam was used to assess the student’s competency in
programming-the logic being that the more proficient (i.e., automatic) students’
problem-solving skills became, the more likely they would be to complete the
requirements on time and earn a better grade. After completing the midterm, the
students were asked to respond to a survey in which they self-reported some of the
variables of the study. We obtained the remaining variables from standard class data
collection procedures, such as lab attendance sheets and quiz grades. The variables
used in the study, as well as some descriptive statistics, are summarized in Table 2:

Table 2
Study Variables and Descriptive Statistics

Variable Description Mean (STD) Max Min
Programming Practical midterm grade after 6 weeks of 100.83 (32.3) 150 0
Competency (DV) instructions
Assignment Number of optional assignments completed 2.94 (2.11) 7 0
Repetitions by the student
Lab attendance Reported by TA 3.19 (2.49) 6 0
GPA Self-reported 2.62(0.55) 4 1
Gender Self-reported categorical variable M = 27.8%

F=722%
Controls
Age Self-reported 22.35(3.56) 37 19
Number of Self-reported 1.39 (1.4) 6 0
missed classes
Number of Self-reported 2.94 (2.11) 6 0
tardy classes
Times course Self-reported 0.58 (0.95) 5 0

was retaken

Once the data were collected, they were screened for errors and missing
observations. We performed OLS regression using the statsmodels package
(Seabold & Perktold, 2010), as the DV observed a relatively normal distribution
(Figure 2) with no indication of violated assumptions or high influence from any
single observation (Cohen, Cohen, West, & Aiken, 2003). We added interaction
terms for both GPA and gender to assess whether the effect of repetition was affected
by them (Aiken & West, 1991). We controlled for the effect of age, number of missed
classes, number of tardy instances, and times a student retook the same course.

427

AJ.AS, Vol. 26, No. 3

40 60 80 0 140 160

100 12|
Midterm Grade

Count
N w - [#;]

-

Figure 2: Distribution of Student Midterm Grades (DV)

Results

Table 3 shows the results of the OLS regression analysis. Our analysis was based

on two models-the first is the main effects model that we use to test H1; the second is
the interaction model used to test H2 and H3 to evaluate whether the effect of

Table 3

OLS Regression Analysis Results

Terms

Main Effect Model

Interaction Model

Repetition * Gender
Repetition * GPA

2.761 (3.311)
-3.914 (2.837)

Repetition 6.034 (1.759) ** 15.149 (7.498) *
Lab Attendance 1.463 (1.295) 1.646 (1.31)
GPA 14.578 (6.161) * 28.813(11.674) *
Gender (Female) 0.613 (7.376) -9.09 (12.999)
Age -1.707 (0.968) -1.758 (0.978).
Missed Classes -5.641 (2.584) * -6.266 (2.612) *
Tardy Classes 0.191 (2.342) -0.146 (2.357)
Retook Course 5.454 (3.648) 5.54 (3.698)
Intercept 44.487 (17.982) * 12.56 (29.749)
Number of Observations 72 72

R’ 42.9% 45.2%
Adjusted R? 35.7% 36.2%

p-values: 0.05%, 0.01**, < 0.001%**

428

Mohammad AlMarzouq

repetition is affected by GPA or gender. The main effects model shows that the
coefficient of assignment repetition was 6.034 (1.759), with significance at p < 0.001.
This model suggests that for every bonus assignment completed, students’ midterm
grade increased by 6.034 points, even after accounting for other important factors
such as student age, attendance, and GPA. The results suggest that using practical
assignments based on the repetition strategy is an effective teaching tool that could
improve all students’ computer programming competency.

The other important variable related to repetition is lab attendance. While the
effect of lab attendance is not significant, its model coefficient of 1.463 (1.295)
suggests that midterm grades increased by 1.463 points for every lab a student
attended. Given the small sample size, we cannot determine whether the effect is
nonexistent, but the evidence suggests that further investigation is needed to
determine the actual effect of repetition in terms of lab attendance. The small
sample effect is compounded by the inconsistent lab attendance of 19 students,
which represents a significant 23.4% of our sample (Figure 3). Therefore, we did
not perform additional analysis on this variable or include interaction terms, as
further analysis was not likely to yield any useable results. Therefore, we focused
on assignment repetition as the main repetition variable.

20.0

17.5
15.0
= 125
3
3 100
7.5
5.0
00 —
0 1 2 3 4 5 6

Lab Attendence

Figure 3: Histogram of Lab Attendance

One could argue that the significant relationship between assignment repetition
and midterm grade may be skewed by students with higher GPAs, since those
students would presumably be more likely to complete optional assignments. This
possibility is especially significant given that GPA has a positive coefficient of
14.578 (6.161) in the model that is also significant. Therefore, to demonstrate that
higher midterm grades are actually associated with repetition, rather than general

429

AJ.AS, Vol. 26, No. 3

academic performance, it is important to test for H2 to see whether the positive
effect of repetition also applies to students with lower GPAs.

For H2, we focus on the interaction model. Notice that the coefficient of interaction
between the number of assignment repetitions and GPA is -3.914 (2.837)-which
actually suggests the opposite of our expectation of the positive correlation between
GPA and midterm grade. As the student’s GPA increases, the effect of the optional
bonus assignments on midterm performance diminishes by 3.914 for every point
increase in GPA. While the effect is nonsignificant, we expect that this is due to the
difficulties in detecting interaction effects from the residual variance after all the main
effects have been accounted for (McClelland & Judd, 1993). While we cannot be certain
that the effect exists based only on the p-value, other evidence suggests that the effect is
likely there, but undetectable due to the small sample size.

To further illustrate what is happening, we breakdown the students into three
groups based on their Grade Point Average (GPA) from the 4-point system to
simplify the simple slope analysis. The first group (Group A) consists of above
average students with GPA greater than 3.5. The second group (Group B) consists of
average students with GPA between 3.5 and 2.5. The final group (Group C) consists
of below average students with GPA less than 2.5. The swarm plot (Figure 4) shows
how the values of assignment repetition for each student are distributed across
different GPA and gender groups, which effectively rules out the claim that the
benefits associated with repeating exercises is limited to students with high GPAs, or
a specific gender, for that matter, as it shows no systematic distribution pattern.

7 e () gender
® M
6 o e L) ® =
5 20889 29068
w
=
o 4 soooces e®
._E
) 3 ce o® ®
o
2 aeaeoD e e
1 ttatalel T 1 tetetl ooe
0 [sseese (1]
A B (]
GPA Group

Figure 4: Swarm Plot Showing Distribution of Repetition Values
Across GPA Categories and Gender Groups

430

Mohammad AlMarzouq

To seeif the effect of repetition changes by GPA group, we plot the simple slopes
in Figure 5 for each of the GPA groups. Notice how the simple slope for group A
students is almost flat, suggesting above average students will perform well on
midterms irrespective of the times they repeat optional programming assignments.
For group B students, the slope is steeper, suggesting that repetition might actually
have a higher effect on midterm scores for average performing students. Similarly,
the even steeper slope for group C students suggests that repetition might improve
midterm scores even more for below average performing students.

140

120

100

E 80
5
= 60
40 GPA Group
— A
20 — B
—— &
0
0 1 2 3 4 5 6

Repetitions

Figure 5: Simple Slope Plots for Different GPA Categories

These conclusions about the simple slopes cannot be confirmed without proper
test statistics. We summarize the simple slope analysis and test statistics in Table 4
(Cohen et al., 2003). The simple slope value for group A is 1.448 with a p-value of
0.673. Therefore, it cannot be concluded that it is different from zero and, as
a result, it cannot be determined whether repetition has an effect on students in
group A in our sample. The slope for group B is 5.362, which is significantly
different from zero with a p-value of 0.012. Therefore, it can be concluded that
assignment repetition has a significant and positive effect on students in group B.
Yet, looking at the confidence intervals, it can be observed that the slope for group
A and group B show some overlap in their confidence intervals; therefore, it cannot
be concluded that the two slopes have a statistically significant difference between
them. The observation that one of the slopes is statistically different from zero and
the other one is not and that both slopes are not statistically different from each
another is a strong indication that the interaction effect might indeed be there.
However, it is difficult to detect given the small sample size and challenges of
detecting interaction effect from residual variance (McClelland & Judd, 1993).
It also explains why the interaction term in the OLS model is nearly significant.
Similarly, with group C, the slope is 9.277, which is significant with a p-value of

431

AJ.AS, Vol. 26, No. 3

0.012, as well. What the data suggests in regard to H2 is that for students from
group A (i.e., GPA > 3.5), the repetition strategy is not very important, as they will
perform at high levels anyway. However, the results are important for B and C
student groups (i.e., GPA < 3.5). The results suggest that the repetition strategy is
effective for these students and can improve their competency in computer
programming. The results also strongly discount the earlier supposition that the
effect of assignment repetition on midterm performance may be due to the efforts
of high-performing students.

Table 4
Summary of Simple Slope Analysis and Test Statistics for GPA Categories

95% Confidence Interval

GPA Group Simple Slope SE t-value p-value
Lower Upper
A 1.448 3.413 0.424 0.673 -5.377 8.273
B 5.363 2.0643 2.597 0.012 1.235 9.491
C 9.277 3.601 2.576 0.012 2.076 16.478

As for H3, the interaction term coefficient between gender and repetition is
2.76. While that coefficient would suggest that the effect of repetition is higher for
the group of male students, relative to the group of female students, the effect is
nonsignificant with a p-value of 0.487. This could also be attributed to the small
sample size and the difficulty in detecting interaction effects in the residual
variances (McClelland & Judd, 1993). The simple slopes are plotted in Figure 6 to
illustrate the difference between the groups, which shows that the slope of the male
group is slightly higher than the female group, but the difference is not significant,
as we shall see in the details of the simple slope analysis.

120
Gender

— M

100 — F

80

Midterm

60

40

e

Repetitions

Figure 6: Simple Slope Plot for Different Gender Groups

432

Mohammad AlMarzouq

The simple slope analysis is summarized in Table 5, which shows that repetition
for both the male and female groups have simple slopes that are significantly
different from zero. However, the difference between them is very small and
nonsignificant, given the overlap between the confidence intervals of the two
groups. The interaction term from OLS can also be viewed as a test of difference
between simple slopes, because the interaction is between a continuous variable
(i.e., Repetition) and a binary variable (i.e., Gender). Therefore, it can be
concluded with respect to H3 that we were unable to detect significant differences
in the effect of repetition between males and females. However, it cannot be
concluded with certainty that there are no differences between how the two groups
learn, due to the small sample of our study; therefore, further investigation using a
larger sample size is warranted.

Table 5
Summary of Simple Slope Analysis and Test Statistics for Gender Groups

95% Confidence Interval

Gender Simple Slope SE t-value p-value
Lower Upper
Males 7.909 7.896 2.268 0.027 2.12 33.698
Females 15.149 7.498 2.02 0.048 0.156 30.141
Discussion
Contributions

The results from our OLS analysis suggest that repetition, in the form of
optional assignments that are similar to midterm challenges, has a significant
impact on developing programming competencies for novices to be effective users
of programming languages. The analysis also indicates that the repetition strategy
is more effective for students with lower GPAs. A number of important theoretical
contributions based on these findings can be highlighted.

First, computer programming is shown to be a deterministic cognitive task.
As a result, in fields other than computer science, computer programming can be
taught as an applied skill that can be used to solve specific problems. Through the
repetition strategy, students are taught to recognize such problems and learn
which programming constructs are most appropriate for building solutions.
The findings also highlight the importance of deliberate practice in building
competencies for the short term, and not just achieving expertise. They also present

433

AJ.AS, Vol. 26, No. 3

a clear example of how different declarative programming knowledge (i.e.,
knowing about programming) is different from procedural programming knowl-
edge (i.e., applying programming knowledge), and how the challenges faced by
both students and instructors in acquiring or teaching each type of knowledge can
be significantly different.

Second, we forward an empirical test that the power law of practice in the context
of teaching computer novices computer programming is necessary. We are able to
improve the skills of undergraduate business students by following a repetition
strategy and have shown how the effectiveness of the strategy is related to a student’s
academic standing. The study also highlights the important role of instructors as
a necessary condition for the success of this strategy, because they play an important
role in resolving any misconceptions held by students about computer program-
ming. This emphasizes a very important challenge that strategies not involving
instructors will face and bring up a new line of inquiry about how detrimental
student misconceptions about programming will be to such strategies.

Third, this work has some important practical contributions. Because repeti-
tion is key to improving competence in computer programming, it is recommended
that programming classes be introduced early in curricula that use programming
as a tool, not only for application development, but also for data analysis and
visualization. The findings support the decision of a large proportion of IS
undergraduate programs to keep introductory computer programming courses at
the core of their programs (Bell, Mills, & Fadel, 2013) and not follow the
suggestion from the latest AIS/ACM undergraduate IS curriculum guidelines to
teach programming courses as electives (Topi et al., 2010).

Fourth, the way the repetition strategy is implemented in this study shows how
computer programming can be taught as an applied skill to students, provided the
instructors be aware of student misconceptions of the programming task, as well as
avoid cognitive overload when introducing new topics. Therefore, it can be argued
that an applied approach that leverages simple languages and tools is likely to be
fruitful, given that it is likely to reduce some of the cognitive burden on students
when learning to program. In our case, the visual studio IDE seemed over-
whelming for students at first, but they eventually learned to use only the features
they needed to accomplish their tasks. Simpler development environments, such as
the Jupyter Notebook, might reduce the time and effort needed by students to learn
how to use the development tools and focus on problem solving. Once students
learn to differentiate between programming and problem solving on the basis of

434

Mohammad AlMarzouq

a single language or tool, they can more easily learn other tools and, perhaps, even
other programming languages.

One final implication of this study is advice directed to fellow instructors,
trainers, and students in fields familiar with the challenges and frustrations
associated with teaching novices computer programming. There are no shortcuts-
the key is patience and practice. A common occurrence when teaching computer
programming is that some students will fail to recall the meaning of certain
complex programming constructs, such as loops, conditionals, and functions.
In fact, this is the rule rather than the exception, and it serves as a clear indication
that the students need more practice through repetition before the knowledge
related to these concepts is committed to long-term memory and easily recalled
when needed. Instructors also need to be patient and more accepting of such
expected shortcomings from students on their journey to becoming more
competent programmers.

Limitations and future research

There are a number of limitations of this work that we hope to have been
adequately addressed and could present opportunities for future research. First,
this study involved a limited number of subjects-ideally, we would like to expand
the scope of this study in the future. This limitation was not a choice made by the
author of this manuscript but was a result of practical limitations as well as access
to subjects. While this prevented us from detecting some effects, we believe that the
effects we were able to detect in this small sample might be revealed to be greater in
the context of a larger sample. Furthermore, our sample was limited to two
business majors-namely, MIS and OM majors. While these students are techni-
cally inclined and, one could argue, may be similar in important ways to computer
science majors, the business school in which we conducted this study is classified as
a fine arts college. As such, most of these students have had limited prior exposure
to math or programming. We confirmed this with a simple survey at the beginning
of each semester, which indicated that most students had not been exposed to
programming before the introductory course.

Another limitation is the confounding of some of the variables that could be
interesting complements to this work. We therefore refrained from making
concrete conclusions about these variables and pointed them out for purposes
of potential future research. First, there is the effect of the programming language
used. We were limited to VB.net and Visual Studio as a tool. While we noticed

435

AJ.AS, Vol. 26, No. 3

students struggling with them at first, with enough practice they were able to
master their use. It is suspected that using languages with less overhead, less
boilerplate code, that are better designed for teaching (e.g., Python and Jupyter
Notebook), might yield more impressive results. Furthermore, it would be
interesting to explore how students handle learning multiple languages in a
single course. Finally, there is the issue of generalizability of acquired student
skills. Given that the intention of introductory courses is to endow students with
highly specific skills, then we would argue that introductory courses have achieved
their goals. However, it would be interesting to follow students that complete
introductory programming courses to understand the factors that would make
their newly acquired programming skill more generalizable.

Lab attendance was another important variable for which the data did not yield
a useable result. We performed some comparisons between students that attended
the lab sessions and students that did not. We did not find any systematic patterns
that might have affected our findings. Both groups included students with varying
midterm performance levels, and both groups also displayed varying interest in
repetition assignments. It should be noted that the teaching styles of our various
TAs may have affected variations in lab attendance. While there were no
significant results for lab attendance, it should not be discounted as an important
repetition variable, given our small sample size. In order to ensure proper
examination of this variable, future studies could focus on lab attendance and
possibly take into account potential reasons why students may not have attended
the lab sessions.

Not exploring individual differences is one more limitation of this study. Such
differences might explain the variability in student repetitions in terms of GPA
and, perhaps, in gender. We also cannot make conclusions regarding the
complexity of the programming tasks. We followed a preset protocol where one
concept was introduced every week. Future research could examine how students
would deal with unexpected problem complexity or how much of an increase in
complexity students could handle in one week of instruction.

A recent discourse in computer programming education is related to whether
programming should be taught as a standalone course focused on programming
skills, or an integrated course where programming is used as a tool to solve domain
specific problems (Schanzer, Krishnamurthi, & Fisler, 2019). The applied
approach used in our study favors the integrated approach, yet the introductory

436

Mohammad AlMarzouq

course is a dedicated programming course. In our discussions with students, we
have noticed that students can be overwhelmed by the tools used to build the
programs and be detracted from the main problems. An applied approach might
give them more focus, as some of the students expressed that they had a better
appreciation of computer programming after they had understood how it could be
relevant to solving problems in their majors. Future research can explicitly study
the effect of taking a more applied approach to programming and whether student
learning ability is hindered if no dedicated programming course is offered.

Finally, based on our observing the aggregate effect of repetition by testing
students performing a task with a specific time limit, future studies could take a
more granular approach to assessing the time it takes to complete certain tasks and
find whether repetition improves the speed with which the tasks are completed.
Designing such an experiment for an actual class could be challenging. However,
the results from this work are encouraging and may perhaps inspire funding for
such a study in the future.

Conclusion

Can we train students or employees with no background in computer science to
benefit from computer programming? We have shown, with empirical support,
that repetition can be an effective strategy in training novices without computer
science backgrounds to become competent users of programming languages. This
finding was in fact amplified for students with lower GPAs. While answering this
question, we have explained how computer programming is a cognitive skill that
differs significantly from pure problem-solving skills. Our study indicates that
students can improve computer programming skills through practice and
perseverance while guided by an instructor. It is our hope that both instructors
and students recognize the value of having such a skill in their toolbox even for
business school majors. To meet the demands of this digital age in which
information processing competency is increasingly important and also facilitates
innovation and new venture creation that is crucial to economic development
(Tomizawa, Zhao, Bassellier, & Ahlstrom, 2019), we hope that colleges and
universities will introduce programming courses for all business majors. This
should be at the beginning of their studies to give students ample opportunity to

hone and apply these skills throughout their educational journeys and beyond.

437

AJ.AS, Vol. 26, No. 3

References

Aiken, L. S., & West, S. G. 1991. Multiple regression: Testing and interpreting
interactions. Thousand Oaks, CA, US: Sage Publications, Inc.

Anderson, J. R. 1982. Acquisition of cognitive skill. Psychological Review, 89(4), 369.

Anderson, J. R.1992. Automaticity and the ACT theory. The American Journal of
Psychology, 105(2): 165-180.

Anderson, J. R. 2007. How can the human mind occur in the physical universe? New York,
NY, US: Oxford University Press.

Anderson, J. R. 2015. Cognitive psychology and its implications (8th ed.). New York, NY,
US: Worth Publishers.

Bauer, R., Mehrens, W. A., & Vinsonhaler, J. F. 1968. Predicting performance in a
computer programming course. Educational and Psychological Measurement, 28(4):
1159-1164.

Bell, C., Mills, R., & Fadel, K. 2013. An Analysis of Undergraduate Information
Systems Curricula: Adoption of the IS 2010 Curriculum Guidelines.
Communications of the Association for Information Systems, 32(1). https://doi.org/
10.17705/1CAIS.03202

Butcher, D. F., & Muth, W. A. 1985. Predicting performance in an introductory
computer science course. Communications of the ACM, 28(3): 263-268. https://
doi.org/10.1145/3166.3167

Cohen, J., Cohen, P., West, S., & Aiken, L. 2003. Applied Multiple Regression/
Correlation Analysis for the Behavioral Sciences (Third Edition). New York, NY,
US: Routledge.

Colley, A., & Comber, C. 2003. Age and gender differences in computer use and attitudes
among secondary school students: What has changed? Educational Research, 45(2):
155-165. https://doi.org/10.1080/0013188032000103235

Cook, T. D., & Campbell, D. T. 1979. The design and conduct of true experiments and
quasi-experiments in field settings. In R. Mowday & R. Steers (Eds.), Research in
Organizations: Issues and Controversies. Santa Monica, CA, US: Goodyear
Publishing Company.

Cook, T. D., Campbell, D. T., & Shadish, W. 2002. Experimental and quasi-experimental
designs for generalized causal inference. Boston, MA, US: Houghton Mifflin and
Company.

DeKeyser, R. 2014. Skill Acquisition Theory. In B. VanPatten & J. Williams (Eds.),

Theories in Second Language Acquisition: An Introduction (2nd ed.). New York,
NY, US: Routledge.

Du Boulay, B. 1986. Some Difficulties of Learning to Program. Journal of Educational
Computing Research, 2(1): 57-73. https://doi.org/10.2190/3LFX-9RRF-67T8-UVK9

438

Mohammad AlMarzouq

Ericsson, K. A., Krampe, R. T., & Tesch-Romer, C. 1993. The Role of Deliberate
Practice in the Acquisition of Expert Performance. Psychological Review, 100(3):
363-406.

Ericsson, K. A., Prietula, M. J., & Cokely, E. T. 2007. The making of an expert. Harvard
Business Review, 85(7/8): 114.

Fitzgerald, S., Lewandowski, G., McCauley, R., Murphy, L., Simon, B., Thomas, L., &
Zander, C. 2008. Debugging: Finding, fixing and flailing, a multi-institutional study
of novice debuggers. Computer Science Education, 18(2): 93-116. https://doi.org/
10.1080/08993400802114508

Forte, A., & Guzdial, M. 2005. Motivation and nonmajors in computer science:
Identifying discrete audiences for introductory courses. IEEE Transactions on
Education, 48(2): 248-253.

Fowler, G. C., & Glorfeld, L. W. 1981. Predicting aptitude in introductory computing: A
classification model. AEDS Journal, 14(2): 96-109.

Good, J., & Howland, K. 2017. Programming language, natural language? Supporting
the diverse computational activities of novice programmers. Journal of Visual
Languages & Computing, 39, 78-92. https://doi.org/10.1016/j.jvlc.2016.10.008

Hayashi, Y., Fukamachi, K.-I., & Komatsugawa, H. 2015. Collaborative Learning in
Computer Programming Courses That Adopted the Flipped Classroom.
Proceedings of the 2015 International Conference on Learning and Teaching in
Computing and Engineering, 209-212. https://doi.org/10.1109/LaTiCE.2015.43

Karim, S., Carroll, T. N., & Long, C. P. 2016. Delaying Change: Examining How
Industry and Managerial Turbulence Impact Structural Realignment. Academy of
Management Journal, 59(3): 791-817. https://doi.org/10.5465/am;j.2012.0409

Kay, R. 2006. Addressing Gender Differences in Computer Ability, Attitudes and Use:
The Laptop Effect. Journal of Educational Computing Research, 34(2): 187-211.
https://doi.org/10.2190/9BLQ-883Y-XQMA-FCAH

Konvalina, J., Wileman, S. A., & Stephens, L. J. 1983. Math Proficiency: A Key to
Success for Computer Science Students. Commun. ACM, 26(5): 377-382. https://
doi.org/10.1145/69586.358140

Lahtinen, E., Ala-Mutka, K., & Jirvinen, H.-M. 2005. A study of the difficulties of
novice programmers. Acm Sigcse Bulletin, 37(3): 14-18.

Lau, W. W. F., & Yuen, A. H. K. 2011. Modelling programming performance: Beyond
the influence of learner characteristics. Computers & Education, 57(1): 1202-1213.
https://doi.org/10.1016/j.compedu.2011.01.002

Lowe, T. 2019. Explaining Novice Programmer’s Struggles, in Two Parts: Revisiting the
ITiCSE 2004 Working Group’s Study Using Dual Process Theory. Proceedings of
the 2019 ACM Conference on Innovation and Technology in Computer Science
Education: 30-36. https://doi.org/10.1145/3304221.3319775

439

AJ.AS, Vol. 26, No. 3

Malik, S. I., & Coldwell-Neilson, J. 2018. Gender differences in an introductory
programming course: New teaching approach, students’ learning outcomes, and
perceptions. Education and Information Technologies, 23(6): 2453-2475. https://
doi.org/10.1007/s10639-018-9725-3

McClelland, G. H., & Judd, C. M. 1993. Statistical difficulties of detecting interactions
and moderator effects. Psychological Bulletin, 114(2): 376-390.

Meerbaum-Salant, O., Armoni, M., & Ben-Ari, M. (Moti). 2013. Learning computer
science concepts with Scratch. Computer Science Education, 23(3): 239-264. https://
doi.org/10.1080/08993408.2013.832022

Meyer, J., & Land, R. 2006. Threshold concepts and troublesome knowledge: An
introduction. In J. Meyer & R. Land (Eds.), Overcoming barriers to student
understanding: Threshold concepts and troublesome knowledge: 3-18. New York, NY,
US: Routledge.

Moons, J., & De Backer, C. 2013. The design and pilot evaluation of an interactive
learning environment for introductory programming influenced by cognitive load
theory and constructivism. Computers & Education, 60(1): 368-384. https://doi.org/
10.1016/j.compedu.2012.08.009

Mow, I. T. C. 2008. Issues and Difficulties in Teaching Novice Computer Programming.
In M. Iskander (Ed.), Innovative Techniques in Instruction Technology, E-learning,
E-assessment, and Education: 199-204. Dordrecht, Netherlands: Springer.

Newell, A., & Rosenbloom, P. S. 1981. Mechanisms of skill acquisition and the law of
practice. Cognitive Skills and Their Acquisition, 1: 1-55.

Newell, A., & Rosenbloom, P. S. 2013. Mechanisms of Skill Acquisition and the Law of
Practice. In J. R. Anderson (Ed.), Cognitive Skills and Their Acquisition: 1-51. New
York, NY: Routledge.

Newsted, P. R. 1975. Grade and Ability Predictions in an Introductory Programming
Course. SIGCSE Bulletin, 7(2): 87-91. https://doi.org/10.1145/382205.382897

Norman, D. A. 1987. Some observations on mental models. In R. M. Baecker & W. A.
S. Buxton (Eds.), Human-computer Interaction: 241-244. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc.

Nuutila, E., TI, S., & Malmi, L. 2005. PBL and Computer Programming-The Seven
Steps Method with Adaptations. Computer Science Education, 15(2): 123-142.
https://doi.org/10.1080/08993400500150788

Pennington, N., & Grabowski, B. 1990. The tasks of programming. In J.-M. Hoc, T. R.
G. Green, R. Samurcay, & D. J. Gilmore (Eds.), Psychology of programming: 45-62.
San Diego, CA, USA: Academic Press.

Perkins, D. N., & Martin, F. 1986. Fragile Knowledge and Neglected Strategies in
Novice Programmers. Papers Presented at the First Workshop on Empirical Studies
of Programmers on Empirical Studies of Programmers: 213-229. Retrieved from
http://dl.acm.org/citation.cfm?id =21842.28896

440

Mohammad AlMarzouq

Perkins, D. N., Schwartz, S., & Simmons, R. 1988. Instructional strategies for the
problems of novice programmers. In Teaching and learning computer programming:
Multiple research perspectives: 153-178. Hillsdale, NJ, US: Lawrence Erlbaum
Associates, Inc.

Rist, R. S. 1991. Knowledge Creation and Retrieval in Program Design: A Comparison
of Novice and intermediate Student Programmers. Human-Computer Interaction,
6(1): 1-46. https://doi.org/10.1207/s15327051hci0601_1

Robins, A. 2019. Novice Programmers and Introductory Programming. In S. Fincher &
A. Robins (Eds.), The Cambridge Handbook of Computing Education Research
(Ist ed.: 327-376). https://doi.org/10.1017/9781108654555.013

Robins, A., Rountree, J., & Rountree, N. 2003. Learning and teaching programming: A
review and discussion. Computer Science Education, 13(2): 137-172.

Rogalski, J., & Samurgay, R. 1990. Acquisition of programming knowledge and skills. In
J.-M. Hoc, T. R. G. Green, R. Samurcay, & D. J. Gilmore (Eds.), Psychology of
programming: 157-174. San Diego, CA, USA: Academic Press.

Rubio, M. A., Romero-Zaliz, R., MaC., & de Madrid, A. P. 2015. Closing the gender
gap in an introductory programming course. Computers & Education, 82: 409-420.
https://doi.org/10.1016/j.compedu.2014.12.003

Schanzer, E., Krishnamurthi, S., & Fisler, K. 2019. What does it mean for a computing
curriculum to succeed? Communications of the ACM, 62(5): 30-32. https://doi.org/
10.1145/3319081

Seabold, S., & Perktold, J. 2010. Statsmodels: Econometric and statistical modeling with
python. 9th Python in Science Conference.

Serrano-Cmara, L. M., Paredes-Velasco, M., Alcover, C.-M., & Velazquez-Iturbide, J. é.
2014. An evaluation of students’ motivation in computer-supported collaborative
learning of programming concepts. Computers in Human Behavior, 31: 499-508.
https://doi.org/10.1016/j.chb.2013.04.030

Singley, M. K., & Anderson, J. R. 1989. The transfer of cognitive skill. Cambridge, MA,
USA: Harvard University Press.

Sorva, J. 2013. Notional Machines and Introductory Programming Education. ACM
Transactions on Computing Education, 13(2): 8:1-8:31. https://doi.org/10.1145/
2483710.2483713

Striegel, A., & Rover, D. T. 2002. Problem-based learning in an introductory computer
engineering course. Frontiers in Education, 2002. FIE 2002. 32nd Annual, 2, F1G-
F1G. IEEE.

Tomizawa, A., Zhao, L., Bassellier, G., & Ahlstrom, D. 2019. Economic growth,
innovation, institutions, and the Great Enrichment. Asia Pacific Journal of
Management. https://doi.org/10.1007/s10490-019-09648-2

Topi, H., Valacich, J. S., Wright, R. T., Kaiser, K., Nunamaker Jr, J. F., Sipior, J. C., &
de Vreede, G.-J. 2010. IS 2010: Curriculum guidelines for undergraduate degree

441

AJ.AS, Vol. 26, No. 3

programs in information systems. Communications of the Association for
Information Systems, 26(1): 18.

Wagner, 1. 2016. Gender and Performance in Computer Science. ACM Transactions on
Computing Education, 16(3): 11:1-11:16. https://doi.org/10.1145/2920173

Wilson, B. C., & Shrock, S. 2001. Contributing to Success in an Introductory Computer
Science Course: A Study of Twelve Factors. Proceedings of the Thirty-Second
SIGCSE Technical Symposium on Computer Science Education, 184-188. https://
doi.org/10.1145/364447.364581

Winslow, L. E. 1996. Programming pedagogy-A psychological overview. ACM SIGCSE
Bulletin, 28(3): 17-22. https://doi.org/10.1145/234867.234872

Woszczynski, A., Haddad, H., & Zgambo, A. 2005. An IS Student’s Worst Nightmare:
Programming Courses. 5.

442

Mohammad AlMarzouq

sailal
QLS (8 (YN ool dave ya i piaiaall paladl dliwgS o Sl
Y aglalg 3 Las

B30l s wens
e daals

asle clmiats s oe pbaieal wales 5 LS Gslad Llels Ll 1dud yall Baa
) o e s 1ol
sl g ol a3 Y iy 3 €S s Lyl yalf dingho
ol o5 on Gl psle (s slSs Ml 72l g i Ehaal 2l Zise g Sl
olal daa s s 3
oo LLEAY! Lyl RSN LS5 (s 5ie &y Ele o s bl pall il
8ok b ol LS edianlatll dulaall das 9o wsan g oy U (s o) e 5 8 lgeo ke
LaalSl LU ol 55 Jla T8a s3a 353
Lm g Jlns gl all 335 o ol s e 5SS gl o el
o sdall Zoasy alas 5 3 Leaal Ll pull 555 LS i asolSY) a3l oS ooal
el LS elmad alio o 1 Sen) ol Zova s alaS 50 530 1) Luaals
) Loyl pslally

Mohammad N. AlMarzouq is an assistant professor of information
systems at Kuwait University. He received his PhD in management
information systems from Clemson University. His research interests
include Free/Libre and Open Source software, project management,
technology acceptance, diffusion of innovation, as well as computer
programming education and training. His work has been published
in Decision Support Systems, Information and Management,
Computers in Human Behavior, and Communications of the AIS.
(mohammad.almarzouq@ku.edu.kw)

443

SN 1 T
has il g

sl Anals — alall 2l Guloes e s LaSims Ayliad gale Ale

21975 ale 5l 2 Lgia Jo¥I sall jun

Al yus)
pilell gilé jyjellare a0
w9duiy déleioll duolc)l lwljallg sgadl piniy ddaoll Lny
. duwlyalig &adl pgnmgé&y}dléﬂplg@gﬂldﬁbio

Ajudaill Lblpagluadl o dupell bgayl «
:dreolyl Jilwl Olailo « il Ggal
.(ol)giSa - o) -lieslpog WiS)l Py o
Ulgu - Ulpoigo : gyl Aol udlpgludl .

cygalldcola - yoll elpiyloado &l dosd Juw i
d4iygall 8 Jlaodl ani le wgauo

s 15 & Oluwgeld - 5003 3 ¢ 2,030 : CoagS Atgs J3ls

s 15 & Sluwpeld - 0034« 31,030 : Ay atl Jou T

blus 15+ Oluwpelt - b3 4+ 31,850 : dyye yual) Joudl

dp=ll 5pajallg aulall wlwl)a @ao jopal yutd) eawly wllwholl 102 angl

oot 72451 ;g 1t 5o 8 - 2t 17073 i 0
+965 24833705 : .sla - +965 24833215 - 24984066 - 24984067 - u,.u

EBS(‘O Publishing Products ISSN : 0254 - 4288 :Alagll Igall piyll
www.mandumah.com :ae glait! i d

