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ABSTRACT

My dissertation combines the notion of residential sorting from Tiebout (1956)

with Grossman’s (1972) concept of a health production function to develop a new

empirical framework for investigating what individuals’ residential location choices

reveal about their valuation of amenities, the welfare effects of climate change, the

forces underlying environmental justice, and the value of a statistical life. Location

choices are affected by age, health, and financial constraints, and by exposure to

local amenities that affect people’s health and longevity. Chapter 1 previews how

I formalize this idea and investigate its empirical implications in three interrelated

essays.

Chapter 2 investigates interactions between health, the environment, and income.

Seniors tend to move at higher rates after being diagnosed with new chronic medical

conditions. While seniors generally tend to move to locations with less polluted

air, those who have been diagnosed with respiratory conditions move to relatively

more polluted locations. This counterintuitive pattern is reconciled by documenting

that new diagnoses bring about increases in medical expenditures, thereby limiting

disposable income that can be spent on housing. Relatively cheaper places tend to

be more polluted, and higher exposure to pollution leaves seniors more vulnerable to

future health shocks.

In Chapter 3, I combine information about housing prices with estimates of

location-specific effects on mortality to estimate the Value of a Statistical Life (VSL)

for seniors - one of the most important statistics used to evaluate policies affecting

mortality. Since local amenities correlate with causal mortality effects, but also pro-

vide utility independently, the difficulty in controlling for local amenities implies that

my VSL estimates are best interpreted as bounds.

Chapter 4 builds a new structural framework for evaluating spatially heteroge-
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neous changes to local amenities. I estimate a dynamic model of location choice with

a sample of 5.5 million seniors from 2001-2013. Their average annual willingness-to-

pay to avoid future climate change in the United States under a “business as usual”

scenario ranges from $962 for older, sicker groups who are more vulnerable to climate

change’s negative effects on health to -$1,894 for younger, healthier groups, who value

warmer winters and are relatively resilient.
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Chapter 1

INTRODUCTION

My research investigates the dynamic interactions between residential location choices

and health among senior citizens in the United States, how these dynamics can create

and widen disparities in pollution exposure and health outcomes between socioeco-

nomic groups, and what can be learned from these dynamics about the Value of a

Statistical Life among different demographic groups.

I am focused on problems related to human health, migration, and climate change.

The studies that form this dissertation investigate these problems using cutting-edge

empirical methods that improve the way that economic ideas such as dynamic op-

timization can be used to rigorously analyze individual behavior to improve current

understanding of how individuals make decisions when facing tradeoffs between pri-

vate good consumption, their own health, and their access to local public goods. This

information can be used to evaluate the distributional effects of policies that target in-

dividuals’ decision-making behavior in order to achieve outcomes that policy-makers

deem to be beneficial to society.

In Chapter 2 I start from the observation that seniors who have been diagnosed

with chronic respiratory conditions are more likely to move to places with relatively

higher levels of ambient air pollution, compared to movers who have not been di-

agnosed with respiratory conditions. I attribute this counterintuitive finding to a

combination of dynamic interactions between health, wealth, and residential sorting

that can create an “Illness Poverty Amenity Trap”. Results show that the onset of

new chronic medical conditions increases out-of pocket medical expenditure, and can

trigger people to move due to their lower disposable income and the loss of physical
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and cognitive skills. Since more polluted neighborhoods tend to be cheaper in terms

of housing costs, sicker and poorer individuals become more likely to move there fol-

lowing negative shocks to their health, and hence to their disposable income. The

higher pollution levels in their new neighborhoods make them even more vulnerable

to future health shocks. The economic implications of illness-poverty-amenity traps

for U.S. senior citizens are potentially large, when their residential location choices

can mitigate or exacerbate disparities in pollution exposure and health outcomes.

This research on air pollution can in principle be extended to investigate whether

similar phenomenona arise with respect to forms of water and land pollution. For

example, pollution of ground water in rural areas on well water and pollution of fresh

water bodies that feed public water systems may contribute to negative health out-

comes. Similarly, the removal of pollutants, for example through Superfund cleanups

of hazardous waste sites has potential to reverse this cycle. However, the scope for

reversal also depends on the extent to which cleanups are capitalized into property

values and trigger gentrification that may prompt sicker and poorer renters to move

away from the improved areas. Understanding the dynamic interactions between pol-

lution, health, and residential sorting among senior citizens is especially important

for the United States because people over 65 are the fastest growing age group. My

results suggest there is more to be learned about which demographic groups are most

at risk from negative effects of climate change in areas that will grow to be more

prone to extreme weather and natural disasters.

In Chapter 3 I estimate the Value of a Statistical Life (VSL) for senior citizens

based on the amounts they implicitly pay for statistical life extension through residen-

tial housing prices. Recent research has shown that there is large spatial heterogene-

ity in longevity across the US. These differences stem from underlying differences

in health among the population in different locations, but also from causal effects

2



that locations appear to have on their citizens’ mortality. In the spirit of the Rosen-

Roback sorting model, differences in longevity across locations can be expected to be

reflected in differences in the cost of living, such that the total utility values across

locations equalize. Thus, I combine estimates of local causal mortality effects with

information on the cost of housing to estimate the VSL from these joint differences in

mortality and housing cost. Results suggest that the VSL declines in age, in line with

previous literature (Aldy and Viscusi, 2008; Ketcham et al., 2020). The estimated

lower and upper bounds cover VSL estimates from the literature, yet span relatively

wide intervals, which future research could usefully aim to refine.

Chapter 4 combines the ideas of Grossman health investment and Tiebout sorting.

Put simply, one’s residential location can have a causal effect on one’s health and

mortality, making the choice of where to live a form of investment in future health

that individuals may consider when they sort into neighborhoods. I investigate this

link using data provided by the Center for Medicare and Medicaid Services (CMS),

that gives me information on the evolving residential locations and health of over 5

million seniors between 2001 and 2013. I estimate a dynamic discrete choice model of

residential location choices made by forward-looking individuals and use the estimates

to analyze the distributional welfare implications of future climate change for the

United States under a “business as usual” scenario. I find that older and sicker

individuals will bear the largest burden of climate change, while relatively younger

and healthier seniors may in fact benefit from warmer climates in part because they

are relatively mobile. My analytical framework can be adapted to investigate the

winners and losers from changes in pollution of air, or water, or land.
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Chapter 2

ENVIRONMENTAL JUSTICE FOR SENIORS: EVIDENCE FROM MEDICARE

ADMINISTRATIVE RECORDS

In this essay, I investigate the post-retirement dynamics of residential sorting, pol-

lution exposure and health among US senior citizens.1 My findings are consistent

with a “pollution poverty” trap. Figure 2.1 summarizes the key mechanisms. The

trap results from the fact that it more expensive to live in neighborhoods with better

amenities like clean air, mild climate, and high-quality health care. Lower-income

seniors are more likely to choose to live in less expensive neighborhoods with worse

environmental conditions. Elevated pollution exposure increases their risk of negative

health shocks. Health shocks increase their out-of-pocket medical costs and reduce

their physical and cognitive skills. Declines in health and disposable income can mo-

tivate seniors to move. And movers who face growing medical bills and declining

health may optimally choose to move to more polluted neighborhoods, perpetuating

the vicious cycle shown in Figure 2.1.

It is especially important to investigate disparities in pollution exposure among

seniors. Seniors are the fastest growing age group in the US, predicted to account for

20 percent of the population by 2030. They are also the most vulnerable age group to

the health effects of air pollution and heat stress. For instance, the EPA attributes 78

percent of all premature deaths avoided by its air pollution regulations to people over

age 65 (IEc, 2011). Further, annual taxpayer-financed Medicare spending exceeds

$600 billion.

1This essay has emerged from joint work with Nicolai Kuminoff and Jonathan Ketcham.
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Figure 2.1: Illustration of the Pollution Poverty Trap
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I first develop a novel model of Tiebout sorting that incorporates health and med-

ical spending. Then I test its predictions using 13 years of administrative records on

more than 5 million seniors. My work connects the literatures on environmental jus-

tice (Banzhaf et al., 2019), poverty traps (Becker and Tomes, 1979; Chetty and Hen-

dren, 2018), residential sorting (Kuminoff et al., 2013), and measuring the effects of

residential location on health (Deryugina and Molitor, 2018; Finkelstein et al., 2018).

The conceptual framework combines a Tiebout-style (Tiebout, 1956) model of resi-

dential sorting with a Grossman-style (Grossman, 1972) health production function.

Flow utility depends on consumption of housing and other private goods, the stock

of health, and an index of neighborhood amenities (e.g. air pollution, climate, and

health care quality). The health stock evolves as a stochastic function of past health,

neighborhood quality, and medical expenditures. Seniors solve a repeated static op-

timization problem. Each period they realize their health, incur medical costs, and

then choose where to live the following period. The model allows me to characterize
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the dynamics of residential sorting and health when seniors value amenities that affect

their health but do not fully know their own health production functions (e.g. they

may dislike air pollution, but not know precisely how their exposures affect their risk

of a fatal heart attack). This model allows me to consider how current health may

affect residential choice through two channels. First, it may constrain the amount

of income that can spent on housing by requiring out-of-pocket medical costs. Sec-

ond, it may affect seniors’ marginal rates of substitution between public and private

goods. Residential locations affect future health via local environmental quality. A

single-crossing assumption allows me to make predictions about sorting behavior.

Specifically, I assume that the slope of the indirect indifference curve in price-

amenity space is increasing in income conditional on health and in health conditional

on income. Intuitively, a healthier person will have a higher marginal willingness-to-

pay for local public goods, conditional on income, because being healthy enhances

their ability to engage in complementary activities such as outdoor recreation. The

single-crossing assumption disciplines the model in a way that allows me to make

testable predictions about the dynamics of sorting and health. First, it implies that

lower income seniors will sort themselves into lower amenity areas, causing their

health to decline faster and causing them to spend more on health care. Second,

health shocks will tend to increase medical spending and migration rates. Finally,

lower income migrants will tend to move to lower amenity areas.

I test these predictions using administrative records for a 10 percent random panel

sample of U.S. senior citizens from 2001-2013. I observe each person’s age, gender, and

race; their evolving health measured by diagnoses for more than 30 chronic medical

conditions; their annual medical expenses; whether they receive Medicaid subsidies

(a proxy for low wealth); their precise residential locations each year; and their death

dates. Consistent with model predictions I find that: (1) lower-income seniors become
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sicker and die sooner, (2) lower-income seniors have higher medical costs, (3) mor-

bidities linked to air pollution and heat stress substantially increase medical costs

and migration, and (4) conditional on moving, lower-income seniors tend to move

to neighborhoods with higher fine-particulate matter air pollution. These findings

suggest that the pollution poverty trap works against the EPA’s environmental jus-

tice goal of reducing pollution disparities across different socioeconomic groups. For

instance, my findings show that the average move during the 2000’s widened the

income-PM2.5 gap by 17 percent of its start-of-decade level among seniors.

2.1 Related Literature

This study connects on several distinct literatures. The conceptual framework

built here models a poverty trap, where the channel that sustains inequality in income

is the interaction of health and the environment. Lower income individuals sort into

lower amenity locations, in line with theory formalized by the Tiebout sorting litera-

ture. Lower amenity neighborhoods in turn tend to be more polluted and to have less

favorable effects on health, which has been documented in empirical studies. Negative

health shocks finally bring about expenditure shocks that reduce disposable income

and constrain location choices even further. Since this work investigates systematic

differential exposure to pollution for individuals of different means, it forms part

of the literature in Environmental Justice (EJ). The EJ literature aims to quantify

the extent of and understand the ways in which some groups are disproportionately

exposed to environmental disamenities.

2.1.1 Poverty Traps

There is a large economic literature on poverty traps starting with a seminal

paper by Becker and Tomes (1979) that shows how income inequality may persist for
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multiple generations.2 In their model differences in luck for an initial generation can

affect future generations through investments in the human capital of their offspring.

Initial income inequality can persist when borrowing is constrained. Specifically, if

borrowing constraints limit parents’ investments in their children’s human capital this

can transmit income inequality from the first generation to the second generation,

effectively establishing an intergenerational poverty trap (Loury, 1981; Galor and

Zeira, 1993).

Poverty traps can also arise from residential sorting and neighborhood spillovers

such as peer effects in schools. If wealthier and more highly educated parents tend

to choose to live in similar neighborhoods where (1) public education spending is de-

termined at the local level and (2) the neighborhood composition generates spillover

effects (e.g. higher school spending, peer effects in schools), then income inequality

can persist over many generations (Benabou, 1994; Durlauf, 1996). In the earlier

models of intergenerational poverty traps like Galor and Zeira (1993), income in-

equality is not persistent in the long run because the intergenerational transmission

of inequality is not perfect; in the models of Benabou (1994) and Durlauf (1996)

income inequality can persist. In recent work, Durlauf and Seshadri (2018) show

how increases in cross-sectional inequality lead to lower social mobility across gener-

ations. The key channel for these intergenerational poverty traps is the production

technology of human capital, together with a borrowing constraint.

Poverty trap dynamics may also occur within a single generation. Sizeable neighborhood-

level effects on children’s future incomes have been confirmed empirically (Chetty and

Hendren, 2018). A recent example of an intragenerational poverty trap, arising from

differences in pollution exposure, is Isen et al. (2017). They show that differences

in pollution exposure in utero cause significant income differences among workers in

2For an overview of this literature see the Handbook chapter Azariadis and Stachurski (2005).
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their early 30’s. This paper will add to the literature by investigating the potential

empirical importance of poverty traps late in life.

2.1.2 Tiebout Sorting

The seminal sorting paper by Tiebout (1956) envisions individuals choosing the

community that offers their most preferred bundle of local public goods (Tiebout sort-

ing). A large body of research has since formalized spatial equilibria (Epple et al.,

1993; Epple and Platt, 1998; Epple and Sieg, 1999) used them to estimate the valua-

tion of consumers for public goods (Bayer et al., 2009; Hamilton and Phaneuf, 2015),

and simulated the welfare effects of changes in public good provision at the commu-

nity level (Sieg et al., 2004; Tra, 2010). A comprehensive review of the literature on

residential sorting is provided in Kuminoff et al. (2013).

The economic magnitude of Tiebout sorting is an open research question. Rhode

and Strumpf (2003) argue that if individuals sort into communities primarily based

on their preferences for public good provision, a decline in the cost of moving should

augment Tiebout sorting and therefore lead to more pronounced heterogeneity in

public good provision across communities. However, they find no strong evidence

that the historic decrease in mobility cost over the past century would have increased

the heterogeneity in public good provision across communities. On the other hand,

Banzhaf and Walsh (2008) find evidence that community sizes and community in-

come distributions respond to exogenous changes in public goods in ways that are

consistent with Tiebout sorting. A common feature of sorting models is heterogeneity

among individuals along dimensions like income, wealth, and tastes, which then sys-

tematically affect decision-making. This paper will add to this research question by

gauging to what extent changes in individual health translate into observable moves,

and whether these moves and the accompanying changes in pollution exposure rein-
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force initial differences in health.

2.1.3 The Effect of Neighborhoods on Health

Locally determined factors like air quality, health care, and climate affect human

health. Ambient air pollution has been shown to increase all-cause mortality (Pope III

et al., 2002; Deryugina et al., 2019), cognitive performance (Zhang et al., 2018),

and the risk of dementia (Underwood, 2017; Bishop et al., 2018). For an overview

over empirical evidence of how pollution affects human health see Graff Zivin and

Neidell (2013). Beyond that, recent empirical evidence has shown that the location

of residence has a causal effect on mortality (Deryugina and Molitor, 2018; Finkelstein

et al., 2018).

2.1.4 Environmental Justice

Environmental justice is a political mandate for more equitable distribution of

exposure to environmental quality among the population. Residential sorting by

income and taste can make this goal harder to achieve. Depro et al. (2015) show that

when individuals re-sort following policy changes that affect public good provision,

costs and benefits of the policies may be distributed differently among the population

than intended by the policy-maker. A recent comprehensive review can be found in

Banzhaf et al. (2019). It is known that pollution negatively affects health, and that

people sort differently based on individual-level heterogeneity like income and health

status. These insights open the door to acknowledging that when an adverse health

shock affects income, future location decisions might be constrained - and sorting into

cheaper, more polluted places endangers health even further.
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2.2 Data

I use data on Medicare beneficiaries to identify the effect of health shocks on

medical expenditures, on the propensity to move, and the relative changes in pollution

exposure among movers. All US citizens age 65 and above are eligible for Medicare

benefits. The US Centers for Medicare and Medicaid Services (CMS) maintains a

national database of beneficiaries’ administrative records, including information on

their residential address histories, medical claims, and demographics. I link these

records to develop a novel individual-level panel database on residential location,

health, and exposure to air pollution.

I start with a random 10 percent sample from the universe of Medicare beneficiaries

who were at least 65 years old in 2000. I then add random 10 percent samples of all

new 65-year-old Medicare beneficiaries each year from 2001 to 2011. Then, I drop

people who ever enrolled in Medicare Advantage plans, which replace traditional

Medicare with a managed care plan, due to insufficient information on the medical

expenditures and the chronic illnesses of Medicare Advantage enrollees. I drop people

who cannot be matched to a precise residential location at any point during the

period 2000 to 2013 at which they are still alive. This includes addresses that are

post-office boxes or incomplete address records. These cuts are essential to ensure

that I observe where each person lives each year since entering my sample, their

air pollution exposure, their annual medical expenditures, and their diagnoses with

chronic illnesses.

The sample consists of 5.9 million individuals whom are observed for a total of

50.9 million person-years. Approximately 44 percent of these individuals are male

and 86 percent are white. The mean age of the initial sample in year 2000 is 74.8.

Once an individual enters the sample, they are tracked through the end of 2013 or
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until they die. Approximately 56 percent of individuals survive through the end of

2013. For those who die, the mean age at death is 82.

CMS uses information from the US Social Security Administration to track Medi-

care beneficiaries’ residential addresses. I obtain ZIP+4 Codes (also referred to as

nine-digit ZIP Codes) for each individual’s sequence of home addresses from 2000 to

2013. ZIP+4 Codes are close to street addresses in terms of spatial precision: each

code corresponds to a single mail delivery segment such as one floor of an apartment

building or one side of a street on a city block. The US includes more than 34 million

ZIP+4 Codes, or about one for every four households.

Migration patterns of the individuals in my sample are similar to those reported

by the Census Bureau for individuals aged 65 and above. 82 percent of individuals

live in the same ZIP+4 throughout my study period. Of the 18 percent of people

who move between ZIP+4 Codes at least once, 9 percent move between counties and

5 percent move between states.3 I use this information to measure each individual’s

long term exposure to air pollution, accounting for migration.4 Annual air pollution

is measured at the geographical centroid of each ZIP+4 code, focusing on PM2.5

commonly believed to have the most pernicious effects on human health among the

six criteria air pollutants regulated by the Environmental Protection Agency (EPA).

Air pollution at each ZIP+4 centroid is interpolated with inverse squared distance

weighting of all surrounding monitors, following the methodology outlined in Bishop

et al. (2018).

3Among those who ever move between ZIP+4 Codes 77 percent move once during our study

period, 17 percent move twice, 4 percent move three times and 1 precent move four or more times.
4It is not possible to identify people with more than one residence (“snowbirds”) because only

the residential address on record with the CMS is observed. However, Jeffery (2015) estimates that

seasonal migrants only account for 2 percent to 4.1 percent of the Medicare population based on

addresses on Medicare claims for primary care and emergency room visits.
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Figure 2.2: Average Residential Concentration of PM2.5 by Year
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Figure 2.2 shows the annual average concentrations of fine particulate matter

based on place of residence for the study sample of Medicare beneficiaries. Exposure

to air pollution declined remarkably during the 2000s. Annual average residential

exposure to PM2.5 declined from about 14 microgram per cubic meter in 2000 to

below 9 microgram per cubic meter in 2013.

These annual histories of exposure are the most comprehensive data to date to

measure how air pollution affects seniors’ health. Still, it should be noted that the

constructed histories may embed measurement error because it is infeasible to fully

control for factors such as avoidance behavior, the location and duration of activities

taking place outside of the home, variation in indoor air penetration or variation in

respiration due to health and physical activity.

Information on the income of seniors comes from the Medicare Current Beneficiary

13



Survey. This is a rolling panel that surveys a randomly drawn sample of individuals

for four consecutive years, as long as they are alive, even if they move into or out

of long-term care facilitates. If they become incapacitated (e.g. due to Alzheimer’s

disease) then a caregiver answers the survey for them. It is possible to connect 14,511

individuals from the CMS random sample to the MCBS respondents with valid income

data. Information on income is given in bins of width $5,000.

2.3 Conceptual Framework

In the model environment, seniors are assumed to maximize utility by choosing a

residential location j, which determines the level of public good consumption; private

consumption and consumption of housing. The model environment is a repeated

static decision problem. Each period t, seniors choose how much of their disposable

income to allocate to private good consumption b, public good consumption g, and

housing consumption q, given their disposable income y and current state of health h.

Equations (2.1) and (2.2) show the constrained utility maximization problem. The

current state of health may affect the marginal rate of substitution between private

and public goods. Disposable income is the difference between permanent income

yi, such as social security and pension income, and medical expenditures m that are

assumed to be an increasing function of the current state of health.5

max
j,b,q

u(b, q, gjt;hit) (2.1)

yi −m(hit) = ŷi = b+ pjtq (2.2)

The indirect per-period utility function is derived by expressing optimal consumption

quantities for housing and other private goods as function of local public goods, hous-

5It is assumed that a worse state of health demands higher medical expenditures. This assumption

is supported by the data.
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ing prices, disposable income and health status. The public good gjt is interpreted

as a composite index of ambient environmental quality (e.g. pollution, climate, out-

door recreation opportunities) and other local amenities (e.g. crime, quality of local

health care). This consumption bundle may directly affect utility in period t and, as

explained below, it may also affect utility in future periods by modifying an individ-

ual’s health stock. For convenience, I henceforth refer to the composite public good

as “environmental quality”.

v(gjt, pjt, ŷi, hit) = u (ŷi − pq(gjt, pjt, ŷi, hit), q(gjt, pjt, ŷi, hit), gjt, hit) (2.3)

Assume that there is a finite number of locations j, that differ in their environmental

quality g. Assume furthermore that the slopes of indifference curves in the (p, g) space

are monotonically decreasing in income y and monotonically increasing in health h,

i.e. that
∂
(
∂g
∂p

)
∂y

< 0 ∧
∂
(
∂g
∂p

)
∂h

< 0 (2.4)

This is a single crossing condition (SCC) that formalizes the notion that as income

increases, individuals become less price-sensitive and relatively more sensitive to envi-

ronmental quality, conditional on health; analogously, when health is better, meaning

that h is higher, individuals are less price-sensitive and relatively more sensitive to

differences in environmental quality, conditional on income. The idea is that when

health is very good, individuals are able to enjoy nice amenities. When health is

very poor individuals are less able to enjoy environmental quality, e.g. because they

are confined to stay in bed. Put differently, this condition implies that as income in-

creases, the marginal willingness to pay (MWTP) for environmental quality increases,

holding health constant. On the other hand, a negative health shock decreases the

MWTP for environmental quality, holding income constant. Imposing (2.4) results in

three equilibrium characteristics: (1) The equilibrium housing prices across locations
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will mirror the ranking by environmental quality g. (2) Conditional on health, the

communities will be perfectly stratified by income. (3) Higher income individuals will

inhabit the locations with higher environmental quality. In other words, conditions

(2) and (3) mean that among the individuals with the same state of health h̄, those

of the highest income will inhabit the highest amenity community up until the indi-

vidual (ȳ1, h̄) who is just indifferent between the more expensive, higher quality, and

the second most expensive community with the second highest level of environmental

quality. Everyone with health h̄ and income higher than ȳ1 will choose community

1. Next there is a second highest income level ȳ2 such that everyone with health h̄

and income between ȳ1 and ȳ2 will choose community 2, and so on until community

J . The stratification in h, conditional on income ȳ, will work analogously. A proof of

these results can be found in Epple and Sieg (1999). Modelling health explicitly as an

individual-level variable that affects preferences is a departure from prior literature

which imposed a SCC using a vaguer concept of preferences (Epple and Platt, 1998;

Sieg et al., 2002, 2004). Banzhaf and Walsh (2013) have used a similar framework

modelling preferences for racial composition of neighborhoods.

Over time, an individual’s health is assumed to evolve as a stochastic function

of their past health status and their past exposure to environmental quality. In

Equation (2.5) ε represents the stochastic component of health; e.g. whether an

individual suffers a non-fatal heart attack or stroke.

hit = f(hi,t−1, gj,t−1, εj,t−1) (2.5)

Exposure to lower environmental quality is assumed to cause the health stock to dete-

riorate faster, all else constant. This assumption is supported by the large literature

cited earlier linking air pollution to negative health outcomes.

Understood through the lens of the model, the following hypothesized mechanisms
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are jointly sufficient to create a pollution-poverty trap. (1) Lower income seniors live

in locations with lower environmental quality (2) Health shocks increase medical

spending. (3) In the aggregate, lower income seniors spend more on health care. (4)

Following a bad health shock, and realizing the accompanying expenditure shock,

individuals move at higher rates than individuals who do not realize a bad health

shock. (5) Individuals who have suffered a bad health shock and move, move to low

amenity places.

Strictly speaking, (2) is a testable assumption of the model. Hypothesis (3) re-

sults from lower income individuals living in lower quality neighborhoods and thus

experiencing relatively more bad health shocks. (5) jointly results from a bad health

shock’s effect on preferences and the fact that a bad health shock is accompanied by

an expenditure shock.

2.4 Results

The empirical strategy is a combination of direct nonparametric tests of model

hypotheses and regression based analysis. I use a difference-in-differences approach to

estimate the effect of a new diagnosis of a chronic medical condition on out-of-pocket

medical expenditures and on the propensity to move in the following year.

Since hypotheses (1), (3), and (5) describe features of a spatial equilibrium, I will

present descriptive statistics. Hypotheses (2) and (4) contain claims about underlying

mechanisms, therefore I will test them with a difference-in-differences estimation. To

test hypothesis (2), the year-to-year changes in out of pocket medical expenditures

mit are regressed on year-to-year changes in the diagnosis status dcit of a vector of 27

chronic conditions c, controlling for individual demographics age and gender xi.

∆ mit = βc ∆dcit + βx xi + εit (2.6)
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Using the full vector of 27 chronic conditions allows the different chronic conditions

to have differential intensities of impact. For hypothesis (4), I estimate the impact

of a change in diagnosis status dcit on an indicator for whether the individual moves

moveit in a linear probability model.

moveit = βc ∆dcit + βx xi + εit (2.7)

Both equations are estimated for each year from 2001 to 2012.

2.4.1 Hypothesis 1: Lower Income Seniors Live in Lower-Amenity Areas

Figure 2.3 highlights the gap in exposure to ambient air pollution between high

and low income groups. The CMS data does not contain direct information on indi-

vidual income. Therefore, the left panel measures high and low income status using

Medicaid eligibility as a proxy. The right panel uses individual annual income for the

small subset of individuals who are part of the Medicare Current Beneficiary Survey

(MCBS). The dashed line shows the average exposure to PM2.5 for the low-income

group, defined as individuals with an annual income of less than $15,000. The solid

line shows the average exposure to pollution among the high-income group, defined

as individuals with an annual income higher than $30,000. In every year observed in

the sample, the average exposure to air pollution is higher for low income individuals.

Empirical research has shown that exposure to pollution has adverse effects on health

and mortality. Consistent with this and the fact that lower income seniors live in

lower-amenity areas, Figure 2.4 shows that lower income seniors die at higher rates.

The left panel shows the share of surviving individuals of the initial cohorts that were

65, 80, and 95 years old in 2001, by income status. Out of those who were 65 years

old in 2001 and of low income status, less than 60 percent were still alive in 2012.

Out of those who were 65 years old and belonged to the high income group, almost
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Figure 2.3: Average Pollution Exposure by Income
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80 percent were still alive in 2012. The right panel shows the survival rates for the

subsample in the MCBS. Since the MCBS started in 2005, only individuals who were

alive in 2005 are part of the sample. The lines show the analogous surviving shares

of the cohorts initially alive in 2005.

2.4.2 Hypothesis 2: Health Shocks Increase Medical Spending

Figure 2.5 shows the impact of a new chronic illness on annual out of pocket med-

ical spending. Every single condition significantly increases out of pocket medical

spending. Lung cancer, diagnosed in 2001, increases out of pocket medical spending

by $2,706, making this the most expensive condition in terms of out of pocket spend-

ing. Eight of the 27 chronic conditions studied here increase out of pocket spending

by over $1,000 per year in 2001. COPD checks out at $615 additional spending per

year, and asthma at $404. Especially for low income households, this can imply a
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Figure 2.4: Survival Rates by Income
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sizable expenditure shock and affect other economic decisions.

2.4.3 Hypothesis 3: Lower Income Seniors Spend More on Health Care

Figure 2.6 reports the differences in annual out of pocket medical spending between

high and low income groups. The left panel measures high and low income status using

Medicaid eligibility as a proxy. The right panel uses individual annual income for the

small subset of individuals who are part of the MCBS. The dashed line shows the

average out of pocket spending for the low-income group, again defined as individuals

with an annual income of less than $15,000. The solid line shows the average annual

expenditures among the high-income group, again defined as individuals with an

annual income higher than $30,000. Consistent with the previous finding supporting

Hypothesis (1) that lower income seniors are exposed to higher levels of pollution,

potentially afflicting their health, lower income seniors also appear to incur higher
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Figure 2.5: Impact of New Diagnoses on Out-of-Pocket Spending
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Figure 2.6: Medicare Spending by Income
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out of pocket cost of medical care.

2.4.4 Hypothesis 4: Health Shocks Increase Migration

The vast majority of chronic illnesses that are observed increase the propensity

to move significantly. While the annual propensity to move across all years averages

at 3.27 percent, the event of a new COPD diagnosis in the past year increases the

propensity to move by 0.53 percentage points, which amounts to an increase of 16

percent.6 Figure 2.7 shows the impact of a new diagnosis on the propensity to move

by condition and by year, for select conditions that have been linked to exposure

to air pollution or are exacerbated by it. A recent dementia diagnosis increases the

likelihood of moving by 130 percent on average. It is worth noting that dementia

6Averages are taken across years 2001 through 2012, significance is determined at the 5 percent

level.
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has been linked to prolonged exposure to air pollution in recent research (Bishop

et al., 2018). Appendix Table B.1 shows the average impact across all years for all

conditions.

2.4.5 Hypothesis 5: Migrants Who Suffered a Bad Health Shock Tend to Move to

Low Amenity Places

Figure 2.8 compares the average exposure to ambient air pollution in the form

of fine particulate matter (PM2.5) among movers with and without diagnosed respi-

ratory conditions. Asthma, COPD, and lung cancer are considered specifically and

summarized as “respiratory conditions”. While it appears to be true that movers

move to relatively less polluted areas, this is surprisingly less true for movers who

have been diagnosed with respiratory conditions.

2.5 Conclusion

With rich administrative data on health and locations of seniors, I have been

able to shed light on the economic interactions between health, income, and the

environment among seniors in the US. A repeated static model framework rationalizes

the puzzling fact that seniors who have been diagnosed with respiratory illnesses might

in fact not move to systematically less polluted locations.

Negative health shocks increase out of pocket medical spending considerably, and

also trigger spatial re-sorting. Constrained by less disposable income due to the

expenditure shock, low income seniors might choose to move to even more inexpensive

areas. Inexpensive locations offer less amenities and tend to be more polluted (Chay

and Greenstone, 2005), leaving them more vulnerable to future negative health shocks.

Together with the fact that lower income seniors already tend to live in more polluted

areas, this suggests that initial differences in health and income might be reinforced
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Figure 2.7: Impact of New Diagnoses on Annual Propensity to Move
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Figure 2.8: Pollution Exposure for Movers With and Without Respiratory Illnesses
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and exacerbated by the differential exposure to pollution and its adverse effects on

health.
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Chapter 3

SORTING FOR LIFE: HOUSING PRICES AND MORTALITY

Recent research has shown that there is considerable spatial heterogeneity in expected

longevity in the US (Chetty et al., 2016) and that locations in fact have a causal

impact on the expected longevity of their residents (Finkelstein et al., 2018). This

implies that in principle, people can extend their expected lifespan by moving to

high-longevity places. Assuming that these differences are known to people, and

that a longer life is desirable, locations with more favorable effects on mortality can

be expected to have higher equilibrium cost of housing. This study exploits the

joint variation of causal local mortality effects and housing prices as a novel lever to

estimate the value of a statistical life (VSL) for Americans over age 65.1

The VSL for seniors is perhaps the single most important and least understood

statistic for evaluating public policies targeting human mortality. Seniors are the

main beneficiaries of Medicare programs and environmental policies. For example,

according to the EPA seniors account for approximately 78 percent of the deaths

avoided by air pollution regulations (IEc, 2011). However, the academic literature

and federal benefit-cost analyses routinely monetize the benefits of these mortality

reductions by multiplying the number of avoided deaths by VSL estimates in the $5

to $10 million range derived from the behavior of workers who are much younger and

healthier. Indeed, the average age in wage-hedonic VSL studies is typically close to

40 (Kniesner et al., 2014; Lee and Taylor, 2019). Economic theory using life cycle

models suggests that the VSL will evolve with age as health, wealth, and life years

remaining change.

1This has been joint work with Kelly Bishop, Alvin Murphy, and Nicolai Kuminoff.
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I estimate the VSL for seniors by extending the canonical Rosen (1979) and Roback

(1982) model of spatial compensating differentials to determine how much homebuyers

implicitly pay for statistical life extension. Intuitively, seniors can choose to pay more

to live in areas with amenities that enhance their health and longevity (e.g. mild

climates, clean air, low crime, good health care). These observed tradeoffs can be

used to derive a revealed preference measure of the VSL. I accomplish this task in

two stages. First, I extend the methodology from Finkelstein et al. (2018) to estimate

how residential locations affect mortality rates among seniors in 5-year age bins (65-

69, 70-74,...90+). Then I estimate an interregional hedonic model to estimate the

WTP for a marginal increase in statistical life extension that can be scaled up to

calculate the VSL for each age bin.

The main identification challenge is that the bundle of location-specific amenities

that affect the quantity of life is also likely to affect the quality of life. For instance,

elevated levels of air pollution simultaneously reduce utility from outdoor recreation

and increase the risk of having a fatal heart attack or stroke. As a result, failing to

separately control for how amenities affect the quality of life is likely to impart an

upward bias on VSL estimates. On the other hand, controlling for location-specific

amenities that simultaneously affect the quantity and quality of life will impart a

downward bias on VSL estimates. I address this by using the logic of Manski (1999)

and Nevo and Rosen (2012) to sign the direction of bias on VSL estimates in models

that do and do not control for distinct location-specific amenities. I use this approach

to estimate upper and lower bounds on the VSL. My bounds are informative in the

sense that the upper bounds for the oldest age groups lie below the $8 to $10 million

range of wage hedonic estimates commonly used to monetize mortality among seniors.

In my preferred specification, I find lower and upper bounds of $6.0 million and

$41.5 million for 65-69 year olds in constant year 2000 dollars. This range includes
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the estimate of $8 million in year 2006 dollars used in the EPA’s Second Prospective

Analysis of the Clean Air Act IEc (2011). The ranges systematically decline for older

age groups. For example, the estimated range for over 90 year olds ($0.6 to $4.4

million) is less than half of the EPA estimate. Thus, these revealed preference esti-

mates suggest that the oldest seniors’ willingness-to-pay for mortality risk reductions

may be considerably smaller than commonly assumed when evaluating environmental

regulations.

This is the first study to estimate the VSL for seniors using revealed preference

evidence from housing markets. It is also one of very few studies to develop revealed

preference estimates of VSL for seniors, or to estimate a VSL from the housing mar-

ket. Prior evidence on the VSL for seniors has primarily come from stated preference

studies. Perhaps the most closely related prior study is Ketcham et al. (2020) who

estimate seniors’ VSL from national evidence on medical expenditures and find es-

timates close to my lower bounds. While there is a large hedonic property value

literature on how health risks are capitalized into housing values, Davis (2004) is

perhaps the only study to use this information to calculate a statistic similar to the

VSL. Using evidence from a cancer cluster in Churchill County, Nevada, Davis esti-

mates the value of avoiding a statistical case of pediatric leukemia is approximately

$5.6 million dollars. This estimate, while within my range of estimates for younger

seniors, is not directly comparable to my estimates because it applies to children

only, leukemia is not necessarily fatal, and the estimates are based on residents of two

Nevada counties.
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3.1 Related Literature

3.1.1 Spatial Differences in Mortality

Spatial differences in mortality have been first documented by Chetty et al. (2016),

and soon after been found to be explained to a considerable degree by causal location-

specific mortality effects (Deryugina and Molitor, 2018; Finkelstein et al., 2018). Ex-

posure to different levels of enironmental quality rationalizes some of the spatial

differences in health (Pope III et al., 2002; Schlenker and Walker, 2015; Bishop et al.,

2018; Deryugina et al., 2019).

3.1.2 Spatial Equilibria

Early seminal literature has formalized spatial equilibria that rationalize housing

price differences across space. Housing prices are part of general equilibria that include

the market for public goods and labor markets (Rosen, 1979; Roback, 1982). Spatial

differences in housing prices have been used to estimate valuation for public goods

(Bayer et al., 2009). Graves and Waldman (1991) show that when public goods are

compensated for in both the housing markets and the labor markets through rents and

wages, seniors who are retired from the labor force seek out locations that compensate

for public goods through lower wages rather than higher rents, because retirees do

not need to care about the wage levels and only care about rent levels.

3.1.3 Classical Approaches to Estimating the VSL

Willingness to pay to extend life or improve life quality has been estimated with a

variety of methods. Alberini and Ščasnỳ (2018) provides a recent summary comparing

different revealed preference methods and stated preference methods to estimate the

VSL. The most popular revealed preference method in the past and present thus far
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has been compensating wage studies (Viscusi and Aldy, 2003; Kniesner et al., 2014;

Lee and Taylor, 2019). Stated preference studies have elicited the value of a statistical

case of morbidity (Hammitt and Haninger, 2011; Alberini et al., 2009).

Studies have pointed out that VSL estimates are very heterogeneous, and aimed

at reconciling estimates. Among the reasons why they could differ are sensitivity to

reference points (Kniesner et al., 2014), different possibility sets across populations

(Hersch and Viscusi, 2010), different risk preferences (Viscusi and Hersch, 2001),

different demographics (Alberini et al., 2004), and differences in age, health, and

gender (Ketcham et al., 2020).

3.1.4 Estimating Value of Health Through the Housing Market

Capitalization of local (dis)amenities into housing prices has been used plentifully

to estimate willingness to pay for (dis)amenities, among them estimates of the value

of a statistical case of morbidity, which is conceptually equivalent to the VSL. Gayer

et al. (2000) estimate the value of a statistical case of cancer at USD 4.6 million,

leveraging variation in the timing of the EPA’s reassessment releases after Superfund

cleanups. Davis (2004) estimates the value of a statistical case of pediatric leukemia

(VPL), using information about a sudden cancer cluster within a county. This nat-

ural experiment mitigates the two main concerns that are omitted variable bias and

sorting on unobservables. The resulting estimates of the VPL range between 3 and

9 million dollars (2000). Besley and Mueller (2012) estimate the WTP to live in

peace, using variation in killings through the peace process in Northern Ireland. This

study calculates hedonic estimates for WTP to avoid violent civil conflict, hence in

principle the numbers could be used to estimate a VSL, assuming that killings could

affect people randomly. Billings and Schnepel (2017) estimate impact of lead expo-

sure risk on neighborhoods, finding that returns on investment in lead remediation
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exceed costs more than twofold. To my knowledge, the present study is the first to

use capitalization effects to estimate the VSL for seniors.

3.2 Conceptual Framework

A location j is characterized by the amenities aj that it offers, its housing prices

rj, and by its menu of causal annual mortality effects mj for different age groups.

Assume there are two types of individuals - adults and seniors. Assume furthermore

that mortality differences across locations for adults are negligible. Then adults’

utility from location j is a function of amenities and housing.

ua(aj, rj) (3.1)

Seniors’ utility is a function of amenities, housing prices, and mortality

us(aj, rj,mj) (3.2)

Assume that seniors like to live. Then, ceteris paribus, locations that offer lower

mortality should be in higher demand and thus be in equilibrium more expensive in

terms of housing. If individuals are free to move across locations, Roback’s (1982)

framework suggests that housing prices should be a function of both mortality and

amenities.

r = r(mj, aj) (3.3)

Mortality however, is not only determined by location, but is also a function of seniors’

own age. Naturally, mortality is an increasing function of age, and has been modelled

as log-linear in age since Gompertz (1825), and recently in Finkelstein et al. (2018).

Assume therefore that mortality is a function of age and a location-specific place

effect γj.

m(age, j) = exp (β · age+ γj) (3.4)
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Assuming that γj is location-specific, this relationship implies that at age 65, differ-

ences in causal mortality effects across locations are somewhat small, but they become

more pronounced as age progresses. At the same time, the price that an individual

pays for housing can be reasonably expected to be independent of their own age. For

an illustration of a spatial equilibrium, see Figure 3.1. The “Age 85” locus is the set

of all available (price, mortality) location options for individuals aged 85. If prices

are perfectly inversely correlated with mortality across locations at any given age, as

they are in this theoretical exercise, and given that mortality increases monotonically

in age, the age-mortality menus across locations will form a pattern similar to the

one illustrated. A location will be characterized by one price level, and for different

ages the location will be characterized by different levels of annual mortality. Renters

(home buyers) will pay the same rent (price) for a given house, regardless of their

own age. The location they choose however will provide different rates of mortality,

depending on the individuals’ own age.

An important point to note is that when mortality differences across locations

increase in age, as they do in an age-mortality relationship like (3.4), individuals of

older ages have to move to locations of much lower mortality rates and pay much

higher price differences than individuals of younger ages to achieve the same absolute

mortality reduction by moving. At the same time, the aggregate demand across all

ages will determine the equilibrium price of a location.

3.3 Data

Data on individual health and mortality comes from administrative panels from

the Centers for Medicare and Medicaid Services (CMS). The panel is a random 10 per-

cent sample of all Medicare enrollees from 2000 to 2013. It contains annual informa-

tion on residential location (ZIP+4), individual health, and individual demographics
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Figure 3.1: Illustration of Mortality Menus - The Age-Mortality Curtain
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age, gender, and race.

Data on housing cost and housing characteristics comes from the 2000 Census. The

Census provides a rich representative national sample of the population of interest at a

fine spatial resolution. The Census contains individual data on housing expenditures

and housing characteristics together with comprehensive demographic information.

To estimate the relationship between mortality and housing prices, the sample is

restricted to individuals aged 20 years and older with information about either rent,

for renters, or the value of the home, for home owners. The finest geographic unit

that can be observed are Census PUMAs. Census PUMAs are spatially contiguous

areas comprised of 100,000 individuals. There are 2,071 PUMAs observed in the

data. Local causal mortality effects are estimated by PUMA, and identified off of

33



Table 3.1: Summary of Unconditional Annual Mortality by Age Group

PUMA SUPERPUMA

Age Mortality SD Mortality SD

65 0.032 0.043 0.030 0.019

70 0.041 0.031 0.039 0.016

75 0.061 0.037 0.057 0.019

80 0.092 0.051 0.087 0.026

85 0.141 0.080 0.136 0.036

90 0.231 0.125 0.219 0.057

Notes: Data source: Center for Medicare and Medicaid services. Average annual
mortality in each location in 2002. Standard deviations taken across locations.

cross-PUMA movers. 2

3.4 Estimation

3.4.1 Causal Local Mortality Effects

To estimate the causal effect that each location has on the probability of survival,

I use the estimation strategy of Finkelstein et al. (2018). The survival probabilities

ŝτj are age and place specific and are assumed to be known to individuals. Empirical

place-specific survival rates might differ from causal survival rates due to spatial sort-

ing on underlying health. Since death can only be observed once, panel estimation

is precluded. Finkelstein et al. (2018) use a selection correction procedure to esti-

2The ZIP+4 codes are mapped into 2010 Census block groups, and then mapped into 2000 Census

PUMAs based on a crosswalk from the University of Missouri Data Center.
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Table 3.2: Summary of Causal Annual Mortality Estimates by Age Group

PUMA SUPERPUMA

Age Mortality SD Mortality SD

65 0.020 0.004 0.019 0.002

70 0.030 0.005 0.029 0.003

75 0.047 0.011 0.046 0.005

80 0.072 0.011 0.071 0.007

85 0.111 0.017 0.110 0.011

90 0.172 0.026 0.171 0.018

Notes: Data source: Center for Medicare and Medicaid Services. Causal mortality
estimates based on the strategy by Finkelstein et al. (2018), calculated for each ge-
ographic unit using the national average health stock. Standard deviations taken
across locations.

mate place specific survival effects δsurvj in a way that leverages variation in survival

among movers. The identifying variation comes from movers who move to different

destinations from the same origin location.

Equation 3.5 shows the estimating equation. Individual mortalitymi is is regressed

on age, demographics xi, health hi, and place fixed effects for movers and nonmovers.

log(mi) = ϕ1 agei + ϕ2 xi + ϕ3 hi + δoj Ij,orig + δdj Ij,orig + δnj Ij,dest + ηi (3.5)

Demographic variables contain gender, race, and an interaction term. The location

fixed effects δoj , δ
d
j , δ

n
j capture the location specific mortality effects of each location

δnj for non-movers, and δoj and δnj for the origin and destination locations of movers.

The location specific effects on mortality δdj could be biased if movers sort into

locations based on unobserved health. To address this concern, Equation 3.6 shows
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how δ̂dj is corrected for spatial sorting on health, under the assumption that selection

on unobserved health can be approximated by selection on observed health.

ĥi = ϕh1 agei + ϕh2 xi + ζoj Ij,orig + ζdj Ij,dest + ηhi (3.6)

The fitted health stock from Equation 3.5, ĥi := ϕ̂3hi, is then regressed on age,

demographics, and location specific fixed effects. δ̂dj is then corrected by the estimated

health-sorting effect ζ̂dj . The causal place-specific mortality effect γ̂j is then estimated

as

γ̂j = δ̂dj −
ŝd(δ̂oj )

ŝd(ζ̂oj )
ζ̂dj (3.7)

ŝd(δ̂oj ) and ŝd(ζ̂oj ) are estimated as the standard deviations of δoj and ζoj in a split-

sample bootstrap.

3.4.2 Modelling the Spatial Unit of Choice

Residential sorting theory does not suggest a particular way to partition the coun-

try into residential locations. Empirical studies often use metropolitan statistical

areas (e.g. Bayer et al. (2009)), counties (e.g. Blomquist et al. (1988)) or public

use microdata areas (e.g. Albouy et al. (2016)). In my case, the spatial unit of ob-

servation should ideally be chosen to reflect spatial heterogeneity in mortality risk.

Defining locations to be too small (e.g. Census blocks) will introduce measurement

error because people routinely travel outside their immediate residential locations are

are thereby subject to mortality effects at a larger spatial scale (e.g. local hospital

quality). Likewise, the smaller the residential location, the greater the scope for mea-

surement error in mortality rates. On the other hand, defining residential locations

to be too large (e.g. states) will ignore meaningful identifying variation in mortality

risk. I address these tradeoffs by considering differently sized areas that approxi-

mately match the range of areas used in prior national hedonic models. Specifically, I
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consider Public Use Microdata Areas (PUMAs), Super PUMAs, and hospital referral

regions (HRR).

A Census PUMA is geographically contiguous area of approximately 100,000 resi-

dents, and could be thought of as a neighborhood. Census SUPERPUMAs are super-

sets of PUMAs and typically contain four to five PUMAs. Defining a location to be

a PUMA requires the estimation of 2,071 distinct local mortality effects, compared

to 532 in the case of SUPERPUMAs.

Since the mortality effects are estimated based on location-to-location movers,

a few summary statistics are in order. On the PUMA-to-PUMA level, I observe a

total of 552,003 moves between the years 2001 and 2012. Every PUMA has positive

numbers of in-moves and out-moves. The median number of emigrants by PUMA is

233, the median number of immigrants is 224. The 10th percentile of emigrants is

122, the 10th percentile of immigrants is 146. The 90th percentile of emigrants is 440

and hence a bit lower than the 90th percentile of immigrants, which is 475, indicating

that the distribution of immigrants across PUMAs has a larger right tail than the

distribution across emigrants. Some PUMAs appear to be very popular destinations.

Figure 3.2 shows the distributions of emigrants versus immigrants by PUMA.

Across SUPERPUMAs, I observe a total of 452,198 moves. This implies that

almost exactly 100,000 moves across PUMAs have occurred within SUPERPUMA.

Every SUPERPUMA has positive numbers of immigrants and emigrants, in fact a

minimum of 146 immigrate into every SUPERPUMA and a minimum of 205 people

emigrate from each SUPERPUMA. Again the distribution of immigrants across SU-

PERPUMAs has a larger right tail than the distribution of emigrants, which implies

that some SUPERPUMAs are very popular destinations.

The central estimation equation is Equation (3.9), in which the log of housing cost

rijh is regressed on the location specific mortalitymj, controlling for the characteristics
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Figure 3.2: Histograms of Emigrants vs Immigrants by PUMA
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Notes: Total number of in-moves and out-moves by PUMAs occurring in the sample
among individuals who have moved exactly once across PUMAs during the sample
period 2001-2012.
Data: Center for Medicare and Medicaid Services.

Figure 3.3: Histograms of Emigrants vs Immigrants by SUPERPUMA
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Notes: Total number of in-moves and out-moves by SUPERPUMAs occurring in
the sample among individuals who have moved exactly once across SUPERPUMAs
during the sample period 2001-2012.
Data: Center for Medicare and Medicaid Services.
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Table 3.3: Distribution of Moves Across PUMAs and SUPERPUMAs

PUMA SUPERPUMA HRR

Out In Out In Out In

Min 7 2 205 146 182 166

10th perc. 122 100 442 396 434 398

Median 233 224 748 740 1,122 1,094

90th perc. 440 475 13,80 1,359 3,222 3,442

Max 1,506 1,979 3,685 3,934 10,673 10,633

No. of Moves 552,003 552,003 452,198 452,198 485,659 485,659

Notes: Sum of all moves occurring in the sample among individuals who have moved
exactly once across geographies during the sample period 2001-2012. A move is
defined as changing the residential address from one PUMA (SUPERPUMA, HRR)
to another PUMA (SUPERPUMA, HRR).
Data: Center for Medicare and Medicaid Services.

of the house xh such as the number of bedrooms and the decade in which it was built,

and an indicator for ownership status ownh. The housing cost r is defined as the

monthly gross rent for renters and the self-reported home value for home-owners,

following the strategy of Bayer et al. (2009).

log rijh = βmmj + βhxh + βoownh + εijh (3.8)

A natural concern in estimating βm in this way is omitted variable bias. For example,

great hospitals might decrease the causal mortality effect of a location, but also be

valued for the utility they provide apart from extending expected longevity, and

thereby increase rents. The bias however appears to be clearly signed. Amenities like

great environmental quality, mild climates, low levels of crime, high quality of medical

care, can all be reasonably expected to lower mortality and increase equilibrium
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Figure 3.4: Histograms of Emigrants vs Immigrants by HRR
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Notes: Total number of in-moves and out-moves by HRRs occurring in the sample
among individuals who have moved exactly once across HRRs during the sample
period 2001-2012.
Data: Center for Medicare and Medicaid Services.

rents. If local unobserved amenities that decrease the causal mortality effects are

also independently valued by individuals, the estimate β̂m provides an upper bound

for the effect of mortality on prices. The same logic can be applied to the effect of

local amenities on morbidity. Amenities that reduce mortality also tend to improve

morbidity, increasing individuals’ quality of life while they are alive. Assuming that

the morbidity effect is non-negligible, controlling for amenities that also have an effect

on morbidity will over-correct β̂m.

In order to also provide an estimate for the lower bound of the true βm, Equation

(3.9) is re-estimated including local amenities in Equation (3.8). Part of what people

value in amenities is precisely that they reduce mortality. For example, controlling

for the local quality of health care eliminates the upward bias from the effect of health

care on mortality, but it leads to an over-correction since high quality health care is
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valuable to people beyond its effect on mortality. Therefore, the β̂m from Equation

(3.8) will provide an estimate for a lower bound on the true βm, assuming that all

relevant amenities are included in the model. To allow for the possibility that my

set of observed amenities may exclude some that are important for mortality, I also

repeat the estimation after including dummy variables for metropolitan areas.

log rijh = βmmj + βaaj + βhxh + βoownh + εijh (3.9)

The second concern is sorting on unobservable amenities that correlate with mor-

tality. For example, if the high-income individuals that inhabit the low mortality

neighborhoods vote to tax themselves to build other nice amenities, the estimated

relationship βm will be overstated.

To investigate whether my estimates are sensitive to assumptions about the extent

to which households are informed about mortality, I estimate Equation (3.9) with dif-

ferent measures of mortality. First, I use causal location-specific mortality estimates.

I estimate these for each Census PUMA, by adapting the strategy of Finkelstein et al.

(2018). The identifying variation comes from movers who are similar at baseline and

move from the same origin to different destinations. Under the assumption that sort-

ing on unobservable health is equally important as sorting on observable health, the

selection correction strategy yields causal location-specific mortality effects. Using

these measures in the hedonic model presumes that seniors have relatively accurate

beliefs about the causal effects of place on mortality.

Then, I re-estimate Equation (3.9) using empirical unconditional mortality rates

for different age groups. To rule out that sampling issues threaten comparability, I

use the same sample assembled for the estimation of location specific mortality effects

and record the empirical mortality rates per age group in the year 2002. Using these

mortality measures in the hedonic model presumes that seniors have biased beliefs
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about the causal effects of place on mortality because they fail to adjust for the

extent to which empirical survival probabilities are driven by spatial sorting on health,

income, and other factors that contribute to longevity. I estimate each equation

separately for the mortality estimates of the different age groups, e.g. 65-69 year

olds, 70-74 year olds, 75-79 year olds, etc.

3.4.3 Interpretation: Willingness to Pay for Statistical Life Extension

To estimate the VSL, I use the calculation (3.10). Multiplying the estimated

coefficient of mortality on housing prices β̂m with the average level of monthly gross

rents r, the number of months per year, and the denominator of the annual mortality

rate yields the estimate.

V̂ SL = −
(
∂r̂

∂m
= β̂m · r

)
· 12 · 100 (3.10)

3.5 Results

Table 3.4 shows the resulting VSL estimates where mortality effects are estimated

at the PUMA level. Based on casual mortality effects, the VSL estimates for 65

to 69 year old seniors is 41.5 million dollars. I interpret this estimate as an upper

bound for the VSL for 65 to 69 year olds, since the bias from omitted variables that

correlate with mortality appears to be uniformly signed. The estimates based on

causal mortality effects appear to be intuitively monotonic in age. The corresponding

VSL estimate for 75 to 79 year old seniors is 16.1 million dollars, and 6.5 million

dollars for 85 to 89 year olds. The estimates that are based on empirical mortality

effects are much smaller, somewhat less intuitive in terms of there monotonicity in age,
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and when controlling for amenities are wrongly signed for the oldest age group. The

differences between causal mortality and empirical mortality reflect spatial differences

in the stock of health of the population.

Table 3.5 shows the same VSL estimates when local amenities, measured at the

PUMA level, are controlled for. The amenities included here are summer temperature,

winter temperature, precipitation, health care, PM2.5, golf courses, and log population

density. Additionally, I estimate all specifications using metro area fixed effects.

Including these absorbs all between-metro variation in longevity. When I include

both metro area fixed effects and observable amenities, I remove the between-metro

variation as well as the within-metro variation in longevity that is caused by these

amenities. Controlling for amenities and fixed effects results in a VSL estimate of

6.0 million dollars for 65 to 69 year old seniors. I interpret this as a lower bound on

the VSL, since including amenities that affect mortality but also affect utility apart

from their effect on mortality will over-correct the estimates. The lower bounds are

informatively high relative to revealed preference evidence from medical expenditures

based on Ketcham et al. (2020) and Hall and Jones (2007), especially for the youngest

age groups. Meanwhile, the upper bounds for older cohorts (85 to 89 year olds and

over 90 year olds) are informatively low relative to conventional revealed preference

estimates from the wage hedonic literature. Kniesner et al. (2012) estimate a range

of $4 to $10 million for the working age population, using wage hedonic estimation

with occupational fatality risk and study period of 1993 through, slighly overlapping

with the sample period of this study. Lee and Taylor (2019) estimate a range of $8

to $10 million dollars. Aldy and Viscusi (2008), also employing wage-fatality hedonic

estimation and data from 1993 to 2000, estimate the VSL explicitly for different age

groups. They do in fact find a hump-shaped relationship between age and the VSL

that peaks around the age of 40 and estaimte a VSL of $5.08 million dollars for their

43



oldest cohort of 62 year old workers.

The estimated upper and lower bounds on the VSL when mortality estimates and

amenities are measured at the geographic level of SUPERPUMAs or HRRs can be

found in the Appendix Tables B.2, B.3, B.4, B.5.
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Table 3.4: Implicit Price of Preventing One Fatality Per Age Group, Equation 3.8, by PUMA

Age

65-69 70-74 75-79 80-84 85-89 90+

VSL, causal mortality 41.5 25.7 16.1 10.2 6.5 4.4

SE (0.14) (0.09) (0.05) (0.03) (0.02) (0.01)

CI, 95 percent (41.2,41.7) (25.6,25.9) (16.0,16.2) (10.1,10.3) (6.5,6.6) (4.4,4.5)

...with Metro Area FE 10.7 6.7 4.2 2.7 1.7 1.2

SE (0.14) (0.09) (0.06) (0.04) (0.02) (0.02)

CI, 95 percent (10.5,11.0) (6.5,6.8) (4.1,4.3) (2.6,2.7) (1.7,1.8) (1.1,1.2)

VSL, empirical mortality 1.9 3.1 2.5 0.9 0.1 0.0

SE (0.01) (0.01) (0.01) (0.01) (0.00) (0.00)

CI, 95 percent (1.9,2.0) (3.0,3.1) (2.5,2.5) (0.9,0.9) (0.1,0.1) (0.0,0.0)

...with Metro Area FE 1.4 2.0 1.4 0.7 0.1 0.0

SE (0.01) (0.01) (0.01) (0.01) (0.00) (0.00)

CI, 95 percent (1.4,1.4) (2.0,2.0) (1.3,1.4) (0.6,0.7) (0.1,0.1) (0.0,0.0)

Notes: VSL in million (USD 2000). Data source: Census 2000 5 percent sample. N with causal mortality

estimates 6,605,617, N with empirical mortality estimates 6,682,714. Mortality estimates of one age group

included as control.
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Table 3.5: Implicit Price of Preventing One Fatality Per Age Group, Equation 3.9, by PUMA

Age

65-69 70-74 75-79 80-84 85-89 90+

VSL, causal mortality 19.1 11.9 7.4 4.7 3.0 2.1

SE (0.13) (0.08) (0.05) (0.03) (0.02) (0.01)

CI, 95 percent (18.9,19.4) (11.7,12.0) (7.3,7.5) (4.7,4.8) (3.0,3.1) (2.0,2.1)

...with Metro Area FE 6.0 3.7 2.3 1.5 1.0 0.6

SE (0.14) (0.09) (0.05) (0.03) (0.02) (0.02)

CI, 95 percent (5.7,6.3) (3.6,3.9) (2.2,2.4) (1.4,1.6) (0.9,1.0) (0.6,0.7)

VSL, empirical mortality 1.9 2.4 2.0 0.6 0.0 -0.0

SE (0.01) (0.01) (0.01) (0.01) (0.00) (0.00)

CI, 95 percent (1.8,1.9) (2.4,2.4) (2.0,2.0) (0.6,0.6) (0.0,0.0) (-0.0,-0.0)

...with Metro Area FE 1.0 1.5 1.0 0.4 -0.1 -0.0

SE (0.01) (0.01) (0.01) (0.01) (0.00) (0.00)

CI, 95 percent (1.0,1.0) (1.5,1.5) (1.0,1.0) (0.3,0.4) (-0.1,-0.0) (-0.0,-0.0)

Notes: VSL in million (USD 2000). Data source: Census 2000 5 percent sample. N with causal mortality

estimates 6,605,617, N with empirical mortality estimates 6,682,714. Mortality estimates of one age group

included as control.

Amenities: Summer temperature, winter temperature, precipitation, health care, PM2.5, golf courses, log

population density.

46



3.6 Conclusion

Combining information on housing prices with estimated causal location-specific

mortality effects, I have estimated lower and upper bounds for the Value of a Statis-

tical Life. The estimated upper bounds for seniors over age 85 lie below the $8 to $10

million estimates that are commonly used to value mortality reductions in academic

studies and that the EPA uses to evaluate the benefits of policies like the Clean Air

Act (IEc, 2011). The estimated ranges for older individuals do cover this number.

These coincide with the groups that often benefit most from environmental policies

in terms of mortality and morbidity. The methodology used in this study advances

on the previous literature by estimating the VSL for the under-studied subpopula-

tion of seniors, leveraging local causal mortality effects across neighborhoods together

with information on housing prices. Scope for future research will be to usefully aim

to refine the econometric specification to tighten the bounds, possibly by finding a

suitable instrument to pin down VSL values more narrowly within the value corridor

found in this study.
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Chapter 4

A DYNAMIC MODEL OF HEALTH AND RESIDENTIAL SORTING:

IMPLICATIONS OF CLIMATE CHANGE FOR SENIORS IN THE US

Many policies that target environmental quality or issues of public health have spa-

tially heterogeneous effects on urban populations. For example, federally subsidized

health insurance plans are often sold in distinct state or regional markets, the EPA’s

Cross-State Air Pollution Rule obligates some states to reduce the pollution they

export to other states, and national ambient air quality standards are only enforced

in counties where pollution exceeds a given threshold.1 Thus, federal policies affect

people’s health and pollution exposures differently depending on where they choose

to live. The costs and benefits of these policies depend on how they change local

environments, on how those changes affect people’s health, and on how people react

to these changes. People may react by moving, due to their preferences for local

amenities or due to the effects of local amenities on their health, or both. Indeed,

“Health Reasons” is among the top responses that seniors provide in the Health and

Retirement Survey as a reason for their most recent move, and deciding where to live

can be highly consequential for their health. The quality of local health care, envi-

ronmental amenities such as climate and air pollution, and opportunities for social

interaction, can all affect seniors’ health and longevity.

This paper integrates the seminal ideas of Tiebout (1956) and Grossman (1972)

1Similarly, subsidizing the electric vehicle fleet may reduce air pollution and improve human

health in areas where the energy used to power cars is predominantly generated from renewable

sources, but increase pollution in areas where the electricity is generated by fossil fuel plants (Holland

et al., 2016).
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into a new residential sorting model that allows individuals’ preferences for residential

location amenities may depend, in part, on their health, and that they recognize that

the locations they choose may affect their health in the future. Thus, residential loca-

tion decisions can serve as a costly and conscious form of investment in future health.

Recent work has shown that life expectancy varies substantially across space in the

US (Chetty et al., 2016), and that the location of residence has a causal impact on

life expectancy (Deryugina and Molitor, 2018; Finkelstein et al., 2018). I incorporate

these insights by making longevity and health endogeneous to location and by consid-

ering how changes in environmental quality affect welfare through amenity flows, the

health stock, and longevity. I use the model to investigate the distributional welfare

consequences of climate change projections for the United States, taking into account

the effects on both residential amenity values and human health, while recognizing

that migration can serve as a mitigation strategy.

My application focuses on senior citizens (people over age 65). Seniors are an

especially important demographic group when it comes to health and environmen-

tal quality because they are known to be more vulnerable to extreme climates and

pollution than younger adults in terms of morbidity and mortality, making them the

primary beneficiaries of public policies targeting pollution, in addition to being the

primary beneficiaries of Medicare programs. Furthermore, seniors are the wealthi-

est and fastest growing age group in the United States and many other countries,

projected to account for one in five US residents by 2030. I study the co-evolution

of seniors’ health and residential location choices by leveraging rich panel data from

the U.S. Centers for Medicare and Medicaid Services (CMS). These data allow me to

precisely track the residential location decisions of 5.5 million seniors, their diagnoses

of chronic medical conditions, and their deaths from 2001 through 2011.

I model their behavior by developing a dynamic discrete choice model in the
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spirit of Bayer et al. (2016). It incorporates health and age as sources of individual

preference heterogeneity and introduces uncertainty about future health status. When

individuals choose where to live, they are assumed to know how their location choices

will affect their mortality risk and their probabilities of transitioning to various future

health states. More precisely, an individual is characterized by age, health, and

an individual random utility shock, and chooses a residential location in order to

maximize total lifetime utility. Total lifetime utility is the sum of discounted per-

period utilities over the remaining years of life. The choice of a residential location

determines the levels of amenities that the resident gets to enjoy. Per-period utility

from each place is a function of local amenities and prices and differs by health and

age type. Future health is a function of both current health and current location.

Thus, the model incorporates both static and dynamic tradeoffs between the quantity

and quality of life. For example, places that are characterized by pleasant climate

and high levels of cultural amenities, but also high levels of air pollution, might yield

a high per-period utility, but affect future health negatively and hence shorten the

remaining life span.

The estimation proceeds in three stages. First, I estimate the causal place-specific

mortality risk following the selection correction regression procedure developed by

Finkelstein et al. (2018). The estimation includes a highly flexible moving cost func-

tion that allows the utility cost of moving t o vary in distance. Next, I estimate

the causal place-specific effects on the probabilities of transitioning to worse states

of health using an ordered logit approach that leverages the panel data to mitigate

potential biases from sorting on latent health. Finally, I estimate preference param-

eters using a version of Bayer et al.’s (2016) dynamic discrete choice estimator. To

instrument the effect of rents on utility, I follow Bayer and Timmins (2007) and use

amenities of distant, but similar locations. I innovate on this instrument by finding
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the most similar distant location through a Principle Component Analysis in the at-

tribute space. The estimated structural parameters permit a novel, highly flexible

approach to prospective policy analysis. Policies that change the provision of local

amenities heterogeneously across space can be evaluated in terms of their effect on

health, longevity, and welfare, while accounting for migration and health dynamics.

I first use the model to estimate seniors’ preferences for local amenities, for avoid-

ing migration, and for reducing their morbidity and mortality risk, allowing prefer-

ences to vary flexibilty across several age-health types. I find that seniors’ preferences

vary substantially across age and states of health. For example, I find that the will-

ingness to pay (WTP) for warmer winters as a local amenity is uniformly positive,

(ranging from $104 to $203 per year for a 1C increase across types) whereas the

WTP to pay for cooler summers varies substantially by age and health and is largest

among the oldest, sickest individuals ($160 per year for a 1C decrease). Precipitation

appears to be a significant disamenity, with an especially high WTP to avoid wetter

climates among sicker and older individuals ($1,333 per year for a 1 mm decrease in

daily precipitation.2). I also find that seniors are willing to pay more for access to

high-quality local health care, better air quality, and more social amenities, measured

by the count of golf courses and country clubs.

I combine these estimates with the estimated effects of climate change on morbid-

ity and mortality to evaluate the distributional welfare implications of the changes

in average summer and winter temperatures and precipitation that are projected to

occur under the World Climate Research Program’s “business as usual” scenario for

global carbon emissions through 2100. These changes affect utility flows from cli-

mate amenities as well as the present discounted value of changes in longevity and

health caused by the way that additional warming is predicted to negatively affect

21 mm per day adds up to 14.4 inches per year
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both mortality and morbidity. Ex ante, the net welfare effects are ambiguous because

individuals value warmer winters and can pay to migrate to areas with relatively less

warming, both of which can help to offset welfare losses from shortened lifespans. In-

deed, I find that the welfare implications of climate change are very heterogeneous in

age and health. Younger and healthier types are in fact made better off because they

value warmer winters and even warmer summers, to an extent that offsets the adverse

health effects of climate change (-$1,770 for the youngest and healthiest type). Older

and sicker types suffer from warmer summers and also from increases in precipitation

levels ($624 for the oldest and sickest type). Locations that are predicted to have

warmer winters but only moderately warmer summers stand to gain the most from

the climate change scenario considered here.

My study builds on prior literatures on Tiebout sorting and spatial variation in

morbidity and mortality. The Tiebout sorting literature has previously analyzed the

equilibrium implications of sorting on heterogeneous preferences and income (e.g.

Epple and Platt (1998)) and developed static random utility representations of in-

dividual choice to estimate preferences for local amenities such as air pollution and

school quality (e.g. Bayer et al. (2007) and Bayer et al. (2009)). Albouy et al. (2016)

and Sinha et al. (2018b) used sorting models to analyze the welfare effects of climate

change, but did so in a static environment that abstracted from the health impacts of

climate change. Bayer et al. (2016) developed a dynamic discrete choice framework

for modeling residential location decisions made by forward-looking agents. I extend

their approach to treat health as an endogenous state variable that simultaneously re-

flects the amenity exposures determined by past location decisions and affects future

amenity exposures via current location decisions. This two-way interaction allows me

to connect the Tiebout sorting literature to a separate literature that has sought to

explain how residential amenity exposures affect health without modeling the past
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location decisions that led to those exposures or the effects of those exposures on

future location decisions. For example, Barreca et al. (2015) estimated the mortal-

ity effects of heat; Chetty et al. (2016) documented dramatic spatial variation in

longevity across the U.S.; and Finkelstein et al. (2018) and Deryugina and Molitor

(2018) used quasi-experimental research designs to establish that some of the spatial

variation in mortality is in fact caused by the locations where individuals chose to

live.

The rest of this chapter is organized as follows. Section 4.1 summarizes related

literature, Section 4.2 outlines the model, Section 4.3 describes the data, Section 4.4

explains the estimation strategy, Section 4.5 reports results, Section 4.6 quantifies

welfare effects under climate change, and Section 4.7 concludes.

4.1 Related Literature

This paper integrates the seminal ideas of Tiebout (1956) and Grossman (1972)

by building a conceptual framework that recognizes that individuals may sort them-

selves across residential neighborhoods based on their heterogeneous preferences for

local public goods, while recognizing that their choice of a residential location also

constitutes an investment into their future health, because the quality of local health

care and the natural environment may affect the evolution of their health stock. My

framework builds on prior literature on residential sorting and prior literature on how

variation in the local health care and local environmental quality affect health capital.

4.1.1 Residential Sorting

Residential sorting models aim to understand how heterogeneity in individual pref-

erences and incomes induces people to sort themselves across differentiated neighbor-
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hoods; what those individual location decisions reveal about households’ preferences

for neighborhood amenities; and how those decisions translate into aggregate dif-

ferences across communities.3. Examples of non-market amenities that have been

studied with the help of sorting models include school quality (Bayer et al., 2007), air

quality (Bayer et al., 2009), climate (Sinha et al., 2018b). The dimensions of individ-

ual heterogeneity that are typically used to explain differences in location decisions

are income, wealth, presence of children, and an all-encompassing ”taste” parameter.

I extend this literature to consider age and health as potential sources of individual

heterogeneity that may be important for explaining how people make tradeoffs be-

tween consumption of public and private goods when they choose residential locations

late in life.

Seniors tend to move less frequently than younger adults. With this in mind, an

important feature of empirical sorting models is the ability to incorporate the disu-

tility of moving associated with the physical, financial, and psychic costs of changing

residential locations.4. Moving cost are typically modelled as a function of previous

location of residence and can be interacted with individual characteristics (Hamilton

and Phaneuf, 2015; Sinha et al., 2018b).

Another important feature of residential sorting models is the ability to predict

how changes in amenities, such as the local climate, will change residential sort-

ing patterns, and how these changes will feed back into welfare measures used to

evaluate public policies (e.g. Sieg et al. (2004); Galiani et al. (2015); Sinha et al.

(2018b). However, most empirical studies have used static models. Recently, Bayer

et al. (2016) advanced the sorting literature by developing a tractable framework for

3A comprehensive review can be found in Kuminoff et al. (2013)
4Abstracting from the cost of moving leads to considerably lower estimates for the valuation of

amenities (Bayer et al., 2009; Sinha et al., 2018a)
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modeling dynamic decision-making by forward-looking agents who have beliefs about

how neighborhoods will evolve in the future. Individuals in their model form expec-

tations about future changes in amenities and factor these into their current location

decisions. Allowing for this behavior can substantially change estimates for the will-

ingness to pay for amenities relative to a traditional static model. Bayer et al. (2016)

abstract from the potential role of health, but they model wealth as a dynamic state

variable that is affected by individuals’ moving decisions. In contrast, I abstract from

wealth in order to model health as a dynamic state variable that may simultaneously

affect location decisions and be affected by location decisions.5

A few recent studies have used sorting models to estimate the welfare effects of

climate change. Albouy et al. (2016) use a hedonic equilibrium framework to estimate

the value of changes in climate amenities, Sinha et al. (2018b) use a discrete choice

model, and Sinha et al. (2018a) compare both approaches. All three studies calculate

the willingness to pay to avoid sudden climate change that would match the changes

predicted to occur in the United States by the middle or end of the century. The

predicted welfare changes are found to be equivalent to an annual loss of 1 to 4

percent of income. However, these studies abstract from the effects of climate change

on mortality and morbidity, and instead focus exclusively on the consumption amenity

value of climate, (i.e. utility flows from living in areas with particular climates). All

three studies also use static models that abstract from forward looking behavior.

Relative to these studies, my framework adds the health effects of climate change on

morbidity and mortality and adds dynamic decision-making based on forward looking

behavior with respect to the effects of climate change on health and amenity value.

5It would be interesting to combine the two ideas in future research, due to data constraints this

has not been feasible as of now.
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4.1.2 Health Effects of Residential Choice

There is a large literature showing how local environmental quality affects mor-

bidity and mortality. Exposure to ambient air pollution has been found to increase

infant mortality (Chay and Greenstone, 2003; Currie et al., 2015; Currie and Walker,

2015), adult mortality (Pope et al. JAMA 2002, Deryugina et al. AER forthcoming),

morbidity (Schlenker and Walker, 2015; Bishop et al., 2018) and labor productivity

during early adulthood (Isen et al., 2017). Heat has also been shown to increase

mortality (Barreca et al., 2015; Burgess et al., 2014; McMichael et al., 2008).

My research is most closely related to a set of recent studies that estimate how

residential location choices affect human mortality without focusing on any particular

amenity (Chetty et al., 2016; Deryugina and Molitor, 2018). Finkelstein et al. (2018)

compare individuals who moved into the same place from different origins, accounting

for aggregate spatial differences in health, and find that the choice of a residential

location can increase or decrease life expectancy by more than a year. While there is

revealed preference evidence on how locally determined environmental factors affect

mortality and morbidity, and there is evidence that these factors are of concern to

individuals since changes in amenities are often found to be capitalized into housing

prices (Chay and Greenstone, 2005), this study is the first to investigate how individ-

ual location decisions are influenced by concerns about how those decisions feed back

into health.

4.1.3 Connecting the Residential Sorting and Health Effects Literatures

I connect the residential sorting and health effects literatures by focusing on two

distinct channels through which local amenities may affect individual utility apart

from their effects on housing prices. First, like the residential sorting literature, I rec-
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ognize that individuals may value the current and expected future consumption flows

derived from local amenities. Second, like the health effects literature, I recognize

that local amenities may affect future mortality and morbidity. Thus, forward look-

ing individuals face a multi-dimensional intertemporal tradeoff between the quantity

and quality of life. They can reduce their consumption of private goods by paying

to move to more expensive neighborhoods that provide higher consumption value of

amenities (i.e. Tiebout sorting). They can also reduce their consumption of private

goods by paying to move to neighborhoods that increase their chances of survival

and of remaining healthy in old age (Grossman sorting). The choices that households

make when faced with these dual takeoffs will reveal features of their preferences that

are relevant for evaluating the welfare effects of future climate change, and for evalu-

ating a wide range of prospective polices targeting human health and environmental

quality.

4.2 Model

I develop a dynamic discrete choice model of residential sorting after retirement

that extends Bayer et al. (2016). Health and age are treated as sources of individ-

ual heterogeneity that affect decision-making. Age evolves deterministically condi-

tional on survival, but survival and the health stock evolve as stochastic functions of

location-specific amenities. More precisely, the probability of survival and the prob-

ability distribution over future states of health are each modelled as location-specific

functions of observed amenities such as climate, local health care quality, crime, and

air pollution.

The spatial landscape is divided into a finite number of residential locations. Loca-

tions differ in amenities, prices, and their effects on individuals’ survival probabilities

and probabilities of transitioning to different health states. Individuals are assumed
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to have knowledge about all of these attributes and to have perfect foresight over the

future evolution of attribute levels. This allows individuals to decide on a residential

location based on both quality and quantity of the expected remaining life span, and

to trade off one for the other. Individuals are assumed to purchase continuous quan-

tities of housing in their preferred locations at constant location-specific prices that

reflect the implicit cost of consuming the bundle of location-specific amenities. In-

come is assumed to be derived from fixed sources such as social security and pensions

since individuals are retired. Hence, income is invariant to location.

Individuals are characterized by type τ = (age, health) and the set of types is

assumed to be discrete and finite in each dimension.6 Locations are characterized by

levels of prices and amenities. The current flow utility uj from living in place j is a

weighted sum of amenities Xj, the price level pj that needs to be paid to live in j,

and place-and-type-specific utility ξτj that captures all between-type heterogeneity in

utility from location-specific amenities that are observed by individuals but not by

the analyst.

uτj,t = Xj,tβ
τ + pj,tα

τ + ξτj (4.1)

The marginal utility parameters βτ and ατ vary with type τ . Thus, individuals

of different age and health types may have systematically different preferences over

amenities and consumption. Further, flow utility may vary over time, with changes

in amenity levels and prices.

Individuals survive to the next period with probability sτj . This probability de-

pends on type τ and location j. Specifically, survival at each location is modeled as

a Gompertz function of age, a type-specific fixed effect, and a location-specific fixed

6If income were observed in the data, it could be added as another dimension of type, and could

also be modelled to vary stochastically as a function of location.
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effect.7

One model period spans five years, therefore the annual probability of survival

has to be multiplied across five years.

sτj =
5∏
t=1

(1− exp(ϕ aget + γj + hτ )) (4.2)

γj is the place effect on survival. A higher γj decreases the probability of survival. hτ

summarizes the health capital of type τ which is assumed to be observed in the data

and will be defined in detail in Section 4.4.

Conditional on survival, individuals transition deterministically to the next age

type, and stochastically to a different health type. The probability of transitioning

to a different type of health τ ′ is assumed to be a function of current age and health

type τ , and current location effect γtr,τj . Therefore, the health transition probabilities

depend on both current type and location. The function f is an ordered probit

specification and has been chosen to provide a mapping from age and location effects

to health transition probabilities.

Pj(τ, τ
′) = f(ϕtr,τ ageτ + γtr,τj ) (4.3)

If an individual reoptimizes location, they will have to pay moving cost MCτ ′ . Mov-

ing costs vary by origin-destination pair and, conditional on origin-destination, are

allowed to vary across types. Moving costs capture the full utility cost of moving,

and therefore may contain physical cost of moving, financial cost of moving (e.g. re-

altor fees, closing costs, housing search costs, cost of finding new doctors), and the

psychological cost of moving away from family and friends.

7The Gompertz model (Gompertz, 1825) has been used for 200 years to describe human mortality

as a function of age. Recently, it has also been used to model spatial variation in human mortality

(Chetty et al., 2016; Finkelstein et al., 2018)
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The lifetime utility V provided by place j to an individual of type τ is the dis-

counted expected sum of flow utilities. The individual random utility shock is assumed

to be an i.i.d. draw from a Type I EV distribution. Moving cost will be modelled

with a flexible function of distance in miles.

V τ
j,t = uτj,t︸︷︷︸

flow utility

+ β sτj
∑
τ ′

Pj(τ, τ
′) E(max

k
V τ ′

k,t+1 −MCτ ′(k, j)) + εi,k,t+1︸ ︷︷ ︸
discounted future utility, conditional on survival sτj

+ β (1− sτj ) θ︸ ︷︷ ︸
value of death

(4.4)

The decision problem of a individual of type τ , initially located in l, is to maximize

individual lifetime utility V τ
i,j,t – which is the sum of type-place specific lifetime utility

V τ
j,t, less moving cost MC if the optimal place is not equal to the initial location and

an individual random utility shock εijt.

max
j
V τ
i,j,t(l) = V τ

j,t − MCτ
t (j, l)︸ ︷︷ ︸

moving cost

+ εijt︸︷︷︸
individual random utility

(4.5)

Figure 4.1 depicts the events that occur within each model period as a sequence for

heuristic purposes. The individual state variables are current type τ = (age, health)

and initial location l. Period t starts with the realization of random utility εijt, and

the initial type τ and location j. Each individual observes their options in terms of

available locations, net of moving cost relative to the initial location. They decide

on the optimal location j based on the maximization problem in Equation 4.5 and, if

they relocate, pay the moving cost that depends on the distance of the move and the

current type. Then, based on the chosen location and initial type, survival or death

is realized. Conditional on survival, the individual transitions to a different health

type, where the distribution over new health types also depends on chosen location

and current type. Then the next period starts. In period t+1, the individual will start

in the currently optimal location j. Future utility is uncertain (1) due to uncertainty

about survival, (2) due to uncertainty about the future health type, and (3) due to
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Figure 4.1: Sequence of Events Within One Model Period

t t+ 1

1. Realize initial
type, location, ε

2. Observe
options

3. Decide on
location

4. Survive
or die

5. Transition
health type

uncertainty about future random utility shock εij,t+1.

In summary, the model combines the ideas of Tiebout and Grossman by (1) mod-

elling that individuals choose the locations that provides the highest utility to them,

and (2) letting their residential location choices constitute health investment deci-

sions, captured by the way that type-specific survival probabilities and type-specific

probabilites of transitioning to different states of health vary across locations. If the

dynamic channel were eliminated, there would be no concerns about future health

and mortality, and the model would solely capture the current consumption value of

amenities, similar to Bayer et al. (2007, 2009); Sinha et al. (2018b).

4.3 Data

Information on individual location, age, and health comes from administrative

records from the U.S. Centers for Medicare and Medicaid services (CMS). The data

are a 10 percent random sample of seniors who were enrolled in traditional Medicare

in 2001 (i.e. Medicare Parts A and B)8. Traditional Medicare is universal health care

coverage for all U.S. citizens over the age of 65. For each individual, I observe annual

data on residential location, health, and demographics from 2001 to 2013, or until

they die. Individuals exit the data when they die. Residential location is observed

as a ZIP+4 code, which is a mail delivery point such as a unique address, one floor

8Individuals who are enrolled in Medicare Advantage during the years 2001 or 2006 are dropped

because complete data on their chronic medical conditions are not available.
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of an apartment building, or one side of a street on a city block. The average ZIP+4

code contains fewer than five households. Additionally, I observe annual data on the

presence or absence of over forty common chronic medical conditions from CMS’s

chronic condition warehouse file. I focus on the twenty-seven conditions used in

Finkelstein et al. (2018). Table 4.1 lists these conditions ranked by incidence in 2001.

The most common condition by far is hypertension, which afflicts over 50 percent of

individuals. Over 40 percent have had a cataract.

4.3.1 Health Capital

I quantify individual health capital using a version of the frailty index. The frailty

index measures health capital as the accumulated sum of adverse health events. I

define an adverse health event as the diagnosis of a chronic condition. Individuals

are then grouped into quintiles, based on their number of chronic conditions. The

resulting mapping from the number of diagnosed conditions to health type quintile is

reported in Table 4.2.

The frailty index has been shown to predict mortality and institutionalization bet-

ter than age (Mitnitski et al., 2005; Goggins et al., 2005). Hosseini et al. (2019) show

that the frailty index outperforms self-reported health status in predicting mortality,

nursing home entry and Social Security Disability Insurance recipiency. Obviously

there is heterogeneity in the severity of different conditions, but one severe condition

rarely comes alone. If the immune system has been compromised by a serious con-

dition, other conditions tend to follow. For example, the average number of chronic

conditions, conditional on having at least one chronic condition, is 4.7. Conditional

on having cancer, individuals have on average 5.9 to 6.8 chronic conditions, depending

on the type of cancer.

Table 4.3 shows the fraction of individuals per type that are observed in 2001
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Table 4.1: Incidence of Chronic Conditions Ranked by Frequency

Condition Percent

Hypertension 56.8

Cataract 43.8

Hyperlipidemia 36.9

Ischemic heart disease 34.4

Anemia 29.0

Rheumatoid arthritis, osteoarthritis 27.4

Diabetes 20.0

Congestive heart failure 19.6

COPD 16.2

Hypothyroidism 13.1

Glaucoma 12.6

Depression 12.5

Osteoporosis 10.1

Hyperplasia 10.1

Atrial fibrillation 9.7

Dementia 9.5

Stroke, transient ischemic attack 9.3

Chronic kidney disease 6.5

Asthma 5.2

Alzheimer’s disease 4.2

Prostate cancer 4.1

Breast cancer 3.6

Acute myocardial infarction 2.5

Colorectal cancer 2.3

Hip fracture 2.2

Lung cancer 1.3

Endometrial cancer 0.4

Notes: This table reports the fraction of people over age 65 who had been diagnosed
with each chronic condition before the end of 2001. It is based on data from CMS’s
chronic conditions warehouse file for the sample of 5.5 million people.
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Table 4.2: Mapping From Count of Chronic Conditions to Health Quintiles

Health Quintile

1 2 3 4 5

Number of conditions 0-1 2-3 4-5 6-7 8+

Interpretation Excellent Very Good Good Fair Poor

and survive until 2006. For example, out of all 65-69 year olds that had one or zero

diagnosed chronic condition in 2001, 94.0 percent lived to see the year 2006. At the

opposite extreme, out of all those older than 90 who were diagnosed with 8 or more

chronic conditions in 2001, only 16 percent lived to see the year 2006. The rest of the

table shows considerable heterogeneity in survival rates by age and by health, with

monotonicity in age conditional on health and health conditional on age.

Table 4.4 shows the unconditional health transition rates from 2001 to 2006. Out

of all individuals with one or zero diagnosed chronic conditions in 2001, 30.4 percent

still have only one or zero diagnosed chronic conditions in 2006. Since the frailty

index is defined as the accumulated sum of adverse health events, transitions can

only move upwards. This is why all elements below the diagonal are zero.

4.3.2 Residential Locations: Hospital Referral Regions

The geographic units that individuals can choose in the model are Hospital Re-

ferral Regions (HRR)9. An HRR is a collection of ZIP codes, in which primary care

providers refer to the same hospitals and specialized care providers. This makes HRRs

a natural unit of choice to study residential sorting on health and health care. HRRs

9Hospital referral regions were defined by The Dartmouth Atlas.
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Table 4.3: Survival Rates by Type, From 2001 Until 2006

Health Quintile

Age 1 2 3 4 5

65-69 94.0 92.3 88.2 79.4 61.3

70-74 90.1 90.1 86.4 78.5 60.1

75-79 84.4 85.1 81.1 72.4 53.4

80-84 75.9 76.6 71.0 61.0 42.5

85-89 63.7 62.4 55.2 44.2 29.2

90+ 48.4 40.8 33.5 24.9 16.0

are contiguous geographic units with populations of at least 120,000 individuals, and

each HRR contains at least one hospital that performs major cardiovascular proce-

dures and neurosurgery. There are 304 HRRs in the US, and roughly they can be

thought of roughly as cities. Large metropolitan areas may contain multiple HRRs.

To help visualize the geographic scale, Figure 4.2 provides a map of projected climate

change by HRR. The largest HRR in the sample contains 1.8 percent of the total

sample population and the median HRR contains 0.2 percent. Individuals in the

CMS dataset are assigned to HRRs based on their ZIP code. Table 4.5 summarizes

variation in amenity levels across HRRs.

4.3.3 Data on Climate Amenities

Data on climate are constructed from daily readings of temperature and precip-

itation by NOAA Weather Stations, provided by the Global Historical Climatology

Network and retrieved using the R package “rnoaa” (Menne et al., 2012b,a; Cham-
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Table 4.4: Transition Rates Between Different States of Health

Health Quintile 2006

Health 2001 1 2 3 4 5 Total

1 30.4 25.7 22.5 12.7 8.7 100.0

2 0.0 16.0 34.7 27.2 22.1 100.0

3 0.0 0.0 17.2 35.4 47.4 100.0

4 0.0 0.0 0.0 17.4 82.6 100.0

5 0.0 0.0 0.0 0.0 100.0 100.0

Table 4.5: Amenity Levels Across Hospital Referral Regions

Amenity Mean Median SD

Rentindex (USD 2000) 489.1 450.2 160.7

Summer temperature (Celsius) 30.8 30.4 3.3

Winter temperature (Celsius) 6.5 5.6 7.0

Precipitation daily (mm) 2.6 2.5 1.1

Ambulatory care-sensitive hospital stays

(per 1,000 Medicare enrollees) 80.0 77.7 19.5

PM 2.5 (microgram per m2) 12.8 13.0 2.5

No of golf courses and country clubs 38.6 28.0 34.5
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berlain, 2019). All active weather stations during the year of interest are selected

conditional on having information on both temperature and precipitation. There are

7,089 such stations in the US.

The daily maximum temperature is first averaged by station by month. Then the

average maximum daily temperature of the hottest month is determined to be the

summer temperature, the average daily maximum temperature of the coldest month

to be the winter temperature. Precipitation is measured as an daily average per sta-

tion per year. To measure climate amenities in the year 2001, summer temperature,

winter temperature, and precipitation are averaged across the years 2000, 2001, and

2002, to reduce sensitivity of climate measures to annual variation in weather. This

process is repeated for 2006, by averaging the climate amenity variables over 2005,

2006, and 2007. Including both winter and summer temperature in the model pro-

vides a more nuanced measure of climate compared to annual average temperature

since prior research has found people, and especially seniors, to be sensitive to tem-

perature extremes, and asymmetrically more sensitive to extreme heat compared to

extreme cold (Albouy et al., 2016; Sinha et al., 2018b). Each ZIP code is assigned the

temperature and precipitation levels of the weather station closest to its population

weighted geographical centroid. The average daily maximum temperatures in sum-

mer and winter are then averaged across all ZIP codes within each HRR, weighted

by the number of ZIP+4 codes per ZIP code.

Data on projected changes in climate come from the Climate Model Intercompar-

ison Project (CMIP6) of the World Climate Research Programme that will be used

in the 6th Assessment Report of the IPCC.10 The projection data is available in a

10Publicly available at https://esgf-node.llnl.gov/search/cmip6/. Its main innovation over

CMIP5 is the incorporation of changes in land use and other societal responses to changing climate

into the future path of climate (Eyring et al., 2016; O’Neill et al., 2016).
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global geopraphic grid of 100 km resolution, where over 1,000 points fall in the area

of the continental United States. Following the approach of Albouy et al. (2016), the

inverse square distance weighted temperature (and precipitation) of the four nearest

gridpoints is taken to be the projected temperature (and precipitation) at a given

geographic location. Figure 4.2 provides maps of expected temperature changes by

2100 for the “business as usual” scenario, where no large reductions in carbon emis-

sions are assumed.11 Average daily maximum temperatures in summer are projected

to increase between 5 and 18 degrees (F) depending on location, while average daily

maximum temperatures in winter would increase between 4 and 26 degrees (F). Ap-

pendix Figure C.2 provides a map of projected changes to annual average temperature

under this scenario for reference. Note that the median projected change to average

annual temperatures across HRRs is 9.7 degrees F (5.4 degrees Celsius). However,

there is considerable spatial heterogeneity in the distribution of changes, and the right

tail is wider than the left tail, especially for changes to winter temperature.

4.3.4 Housing Prices, and Other Location-Specific Amenities

The cost of housing in each HRR is estimated from a set of HRR-specific fixed

effects that are estimated using data from the 2000 Census 5 percent sample and

2006 American Consumer Survey, following the regression procedure from Bayer et al.

(2009), which I describe in more detail in Section 4.4.3. Gross rental prices are used to

measure the per-period cost of living in an area, without reflecting future expectations

about asset value that are contained in real estate prices. Gross rents are regressed on

housing characteristics and a public use microdata area (PUMA) specific intercept.

The PUMA specific intercepts are taken to be the price premiums that have to be

paid to live in a certain PUMA. PUMA specific rental prices are then aggregated into

11The maps were created with help from code by Nancy Organ.
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Figure 4.2: Expected Changes in Daily Maximum Summer Temperature (F) by the
Year 2100 Under the ”Business as Usual” Scenario CMIP6 SSP 585.
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Figure 4.3: Expected Changes in Daily Maximum Winter Temperature (F) by the
Year 2100 Under the ”Business as Usual” Scenario CMIP6 SSP 585.
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HRR units based on the Census crosswalks from PUMAs to block groups and from

block group geocoordinates to ZIP codes. Local rental prices, adjusted for housing

characteristics, reflect the current cost of living in a certain place more clearly than

housing values, which contain expectations about future price developments, and have

been found to correlate most accurately with observable amenity levels (Banzhaf and

Farooque, 2013).

Data on fine particulate matter pollution (PM2.5) comes from air quality monitors

that the Environmental Protection Agency (EPA) operates. There are over 3,000 air

quality monitors in the US. Each ZIP+4 code is assigned the average annual daily

pollution values of all surrounding air quality monitors, weighted by inverse squared

distance.12. The values are then averaged across all ZIP+4 codes within an HRR.

Data on the amenity levels that characterize each HRR come from multiple sources

and are all publicly available. Quality of health care is measured as the incidence per

1,000 Medicare enrollees of ambulatory care sensitive hospital stays (ACS). These

are hospital stays that could have been prevented through adequate provision of

ambulatory care. These data are available on an annual basis at the HRR level from

the Dartmouth Atlas of Health Care.13

The Census Business Patterns 2001 and 2006 provides data on the number of

establishments by ZIP code and NAICS codes. All establishments classified as golf

courses and country clubs are summed up per HRR. The number of golf courses is

intended to capture a proxy for the cultural and social appeal of a location and is

consistently measurable at different points in time.

12These imputed data have been generously shared by the authors of Bishop et al. (2018)
13http://archive.dartmouthatlas.org/tools/downloads.aspx?tab=41
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4.3.5 Summary Statistics

Table 4.6 summarizes key features of the estimation sample. The mean age in

the sample is 75.4 years in 2001 and the average person is diagnosed with 4 chronic

conditions. The table also shows the incidence of moving within the five year period

from 2001 to 2005. Over 6 percent of individuals move across HRRs throughout this

period. 4 percent of individuals move across state lines and 2 percent move across the

four Census regions: Northeast, Midwest, South, and West. Individuals who move

more than once across HRRs within one model period are dropped to ensure a clear

definition of origin and destination.14

Finally, Table 4.7 summarizes unconditional moving patterns across Census re-

gions. The large numbers on the diagonal foreshadow the importance of moving

costs. Most individuals stay within their Census region. Conditional on moving

across regions, the South is the most important destination region.

4.4 Estimation

There are three key sets of model parameters to estimate. The parameters describ-

ing health transitions are identified by differences in health transition rates among

movers and stayers conditional on health. They will be estimated by extending the

econometric logic of Finkelstein et al. (2018) procedure to a ordered choice frame-

work. Second, the causal effects of place on survival γsurvj are identified by differences

in survival rates among movers and stayers and can be estimated independently using

a procedure developed by Finkelstein et al. (2018). The causal place effects of survival

γj and health transition γh,τj are also of direct interest. Finally, conditional on the

parametric assumption for flow utility, the marginal utility coefficients of amenities

14Less than one percent of the sample moves more than once within five years.
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Table 4.6: Summary Statistics in 2001

Mean age in years 75.4

Mean number of diagnosed chronic conditions 4.0

Mobility from 2001 to 2005 (percent)

... across HRR 6.1

... across state 3.9

... across Census regions 2.1

Mortality (percent)

... within 2001 5.2

... until 2005 24.5

Number of observations (million) 5.5

Notes : Unconditional summary statistics of the full sample in 2001.

Table 4.7: Origin-Destination Combinations in 2001-2005 by Census Region

Destination

Origin Northeast Midwest South West Total

Northeast 97.2 0.2 2.2 0.4 100.0

Midwest 0.1 98.0 1.4 0.5 100.0

South 0.7 0.7 98.2 0.4 100.0

West 0.2 0.6 1.0 98.1 100.0

Total 20.4 25.1 40.0 14.6 100.0

Notes : Contains non-movers and one-time movers who have been observed in 2001.
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βτ and consumption ατ and parameters describing heterogeneity in moving costs are

identified by how households choose residential locations each period. They will be

estimated by adapting the dynamic sorting model from Bayer et al. (2016).

4.4.1 Location-Specific Health Transition Probabilities

As noted earlier, I assume that people make residential location decisions based,

in part, on their knowledge of how living in different areas will affect their chances

of transitioning to worse health states. These causal transition probabilities may

differ from unconditional health state transition probabilities due to spatial sorting

on health. I use panel data on individual health transitions to estimate a set of casual

location-specific transition probabilities for each person type, τ .

For each health type τ in 2001, the probability of transitioning to health type τ ′

in 2006 is expressed as a function of age, demographics, and location fixed effects

δtr,τj , using an ordered logit model. Equation 4.6 shows the estimation equation. The

estimation is run on a 20 percent random sample due to computational constraints.

To calculate the implied location-specific transition probabilities for each type, I use

the average demographics ¯demog
τ

and the midpoint age for each type.

Pi,j(τ, τ
′) = f(ϕtr,τ1 agei + ϕtr,τ2 demogi + δtr,τ Ij) + ηtri ∀τ (4.6)

The demographic variables included in the model are gender, race, and an interaction

between gender and race. The identifying variation of the effect of location on health

transitions comes from spatial variation in the average health type-specific transition

probabilities, netting out the effects of age and local demographic composition. Es-

timating the change for each baseline type of health addresses individual time-fixed

confounders, reducing concern about sorting on unobserved health. 15

15Sorting on unobservable, time-varying health remains a concern. Finkelstein et al. (2018) suggest

73



4.4.2 Location-Specific Survival Probabilities

To estimate the causal effect that each location has on the probability of sur-

vival, I adapt the estimation strategy of Finkelstein et al. (2018). Like the health

transition probabilities, the survival probabilities ŝτj are type and place specific and

are assumed to be known by individuals when they make location decisions. Un-

conditional place-specific survival rates might differ from causal survival rates due to

spatial sorting on underlying health. Since death can only be observed once, panel

estimation is precluded. Finkelstein et al. (2018) use a selection correction procedure

to estimate place specific survival effects δsurvj in a way that leverages variation in

survival among movers. The identifying variation comes from movers who move to

different destinations from the same origin location.

Equation 4.7 shows the estimating equation. Individual mortality mi is is re-

gressed on age, demographics demogi, health hi, and place fixed effects for movers

and nonmovers.

log(mi) = ϕ1 agei + ϕ2 demogi + ϕ3 hi + δoj Ij,orig + δdj Ij,orig + δnj Ij,dest + ηi (4.7)

Demographic variables contain gender, race, and an interaction term. The location

fixed effects δoj , δ
d
j , δ

n
j capture the location specific mortality effects of each location

δnj for non-movers, and δoj and δnj for the origin and destination locations of movers.

The location specific effects on mortality δdj could be biased if movers sort into

locations based on unobserved health. To address this concern, Equation 4.8 shows

how δ̂dj is corrected for spatial sorting on health, under the assumption that selection

that panel estimates with individual fixed effects would be the “gold standard” to address spatial

sorting. Since health outcomes can be observed more than once while mortality cannot be observed

after the event of death, spatial sorting is more difficult to address when estimating location-specific

effects on mortality.
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on unobserved health can be approximated by selection on observed health.

ĥi = ϕh1 agei + ϕh2 Xi + ζoj Ij,orig + ζdj Ij,dest + ηhi (4.8)

The fitted health stock from Equation 4.7, ĥi := ϕ̂3hi, is then regressed on age,

demographics, and location specific fixed effects. δ̂dj is then corrected by the estimated

health-sorting effect ζ̂dj . The causal place-specific mortality effect γ̂j is then estimated

as

γ̂j = δ̂dj −
ŝd(δ̂oj )

ŝd(ζ̂oj )
ζ̂dj (4.9)

ŝd(δ̂oj ) and ŝd(ζ̂oj ) are estimated as the standard deviations of δoj and ζoj in a splitsample

bootstrap. Finally, to translate the location specific mortality effects, γ̂j, into survival

rates for a model period of five years, the resulting estimates are converted to five-year

periods using Equation 4.10.

ŝτj =
5∏
t=1

(
1− exp(ϕ̂1 age

τ
t + γ̂j + ĥτ )

)
(4.10)

To survive one model period of five years, the death hazard has to be avoided five

consecutive times. Type specific health capital ĥτ is averaged across all non-movers

of type τ . Type specific age is fitted starting from the midpoint age per type.

4.4.3 Dynamic Discrete Choice Model of Residential Sorting

The discrete choice model takes the estimated health transition probabilities and

the estimated survival probabilities as given and uses them to infer the preference

parameters that rationalize individuals’ observed choices. The estimation framework

builds on Bayer et al. (2016). The standard assumption of an additive Type 1 Extreme

Value random utility term εijt, implies that the probability of individual i of type τ

choosing location j can be expressed as

P τ
j,t(l) =

exp(V τ
j,t −MCτ

t (j, l))∑
k exp(V τ

k,t −MCτ
t (k, l))

(4.11)
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The lifetime utility values V and moving cost MC are estimated separately for

each type, and for the periods 2001-2005 and 2006-2011, with a maximum likelihood

estimation (Equation 4.13). Maximizing over 304 location-specific parameters for V τ
t

would be computationally prohibitive, so the values of V τ
t are estimated by applying

a Berry contraction mapping (Equation 4.14) (Berry, 1994). π(V ) are the fitted pop-

ulation shares that arise if lifetime utility values are V , πtrue are the true population

shares. x denotes the number of iterations.

Lτi,t =
∑
j

logP τ
j,t(l) I(choicei,t = j) (4.12)

LLF τ
t = max

V,γ

∑
i

Lτi,t (4.13)

s.t. V τ
t = lim

x→∞
V τ
x+1 = lim

x→∞
V τ
x + log(πtrue)− log(π(V τ

x )) (4.14)

Moving cost are modelled as a utility cost. This addresses the fact that moving is

costly not only financially, but also psychologically, in ways that cannot be directly

observed (e.g. finding new doctors, moving away from family, friends, and familiar

neighborhoods). Moving cost are parametrized with a flexible function of distance in

miles (Equation 4.15). This allows moves of longer distances to be more costly, but

does not restrict ex ante whether moving cost are convex or concave in distance.

MCτ
t (k, l) = µτ1 Istate(k, l) + µτ2 I>50mi(k, l) + µτ3 I>100mi(k, l) + µτ4 I>500mi(k, l)(4.15)

+ µτ5 I>1000mi(k, l) + µτ6 I>1500mi(k, l) + µτ7 IMidwest-Northeast(k, l)

+ µτ8 IMidwest-South(k, l) + µτ9IMidwest-West(k, l) + µτ10 INortheast-South(k, l)

+ µτ11 INortheast-West(k, l) + µτ12IWest-South(k, l)

This estimation proess is performed separately for each of the 30 age-health types,

and can therefore capture substantial heterogeneity in relative preferences and in

the cost of moving. An indicator for moves that cross state lines is included to

capture additional costs that may arise from adjustment to a new state (e.g. getting
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a new driver’s license and learning state tax laws). In addition, there are fixed effects

included for all pairwise origin-destination combinations of the four Census regions, to

allow for systematic variation in moving costs that might be associated with particular

migration paths, such as the degree of differences in cultural and urban amenities that

are shaped by aggregate migration flows.

Identification of Moving Cost and Lifetime Utility

As in Bayer et al. (2016), implementing the dynamic discrete choice estimator re-

quires normalizing some parameters. The individual random utility parameter ετijt

is i.i.d. according to a Type I Extreme Value distribution with location parameter

µ = 0 and a shape parameter β, that is assumed to be common to individuals of all

types. Conditional on this assumption, it is well known that the shape parameter

can be normalized. Given this normalization, the parameters describing variation in

moving costs are identified by the rates at which people make moving versus staying

decisions and the variation in distance conditional on moving. The identifying varia-

tion for mean lifetime utility values comes from the cross-section of location decisions,

conditional on moving cost.

The assumption that the individual random utility component is distributed with

a Type 1 Extreme Value distribution also allows me to reformulate the expected

future utility as an expectation over the standard log-sum formula taken with respect

to the future health state.16

E(max
k
V τ ′

k,t+1 −MCτ ′(k, j) + εik,t+1|j, τ) = (4.16)

E

[
log
∑
k

exp
(
V τ ′

k,t+1 −MCτ ′(k, j)|k, τ ′
)

+ cEM

∣∣∣∣∣ j, τ
]

16cEM is the Euler-Mascheroni constant. If X is a random variable, distributed along a Type 1

EV distribution with location µ and scale β, the expected value of X is µ+ β · cEM .
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The current flow utility u is computed as the difference between the mean lifetime

utility values at two different points in time. In order to do this, Equations 4.4 and

4.16 are combined as follows

uτj,t = V τ
j,t − β sτj,t Eτ

j,t

[
cEM + log

∑
k

exp(V τ ′

k,t+1 −MCτ ′(k, j))

]
− β (1− sτj,t) θτj,t

(4.17)

Estimates for current flow utility values ũ are obtained by plugging in lifetime utility

value estimates Ṽ , moving cost estimates M̂C, estimated survival rates ŝτj and health

transition probabilities P̂j(τ, τ
′).

ũτj,t = Ṽ τ
j,t − β sτj,t Eτ

j,t

[
cEM + log

∑
k

exp(Ṽ τ ′

k,t+1 − M̂C
τ ′

t+1(k, j))

]
(4.18)

Two numerical challenges arise at this point. First, the estimation of V by type

requires a normalization by type that precludes adding up Ṽ estimates across types.

I address this by normalizing the utility from one place for each type to zero, and

address this normalization in the next stage of the estimation. Appendix Section

A.1 provides the technical details. Second, the utility flow from death θτj,t (e.g. from

leaving bequests) must be normalized, to ensure that life is always preferrable to

death. I address this by normalizing θτj,t to equal the utility of being in the worst

state of health in the least desirable location. Doing this yields an implicit estimate

of the VSL, that varies by age, health type, and location. The population-weighted

average VSL for a 65 year old individiual in excellent health is $119,367, for a 65

year old in poor health it is $59,035. This range is lower than the VSL estimates in

Ketcham et al. (2020), who find a VSL of around $402,000 for 67 year olds. This

most likely reflects the fact that even living in the worst state of health in the least

desirable location is preferrable to death. Finally, the discount factor β is set to 0.85,

extrapolating the 3 percent annual discounting from Aldy and Viscusi (2008) to a

period of five years.
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Identification of Marginal Rates of Substitution

To obtain measures for HRR-specific housing prices paid by seniors, rent price indices

are estimated for each HRR. Specifically, gross rents pi,j,t are regressed on physical

housing characteristics Hi,t and location-fixed effects to obtain location-specific rent

price intercepts. Data on gross rental prices and housing characteristics comes from

the 2000 Decennial Census, restricted to individual observations over the age of 65.17

This captures how much extra a given individual will pay if they move from one HRR

to another. These intercept differences are estimates of the true difference in housing

costs across locations only with the additional assumption that the choice of housing

quantity does not vary across locations.

pi,j,t = βp Hi,t + δp Ij + εpi,t (4.19)

Estimates for current flow utility û are then regressed on local amenities Xj,t and the

HRR-specific house prices pj,t to obtain marginal utility of amenities, βτ , and prices,

ατ , for each age type and health type. These parameters are then used to compute the

willingness to pay (WTP) for amenities by type as βτ

ατ
. Estimating marginal utilities

raises a standard concern about endogeneity. Unobserved amenities can increase

both the estimated utility levels ûj,t and be capitalized into local housing prices pj,t.

Therefore, housing prices need to be instrumented in order to estimate ατ consistently.

I develop instruments for price by adapting the procedure from Bayer and Timmins

(2007). To define the most similar HRR in type space, a principal component analysis

(PCA) is run on all observed amenities. The intuition for this approach is that in a

17The place fixed effects δ̂pj are estimated for 2000 PUMAs. To reassemble these PUMA-specific

estimates to the HRR level, a crosswalk provided by the Missouri Data Center assigns 2000 PUMA

to 2010 Census blockgroups. The 2010 Census block groups are then mapped on ZIP+4 codes and

finally averaged across all ZIP+4 codes per HRR.
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spatial housing market equilibrium, the price of housing in location j will be a function

of the attributes of locations that are close substitutes. Focusing on physically distant

locations mitigates potential spatial correlation in unobserved attributes. The PCA

reveals the most important dimensions of joint variation in amenities. The Euclidean

distance between all principal components determines the most similar location, a.k.a.

the nearest neighbor in type space. To exclude geographically adjacent locations,

admissible nearest neighbors need to be at least 100 miles away and belong to a

different state.18

pj,t = Xj′,t β̃ + ξ̃j′ (4.20)

ûτj,t = Xj,t β
τ + pj,t α

τ + ξτj (4.21)

Equation 4.20 shows the first stage of the IV. It regresses housing prices in location

j on amenity levels of location j′, where location j′ is the nearest neighbor of location

j in the amenity space. Equation 4.21 shows the decomposition of mean flow utility

values û on local prices and amenity levels.19

4.5 Results

4.5.1 Survival and Health Fixed Effects

Figure 4.4 provides a map of the estimated place-specific survival effects. Darker

shades represent higher probabilities of survival. Notice that these place-specific

effects operate conditional on age and most importantly, conditional on current health

type.

18A plot of the first and second principal component can be found in Appendix Figure C.1. Places

that are plotted close to each other are similar in amenities.
19The full decomposition estimation equation, accounting for previous normalization of Ṽ , is

detailed in Appendix Section A.1.
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Figure 4.4: Estimated Causal Place-Fixed Effects on Survival

25

30

35

40

45

50

−120 −100 −80

Longitude

La
tit

ud
e

Notes: Darker shades indicate higher probability of survival, conditional on health
status.

With the estimated survival rates and health transition rates, life expectancy for

a given individual at age 65 in a given state of health can be calculated for each of

the 304 available locations. Figure 4.5 shows a whisker plot of life expectancy at

age 65 across locations, for each initial type of health. What stands out is that the

variation across space conditional on health is larger than the variation in median life

expectancy across health bins at age 65.

4.5.2 Moving Cost Parameter Estimates

Moving costs and mean lifetime utility values are estimated separately for each age

and health type. To develop intuition, Table 4.8 reports the moving cost parameters

from a pooled estimation over all types. A complete set of heterogeneous moving cost

parameters by type is reported in the Appendix Table B.9.

81



Figure 4.5: Spatial Variation in Life Expectancy at Age 65
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Notes: Boxes plot the range of life expectancy across all available locations, plotted
by initial state of health.

Table 4.8 shows that moves of relatively short distances are relatively expensive,

indicating a high fixed utility cost of moving. An in-state move between 50 and 100

miles is estimated to cost 4.6 utils, which is larger than the range of mean lifetime utils

across space (-3.7,0.7). The distance parameters add up sequentially. For example,

an in-state move of 200 miles is estimated to cost 5.6 utils. Moving across state lines

increases costs further. Moving costs increase in distance at a decreasing rate and

decrease between 500 and 1,500 miles, suggestive of concave moving costs up until

1,500 miles. Indicators for cross-region moves are included to capture unobserved

factors that drive popular migration patterns. For example, the high estimated cost

for moves between the Midwest and Northeast reflect the fact that very few moves

occur between these two adjacent regions. The relatively low moving cost to the

South reflects the popularity of the South as a destination (Table 4.7).
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Figure 4.6: Annual MWTP for Amenities by Age and Health Type
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Table 4.8: Moving Cost Parameter Estimates

Cross state 2.9

Distance indicator

>50 miles 4.6

>100 miles 0.8

>500 miles -0.3

>1,000 miles -0.6

>1,500 miles 0.7

Origin-destination combinations

Midwest-Northeast 2.3

Midwest-South 0.8

Midwest-West 1.2

Northeast-South 0.5

Northeast-West 1.5

West-South 1.1

Notes: Estimated moving cost parameters of Equation 4.15 for full sample, 2001-2006

4.5.3 Willingness to Pay for Local Amenities

Observed amenities are an important determinant of individual location deci-

sions.20 Figure 4.6 shows the estimates for annual marginal willingness to pay (WTP)

for amenities in 2000 USD. More precisely, these are estimates for the WTP to change

amenity levels in the current period, but not future periods.

The amenity with the most consistent magnitude across types appears to be av-

20The adjusted R2 is higher than 40 percent for all second stage decompositions.
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erage winter temperature. Contrary to the findings of Albouy et al. (2016) and Sinha

et al. (2018b), individuals appear to value an increase in average winter temperature

more highly than a decrease in average summer temperature. Across all types, the

WTP for 1 C higher average temperature in winter is consistently positive between

100 and 200 dollars.

For summer temperatures, the younger types even have a slightly positive valu-

ations. The WTP estimates for summer temperature have a distinct trend in age

and in health: older and sicker types exhibit larger WTP to avoid summer heat than

younger and healthier types. Further, humidity - defined as daily precipitation - is

viewed as a strong disamenity, with a clear age trend. As individuals get older, they

appear to increasingly dislike humidity. Willingness to pay to avoid 1mm of daily

rainfall increases from around 200 dollars for 65-69 year olds up to almost $1,400 for

those older than 90. Measures of WTP for non-climate amenities are also typically

intuitive. For example, most types have a positive willingness to pay to live in lo-

cations with better health care, at an annual average of $207. For tractability, the

WTP to avoid ambient air pollution is restricted to vary only by age type. Younger

types exhibit the largest willingness to pay to avoid PM 2.5, but this fades with age.21

4.5.4 Model Fit

The estimated model does a reasonable job in predicting moves compared to Bayer

et al. (2016) who focused on a single metrpolitan area. Using the same diagnostic

measures of model fit as their study I find that, across the full sample, 97 percent

of individuals choose a location from the top 5 percent of their respective choice

set, ranking locations by their model predicted choice probabilities. Note that this

21A complete set of marginal utility estimates for all types and amenities with standard errors is

reported in Appendix Table B.11.
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number includes a large mass of individuals who do not move at all. Conditional on

moving, 45 percent of individuals choose a location from the top 5 percent of their

choice set, and 66 percent choose a location from the top 15 percent of their choice

set. In comparison, Bayer et al. (2016) found that 31 percent of households choose a

neighborhood that would have been ranked in the top 5 percent of their choices and

47 percent choose one from the top 10 percent of ranked choices.

4.6 Climate Change

As an illustrative example, I simulate climate change projections for 2100 as if

they had occurred in 2001, the first model period, and remain unchanged thereafter.

This acts as a discrete shock to amenity levels, and it also affects survival rates and

health transition rates. Then I use my model estimates to gauge the extent to which

people may choose to adapt by moving, along with the associated health implications

and welfare implications. In addition to migration, the key channels affecting welfare

include the consumption value of climate and the health investment value of climate.

I quantify the relative magnitude of each channel.

Data on projected climate change in terms of average summer winter temperature,

average winter temperature, and average daily precipitation levels comes from the

World Climate Research Programme. I simulate these changes for a “business as

usual” scenario22, in which there are no significant reductions in carbon emissions

(O’Neill et al., 2016). Temperature and precipitation data are available on a global

grid with a nominal resolution of 100 kilometers. There are over 1,000 grid points fall

in the continental US. I project the gridded data onto HRRs by spatial interpolation,

using inverse squared weighted distances of the closest four grid points similar to

Albouy et al. (2016). Figure 4.2 shows a map of the implied changes to average

22World Climate Research Programme Database CMIP6 ScenarioMIP SSP585
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daily maximum temperatures in the hottest month (summer) and the coldest month

(winter) of the year.

4.6.1 Predicting Counterfactual Mortality and Health Transition Rates

To predict how climate change would affect mortality and morbidity in the cli-

mate change scenario, the estimated HRR fixed effects for mortality and morbidity

from Equations 4.6 and 4.7 are regressed on all observed amenities. The regression

coefficients are reported in Table 4.9. Higher temperatures are found to increase mor-

tality and morbidity. Humidity, proxied by precipitation, has somewhat ambiguous

effects. The estimated marginal effects of the climate variables are multiplied by the

predicted changes in temperature and precipitation in order to predict counterfactual

mortality and health transition rates.23 Since both the survival rates (Equation 4.10)

and the health transition rates (Equation 4.6) are non-linear functions of the place

fixed effects, the marginal effects of climate change on health will be non-linear across

types. Specifically, the estimated parameters imply that warmer temperatures will

have larger negative effects on health for older and sicker types.

To simulate how climate change would affect individuals’ choices and welfare, it

is necessary to first calculate place-specific lifetime utility values under actual and

counterfactual conditions. Equation 4.17, rearranged for V on the left hand side,

provides the foundation for a bottom-up approach to constructing the values of V ,

described in Equation 4.22. The terminal period is defined to be the period after

Age type 6. In the terminal period the individual only consumes their flow utility

and dies in the next period with certainty. This restriction provides a reasonable

approximation to the data in which only 0.3 percent of seniors are older than 100

23There are no estimated transition rates for Health type 5, since it is modelled as an absorbing

state.
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Table 4.9: Marginal Effects of Amenities on Place-Specific Health and Mortality

Mortality Health 1 Health 2 Health 3 Health 4

Summer (C) 0.0036 0.0152 -0.0015 0.0022 -0.0671

(0.0032) (0.0053) (0.0051) (0.0075) (0.0467)

Winter (C) 0.0032 0.0002 0.0116 0.0038 0.0467

(0.0014) (0.0023) (0.0028) (0.0035) (0.026)

Precipitation (mm) -0.0184 0.0684 0.0039 0.0147 -0.3304

(0.0088) (0.0156) (0.0167) (0.0176) (0.1389)

PM 2.5 (mg per m2) -0.0028 0.0036 0.0103 0.0035 -0.0106

(0.0029) (0.0055) (0.0058) (0.0073) (0.065)

ACS (per 1,000 enrollees) -0.0004 0.0016 0.0066 0.0067 0.0006

(0.0006) (0.0009) (0.001) (0.0011) (0.0112)

Golf courses 0.0001 -0.0003 -0.0003 -0.0006 -0.0039

(0.0001) (0.0002) (0.0003) (0.0005) (0.0032)

Rentindex (USD 2000) -0.0001 0.0001 0.0008 0.0008 -0.0011

(0) (0.0001) (0.0001) (0.0002) (0.001)

Constant 0.1574 -0.9845 -1.1413 -1.0984 3.448

(0.1606) (0.2129) (0.2226) (0.2703) (1.6687)

N 304 304 304 304 304

R2 0.12 0.12 0.34 0.25 0.04

Adjusted R2 0.1 0.1 0.33 0.23 0.02

Notes: Dependent variables: Causal place fixed effects for mortality δ̂j and health

transition δ̂τj . Higher values imply higher mortality and higher rates of transition to
worse states of health. Standard errors in parentheses, obtained with 50 bootstrap
repetitions.
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years.

Lifetime utility of Age type 6 is constructed for each possible health type, as

outlined in Equation 4.22. The future lifetime utility is simply the flow utility of

the terminal period, less moving costs, depending on the current location. Next, the

flow utility of Age type 5 is calculated for each possible health type, as the sum of

the current flow utility plus the discounted lifetime utility of Age type 6, which is

the lifetime utility in the next period, again less moving costs. This future lifetime

utility, which is the lifetime utility of Age type 6, needs to be added as a weighted

sum across all possible health types that the current health type might transition to.

This recursive structure is applied back until Age type 1.

I make two assumptions in order to build flow utility measures for future periods.

First, I assume that individuals are fully informed about future amenity levels in 2006

when making their decisions in 2001. Second, I assume that individuals expect these

future amenity levels to remain constant further into the future. In other words, I

assume perfect foresight for one period and constant expectations thereafter.

V̂ τ
j,t = ûτj,t + β ŝτj,t E

τ
j,t

[
cEM + log

∑
k

exp(V̂ τ ′

k,t+1 − M̂C
τ ′

t+1(k, j))

]
+ β (1− ŝτj,t) θ

(4.22)

Following the strategy outlined earlier, the utility value of death is normalized to be

equal to the certain value of living in the least desirable place in the poorest state of

health.

4.6.2 Welfare implications

The annual willingness to pay (WTP) to avoid this scenario varies across health

and ages types, ranging from $962 to -$1,894. Perhaps surprisingly, the population

weighted average WTP is negative (-$540); i.e. the average senior benefits from the

combined health and amenity effects of climate change. This finding is driven by the
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large WTP for warmer winter temperatures discussed earlier. Figure 4.7 summarizes

heterogeneity in welfare effects by reporting the WTP by (age, health) type. The

youngest types benefit the most. The youngest and healthiest types have an average

annual WTP of $1,770. This stems from their relatively strong preferences for warmer

winters, their weaker preferences for warmer summers, and their relative indifference

to additional precipitation (Figure 4.6a and 4.6c). In contrast, older, sicker types are

affected relatively negatively by hotter summers and higher precipitation.

Figure 4.8 decomposes the mechanisms underlying the WTP measures by con-

trasting the average WTP to avoid the climate change scenario (Figure 4.7) with an

the average WTP from an alternative scenario that ignores climate change’s effects

on health and survival. If there were no effects on health and mortality, the WTP

for the changes in climate would be as high as $2,382 for the youngest and healthiest

types, which is $613 higher than when health effects are taken into account. The

change in the population-weighted average is $234, due to climate change’s adverse

health effects. Younger and healthier types are somewhat less vulnerable to the averse

health effects of warming in the short run, but they have longer remaining life spans

that are negatively affected, driving up the cost they incur from averse health effects.

Still, their discounted values of the future negative health consequences are more then

offset by the enormous positive effects of warmer temperatures on their current utility

flows.

Taking away the opportunity to move comes with a large welfare cost. In a world

without climate change, the annual welfare cost of being stuck in the initial location

is estimated at a population weighted average of $2,125. By fixing optimal migration

choices from the scenario without climate change and then introducing climate change,

I can quantify the role of migration for adaptation to climate change within one model

period of five years. All individuals are strictly worse off if they are not able to re-
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optimize by changing their moving decision in response. The population-weighted

average welfare cost of not being able to move in response to climate change adds

only $10 to the welfare cost of not being able to move at all. Therefore, adaptation

to climate change through moving is found to play a quite small role. This result

is due to the enormous utility cost of re-optimizing, i.e. moving, that leads most

individuals to stay with their optimal choice before introducing climate change. Very

few individuals would actually alter their location choices in response. Across types,

the welfare cost of not being able to adjust is higher for younger and healthier types,

because they would be the most likely to adjust through migration. Over a longer

time horizon, migration responses will certainly play a larger role, but this would

require introducing new cohorts, because the lion’s share of the initial cohorts will

have died within a few model periods.

After introducing climate change and altering the survival probabilities and health

transition probabilities accordingly, life expectancy at age 65 reduces by 0.2 years on

average. Due to the small migration responses, this change in life expectancy is not

mitigated by migration.

Finally, Figure 4.9 shows a spatial map of population-weighted aggregate gains

and losses. Darker shades indicate larger welfare gains. Notice that the regions that

most stand to gain are those with large expected increases in winter temperature, but

modest expected increases in summer temperature.

4.6.3 Comparison to Prior Literature

My findings on WTP for summer temperatures and winter temperatures differ

from prior studies (Albouy et al., 2016; Sinha et al., 2018b). Individuals appear to

value warmer winters more highly than cooler summers, and in the case of sum-

mer temperature, some younger and healthier types even appear to have a positive

91



Figure 4.7: WTP to Avoid Climate Change by Age and Health Type: Total Effect
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Figure 4.8: WTP to Avoid Climate Change by Age and Health Type: Amenity
Effect Only
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Figure 4.9: Spatial Distribution of Welfare Gains from Climate Change Under “Busi-
ness as Usual”
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valuation for warmer summer temperatures.

Both the model and the sample used in this study differ in several ways from

the prior literature. The sample focuses exclusively on seniors over the age of 65 in

contrast to the prior literature’s primary focus on younger households. In addition,

my moving cost specification is more flexible than in prior studies, and a move is

defined as occurring within a relatively narrow window of five years. Perhaps most

important, I depart from prior climate applications by modeling people as being

forward looking, while simultaneously recognizing that climate affects health and

survival. In contrast to prior studies, this allows me to disentangle the consumption

value of climate amenities from the anticipated future health effects of climate, both

of which are important for assessing welfare changes.

In constrast to Sinha et al. (2018b) and Albouy et al. (2016)’s results for younger

households, I find that older adults value moderate winters more highly than moder-

ate summers. I find the population-weighted mean annual MWTP for a 1C reduction
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in average summer temperature is 7 dollars per individual and 142 dollars for a 1C

increase in average winter temperature, whereas Sinha et al. (2018b) find annual

MWTP of 1,424 dollars per household for a 1F reduction in average summer temper-

ature and 1,035 dollars per household for a 1F increase in winter temperature when

they use their most directly comparable subsample of households older than 55 years.

4.6.4 Caveats and Possible Directions for Future Research

It is important to note that my estimates for the WTP to avoid climate change are

limited to the extent to which changes in average temperatures and precipitation affect

health and neighborhood amenity values. The effects of climate change on natural

disasters, (e.g. floods, hurricanes, wildfires), agricultural yields, manufacturing, and

other sectors of the economy are left to future research.

Another channel worth exploring in future research is the volatility in weather,

including the risk of and damage from catastrophic weather events. The migration

responses to the climate change scenario have been found to be relatively small due to

the large utility cost of moving. It would be interesting to investigate how catastrophic

events (e.g. Hurricane Katrina) affect welfare and migration responses over longer

periods. More broadly, it would be interesting to extend this model to make the supply

of housing endogenous to population flows, building on insights from Diamond (2016)

and Murphy (2018).

4.7 Conclusion

Residential sorting models have been widely used to extract information about

consumer preferences from housing market outcomes that can be used to evaluate

distributional welfare effects of policies targeting urban and environmental amenities.

I have extended the literature by developing and estimating a dynamic model of

94



location choice that incorporates individual heterogeneity in health and age among

forward-looking agents who anticipate the future health consequences of their current

location choices. I estimated the model using administrative data containing detailed

information about the evolution of individual health, mortality and location choice.

My results suggest that seniors are forward looking in choosing locations based on

their preferences for comfortable climates, for avoiding air pollution, and for access

to high quality of health care, in part, because they anticipate how these amenities

will contribute to their future health and wellbeing.

I used the model estimates to simulate how sorting patterns, health, and welfare

would be affected by future climate change under a “business as usual” scenario for

carbon emissions, I find that, on average, younger and healthier seniors benefit from

the combined health and amenity effects of climate change, due to their preferences for

warmer climates and their ability to move. Older and sicker seniors are made relatively

worse off by the hotter summers and increased humidity. Ignoring climate change’s

adverse effects on health would cause me to understate climate change’s welfare losses.

The welfare consequences are also spatially heterogeneous. For example, the Midwest

is projected to have warmer winters but only moderately warmer summers, leading

to welfare gains for many current residents. In contrast, other regions with hotter

summers and higher humidity incur welfare losses.
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Alberini, A. and M. Ščasnỳ, “The benefits of avoiding cancer (or dying from cancer):
Evidence from a four-country study”, Journal of health economics 57, 249–262
(2018).

Alberini, A., S. Tonin and M. Turvani, “The value of reducing cancer risks at con-
taminated sites: are more heavily exposed people willing to pay more?”, FEEM
Working Paper (2009).

Albouy, D., W. Graf, R. Kellogg and H. Wolff, “Climate amenities, climate change,
and american quality of life”, Journal of the Association of Environmental and
Resource Economists 3, 1, 205–246 (2016).

Aldy, J. E. and W. K. Viscusi, “Adjusting the value of a statistical life for age and
cohort effects”, The Review of Economics and Statistics 90, 3, 573–581 (2008).

Azariadis, C. and J. Stachurski, “Poverty traps”, Handbook of economic growth 1,
295–384 (2005).

Banzhaf, H. S. and R. P. Walsh, “Do people vote with their feet? an empirical test
of tiebout”, American Economic Review 98, 3, 843–63 (2008).

Banzhaf, H. S. and R. P. Walsh, “Segregation and tiebout sorting: The link between
place-based investments and neighborhood tipping”, Journal of Urban Economics
74, 83–98 (2013).

Banzhaf, S. and O. Farooque, “Interjurisdictional housing prices and spatial ameni-
ties: Which measures of housing prices reflect local public goods?”, Regional Sci-
ence and Urban Economics 43, 635–648 (2013).

Banzhaf, S., L. Ma and C. Timmins, “Environmental justice: The economics of race,
place, and pollution”, Journal of Economic Perspectives 33, 1, 185–208 (2019).
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A.1 Normalization of Lifetime Utility

Estimated lifetime utility values Ṽ have to be normalized for each type for techni-
cal reasons. In this estimation, the mean lifetime utility of location 1 - Birmingham
AL - is set to zero for each type. This implies that each estimated utility value is a sum
of the true utility value plus a type-specific normalization constant Ṽ τ

j = V τ
j + mτ .

When calculating ũ from Ṽ , a “normalization bias” arises since Ṽ enters the equation
several times. The following Equation A.1 rewrites Equation 4.18 with Ṽ τ = V τ−mτ

to illustrate the relationship between the estimated ũ and the true u.

ũτj,t = V τ
j,t − sτj,t · βEτ

j,t

[
cEM + log

∑
k

exp(V τ ′

k,t+1 −MCτ ′

t+1(k, j))

]
︸ ︷︷ ︸

= uτj,t+β(1−sτj,t)θ

− (mτ
t − sτj,t · βEτ

j,t

[
mτ ′

t+1

]
)︸ ︷︷ ︸

normalization bias

ũτj,t = Xj,tβ
τ + pτj,tα

τ + β(1− sτj,t)θ − (mτ
t − sτj,t · βEτ

j,t

[
mτ ′

t+1

]
) (A.1)

The expectation in the last equation is with respect to the uncertainty about future
health type τ ′. Since there is a finite number of types that an individual can transition
to, it can be rewritten as

ũτj,t = Xj,tβ
τ + pτj,tα

τ + β(1− sτj,t)θ −mτ
t + sτj,t β

∑
τ ′

P τ
j,t(τ, τ

′) mτ ′

t+1

The normalization bias has two components: (1) the type-specific constant mτ , and
(2) the sum of future type-specific constants, weighted by the product of place-specific
survival and health transition probabilities. To estimate the coefficients βτ and ατ ,
the estimated ũ’s will be regressed on amenities X, prices p, and a set of correction
variables to address the aforementioned normalization bias (Equation A.2). The
regression is run separately for each age type. To address component (2), the product

of survival probabilities ŝτj,t and health transition probabilities P̂j,t(τ, τ
′) for all possible

future health types τ ′ will be included as a separate set of variables. Under the
assumption that for a given state of health, lifetime utility does not change in age
(i.e. mτ

t = mτ
t+1), the type specific constant can be added to the respective product

of survival and health transition probability. The probability of death (1− s) cannot
be added as a separate variable to obtain θ as a regression coefficient because the
health transition probabilities P add up to 1. Therefore, the utility value of death
will be absorbed into the regression constant, but cannot be identified separately.
When simulating counterfactual outcomes, lifetime utility values need to be calculated
based on counterfactual amenities, survival rates, and health transition probabilities.
To account for the utility value of death, it will be assumed that an individual is
indifferent between death and being with certainty in the worst state of health in the
location with the lowest mean utility value. Equation A.2 specifies the estimation
equation for decomposing ũ.

ũτj,t = βτXj,t+α
τpj,t+

∑
τ ′ 6=τ

mτ ′ ·(β ŝτj,t P̂j,t(τ, τ ′))+mτ
(
β ŝτj,t P̂j,t(τ, τ)− 1

)
+β (1−ŝτj,t)θ

(A.2)

104



A.2 Estimated Normalization Correction

The following provides a consistency check for the estimated normalization con-
stants m̂τ : For each type, the lifetime utility of place 1 has been normalized to zero,
i.e. m = −V1. This implies that the normalization constant equals the total lifetime
utility from living in place 1. So if it can be assumed that being in a better state of
health (say τ > τ ′) improves the utility of living in 1, V τ

1 > V τ ′
1 , then it must be true

that mτ < mτ ′ . The estimated m̂’s are equal to −m, so in turn it must be true that
mτ > mτ ′ . The estimated normalization constants m̂τ are monotonically decreasing
across health types, which can be seen in Table B.11. Note that m̂τ equals −V τ .
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Table B.1: Mean Impact of New Diagnosis on Propensity to Move

Dementia 4.25

Alzheimer’s 3.50

Hip fracture 2.84

Depression 1.90

Stroke 1.60

Congestive heart failure 0.84

Chronic kidney disease 0.83

Acute myocardial infarction 0.64

Atrial fibrillation 0.53

COPD 0.53

Anemia 0.35

Osteoporosis 0.34

Asthma 0.28

Ischemic heart disease 0.22

Lung cancer 0.19

Hypothyroidism 0.19

Diabetes 0.18

Rheumatic arthritis, osteoarthritis 0.10

Colorectal cancer 0.09

Prostate cancer 0.00

Hyperplasia -0.05

Hypertension -0.07

Glaucoma -0.11

Breast cancer -0.12

Endometrial cancer -0.23

Hyperlipidemia -0.24

Cataract -0.27

Mean annual moving rate 3.27

Notes: Dependent variable in linear probability model: Indicator for moving. Average
coefficient across 2001-2012 in percentage points. Estimating Equation (2.7)
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Table B.2: Implicit Price of Preventing One Fatality Per Age Group, Equation 3.8, by SUPERPUMA

Age

65-69 70-74 75-79 80-84 85-89 90+

VSL, causal mortality 79.0 48.9 30.3 19.2 12.2 8.3

SE (0.19) (0.12) (0.07) (0.05) (0.03) (0.02)

CI, 95 percent (78.6,79.4) (48.6,49.1) (30.2,30.5) (19.1,19.3) (12.2,12.3) (8.2,8.3)

...with Metro Area FE 12.2 7.6 4.7 3.0 1.9 1.3

SE (0.26) (0.16) (0.10) (0.06) (0.04) (0.03)

CI, 95 percent (11.7,12.7) (7.2,7.9) (4.5,4.9) (2.9,3.1) (1.8,2.0) (1.2,1.3)

VSL, empirical mortality 5.1 5.2 4.1 2.1 0.6 -0.1

SE (0.02) (0.02) (0.02) (0.01) (0.01) (0.01)

CI, 95 percent (5.0,5.1) (5.1,5.2) (4.1,4.2) (2.1,2.1) (0.5,0.6) (-0.1,-0.0)

...with Metro Area FE 3.7 4.6 2.8 2.1 0.9 0.2

SE (0.02) (0.02) (0.02) (0.01) (0.01) (0.01)

CI, 95 percent (3.7,3.8) (4.6,4.7) (2.7,2.8) (2.1,2.1) (0.9,0.9) (0.2,0.2)

Notes: VSL in million (USD 2000). Data source: Census 2000 5 percent sample. N with causal mortality

estimates 6,603,326, N with empirical mortality estimates 6,685,677. Mortality estimates of one age group

included as control.
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Table B.3: Implicit Price of Preventing One Fatality Per Age Group, Equation 3.9, by SUPERPUMA

Age

65-69 70-74 75-79 80-84 85-89 90+

VSL, causal mortality 48.6 30.1 18.7 11.8 7.6 5.1

SE from rent-mort regression (0.19) (0.12) (0.07) (0.05) (0.03) (0.02)

CI, 95 percent (48.2,49.0) (29.8,30.3) (18.5,18.8) (11.8,11.9) (7.5,7.6) (5.1,5.2)

...with Metro Area FE 7.7 4.8 3.0 1.9 1.2 0.8

SE (0.26) (0.16) (0.10) (0.06) (0.04) (0.03)

CI, 95 percent (7.2,8.2) (4.5,5.1) (2.8,3.2) (1.8,2.0) (1.1,1.3) (0.8,0.9)

VSL, empirical mortality 4.5 4.6 3.1 1.9 0.5 -0.1

SE (0.02) (0.02) (0.01) (0.01) (0.01) (0.00)

CI, 95 percent (4.4,4.5) (4.5,4.6) (3.1,3.1) (1.9,1.9) (0.4,0.5) (-0.1,-0.1)

...with Metro Area FE 2.2 3.3 1.6 0.9 0.0 0.1

SE (0.02) (0.02) (0.02) (0.01) (0.01) (0.01)

CI, 95 percent (2.2,2.2) (3.2,3.3) (1.5,1.6) (0.9,1.0) (0.0,0.0) (0.1,0.1)

Notes: VSL in million (USD 2000). Data source: Census 2000 5 percent sample. N with causal mortality

estimates 6,603,326, N with empirical mortality estimates 6,685,677. Mortality estimates of one age group

included as control.

Amenities: Summer temperature, winter temperature, precipitation, health care, PM2.5, golf courses, log

population density.
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Table B.4: Implicit Price of Preventing One Fatality Per Age Group, Equation 3.8, by HRR

Age

65-69 70-74 75-79 80-84 85-89 90+

VSL, causal mortality 104.0 64.5 40.4 25.6 16.5 11.1

SE (0.24) (0.15) (0.09) (0.06) (0.04) (0.03)

CI, 95 percent (103.6,104.5) (64.2,64.8) (40.2,40.6) (25.5,25.8) (16.4,16.5) (11.1,11.2)

...with Metro Area FE 46.9 29.1 18.2 11.6 7.5 5.1

SE (0.68) (0.42) (0.26) (0.17) (0.11) (0.07)

CI, 95 percent (45.6,48.2) (28.3,29.9) (17.7,18.7) (11.3,11.9) (7.3,7.7) (4.9,5.2)

VSL, empirical mortality 7.8 13.2 10.7 11.9 0.9 2.4

SE (0.05) (0.04) (0.03) (0.03) (0.02) (0.01)

CI, 95 percent (7.7,7.9) (13.1,13.2) (10.6,10.7) (11.8,11.9) (0.9,1.0) (2.4,2.5)

...with Metro Area FE 7.1 8.6 5.4 4.0 1.2 -0.4

SE (0.08) (0.08) (0.06) (0.08) (0.05) (0.03)

CI, 95 percent (7.0,7.3) (8.4,8.7) (5.2,5.5) (3.8,4.1) (1.1,1.3) (-0.5,-0.3)

Notes: VSL in million (USD 2000). Data source: Census 2000 5 percent sample. N with causal mortality

estimates 4,861,034, N with empirical mortality estimates 4,780,834 . Mortality estimates of one age group

included as control.

110



Table B.5: Implicit Price of Preventing One Fatality Per Age Group, Equation 3.9, by HRR

Age

65-69 70-74 75-79 80-84 85-89 90+

VSL, causal mortality 66.6 41.3 25.9 16.4 10.6 7.2

SE (0.28) (0.18) (0.11) (0.07) (0.04) (0.03)

CI, 95 percent (66.1,67.2) (41.0,41.7) (25.6,26.1) (16.3,16.6) (10.5,10.7) (7.1,7.2)

...with Metro Area FE 22.6 14.0 8.8 5.6 3.6 2.4

SE (0.78) (0.48) (0.30) (0.19) (0.12) (0.08)

CI, 95 percent (21.0,24.1) (13.1,14.9) (8.2,9.4) (5.2,5.9) (3.3,3.8) (2.3,2.6)

VSL, empirical mortality 6.4 4.4 4.1 3.1 0.1 0.3

SE (0.05) (0.04) (0.03) (0.03) (0.02) (0.01)

CI, 95 percent (6.3,6.5) (4.3,4.4) (4.1,4.2) (3.1,3.2) (0.1,0.1) (0.3,0.4)

...with Metro Area FE 4.2 5.1 1.9 3.5 -0.1 -0.5

SE (0.12) (0.11) (0.08) (0.09) (0.06) (0.04)

CI, 95 percent (4.0,4.4) (4.9,5.3) (1.8,2.0) (3.3,3.7) (-0.2,0.0) (-0.5,-0.4)

Notes: VSL in million (USD 2000). Data source: Census 2000 5 percent sample. N with causal mortality

estimates 4,861,034, N with empirical mortality estimates 4,780,834. Mortality estimates of one age group

included as control.

Amenities: Summer temperature, winter temperature, precipitation, health care, PM2.5, golf courses, log

population density.
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Table B.6: Share of Individuals Per Health Type, Conditional on Age in 2001

Health Quintile

Age 1 2 3 4 5 Total

65-69 45.5 25.8 16.8 7.6 4.3 100.0

70-74 22.4 27.1 25.8 14.9 9.8 100.0

75-79 15.0 23.3 27.3 19.0 15.4 100.0

80-84 11.0 19.9 26.5 21.6 21.0 100.0

85-89 8.4 17.4 25.2 23.0 26.0 100.0

90+ 7.8 16.2 24.4 24.1 27.5 100.0

Notes: Full sample observed in 2001, conditional on moving once between 2001 and
2005, by region of origin.

Table B.7: Number of Individuals Per Type in 2001

Health Quintile

Age 1 2 3 4 5

65-69 661,722 374,827 243,946 110,659 62,108

70-74 291,949 353,959 337,097 193,894 128,007

75-79 171,443 265,895 312,375 216,874 176,055

80-84 91,482 165,299 220,368 179,812 174,182

85-89 41,200 84,715 122,808 112,475 127,023

90+ 19,788 41,134 61,769 60,956 69,556

Table B.8: Cross-Region Migration Flows 2001-2005

Destination

Origin Northeast Midwest South West Total

Northeast 53.3 3.8 37.0 5.9 100.0

Midwest 2.6 59.2 27.3 10.9 100.0

South 10.5 11.7 71.0 6.8 100.0

West 2.7 8.1 13.2 76.1 100.0

Notes: Full sample observed in 2001, conditional on moving once between 2001 and
2005, by region of origin.

112



Table B.9: Moving Cost Parameter Estimates by Age and Health Type - Part 1

Origin-Destination Combinations of Census Regions

Age Health Cross state Distances in miles Midwest Midwest Midwest Northeast Northeast West

>50 >100 >500 >1,000 >1,500 -Northeast -South -West -South -West -South

65-69 Excellent 2.93 4.69 0.76 -0.19 -0.31 0.56 2.14 0.74 0.89 0.48 1.19 0.67

65-69 Very Good 2.9 4.74 0.71 0.13 -0.23 0.83 3.86 0.48 0.28 0.19 0.48 0.3

65-69 Good 2.97 4.79 0.72 -0.11 -0.23 0.79 2.21 0.37 0.3 0.14 0.55 0.31

65-69 Fair 2.98 4.65 0.9 -0.21 -0.4 0.96 1.96 0.56 0.66 0.27 0.59 0.5

65-69 Poor 3.14 4.66 0.79 0.13 -0.15 1.39 1.44 -0.05 -0.5 -0.24 -1.18 -0.25

70-74 Excellent 3.04 4.84 0.71 -0.01 -0.13 0.71 1.42 0.47 0.17 0.31 0.62 -0.05

70-74 Very Good 3.08 4.83 0.75 -0.05 -0.09 1.13 1.45 0.33 -0.2 -0.17 -0.58 -0.17

70-74 Good 3.07 4.81 0.73 -0.16 -0.2 0.69 1.98 0.29 0.22 0.06 0.37 0.33

70-74 Fair 3.09 4.6 0.89 -0.22 -0.16 1.16 2.39 0.37 -0.07 -0.22 1.62 0.18

70-74 Poor 3.1 4.58 0.96 -0.15 -0.26 0.73 1.38 0.23 0.14 -0.08 0.3 0.41

75-79 Excellent 3.1 4.81 0.69 -0.07 -0.28 0.29 1.49 0.34 0.57 0.14 0.86 0.52

75-79 Very Good 3.03 4.82 0.75 -0.1 -0.26 1.21 1.43 0.34 0.24 -0.16 -0.82 0.15

75-79 Good 2.98 4.65 0.9 -0.4 -1.03 0.99 2.63 1.05 2.05 1.08 3.14 2.04

75-79 Fair 3.08 4.63 0.81 0.09 -0.21 1.27 1.29 0.14 -0.46 -0.28 -1.01 -0.35

75-79 Poor 3.06 4.45 0.99 0.23 -0.62 1 1.73 0.28 -0.24 -0.25 1.05 -0.1

Notes: Estimates from Equation 4.15 for the time period 2001 to 2005, by health and age type. Magnitudes are
comparable across types because the individual random utility is assumed to be drawn from identical Type I EV
distributions.
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Table B.10: Moving Cost Parameter Estimates by Age and Health Type - Part 2

Origin-Destination Combinations of Census Regions

Age Health Cross state Distances in miles Midwest Midwest Midwest Northeast Northeast West

>50 >100 >500 >1,000 >1,500 -Northeast -South -West -South -West -South

80-84 Excellent 2.98 4.66 0.67 0.15 -0.08 0.65 0.76 0.44 -0.28 -0.08 -0.15 0.12

80-84 Very Good 2.84 4.66 0.69 0.13 -0.1 0.52 1.43 0.45 0.17 0.1 0.36 0.32

80-84 Good 2.89 4.58 0.71 0.21 -0.25 0.86 1.4 0.41 -0.14 0.04 -0.25 0.24

80-84 Fair 2.91 4.47 0.84 0.1 -0.47 1.01 1.49 0.49 0.52 -0.1 -0.24 0.66

80-84 Poor 3.08 4.51 0.86 -0.07 -0.3 0.58 1.2 0.28 0.21 -0.15 0.25 0.42

85-89 Excellent 2.91 4.52 0.93 -0.14 0.37 1.15 1.54 0.46 -0.38 0.28 -0.94 -0.59

85-89 Very Good 2.71 4.47 0.77 0.32 -0.56 0.02 1.5 0.66 1.12 0.39 1.8 1.62

85-89 Good 2.7 4.41 0.86 0.18 -0.57 -0.33 1.47 0.78 1.48 0.46 2.27 1.85

85-89 Fair 2.89 4.43 0.9 0.11 -0.46 -0.13 1.26 0.54 1.02 0.18 1.44 1.33

85-89 Poor 2.99 4.33 1.19 -0.04 -0.42 -0.01 1.57 0.26 0.99 -0.16 1.63 0.91

90+ Excellent 2.97 4.75 0.61 0.27 -0.24 0.51 1.04 0.5 0.28 -0.05 0.35 0.4

90+ Very Good 2.9 4.49 0.88 0.58 -0.31 -0.09 0.44 0.24 0.35 -0.21 0.78 0.63

90+ Good 3.03 4.51 0.9 0.38 -0.65 0.3 1.1 0.42 0.62 0.07 0.98 0.93

90+ Fair 3.05 4.63 0.99 -0.02 -0.41 0.09 0.99 0.47 0.68 0.17 1.15 1.01

90+ Poor 3.14 4.71 0.83 0.07 -0.58 0.66 1.48 0.55 1.13 0.05 0.59 0.97

Notes: Estimates from Equation 4.15 for the time period 2001 to 2005, by health and age type. Magnitudes are
comparable across types because the individual random utility is assumed to be drawn from identical Type I EV
distributions.
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Table B.11: Marginal Utility Estimates and Bootstrapped Standard Errors - Part 1

Age 65-69 Age 70-74 Age 75-79 Age 80-84 Age 85-89 Age 90+

Rentindex (USD 2000) -0.0034 -0.0032 -0.0031 -0.0031 -0.0028 -0.0018

(2e-04) (2e-04) (1e-04) (2e-04) (2e-04) (3e-04)

ACS (per 1,000) -0.0921 -0.0655 -0.0543 -0.0426 -0.0415 0.0316

(0.0141) (0.0155) (0.0146) (0.0185) (0.0268) (0.0727)

...2 3e-04 -0.0056 -0.0186 -0.0159 -0.0103 -0.0209

(0.0123) (0.0149) (0.0138) (0.0168) (0.0289) (0.071)

...3 -0.0151 -0.0306 -0.0544 -0.0236 -0.0377 -0.0355

(0.0167) (0.019) (0.017) (0.0206) (0.0228) (0.0684)

...4 0.0624 -0.0094 0.0152 -0.0233 -0.0075 -0.0696

(0.0223) (0.0176) (0.0194) (0.0202) (0.0242) (0.0689)

...5 0.1082 0.0841 0.0666 0.0035 -0.0027 -0.061

(0.0253) (0.0228) (0.0234) (0.0259) (0.0312) (0.0789)

PM 2.5 (mg per m2) -0.0869 -0.068 -0.0396 -0.025 -2e-04 -0.0198

(0.0096) (0.0082) (0.0071) (0.0076) (0.0097) (0.0147)

Summer (C) 0.0203 0.0178 0.0094 0.0014 -0.0086 0.0042

(0.0048) (0.0055) (0.0051) (0.0073) (0.0099) (0.0138)

...2 0.0012 -0.0147 -0.0012 -0.0112 0.0019 -0.0227

(0.0048) (0.0052) (0.0054) (0.0072) (0.0104) (0.0163)

...3 0.0115 0.0023 -0.0027 -0.0026 3e-04 -0.0185

(0.0056) (0.0057) (0.0057) (0.0066) (0.0083) (0.0123)

...4 -0.0116 -0.0217 -0.0187 -0.0194 -0.0118 -0.0033

(0.0062) (0.0055) (0.0052) (0.0058) (0.0095) (0.0145)

...5 -0.0188 -0.0335 -0.0409 -0.0315 -0.0218 -0.0286

(0.0072) (0.0065) (0.0058) (0.0064) (0.0088) (0.0144)

Winter (C) 0.0398 0.044 0.0344 0.0352 0.036 0.0237

(0.0034) (0.0034) (0.003) (0.0042) (0.0063) (0.0103)

...2 0.0021 0.001 -0.0019 -0.0045 -0.0099 0.0011

(0.003) (0.0028) (0.0036) (0.0042) (0.0052) (0.0103)

...3 -0.0063 -0.009 0.0055 -0.0078 -0.0068 0.0041

(0.0029) (0.0029) (0.0039) (0.0042) (0.0053) (0.0099)

...4 0.0021 -0.0021 -0.0035 -0.0033 -0.0092 -0.0047

(0.0037) (0.0029) (0.0039) (0.0034) (0.0057) (0.0113)

...5 -0.0077 -0.0047 5e-04 0.0036 0 0.0073

(0.0059) (0.0037) (0.0045) (0.0042) (0.0053) (0.0098)

Notes: Results from estimating Equation A.2. Decomposition of flow utility values on
amenities, rent indices, and variables to correct normalization in the first stage of the
estimation. Standard errors in parentheses, obtained with 50 bootstrap repetitions.
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Table B.12: Marginal Utility Estimates and Bootstrapped Standard Errors - Part 2

Age 65-69 Age 70-74 Age 75-79 Age 80-84 Age 85-89 Age 90+

Precipitation (mm) -0.096 -0.116 -0.1143 -0.1365 -0.1584 -0.1677

(0.02) (0.0171) (0.0184) (0.0245) (0.0388) (0.0484)

...2 0.0146 0.0204 0.0071 -0.0272 -0.0583 0.0086

(0.022) (0.0183) (0.0219) (0.0297) (0.0429) (0.0587)

...3 0.0254 0.0351 -0.0992 -0.0038 -0.0649 -0.0246

(0.0195) (0.022) (0.0271) (0.0254) (0.0471) (0.0531)

...4 -0.0388 -0.026 -0.031 -0.0363 -0.039 0.014

(0.0258) (0.0301) (0.0241) (0.0265) (0.0431) (0.0509)

...5 -0.0237 -0.0428 -0.0571 -0.0599 -0.0513 -0.0358

(0.034) (0.0244) (0.0237) (0.031) (0.0419) (0.0584)

Golf courses 0.012 0.0122 0.0123 0.0129 0.0131 0.013

(2e-04) (1e-04) (1e-04) (2e-04) (2e-04) (3e-04)

Correction 1 1.9636 0.938 0.246 0.7936 0.4762 0.5951

(0.8524) (0.345) (0.3188) (0.2532) (0.4125) (0.6912)

Correction 2 2.1973 1.7442 0.774 1.3615 0.7133 0.9538

(0.848) (0.3782) (0.3446) (0.2743) (0.4536) (0.5448)

Correction 3 2.2562 1.5375 1.3373 1.1424 1.2318 0.9869

(0.8528) (0.4088) (0.3077) (0.245) (0.3738) (0.4233)

Correction 4 3.1234 2.6684 1.7657 1.6067 1.3649 0.306

(0.8623) (0.3509) (0.3065) (0.2099) (0.301) (0.4093)

Correction 5 3.4226 2.9359 2.3711 1.8114 1.6112 1.4771

(0.8734) (0.3309) (0.295) (0.2091) (0.2302) (0.2809)

Constant -1.2089 -0.6217 -0.2393 -0.2145 -0.0756 -0.5006

(0.3267) (0.1931) (0.2281) (0.2552) (0.4467) (0.4654)

N 1520 1520 1520 1520 1520 1520

R2 0.48 0.46 0.45 0.44 0.46 0.44

Adjusted R2 0.47 0.45 0.44 0.43 0.45 0.43

Notes: Results from estimating Equation A.2. Decomposition of flow utility values on
amenities, rent indices, and variables to correct normalization in the first stage of the
estimation. Standard errors in parentheses, obtained with 50 bootstrap repetitions.

116



APPENDIX C
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Figure C.1: Similar Places in Amenity Space - Principal Component Analysis
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Figure C.2: Expected Changes in Average Annual Temperature (F) by the Year
2100 Under the ”Business as Usual” Scenario CMIP6 SSP 585.
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