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ABSTRACT

Health pattern recognition is vital for advancing personalized health-care interventions. This research introduces a synergistic approach, 
combining Fuzzy C-Means (FCM) clustering with Particle Swarm Optimization (PSO), to optimize the hyperparameters of an Artificial 
Neural Network (ANN) and enhance health pattern recognition. Leveraging key features such as “Smoker,” “BMI,” and “GenHlth,” FCM 
reveals distinctive health clusters, providing nuanced insights into diverse health profiles within the dataset. Subsequently, the PSO 
algorithm systematically optimizes critical ANN hyperparameters, significantly decreasing the training loss to 0.004. This reduction 
underscores the effectiveness of the optimization process, indicating improved learning and predictive capabilities of the ANN. The 
proposed methodology not only refines health pattern recognition but also holds promise for personalized health-care analytics. The 
identified clusters offer actionable insights for tailored interventions, addressing specific health profiles within the population. This 
research contributes to the evolving landscape of health-care analytics by integrating advanced clustering and optimization techniques, 
paving the way for more effective and individualized health-care strategies.

Keywords: Health pattern recognition, fuzzy C-means, particle swarm optimization, hyperparameter optimization, health clusters, 
optimization algorithms

INTRODUCTION

Health-care analytics, driven by advanced data-driven 
methodologies, is a key to transforming patient care and 
outcomes. To enhance our understanding of complex 

health patterns, this research endeavors to amalgamate Fuzzy 
C-Means (FCM) clustering and particle swarm optimization 
(PSO) techniques to optimize the hyperparameters of an 
artificial neural network (ANN). The overarching goal is 
to achieve a more precise and individualized recognition of 
health profiles within a diverse dataset.[1]

The burgeoning field of health pattern recognition is 
critical for discerning intricate relationships between lifestyle, 
demographic, and health-related factors. Identifying distinct 
clusters within populations can unearth nuanced insights 
into health behaviors, aiding in developing targeted and 
personalized health-care strategies. Features such as “Smoker,” 
“Body mass index (BMI),” and “GenHlth” provide multifaceted 
dimensions for analysis, offering a comprehensive view of an 
individual’s health status.[2]

The initial phase of this study leverages FCM clustering 
to categorize individuals into health clusters based on 
shared characteristics. This technique excels in capturing the 

inherent fuzziness and overlaps present in health-related data, 
allowing for a more realistic representation of diverse health 
profiles. The clusters identified by FCM lay the foundation for 
subsequent optimization through PSO, which systematically 
refines the hyperparameters of an ANN.

The significance of hyperparameter optimization in neural 
networks cannot be overstated. The choice of parameters such 
as the number of neurons in hidden layers and activation 
functions directly influences the model’s learning capacity 
and predictive accuracy. PSO, inspired by social behavior 
and collaboration, offers an innovative approach to fine-
tuning these hyperparameters. By systematically exploring 

Corresponding Author: 
Mohammad A. Assaad, Department of Informatics and Software 
Engineering, Faculty of Engineering, Cihan University-Erbil, Kurdistan 
Region, Iraq. E-mail: mohammad.anwar@cihanuniversity.edu.iq

Received: June 03, 2024 
Accepted: July 03, 2024 
Published: September 15, 2024

DOI: 10.24086/cuesj.v8n2y2024.pp76-83

Copyright © 2024 Mohammad A. Assaad, Ghazi H. Shakah. This is an open-
access article distributed under the Creative Commons Attribution License.

Cihan University-Erbil Scientific Journal (CUESJ)



Assaad and Shakah: Optimizing health pattern recognition PSO approach

77 http://journals.cihanuniversity.edu.iq/index.php/cuesj CUESJ 2024, 8 (2): 76-83

the solution space, PSO aims to discover optimal parameter 
configurations that lead to improved ANN performance.[3]

The outcomes of this research are not merely confined to 
the realm of algorithmic enhancements. The optimized ANN 
holds the promise of being a powerful tool for health pattern 
recognition, offering potential applications in risk assessment, 
disease prediction, and targeted intervention strategies.

As we navigate the intricate landscape of individual health 
profiles, the synergy of FCM and PSO presents a novel avenue 
for advancing health-care analytics and ushering in a new 
era of personalized health care. This study contributes to the 
evolving dialog on the intersection of data science and health 
care, where innovative methodologies hold the potential to 
revolutionize patient-centric care and well-being.

RELATED WORK

Mahesa[3] study addresses the critical need for efficient 
brain tumor segmentation in medical imaging, aiming to 
expedite the analysis process and facilitate timely patient 
treatment. Traditional manual segmentation methods are 
time-consuming, causing delays in treatment initiation and 
impeding the timely dissemination of health information.[4] To 
automate this process, the research proposes an enhancement 
to an existing partition-based brain tumor segmentation 
algorithm.[5-8]

The chosen image segmentation algorithm is FCM, a 
widely used method. To further optimize the segmentation 
process, PSO is introduced. This optimization algorithm 
operates concurrently with the segmentation algorithm, 
enhancing its efficiency. The evaluation involves comparing 
the objective function of the original algorithm (without 
optimization) with the optimized version (FCM-PSO) using six 
different medical images.

The key focus is on minimizing the objective function, 
which serves as a measure of segmentation quality. The results 
demonstrate that the FCM optimized by PSO (FCM-PSO) 
achieves a lower objective function compared to the original 
FCM across the six images. This outcome indicates that the 
optimized FCM is closer to the global minimum, showcasing 
its potential to significantly enhance the segmentation 
algorithm’s performance.[9,10]

Siringoringo[5] study addresses a common challenge in 
FCM, a well-known clustering algorithm, where sensitivity to 
initial cluster center values and susceptibility to local optima 
can impact performance. In response, this research introduces 
an enhanced version, combining FCM with PSO for effective 
sentiment clustering in high-dimensional and unstructured 
data. PSO is employed to optimize the determination of initial 
cluster centers, mitigating the sensitivity issues associated 
with traditional FCM.

The results demonstrate that the proposed FCM-PSO 
outperforms conventional FCM across various metrics, 
including Rand Index, F-measure, and Objective Function 
Values (OFV). Notably, the superior OFV value indicates that 
FCM-PSO exhibits faster convergence and improved noise-
handling capabilities. This enhancement suggests that the 
FCM-PSO algorithm offers better overall performance, making 

it a promising solution for sentiment clustering in high-
dimensional and unstructured datasets.

The papers[6,11] showed that the ever-evolving landscape 
of artificial intelligence has consistently spotlighted image 
processing technology as a challenging and prominent area 
of research. With the advent and progression of machine 
learning and deep learning methodologies, swarm intelligence 
algorithms have emerged as a focal point of investigation. 
The integration of image processing technology with swarm 
intelligence algorithms has proven to be a novel and effective 
means of enhancement.

Swarm intelligence algorithms emulate the evolutionary 
principles, behavioral characteristics, and cognitive patterns 
observed in biological populations such as insects, birds, 
and natural phenomena. These algorithms, including the ant 
colony algorithm, PSO algorithm, sparrow search algorithm, 
bat algorithm, and thimble colony algorithm, exhibit efficient 
and parallel global optimization capabilities, demonstrating 
robust optimization performance.[12]

This paper delves into a comprehensive study of various 
swarm intelligent optimization algorithms, exploring their 
models, features, improvement strategies, and application 
domains within image processing. The applications cover a 
spectrum of image-processing tasks, including segmentation, 
matching, classification, feature extraction, and edge detection. 
The analysis involves a thorough examination of theoretical 
research, improvement strategies, and practical applications in 
image processing. A comparative study is conducted to discern 
the strengths and weaknesses of different algorithms.[13]

Drawing insights from existing literature, the paper 
scrutinizes improvement methods for the aforementioned 
algorithms and provides a holistic overview of their collective 
impact on advancing image processing technology. The 
representative algorithms, particularly those fused with image 
segmentation technology, are identified for in-depth analysis 
and summarization. The paper consolidates the diverse 
swarm intelligence algorithms, highlighting their shared 
framework, common traits, and distinguishing features. 
It also acknowledges existing challenges and concludes 
with a forward-looking projection of future trends in this 
interdisciplinary domain.[14]

Wu et al.[10] paper addresses the challenge of quality 
detection in the production and processing of stuffed food, 
focusing on frozen dumplings on a conveyor belt. The proposed 
solution introduces a small neighborhood clustering algorithm 
to effectively segment frozen dumpling images, enhancing the 
overall qualified rate of food quality. The method employs feature 
vectors constructed from image attribute parameters, utilizing a 
distance function between categories to perform segmentation 
through a small neighborhood clustering algorithm.[15]

Key aspects of the algorithm include the selection of 
optimal segmentation points and sampling rate. The paper 
outlines a process for calculating the optimal sampling rate 
and proposes a search method to determine it. In addition, a 
validity judgment function for segmentation is introduced. The 
Optimized Small Neighborhood Clustering (OSNC) algorithm 
is then applied to continuous image target segmentation 
experiments using fast frozen dumpling images as samples.
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The experimental results showcase the OSNC algorithm’s 
high accuracy in defect detection, achieving a rate of 
95.9%. Comparative analysis with existing segmentation 
algorithms highlights the OSNC algorithm’s robustness 
against interference, faster segmentation speed, and efficient 
preservation of key information. This algorithm effectively 
addresses limitations observed in other segmentation methods, 
making it a promising solution for improving the quality 
detection process in stuffed food production.

METHODOLOGY

This paper employs a comprehensive methodology that 
integrates FCM clustering and PSO to enhance health pattern 
recognition through the optimization of an ANN.

The sequential application of these techniques is designed 
to discern distinctive health clusters and subsequently refine 
the ANN’s hyperparameters for improved performance.

Dataset and Feature Selection

The foundation of our methodology lies in the careful 
selection of features that encapsulate essential dimensions 
of health profiles. The dataset encompasses a diverse 
array of features such as “Smoker,” “BMI,” and “GenHlth,” 
providing a multifaceted representation of individuals’ health 
characteristics.

FCM Clustering

FCM clustering is employed to categorize individuals into 
distinct health clusters based on the chosen features. FCM 
excels in handling data with inherent fuzziness and overlaps, 
offering a more realistic representation of the complex interplay 
between health-related attributes. The iterative optimization 
process of FCM converges to reveal clusters that capture shared 
characteristics within the dataset, and Figure 1 shows the 
difference between FCM (soft clustering) and hard clustering.[3-6]

PSO

Following the identification of health clusters, the study 
introduces the PSO algorithm to optimize the hyperparameters 
of an ANN. The hyperparameters targeted for optimization 
include the number of neurons in the first hidden layer 
(hidden_layer1), the number of neurons in the second hidden 
layer (hidden_layer2), and the activation function in the 
output layer (activation_functions). PSO, inspired by social 
behavior and collaboration, utilizes a swarm of particles to 
systematically explore the hyperparameter space and discover 
configurations that minimize the ANN’s training loss. Figure 2 
shows PSO convergence mechanism.[12-14]

ANN Architecture and Training

The ANN architecture is defined based on the optimized 
hyperparameters obtained through the PSO algorithm. 
A sequential model is created using the Keras framework, with 
input dimensions matching the selected features. The model 
comprises multiple layers, including the input layer, hidden 
layers with the specified number of neurons, and an output 
layer with the chosen activation function. The model is trained 

Figure 2: PSO convergence mechanism

Figure 1: Hard clustering versus soft clustering

using the mean squared error loss function and the Adam 
optimizer. Figure 3 shows the basic architecture of ANN.[11,13]

Evaluation and Validation

To assess the effectiveness of the optimized ANN, the dataset 
is split into training and testing sets. The model’s performance 
is evaluated using metrics such as mean squared error on the 
testing set. In addition, internal validation metrics such as 
silhouette score, Davies–Bouldin index, or Fowlkes–Mallows 
index may be employed to quantitatively assess the quality of 
the identified health clusters.

Visualization

Visual representations are generated to aid in the interpretation 
of results. These include plots illustrating the training loss over 
epochs for both the initial and optimized ANN, scatter plots 
showcasing the distribution of data points within identified 
health clusters and 3D visualizations of cluster centers and 
data points for enhanced interpretability.

Interpretation and Implications

The final step involves interpreting the results and discussing 
the implications of the identified health clusters and the 
optimized ANN. Insights into distinct health profiles, potential 
risk factors, and the model’s generalization capacity are 
thoroughly examined. The findings are contextualized within 
the broader domain of health-care analytics, emphasizing the 
potential for personalized intervention strategies.

RESULTS AND DISCUSSIONS

The determination of an optimal number of clusters is pivotal 
in ensuring meaningful partitioning of the dataset. Employing 
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internal validation metrics and thoughtful consideration, 
the analysis points toward an optimal number of clusters. 
Following a meticulous evaluation, our research (3) clusters as 
the most fitting configuration for encapsulating the inherent 
structures within the data.

FCM clustering, utilizing the features “Smoker,” “BMI,” 
and “GenHlth,” has unveiled distinctive health patterns within 
the dataset. The analysis determined an optimal number of 
clusters, revealing three distinct groups:
•	 Cluster 1 denoted as “Health-Conscious Individuals,” 

individuals exhibit lower BMI values, tend to be non-
smokers, and generally report good health perceptions.

•	 Cluster 2, characterized as having a “Moderate Health 
Profile,” consists of individuals with moderate health 
indicators, including BMI, smoking habits, and general 
health perceptions.

•	 Cluster 3, labeled as “Health Risk Factors,” comprises 
individuals with higher BMI values, a higher prevalence 
of smoking, and self-reported lower general health 
perceptions. These identified cluster characteristics 
offer a nuanced understanding of the diverse health 
profiles present in the dataset, particularly emphasizing 
smoking habits, BMI, and general health perceptions. The 
subsequent sections will delve deeper, presenting internal 
validation metrics and visual representations of these 
clusters to enhance our comprehension of their reliability 
and interpretability. Figure 4 shows FCM clustering.

The results obtained from the FCM clustering analysis, 
focusing on the features “Smoker,” “BMI,” and “GenHlth,” offer 
valuable insights into the diverse health profiles within the 
dataset. The identification of three distinct clusters provides a 
meaningful partitioning that reflects different health patterns.

The main objective of ANN is to enhance the precision of 
cluster assignments obtained from FCM. While FCM provides 
soft membership values indicating the likelihood of a data 
point belonging to each cluster, an ANN can be employed to 
refine these assignments, potentially leading to more accurate 
and distinct cluster boundaries.

ANN Training Loss

The training loss in a neural network is a measure of how well 
the model is learning from the training data. It represents the 
error between the predicted outputs and the actual targets 
during training. In general, a decreasing training loss is a 
positive sign, indicating that the model is improving its ability 
to make predictions on the training data. Figure 4 shows ANN 
training loss over epochs.

We could break down the scenario as:

Initial loss (Epoch 1): 1.1010

•	 At the start of training, the model’s weights are initialized 
randomly. The initial loss reflects how well the model 
performs with these random weights.

Figure 4: Fuzzy C-means clustering

Figure 3: ANN basic architecture
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Loss after 5 epochs: ~1.0990

•	 The loss has decreased slightly after the first 5 epochs. 
This suggests that the model is adjusting its weights 
based on the training data, and it’s starting to make better 
predictions.

Loss after 50 epochs: ~1.0985

•	 The loss has continued to decrease after 50 epochs. This 
is a positive indication, as it suggests that the model is 
learning more complex patterns in the data and is likely 
to generalize well.

Here are a few considerations:
•	 Learning Rate: The learning rate is a hyperparameter that 

determines the step size at each iteration while moving 
toward a minimum of the loss function. If the learning 
rate is too high, the model might overshoot the minimum, 
and if it is too low, the model might converge slowly. 
Adjusting the learning rate could impact the convergence 
speed.

•	 Model Complexity: If the model is too complex for the 
given data, it might overfit the training set, leading to poor 
generalization of new data. Regularization techniques or 
adjusting the model architecture could help.

•	 Data Quality and Distribution: The training loss is also 
influenced by the quality and distribution of the training 
data. Ensure that the dataset is representative and that 
outliers or noise are appropriately handled.

•	 Evaluation on Test Set: While training loss is informative, 
it is crucial to evaluate the model’s performance on a 
separate test set to ensure it generalizes well to unseen 
data. Figure 5 shows ANN training loss over epochs.

If the training loss continues to decrease, and the model 
performs well on the test set, it indicates successful training. 
If the training loss plateaus or increases on the test set, 
it might be a sign of overfitting or other issues that need 
attention.

Application of PSO

PSO is a nature-inspired optimization algorithm that simulates 
the social behavior of birds or fish. In the context of neural 
network training, PSO can be employed to search for optimal 
sets of parameters (weights and biases) that minimize a cost 
function, ultimately improving the performance of the neural 
network.

Integration with ANN Training

In the code, PSO is integrated into the training process of the 
ANN after an initial training phase. The goal is to fine-tune the 
weights and biases of the neural network to further enhance 
its performance.

PSO Parameters

The PSO algorithm involves a swarm of particles (potential 
solutions) that move through the solution space seeking 
the optimum. Each particle’s position represents a potential 
solution, and its movement is guided by its own experience 
and the collective experience of the swarm.

Figure 5: ANN training loss over epochs

Main Parameters Optimized with PSO

1. Particle Position: The particle position represents a set of 
parameters for the neural network, including weights and 
biases. PSO optimizes these parameters to improve the 
network’s ability to make accurate predictions.

2. Particle Velocity: Particle velocity determines how fast a 
particle moves through the solution space. In the context 
of neural network optimization, it influences how much 
the parameters (weights and biases) are updated in each 
iteration.

3. Objective Function: The objective function is a crucial 
component in PSO. In the context of neural network 
training, it is often associated with the training loss or 
a related metric. PSO seeks to minimize this function by 
adjusting the neural network parameters.

4. Swarm Size and Iterations: The size of the swarm (number 
of particles) and the number of iterations are important 
parameters that influence the exploration-exploitation 
trade-off. Larger swarm sizes allow for more exploration, 
while more iterations provide additional opportunities for 
refinement.

5. Inertia Weight, c1, and c2: These are control parameters 
in the PSO algorithm that balances the influence of the 
particle’s current velocity, its personal best position, and 
the global best position. Adjusting these parameters 
impacts the convergence and exploration characteristics 
of the algorithm.

ANN Optimized Parameters

The PSO algorithm is applied to optimize the hyperparameters 
of an ANN. The hyperparameters that are optimized using PSO 
in the code include:

1. Number of Neurons in the First Hidden Layer 
(hidden_layer1):
•	 Values: 32, 64, 128, 256
•	 This parameter represents the number of neurons in 

the first hidden layer of the neural network.
2. Number of Neurons in the Second Hidden Layer 

(hidden_layer2):
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•	 Values: 64, 128, 256, 512
•	 This parameter represents the number of neurons in 

the second hidden layer of the neural network.
3. Activation Function in the Output Layer 

(activation_functions):
•	 Values: “linear,” “softmax”
•	 This parameter represents the activation function 

used in the output layer of the neural network.

These hyperparameters are systematically searched 
using nested loops, where the code iterates through different 
combinations of hidden_layer1, hidden_layer2, and activation 
functions. For each combination, a new ANN model is created 
and trained, and the resulting loss is evaluated.

The PSO algorithm is used to find the combination 
of hyperparameters that minimize the loss. The loss is 
calculated using the mean squared error loss function, and 
the PSO algorithm optimizes the weights and biases of the 
neural network concerning the specified hyperparameters.

After the PSO optimization, the code prints the minimum 
loss value and the corresponding optimal hyperparameters, 
which include the number of neurons in the first hidden layer 
(hidden_layer1) and the activation function in the output 
layer (activation_functions). The optimal combination is 
determined based on the minimum loss achieved during 
the PSO optimization process. Table 1 shows the optimized 
parameters of ANN using PSO and the corresponding minimum 
loss value.

ANN Loss Value After PSO Optimization

A decrease in the training loss to a value as low as 0.004 
is generally a positive outcome and indicates that the 

optimization process, facilitated by PSO, has effectively 
improved the performance of the ANN. Figure 6 shows the 
ANN training loss over epochs after PSO optimization.

In the following, we discuss the significance of this 
achievement:

Optimization success

The decrease in training loss from the initial values to 0.004 
suggests that the PSO algorithm has successfully optimized the 
weights and biases of the neural network. A lower training loss 
indicates that the model is better at fitting the training data 
and capturing the underlying patterns.

Improved generalization

Achieving a low training loss is an important step toward 
improved generalization. While training loss measures the 
error on the training set, a low value indicates that the model 
has learned to represent the patterns in the data. This, in turn, 
increases the likelihood of the model generalizing well to 
unseen data.

CONCLUSION

Clustering Insights through FCM

The application of FCM clustering to health-related indicators 
has yielded profound insights into the nuanced structure of 
our dataset. By categorizing individuals into clusters based on 
factors such as smoking habits, BMI, and self-reported general 
health perceptions, FCM facilitated the identification of 
distinct health profiles. Each cluster encapsulates a unique set 
of characteristics, allowing for a more granular understanding 
of health-related trends within the population.

Neural Network Optimization through 
PSO

Building upon the clustered insights, the subsequent 
optimization of the ANN using PSO demonstrated the potential 
for swarm intelligence to enhance predictive modeling in the 
health domain. The substantial reduction of the training loss 
to an impressive 0.004 attests to the efficacy of PSO in fine-
tuning the neural network parameters. This optimization 
not only improves the model’s ability to capture intricate 
relationships within the data but also positions the ANN as a 
powerful tool for health prediction.

Significance of Achieved Results

The achieved results hold significance in several key aspects:

Precision in health profiling

The clustering results obtained through FCM provide a detailed 
segmentation of the population based on health indicators. 
This precision in health profiling enables targeted interventions 
and personalized healthcare strategies. Health practitioners 
and policymakers can leverage these insights to tailor health 
programs that address the specific needs of each cluster.

Improved predictive capabilities

The optimized ANN, refined through PSO, showcases 
improved predictive capabilities with a training loss of 0.004. Figure 6: ANN loss over epochs after PSO optimization

Table 1: ANN-optimized parameters

Parameter Optimized value

Hidden Layer 1 256

Activation Function Softmax

Minimum Loss Value 1.27e-12
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This enhanced precision in predicting health outcomes is 
invaluable for proactive health management. It allows for 
early identification of potential health risks within specific 
clusters, enabling timely interventions and preventive 
measures.

Methodological contributions

The combination of FCM clustering and PSO optimization 
contributes methodologically to the fields of data science 
and machine learning. The synergy between unsupervised 
clustering and optimization techniques offers a comprehensive 
approach to analyzing complex health datasets. This 
methodology can be adapted and extended to various 
domains, fostering advancements in both research and 
practical applications.

Informed Decision-Making in Public 
Health

The insights gained from this research provide a foundation for 
informed decision-making in public health. By understanding 
the diverse health profiles within a population, policymakers 
can tailor interventions, allocate resources efficiently, and 
implement targeted health campaigns. This contributes to the 
overarching goal of improving public health outcomes and 
reducing health disparities.

Empowering Health-care Professionals

Health-care professionals can leverage the precision in health 
profiling to enhance patient care. The detailed understanding 
of health clusters allows for personalized treatment plans and 
interventions, leading to more effective healthcare delivery. 
This empowerment of health-care professionals aligns with the 
paradigm shift toward patient-centric and data-driven health-
care practices.

Advancements in Machine Learning for 
Health

The application of FCM clustering and PSO optimization 
to health data represents a significant advancement in the 
intersection of machine learning and public health. The 
developed methodology provides a template for leveraging 
machine learning techniques to uncover hidden patterns in 
health-related datasets. The adaptable nature of the approach 
opens avenues for its application in diverse health research 
endeavors.

FUTURE WORKS

While our current research provides valuable insights into 
health clustering and optimization techniques, there remain 
promising avenues for future exploration:

Enhanced Feature Engineering

Explore additional health indicators and demographic features 
to broaden the scope of the analysis. The inclusion of more 
diverse variables may contribute to a more comprehensive 
understanding of health patterns.

Dynamic Clustering Techniques

Investigate dynamic clustering techniques that adapt to 
changes in the dataset over time. This is particularly relevant 
in health-related studies, where trends and behaviors may 
evolve.

Interpretability of Clusters

Further research into the interpretability of the identified 
clusters is essential. Understanding the characteristics and 
health implications of each cluster can inform targeted 
interventions.
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