
1 | P a g e  
 

 
Automatic Python Source Code Generation using Artificial 

Intelligence Techniques  

 

Prepared by 

Samer ALHaddadin 

 

 

Supervised by 

Dr. Ayad T. Al-Zobaydi 

 

Co-Supervised 

Prof. Mohammad S. Saraireh 

      

A Thesis 

Submitted to Faculty of Information Technology as a Partial Fulfilment of 

the Requirements for Master Degree in Software Engineering  

 

 

 

2022, January  

 







4 | P a g e  
 

DEDICATION 

 

I want to dedicate this message to my parents, family, and my supervisors, 

Dr. Ayad T. Al-Zobaydi and Prof. Mohammad S. Saraireh. This work would not 

have been completed without their support. 

I will always be grateful for everything they have done for me, especially 

my friends Baha Yasin and Alaa Samara for supporting me and giving me all 

necessary help, for the many hours of reading, for assisting me, and for 

providing the necessary work circumstance to complete this work. 

To all colleagues of the Master's Trip, all thanks and respect, and I wish 

you ever success in your life journey…. 

 

 

 

 

 

 

  



5 | P a g e  
 

ACKNOWLEDGMENTS 

  

First of all, I would like to say Thanks to God for all the blessings I have 

been blessed with, my parents, family, supervisors, friends, and teachers. I 

would like to express my sincerest gratitude to my advisors Dr. Ayad T. Al-

Zobaydi and Prof. Mohammad S. Saraireh.  

I would like to my thesis committee for their time and endeavors to aid 

me with my work and their constant encouragement through the good and bad 

times. 

I also would like to extend my thanks to all my colleagues, and my 

professors who without I wouldn’t be the person I am today. 

Finally, and most importantly, I would like to thank my parents and my 

wife for giving me the opportunity to grow and become a better version of 

myself. Their constant support, help, and caring are what helped me throughout 

my life.  

  



6 | P a g e  
 

TABLE OF CONTENTS 

 2 ........................................................................................................................................... قرار تفويض

AUTHORIZATION STATEMENT ............................................................................................ 2 

DEDICATION.................................................................................................................................. 4 

ACKNOWLEDGMENTS .............................................................................................................. 5 

TABLE OF CONTENTS ............................................................................................................... 6 

LIST OF TABLES ........................................................................................................................... 9 

LIST OF FIGURES ....................................................................................................................... 10 

LIST OF ABBREVIATIONS ..................................................................................................... 11 

CHAPTER 1: INTRODUCTION ............................................................................................... 14 

1.1. OVERVIEW ........................................................................................................................... 14 

1.2. RESEARCH QUESTION .................................................................................................... 14 

1.3. RESEARCH AIMS AND OBJECTIVE ........................................................................... 14 

1.4. MOTIVATIONS .................................................................................................................... 14 

1.5. CONTRIBUTION(S) ............................................................................................................ 15 

1.6. RESEARCH METHODOLOGY ....................................................................................... 15 

1.7. THESIS OUTLINES ............................................................................................................. 17 

CHAPTER 2: BACKGROUND AND RELATED WORKS ............................................... 18 

2.1. BACKGROUND.................................................................................................................... 18 

2.1.1. THE CODE GENERATOR ............................................................................................. 18 

2.1.2. THE WIZARD .................................................................................................................... 20 



7 | P a g e  
 

2.2. THE RELATED APPROACHES AND WORKS .......................................................... 21 

2.3. SUMMERY ............................................................................................................................. 25 

CHAPTER 3: THE PROPOSED INTELLIGENT WIZARD TECHNIQE ...................... 28 

3.1. INTRODUCTION ................................................................................................................. 28 

3.2. THE PROPOSED APPROACH ......................................................................................... 28 

3.2.1. LIFESTYLE, INTERNET, AND USER ....................................................................... 29 

3.2.2. WIZARD .............................................................................................................................. 30 

3.2.3. QUESTIONS MANAGER ............................................................................................... 30 

3.2.4. CODE COMPOSER .......................................................................................................... 31 

3.2.5. QUESTIONS DATABASE .............................................................................................. 31 

3.2.6. ANSWERS DATABASE ................................................................................................. 32 

3.2.7. SOURCE CODE FILE ...................................................................................................... 32 

3.3. SMART HOME COMPOSER CASE STUDY ............................................................... 32 

3.3.1. LIFESTYLE, INTERNET, AND USER .............................................................. 34 

3.3.2. THE WIZARD PART OF THE SMART HOME SOFTWARE COMPOSER ............................... 35 

3.3.3. QUESTIONS MANAGER PART OF THE SMART HOME SOFTWARE COMPOSER ............ 36 

3.3.4. CODE COMPOSER PART OF THE SMART HOME SOFTWARE COMPOSER ...................... 37 

3.3.5. QUESTIONS DATABASE PART OF THE SMART HOME SOFTWARE COMPOSER ........... 38 

3.3.6. ANSWERS DATABASE PART OF THE SMART HOME SOFTWARE COMPOSER .............. 39 

3.3.7. SOURCE CODE FILE ......................................................................................... 40 

3.4. SUMMERY ............................................................................................................................. 40 



8 | P a g e  
 

CHAPTER 4: EVALUATION OF IWT ................................................................................... 42 

4.1. INTRODUCTION ................................................................................................................. 42 

4.2. EVALUATION OF SMART HOME SOFTWARE COMPOSER ............................ 42 

4.3. ACHIEVEMENTS OF IWT ................................................................................................ 47 

4.4. SUMMERY ............................................................................................................................. 48 

CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS ....................................... 49 

5.1. CONCLUSIONS .................................................................................................................... 49 

5.2. RECOMMENDATIONS ..................................................................................................... 49 

REFERENCES ............................................................................................................................... 51 

APPENDIX A: THE SURVEY .................................................................................................. 56 

A.1 THE STRUCTURE OF THE USED SURVEY .............................................................. 56 

APPENDIX B: THE SUBMITTED PAPER ........................................................................... 59 

B.1. INTRODUCTION................................................................................................................. 59 

B.2. THE IJACSA JOURNAL RANK IN SCOUPS AND ISI INDEXES ....................... 60 

B.3. FIRST PAGE OF THE PAPER .............................................................................. 63 

 

  



9 | P a g e  
 

LIST OF TABLES 

 

No. Table Page 

1.1 Timeline to Accomplish the Research Work 7 

2.1 Abbreviated List of the Related Research Works 17 

3.1 Lifestyle Table 25 

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   



10 | P a g e  
 

LIST OF FIGURES 

 

No. Figure Page 

1.1 The Work Plan of the Thesis 6 

3.1 The Architecture of the Proposed Intelligent Wizard Technique 20 

3.2 
The Graphical User Interface (GUI) of the Smart Home 

Software Composer 
26 

3.3 The Wizard Method of the Smart Home Software Composer 27 

3.4 Question Manager Method 28 

3.5 
A Screenshot of Code Composer Part of the Smart Home 

Software Composer 
28 

3.6 A Screenshot of the ‘Question’ Database File 28 

3.7 A Screenshot of the ‘Answers’ Database File 29 

3.8 Sample of the Python Code 30 

4.1 The GUI of the Smart Home Software Controller 33 

4.2 The First Page of the Survey 34 

4.3 
The Succussed Tries of the Manual Approach vs the 

Automatic Approach 
36 

4.4 
The Average Time of the Manual Approach vs the Automatic 

Approach 
37 

4.5 
The Usability Measures of the Smart Home Software 

Composer 
38 

A.1(a) The First Page of the Used Survey 47 

A.1(b) The Second Page of the Used Survey 47 

A.2 Sample of a Feedback from a Programmer 48 

A.3(a) Statistics of Usability Criteria 49 

A.3(b) Statistics of Average Time 49 

A.3(c) Statistics of Performance 49 

B.1 The Submission Approvement 50 

B.2 Email to Acknowledge the Reception of the Paper 51 

B.3 The Statistics of the IJACSA Journal on Scopus 51 

B4(a) The Statistics of the IJACSA Journal on Web of Science 52 

B4(b) The Statistics of the IJACSA Journal on Web of Science 53 

B4(c) The Statistics of the IJACSA Journal on Web of Science 53 



11 | P a g e  
 

LIST OF ABBREVIATIONS 

 

Abbreviation Word 

4GLs Fourth generation Programming Languages 

ACAI Automatic Coder using Artificial Intelligence 

ACG Automatic Code Generation 

AI Artificial Intelligence 

API Application programming interface 

ASCG Automated Source Code Generation 

ASTs Abstract Syntax Trees 

CASE Computer Aided Software Engineering 

CBR Case-based reasoning 

ECG-RF Expert Code Generator Rule-based 

ES Expert Systems 

GPIO General Purpose Input/Output 

GUI Graphical User Interface 

HCI Human- Computer Interaction 

I_CASE Intelligent Computer Aided Software engineering 

IDE Integrated Development Environment 

IDEs Integrated Development Environments 

IR Information Retrieval 

IWT Intelligent Wizard Technique 

JAD Java decompiler 

LFW Learning from Wizard 

RNNs Recurrent Neural Networks 

SE Software Engineering 

UI User Interface 

UML Unified Modelling Language 

WoZ The Wizard of oZ 

 

  



12 | P a g e  
 

ABSTRACT 

Automatic Python Source Code Generation using Artificial Intelligence Techniques  

Prepared by 

Samer ALHaddadin 

 

Supervised by 

Dr. Ayad T. Al-Zobaydi 

 

Co-Supervised 

Prof. Mohammad S. Saraireh 

 

Abstract 

While the current Computer Aided Software Engineering (CASE) tools give a notable 

help to the developers in composing programs, there is still a need for more flexible 

supporting software tools to address the raises in the complexity of composing programs. The 

automating of the human’s intellectual activities that are required to compose a program can 

be the answer for such need.  

While the traditional Wizard suffers from the ability to collect the answers else than 

human, this research work proposes the definition of the Intelligent Wizard Technique (IWT) 

as a new Automatic Code Generator (ACG) strategy to collect answers to certain questions 

from different resources (in addition to the user as the usual wizard does) to automate the 

generation of source code. Based on this proposing, a Smart Home Software Composer case 

study of the defined IWT have been developed that can generate a Python language source 



13 | P a g e  
 

code of a smart home controller. The resulted Python code has been tested on a real home and 

the results showed the soundness of the code. IWT can be classified as an Intelligent 

Computer Aided Software Engineering (I-CASE) tool. 

The evaluation of the Smart Home Software Composer case study of the defined IWT 

was achieved by using the objective measure of the performance, which evaluates to 91.6 %, 

and the subjective measure of usability, which evaluates to 85% for satisfaction, 91% for 

efficiency, and 97% for ease to use. These values show preferable indications to the 

programmer.  

  

 

 

 

 

 

 

 

  

Keywords: Inferencing; learning by observation; Source Code Generation; Wizard; Smart 

Home; Raspberry Pi; Python; I-CASE 

  



14 | P a g e  
 

CHAPTER 1: INTRODUCTION 

1.1. Overview 

     This is the introductory chapter. It is about the constitutional parts of the research. In 

this chapter, the research question, aims, objectives, motivations, contributions, and 

methodology will be elaborated. This information establishes the reader mind to the research 

work that has been achieved.  

1.2. Research Question 

“Can we automate the development of a Python code to program the Raspberry Pi in a smart 

home application using Artificial Intelligence techniques?” 

1.3. Research Aims and Objective 

The aim of this research work is to develop a code generator that composes a Python code 

to program the Raspberry Pi in a smart home application. To achieve this goal, a set of 

objectives are to be accomplished, which are: 

1. Studying the code generator approaches and techniques to select the most appropriate 

one(s) for the Raspberry Pi 4 in a smart home application. 

2. Proposing as much as possible, an accurate, simple, and effective code generator by 

using Artificial Intelligence (AI) techniques  

3. Applying and implementing the proposing solution  

4. Testing and measuring the effectiveness of the resulted Python code in a real situation. 

1.4. Motivations 

1. Reduce the time and the efforts of coding,  

2. Get more flexible code generator by using AI techniques. 



15 | P a g e  
 

3. Minimize possible coding errors. 

4. Give a simple programming tool for to someone who cannot do programming.. 

5. Accommodate different programming languages for coding. 

1.5. Contribution(s)  

By completing our research work, we expect to have the following contributions that 

constitute future works in this fields: 

1. Defining the Intelligent Wizard Technique (IWT) 

2. Implementing a Smart Home Composer case study 

3. Examining the resulted Python code (the Smart Home Controller) from the Smart 

Home Composer case study on real domain 

4. Evaluation the results  

These contributions, as we believe, would enhance the work on the development of software 

testing tools and provide more control on the quality of developing a software project. 

1.6. Research Methodology 

As illustrated in Figure 1.1, the work plan that has been developed to accomplish this 

thesis encompasses a number of steps, which are: 

 

Fig 1.1: The Work Plan of the Thesis 

Problem 
Definition 

and Setting 
up Goal and 
Objectives

Study 
Previous 

Related Works

Design and 
Implementatio

n a Solution

Testing and 
Measuring the 

effectiveness of 
the Resulted code

Writting Up 
Thesis



16 | P a g e  
 

1. Problem definition and setting up goal and objectives:  the problem has been 

defined, which is the development of a source code generator for raspberry pi. Also, 

the objectives of this research have been listed as shown in fig1.1 

2. Study previous related works: some previous related works have been collected. An 

analysis of these collected works has been made to help develop and define an 

approach that is suitable to solve the problem defined above. 

3. Design and implementation of a solution: an approach, which is called the (IWT) 

has been designed. This approach will be implemented by using the C# programming 

language.  

4. Testing and measuring the effectiveness of the resulted code: testing and 

evaluating strategies and techniques will be applied to show the soundness and 

effectiveness of the proposed implemented solution. 

5. Writing up the thesis: this is the final step, which aims to document and illustrate the 

research work. 

A timeline plan has been maintained. Table 1.1 shows the timeline for accomplishing 

each step of the work plan I have maintained.  

Table 1.1: Timeline to Accomplish the Research Work 

Months 

Activities 

August 

2021 

September 

2021 

October 

2021 

November 

2021 

December 

2022 

Problem Definition       

Study previous related works      

Design and implementation      

Testing      

Writing up thesis      



17 | P a g e  
 

1.7. Thesis Outlines 

• Chapter 1: The introduction in which we are introducing our work. 

• Chapter2: The preliminary information and background of the automatic source code 

generation, the smart home application, the Raspberry Pi, the Python programming 

language, and the related works. 

• Chapter 3: The Proposed Intelligent Wizard (IWT) 

• Chapter 4: Evaluation Of IWT  

• Chapter 5: Conclusions and recommendations for future work. 

  



18 | P a g e  
 

CHAPTER 2: BACKGROUND AND RELATED WORKS 

2.1. Background 

 In the software Engineering (SE), the automatic source code generation is a 

technique that is used to quickly update and develop software using Automatic Code 

Generation (ACG) software tool [1] [2]. ACG software is an automated process intended for 

normal coding activity of software design. No doubt that ACG is of great potential for 

developing programs in a faster way because it helps save time and effort, improve program 

quality, and become more accurate, and help developers get rid of tedious routine processes. 

The technology of code generation is widely used and to facilitate the development of many 

various kinds of source code generators. For example, the Java decompiler (JAD) converts 

byte code to Java source code [3]. We cannot ignore the promising results of current ACG 

technologies and note that most of these techniques, especially official models, need input by 

humans. This is expected because the programmer's job requires innovation and creativity 

and is considered a creative (non-routine) job, ACG's curriculum prefers to force students to 

specialize in software engineers to work on non-routine jobs rather than to replace software 

engineering entirely. Passive code origin is a type of code generator that also produces code 

that needs to be modified and also modified by the programmer [3]. ACG technique is used 

to develop many applications. In our proposed research work, we intend to use ACG to 

develop the source code of smart home applications. 

2.1.1. The Code Generator  

In the field of SE, ACG is a common approach. The research community has created 

a number of tools for creating source code, ranging from graphical modeling tools like unified 

modelling language (UML) to target programming languages like Java and C#  [4] 



19 | P a g e  
 

The code generation process is divided into many stages: formal implementations are 

translated into programs in a specific programming language using a translator's tool chain, 

and these programs are then compiled. This method has numerous advantages: the translation 

process is as straightforward as feasible, and it can be easily checked. [5] 

The code verification is the most difficult step in the code generation process. The 

reason for this is because the preservation of architectural attributes at the code level is only 

ensured if the underlying platform is right and the final system is accurate when filling in the 

stubs for internal operations into the automatically produced code. [5] 

Automatic code generator (ACG) software is used to generate code, which is a 

technique for fast software development. ACG program's objective is to automate routine 

coding activities in software development. ACG offers tremendous promise for quick 

software development since it saves time and effort, improves software quality and accuracy, 

and relieves developers of tedious repetitive chores. [3] 

The process of code generation is becoming more popular, resulting in the creation of 

a variety of code generators. One example is the code wizard, which is featured in most 

Integrated Development Environments (IDEs) (that can be viewed as a frame-driven code 

generator).A further example is the forward engineering tool set (which includes reverse 

engineering software tools and compilers) that is incorporated into modeling tools and turns 

a solution description into code; for instance, the Java decompiler (JAD) transforms the 

bytecode into Java source code. Regardless the inability to overlook the encouraging 

outcomes of contemporary ACG approaches, it is worth noting that the majority of these 

techniques, particularly formal models of the intended system, are still in their infancy , 

Human involvement is still required. [3]. 



20 | P a g e  
 

2.1.2. The Wizard  

The Wizard of oZ (WoZ) technique involves participants who interplay with a system 

that appears to be independent, which is in actual is operated by a hidden human operator in 

a nearby place [6]. 

WoZ Systems that are currently in use. The majority of extant WoZ systems were 

created to investigate the use of natural languages in Information Retrieval (IR) systems. 

Experiments on the services of telephone information, such as phone directories, travel or 

train information, and reservation services, have proven fruitful [7] [8] . The experimental 

setup is straightforward: the wizard takes calls and acts as though callers are speaking with 

an automated information system. The wizard's voice is filtered via a distortion mechanism 

(like a vocoder), to add a robotic flavor to the voice for providing callers the impression that 

they are truly discussing with a computer. 

Tape recordings of the questions and replies are made for subsequent transcription 

and analysis. Interrogation of databases or advisory systems [9] [10] [11] as well as 

conversations with Expert Systems (ES) [12] [13] , are examples of other case studies. The 

majority of them attempt to gather vocabulary corpora in order to fine-tune and improve the 

robustness of natural language recognizers, whether spoken or written. Dahlbäck  [13]  

describes a framework that tries to allow the observation of graphical direct manipulation 

coupled with natural language. Turvy, an intelligent entity mimicked using a WoZ, may be 

trained via voice and direct manipulation, according to a recent article  [14]. 

WoZ experiments have already produced a fascinating body of research regarding 

wizards and assessment experts, despite their restricted reach.  Wizards have taught us a lot. 

The fact that wizards' duties are cognitively costly, despite their seeming simplicity, is an 



21 | P a g e  
 

intriguing consequence of the WoZ findings. The equipment' realism necessitates that the 

wizard's activities be constant in substance, manner, and tempo. Specifically, [7]: 

1) A particular order from the subject must elicit the same response from the wizard in 

identical situations. 

2) The wizard's reaction time must meet the subject's expectations: if the wizard reacts 

too slowly, the subject may avoid utilizing simulated functions or feel the system is 

overburdened. 

In conclusion, wizards cannot afford to improvise. Wizards must be taught in well-

defined duties and aided by strong tools in order to attain acceptable consistent behavior. To 

this aim, certain WoZ systems provide limited but helpful methods like a set of prepared 

responses or menus with pre-stored sections of answers.  [15]. 

Recent studies recommend a two-wizard setup to reduce cognitive stress [7], with one 

wizard specializing in I/O and the other performing task level processing. The wizard’s task 

is to understand the requests, which are translated by an I/O wizard and produces the answers. 

The I/O wizard gets user requests and conducts virtual answers. Consistency is more probable 

with this collaborative work sharing. If the wizards are well taught, it has no discernible effect 

on reaction time. Another experiment  [16] that used a two-wizard setup was successful. 

2.2. The Related Approaches and Works 

 In this section, we will show different approaches that are used in the Automatic 

Source Code Generation (ASCG) using Artificial Intelligence. We present and discuss some 

of the works that are relevant to the potential application. Relevant curricula and references 

were identified by searching the literature published since 2010. The focus should be on 



22 | P a g e  
 

relatively recent work; So that the field of artificial intelligence is large and wide and extends 

from the 50s to the present [17]. 

The first part of this section  is the main content of this page and a survey of ASCG 

methods using AI. Secondly, a potential discussion about the relevant works that does not 

focus directly on a specific issue of the ASCG but may generate general and comprehensive 

ideas on how to approach it, will be given.  [17]. 

Several ACG technologies have been developed. The first one we are mentioning here 

is the design pattern strategy that was introduced by Eric Gama  [18]. It created code based 

on Floyd's "Code Processing Specification" research business model  [19]. Also, grammar is 

a strategy that Knuth  [20] says developed in his linguistic research and has also been used to 

express the semantics of a programming language, and to support compiler constructs 

building an Integrated Development Environment (IDE). 

AI techniques are used also to automate code generation, such as genetic 

programming, evolutionary algorithms, and Case-based reasoning (CBR) [21] [22] [23]. 

Danilchenko and colleagues  [22] proposed the mechanism A programmer using an artificial 

intelligence  system that integrates routine design, state-based logic, and template 

programming that develops programs that deal directly with database operations. The author 

recommends the process of extending Automatic Coder using Artificial Intelligence (ACAI) 

by testing other types of layouts, as well as optimizing the number of criteria a user will use 

to select an icon rather than distance versus speed switch. Several software development tools 

appeared in the 1970s and 1980s: user interface(UI) developers, wizards, fourth generation 

Programming Language (4GL) application generators, and state tools. Compilers, assemblers, 

and the fourth generation Programming Languages (4GLs) and Enhancers These are tools 

that have been widely used and used to create code since long ago in computer science. These 



23 | P a g e  
 

examples are also considered ACG techniques  [23].  And that all these symbols that stand 

out and that resulted from the current ACG methods and tools, still have a great need and 

human contribution. This is clearly and explicitly displayed by the latest ACG systems used 

by the companies or various organizations (such as NASA) that need to define very accurate 

models for the system under development By developers before creating the code for the 

system [3] [20]. 

The wizard technique is used to create a code to control a robot as the work of  [24] 

This work used Learning from Wizard (LFW) to answer the question of “whether robots can 

be effectively programmed for autonomous social interaction through learning from 

demonstrations recorded via Wizard of-Oz teleoperation”.  

The Generating of source code from a text query and predefined cases using case-

based reasoning is given by [22]. The software developed in this work takes the specifications 

used in the text, specifically a medical database query, and generates similar Java code. It 

uses a combination of case-based thinking, routine design, and model-driven programming. 

Requirements for the programmer who uses the Automatic Coder using Artificial Intelligence 

(ACAI) system to define states using XML, and the advantage of the topic is that the user 

does not need to learn SQL at now, things are not clear about the success of this approach. 

Currently, ACAI "only solves database problems" with a focus on the medical database field. 

The authors show only a modest ability to combine schemas to produce simple database 

queries, which requires defining states using XML. In summary, this approach requires a lot 

of basic work to perform unimportant tasks, and it is not clear how easily the approach can 

be extended to more realistic conditions [17]. 

BAYOU [25] generates the source code from given label (like a number of application 

programming interface(API) calls or types), which having a little bit of information regarding 



24 | P a g e  
 

the desired code and a corpus of labelled programs. BAYOU generates Java code with the 

creation of labels and groups - training not only on the code but also on knowing and sketching 

the program - and its formation and construction in concrete.  

The work of [26] produces the "glass box", which used the requirements and 

specifications information got from the auditor's source code of a specific program to validate 

the generated source code. The verification output is used to direct the creation of the program 

that meets the specifications. This work is based on the normal approach for verification and 

validation a source code. Normally, a program should be produced firstly and later passed 

into a verification and validation process to know whether the program is adequate or not.  As 

this approach requires the writing of a program as a first step, which is considered 

unsatisfactory since it requires experience in the development and programming process. 

However, it may be easier to write a program to validate the answer than to write a program 

that produces the correct answers. The approach is interesting, but the problem of requiring a 

program to be written makes it more difficult to recommend it because not all people or users 

are experienced in programming or development.  

Imam et al [3]  proposed the Expert Code Generator Rule-based (ECG-RF) generate a 

source code. The user-directed inference system populates a predefined frameworks for static 

structures using code snippets from the knowledge base. Questions are given to the user, and 

the system proceeds the code’s editing based on their answers. This approach is easy to 

understand and use, however creating rule-based systems becomes more difficult as rules 

become more complex, and the paper does not provide guidance on how to do this.  

Other possibly related works include the various attempts have been made to produce 

natural language from source code (i.e., the opposite direction of ASCG)  [27] [28] Recurrent 

Neural Networks (RNNs) are neural networks that support sequence training, which is useful 



25 | P a g e  
 

for applications like natural language translation and source code generation. As  [28] points 

out, the RNN method has shown to be extremely successful for a variety of issues. Rather of 

trying to create text directly, some techniques focus on establishing a higher-level abstraction 

for source code. Abstract Syntax Trees (ASTs), for example, are used by many researchers 

like [29] 

There is a believe that utilizing representations that make it easier to describe these 

higher-level structures will make it easier to employ well-known approaches like RNN 

models, as well as expand existing techniques to deal with the underlying structure of source 

code. Higher-level models like this should make it simpler for learning systems to see patterns 

and generate syntactically valid code (e.g., ensuring that block ending marks match block 

beginning marks)  [17]. 

2.3. Summery 

In this chapter, a carful reviewing has been made to get an idea about the previous 

tries that have been made to develop ASCG. Table 2.1 is an abbreviated list of the previous 

related research works. Based on this list, we can say that to develop an intelligence based 

ASCG software tool, it is necessary to make this software tool able to get the required 

information to compose a source code by means of intelligent techniques like learning from 

around and searching the Internet.  

While all the previous related works has only one intelligent technique, our proposed 

solution would encompass more than one intelligent technique like inferring an answer 

searching the internet ,and learning from the environment using observation and sensors . 

Thus our proposed approach is  contributing a more flexible tool to compose a source code. 

 



26 | P a g e  
 

Table 2.1: Abbreviated List of the Related Research Works 

# Research Title Input Process Output Problem(s) 

1 

An Expert Code Generator 

using Rule-Based and 

Frames Knowledge 

Representation Techniques 

[3] 

Answers to questions 

delivered to the user via 

graphical user interface 

(GUI) 

Filling a predetermined frame of a 

given fixed structure program with 

code fragments that are retrieved 

from knowledge base by using 

heuristics 

Assembly language 

code 

Composing using 

predefined chunks of 

software 

2 

Automated Code Generation 

Using Case- 

Based Reasoning, Routine 

Design and Template-Based 

Programming [22] 

Natural language 

description of a task at 

some level of 

abstraction 

Integrating: routine design + state-

based logic + programming 

templates  

creating a program to 

solve number of 

medical database 

domain queries and 

Sub-queries from the 

list 

Natural language 

complexities 

3 

Learning from the Wizard: 

Programming Social 

Interaction through 

Teleoperated 

Demonstrations [24] 

Instructions / 

Commands issued by 

an operator (Oz 

teleoperation Wizard)  

Learning From Wizard (LFW) 

(Recording the movement series 

issued by a child play with the robot 

or by Oz teleoperation Wizard) 

A code to control a 

robot learns some 

things to deal with the 

child  

Complexities of on-

line learning approach 

4 
Neural sketch learning for 

conditional program 

generation [25] 

A set of ready-made 

programs that contain 

labels 

Supervised learning using number 

of API calls or the types utilized in 

the code.  

Java like code 
Pseudocode not 

programming code 

5 
Glass-Box Program 

Synthesis: A Machine 

Learning Approach [26] 

Data use either 

input/output examples 

or rich execution traces 

Given a partial program and the 

glass-box issue, an intelligent 

search system learns the 

probabilities over the space of 

programs. 

A successful solution 

to a programming 

issue 

Complexities of 

searching using 

probabilities 



27 | P a g e  
 

6 

The Use of Natural 

Language Processing 

Approach for Converting 

Pseudo Code to C# Code 

[27] 

Answers [Y/N] to 

questions given to the 

user 

IF-THEN Rules, a predefined 

programs’ structures, and a 

knowledge base of code snippets  

A code of an MS-DOS 

device driver 

shortcoming of the 

solutions of natural 

language ambiguity 

problems  

7 
A syntactic neural model for 

general-purpose code 

generation [29] 

The underlying syntax 

of the target 

programming language 

RNN + Patterns 

A high-level 

abstraction in a natural 

language of the source 

code  

Difficulties in 

collecting training 

data 

 



28 | P a g e  
 

CHAPTER 3: THE PROPOSED INTELLIGENT WIZARD TECHNIQE 

3.1. Introduction 

This chapter is about the proposed solution to the defined problem in this research 

work, which is “The defining an (IWT) to automatically develop a source code”.  As this, 

IWT aims to compose a source code, it is classified as an ASCG, and as it is intelligent, it has 

a distinguishing feature that it can get the required information by means of intelligent 

techniques as shown in the previous chapter.  

To show the soundness of this definition, a case study that follow the definition of the 

IWT, has been developed. This case study is the development a Smart Home Composer that 

function to develop a Smart Home Controller. The resulted Smart Home Controller was 

composed in Python programming language and ran on Raspberry Pi platform, which controls 

set of objects in a home. 

3.2.  The Proposed Approach  

The software wizard or setup assistant is a user interface that presents the user with 

series of dialog boxes, and the user fills in the data and transfers it to the other box depending 

on the inputs that the user has entered and leads the user through a series of well-defined 

steps. Tasks that are complex, erratic, or unfamiliar with the wizard may be easier to do [3]. 

The will-be adopted methodology aims to define and implement an (IWT).  Fig 3.1 illustrates 

the process flow of the suggested IWT solution, which contains the following parts: 



29 | P a g e  
 

 

Fig 3.1: The Architecture of the Proposed Intelligent Wizard Technique 

3.2.1.  Lifestyle, Internet, and User 

These are the resources from which our proposed IWT gets the information that are 

required to compose the code of a targeted application. The lifestyle is a recorder that records 

the way or style or behaviours of the beneficiary of the targeted (resulted) software 

application, that could be another application or a human. The lifestyle could be developed 

as a table to be part of the database of the IWT. The lifestyle is updated frequently by 

monitoring the user’s activities while handling (or solving) a certain problem. The Internet is 

other source that IWT can get the information from. No doubt that the Internet is a vast storage 

of information that anyone can get benefit of, but the main problem is how to develop a wise 

search for a specific datum from the Internet. Finally, the user is the human that run the IWT, 

who may give direct information to IWT to help composing the code of the targeted software. 

A sample example of the user source of information is what we experience in some preparing 

programs likes windows. 



30 | P a g e  
 

3.2.2.  Wizard 

It is the process that read the questions from the question database, and finds their 

answers either from a lifestyle table, the Internet, or the user. After conducting the answers, 

Wizard puts them in the answers database. The Pseudocode of the wizard is: 

Wizard ( ) 

{ 

Read Question from ‘Questions’ database 

Look for the answer in the Lifestyle Table 

If the answer is not found in the Lifestyle Table  

Then Look for the answer on the Internet 

If the answer is not founded I the Internet 

 Then get the answer from the User 

Save the answer in ‘Answer’ database 

} 

 

3.2.3.  Questions Manager 

It is the process that manages the question database via adding, removing, updating, 

or listing the contents of the questions database. The questions manager process mainly the 

contents of the questions database regularly revising the contes by the admin of IWT to keep 

sure the suitability of the questions database to the targeted software application aimed to be 

composed. The Pseudocode for the questions manager is: 

Questions Manager ( ) 

{ 

Read Option  

If Option == ‘Edit’ Then Call EditQuestion method 



31 | P a g e  
 

If Option == ‘Delete’ Then Call DeleteQuestion method 

If Option == ‘’Append’ Then Call AppendQuestion method 

If Option == ‘List’ Then Call ListQuestions method 

} 

3.2.4.  Code Composer 

It is the process that is responsible for creating/ editing/ composing a textual form of 

the targeted program in a certain programming language code based on the answers, which 

were saved in the answers database. The code composer process uses a standard template and 

fills it out with a programming statement that would utilize the answers in the answers 

database to compose the code. The Pseudocode for the code composer is: 

Code Composer ( ) 

{ 

Open Answer database for reading 

Open the code template for writing 

While not EOF Answer database 

Read an answer from Answer database 

Apply text processing to the answer to compose a programming statement 

Write the programming statements in the code template  

End While 

} 

3.2.5.  Questions DataBase 

It is a database that contains a set of questions, which help supplying the composer 

with the information it needs for composing a code. These questions are used by the wizard 

component of IWT, which are given to the lifestyle, the Internet, or the user. Each question 



32 | P a g e  
 

is saved textually in a file. The questions are varied from application type to another and 

should be set by the user of the IWT prior to running it to compose the code of a targeted 

application. The Question file is controlled by ‘Question Manager’ process, which is 

described earlier.  

3.2.6. Answers DataBase 

It is a database that contains the answers to the set of questions, which were given by 

wizard component to the lifestyle, the Internet, or the user. These answers are used by the 

composer component of IWT to compose the code of the targeted software. Each answer is 

saved textually in the Answer file. . 

3.2.7. Source Code File  

This is the text file of a source code that is generated automatically by our proposed 

IWT. It comes as a template that is defined according to the style of the IDE that is used to 

edit, compile, and running a programming source code. This template should be defined prior 

to running IWT, and to be filled by the composer part of the IWT.  

3.3.  Smart Home Composer Case Study 

    As a case study for our proposed IWT, we developed a Smart Home Software 

Composer, which is implemented by using C# programming. A smart home application aims 

to provide people with a comfortable life that contains all the means of comfort and protection  

[30]. A smart home consists of a group of sensors and controllers that are equipped with 

different objects in the home and are connected with each other by using modern tools and 

technologies such as Ethernet wires. A smart home consists of electronic devices and 

photovoltaic energy systems connected to each other and there is a responsible and controlling 

system for every part of it  [31], and their information can be controlled and transmitted 

from/to outside the house by using smart home gates like Raspberry Pi controller. 



33 | P a g e  
 

Raspberry Pi is a small, palm-sized computer with an ARMV8 microprocessor and 

4GB ram. The Raspberry Pi was developed in the UK by the Raspberry Pi Foundation. They 

first brought it to market in 2012 and was a huge hit. Raspberry Pi meet the needs of many 

things and people. For beginners and hobbyists, it was the ideal device and the best option 

due to its low price and at the same time powerful enough that can be easily used anywhere 

or to run small applications. In fact, there are some safety advantages of the Raspberry Pi, 

like its cheap price. Good for all groups, it can be easily installed around the house to run 

whatever application. Raspberry Pi often related to monitoring or voice interaction and 

controlling home matters such as lighting, water consuming management, and doors’ 

controlling. In addition, they can be part of complex projects. For example, use them to 

control all parts of the house. Also, the advantage when making a small project, you will get 

results as soon as possible [32]. Raspberry Pi can be programmed using certain programming 

languages like Python programming language. The IWT case study that is the Smart Home 

Software Composer aims to generate a Python source code as Smart Home Controlling 

software. 

The Python programming language works as the most common programming 

language.  The highly interactive nature and a mature ecosystem of scientific libraries offer a 

best choice for software algorithm development and data analysis [33] [34]. However, as a 

code language, it is used not only in the field of computers and it works in the fields of 

industry as well and in many programs. [35]. Python is a very easy programming language 

for learning and reading. The origin of the word Python is taken from the English comics 

group Monty Python [36]. 

As shown in the following sections, each part of the IWT has been redefined as a case 

dedicated for smart home application. The procedure for each part hasn’t change. Only the 



34 | P a g e  
 

data that is related to the pin configuration and the enabling/disabling value were customized 

for this special case of IWT.  

3.3.1. Lifestyle, Internet, and User 

In this case study, we utilized each of the Lifestyle, the Internet, and the user to be the 

resources from which the Smart Home Software Composer can get the information that are 

required to compose the code of a smart home software. As shown in Table. 3.2, the lifestyle 

was developed as a table, and it was displayed in the GUI of the Smart Home Software 

Composer. Its data is got from the daily uses of the  home’s resident, while he/she uses the 

objects controlled by Raspberry Pi. Each controlled object has its own record, which holds 

the information of the last use by the home’s resident, and it will be used for future composing 

of the Smart Home Software. The metadata of this file encompasses each of the name of the 

object to be controlled (Name), the status of the object (status), the timing engaged with status 

(s-time), and finally the pin configuration in which the object was connected General Purpose 

Input/Output (GPIO). 

Table 3.2: Lifestyle Table 

 

The second source of the data was the Internet, which was used to get the daily sunrise 

and sunset times of the location of the home. Such information is of big importance to 

automatically compose the code of controlling the lights (specially the outdoor lights) 



35 | P a g e  
 

depending on such information. Of course, other unusual conditions such as being cloudy 

were considered and had been got from the weather website. 

The last resource was the user, who gives the information directly either by selection 

a predetermined alternatives or type the data directly. Worth to mention here, that Smart 

Home Software Composer embedded the voice recognition facility in the resulted code to 

give the user the ability to ask the Smart Home Software controller about some information 

like time, date, or even invoke a setting process of an object under controlling.   

3.3.2.   The Wizard Part of the Smart Home Software Composer 

This is the part that is responsible for collecting the answers to the questions that are 

used to compose the required source code. Fig 3.2 illustrates the Graphical User Interface 

(GUI) of the Smart Home Software Composer. 

 

Fig 3.2: The Graphical User Interface (GUI) of the Smart Home Software Composer 

The wizard part had the inference ability and the flexibility property that made it able 

to collect the data with minimum need to the user. The inference ability was achieved by 



36 | P a g e  
 

utilizing the lifestyle table and the Internet to get the answers. The flexibility property was 

achieved via the existing of three alternatives as a source of answers. Fig. 3.3 illustrates the 

method that function as wizard part of the Smart Home Software Composer. 

 

Fig 3.3 : The Wizard Method of the Smart Home Software Composer 

3.3.3. Questions Manager Part of the Smart Home Software Composer 

It is the process that is responsible for managing the contents of the ‘Question’ 

database file. It offers the services for adding, removing, modifying, and deleting the 

questions in the ‘Questions’ file. The importance of this process is shown by the required 

need to set up the composer to compose a source code for a certain application, which is differ 

from other type of applications, and thus, it needs different set of questions. Fig. 3.4 represents 

a screenshot for the code of this method. 



37 | P a g e  
 

 

Fig 3.4  : Question Manager Method 

3.3.4.  Code Composer Part of the Smart Home Software Composer 

This is the heart part of the Smart Home Software Composer. Code composer process 

functions at creating or generating a Python source code for controlling a home (smart home 

application). Code composer fills (by writing) a predefined template, which is a textual file 

that meets the structuring of a Python source code. In addition to the header and other 

complementary statements, the main type of statements is the ‘IF – THEN’ statement, which 

requires the condition part and the action part. Both of these two parts were got from 

‘Answers’ database file, which had been filed already by the wizard part of the Smart Home 

Software Composer. Fig. 3.5 is a screenshot of this method. 

 

Fig. 3.5  : A Screenshot of Code Composer Part of the Smart Home Software Composer 



38 | P a g e  
 

3.3.5.  Questions DataBase Part of the Smart Home Software Composer 

These are the questions aim to collect the data related to the Smart Home controller. 

These questions had been set by us and saved in the ‘Questions’ database file. Examples of 

these questions are: 

• ‘How many buttons you want to connect your system?’  

• ‘What is the time you like to turn on the TV’ 

• ‘How much degrees you like the temperature of the room to be?’ 

Note that some questions are chained together since they form conditions or actions 

of a single programmed object. Fig. 3.6 is a screenshot of the ‘Question’ database file, which 

is developed as a table that consisted of 25 questions. Each question was saved as a record 

that encompasses three fields namely: id (the question number), question (the question’s text), 

and note (if there is something to be considered about this question). 

 

Fig. 3.6: A Screenshot of the ‘Question’ Database File 



39 | P a g e  
 

3.3.6. Answers DataBase Part of the Smart Home Software Composer 

This database file holds the answers that would be collected by the wizard part of the 

Smart Home Software Composer. As shown in Fig. 3.7,’Answer’ database file had been 

designed as a table that consists of five fields, which are: 

 

Fig 3.7 : A Screenshot of the ‘Answers’ Database File 

• id: the sequence of the answer 

• gpio_no: the Raspberry Pi pin number, where a certain object had been controlled.  

• status: numerical representation of on/off  

• Name: the device name 

• used: numerical representation of the used/unused pin 

Finally, this database file was got its contents from wizard part and used by composer part to 

assist composing the Raspberry Pi Python source code. 



40 | P a g e  
 

3.3.7. Source Code File  

This is the text file of the Raspberry Pi Python source code that had been generated 

automatically by the composer part of our proposed IWT. It came as a template that is defined 

according to the style of the Raspberry Pi Python source code.  Fig. 3.8 shows a sample of 

the Python code. 

 

Fig 3.8  : Sample of the Python Code 

3.4. Summery 

In this chapter, the definition of the Intelligent Wizard Technique (IWT) has been 

given in details. Also, a case study that follow IWT definition has been developed and 

implemented using C# programming language. The Python code that was resulted from the 

Smart Home Software Compose case study of the IWT was tested on a model of a house to 

show the soundness of the resulted Python code. The house model was controlled by gpio 

controller. A template for Python code was developed in prior to compose the Python code. 



41 | P a g e  
 

Thus, each of template definition for the source code, the using of learning from daily user 

lifestyle, the retrieving of information from the Internet, and the using of Wizard techniques 

have been used to contribute a new I-CASE software tool for ASCG. 

  



42 | P a g e  
 

CHAPTER 4: EVALUATION OF IWT 

4.1. Introduction 

This chapter aims to evaluate the IWT through the evaluating of its case study that is 

the Smart Home Software Composer. The evaluation strategy depends on the evaluating some 

non-functional requirements since the result of the wizard in general is a source code. As we 

shall see in the next sections, the evaluation was implemented as a survey that reports the 

feedbacks of programmers who were asked to evaluate the Smart Home Software Composer 

case study of IWT. We were keen to select the people who can give us technical feedbacks, 

and this is the reason to exclude other users of non-technical background. 

The feedbacks got from the survey have been quantified and statistically processed to 

reflect the gaining of IWT as a principle  

4.2. The Evaluation of Smart Home Software Composer 

Fig 4.1 illustrates the GUI of the Smart Home Software Controller. This interface was 

the fixed part of the template that had been filled by the composer.  

 

Fig 4.1: The GUI of the Smart Home Software Controller 



43 | P a g e  
 

The resulted Smart Home Software controller is very useful in monitoring and 

controlling the smart home environment 

Fig. 4.2 illustrates the first page of the survey, which its details are given in the 

Appendix A of this thesis.  

 

Fig. 4.2: The First Page of the Survey 

The evaluation of Smart Home Software Composer has been done by using the 

objective measure of the performance, and the subjective measure of Usability.  



44 | P a g e  
 

Software Performance is a gauge of how well a software achieves its requirements 

for correctness, which is measured by using throughput or response time. Note that 

the response time is the necessary time to make a response to a request (a single transaction, 

or an end-to-end) task [1] [2].  

Software Usability evaluates the ease to use, which is a quality attribute 

encompasses number of important qualities like [1] [2]: 

• The Satisfaction that measures the pleasant of using a software  

• The Efficiency that measures the speed of performing tasks by user 

• The Ease of Use, that measure the user’s ability to achieve essential function(s) from 

the first time 

• The Memorability that measures the simplicity of reestablishing proficiency after 

period of software disusing. 

• The Errors, which measures error related issues (making errors, errors’ severeness, 

simplicity of error recovery). 

These two measures were evaluated depending on the feedbacks we have got after 

using Smart Home Software Composer by 120 programmers, who had been asked to compose 

the Smart Home Software Controller manually at first, and later automatically using the Smart 

Home Software Composer, and later to fill a survey to get their opinion about the developed 

Smart Home Composer case study of the IWT.  

To evaluate the performance (the objective measure), we counted the number of 

people who failed to compose the Smart Home Software Controller manually compared to 

the automatic composing of it using Smart Home Software Composer. Table 4.1 shows the 

number of succussed tries of the manual approach vs the automatic approach.  



45 | P a g e  
 

 

 

Fig 4.3: The Succussed Tries of the Manual Approach vs the Automatic Approach 

It should be noted that the "failure" may be one of three alternatives. The first one is 

the failing to completed coding the Smart Home Software Controller within a given time. The 

second one is the failing due to fail to find the correct answer to the questions of the wizard 

part. The third type of failure is that caused by giving the wrong answer to the questions of 

the wizard part. From the Table 4.1, it can be seen that fewer failures were recorded with the 

Smart Home Software Composer than with the manual one. The percentage of success tries 

using the manual approach to the success tries using the automatic approach was 68%, which 

is biased in favour of manual approach. 

Not only the number of failings, the speed of accomplishing soundness coding had 

been measured also. Table 4.2 shows the average time (in minutes) spent by each programmer 

by using the manual approach, and the automatic approach by using the Smart Home Software 

Composer. It is obvious that the time taken to develop Smart Home controller by using 

Automatic Manual

Total 110 75

0

20

40

60

80

100

120
N

o
. o

f 
Su

cu
ss

e

Approach Type

Total



46 | P a g e  
 

manual approach was much bigger than the using of automatic approach, counting the number 

of tries to get an error free program. 

 

Fig 4.4: The Average Time of the Manual Approach vs the Automatic Approach 

Such result is normal and justifies the need for using software tools in the development 

process of a software. 

To evaluate the Usability (the subjective measure), each programmer of the 10 

participated individuals was asked to give her/his impression of the of using the Smart Home 

Software Composer in terms of three factors namely the Satisfaction, the Efficiency, and 

the Ease to use in a range from 1 to 10. The results are shown in the Table 4.3. Here we can 

see that the Smart Home Software Composer were – in general - favourable in the responses. 

This is shown by the high degree given to the three criteria, especially the ease of use  

 

 



47 | P a g e  
 

 

Fig 4.5: The Usability Measures of the Smart Home Software Composer 

 

4.3. Achievements of IWT 

IWT delivered number of achievements in both Software Engineering (SE) and in 

Artificial Intelligence (AI) areas. In general, IWT proves itself as a software tool for ASCG, 

and thus, it is one of other techniques for ASCG like the software tools that convert the textual 

description of a solution (like pseudocode for example) to source code, or the software tools 

that convert the diagrammatic descriptions (flowchart for example) to a source code, in 

addition of course to the compilers. Since it has intelligent techniques for answers acquisition 

in addition to the usual technique of getting answers from human, IWT pushes wizard class 

of software up to a higher level that make the development of software easier.  

The most interesting thing to report here is that IWT opens the door towards involving 

machine in the performing of cognitive processes of programming, which are the problem 

solving. We should admit that IWT is just a beginning step for making the dream of "thinking 

machine" become true. Also, IWT deliver a new implementation for machine learning 



48 | P a g e  
 

principle (as we saw in the Smart Home Code Composer case study of IWT) when it records 

the daily uses of a human in a table that would be used later for answering certain questions. 

4.4. Summery 

In this chapter, an evaluation study has been accomplished by using the Performance 

objective measure, and the Usability subjective measure. These two measures were evaluated 

depending on the feedbacks that had been got from 70 programmers after their use of the 

Smart Home Software Composer. The feedbacks had been statistically processed the 

performance and usability indicators were quantified. Such evaluation approach is more 

realistic and can show how much is the efficiency of the proposed approach. 

  



49 | P a g e  
 

CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS 

5.1. Conclusions 

In this research, the definition of an Intelligent Wizard Technique (IWT) is produced. 

Based on this definition, a Smart Home Composer case study has been developed, which 

produced a Python source code software controller for smart home. This code was 

successfully running on Raspberry Pi controller that controls a house model. 

The results of the evaluation show that the IWT approach scores higher in both 

subjective usability and objective performance when compared with the traditional manual 

approach to coding. Worth to note here, that the data presented here is based on a small sample 

(ten programmers) and should be deemed as preliminary.  

5.2. Recommendations 

As future work, we recommend the development of IWT as an (IDE) and supporting 

it with library functions. Also, making IWT able to engage with well-known design, coding, 

and testing software tools. 

Also, we recommend supporting IWT with more intelligent techniques, including the 

Natural Language Processing (NLP). Such ability would facilitate the using of IWT by non-

programmers. 

Another recommendation that may be reported here is extend the function of the IWT 

to produce a diagrammatical description of the source code in addition to the textual source 

code.  



50 | P a g e  
 

IWT may also integrated with other IDEs to be part of them, as much as the code 

composer of the user interface, which becomes a usual part of every visual programming 

language. 

 

 

 

 

 

 

  



51 | P a g e  
 

REFERENCES 

 

[1]  R. S. Pressman and B. Maxim, Software Engineering: A Practitioner's Approach, 8th 

ed., USA: McGraw-Hill Education, 2014.  

[2]  I. Sommerville, Software Engineering, 9th ed., USA: Addison Wesley, 2010.  

[3]  A. T. Imam, T. Rousan and S. Aljawarneh, “An expert code generator using rule-

based and frames knowledge representation techniques,” in 5th International 

Conference on Information and Communication Systems (ICICS), Irbid, Jordan, 2014.  

[4]  D. Méry and N. K. Singh, “Automatic code generation from Event-B models,” in The 

Second Symposium on Information and Communication Technology, Hanoi, Vietnam, 

2011.  

[5]  N. K. Singh, “EB2ALL: An Automatic Code Generation Tool,” in Using Event-B for 

Critical Device Software Systems, London, UK, Springer, 2013, pp. 105-141. 

[6]  C. Geison, “AnswerLab,” 20 Aug 2019 . [Online]. Available: 

https://www.answerlab.com/insights/wizard-of-oz-testing. 

[7]  D. Salber and J. Coutaz, “Applying the Wizard of Oz Technique to the Study of 

Multimodal Systems,” in Third International Conference on Human-Computer 

Interaction (EWHCI '93), Moscow, Russia, 1993.  

[8]  R. Gulndon, “Grammatical and ungrammatical structures in user-adviser dialogues: 

evidence for sufficiency of restricted languages in natural language interfaces to 



52 | P a g e  
 

advisory systems,” in The 25th annual meeting on Association for Computational 

Linguistics, Stanford, California, USA , 1987.  

[9]  S. Whittaker and P. Stenton, “User studies and the design of Natural Language 

Systems,” in Fourth Conference of the European Chapter of the Association for 

Computational Linguistics, Manchester, England, 1989.  

[10]  A. Jönsson and N. Dahlbäck, Talking to a computer is not like talking to your best 

friend, Linköping, Sweden: Linköping University, 1988.  

[11]  D. Diaper, “The Wizard's Apprentice: A Program to Help Analyse Natural Language,” 

in The fifth conference of the British Computer Society, Human-Computer Interaction 

Specialist Group on People and computers V, Nottingham, U.K, 1989.  

[12]  Y. Polity, J.-M. Francony, R. Palermiti, P. Falzon and S. Kazma, “Recueil de 

dialogues Homme-machine en langue naturelle écrite,” Les cahiers du Criss, vol. 17, 

1990.  

[13]  N. Dahlbäck, A. Jönsson and L. Ahrenberg, “Wizard of Oz studies-why and how,” 

Knowledge-Based Systems, vol. 6, no. 4, pp. 258-266, 1993.  

[14]  D. Maulsby, S. Greenberg and R. Mander, “Prototyping an intelligent agent through 

Wizard of Oz,” in The INTERACT '93 and CHI '93 Conference on Human Factors in 

Computing Systems, Amsterdam, The Netherlands, 1993.  

[15]  A. J. N Dählback, “Empirical studies of discourse representations for natural language 

interfaces,” in The fourth conference on European chapter of the Association for 

Computational Linguistics, Manchester, England, 1989.  



53 | P a g e  
 

[16]  J.-M. Francony, “Towards a methodology for wizard of oz experiments,” in Third 

Conference on Applied Natural Language Processing, Trento, Italy, 1992.  

[17]  F. L. Loaiza, D. A. Wheeler and J. D. Birdwell, “A Partial Survey on AI Technologies 

Applicable to Automated Source Code Generation,” Institute for Defense Analyses, 

Alexandria, USA, 2019. 

[18]  E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design Patterns Elements of 

Reusable Object-Oriented Software, vol. 99, New York: ADDISON-WESLEY, 1995.  

[19]  R. W.Floyd, “A Descriptive Language for Symbol Manipulation,” Journal of the 

ACM , vol. 8, no. 4, pp. 579--584, 1961.  

[20]  D. Knuth, “Semantics of Context-Free Languages,” Mathematical systems theory, vol. 

2, pp. 127--145, 1968.  

[21]  S. L. Graham, “Table-driven code generation,” Computer, vol. 13, no. 8, pp. 25-34, 

1980.  

[22]  Y. Danilchenko and R. Fox, “Automated code generation using case-based reasoning, 

routine design and template-based programming,” in Midwest Artificial Intelligence 

and Cognitive Science Conference , Cincinnati, USA, 2012.  

[23]  E. Kitzelmann, “Inductive programming: A survey of program synthesis techniques,” 

in Third International Workshop on Approaches and Applications of Inductive 

Programming, , Edinburgh, UK, 2009.  



54 | P a g e  
 

[24]  W. B. Knox, S. Spaulding and C. Breazeal, “Learning from the wizard: Programming 

social interaction through teleoperated demonstrations,” in The 2016 International 

Conference on Autonomous Agents & Multiagent Systems, Singapore, 2016.  

[25]  V. Murali, L. Qi, S. Chaudhuri and C. Jermaine, “Neural sketch learning for 

conditional program generation,” in Sixth International Conference on Learning 

Representations (ICLR), Vancouver, Canada, 2017.  

[26]  K. Christakopoulou and A. T. Kalai, “Glass-Box Program Synthesis: A Machine 

Learning Approach,” in Thirty-Second AAAI Conference on Artificial Intelligence, 

New Orleans, Louisiana, USA, 2018.  

[27]  A. T. Imam and A. J. Alnsour, “The Use of Natural Language Processing Approach 

for Converting Pseudo Code to C# Code,” Journal of Intelligent Systems, vol. 29, pp. 

1388--1407, 2020.  

[28]  A. Karpathy, “The Unreasonable Effectiveness of Recurrent Neural Networks,” 

github, 21 may 2017. [Online]. Available: http://karpathy.github.io/2015/05/21/rnn-

effectiveness/. 

[29]  P. Yin and G. Neubig, “A Syntactic Neural Model for General-Purpose Code 

Generation,” in Proceedings of the 55th Annual Meeting of the Association for 

Computational Linguistics, Vancouver, Canada, 2017.  

[30]  M. li, W. Gu, W. Chen, Y. He, Y. Wu and Y. Zhang, “Smart home: architecture, 

technologies and systems,” in 8th International Congress of Information and 

Communication Technology, Tianjin, 2018.  



55 | P a g e  
 

[31]  E. I. Davies and V. Anireh, “Design and Implementation of Smart Home System 

Using Internet of Things,” Journal of Digital Innovations and Contemporary 

Research In Science, Engineering and Technology, vol. 7, pp. 33--42, 17 Jan 2019.  

[32]  J. F. Nusairat1, “Raspberry Pi,” O’Reilly online learning, 2020. [Online]. Available: 

https://www.oreilly.com/library/view/rust-for-

the/9781484258606/html/481443_1_En_8_Chapter.xhtml. 

[33]  P. F. Dubois, “Python: Batteries Included,” Computing in Science and Engineering, 

vol. 9, no. 3, pp. 7-9, 2007.  

[34]  K. Milmann and M. Avaizis, “Python for Scientists and Engineers,” Computing in 

Science and Engineering , vol. 13, no. 2, pp. 9-12, 2011.  

[35]  P. Fabian, V. Gaël, G. Alexandre, M. Vincent, T. Bertrand, G. Olivier, B. Mathieu, . 

P. Peter, W. Ron and D. Vincent, “Scikit-learn: Machine learning in Python,” The 

Journal of machine Learning research, vol. 12, pp. 2825-2830, 2011.  

[36]  B. Ballmann, Python Basics, Uster: Springer, 2020.  

[37]  A. T. Imam, A. J. Al-Nsour and A. Hroob, “The Definition of Intelligent Computer 

Aided Software Engineering (I-CASE) Tools,” Journal of Information Engineering 

and Applications, vol. 5, no. 1, pp. 47-56, 2015.  

 

 

  



56 | P a g e  
 

APPENDIX A: THE SURVEY 

A.1 The Structure of the Used Survey 

Fig. A.1 (a) and (b) illustrate the contents of the survey that had been used to evaluate 

the Smart Home Software Compose case study of the IWT.  

 

Fig A.1: (a) The First Page of the Used Survey 

(b) The Second Page of the Used Survey 

The survey had been given to 70 programmers along with copy of the Smart Home 

Software Composer to get their feedbacks. The programmers were of different experience 

and skill levels of programming using Python code. These programmers were either fresh 

graduates for information technology faculties, or who newly finished a programming course 

in Python, or professional programmers in Python. Fig A.2 Shows a sample the feedbacks got 

from a programmer 



57 | P a g e  
 

 

Fig A.2: Sample of a Feedback from a Programmer 
 

The feedbacks had been tabulated and visualized as shown by Fig A.3 (a), A.3(b), and 

A.3(c). These results were used to evaluate our proposed IWT as given in Chapter 5 earlier. 



58 | P a g e  
 

          
(a)    (b)   (c) 

Fig A.3: (a) Statistics of Usability Criteria 

(b) Statistics of Average Time 

(c) Statistics of Performance 

 

# Satisfaction Efficiency
Ease to 

Use

1 8 10 9

2 7 9 9

3 8 9 7

4 7 6 7

5 9 8 10

6 6 6 8

7 8 7 8

8 8 9 9

9 6 6 9

10 8 6 9

11 6 9 9

12 8 9 10

13 8 9 10

14 7 8 9

15 9 8 9

16 8 9 8

17 8 9 9

18 9 10 9

19 8 9 9

20 7 8 9

21 7 9 9

22 8 8 9

23 9 9 9

24 7 6 9

25 9 9 9

26 8 10 9

27 8 9 10

28 8 8 9

29 10 10 9

30 9 9 9

31 8 6 8

32 7 6 9

33 9 10 10

34 7 8 8

35 8 9 7

36 8 8 10

37 8 10 8

38 7 6 9

39 7 8 9

40 9 8 10

41 8 8 10

42 9 7 9

43 7 10 10

44 8 7 8

45 9 10 8

46 6 7 8

47 8 9 9

48 8 7 9

49 10 8 9

50 10 9 9

51 7 9 9

52 6 9 8

53 8 7 9

54 10 9 9

55 5 8 9

56 8 6 10

57 6 9 6

58 8 9 10

59 6 8 10

60 5 4 8

61 8 9 8

62 9 9 9

63 8 8 9

64 9 8 10

65 8 8 9

66 1 4 8

67 8 8 10

68 10 7 6

69 7 9 7

70 7 8 8

Total 7.728571429 8.11428571 8.8

# Automatic Manual

1 10 30

2 20 40

3 5 30

4 30 40

5 10 40

6 30 60

7 10 50

8 20 40

9 30 40

10 30 40

11 10 60

12 10 60

13 10 40

14 20 30

15 10 45

16 20 60

17 12 34

18 5 40

19 10 20

20 10 60

21 10 30

22 5 40

23 10 40

24 30 40

25 10 30

26 10 30

27 10 60

28 10 40

29 10 40

30 10 40

31 10 60

32 30 40

33 5 60

34 10 40

35 20 40

36 10 40

37 10 60

38 20 40

39 10 40

40 5 40

41 10 40

42 30 40

43 10 60

44 10 60

45 10 60

46 5 30

47 10 40

48 10 30

49 5 40

50 30 30

51 10 60

52 5 40

53 10 40

54 5 60

55 10 40

56 10 30

57 10 40

58 10 40

59 30 60

60 10 60

61 10 60

62 10 40

63 10 30

64 10 30

65 10 20

66 5 60

67 10 40

68 10 60

69 10 60

70 10 30

Average12.7428571 43.41429

# Automatic Manual

1 0 1

2 0 1

3 2 1

4 0 0

5 0 2

6 0 1

7 1 0

8 3 1

9 0 0

10 0 2

11 3 1

12 0 1

13 1 0

14 3 1

15 0 1

16 0 0

17 1 0

18 0 1

19 3 1

20 2 1

21 3 2

22 0 2

23 3 1

24 3 0

25 3 1

26 0 2

27 2 1

28 3 2

29 2 0

30 0 1

31 0 0

32 0 3

33 3 2

34 3 1

35 2 2

36 3 2

37 3 1

38 3 0

39 2 2

40 2 2

41 0 2

42 0 0

43 2 2

44 3 0

45 3 1

46 3 0

47 3 2

48 2 2

49 3 0

50 3 2

51 3 2

52 2 0

53 2 1

54 0 1

55 3 1

56 0 0

57 0 2

58 2 1

59 2 2

60 0 0

61 0 2

62 3 2

63 2 1

64 2 0

65 2 1

66 1 0

67 2 2

68 1 0

69 0 1

70 2 2

Total 110 75



59 | P a g e  
 

APPENDIX B: THE SUBMITTED PAPER 

B.1. Introduction  

As shown by Fig B.1 and Fig. B.2, the paper has been submitted to the International 

Journal of Advanced Computer Science and Applications (IJACSA) volume 13 number 1, 

year 2022. The IJACSA is published in the U.K with ISSN 2158-107X and eISSN 2156-

5570.  

 

Fig. B.1: The Submission Approvement  

 



60 | P a g e  
 

 

Fig. B.2: Email to Acknowledge the Reception of the Paper 

B.2. The IJACSA Journal rank in Scoups and ISI Indexes 

Fig. B.3 shows the Scoups rank of the IJACSA journal, which is Q3. Fig. B.4 (a, b , 

and c) shows the ISI rank of the IJACSA which is Emerging Source Citation Index (ESCI) 

with Journal Citation Index (JCI) of 0.17 for year 2020.  

 

Fig. B.3: The Statistics of the IJACSA Journal on Scopus  



61 | P a g e  
 

 

Fig. B.4 (a): The Statistics of the IJACSA Journal on Web of Science 

 

 

 

Fig. B.4 (b): The Statistics of the IJACSA Journal on Web of Science 



62 | P a g e  
 

 

Fig. B.4 (c): The Statistics of the IJACSA Journal on Web of Science 



63 | P a g e  
 

B.3. First Page of the Paper 

 

 



64 | P a g e  
 

 الملخص العربي

 تلقائياً باستخدام تقنيات الذكاء الاصطناعي Python إنشاء رمز مصدر

 

 من قبل  تاعد

 

 ــس  ن ـــــــــامر الحداديــــــــ

 

 ا عليه أشرف

 الزبيدي  طارقأياد د. 

 

 مع

 الصرايرة سليمانمحمد  أ.د.

 

 الملخص

من الرغم  بمساعدة    على  البرمجيات  هندسة  أدوات  ملحوظة   (CASE) الحاسوبأن  مساعدة  تقدم  الحالية 

لا تزال هناك حاجة إلى أدوات برمجية داعمة أكثر مرونة لمعالجة الزيادات في تعقيد   الا انه  البرامج،للمطورين في تأليف  

 .الحل لهذه الحاجة ية لإنشاء برنامج هبرامج التأليف. يمكن أن تكون أتمتة الأنشطة الفكرية البشرية المطلوب

التقليدي المعالج  القدرة على جمع الإجابات    ( wizard)  بينما يعاني  يقترح هذا   ،من مصادر غير الانسان من 

لجمع إجابات لأسئلة  (ACG) كاستراتيجية جديدة لمولد الكود التلقائي  (IWT) العمل البحثي تعريف تقنية المعالج الذكي

إلى المستخدم كما يفعل المعالج المعتاد( لأتمتة إنشاء شفرة المصدر. بناءً على هذا    )بالإضافةمعينة من مصادر مختلفة  

المحددة والتي يمكنها إنشاء كود   IWT لـ Smart Home Software Composer تم تطوير دراسة حالة  الاقتراح،

الناتج على منزل حقيقي وأظهرت النتائج سلامة  Python لمنزل الذكي. تم اختبار كودلوحدة تحكم ا Python مصدر بلغة

 .(I-CASE) الحاسوبكأداة ذكية لهندسة البرمجيات بمساعدة  IWT الكود. يمكن تصنيف

  باستخدام   المحدد IWT بـ  الخاصة  Smart Home Software Composer حالة  دراسة   تقييم  إجراء  تم

  للرضا، ٪  85  بـ  يقدر  والذي  الاستخدام،   لقابلية  الشخصي  والمقياس  ٪،91.6  بـ  يقدر  والذي  للأداء،   الموضوعي  المقياس

 .للمبرمج مفضلة مؤشرات  القيم هذه تظهر حيث الاستخدام لسهولة٪ 97و للكفاءة٪ 91و


