J

clyoudlanola

Automatic Python Source Code Generation using Artificial
Intelligence Techniques

Prepared by
Samer ALHaddadin

Supervised by
Dr. Ayad T. Al-Zobaydi

Co-Supervised

Prof. Mohammad S. Saraireh

A Thesis
Submitted to Faculty of Information Technology as a Partial Fulfilment of
the Requirements for Master Degree in Software Engineering

2022, January

1|Page

3 oSl i SN 5 L8y g sy (e emd 9 S el pusl) Amalas (i gil - cpalaall s yelis Ul
Lells e Llall it all g CilasU Agimall o pall gl cilingll b ecilalaiall

I am Samer Basem AL Haddadin, authorizing Isra University to provide
hard copies or soft copies of my thesis to libraries, institutions, or

individuals upon their request.

.2.|Page

The undersigned have examined the thesis entitled ‘Automatic Python
Source Code Generation using Artificial Intelligence Techniques’
presented by Samer ALHaddadin, a candidate for the degree of Master of
Science in Software Engineering, and hereby certify that it is worthy of

acceptance.

/(/r) 3 a- ’2)3 20 _— /i-/’f 3y (/
7 . 7 Z _

Date Prof. (Associate) Dr. Ayad Tareq Imam

9 \a V] 25 ZZ . ﬂg e
4 Jer] L
Date Prof. Mohammad S. Saraireh

(S ‘DM)

-
\

\

»,

» T
¢
1 - \-Z4
e '

Date Prof. Dr. Ja’afer Al-Saraireh _

AT plmes

—
Date Prof. Dr. Thamer Rousan

3|Page

DEDICATION

| want to dedicate this message to my parents, family, and my supervisors,
Dr. Ayad T. Al-Zobaydi and Prof. Mohammad S. Saraireh. This work would not

have been completed without their support.

| will always be grateful for everything they have done for me, especially
my friends Baha Yasin and Alaa Samara for supporting me and giving me all
necessary help, for the many hours of reading, for assisting me, and for

providing the necessary work circumstance to complete this work.

To all colleagues of the Master's Trip, all thanks and respect, and | wish

you ever success in your life journey....

4|Page

ACKNOWLEDGMENTS

First of all, I would like to say Thanks to God for all the blessings | have
been blessed with, my parents, family, supervisors, friends, and teachers. |
would like to express my sincerest gratitude to my advisors Dr. Ayad T. Al-
Zobaydi and Prof. Mohammad S. Saraireh.

| would like to my thesis committee for their time and endeavors to aid
me with my work and their constant encouragement through the good and bad
times.

| also would like to extend my thanks to all my colleagues, and my
professors who without I wouldn’t be the person I am today.

Finally, and most importantly, | would like to thank my parents and my
wife for giving me the opportunity to grow and become a better version of
myself. Their constant support, help, and caring are what helped me throughout

my life.

5|Page

TABLE OF CONTENTS

U250 D) S8 et es ettt R AR s 2
AUTHORIZATION STATEMENT ..t ssssessens 2
DEDICATION ..ttt s st ettt 4
ACKNOWLEDGMENTS....coeeeeresieeesireeesseseeesseseseessesessssssessssssssassssssssessssssssessasssssassasns 5
TABLE OF CONTENTS ..ttt et ssnacs 6
LIST OF TABLES. ...ttt sssesee s te s s st s ssssest s ssssestsssssassasssssessanas 9
LIST OF FIGURES ...ttt ssesssesssans 10
LIST OF ABBREVIATIONS ...t sses s 11
CHAPTER 1: INTRODUCTION....oitrierrienrieiriensisirisseeseessisssssssssssasssassssassssassssassses 14
1.1 OVERVIEW ...ttt ssssss s ssss s ssss s ssssssssassssans 14
1.2. RESEARCH QUESTION ...t seeesessesse s sessssesssssssasssssssessassenns 14
1.3. RESEARCH AIMS AND OBJECTIVE ... errresireeeerieeesseseesssessesssessssenns 14
LA MOTIVATIONS ...ttt se st s st et s e nenn 14
1.5. CONTRIBUTION(S) ..cvurrerrereurenseeessasessessesessssessensesssssssessessesssssssessessessssssssssssssssssssssssessssses 15
1.6. RESEARCH METHODOLOGY ...coviiriririrsesisenssesssesssssssesssssssssssssssssssssssssssssssssssnns 15
1.7. THESIS QUTLINES ...ttt se s sssessenenns 17
CHAPTER 2: BACKGROUND AND RELATED WORKS.......oorererereneeeereseeennenes 18
2.1. BACKGROUND.....oittirirerisiresirtsiseessesssesssessstssstsssessssasssassstsssiasssissssassssssssssssssasssses 18
2.1.1. THE CODE GENERATOR ...ttt sesesce s eessseseessssesssssssens 18
2.1.2. THE WIZARD .ttt ssesssass s s st sstssssassssssssssssssassses 20

6|Page

2.2. THE RELATED APPROACHES AND WORKS.......icicnicsicsicssienns 21

2.3. SUMMERY ...ttt sssssssssssssssssssssssssssssssses 25
CHAPTER 3: THE PROPOSED INTELLIGENT WIZARD TECHNIQE............cc........ 28
3.1 INTRODUCTION ..ctiiiriiriininncsncsscsiessssessessssssssssssssssssssssssesssssssssssssssssssssses 28
3.2. THE PROPOSED APPROACHiiisiesesiessessssssssssssssssasesses 28
3.2.1. LIFESTYLE, INTERNET, AND USER ... 29
32,2, WIZARD ..ttt ssssssssssssssssssssssssssses 30
3.2.3. QUESTIONS MANAGER....iiiisiiiisssssisssssssssisssssssssssssssssssss 30
3.2.4. CODE COMPOSERcuiiiirininiicscsinississssisisssssssssssssissssssssssssssssssssssssssssssssns 31
3.2.5. QUESTIONS DATABASE......iiinicsiesiesiessisssssessssssssssssssssssesses 31
3.2.6. ANSWERS DATABASEoiiiisssiiss 32
3.2.7. SOURCE CODE FILE ...ciiiciciicscsicsesessessessssssssssssasesses 32
3.3. SMART HOME COMPOSER CASE STUDY ...c.vriiiricrieniessiessesiesssessaesnes 32
3.3.1. LIFESTYLE, INTERNET, AND USER.......cccccoiiiiiiiiiiic 34
3.3.2. THE WIZARD PART OF THE SMART HOME SOFTWARE COMPOSER........cccccovvninininnnn. 35
3.3.3. QUESTIONS MANAGER PART OF THE SMART HOME SOFTWARE COMPOSER 36
3.3.4. CODE COMPOSER PART OF THE SMART HOME SOFTWARE COMPOSER...........c.cocu..e. 37
3.3.5. QUESTIONS DATABASE PART OF THE SMART HOME SOFTWARE COMPOSER............ 38
3.3.6. ANSWERS DATABASE PART OF THE SMART HOME SOFTWARE COMPOSER............... 39
3.3.7. SOURCE CODE FILEoooiiiiiiii s 40
34, SUMMERY ..ttt sssssssstssssssssssssssssssssssssssssssssssns 40

7|Page

CHAPTER 4: EVALUATION OF IWT ...ucticicnicsicsicsicsicsisssisssisssssssssssesses 42

4.1. INTRODUCTION ..crtiiiniiniinicnnsiiessesssssesssessssssssssssssssssssssssesssssssssssssssssssssses 42
4.2. EVALUATION OF SMART HOME SOFTWARE COMPOSERcccecnruvenrunennee 42
4.3. ACHIEVEMENTS OF IWT ...uiiiiniiniiesesisssessisssssesssssssssssssssssssssses 47
4.4, SUMMERY ..ottt sses 48
CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS........ciricrricnreenne 49
5.1. CONCLUSIONS.....coitritiiiisisississississssssisssissssssssssssasssssssssssssssssssssssses 49
5.2. RECOMMENDATIONSoiiiiissisniissssisissns 49
REFERENCES ... ittciscsniiissssissses 51
APPENDIX A: THE SURVEY ..cnsisisississsssssssssssssssens 56
A.1 THE STRUCTURE OF THE USED SURVEY ... 56
APPENDIX B: THE SUBMITTED PAPER ... 59
B.1. INTRODUCTION.....iiiirisiriciricisnissicsississsisssessenes 59
B.2. THE IJACSA JOURNAL RANK IN SCOUPS AND ISI INDEXES.......ccccovuvuiunes 60
B.3. FIRST PAGE OF THE PAPER........ooiiiiiiiiie e 63

8|Page

LIST OF TABLES

1.1 | Timeline to Accomplish the Research Work 7
2.1 | Abbreviated List of the Related Research Works 17
3.1 | Lifestyle Table 25

9|Page

LIST OF FIGURES

. No. .. Figure | Page
1.1 | The Work Plan of the Thesis 6
3.1 | The Architecture of the Proposed Intelligent Wizard Technique 20

The Graphical User Interface (GUI) of the Smart Home
3.2 26
Software Composer
3.3 | The Wizard Method of the Smart Home Software Composer 27
3.4 | Question Manager Method 28
A Screenshot of Code Composer Part of the Smart Home
35 28
Software Composer
3.6 | A Screenshot of the ‘Question’ Database File 28
3.7 | A Screenshot of the ‘Answers’ Database File 29
3.8 | Sample of the Python Code 30
4.1 | The GUI of the Smart Home Software Controller 33
4.2 | The First Page of the Survey 34
The Succussed Tries of the Manual Approach vs the
4.3 . 36
Automatic Approach
The Average Time of the Manual Approach vs the Automatic
4.4 37
Approach
45 The Usability Measures of the Smart Home Software 38
' Composer
A.1(a) | The First Page of the Used Survey 47
A.1(b) | The Second Page of the Used Survey 47
A.2 | Sample of a Feedback from a Programmer 48
A.3(a) | Statistics of Usability Criteria 49
A.3(b) | Statistics of Average Time 49
A.3(c) | Statistics of Performance 49
B.1 | The Submission Approvement 50
B.2 | Email to Acknowledge the Reception of the Paper 51
B.3 | The Statistics of the IJACSA Journal on Scopus 51
B4(a) | The Statistics of the IJACSA Journal on Web of Science 52
B4(b) | The Statistics of the IJACSA Journal on Web of Science 53
B4(c) | The Statistics of the IJACSA Journal on Web of Science 53

10| Page

LIST OF ABBREVIATIONS

Abbreviation Word

4GLs Fourth generation Programming Languages
ACAI Automatic Coder using Artificial Intelligence
ACG Automatic Code Generation
Al Artificial Intelligence
API Application programming interface
ASCG Automated Source Code Generation
ASTs Abstract Syntax Trees
CASE Computer Aided Software Engineering
CBR Case-based reasoning
ECG-RF Expert Code Generator Rule-based
ES Expert Systems
GPIO General Purpose Input/Output
GUI Graphical User Interface
HCI Human- Computer Interaction
| CASE Intelligent Computer Aided Software engineering
IDE Integrated Development Environment
IDEs Integrated Development Environments
IR Information Retrieval
IWT Intelligent Wizard Technique
JAD Java decompiler
LFW Learning from Wizard
RNNs Recurrent Neural Networks
SE Software Engineering
ul User Interface
UML Unified Modelling Language
WoZ The Wizard of 0Z

11| Page

Automatic Python Source Code Generation using Artificial Intelligence Techniques

Prepared by

Samer ALHaddadin

Supervised by

Dr. Ayad T. Al-Zobaydi

Co-Supervised

Prof. Mohammad S. Saraireh

Abstract

While the current Computer Aided Software Engineering (CASE) tools give a notable
help to the developers in composing programs, there is still a need for more flexible
supporting software tools to address the raises in the complexity of composing programs. The
automating of the human’s intellectual activities that are required to compose a program can

be the answer for such need.

While the traditional Wizard suffers from the ability to collect the answers else than
human, this research work proposes the definition of the Intelligent Wizard Technique (IWT)
as a new Automatic Code Generator (ACG) strategy to collect answers to certain questions
from different resources (in addition to the user as the usual wizard does) to automate the
generation of source code. Based on this proposing, a Smart Home Software Composer case

study of the defined IWT have been developed that can generate a Python language source

12| Page

code of a smart home controller. The resulted Python code has been tested on a real home and
the results showed the soundness of the code. IWT can be classified as an Intelligent

Computer Aided Software Engineering (I-CASE) tool.

The evaluation of the Smart Home Software Composer case study of the defined IWT
was achieved by using the objective measure of the performance, which evaluates to 91.6 %,
and the subjective measure of usability, which evaluates to 85% for satisfaction, 91% for
efficiency, and 97% for ease to use. These values show preferable indications to the

programmer.

Keywords: Inferencing; learning by observation; Source Code Generation; Wizard; Smart

Home; Raspberry Pi; Python; I-CASE

13| Page

CHAPTER 1: INTRODUCTION

1.1.0verview

This is the introductory chapter. It is about the constitutional parts of the research. In
this chapter, the research question, aims, objectives, motivations, contributions, and
methodology will be elaborated. This information establishes the reader mind to the research

work that has been achieved.

1.2.Research Question
“Can we automate the development of a Python code to program the Raspberry Pi in a smart

home application using Artificial Intelligence techniques?”

1.3.Research Aims and Objective
The aim of this research work is to develop a code generator that composes a Python code
to program the Raspberry Pi in a smart home application. To achieve this goal, a set of

objectives are to be accomplished, which are:

1. Studying the code generator approaches and techniques to select the most appropriate
one(s) for the Raspberry Pi 4 in a smart home application.

2. Proposing as much as possible, an accurate, simple, and effective code generator by
using Artificial Intelligence (Al) techniques

3. Applying and implementing the proposing solution

4. Testing and measuring the effectiveness of the resulted Python code in a real situation.

1.4.Motivations
1. Reduce the time and the efforts of coding,

2. Get more flexible code generator by using Al techniques.

14| Page

3. Minimize possible coding errors.
4. Give a simple programming tool for to someone who cannot do programming..

5. Accommodate different programming languages for coding.

1.5.Contribution(s)

By completing our research work, we expect to have the following contributions that

constitute future works in this fields:

1. Defining the Intelligent Wizard Technique (IWT)

2. Implementing a Smart Home Composer case study

3. Examining the resulted Python code (the Smart Home Controller) from the Smart
Home Composer case study on real domain

4. Evaluation the results

These contributions, as we believe, would enhance the work on the development of software
testing tools and provide more control on the quality of developing a software project.
1.6.Research Methodology

As illustrated in Figure 1.1, the work plan that has been developed to accomplish this

thesis encompasses a number of steps, which are:

Testing and
Study Design and Measuring the

Previous Implementatio

effectiveness of
the Resulted code

J

I Writting Up |

Related Workg n a Solution

Problem
Definition

and Setting
up Goal and
Objectives

Thesis

Fig 1.1: The Work Plan of the Thesis

15| Page

1. Problem definition and setting up goal and objectives: the problem has been
defined, which is the development of a source code generator for raspberry pi. Also,
the objectives of this research have been listed as shown in figl.1

2. Study previous related works: some previous related works have been collected. An
analysis of these collected works has been made to help develop and define an
approach that is suitable to solve the problem defined above.

3. Design and implementation of a solution: an approach, which is called the (IWT)
has been designed. This approach will be implemented by using the C# programming
language.

4. Testing and measuring the effectiveness of the resulted code: testing and
evaluating strategies and techniques will be applied to show the soundness and
effectiveness of the proposed implemented solution.

5. Writing up the thesis: this is the final step, which aims to document and illustrate the

research work.

A timeline plan has been maintained. Table 1.1 shows the timeline for accomplishing

each step of the work plan I have maintained.

Table 1.1: Timeline to Accomplish the Research Work

16 |Page

1.7.Thesis Outlines

e Chapter 1: The introduction in which we are introducing our work.

e Chapter2: The preliminary information and background of the automatic source code
generation, the smart home application, the Raspberry Pi, the Python programming
language, and the related works.

e Chapter 3: The Proposed Intelligent Wizard (IWT)

e Chapter 4: Evaluation Of IWT

e Chapter 5: Conclusions and recommendations for future work.

17 |Page

CHAPTER 2: BACKGROUND AND RELATED WORKS

2.1.Background

In the software Engineering (SE), the automatic source code generation is a
technique that is used to quickly update and develop software using Automatic Code
Generation (ACG) software tool [1] [2]. ACG software is an automated process intended for
normal coding activity of software design. No doubt that ACG is of great potential for
developing programs in a faster way because it helps save time and effort, improve program
quality, and become more accurate, and help developers get rid of tedious routine processes.
The technology of code generation is widely used and to facilitate the development of many
various kinds of source code generators. For example, the Java decompiler (JAD) converts
byte code to Java source code [3]. We cannot ignore the promising results of current ACG
technologies and note that most of these techniques, especially official models, need input by
humans. This is expected because the programmer's job requires innovation and creativity
and is considered a creative (non-routine) job, ACG's curriculum prefers to force students to
specialize in software engineers to work on non-routine jobs rather than to replace software
engineering entirely. Passive code origin is a type of code generator that also produces code
that needs to be modified and also modified by the programmer [3]. ACG technique is used
to develop many applications. In our proposed research work, we intend to use ACG to

develop the source code of smart home applications.

2.1.1. The Code Generator

In the field of SE, ACG is a common approach. The research community has created
a number of tools for creating source code, ranging from graphical modeling tools like unified

modelling language (UML) to target programming languages like Java and C# [4]

18 |Page

The code generation process is divided into many stages: formal implementations are
translated into programs in a specific programming language using a translator's tool chain,
and these programs are then compiled. This method has numerous advantages: the translation

process is as straightforward as feasible, and it can be easily checked. [5]

The code verification is the most difficult step in the code generation process. The
reason for this is because the preservation of architectural attributes at the code level is only
ensured if the underlying platform is right and the final system is accurate when filling in the

stubs for internal operations into the automatically produced code. [5]

Automatic code generator (ACG) software is used to generate code, which is a
technique for fast software development. ACG program's objective is to automate routine
coding activities in software development. ACG offers tremendous promise for quick
software development since it saves time and effort, improves software quality and accuracy,

and relieves developers of tedious repetitive chores. [3]

The process of code generation is becoming more popular, resulting in the creation of
a variety of code generators. One example is the code wizard, which is featured in most
Integrated Development Environments (IDEs) (that can be viewed as a frame-driven code
generator).A further example is the forward engineering tool set (which includes reverse
engineering software tools and compilers) that is incorporated into modeling tools and turns
a solution description into code; for instance, the Java decompiler (JAD) transforms the
bytecode into Java source code. Regardless the inability to overlook the encouraging
outcomes of contemporary ACG approaches, it is worth noting that the majority of these
techniques, particularly formal models of the intended system, are still in their infancy ,

Human involvement is still required. [3].

19| Page

2.1.2. The Wizard
The Wizard of 0Z (WoZ) technique involves participants who interplay with a system
that appears to be independent, which is in actual is operated by a hidden human operator in

a nearby place [6].

WoZ Systems that are currently in use. The majority of extant WoZ systems were
created to investigate the use of natural languages in Information Retrieval (IR) systems.
Experiments on the services of telephone information, such as phone directories, travel or
train information, and reservation services, have proven fruitful [7] [8] . The experimental
setup is straightforward: the wizard takes calls and acts as though callers are speaking with
an automated information system. The wizard's voice is filtered via a distortion mechanism
(like a vocoder), to add a robotic flavor to the voice for providing callers the impression that

they are truly discussing with a computer.

Tape recordings of the questions and replies are made for subsequent transcription
and analysis. Interrogation of databases or advisory systems [9] [10] [11] as well as
conversations with Expert Systems (ES) [12] [13] , are examples of other case studies. The
majority of them attempt to gather vocabulary corpora in order to fine-tune and improve the
robustness of natural language recognizers, whether spoken or written. Dahlback [13]
describes a framework that tries to allow the observation of graphical direct manipulation
coupled with natural language. Turvy, an intelligent entity mimicked using a WoZ, may be

trained via voice and direct manipulation, according to a recent article [14].

WoZ experiments have already produced a fascinating body of research regarding
wizards and assessment experts, despite their restricted reach. Wizards have taught us a lot.

The fact that wizards' duties are cognitively costly, despite their seeming simplicity, is an

20| Page

intriguing consequence of the WoZ findings. The equipment’ realism necessitates that the

wizard's activities be constant in substance, manner, and tempo. Specifically, [7]:

1) A particular order from the subject must elicit the same response from the wizard in
identical situations.

2) The wizard's reaction time must meet the subject's expectations: if the wizard reacts
too slowly, the subject may avoid utilizing simulated functions or feel the system is

overburdened.

In conclusion, wizards cannot afford to improvise. Wizards must be taught in well-
defined duties and aided by strong tools in order to attain acceptable consistent behavior. To
this aim, certain WoZ systems provide limited but helpful methods like a set of prepared

responses or menus with pre-stored sections of answers. [15].

Recent studies recommend a two-wizard setup to reduce cognitive stress [7], with one
wizard specializing in 1/0 and the other performing task level processing. The wizard’s task
is to understand the requests, which are translated by an 1/0 wizard and produces the answers.
The I/0 wizard gets user requests and conducts virtual answers. Consistency is more probable
with this collaborative work sharing. If the wizards are well taught, it has no discernible effect

on reaction time. Another experiment [16] that used a two-wizard setup was successful.

2.2.The Related Approaches and Works

In this section, we will show different approaches that are used in the Automatic
Source Code Generation (ASCG) using Atrtificial Intelligence. We present and discuss some
of the works that are relevant to the potential application. Relevant curricula and references

were identified by searching the literature published since 2010. The focus should be on

21| Page

relatively recent work; So that the field of artificial intelligence is large and wide and extends

from the 50s to the present [17].

The first part of this section is the main content of this page and a survey of ASCG
methods using Al. Secondly, a potential discussion about the relevant works that does not
focus directly on a specific issue of the ASCG but may generate general and comprehensive

ideas on how to approach it, will be given. [17].

Several ACG technologies have been developed. The first one we are mentioning here
is the design pattern strategy that was introduced by Eric Gama [18]. It created code based
on Floyd's "Code Processing Specification™ research business model [19]. Also, grammar is
a strategy that Knuth [20] says developed in his linguistic research and has also been used to
express the semantics of a programming language, and to support compiler constructs

building an Integrated Development Environment (IDE).

Al techniques are used also to automate code generation, such as genetic
programming, evolutionary algorithms, and Case-based reasoning (CBR) [21] [22] [23].
Danilchenko and colleagues [22] proposed the mechanism A programmer using an artificial
intelligence system that integrates routine design, state-based logic, and template
programming that develops programs that deal directly with database operations. The author
recommends the process of extending Automatic Coder using Atrtificial Intelligence (ACAI)
by testing other types of layouts, as well as optimizing the number of criteria a user will use
to select an icon rather than distance versus speed switch. Several software development tools
appeared in the 1970s and 1980s: user interface(Ul) developers, wizards, fourth generation
Programming Language (4GL) application generators, and state tools. Compilers, assemblers,
and the fourth generation Programming Languages (4GLs) and Enhancers These are tools

that have been widely used and used to create code since long ago in computer science. These

22| Page

examples are also considered ACG techniques [23]. And that all these symbols that stand
out and that resulted from the current ACG methods and tools, still have a great need and
human contribution. This is clearly and explicitly displayed by the latest ACG systems used
by the companies or various organizations (such as NASA) that need to define very accurate
models for the system under development By developers before creating the code for the

system [3] [20].

The wizard technique is used to create a code to control a robot as the work of [24]
This work used Learning from Wizard (LFW) to answer the question of “whether robots can
be effectively programmed for autonomous social interaction through learning from

demonstrations recorded via Wizard of-Oz teleoperation”.

The Generating of source code from a text query and predefined cases using case-
based reasoning is given by [22]. The software developed in this work takes the specifications
used in the text, specifically a medical database query, and generates similar Java code. It
uses a combination of case-based thinking, routine design, and model-driven programming.
Requirements for the programmer who uses the Automatic Coder using Artificial Intelligence
(ACAI) system to define states using XML, and the advantage of the topic is that the user
does not need to learn SQL at now, things are not clear about the success of this approach.
Currently, ACAI "only solves database problems" with a focus on the medical database field.
The authors show only a modest ability to combine schemas to produce simple database
queries, which requires defining states using XML. In summary, this approach requires a lot
of basic work to perform unimportant tasks, and it is not clear how easily the approach can

be extended to more realistic conditions [17].

BAYOU [25] generates the source code from given label (like a number of application

programming interface(API) calls or types), which having a little bit of information regarding

23| Page

the desired code and a corpus of labelled programs. BAYOU generates Java code with the
creation of labels and groups - training not only on the code but also on knowing and sketching

the program - and its formation and construction in concrete.

The work of [26] produces the "glass box", which used the requirements and
specifications information got from the auditor's source code of a specific program to validate
the generated source code. The verification output is used to direct the creation of the program
that meets the specifications. This work is based on the normal approach for verification and
validation a source code. Normally, a program should be produced firstly and later passed
into a verification and validation process to know whether the program is adequate or not. As
this approach requires the writing of a program as a first step, which is considered
unsatisfactory since it requires experience in the development and programming process.
However, it may be easier to write a program to validate the answer than to write a program
that produces the correct answers. The approach is interesting, but the problem of requiring a
program to be written makes it more difficult to recommend it because not all people or users

are experienced in programming or development.

Imam et al [3] proposed the Expert Code Generator Rule-based (ECG-RF) generate a
source code. The user-directed inference system populates a predefined frameworks for static
structures using code snippets from the knowledge base. Questions are given to the user, and
the system proceeds the code’s editing based on their answers. This approach is easy to
understand and use, however creating rule-based systems becomes more difficult as rules

become more complex, and the paper does not provide guidance on how to do this.

Other possibly related works include the various attempts have been made to produce
natural language from source code (i.e., the opposite direction of ASCG) [27] [28] Recurrent

Neural Networks (RNNSs) are neural networks that support sequence training, which is useful

24| Page

for applications like natural language translation and source code generation. As [28] points
out, the RNN method has shown to be extremely successful for a variety of issues. Rather of
trying to create text directly, some techniques focus on establishing a higher-level abstraction
for source code. Abstract Syntax Trees (ASTSs), for example, are used by many researchers

like [29]

There is a believe that utilizing representations that make it easier to describe these
higher-level structures will make it easier to employ well-known approaches like RNN
models, as well as expand existing techniques to deal with the underlying structure of source
code. Higher-level models like this should make it simpler for learning systems to see patterns
and generate syntactically valid code (e.g., ensuring that block ending marks match block

beginning marks) [17].

2.3.Summery

In this chapter, a carful reviewing has been made to get an idea about the previous
tries that have been made to develop ASCG. Table 2.1 is an abbreviated list of the previous
related research works. Based on this list, we can say that to develop an intelligence based
ASCG software tool, it is necessary to make this software tool able to get the required
information to compose a source code by means of intelligent techniques like learning from

around and searching the Internet.

While all the previous related works has only one intelligent technique, our proposed
solution would encompass more than one intelligent technique like inferring an answer

searching the internet ,and learning from the environment using observation and sensors .

Thus our proposed approach is contributing a more flexible tool to compose a source code.

25| Page

Table 2.1: Abbreviated List of the Related Research Works

Research Title

Input

Process

Output

Problem(s)

An Expert Code Generator
using Rule-Based and
Frames Knowledge
Representation Techniques

3]

Answers to questions
delivered to the user via
graphical user interface
(GUI)

Filling a predetermined frame of a
given fixed structure program with
code fragments that are retrieved
from knowledge base by using
heuristics

Assembly language
code

Composing using
predefined chunks of
software

Automated Code Generation
Using Case-

Based Reasoning, Routine
Design and Template-Based
Programming [22]

Natural language
description of a task at
some level of
abstraction

Integrating: routine design + state-
based logic + programming
templates

creating a program to
solve number of
medical database
domain queries and
Sub-gueries from the
list

Natural language
complexities

Learning from the Wizard:
Programming Social
Interaction through
Teleoperated
Demonstrations [24]

Instructions /
Commands issued by
an operator (Oz
teleoperation Wizard)

Learning From Wizard (LFW)
(Recording the movement series
issued by a child play with the robot
or by Oz teleoperation Wizard)

A code to control a
robot learns some
things to deal with the
child

Complexities of on-
line learning approach

Neural sketch learning for
conditional program
generation [25]

A set of ready-made
programs that contain
labels

Supervised learning using number
of API calls or the types utilized in
the code.

Java like code

Pseudocode not
programming code

Glass-Box Program
Synthesis: A Machine
Learning Approach [26]

Data use either
input/output examples
or rich execution traces

Given a partial program and the
glass-box issue, an intelligent
search system learns the
probabilities over the space of
programs.

A successful solution
to a programming
issue

Complexities of
searching using
probabilities

26| Page

The Use of Natural
Language Processing
Approach for Converting

Answers [Y/N] to
guestions given to the

IF-THEN Rules, a predefined
programs’ structures, and a

A code of an MS-DOS
device driver

shortcoming of the
solutions of natural
language ambiguity

Pseudo Code to C# Code user knowledge base of code snippets problems

[27]

A syntactic neural model for | The underlying syntax ':Eastlr%k(]::[:g\r/leiln a natural Difficulties in
general-purpose code of the target RNN + Patterns lanauade of the source collecting training
generation [29] programming language guag data

code

27 |Page

CHAPTER 3: THE PROPOSED INTELLIGENT WIZARD TECHNIQE

3.1.Introduction

This chapter is about the proposed solution to the defined problem in this research
work, which is “The defining an (IWT) to automatically develop a source code”. As this,
IWT aims to compose a source code, it is classified as an ASCG, and as it is intelligent, it has
a distinguishing feature that it can get the required information by means of intelligent

techniques as shown in the previous chapter.

To show the soundness of this definition, a case study that follow the definition of the
IWT, has been developed. This case study is the development a Smart Home Composer that
function to develop a Smart Home Controller. The resulted Smart Home Controller was
composed in Python programming language and ran on Raspberry Pi platform, which controls

set of objects in a home.

3.2. The Proposed Approach

The software wizard or setup assistant is a user interface that presents the user with
series of dialog boxes, and the user fills in the data and transfers it to the other box depending
on the inputs that the user has entered and leads the user through a series of well-defined
steps. Tasks that are complex, erratic, or unfamiliar with the wizard may be easier to do [3].
The will-be adopted methodology aims to define and implement an (IWT). Fig 3.1 illustrates

the process flow of the suggested IWT solution, which contains the following parts:

28| Page

Answers .
) Wizard
) Questions
LifeStyle, X
Internet, Questions Code Programing Source
User Manage Question_Manager Composer/ sentencein Code
Pythone PL
. ‘ Answers T
Question Procss
Answers

Question ‘

Fig 3.1: The Architecture of the Proposed Intelligent Wizard Technique

3.2.1. Lifestyle, Internet, and User

These are the resources from which our proposed IWT gets the information that are
required to compose the code of a targeted application. The lifestyle is a recorder that records
the way or style or behaviours of the beneficiary of the targeted (resulted) software
application, that could be another application or a human. The lifestyle could be developed
as a table to be part of the database of the IWT. The lifestyle is updated frequently by
monitoring the user’s activities while handling (or solving) a certain problem. The Internet is
other source that IWT can get the information from. No doubt that the Internet is a vast storage
of information that anyone can get benefit of, but the main problem is how to develop a wise
search for a specific datum from the Internet. Finally, the user is the human that run the IWT,
who may give direct information to IWT to help composing the code of the targeted software.
A sample example of the user source of information is what we experience in some preparing

programs likes windows.

29| Page

3.2.2. Wizard
It is the process that read the questions from the question database, and finds their
answers either from a lifestyle table, the Internet, or the user. After conducting the answers,

Wizard puts them in the answers database. The Pseudocode of the wizard is:

Wizard ()
{

Read Question from ‘Questions’ database
Look for the answer in the Lifestyle Table
If the answer is not found in the Lifestyle Table
Then Look for the answer on the Internet
If the answer is not founded I the Internet
Then get the answer from the User

Save the answer in ‘Answer’ database

3.2.3. Questions Manager

It is the process that manages the question database via adding, removing, updating,
or listing the contents of the questions database. The questions manager process mainly the
contents of the questions database regularly revising the contes by the admin of IWT to keep
sure the suitability of the questions database to the targeted software application aimed to be

composed. The Pseudocode for the questions manager is:

Questions Manager ()

{

Read Option

If Option == ‘Edit’ Then Call EditQuestion method

30| Page

If Option == ‘Delete’ Then Call DeleteQuestion method
If Option == “’Append’ Then Call AppendQuestion method

If Option == ‘List’ Then Call ListQuestions method

}
3.2.4. Code Composer

It is the process that is responsible for creating/ editing/ composing a textual form of
the targeted program in a certain programming language code based on the answers, which
were saved in the answers database. The code composer process uses a standard template and
fills it out with a programming statement that would utilize the answers in the answers

database to compose the code. The Pseudocode for the code composer is:

Code Composer ()
{

Open Answer database for reading

Open the code template for writing

While not EOF Answer database
Read an answer from Answer database
Apply text processing to the answer to compose a programming statement
Write the programming statements in the code template

End While

ky

3.2.5. Questions DataBase

It is a database that contains a set of questions, which help supplying the composer
with the information it needs for composing a code. These questions are used by the wizard

component of IWT, which are given to the lifestyle, the Internet, or the user. Each question

31| Page

is saved textually in a file. The questions are varied from application type to another and
should be set by the user of the IWT prior to running it to compose the code of a targeted
application. The Question file is controlled by ‘Question Manager’ process, which is

described earlier.

3.2.6. Answers DataBase

It is a database that contains the answers to the set of questions, which were given by
wizard component to the lifestyle, the Internet, or the user. These answers are used by the
composer component of IWT to compose the code of the targeted software. Each answer is

saved textually in the Answer file. .

3.2.7. Source Code File

This is the text file of a source code that is generated automatically by our proposed
IWT. It comes as a template that is defined according to the style of the IDE that is used to
edit, compile, and running a programming source code. This template should be defined prior

to running IWT, and to be filled by the composer part of the IWT.

3.3. Smart Home Composer Case Study

As a case study for our proposed IWT, we developed a Smart Home Software
Composer, which is implemented by using C# programming. A smart home application aims
to provide people with a comfortable life that contains all the means of comfort and protection
[30]. A smart home consists of a group of sensors and controllers that are equipped with
different objects in the home and are connected with each other by using modern tools and
technologies such as Ethernet wires. A smart home consists of electronic devices and
photovoltaic energy systems connected to each other and there is a responsible and controlling
system for every part of it [31], and their information can be controlled and transmitted

from/to outside the house by using smart home gates like Raspberry Pi controller.

32| Page

Raspberry Pi is a small, palm-sized computer with an ARMV8 microprocessor and
4GB ram. The Raspberry Pi was developed in the UK by the Raspberry Pi Foundation. They
first brought it to market in 2012 and was a huge hit. Raspberry Pi meet the needs of many
things and people. For beginners and hobbyists, it was the ideal device and the best option
due to its low price and at the same time powerful enough that can be easily used anywhere
or to run small applications. In fact, there are some safety advantages of the Raspberry Pi,
like its cheap price. Good for all groups, it can be easily installed around the house to run
whatever application. Raspberry Pi often related to monitoring or voice interaction and
controlling home matters such as lighting, water consuming management, and doors’
controlling. In addition, they can be part of complex projects. For example, use them to
control all parts of the house. Also, the advantage when making a small project, you will get
results as soon as possible [32]. Raspberry Pi can be programmed using certain programming
languages like Python programming language. The IWT case study that is the Smart Home
Software Composer aims to generate a Python source code as Smart Home Controlling

software.

The Python programming language works as the most common programming
language. The highly interactive nature and a mature ecosystem of scientific libraries offer a
best choice for software algorithm development and data analysis [33] [34]. However, as a
code language, it is used not only in the field of computers and it works in the fields of
industry as well and in many programs. [35]. Python is a very easy programming language
for learning and reading. The origin of the word Python is taken from the English comics

group Monty Python [36].

As shown in the following sections, each part of the IWT has been redefined as a case

dedicated for smart home application. The procedure for each part hasn’t change. Only the

33| Page

data that is related to the pin configuration and the enabling/disabling value were customized

for this special case of IWT.

3.3.1. Lifestyle, Internet, and User

In this case study, we utilized each of the Lifestyle, the Internet, and the user to be the
resources from which the Smart Home Software Composer can get the information that are
required to compose the code of a smart home software. As shown in Table. 3.2, the lifestyle
was developed as a table, and it was displayed in the GUI of the Smart Home Software
Composer. Its data is got from the daily uses of the home’s resident, while he/she uses the
objects controlled by Raspberry Pi. Each controlled object has its own record, which holds
the information of the last use by the home’s resident, and it will be used for future composing
of the Smart Home Software. The metadata of this file encompasses each of the name of the
object to be controlled (Name), the status of the object (status), the timing engaged with status
(s-time), and finally the pin configuration in which the object was connected General Purpose

Input/Output (GPIO).

Table 3.2: Lifestyle Table

Marne status s_time gpiac ™
b On 19:18:12 26

AL on 131819 24

T On 19:18:34 19

Light On 1%:18:46 16

OutSide Light On 19:31:49 26

AL On 1%:32:06 24 w
L4 >

The second source of the data was the Internet, which was used to get the daily sunrise
and sunset times of the location of the home. Such information is of big importance to

automatically compose the code of controlling the lights (specially the outdoor lights)

34| Page

depending on such information. Of course, other unusual conditions such as being cloudy

were considered and had been got from the weather website.

The last resource was the user, who gives the information directly either by selection
a predetermined alternatives or type the data directly. Worth to mention here, that Smart
Home Software Composer embedded the voice recognition facility in the resulted code to
give the user the ability to ask the Smart Home Software controller about some information

like time, date, or even invoke a setting process of an object under controlling.

3.3.2. The Wizard Part of the Smart Home Software Composer
This is the part that is responsible for collecting the answers to the questions that are
used to compose the required source code. Fig 3.2 illustrates the Graphical User Interface

(GUI) of the Smart Home Software Composer.

Please Select The objects You Need

Intelligent Wizard Technique (IWT)

< Light
™
Door
Outside Light
AC
Heater
Kitchen Light
Bed Room Light

Bathroom Light

Next

Fig 3.2: The Graphical User Interface (GUI) of the Smart Home Software Composer

The wizard part had the inference ability and the flexibility property that made it able

to collect the data with minimum need to the user. The inference ability was achieved by

35| Page

utilizing the lifestyle table and the Internet to get the answers. The flexibility property was
achieved via the existing of three alternatives as a source of answers. Fig. 3.3 illustrates the

method that function as wizard part of the Smart Home Software Composer.

input = checkedlListBox1.CheckedItems.Count;

nnection connection =

nd commandDatabase =) d(" Ar rs” ("id”)", “status’, “Name®, “used’) VALUES ('1°,'" + arr[i

commandDatabase. CommandTimeout = 6@;

Fig 3.3 : The Wizard Method of the Smart Home Software Composer

3.3.3. Questions Manager Part of the Smart Home Software Composer

It is the process that is responsible for managing the contents of the ‘Question’
database file. It offers the services for adding, removing, modifying, and deleting the
questions in the ‘Questions’ file. The importance of this process is shown by the required
need to set up the composer to compose a source code for a certain application, which is differ
from other type of applications, and thus, it needs different set of questions. Fig. 3.4 represents

a screenshot for the code of this method.

36| Page

er rdr = cmd2.ExecuteReader();

rdr.Read();

= rdr.Get5tring(e);

Fig 3.4 : Question Manager Method

3.3.4. Code Composer Part of the Smart Home Software Composer

This is the heart part of the Smart Home Software Composer. Code composer process
functions at creating or generating a Python source code for controlling a home (smart home
application). Code composer fills (by writing) a predefined template, which is a textual file
that meets the structuring of a Python source code. In addition to the header and other
complementary statements, the main type of statements is the ‘IF — THEN’ statement, which
requires the condition part and the action part. Both of these two parts were got from
‘Answers’ database file, which had been filed already by the wizard part of the Smart Home

Software Composer. Fig. 3.5 is a screenshot of this method.

client.RunCommand

client.Disconnect();

Fig. 3.5 : A Screenshot of Code Composer Part of the Smart Home Software Composer

37| Page

3.3.5. Questions DataBase Part of the Smart Home Software Composer

These are the questions aim to collect the data related to the Smart Home controller.
These questions had been set by us and saved in the ‘Questions’ database file. Examples of

these questions are:

¢ ‘How many buttons you want to connect your system?’
¢ ‘What is the time you like to turn on the TV’

e ‘How much degrees you like the temperature of the room to be?’

Note that some questions are chained together since they form conditions or actions
of a single programmed object. Fig. 3.6 is a screenshot of the ‘Question’ database file, which
is developed as a table that consisted of 25 questions. Each question was saved as a record
that encompasses three fields namely: id (the question number), question (the question’s text),

and note (if there is something to be considered about this question).

CT Server: localhost-3306 » @ Database: gpioDB » [Table: Questions

= Browse B Structure L[saL 4 Search #+Z Insert =l Export &=l Import a
[Showr all | Mumber of rows: 25 W Filter rows: | Search this table
+ Options
id guestion note

1 Howe Many Buttons You Want To Connect In Your Syst... 0
2 Mame OF Gpio

[Shaow all Mumber of rows: 25 w Filter rows: | Search this table

Query results operations

(=) Print % Copy to clipboard |=l Export gllly Display chart |5 Create view

Bookmark this SQL query

Label: [CJ Let every user access this bookmark

Fig. 3.6: A Screenshot of the ‘Question’ Database File

38| Page

3.3.6. Answers DataBase Part of the Smart Home Software Composer

This database file holds the answers that would be collected by the wizard part of the
Smart Home Software Composer. As shown in Fig. 3.7,”’Answer’ database file had been

designed as a table that consists of five fields, which are:

[Browse 4 Structure = [f SQL 4 Search ®t Insert =} Export [Import =23 Privileges = 4 Operations & Trj

., Current selection does not contain a unique column. Grid edit, checkbox, Edit, Copy and Delete features are not available. &)

+ Showing rows 0 - 5 (6 total, Query took 0.0003 seconds.) [id: 1... - 6...]

SELECT * FROM “Answers' ORDER BY "id AsC

] Show all Number of rows: 25 Filter rows: | Search this table
+ Options
id = 1 gpio_no status Name used
1 16 0 Light 1
2 19 0 TV 1
3 25 0 Door 1
4 26 0 COutside Light 1
5 24 0 AC 1
6 13 0 Windows 1
(] Show all | Numberof rows: 25 w Filter rows: | Search this table

Query results operations

(&) Print %¢ Copy to clipboard | =} Export iy Display chart [5] Create view

Fig 3.7 : A Screenshot of the ‘Answers’ Database File

¢ id: the sequence of the answer

e gpio_no: the Raspberry Pi pin number, where a certain object had been controlled.
e status: numerical representation of on/off

e Name: the device name

¢ used: numerical representation of the used/unused pin

Finally, this database file was got its contents from wizard part and used by composer part to

assist composing the Raspberry Pi Python source code.

39| Page

3.3.7. Source Code File

This is the text file of the Raspberry Pi Python source code that had been generated
automatically by the composer part of our proposed IWT. It came as a template that is defined
according to the style of the Raspberry Pi Python source code. Fig. 3.8 shows a sample of

the Python code.

Thonny - /home/pi/samer/gpio0.py @ 6:1

A B O » @ =

New Load Save Run Debug Ove nt Jut Stop Zoom Quit

gpioD.py ¥

import os

os.system("echo 0@ = /sys/class/gpio/unexport™)
os.system("echo @ > /sys/class/gpio/export”)
os.system("sudo chmod 777 /sys/class/gpio/gpio®/value")
os.system("echo out > /sys/class/gpio/gpio@/direction")

U WA

Shell

Python 3.7.3 (/usr/bin/python3)
23>

Python 3.7.3

Fig 3.8 : Sample of the Python Code

3.4. Summery

In this chapter, the definition of the Intelligent Wizard Technique (IWT) has been
given in details. Also, a case study that follow IWT definition has been developed and
implemented using C# programming language. The Python code that was resulted from the
Smart Home Software Compose case study of the IWT was tested on a model of a house to
show the soundness of the resulted Python code. The house model was controlled by gpio

controller. A template for Python code was developed in prior to compose the Python code.

40| Page

Thus, each of template definition for the source code, the using of learning from daily user
lifestyle, the retrieving of information from the Internet, and the using of Wizard techniques

have been used to contribute a new I-CASE software tool for ASCG.

41| Page

CHAPTER 4: EVALUATION OF IWT

4.1.Introduction

This chapter aims to evaluate the IWT through the evaluating of its case study that is
the Smart Home Software Composer. The evaluation strategy depends on the evaluating some
non-functional requirements since the result of the wizard in general is a source code. As we
shall see in the next sections, the evaluation was implemented as a survey that reports the
feedbacks of programmers who were asked to evaluate the Smart Home Software Composer
case study of IWT. We were keen to select the people who can give us technical feedbacks,

and this is the reason to exclude other users of non-technical background.

The feedbacks got from the survey have been quantified and statistically processed to

reflect the gaining of IWT as a principle

4.2. The Evaluation of Smart Home Software Composer

Fig 4.1 illustrates the GUI of the Smart Home Software Controller. This interface was

the fixed part of the template that had been filled by the composer.

Intelligent Wizard Technique (IWT)

Current Temp: 19.7
SunRise : 12/21/2021 6:31:18 AM
SunSet: 12/21/2021 4:37:30 PM

Life Style

NEW

Fig 4.1: The GUI of the Smart Home Software Controller

42| Page

The resulted Smart Home Software controller is very useful in monitoring and

controlling the smart home environment

Fig. 4.2 illustrates the first page of the survey, which its details are given in the

Appendix A of this thesis.

| 9]

clpwdldinola

|
Smart Home Softwear Comporser Survey
Please take a moment to help us improve your experience at smart home software composer. When you're done,

please give us your feedback and provide us your suggestions to enhance the work

Evaluate the Performance
How many times did you need to manual code the How many times did you need to automatically code the

smart home controller? smart home controller?
O First ime O First ime
O 2times O 2times
O 3times O 3times
O Mever Succeeded O Mever Succeeded

Average Time

How long did it take to manually code the smart How long did it take to automatically code the smart
home controller ? home controller ?

O 5-10 min O 5-10 min

O 10-20 min O 10-20 min

O 20-30 min O 20-30 min

O 30-40 min O 30-40 min

O 40-60 min O 4060 min

Evaluate the Usability
Your Satistaction rate ranging (1-10} in the smart Your Efficiency rate ranging (1-10) in the smart home

home software composart ? software composar 7
O O 1
o2 o2
O3 O 3
0O 4 O 4
Os O s
O 6 O 6
o7 o7
O s O s
0o O o9
O 10 O 10

Created By Samer AL Haddadin

Fig. 4.2: The First Page of the Survey

The evaluation of Smart Home Software Composer has been done by using the

objective measure of the performance, and the subjective measure of Usability.

43 |Page

Software Performance is a gauge of how well a software achieves its requirements
for correctness, which is measured by using throughput or response time. Note that
the response time is the necessary time to make a response to a request (a single transaction,

or an end-to-end) task [1] [2].

Software Usability evaluates the ease to use, which is aquality attribute

encompasses number of important qualities like [1] [2]:

e The Satisfaction that measures the pleasant of using a software

e The Efficiency that measures the speed of performing tasks by user

e The Ease of Use, that measure the user’s ability to achieve essential function(s) from
the first time

e The Memorability that measures the simplicity of reestablishing proficiency after
period of software disusing.

e The Errors, which measures error related issues (making errors, errors’ severeness,

simplicity of error recovery).

These two measures were evaluated depending on the feedbacks we have got after
using Smart Home Software Composer by 120 programmers, who had been asked to compose
the Smart Home Software Controller manually at first, and later automatically using the Smart
Home Software Composer, and later to fill a survey to get their opinion about the developed

Smart Home Composer case study of the IWT.

To evaluate the performance (the objective measure), we counted the number of
people who failed to compose the Smart Home Software Controller manually compared to
the automatic composing of it using Smart Home Software Composer. Table 4.1 shows the

number of succussed tries of the manual approach vs the automatic approach.

44 |Page

Total
120
100
& 80
3
5
v 60
—
o
o
= 40
20
0
Automatic Manual
W Total 110 75
Approach Type

Fig 4.3: The Succussed Tries of the Manual Approach vs the Automatic Approach

It should be noted that the "failure” may be one of three alternatives. The first one is
the failing to completed coding the Smart Home Software Controller within a given time. The
second one is the failing due to fail to find the correct answer to the questions of the wizard
part. The third type of failure is that caused by giving the wrong answer to the questions of
the wizard part. From the Table 4.1, it can be seen that fewer failures were recorded with the
Smart Home Software Composer than with the manual one. The percentage of success tries
using the manual approach to the success tries using the automatic approach was 68%, which

IS biased in favour of manual approach.

Not only the number of failings, the speed of accomplishing soundness coding had
been measured also. Table 4.2 shows the average time (in minutes) spent by each programmer
by using the manual approach, and the automatic approach by using the Smart Home Software

Composer. It is obvious that the time taken to develop Smart Home controller by using

45| Page

manual approach was much bigger than the using of automatic approach, counting the number

of tries to get an error free program.

Average
50
45
a0
L;" 35
= 30
= 15
=
E 20
= 15
10
5
0 "
Automatic Mariual
W Averzge 1274 4341
Coding Approach

Fig 4.4: The Average Time of the Manual Approach vs the Automatic Approach

Such result is normal and justifies the need for using software tools in the development

process of a software.

To evaluate the Usability (the subjective measure), each programmer of the 10
participated individuals was asked to give her/his impression of the of using the Smart Home
Software Composer in terms of three factors namely the Satisfaction, the Efficiency, and
the Ease to use in a range from 1 to 10. The results are shown in the Table 4.3. Here we can
see that the Smart Home Software Composer were — in general - favourable in the responses.

This is shown by the high degree given to the three criteria, especially the ease of use

46 |Page

Total

8.8
8.6
8.4
8.3

7B
16
74
72

Quantification

Saisfaction Efficiency Easeto Use
mTotal 772 g2 BE

Impression Criteria

Fig 4.5: The Usability Measures of the Smart Home Software Composer

4.3. Achievements of IWT

IWT delivered number of achievements in both Software Engineering (SE) and in
Anrtificial Intelligence (Al) areas. In general, IWT proves itself as a software tool for ASCG,
and thus, it is one of other techniques for ASCG like the software tools that convert the textual
description of a solution (like pseudocode for example) to source code, or the software tools
that convert the diagrammatic descriptions (flowchart for example) to a source code, in
addition of course to the compilers. Since it has intelligent techniques for answers acquisition
in addition to the usual technique of getting answers from human, IWT pushes wizard class

of software up to a higher level that make the development of software easier.

The most interesting thing to report here is that IWT opens the door towards involving
machine in the performing of cognitive processes of programming, which are the problem
solving. We should admit that IWT is just a beginning step for making the dream of "thinking

machine” become true. Also, IWT deliver a new implementation for machine learning

47 |Page

principle (as we saw in the Smart Home Code Composer case study of IWT) when it records

the daily uses of a human in a table that would be used later for answering certain questions.

4.4. Summery

In this chapter, an evaluation study has been accomplished by using the Performance
objective measure, and the Usability subjective measure. These two measures were evaluated
depending on the feedbacks that had been got from 70 programmers after their use of the
Smart Home Software Composer. The feedbacks had been statistically processed the
performance and usability indicators were quantified. Such evaluation approach is more

realistic and can show how much is the efficiency of the proposed approach.

48| Page

CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS

5.1. Conclusions

In this research, the definition of an Intelligent Wizard Technique (IWT) is produced.
Based on this definition, a Smart Home Composer case study has been developed, which
produced a Python source code software controller for smart home. This code was

successfully running on Raspberry Pi controller that controls a house model.

The results of the evaluation show that the IWT approach scores higher in both
subjective usability and objective performance when compared with the traditional manual
approach to coding. Worth to note here, that the data presented here is based on a small sample

(ten programmers) and should be deemed as preliminary.

5.2. Recommendations
As future work, we recommend the development of IWT as an (IDE) and supporting
it with library functions. Also, making IWT able to engage with well-known design, coding,

and testing software tools.

Also, we recommend supporting IWT with more intelligent techniques, including the
Natural Language Processing (NLP). Such ability would facilitate the using of IWT by non-

programmers.

Another recommendation that may be reported here is extend the function of the IWT
to produce a diagrammatical description of the source code in addition to the textual source

code.

49| Page

IWT may also integrated with other IDEs to be part of them, as much as the code
composer of the user interface, which becomes a usual part of every visual programming

language.

50| Page

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

R. S. Pressman and B. Maxim, Software Engineering: A Practitioner's Approach, 8th

ed., USA: McGraw-Hill Education, 2014.

I. Sommerville, Software Engineering, 9th ed., USA: Addison Wesley, 2010.

A. T. Imam, T. Rousan and S. Aljawarneh, “An expert code generator using rule-
based and frames knowledge representation techniques,” in 5th International

Conference on Information and Communication Systems (ICICS), Irbid, Jordan, 2014.

D. Méry and N. K. Singh, “Automatic code generation from Event-B models,” in The
Second Symposium on Information and Communication Technology, Hanoi, Vietnam,

2011.

N. K. Singh, “EB2ALL: An Automatic Code Generation Tool,” in Using Event-B for

Critical Device Software Systems, London, UK, Springer, 2013, pp. 105-141.

C. Geison, “AnswerLab,” 20 Aug 2019 . [Online]. Available:

https://www.answerlab.com/insights/wizard-of-oz-testing.

D. Salber and J. Coutaz, “Applying the Wizard of Oz Technique to the Study of
Multimodal Systems,” in Third International Conference on Human-Computer

Interaction (EWHCI '93), Moscow, Russia, 1993.

R. Gulndon, “Grammatical and ungrammatical structures in user-adviser dialogues:

evidence for sufficiency of restricted languages in natural language interfaces to

51| Page

advisory systems,” in The 25th annual meeting on Association for Computational

Linguistics, Stanford, California, USA , 1987.

[9] S. Whittaker and P. Stenton, “User studies and the design of Natural Language
Systems,” in Fourth Conference of the European Chapter of the Association for

Computational Linguistics, Manchester, England, 1989.

[10] A. Jonsson and N. Dahlbéck, Talking to a computer is not like talking to your best

friend, Linkdping, Sweden: Linkdping University, 1988.

[11] D. Diaper, “The Wizard's Apprentice: A Program to Help Analyse Natural Language,”
in The fifth conference of the British Computer Society, Human-Computer Interaction

Specialist Group on People and computers V, Nottingham, U.K, 1989.

[12] Y. Polity, J.-M. Francony, R. Palermiti, P. Falzon and S. Kazma, “Recueil de
dialogues Homme-machine en langue naturelle écrite,” Les cahiers du Criss, vol. 17,

1990.

[13] N. Dahlbéck, A. Jonsson and L. Ahrenberg, “Wizard of Oz studies-why and how,”

Knowledge-Based Systems, vol. 6, no. 4, pp. 258-266, 1993.

[14] D. Maulsby, S. Greenberg and R. Mander, “Prototyping an intelligent agent through
Wizard of Oz,” in The INTERACT '93 and CHI '93 Conference on Human Factors in

Computing Systems, Amsterdam, The Netherlands, 1993.

[15] A. J. N Dahlback, “Empirical studies of discourse representations for natural language
interfaces,” in The fourth conference on European chapter of the Association for

Computational Linguistics, Manchester, England, 1989.

52| Page

[16] J.-M. Francony, “Towards a methodology for wizard of 0z experiments,” in Third

Conference on Applied Natural Language Processing, Trento, Italy, 1992.

[17] F. L. Loaiza, D. A. Wheeler and J. D. Birdwell, “A Partial Survey on Al Technologies
Applicable to Automated Source Code Generation,” Institute for Defense Analyses,

Alexandria, USA, 2019.

[18] E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design Patterns Elements of

Reusable Object-Oriented Software, vol. 99, New York: ADDISON-WESLEY, 1995.

[19] R. W.Floyd, “A Descriptive Language for Symbol Manipulation,” Journal of the

ACM, vol. 8, no. 4, pp. 579--584, 1961.

[20] D. Knuth, “Semantics of Context-Free Languages,” Mathematical systems theory, vol.

2, pp. 127--145, 1968.

[21] S. L. Graham, “Table-driven code generation,” Computer, vol. 13, no. 8, pp. 25-34,

1980.

[22] Y. Danilchenko and R. Fox, “Automated code generation using case-based reasoning,
routine design and template-based programming,” in Midwest Artificial Intelligence

and Cognitive Science Conference , Cincinnati, USA, 2012.

[23] E. Kitzelmann, “Inductive programming: A survey of program synthesis techniques,”
in Third International Workshop on Approaches and Applications of Inductive

Programming, , Edinburgh, UK, 2009.

53| Page

[24] W. B. Knox, S. Spaulding and C. Breazeal, “Learning from the wizard: Programming
social interaction through teleoperated demonstrations,” in The 2016 International

Conference on Autonomous Agents & Multiagent Systems, Singapore, 2016.

[25] V. Murali, L. Qi, S. Chaudhuri and C. Jermaine, “Neural sketch learning for
conditional program generation,” in Sixth International Conference on Learning

Representations (ICLR), Vancouver, Canada, 2017.

[26] K. Christakopoulou and A. T. Kalai, “Glass-Box Program Synthesis: A Machine
Learning Approach,” in Thirty-Second AAAI Conference on Artificial Intelligence,

New Orleans, Louisiana, USA, 2018.

[27] A. T. Imam and A. J. Alnsour, “The Use of Natural Language Processing Approach
for Converting Pseudo Code to C# Code,” Journal of Intelligent Systems, vol. 29, pp.

1388--1407, 2020.

. Karpathy, “The Unreasonable Effectiveness of Recurrent Neural Networks,
[28] A hy, “Th ble Effecti f 1 ks,”
github, 21 may 2017. [Online]. Available: http://karpathy.github.io/2015/05/21/rnn-

effectiveness/.

[29] P. Yin and G. Neubig, “A Syntactic Neural Model for General-Purpose Code
Generation,” in Proceedings of the 55th Annual Meeting of the Association for

Computational Linguistics, Vancouver, Canada, 2017.

[30] M. 1i, W. Gu, W. Chen, Y. He, Y. Wu and Y. Zhang, “Smart home: architecture,
technologies and systems,” in 8th International Congress of Information and

Communication Technology, Tianjin, 2018.

54| Page

[31] E. I. Davies and V. Anireh, “Design and Implementation of Smart Home System
Using Internet of Things,” Journal of Digital Innovations and Contemporary

Research In Science, Engineering and Technology, vol. 7, pp. 33--42, 17 Jan 2019.

[32] J. F. Nusairatl, “Raspberry Pi,” O’Reilly online learning, 2020. [Online]. Available:
https://www.oreilly.com/library/view/rust-for-

the/9781484258606/html/481443 1 En_8_ Chapter.xhtml.

[33] P. F. Dubois, “Python: Batteries Included,” Computing in Science and Engineering,

vol. 9, no. 3, pp. 7-9, 2007.

[34] K. Milmann and M. Avaizis, “Python for Scientists and Engineers,” Computing in

Science and Engineering , vol. 13, no. 2, pp. 9-12, 2011.

[35] P. Fabian, V. Gaél, G. Alexandre, M. Vincent, T. Bertrand, G. Olivier, B. Mathieu, .
P. Peter, W. Ron and D. Vincent, “Scikit-learn: Machine learning in Python,” The

Journal of machine Learning research, vol. 12, pp. 2825-2830, 2011.

[36] B. Ballmann, Python Basics, Uster: Springer, 2020.

[37] A. T. Imam, A. J. Al-Nsour and A. Hroob, “The Definition of Intelligent Computer
Aided Software Engineering (I-CASE) Tools,” Journal of Information Engineering

and Applications, vol. 5, no. 1, pp. 47-56, 2015.

55| Page

APPENDIX A: THE SURVEY

A.1 The Structure of the Used Survey

Fig. A.1 (a) and (b) illustrate the contents of the survey that had been used to evaluate

the Smart Home Software Compose case study of the IWT,

Evaluate the Performance

How many fimes did you need to manual code the
smart home controller?

O Firsttime
O 2times
O 3times
O Mever Succeeded

Average Time

How long did it take to manually code the smart
home controller ?

O 5-10 min

O 1020 min
O 20-30 min
O 3040 min
O 4060 min

Evaluate the Usability

“Your Satisfaction rate ranging (1-10) in the smart
home software composart 7

o1

oooooooaoan
R BT R SN

=

Created By Samer AL Haddadin

]

elpuyllénola

Smart Home Softwear Compovser Survey

Please take a moment to help us improve your experience at smart home software composer. When you're done,
please give us your feedback and provide us your suggestions to enhance the work.

How many fimes did you need to automatically code the
smart home controller?

O Firsttime
O 2times
O 3times
O Mever Succeeded

How long did it take to automatically code the smart
home controller 7

O 5-10 min

O 1020 min
O 20-30 min
O 3040 min
O 4060 min

‘Your Efficiency rate ranging (1-10) in the smart home
software composar 7

o1

oooooooaoan
o

= @ W N ;e W

=

‘Your Ease to use rate rang (1-10) in the smart home
software composar ?

o1

[m]
Y

ooopooooao
S ©® N U e W

=

Additional Comments

About You (optional)
Name
Address
Fhone
Email

Thank yov for your participation!

Created By Samer AL Haddadin

Fig A.1: (a) The First Page of the Used Survey

(b) The Second Page of the Used Survey

The survey had been given to 70 programmers along with copy of the Smart Home

Software Composer to get their feedbacks. The programmers were of different experience

and skill levels of programming using Python code. These programmers were either fresh

graduates for information technology faculties, or who newly finished a programming course

in Python, or professional programmers in Python. Fig A.2 Shows a sample the feedbacks got

from a programmer

56| Page

Fig A.2: Sample of a Feedback from a Programmer

The feedbacks had been tabulated and visualized as shown by Fig A.3 (a), A.3(b), and

A.3(c). These results were used to evaluate our proposed IWT as given in Chapter 5 earlier.

57|Page

\ELTE]

Automatic

\ELUE] #

Automatic

Efficiency

Satisfaction

#

~
o
o|o|~|ojo|o|w|mio|om|of-|mio|ol=|om|Nm|ofm|m m|oln|m nlojofolmlmialm|mimNinofo|Nmlmmimc|mmmc~olnolonnofojm aan =~ -lol~E
alal ol <lin]o|~olale| 2@ tnfo|~wlalo|d|afm|g|nlolno|alo|d|a|nls|v] |~ wlalo|dalo|t|uleln]|v|ala| | afmsn|ol~o|alal«a|nlsn|ol~folaloRd
1111111111222222222233333333334444444444555555555566666666667%

o)

<
olo|olo|lo|o|o|o|o|o|o|olo|o|n|o|s|o|o|olo|o|olo|o|o|olol|olo|olololalolo|olololololo|ololololololo|olo|olo|olololololololololololo|o|o|o|o|olM
oI 0| F|F|o|n|F|F|F|0|0|F|m|<F|O|m|F[N|O|™|F|F|IF|M|@|0|F|F|F|O|F|O|F|F| T |0|F|F|F|F|F|O|0|0|m|IF|m|TF|m|E|F|F|O|F|m|F|F|0|O|0|F|M| M| NC|F|C|0|n R
)

<

-

N

®

o|lo|n|o|o|o|o|o|o|o|o|o|o|o|o|o|n|n|o|o|o|n|olo|o|o|elo|olo|olo|n|alol o|olololn|olelolololn|oleln|e|o|n|e|n|o]|e|olo|lo|o|lolo|olololn|c|o|c|okd
N NAN| AN A A AN AN |- Ll i Rl Rl Rl Rl Rl Kol Kol o) AN A AN Ll U EalRal Bal |- m| - — Al H [H| A A A | A || |~ g3
N

o

—

)
123456789012345678901234567890123456—/890123456—/89012345678901234567890m
IR e R e S R T R R] R K RN RN R N RN RN RN RN RN R RO R R R KT U R R RS RO A RN S N R 3 R R A el YRR I Pul In el Y r) i] R R RE R R RGIRIRGIRGHEN.

>

a|~N|N[Glw|w|a|a|a|a]|Q|S|a|a|x|a|a|a|a|o|o|a|a|a|a|S|a|a|a|w|a|S]|w|~ m899wm9m888999998999w6mm8899w98m678m
o

~

wn

0
Slo|o|e|e|o|najo|vla|a|a|xio|o|aSa|xalo|afvla|S oo S|afo|o|S oo w|S|olnlo|ol~INSINo|Nolo|olal~o|ololo|ofols|o|ofo]olwls]o|~f ool
—

b

0

a

N

<

s
o|~[oo|~[o|©o]|w|o]|w|w|o]|n|o|~|a|nlola|wl~|~ola|~a|wolo|o]|Sa|wo|~|al~[o] oo~ ~alo|a[~|o|a|o|wlo|S]|S[~]w|o|S|wn|wo]|v|o|o|n|n]|alo|alo|a]o|S]|~|~EN
I

N

~

~N

Y e o o o N TS P B =l T A e R N B e = B N T R B T R N B B =t R N e B A Y R N = e =) B N B A P R N A R B N B A P R N e E e A N B A T R N R R S
1111111111222222222233333333334444444444555555555566666666667m

(©)

(b)
(a) Statistics of Usability Criteria

(@)

(b) Statistics of Average Time
(c) Statistics of Performance

Fig A.3

58| Page

B.1. Introduction

As shown by Fig B.1 and Fig. B.2, the paper has been submitted to the International
Journal of Advanced Computer Science and Applications (IJACSA) volume 13 number 1,

year 2022. The IJACSA is published in the U.K with ISSN 2158-107X and elSSN 2156-

5570.

Fig. B.1: The Submission Approvement

59| Page

2] Moveto v Categorize v (® Snooze v Undo

1JACSA January 2022: Paper Submission Received

Editor IJACSA <editorijacsa@thesai.org> 4 5 9 D>
Fri 12/24/2021 9:44 AM

To: gadlazdl yoluw; Dr. Eyad Al-Zobaydi; Saraireh <m_ edu.jo:

Dear Corresponding Author,

Thank you for submitting your paper entitled:
1. “The Definition of the Intelligent Wizard Technique (IWT) - Smart Home Software Composer Case Study”

for publication with International Journal of Advanced Computer Science and Applications (IJACSA) January 2022 Edition (Volume 13 No 1).
Your paper will be reviewed by IJACSA technical committee and the evaluation outcome will be communicated up to 15 January 2022.

Regards,

Editor

1JACSA

The Science and Information (SAI) Organization

Reply Reply all Forward

Fig. B.2: Email to Acknowledge the Reception of the Paper

B.2. The IJACSA Journal rank in Scoups and ISI Indexes
Fig. B.3 shows the Scoups rank of the IJACSA journal, which is Q3. Fig. B.4 (a, b,
and c) shows the ISI rank of the IJACSA which is Emerging Source Citation Index (ESCI)

with Journal Citation Index (JCI) of 0.17 for year 2020.

@5 L @ Total Documents My @ Total Cites @ Self-Cites R HE Citations per document L
4k
0z 1.2k 4
s
600 * 3z
016
04 o 24
0
2019 2020 017 a0 209 2020 2017 2018 28 2020
e
@ Extemal Cites per Doc @ Cites per Doc LG @ w intemational Callaboration o HE @ Citable documents @ Nonvcitable socuments MR
2 0
4 20 o8
2) n N
a7 2018 2019 2020
a 0 Gites ¢ Dos. (4 years)
o @ Cites / Doc. (3 years)
007 2018 2019 2020 2017 2008 2019 2020 2017 2018 2019 2020 ® Cites /Do (2 yeors)
® Cried documents @ Uncited documents A
N bttt STOW B WiGgetn G SCimaga Graphica
Advanced Computer.. your own website
Explore, visually
Just copy the eode below communicate and make
* and paste within your htmi sense of data with our new
code: free ool
[<ewet i v smen
0 A
A~ 207 2018 209 2020 _-—

Fig. B.3: The Statistics of the IJACSA Journal on Scopus

60| Page

12027121, 6:34 AM Web of Science Master Joumal List - Joumal Profile

Web of
iScience Master Journal List SearchJoumals MatchManuscript Downloads Help Center

Group

Abaut

General Information

< Share This Journal
Web of Science Coverage

1551 2158-107X | 2156-55T0

Journal Citation Report

Peer Review Information

“hout @

«C5iis a high profile, leading edge platiorm for
thodelogies. The journal will feature a diverse mixture of publication articles including core and applied computer

General Information

Journal Website & visit site Publisher Website
1t Vear Published 2010 Frequency
Issues Per Year 12 Country | Region
Primary Language English

Web of Science Coverage

Fttps:/mjl.clarivate. com journal-profile

INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS

ier SCIENCE & INFORMATION SAI ORGANIZATION LTD, 19 BOLLING RD, BRADFORD, WEST YORKSHIRE, ENGLAND, 00000

like to publish stste-of-th he respective fields of Computer Science
e and information security related toy

Welcome, Ayad Tareq Imam

€ settings 3] Log Out

Application

5.~ See mereat

& visit site

Monthly

UNITED STATES OF AMERICA

s

Fig. B.4 (a): The Statistics of the IJACSA Journal on Web of Science

12127121, 834 AM Web of Science Master Joumal List - Joumal Prafile

Callection index Category

Core Collection

Emerging Sources Citation Index (ESC) Computer Science, Theory & Methods

‘Search a tapic within this journal

Similar Journals @

QFind Similar Journals

Journal Citation Report™ (JCR)

Journal Citation Indicator (JCI) ~ NEW METRIC

The Joumnal Citation Indicator is a measure of the average Category Normalized Citation Impact (CNCI] of citable items [articles & reviews) published by a journal aver a recent three

year period. It is used to help you evaluate journals based on other metrics besides the Journal Impact Factor (I,

2020
0.17

Category:
Computer Science, Theory & Methods

Categon

hitps: il clarivate com/journai-p rofile

v
Computer Science, Theory & Methods

2019
0.18

Learn About Journal Citation Indicator

0

Fig. B.4 (b): The Statistics of the IJACSA Journal on Web of Science

6l|Page

12127121, 6:34 AM Web of Science Master Joumal List - Joumal Profile

Peer Review Information

Publons Partner @ No, and this journal does not explicitly Claimed Reviews.on Publons @ 1,003
endorse Publans

Public Reparts on Publons @ L Signed Reports on Publons @ No

Publons Transparent Peer Review Partner Ho Publons User Endorsements @ a8

Sign up for a free Publons account to track your publications, citation metrics, peer reviews, and editing work for this journal

Publishers 2 ble

c not become i ible for the editorial of any journal or the business pra fany publishe:
their journal performance and compliance with ethical publishing standards. The views and opinions expressed in any journal are these of the author(s) and da not necessarily reflect the views or opinions of Clarivate. Clarivate remains
neutral in relation to territorial disputes, and allows journals, publishers, institutes and authors to specify their address and affliation details including territory.

a for selection of newly submitted titles and re-evaluation of existing titles in the Web of Science are determined by the Web of Science Editors in their sole discretian. i a publisher's editorial policy er business practices negatively
impact the guality of a jeurnal, or its role in the surrounding literature of the subject, the Web of Science Editors may dedline ta include the journal in any Clarivate product or service. intheir
may remove titles from coverage at any pointif the tites fail to maintain our standard of quality, do not comply with ethical standards, or otherwise do not meet the criteria determined by the Webof Science Editors. f a journal is

deselected or removed from coverage, the journal will cease to be indexed in the Web of Science from a da tors.in their s ticles published after that date will not be indexed. The
Web of Science Editors' decision on all matters relating to journal coverage will be final.

Clarivate,™ Accelerating innovation.

©2021 Clarivate Copyright Notice Terms of Use Privacy Natice ¥ Manage P Help Center

rlowe: 5 @ @ ® O O

hitps:ifmil clarivate.com/journal-profile s

Fig. B.4 (c): The Statistics of the IJACSA Journal on Web of Science

62|Page

B.3. First Page of the Paper

TTACS

A} Tnternarionas] Jowrnal of Advenced Compurer Sciance and Applications

Val 73 Mo 1 2077
Fol. 13, No. 1, 2021

The Definition of the Intelligent Wizard Technique
(IWT)

Smart Home Software Composer Case Study

Samer Alhaddadin'
Dept. of Software Engmeering
Lzra University
Amman, Jordan, Country
2d0884(@m.edu jo

Avad Tareq Imam’
Dept. of Software Engmeering
Lzra University
Amman, Jordan, Country
alzobaydi & i edu jo

Mohammad Sariara’
Faculty of Engineering
Wutah University
Karak, Jordan

m Eray

Abstrace—While the current Computer Aided Software
Engineering (CASE) tool: are of notable help to the developers in
compozing programs, thers iz ztill a nesd for more flexible
supporting software tools to address the raizez in the complexity
of compozsing programsz. The sutomating of the human’s
intellectual activities that are required to compose a program can
be the anzwer for such need.

Thiz paper propozez the definition of the Intellizent Wizard
Technique (IWT) as a stratezy to collect anzwers to certain
quaztions from zort of rezources (in addition to the uzer as the
usual wizard does) to automate the generation of zource code
Based on thiz propozsing, a mew Awntomatic Code Generator
(ACG) that can generate a Python language source code for
smart home application iz developed in this paper az a caze study
for IWT. The rezulted eode haz been tezted on a real home and
the rezultz showed the zoundnezz of the code. IWT can he
clazzified az an Intellizent Computer Aided Software engineering
(I-CASE) tool.

The evaluation of the rezulted code waz achieved by uzing the
objective measure of the performance, and the zubjective
meazure of nzability.

Eeywords— Sowrce Code Generation; Wiard; Smaort Home;
Rasphervy Pi; Python; FCASE
L INTRODUCTION
Code bulding 1= a techmaue that 15 used to quckly update
and develop zoftware umng Awtomatic Code Generation
(ACG) software. ACG software 13 an automated process
intended for normal coding tasks of software design. ACG has

edujo

mreat potential for developing programs in a faster way becanse
it helps zave time and effort, improve program quality, and
become more accurats, and help developers get rid of boring
routine tazks. Code generation technology 1z widely used and
has helped m the development of many different types of tolen
generators. For example, the Java decompiler (JAD) converts
byte code to Java source code [1]. We cammot igmore the
promizing resultz of cument ACG technologies and note that
most of these techmgues, ezpecially official models, need mput
by humans. This 15 expected because the programmer's job
requires innovation and crestivity and is considered a creative
(non-routine) job, ACG's curiculum prefers to force smdents
to zpecialize in software enginesrs to work on non-routing jobs
rather than to replace software engmeenng entirely. Passive
code crigin 1= a type of code zenerator that also produces code
that meeds to be modified by the programmmer [1]. ACG
technique is used to develop marny applications like wizard.

The Wizard of Oz (WoZ) technique mwolves participants
nteracting with 2 svstem that appears to be autonomous but is
really controlled by an unseen human operator in the adjacent
building. [2]

Woz Systems that are currently i use. The type of extant
Woz systems was created to mmvestgate the use of natural
languages in Information Retrieval (IR) svstems. Experiments
on telephone information services, such as phone directories,
travel or train mformation, and rezervation =ervicez, have
proven frutful [3] [4].The experimental setup 1
straightforward: the wizard takes calls and actz as thousgh

www_thezal org

63| Page

gsl.'\hm‘}” s Sl laisd ?\.\Sl.ul..l l;.l&ﬁ Python Jhaa ey sl
S8 e el
X | KN | ™ "

lde o
sl @ de A o

&
Bl pal) lasbs dana 2

udlal)

i sale Baclue 2285 4lall (CASE) Grssdall sacluey Clae) duia lsal o (e a2) e
et 8 a3l Aallaal A g e ST A)y dma yy <l gol) dala @llia)35 Y 430 W) el) Cadls a0) shaall

Aalall 03¢d Jall & el oLy A glaall 4y i 4 ySall ddadl) diadl () 55 of Syl el

1z) e jlias e CllaY) pen o 5,08 e (Wizard) il gl ey Ly

ALY clls) aead (ACG) (A 3 501 ol sl B Dl JLdS (IWT) (S gellnal) 285 iy o5 il Jand)
132 o sl aadl 5 il olis) 45 (alinad) mlirall dody LS axsiivadl) 8LaYU) daliie jolias (e digme
258 oLl LeiSay Al g 32254l IWT 4 Smart Home Software Composer Ala &l ja s ghai &3 ¢ 8Y)
LDl gl < jeal 5 s J 3 e il Python 258 Jlia) &3 S J el aSadi3aa 5l Python 4aly jaae

(I-CASE). o gulall e Livay el diigh 483 3108 JWT Caia (K 2SI

Aladiuly 2asall [WT = 4adll Smart Home Software Composer Al 4l jo andi ¢l) &
QLaa)1 785 o Hany L.,Smj ce\éifw\i\ Al ‘;..ai.fﬂ\ obadl 5 ¢791.6 = L.,SM‘J celad ‘5:;}.4‘941\ eldal)

cn‘).\.qﬂm&\)&y Hﬂ\ 0l ﬁ&:\;e\aﬁuy‘ A el /97J LN /91}

64| Page

