MITIGATING ENVIRONMENTAL AND HEALTH DAMAGES: OPPORTUNITIES FROM CHANGES IN AGRICULTURAL PRODUCTION AND FOOD CONSUMPTION PRACTICES IN CHINA

Yixin Guo

A DISSERTATION

PRESENTED TO THE FACULTY

OF PRINCETON UNIVERSITY

IN CANDIDACY FOR THE DEGREE

OF DOCTOR OF PHILOSOPHY

RECOMMENDED FOR ACCEPTANCE BY

THE WOODROW WILSON SCHOOL OF

PUBLIC AND INTERNATIONAL AFFAIRS

Adviser: Denise L. Mauzerall

January 2020

ProQuest Number: 27548525

All rights reserved

INFORMATION TO ALL USERS The quality of this reproduction is dependent on the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 27548525

Published by ProQuest LLC (2020). Copyright of the Dissertation is held by the Author.

All Rights Reserved. This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

> ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106 - 1346

© Copyright by Yixin Guo, 2020. All rights reserved.

Abstract

Unsustainable agricultural production and recent dietary shifts in China, have resulted in severe environmental damage including water and air pollution, climate warming and resource depletion as well as dietary health concerns. My dissertation identifies opportunities that changes in agricultural production and diets offer for mitigation of environmental and health damages. It includes three analytical chapters.

Chapter 2 analyzes technological, social and policy options for increasing nitrogen use efficiency (NUE) in Chinese agriculture based on a literature review and data collection. I find that adopting NUE-increasing fertilizer application management brings yield benefit that is much larger than other types of benefit (labor savings, fertilizer purchase savings, reactive nitrogen emission reduction, and greenhouse gas (GHG) emission reduction). We provide policy solutions that incentivize smallholders and large farmers to improve practices.

Chapter 3 analyzes the opportunities of improved production management in agricultural production to simultaneously address China's PM_{2.5} air pollution and low nitrogen use efficiency (NUE). I identify five agricultural nitrogen management technologies and estimate the NH₃ emission reduction and associated PM_{2.5} air quality improvements in 2012. Using additional data, I quantify the yield effects, GHG emission mitigation, nitrogen use efficiency (NUE) improvements, water pollution reduction, and acid rain and nitrogen deposition impacts. Midrange benefits from all strategies of US\$30 billion/annum exceed costs of US\$18 billion/annum.

Chapter 4 analyzes the implications of four potential future Chinese dietary choices. We find opportunities for improving PM_{2.5} air quality, i.e., shifting from current diets to a *Soy Replace Red Meat Diet* and a *Lancet-EAT Diet* respectively reduces 37% and 18% national NH₃ emissions and up to 12ug/m³ PM_{2.5} pollution locally. We also find opportunities for improving dietary health, with negative or positive environmental impacts. Shifting from current diet to a *Chinese Dietary Guideline Diet, Lancet-EAT Diet* and *Soy Replace Red Meat Diet*, respectively, avoid 1.4, 1.1 and 0.3 million diet-related premature mortalities. However, shifting towards *Soy Replace Red Meat Diet* reduces food-related greenhouse gas emissions, water and land use; yet shifting towards *Chinese Dietary Guideline Diet* and *Lancet-EAT Diet* worsens these impacts.

Chapter 5 summarizes the findings of this dissertation and proposes future research.

Acknowledgements

My PhD at Princeton would be a lot less enjoyable without the help/company of many people. I'll try my best to have the complete list below – I feel so grateful!

To my committee members: Firstly, I thank my PhD advisor Prof. Denise L. Mauzerall, for offering me the opportunity to study at Princeton, helping me frame and edit my work, supporting my collaborations with researchers outside Princeton and inspiring me with her proenvironment actions in daily life and her belief that good research work can make the world a better place. I learned so much from Denise, e.g. writing, presenting, communicating with others, etc. Secondly, I thank Dr. Timothy D. Searchinger, for offering me the opportunity to conduct summer research on nitrogen use in China for the World Bank and in collaboration with researchers at China Agriculture University. This project set the foundation of my second project which connects agronomy to air quality modeling. I am also so amazed that every time after Tim's edits, my paper becomes much clearer, punchier and stronger. Lastly, I thank Prof. Lin Zhang, for offering me through the very difficult moments of validating WRF-chem model, without which my second and third interdisciplinary projects won't carry on.

To a number of scholars who have guided me through my PhD and deeply influenced my research work: I thank Prof. Xin Zhang at University of Maryland. During Xin's presentation of her Nature paper on historical trend of nitrogen use efficiency in different countries in the world, I got interested in agricultural nitrogen use, which became my PhD research topic. Xin also was one of my four PhD qualifying examiners and generously shared her research ideas with me, which helped me enormously especially during early stage of my PhD. I thank Prof. Peter Hess and Dr. Julis Vira at Cornell University for offering me the opportunity to collaborate, although our research project met tremendous difficulty due to poor model performance which can hardly be improved in the short term. Ultimately that research idea has not yet turn into a paper, for now. I wish with future development of modeling tools our research paths could cross again. I thank Prof. Fusuo Zhang, Prof. Weifeng Zhang, Prof. Lin Ma and Prof. Zhenling Cui at China Agriculture University and Chinese Academy of Sciences for offering me the opportunity to learn from their agronomy expertise. It's quite eye-opening for me to go for field trips in Hebei Province, to participate technician-farmer meeting and visit private agricultural service companies, etc. Especially, Prof. Weifeng Zhang inspired me with his passion for farmer education programs and his policy research ideas.

To a few collaborators who are also my friends: I thank Youfan Chen and Mi Zhou for keeping me company during my visit to their group at Peking University and for contributing to two projects of mine by running emission models and helping with statistical analysis. I thank Pan He for being a friend, a role model and a great collaborator for my 3rd project. We had great time in Beijing while discussing research, healthy-eating, and future career plans. I am grateful that in the future that our research paths will continue to cross. I thank Junnan Yang for overlapping with me for five years at Princeton, for being a friend and for being a collaborator. Without Junnan, I and the whole research group would not have so much fun get-togethers, e.g. eating at restaurants at Edison, going to the New York City, grocery shopping, dumpling-making, and so much more. I thank Da Pan for discussing research with me and helping me address reviewer comments.

Prior to my PhD there were a few people who helped me, particularly my undergraduate advisor Prof. Junfeng Liu and my advisor Le Yin at The Nature Conservancy (TNC). I would not have been admitted to Princeton without the exposure to policy issues at TNC and without the stepby-step guidance on research by Junfeng.

My time at Princeton have been a lot more complete with friends. I thank all my previous roommates, Renzhi Jing, Liqing Peng, Zhaoyi Shen, and Yuan Liu for always offering support. Zhaoyi and Junyi frequently took me to delicious Chinese/western restaurants, buy living necessities, and go hiking, etc. Liqing (and Yuan) has been my roommate for three (one) years and have both seen my highest and lowest moments, I am truly grateful for having met them and having them around for years. I thank Weiliang Jin for being inspiring in pursuing spiritual development and for his long-term support since undergraduate. I thank Xuefeng Peng for being a great friend, sharing a lot of experience about piano, Bach, work-life balance, etc. I thank Tsung-Lin Hsieh for his kindness and strong support in many ways during the first three years of my PhD. I also thank amazing friends that I met during later stage of my PhD: Yang Li, Hanruo Zhang, Qiangsheng Dai, Jia Mi, Jiao Shi, Zhexi Lin and Yina Wang. I really enjoyed the many get-together and meditation events with Zhexi, Yina, Jia and Jiao. The cat-sitting time with Yang's cat is amazing. I am super grateful that Hanruo and Qiangsheng has offered a lot of help when I have to move many times during my 5th yr.

vii

I want to dedicate this paragraph to thank friends in our research group - it's absolutely a luxury to have great friends that you can see daily. I thank Xu Chen for overlapping with me 9 years (undergraduate and graduate), the journey of PhD is a lot less lonely with her. We went to the gym together, discussed difficulties we've met during work, cooked delicious dishes, and had fun shopping. I thank more senior group members, Yue Qin, Charles Li and Wei Peng, for being role models out there both in work and in work-life balance. I thank Hongxun Liu, Xiangwen Fu, Shangwei Liu, Tingyin Xiao, Liqun Peng and Zhongshu Li for providing lots of company. I'll miss the time when we had lunch together at Prospect House or on Nassau Street and the many group get-togethers which totally blows anxiety and loneliness away. Hongxun always offered help when she knew others have a need. Xiangwen and Shangwei offered so much help with moving and had been great badminton companions. We had so much fun also just chatting. I thank Liqun for offering me the chance to take care of her vegetable garden – it's really interesting! The happy times all of us spent together and the laughs are what I will always remember and miss. I wish everyone can finish graduate study smoothly and soon and get job offers in whatever career they like.

I am grateful for friends in the STEP program and in the WWS/Politics/AOS department. I thank Charles Crosby for preparing great seminar food. I want to thank DJ Rasmussen and Christopher Crawford for being my teaching buddies – we made it through teaching WWS350 for two semesters, especially those difficult grading times. I want to thank the presence of other friends from the broader WWS/Politics community: Galileu Kim, Kyle Chen, Helene Benveniste, Chex Yu, Vivian Chang, Phil Hannam, Nicolas Levy, Shuk-ying Chan, etc. I want to thanks friends that I know since my first year taking atmospheric science courses: Michelle Frazer, Jenny Chang, Justin Ng, Chua Xin Rong, Youmi Oh, Jane Baldwin and Spencer Clark. We had a lot of fun dining at the Graduate College.

To all the sports instructors I've met and took classes with at Princeton. Tori Rinker is the most amazing cardio dance instructor. Cameron Ruffa and Cindy Furman offered my favorite style of Zumba. Terri taught Zumba in later stage of my PhD and encouraged and inspired me to try getting a Zumba certificate. I really liked Laurie Abramson's ballet beginner class at Lewis Center for Art. I am grateful for practicing Yoga with a number of great instructors, Jennifer, Emily, and Simon Park. It has been a true luxury to learn yoga from Simon for two years, only after which I realize how well-known Simon is in the yoga community. I thank the 305 Fitness class offered by Ashlee as well, the sexiest instructor ever. I had fun taking classes with Joyce Zhou, Wei Zheng, Boya Wen and Zhaoyi Shen.

I'd like to thank my friends outside Princeton who have been supportive, as always, to name a few, friends from undergraduate (Jing Yang, Yixiang Liu, Lu Chen, Yinong Sun, Jiachen Zhang, Li Jing, Mingtong Han, Yifan Ma, Wanying Kang, etc), friends from high school (Qingqi Qiao, Chenguang Li, Mengjie Zhou, Di Zhu), friends I know from visiting Peking University and China Agricultural University (Meng Gao, Haiyue Tan, Xiao Lu, Zehui Liu, Hao Ying, Ling Zhang, Baohua Liu, Wushuai Zhang, Xiaolin Wang, Yuanhong Zhao, Zhang Wen, Sen Wang, Dan Zhang), and many more (Rain Tang, Su Wang, etc).

Lastly, I must thank my parents for always being understanding, caring and supportive. I thank my aunts, uncles and cousins for being supportive and encouraging. I thank myself for not giving

up when facing stress. Instead I always try hard changing the way I interpret the things that happened to me. This process has been strongly supported by all the mentors, teachers and friends who I hopefully have all mentioned above. The list to say thanks to is so long, if I miss anyone, I sincerely apologize.

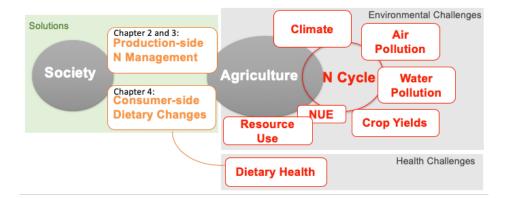
Table of Contents

Abstr	act	<i>iii</i>
Ackn	owledgements	v
Chap	ter 1: Introduction	1
-	ter 2: Technological, Social and Policy Options for Increasing Nitrogen Use I ina	
1.	Introduction	17
2.	Methods	21
3.	Agricultural nitrogen management in China at present	27
4.	Crop Farm Sizes in China	35
5.	Technological Solutions to the NUE Challenge and Their Costs and Benefits	41
6.	Socioeconomic Barriers Against Agricultural Technology Transfer	62
7.	Opportunities and Policy Recommendations	65
8.	Uncertainties and Limitations	72
	ter 3: Improving Air Quality and Nitrogen Use Efficiency in China via Cost-e ultural Nitrogen Management	
1.	Introduction	84
2.	Results	
3.	Discussion and Conclusions	104
4.	Materials and Methods	
-	ter 4: Environmental and Dietary Health Co-benefits and Tradeoffs in Potent ese Dietary Choices	
1.	Introduction	
2.	Results	126
3.	Conclusion	140
4.	Methods	144
Chapter 5: Conclusions		156
Appendix for Chapter 2		
Appendix for Chapter 3		
Appendix for Chapter 4		

Chapter 1: Introduction

Food production has created multiple environmental challenges including low nitrogen use efficiency (NUE), climate warming, air and water pollution. Many of these challenges result from poor agricultural nitrogen management, i.e. lack of manure management and excess synthetic nitrogen (N) fertilizer application. Poor N management leads to substantial loss of N in reactive forms (Nr), including ammonia (NH₃) emissions to air which contribute to particulate matter air pollution harmful for human health (Burnett et al., 2018), nitrous oxide (N₂O) emissions which contribute to global warming, nitrate (NO₃⁻) leaching and runoff to water systems which cause eutrophication (Camargo and Alonso, 2006), acidification and groundwater contamination (Galloway et al., 2003).

Global food production gains have been achieved at costs of worsened Nr pollution. Global synthetic N fertilizer consumption has increased by eight fold between 1960 and 2000 (Tilman et al., 2002). However, only ½ of fertilizer nitrogen actually ends up as crop yield (Cassman et al., 2002; Zhang et al., 2015), with the rest lost to the environment. An European N assessment estimated that total Nr loss from agriculture in Europe cause damage valued at 70-320 billion euro/yr, of which 75% is related to ground water nitrate contamination and air pollution (Sutton et al., 2011). A planetary boundary for N proposed to protect sensitive water systems have been exceeded by almost twice (Steffen et al., 2015).


Agriculture is also responsible for substantial water and land use, and land use change related greenhouse gas emissions (GHGs). Agriculture takes up 37% of global land area. The livestock sector, especially, utilizes 1/3 of global cropland for feed production and 1/3 of freshwater withdrawal. Direct emissions of methane (CH₄) from rice paddies and animal husbandry and nitrous oxide (N₂O) from fertilized soils are responsible for 13% of global GHGs. Accounting for indirect GHGs emissions associated with conversion of forests, savannahs, etc to cropland , agriculture is responsible for 25% of global GHGs emissions (Smith P., 2014).

Environmental damage from the agricultural sector will become increasingly severe, considering future population growth and shifts of diets towards more animal products. At present 800 million people still remain food insecure (FAO, 2016). Demand for crop calories and livestock products are projected to increase by 69% and 115%, respectively, by 2050 compared to the 2000s, accounting for population growth and dietary change (Bouwman, 2013; Searchinger et al., 2014).

Agricultural production-side technologies and consumer-side strategies can mitigate environmental damage from agriculture and generate co-benefits for public health. Productionside technologies include improved crop planting technologies, improved seed varieties, 4R principal for N fertilizer application (right source, right amount, right time, right place), and improved manure management in animal houses, during manure storage and disposal. For example, when nitrogen management technologies and planting techniques are simultaneously improved following suggestions provided by crop modeling tools, maize yields can double with no additional chemical inputs needed, according to experiments in China (Chen et al., 2011). Manure management, such as manure acidification, manure collection in chicken houses with conveyer belts, manure injection into cropland, liquid manure treatment systems, can reduce emissions of reactive nitrogen. Often times these technologies benefit more than one environmental issue while increasing yields (Xia et al., 2017).

Consumer-side strategies include reducing food waste and shifting food consumption towards products with smaller environmental footprints. For example, poultry, pork and goat products have significantly smaller nitrogen use, GHG emissions and water withdrawal than beef; crops have smaller environmental footprints than diary and animal products (Eshel et al., 2014).

Dietary transitions also provide opportunities for improving human dietary health. In 2017, globally 11.7 million premature mortalities were attributed to dietary risks (Institute for Health Metrics and Evaluation (IHME), 2018). The leading dietary risk factors include low intake of fruits, vegetables and legumes and high intake of red meat which contribute to premature mortalities due to heart diseases, stroke, diabetes mellitus type II and site-specific cancers (World Cancer Research Fund/American Institute for Cancer Research, 2018). In particular, production and consumption of red meat neither benefits the environment nor health (Kim et al., 2017).

Figure 1: Overarching framework of this dissertation: addressing multiple environmental challenges and health challenges through production-side N management and consumer-side dietary changes. NUE is short for nitrogen use efficiency.

China is one of the world's largest food producer; substantial gains in food production in China has been through intensive nitrogen use. China has successfully produced one fourth of global grain, fed one fifth of global population, with only less than one tenth of global arable land (FAOSTAT, 2015). Grain production in China has increased by 74% during 1982-2017 time period (Cui et al., 2018). However, chemical fertilizers use has increased by 200% and per hectare N fertilizer input in China is four times of the global average. Intensive N input results in very low crop NUE of only 25-28% in China, compared to a world average of 42-47% and very high NUE of 68% achieved in U.S. and Canada (Lassaletta et al., 2014; Zhang et al., 2015). China is also the world largest milk and egg producer, contributing to 18-30% global manure N production (Bai et al., 2018). However, only 30% of manure N has been disposed with no harm to the environment.

Poor nitrogen management in China results in many environmental challenges. China remains a major hotspot for NH₃ emission, health-damaging PM_{2.5} (fine particulate matter with

aerodynamic diameters less than 2.5 μ m) air pollution and eutrophication. China's very high NH₃ emissions, e.g. 11.7Tg in 2010, are ~5 times of that in the U.S., contributing to roughly 10% of PM_{2.5} concentrations in the North China Plain, Yangtze River Delta and the Pearl River Delta overall (Wang et al., 2011), and even more (~18%) during bad haze events.

Chinese diets in the past decade have evolved in ways that are increasingly problematic for dietary health and the environment. Supply of animal protein has increased by 50% during 1998-2011 and share of calories from starchy food has decreased by 17% (He et al., 2019). This results in decreased undernourishment rates yet rapidly increasing obesity rates and all-cause mortality rates from dietary risks. China's all-cause premature mortality rates from dietary risks have increased from 0.14% in 1990 to 0.22% in 2017, higher than the global rate which stabilized around 0.14% (Global Burden of Disease Study, 2017). Environmental footprints of food production also increased. China's agricultural water footprint has tripled from 1961 to 2003 and land use has increased by 50% between 1961 and 2014 (He et al., 2019). Crop NUE has constantly decreased from 70% in 1960 to 35% in 2012 (Zhang et al., 2015).

The Chinese government has dedicated separate action plans to solve China's GHG emissions, PM_{2.5} air pollution, agricultural water pollution and dietary health issues, yet potential of production-side and demand-side strategies to simultaneously address these issues from the agricultural sector have been neglected. Existing policies include the "Three-year Action Plan Fighting for a Blue Sky" (DRC, 2018) which for the first time identifies NH₃ mitigation from agriculture in efforts to address PM_{2.5} air pollution, "Zero N fertilizer use increase by 2020" (MOA (Chinese Ministry of Agriculture), 2015) which is a first step towards a future reduction in N use, "Action Plan of converting animal manure to nutrients (2017-2020)", a goal of "75% processing (processing indicated manure disposal without harm to the environment) rate of livestock and poultry waste" (MOA (Chinese Ministry of Agriculture), 2017), a drafted regulatory standard that tightens allowed NH₄⁺-N and NO₃⁻-N contents in animal waste discharged to rivers (Ministry of Ecology and Environment of the P.R. China,), a goal of having 400 counties demonstrate 'High Efficiency and High Yield Agriculture', and a "Citizen Nutrition Plan for 2017-2030" which calls for enhancing public education and providing dietary guidelines for population with different needs (children, pregnant women, the elderly, people with diabetes, etc).

Agricultural pollution has not been regulated in many countries. Because it is a non-point source (Grosjean et al., 2016), policymakers have difficulty in quantifying pollution and monitoring effectiveness of changes in practices (USDA Agricultural Air Quality Task Force, 2014). In addition, Chinese policymakers highly prioritize food security. Currently the European Union regulates agricultural pollution through the EU Nitrate Directive, e.g. National Emission Ceilings (NEC) for NH₃ (EC, 2010). The U.S. Environmental Protection Agency requires that livestock farmers obtain licenses before discharging manure to rivers but does not set a quantitative allowance for the amount of manure discharged.

The environmental and health challenges posed by Chinese agriculture has cultivated a need for scientific research on the interconnections between agricultural practices and various environmental and health consequences, as well as co-benefits and trade-offs associated with strategies on the production and consumption side in addressing health and environmental issues.

Previous research explores the potential of various strategies in mitigating agricultural environmental damage, however, the design of mitigation scenarios remains simple, the tools utilized are not sophisticated, and the impacts examined are not inclusive. Bodirsky et al analyzes, in order to meet food demand in 2050, how strategies including increased NUE, reduced food waste and reduced consumption of animal products can reduce total reactive nitrogen burden for major regions in the world, using a socioeconomic model and N budgeting tools (Bodirsky et al., 2014). Pelletier et al analyzes effectiveness of dietary transitions including replacing beef consumption with poultry and replacing meat protein with soy in reducing GHGs, biomass appropriation and reactive nitrogen mobilization (Pelletier and Tyedmers, 2010). Bouwman et al analyzes the potential of various strategies including shifts of mixed/industrial animal production towards pastoral production, increased animal feed efficiency, improved manure storage, N fertilizers replaced with animal manure and partial replacement of beef with poultry in reducing nitrogen and phosphorous mobilization (Bouwman, 2013). Liu et al (2019) analyzes the potential of NH₃ emission mitigation for reducing PM_{2.5} air pollution in China and implications for acid rain and nitrogen deposition. However, their work neglects opportunities of improved N management, through which NH₃ emission reduction must be realized, for reducing other reactive water pollution and increasing crop yield. There're a few more recent studies examining impacts of dietary transitions on the environment (Westhoek et al., 2014; Heller and Keoleian, 2015; Song et al., 2015; Behrens et al., 2017; Lei and Shimokawa, 2017), in some cases, they have explored how dietary changes can simultaneously obtain co-benefits of reducing GHGs and improving dietary health (Friel et al., 2009; Lock et al., 2010; Song et al., 2017; Springmann et al., 2018).

My dissertation provides the first attempt to comprehensively evaluate the full-range of dietary health and environmental impacts of various solutions from the perspective of both agricultural production and food consumption. The concepts of co-benefits are always emphasized since the reason why many environmental issues remain unsolved is uneven distribution of costs and benefits among different stakeholders. My analyses pay attention to localized environmental benefits such as air quality improvements, dietary health and yield increases. Localized benefits can incentivize changes of behavior, compared to environmental benefits dispersed at global and regional scale such as GHGs mitigation, water resource savings, etc.

Chapter 2 and 3 focus on opportunities from agricultural production-side nitrogen management in China. **Chapter 2** analyzes technological, social and policy options for increasing nitrogen use efficiency (NUE) in Chinese agriculture based on a literature review and data collection. I evaluate the effectiveness of various N fertilizer application technologies (reduced N fertilizer application, split application, efficient fertilizers, and N deep placement) in reducing emissions of reactive nitrogen (Nr) at an agroecological regional level for major grain crops (maize, wheat and rice). I monetize all the benefits of improved practices and compare them to various costs. I also collect data of China's farm sizes and adoption rate of various technologies. I then explore the socioeconomic barriers that prevent farmers from adopting environmentally-friendly practices. Lastly I provide policy remedies for improving practices of small and large farmers.

Chapter 3 analyzes the potential of agricultural nitrogen management opportunities in simultaneously mitigating China's severe PM_{2.5} air pollution through reducing NH₃ emissions

and securing food supply, reducing water pollution and emissions of GHGs. I designed five nitrogen management scenarios including: Reduced N Application, Efficient Fertilizer, Machine Application, Manure Management, and Combined. For each opportunity I estimate the PM_{2.5} air quality improvements in 2012 using an NH₃ emission model and an air quality model, as well as yield effects, greenhouse gas (GHG) emission reductions, nitrogen use efficiency (NUE) improvements, water pollution reduction, and impacts on acid rain and nitrogen deposition using additional data. Across these scenarios I find that these approaches, applied to Chinese agriculture, can annually achieve 6.4%-34% NH₃ emission reductions nationally, $0-8 \mu g/m^3$ reduction of secondary inorganic aerosols locally and ~5,000-30,000 avoided PM_{2.5}-related premature mortalities. I find multiple co-benefits from these approaches when applied to grain crops and livestock of: 36-52 Mega tonnes (7%-9%) increase in national crop yields, 0.01-0.05 Tg N (9%-50%) decrease of N₂O emissions, 0.23-0.62 Tg N(14%-38%) decrease of NO₃leaching, 0.06-0.14 Tg N (23%-56%) decrease of NO₃-runoff, 4.7 - 38 Mega tonnes CO₂-eq decrease of GHGs, and up to 2.5 Tg N (21%) decrease of N loss to water from animal farms. Total benefits from all N management strategies combined are US\$30 (25; 50) billion/annum, compared to costs of US\$18 (12; 27) billion/annum.

Chapter 4 examines historical dietary transitions in China and implications for health and the environment, and the potential of future dietary changes in generating environmental and dietary health benefits. We identify four potential Chinese dietary choices: *U.S. diet (US), Soy Replaces Red Meat (SRRM,* red meat protein replaced by soy bean protein), *Chinese Nutritional Guideline Diet (CNG)* and *Lancet-EAT Nutritional Recommendations (EAT,* non-political dietary recommendations). For each dietary choice compared to Chinese baseline diet in 2011, we

evaluate environmental implications including NH3 emissions, PM2.5 air quality, foodconsumption based lifecycle GHGs, total water footprint (TWF) and land appropriation (LA) and land-use carbon (LUCC) emissions, as well as health implications through exposure to PM_{2.5} and nutrient intake. All future diets examined deliver dietary health benefits yet distinct environmental impacts. Two balanced diets, Chinese Nutritional Guideline Diet (CNG) and Lancet-EAT Nutritional Recommendations (EAT), each avoid 1.3 and 1.1 million diet-related premature mortalities, and two extreme diets, U.S. Diet (US) and Soy Replace Red Meat Diet (SRRM), respectively avoid 0.02 and 0.3 million premature deaths. However, US and CNG diets significantly increase ammonia emissions, PM2.5 concentrations, land and water use, and greenhouse gas emissions (GHGs). SRRM decreases these impacts and EAT increases some (water and land use) but decreases others (ammonia emissions and $PM_{2.5}$). With *SRRM* providing a win-win for health and the environment, a combination of SRRM and EAT provides a potentially realistic future change in direction for Chinese diets to optimize health plus environmental objectives. Significant dietary health benefits achieved in the two balanced diets call for developments of production-side pollution-mitigating technologies.

Chapter 5 is the concluding chapter. In chapter 5, I summarize findings in Chapters 2-4 and explore future research needed for this area.

References

- Bai Z, Ma W, Ma L, Velthof G L, Wei Z, Havlík P, Oenema O, Lee M R F and Zhang F 2018
 China's livestock transition: Driving forces, impacts, and consequences *Science Advances* 4 Online: http://advances.sciencemag.org/content/4/7/eaar8534
- Behrens, P., J.C. Kiefte-de Jong, T. Bosker, J.F. Rodrigues, A. de Koning, et al. 2017. Evaluating the environmental impacts of dietary recommendations. Proceedings of the National Academy of Sciences: 201711889.
- Bodirsky, B.L., A. Popp, H. Lotze-Campen, J.P. Dietrich, S. Rolinski, et al. 2014. Reactive nitrogen requirements to feed the world in 2050 and potential to mitigate nitrogen pollution. Nature Communications 5. doi: ARTN 3858 10.1038/ncomms4858.
- Bouwman, L. 2013. Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900-2050 period (vol 110, pg 20882, 2011).
 Proc. Natl. Acad. Sci. U. S. A. 110(52): 21195–21195. doi: 10.1073/pnas.1206191109.
- Burnett, R., H. Chen, M. Szyszkowicz, N. Fann, B. Hubbell, et al. 2018. Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter.
 Proceedings of the National Academy of Sciences. doi: 10.1073/pnas.1803222115.
- Camargo, J.A., and A. Alonso. 2006. Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: a global assessment. Environment international 32(6): 831–849.
- Cassman, K.G., A. Dobermann, and D.T. Walters. 2002. Agroecosystems, Nitrogen-use Efficiency, and Nitrogen Management. AMBIO: A Journal of the Human Environment 31(2): 132–140. doi: 10.1579/0044-7447-31.2.132.

- Chen, X.-P., Z.-L. Cui, P.M. Vitousek, K.G. Cassman, P.A. Matson, et al. 2011. Integrated soil– crop system management for food security. Proceedings of the National Academy of Sciences 108(16): 6399–6404.
- Cui, K., Shoemaker, S.P. A look at food security in China. *npj Sci Food* **2**, 4 (2018) doi:10.1038/s41538-018-0012-x
- Eshel, G., A. Shepon, T. Makov, and R. Milo. 2014. Land, irrigation water, greenhouse gas, and reactive nitrogen burdens of meat, eggs, and dairy production in the United States. Proc. Natl. Acad. Sci. U. S. A. 111(33): 11996–12001. doi: 10.1073/pnas.1402183111.
- FAO, I. 2016. WFP (2015), The State of Food Insecurity in the World 2015. Meeting the 2015 international hunger targets: taking stock of uneven progress. Food and Agriculture Organization Publications, Rome.
- FAOSTAT. 2015. Food Security Indicators (1990-2016).
- Friel, S., A.D. Dangour, T. Garnett, K. Lock, Z. Chalabi, et al. 2009. Public health benefits of strategies to reduce greenhouse-gas emissions: food and agriculture. The Lancet 374(9706): 2016–2025.
- Galloway, J.N., J.D. Aber, J.W. Erisman, S.P. Seitzinger, R.W. Howarth, et al. 2003. The Nitrogen Cascade. BioScience 53(4): 341. doi: 10.1641/0006-3568(2003)053[0341:tnc]2.0.co;2.
- Grosjean, G., S. Fuss, N. Koch, B.L. Bodirsky, S. De Cara, et al. 2016. Agriculture: Sleeping Beauty of EU Climate Policy? Overcoming Barriers to Implementation. Overcoming Barriers to Implementation (February 19, 2016).

- Pan He, Giovanni Baiocchi, Kuishuang Feng, Klaus Hubacek, Yang Yu, Environmental impacts of dietary quality improvement in China, Journal of Environmental Management, Volume 240,2019, Pages 518-526, ISSN 03014797, https://doi.org/10.1016/j.jenvman.2019.03.106.
- Heller, M.C., and G.A. Keoleian. 2015. Greenhouse gas emission estimates of US dietary choices and food loss. Journal of Industrial Ecology 19(3): 391–401.
- Institute for Health Metrics and Evaluation (IHME). 2018. Global Burden of Disease Study 2017 (GBD 2017) Results. Seattle, United States: Institute for Health Metrics and Evaluation (IHME), Available from http://ghdx.healthdata.org/gbd-results-tool.
- Kim Kyuwoong *et al.* Role of Total, Red, Processed, and White Meat Consumption in Stroke Incidence and Mortality: A Systematic Review and Meta-Analysis of Prospective Cohort Studies. *Journal of the American Heart Association* **6**, e005983.
- Lassaletta, L., G. Billen, B. Grizzetti, J. Garnier, A.M. Leach, et al. 2014. Food and feed trade as a driver in the global nitrogen cycle: 50-year trends. Biogeochemistry 118(1): 225–241. doi: 10.1007/s10533-013-9923-4.
- Lei, L., and S. Shimokawa. 2017. Promoting dietary guidelines and environmental sustainability in China. China Economic Review. doi: https://doi.org/10.1016/j.chieco.2017.08.001.
- Liu, M., X. Huang, Y. Song, J. Tang, J. Cao, et al. 2019. Ammonia emission control in China would mitigate haze pollution and nitrogen deposition, but worsen acid rain. PNAS: 201814880. doi: 10.1073/pnas.1814880116.
- Liu, J., and H.H. Savenije. 2008. Food consumption patterns and their effect on water requirement in China. Hydrology and Earth System Sciences Discussions 12(3): 887– 898.

- Lock, K., R.D. Smith, A.D. Dangour, M. Keogh-Brown, G. Pigatto, et al. 2010. Health, agricultural, and economic effects of adoption of healthy diet recommendations. The Lancet 376(9753): 1699–1709.
- Ministry of Ecology and Environment of the P.R. China. Standard of animal waste discharge to waters (draft version for public review) available at http://www.mee.gov.cn/gkml/hbb/bgth/201103/W020110328492079276914.pdf.
- MOA (Chinese Ministry of Agriculture). 2015. Action plan for zero increase of fertilizer consumption by 2020

(http://jiuban.moa.gov.cn/zwllm/tzgg/tz/201503/t20150318_4444765.htm).

- MOA (Chinese Ministry of Agriculture). 2017. Action plan for manure nutrient usage (2017-2020) http://www.moa.gov.cn/nybgb/2017/dbq/201801/t20180103_6134011.htm.
- Pelletier, N., and P. Tyedmers. 2010. Forecasting potential global environmental costs of livestock production 2000–2050. Proceedings of the National Academy of Sciences 107(43): 18371–18374.
- Searchinger, T., C. Hanson, J. Ranganathan, B. Lipinski, R. Waite, et al. 2014. Creating a sustainable food future. A menu of solutions to sustainably feed more than 9 billion people by 2050. World resources report 2013-14: interim findings.
- Smith P., M.B. 2014. Agriculture, Forestry and Other Land Use (AFOLU). In: Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Edenhofer, O., R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. von Stechow, T.

Zwickel and J.C. Minx (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

- Song, G., M. Li, P. Fullana-i-Palmer, D. Williamson, and Y. Wang. 2017. Dietary changes to mitigate climate change and benefit public health in China. Science of The Total Environment 577: 289–298.
- Song, G., M. Li, H.M. Semakula, and S. Zhang. 2015. Food consumption and waste and the embedded carbon, water and ecological footprints of households in China. Science of The Total Environment 529: 191–197.
- Springmann, M., K. Wiebe, D. Mason-D'Croz, T.B. Sulser, M. Rayner, et al. 2018. Health and nutritional aspects of sustainable diet strategies and their association with environmental impacts: a global modelling analysis with country-level detail. The Lancet Planetary Health 2(10): e451–e461. doi: 10.1016/S2542-5196(18)30206-7.
- Steffen, W., K. Richardson, J. Rockstrom, S.E. Cornell, I. Fetzer, et al. 2015. Planetary boundaries: Guiding human development on a changing planet. Science 347(6223).
- Sutton, M.A., C.M. Howard, J.W. Erisman, G. Billen, A. Bleeker, et al. 2011. The European nitrogen assessment: sources, effects and policy perspectives. Cambridge University Press.
- Tilman, D., K.G. Cassman, P.A. Matson, R. Naylor, and S. Polasky. 2002. Agricultural sustainability and intensive production practices. Nature 418(6898): 671–677. doi: 10.1038/nature01014.
- USDA Agricultural Air Quality Task Force. 2014. ammonia emissions: what to know before you regulate

(https://www.nrcs.usda.gov/wps/PA_NRCSConsumption/download?cid...ext=pdf accessed of 2016 Oct).

- Wang, S., J. Xing, C. Jang, Y. Zhu, J.S. Fu, et al. 2011. Impact assessment of ammonia emissions on inorganic aerosols in East China using response surface modeling technique. Environ. Sci. Technol. 45(21): 9293–9300.
- Westhoek, H., J.P. Lesschen, T. Rood, S. Wagner, A. De Marco, et al. 2014. Food choices, health and environment: effects of cutting Europe's meat and dairy intake. Global Environmental Change 26: 196–205.
- World Cancer Research Fund/American Institute for Cancer Research. 2018. Diet, nutrition,
 physical activity and cancer: a global perspective, continuous update project expert report
 2018, available at dietandcancerreport.org.
- Xia, L., Lam, S.K., Chen, D., Wang, J., Tang, Q., Yan, X., 2017. Can knowledge-based N management produce more staple grain with lower greenhouse gas emission and reactive nitrogen pollution? A meta-analysis. Global change biology 23, 1917-1925.
- Zhang, X., E.A. Davidson, D.L. Mauzerall, T.D. Searchinger, P. Dumas, et al. 2015. Managing nitrogen for sustainable development. Nature 528(7580): 51–59.

Chapter 2: Technological, Social and Policy Options for Increasing Nitrogen Use Efficiency in China

1. Introduction

Chinese agriculture is confronted with a nitrogen use challenge. Intensive nitrogen fertilizer use has been essential to food security achieved in China. Chinese agriculture has successfully fed 22% of the world's population with 7% of world's arable land (FAO, 2018), yet consumed as much as 28.4% of world's N fertilizer in 2015 (FAO, 2015). Average N application rates in China are 227 kg N/ha, compared to 78 kg N/ha in the United States and 192 kg N/ha in the Netherlands (FAO, 2015). Nitrogen use efficiency (NUE, defined as the fraction of nitrogen harvested as yield divided by total nitrogen input including biological fixation, N deposition, N in irrigation, N fertilizer application and manure N applied to cropland) in China is quite low, i.e. 25-28%, compared to a world average of 42%-47% and high NUE achieved in Europe and North America of 52% and 68% (Lassaletta *et al.*, 2014b; Zhang *et al.*, 2015b). The marginal return of the last dollar spent on N fertilizer purchase is only \$0.7, indicating increased profits realized through reduced N use (Huang *et al.*, 2008).

Lack of manure nitrogen management remains another major problem. China became the largest meat and egg producer and the third largest milk producer globally in 2005. From 2005 to 2010, production of meat, eggs and milk has further increased by 14%, 28% and 38%, respectively (Yang, 2013). However, large amounts of manure excreted by animals have been poorly managed. In 2010, only 33% of manure N was recycled compared to

17

81% and 74% in the European Union and the United States (U.S.) (Bai *et al.*, 2016). The feed conversion efficiency (fraction of nitrogen in animal feed that ends up in animal products) in China was only 16% in 2010, compared to 22% achieved in the U.S. back in 1999 (Ma *et al.*, 2013).

Poor agricultural N management in China has resulted in various adverse environmental consequences, including soil acidification, NH₃ emissions and PM_{2.5} air pollution, eutrophication and groundwater contamination. Cropland soil in China has been observed to be more acid than conventional soils (Guo et al., 2010), as denitrification of ammonium-based fertilizers release H^+ . Ammonia (NH₃) is emitted during N fertilizer application and manure disposal. The agricultural sector accounts for 93% of China's national NH₃ emissions which contributes $\sim 10\%$ to fine particle matter (PM_{2.5}) concentrations in the North China Plain, Yangtze River Delta and the Pearl River Delta [S Wang et al., 2011] and even more (~18%) during haze events [L Wang et al., 2013]. Livestock manure contributes to 60-78% and 20-74% of nutrient loads in Bohai Gulf and South China Sea (Strokal et al., 2016), since 30-70% of manure N was directly discharged into water bodies across major Chinese sub-basins. Toxic algal blooms happened for 68 times in the year 2017, affecting a total area of 3679 km² (State Oceanic Administration, 2018). N leakage to groundwater causes frequent violations of national standard for nitrate in drinking water (Gao et al., 2012).

Projections show that in the absence of improvements in agricultural nitrogen use, future environmental damage from the agricultural sector in China will worsen. In the businessas-usual case, China's N fertilizer consumption is projected to double in 2050 compared to 2012 (Gu *et al.*, 2015a).Riverine export of dissolved N will increase by up to 90% (Strokal *et al.*, 2017), GHGs emissions from manure will increase to 800 million tons CO₂-equivalent (Ranganathan *et al.*, 2016). In a case where China prioritizes food security and self-sufficiency over environmental protection, reactive nitrogen (Nr) losses from agriculture to air and water systems will increase by 45% and 55% between 2010 and 2050 (Wang *et al.*, 2017).

The world is also facing an agricultural nitrogen use challenge. A nitrogen planetary boundary, proposed to protect sensitive water systems, has been exceeded by almost twice (Steffen *et al.*, 2015). The European N assessment estimates a 70-320 billion euro/yr economic loss due to the damaging impacts of reactive nitrogen on air, water quality and climate (Sutton et al., 2011). Lessons learned from developed countries are that even if mitigation practices took place now, it would take decades for Nr pollution in water systems to be mitigated due to their very long residual time (Bouwman *et al.*, 2017).

The Chinese government has dedicated a number of policy targets and action plans to address the issue of nitrogen use. These include the Guideline for Live Pig Production (2016-2020) which requires small pig farmers located near the southern river network to either improve their manure handling or exit the market, a drafted livestock waste discharge¹ regulatory standard under public review which tightens the regulation of NH₄-

¹http://www.mep.gov.cn/gkml/hbb/bgth/201103/W020110328492079265579.pdf

N emission from concentrated animal farms from the current 80mg/L to 40mg/L and for the first time regulates total N (<70mg/L), and several policy goals for the year 2020 including 'Zero Fertilizer Use Increase', '60% cropland area fertilized with machinery', '75% manure processing (manure disposed with no harm to the environment) rate', '50% manure nutrient recycled back to cropland', '40% fertilizer use efficiency for Jing-Jin-Ji region and Yantze River Delta region', and '95% small to medium scale breeding farms equipped with animal waste treatment facilities²'. In 2018, Chinese government for the first time encouraged reduction of agricultural NH₃ for reducing PM_{2.5} air pollution in the 'Three-year Action Plan: Fighting to Protect the Blue Sky'³.

Despite great policy relevance, research that analyzes the benefits and costs of unexploited N agricultural management technologies in China is lacking, neither are there sufficient insights provided for removing socioeconomic barriers against effective technology transfer.

Here, for the first time, we provide technical, social and policy solutions to the agricultural nitrogen use challenge faced by Chinese agriculture. We integrate agronomic field research, economic studies, behavioral science and agricultural policy analysis. We utilize both qualitative and quantitative research methods including unpublished data analysis, cost-benefit calculations, and scenario design (See Section 2 Methods). The rest of the chapter is organized as follows. Section 3 summarizes China's current status of

²http://english.gov.cn/policies/latest_releases/2017/06/12/content_281475684141592.htm ³ttp://www.gov.cn/zhengce/content/2018-

 $^{07/03/}content_5303158.htm?gs_ws=weixin_636662351573937202\&from=timeline&isappinstalled=0$

agricultural nitrogen management, providing a benchmark to evaluate effectiveness of potential improvements. Section 4 summarizes China's farm size distribution, which affects the magnitude of costs and benefits associated with farmers' improved practices. Section 5 investigates the costs and benefits (yield gains, reduced environmental damage and labor savings) of individual management technology (N fertilizer application amount reduction, machine application, new efficient fertilizer products, manure management technologies, etc). Section 6 identifies socioeconomic barriers against technology adoption. Section 7 provides policy recommendations in order to improve N management of smallholders and large farmers.

2. Methods

This paper combines quantitative and qualitative analysis tools as follows:

2.1 Literature review: extensive literature review has been conducted to summarize current state of knowledge about reactive nitrogen pollution (air, water, soil and GHGs) caused by Chinese agriculture, features of nitrogen fertilizer application for crops and vegetables/fruits, NUE in different agri-ecological zones, crop farm sizes and manure handling technologies.

2.2 Farm size and fertilizer application method dataset: We analyze an unpublished dataset, provided by Weifeng Zhang, providing crop- and region- specific farm sizes and percentage coverage of machine application (original data provided in Table S1). The dataset consists of 1000 farm surveys nationwide with survey methods provided in Zhang

et al. (2017) where partial surveyed results were published. Machine application is estimated based on consumption of machinery oil.

2.3 Calculating benefits and costs of technologies

2.3.1 Reduced N Application Amount

We evaluate the economic and environment benefits associated when farmers reduce N application levels from current levels to profit-optimizing levels (profit = grain sales minus fertilizer and seed costs). These profit-optimizing levels are region- and major crop- (wheat, maize, and rice) specific, generated from a statistical analysis of 4660 nationwide field experiments published in Chen Xinping (2016), Wu (2014a) and Wu (2014b).

For one crop in one agri-ecological zone, the total benefit is calculated as follows: $Benefit = P_{crop} \cdot \Delta Yield - P_{fert} \cdot \Delta Q_N - DCost_{GHGs} \cdot LCE_{GHGs} \cdot \Delta Q_N - DCost_{NH3} \cdot \Delta E_{NH3} - DCost_{N20} \cdot \Delta E_{N20}$ (1)

where $P_{crop} \cdot \Delta Yield$ is crop sales change, $-P_{fert} \cdot \Delta Q_N$ is nitrogen fertilizer purchase savings, $DCost_{GHGs} \cdot LCE_{GHGs} \cdot \Delta Q_N$ is reduced damage costs from reduced GHGs emitted during fertilizer manufacture, transportation and application, and $-DCost_{NH3} \cdot \Delta E_{NH3}$ and $-DCost_{N20} \cdot \Delta E_{N20}$ are reduced damage costs from reduced NH₃ emissions and NO₃⁻-leaching and runoff. We exclude damage cost of N₂O because it is already represented in GHGs calculation. In detail, ΔQ_N is the recommended N fertilizer amount reduction, $\Delta Yield$ is the difference between crop yield under recommended N use levels and current N level. Both are provided in Chen Xinping (2016), Wu (2014a) and Wu (2014b). P_{crop} is wholesale grain price for the year 2015 from *Chinese NDRC (national development and reform council) (2016)*, i.e. 2.76/kg for rice, 2.33/kg for wheat and 1.88/kg for maize. P_{fert} is fertilizer prices from Xia *et al.* (2016), i.e. urea price of 4 ¥ kg⁻¹ N. A currency conversion rate of 1USD=0.14rmb is used when needed which is representative of conversion rates from 2012 until now.

 $DCost_{CO2}$ is the social cost of carbon – we use the price of CO₂ of 20.4 dollars per ton for European market in 2008 (Schiermeier, 2009). LCE_{CO2} is life-cycle emission of GHGs emitted during production, transportation and application of one ton of N fertilizer which is 13.5 tons CO₂-eq GHGs per ton of N (Zhang *et al.*, 2013). ΔE_{NH3} , and ΔE_{N2O} are the difference of Nr emissions under recommended N levels and current levels. They are calculated using crop- and region- specific relationships between N input levels and NH₃ emissions (linear, Cui et al, unpublished, see Table S2), and between N input levels and NO₃-leaching and runoff rates (exponential, (Cui *et al.*, 2013a) (Cui *et al.*, 2014), see Table S3). These relationships are obtained from a statistical analysis of thousands of filed experiments.

 $DCost_{NH3}$ and $DCost_{NO3-leaching}$ are damage costs (including global warming, health, eutrophication, and acidification) of reactive nitrogen species, i.e. \$4.65/kgN for NH₃ and

\$1.32/kg N for NO₃⁻. Monetizing the damage impacts of Nr can be of large uncertainty. Studies generate costs that range several orders of magnitude, e.g. from less than \$0.001/kgN to greater than \$10/kgN in one U.S. study for Nr (Keeler *et al.*, 2016), from 2 to 20 euro/kg N for health impacts of NH₃ and secondary NH₄⁺ in one European study (Sutton et al., 2011). Here we adopt China-specific values from Ying et al. (2017) (listed in Table S4) which summarizes previous Nr damage costs studies for China. We make additional adjustments to the public health damage of NH₃ which is originally estimated from European damaging cost by assuming mortalities from one unit of NH₃ emission is the same for China and Europe but only considering the differences in willingness to pay for mortality reduction and population density in China and Europe. This assumption is hardly true given PM_{2.5} production from NH₃ emissions and dose-response relationships of PM_{2.5} exposure is highly nonlinear. We utilize findings of a recent atmospheric chemistry study that reducing agricultural NH₃ emissions by 6.3×10^{10} molecules/(s·m²) can reduce PM_{2.5}-related mortalities by 52000 people/yr in Europe and instead reducing agricultural NH₃ emissions by 1.68×10^{11} molecules/(s·m²) can reduce PM_{2.5}-related mortalities by 106000 people/yr in East Asia (Pozzer et al., 2017). We estimate that one unit of NH₃ emissions in Europe is associated with 1.3 times of mortality in Europe than that in China, thus we divide the original NH₃ damage cost by 1.3 to obtain our value.

2.3.2 Splitting N Fertilizer Application

To estimate the labor cost of a second application, we use time efficiencies of 3.75-15 h/ha for hand broadcasting and 1.5-7.5 h/ha for machine application (Table S5), labor

costs of $\frac{175}{d}$ (Table S6) and fertilizer application service charge of $\frac{1400}{time}$ (Table S12). We estimate that labor cost for a second application ranging $\frac{121-400}{ha}$.

Benefit of a second application includes yield increase and emission reduction of Nr pollutants:

$$Benefit = P_{crop} \cdot Yield_{current} \cdot R_{yield} - DCost_{NH3} \cdot E_{NH3_{current}} \cdot R_{NH3} - DCost_{N20} \cdot E_{N20_{current}} \cdot R_{N20} - DCost_{N03} \cdot E_{N03_{current}} \cdot R_{N03}$$

$$(2)$$

where R_{yield} , R_{NH3} , R_{N20} , and R_{N03} are grain (maize, wheat and rice) averaged yield increase factor (5.9%), NH₃ emission reduction factor (-32%), N₂O emission reduction factor (-5.4%) and NO₃-leaching and runoff reduction factor (-25%) from Xia *et al.* (2017). E_{NH3} and E_{NO3} are current emission levels of Nr under a certain N application level and DCost_{NH3} and DCost_{NO3} are damage costs of NH₃ and NO₃ emissions, calculated as in section 2.5. E_{N20} are current emission level of N₂O calculated using statistical emission model by Cui *et al.* (2013a) and Cui *et al.* (2014) in Table S3. *DCost*_{N20} is damage cost of N₂O from Ying *et al.* (2017) (Table S4). Current yield and N application levels are as in Section 2.5.

2.3.3 Machine Application

 $Benefit = Labor_{sav} + P_{crop} \cdot Yield_{current} \cdot R_{yield} - DCost_{NH3} \cdot E_{NH3_{current}} \cdot R_{NH3} - DCost_{N20} \cdot E_{N20_{current}} \cdot R_{N20} - DCost_{N03} \cdot E_{N03_{current}} \cdot R_{N03}$ (3)

It is difficult to estimate machine use cost by upfront purchasing cost and depreciation cost. Instead, we reference machine rental charges, i.e. ¥150/d in Chongqing and estimate machine rental cost is ¥150/ha.

2.3.4 Efficient Fertilizers

We design four scenarios where new efficient fertilizers, in their most suitable regions, replace conventional fertilizers with N application rate unchanged. For each scenario, the total benefit is as follows:

 $Benefit = P_{crop} \cdot Yield_{current} \cdot R_{yield} - DCost_{NH3} \cdot E_{NH3}_{current} \cdot R_{NH3} - DCost_{N20} \cdot E_{N20}_{current} \cdot R_{N20} - DCost_{N03} \cdot E_{N03}_{current} \cdot R_{N03} - (P_{fert_{efficient}} - P_{fert_{conv}}) \cdot Q_{N_{-}conv}$ (4)

where R_{yield} , R_{NH3} , R_{N20} , and R_{N03} are crop- and new efficient fertilizer type- specific yield and Nr emission change rate factors from Xia et al (2017). E_{NH3} and E_{N03} are current emission levels of Nr under a certain N application level, calculated through statistical emission models as in section 2.5. E_{N2O} are current emission level of N₂O calculated using statistical emission model as in Table S3. $-(P_{fert_{efficient}} - P_{fert_{conv}}) \cdot Q_{N_{-}conv}$ is the increasing costs of fertilizer purchase calculated with fertilizer prices (Table S7) and current N application rates as in section 2.5.

3. Agricultural nitrogen management in China at present

3.1 N Fertilizer Application Amount

N fertilizer use in China is intensive, resulting in low nitrogen use efficiency. 28.9 million tons of nitrogen fertilizer was added to Chinese cropland in 2010. In addition, 4.6 million tons of nitrogen were fixed biologically and air deposited another 2.7 million tons (Gu *et al.*, 2015a). 30-35% of the summed N inputs ended up in crops (Lassaletta *et al.*, 2014a); another study found 25% (Zhang *et al.*, 2015b). Table 1 summarizes N application amount, yield productivity and N excess for crops and vegetables.

Table 1. Nitrogen fertilizer consumption and yield productivity for main grain crops, vegetables and fruits in China.

	Wheat	Rice	Maize	Vegetables	Fruits
Share of Nitrogen Fertilizer	14%	16%	19%	20%	15%
Consumption [*] (Wu, 2014a)					
Nitrogen Fertilizer Application	197	209 ± 140	231 ± 142	383 ± 263	550 ± 381
Rates (kg N/ha) (Zhang et al.,	±134				
2013)					
Nitrogen Balance ^{**} (kg N/ha)	89	102	87	357	464
(Zhang et al., 2013)					
Partial Productivity of	27	37	34	94	45
Nitrogen Fertilizer*** (kg/kg)					
(Wu, 2014a)					

*Total N fertilizer consumption was 28.9 million tons N in 2010

** Nitrogen Balance = Synthetic fertilizer N + manure N – aboveground uptake

*** Partial Productivity of Nitrogen Fertilizer = mass of yield/mass of nitrogen in fertilizers

The over use of N is much more severe for vegetables and fruits than grain crops. Rice, wheat and maize, three major crops in China, respectively consumed 16%, 14% and 19% of total nitrogen fertilizers during the time period of 2007-2009 (Wu, 2014b), with cultivating areas of 30.2 million ha, 24.1 million ha and 36.7million ha in 2016 ((EOCSSB), 2016). Nitrogen application rates are 209 ± 140 kg N/ha for rice, 197 ± 134 kg N/ha for wheat and 231 ± 142 kg N/ha for maize in 2009 according to a national survey of 20000 farms (Zhang *et al.*, 2013). Crop excess N (manure N + fertilizer N –

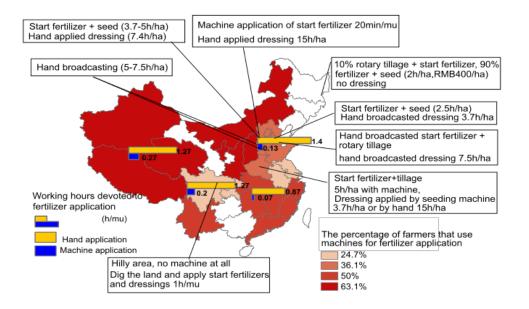
yield N) is estimated to be 80-100 kg N/ha (Zhang *et al.*, 2013). Figure S1 provides basic information of cropping structure and fertilizer application. Instead, vegetables and fruits, respectively consumed 20% and 15% of total nitrogen fertilizers, have cultivating areas of 15 million ha and 8.9 million ha. N application rates are 550 ± 381 kg N/ha for fruits and 383 ± 263 kgN/ha for vegetables in 2009 (Zhang *et al.*, 2013). Fruits and vegetables have higher excess nitrogen, i.e. 464 kg N/ha and 357 kg N/ha (Zhang *et al.*, 2013).

The effectiveness of N fertilizer inputs in boosting yields has been much lower in China than that in more developed countries, e.g. the U.S.. A widely-used metric, i.e. partial productivity of N (PFP_N, the fraction of fertilizer N that ends up in crop yields), indicates the effect of N fertilizer in increasing yield. PFP_N for maize is 67 kg/kg in the United States in 2005 and 34 kg/kg in China during 2007-2009. PFP_N for fruits and vegetables are respectively 220 kg/kg and 195 kg/kg for the United States in 2009-2010 and only 45 kg/kg and 94 kg/kg for China during 2007-2009 (Wu, 2014a).

3.2 N Fertilizer Application Frequency

Management regarding frequencies of N application is less of a concern in China compared to excess N application, yet there's room for improving the timing of application and the partitioning between N applied as starter fertilizer and dressing. Chinese farmers have recognized the importance of applying dressings, the majority apply dressings, although sometimes farmers' dressing dates are several days earlier or later than the most suitable time (Zhang *et al.*, 2016). One-time application issue prevails in some regions including arid northwestern China, double-cropped rice region in the south, wheat production in the lower basin of the Yantze River and maize in the northeast. In addition, farmers tend to use more (less) N as starter fertilizer (dressing) than needed. They will need to decrease the ratio of starter fertilizer N to dressed N in order to increase crop yields (Xia, 2011; Liu *et al.*, 2012).

3.3 N Fertilizer Application Method


Machine application is widely used for certain crops and regions in China, but its coverage needs to be increased further to achieve Chinese government's policy goal of having 40% cropland soils fertilized with machine application. More than half of rice production regions, most maize production regions and some wheat production regions in China are still dominated by hand application, according to our analysis of an unpublished dataset provided by Weifeng Zhang (see Methods). Machine application of fertilizer is above 50% in wheat production regions except for Sichuan province, North China Plain, Jiangsu and Zhejiang provinces. All maize production regions have low machine adoption rate except for Northeast China, North China Plain, Neimenggu, Shanxi, and Shaanxi provinces (Figure 2).

Machine application is extremely time-efficient compared to hand application, although geography can be a limitation. Most farmers spend more than 1h/mu applying fertilizer by hand compared to less than 0.3h/mu applying fertilizer by machine. Farmers in Qinghai, Jiangxi and Guizhou provinces spend extremely long hours hand applying fertilizers, >10h/mu, due to hilly geography conditions.

30

Starter fertilizers, compared to dressing fertilizers, are more often applied by machines; maize and wheat, compared to rice, are more easily fertilized with machine application. In North China Plain, farmers use machines to apply starter fertilizer together with seeds or simultaneously conduct tillage. In rare cases they apply dressing fertilizer also with machine. Similar to wheat, when machine is used for starter fertilizer application, seeding and tillage are finished too and dressing is rarely applied with machines. Less than 10% farmers use machine application of N for rice, except for Northeastern China where plot is vast and machinery levels are advanced (Figure 3). The more southern, the more hours farmers spend applying fertilizer in field by hand, both due to geography and the many times that dressing is applied.

Recent innovations in agricultural mechanics provide opportunities for farmers' to more easily use dressing machines. High-ground-clearance spreader for paddy rice (Chen *et al.*, 2012), high-ground-clearance spreader for maize's dressing, and liquid fertilizer machine, have made dressing application using machines more feasible.

Figure 1. Nitrogen fertilizer application methods for wheat production regions in China.

Percentage of farmers that use machines to apply fertilizers in each production region (shown in red shades) and their annual working hours devoted to fertilizer application (Unit: hour/mu, mu is an unit for land area widely used in China, 1ha=15mu) by hand (bars in yellow) and by machine (bars in blue). Text in boxes are methods of starter fertilizer and topdressing application methods and time needed at locations indicated by the lines.

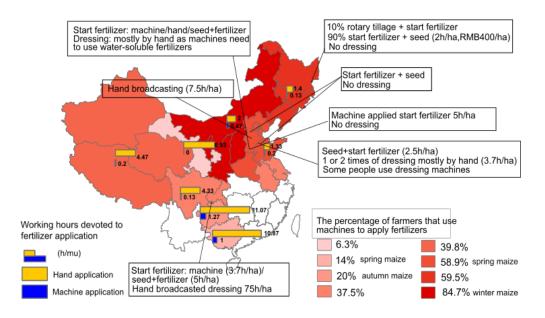


Figure 2. Nitrogen fertilizer application methods for maize production regions in China.

Percentage of farmers that use machines to apply fertilizers in each production region (shown in red shades) and their annual working hours devoted to fertilizer application (Unit: hour/mu, mu is an unit for land area widely used in China, 1ha=15mu) by hand (bars in yellow) and by machine (bars in blue). Text in boxes are methods of starter fertilizer and topdressing application methods and time needed at locations indicated by the lines.

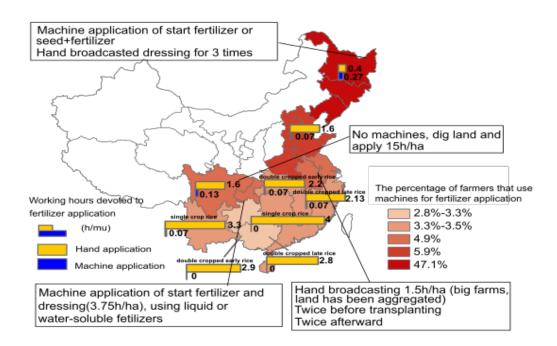


Figure 3. Nitrogen fertilizer application methods for rice production regions in China.

Percentage of farmers that use machines to apply fertilizers in each production region (shown in red shades) and their annual working hours devoted to fertilizer application (Unit: hour/mu, mu is an unit for land area widely used in China, 1ha=15mu) by hand (bars in yellow) and by machine (bars in blue). Text in boxes are methods of starter fertilizer and topdressing application methods and time needed at locations indicated by the lines.

3.5 Manure Production and Manure Management in China

Geographically a few provinces are the most concentrated with animals, e.g. Shandong and Chongqing, followed by other provinces such as Hunan, Guangdong, Fujian, Henan, Anhui, Zhejiang, Hubei, Liaoning and Jilin. These provinces are hotspots for manure production and pollution, according to nationals statistics in 2016 (2-4 LU/h) (Table S8)((EOCSSB), 2016) (Ma *et al.*, 2012). Animal manure can receive treatments in animal houses, during storage, treatment or disposal processes, yet its management in animal houses and during storage are the most important to avoid substantial Nr emissions to air, soil and water. Nr emissions during animal housing and direct discharge of manure are the two most important N loss processes (Zhao *et al.*, 2017). 39% of manure N is volatilized as NH₃ during housing and storage, amounting for 6.7Tg NH₃-N emissions in 2010 (Bai *et al.*, 2016).

Cattle, among other animals, contributes the most to manure N excretion, yet cattle manure is the least managed. Beef cattle contributes to ½ of manure N production in China, pigs 1/6, sheep and goat another 1/6, poultry and dairy cattle in 2010 (Bai *et al.*, 2016; Bai *et al.*, 2017). Manure N recycling rates is the lowest for dairy cows, only 3%, compared to 10% for chicken manure and 43% for pig manure (Ju *et al.*, 2005). N loss per kg of animal product is the largest for diary, followed by pig and poultry (Zhao *et al.*, 2017).

A systematic summary of typical manure management practices by animal system and region, and the nitrogen use efficiencies therein, is not possible due to limited research. A few case studies indicate large variations in management. For example, a survey of 301 representative animal farms in North China Plain found distinct floor types of animal housing (concrete v.s. slatted), various manure collection (separate or mix the solid and liquid manure), storage (covered v.s. uncovered; underground v.s. aboveground) and treatment methods (anaerobic fermentation, composting, oxidation pond, gasification and

combustion for ash based fertilizers, pyrolysis for biochar, digestion⁴) (Zhao *et al.*, 2017). Another survey of 23 milk cattle farms show that the peri-urban animal farms (usually with > 100 cows) may systematically have a higher nitrogen use efficiency of 0.273 (defined as the fraction of N in feed excreted as milk) than smallholder subsistence farms (usually with < 10 cows, NUE=0.229) and cooperative farms (usually >100 cows, managed by companies and owned by multiple persons, NUE=0.224) (Wang *et al.*, 2014).

4. Crop Farm Sizes in China

Smallholder farmers in China account for 85% of total farmers and cultivate half of the cropland. Figure 4 summarizes China's farm size distribution. The majority of Chinese farmers have farm sizes smaller than 1ha (Chinese NDRC (national development and reform council), 2016) and all together cultivate less than 50% of total cropland (Figure 4)⁵. As of 2013, 85% of farmers (224 million) own cropland smaller than 10 mu (1ha=15mu); around 1.2% of farmers (3.1 million) own land larger than 50 mu (Figure 5) (Chinese NDRC (national development and reform council), 2016).

⁴ Personal communications with Yong Hou

⁵ Using data of farmers' population for each farm size interval, total number of farmers and total cropland area (Figure 5), we can estimate that farms with sizes smaller than <10mu altogether cannot take up more than 46% of cropland.

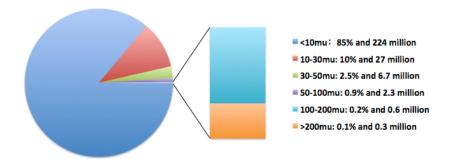


Figure 4. The shares and absolute numbers of Chinese farmers who cultivate farms of various sizes in 2013 (Chinese NDRC (national development and reform council), 2016).

Geographically farm sizes vary greatly. Crop- and region- specific farm sizes are presented in Figure 5, 6 and 7, integrating analysis of an unpublished farm size dataset (See Methods). In general, farms in the west and Northeast are larger than those in central and southern China. For example, wheat farms in the Northwest are nearly 3ha yet elsewhere are mostly below 1ha. Maize farms in Xizang province is 3.6 ha yet elsewhere mostly below 1ha. Rice farms on average are the smallest of all crops but have the largest South-North contrast. Rice farms in south China have an average size of only 0.06ha and are mostly <1mu; rice farms in Northeast China are several hundreds mu.

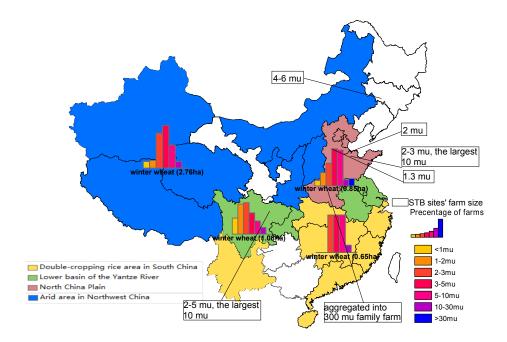
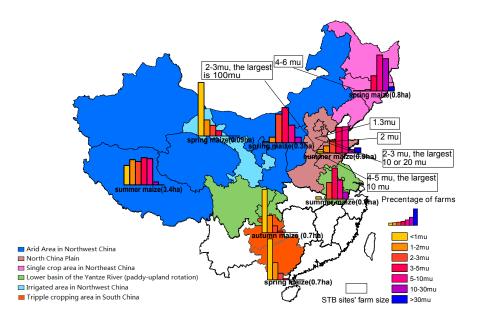
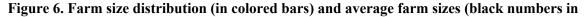




Figure 5. Farm size distribution (in colored bars) and average farm sizes (black numbers in bracelets below the bars; in ha) for wheat production systems in China (definition of agecological zones adopted from Zhang (Zhang *et al.*, 2017)).

China's cropping agriculture in the past thousands of years has been precision agriculture with intensive labor inputs. However, this can no longer sustain in the modern society since increasing rural population has left the countryside for city jobs. Agriculture needs to transform itself into a modern one which utilizes mechanization and capital investments to achieve economies of scale. Rural population can decrease but their management skills have to improve. Experiences in developed countries shows that agricultural population is destined to decrease as agricultural labor shifts to the service sector (Lipton, 1977; Varshney, 2014).

Most recently, ~15-30% of cropland in China has been transferred, creating large farms which can potentially benefit from economies of scale. The Chinese government recently separated cropland cultivating right from contracting right. It also encouraged farmers to transfer the cultivating right to others if they are not cultivating, and has set economic incentives and institutional arrangements. Farmers can get preferrable loans and subsidies to pay for land rents, and discounted prices for buying yield insurances and agricultural inputs (irrigation water, drainage and storage infrastructure and machinery) (Huang and Ding, 2016). Land transfer centers have been established at village and township levels to help match demand for land with supply and to solve possible conflicts. Table 2, adopted from (Zhao et al., 2017a), summarizes land transfer activities in 2011 and 2013. In 2013, 53 million rural households rent out the cultivating rights of their land, transfering 26.1% cropland in eastern China and 30.5% cropland in middle China. Major recipients are individuals (71% of transferred land), farmers' professional cooperatives (FPCs) and agribusinesses (Huang and Ding, 2016). In Northeast and North China, non-individual stakeholders managed 25% of cropland, with average farm sizes above 100 ha.

bracelets below the bars; in ha) for maize production systems in China (definition of ag-

ecological zones adopted from Zhang (Zhang et al., 2017)).

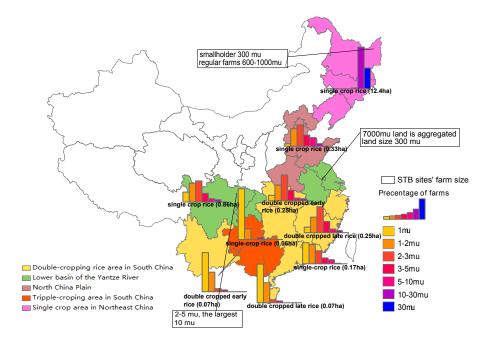


Figure 7. Farm size distribution (in colored bars) and average farm sizes (black numbers in bracelets below the bars; in ha) for rice production systems in China (definition of ageological zones adopted from Zhang (Zhang *et al.*, 2017)).

 Table 2: Land transfer in eastern, middle and western China in 2011 and 2013. This table is

 adopted from (Cheng *et al.*, 2010)(Zhao *et al.*, 2017a)⁶.

	2011					
	Eastern	Middle	Western	Eastern	Middle	Western
	China	China	China	China	China	China
Total land area	3.55	5.15	4.08	3.59	5.25	4.43
contracted to						
farmers						
(0.1billion mu)						
Transferred land	0.66	1.04	0.58	0.94	1.61	0.86
area (0.1billion						
mu)						
Land transfer	18.56	20.20	14.25	26.06	30.64	19.53
percentage						

Unfortunately, farmers' poor management knowledge at present have prevented the newly-emerged large farms from achieving increasing economies of scale. National statistics reports that large-scale farmers have lower net revenue per hectare than small

⁶ http://www.aisixiang.com/data/97233-2.html

farmers, i.e. ¥714.17/mu versus ¥2614.42/mu (Chinese NDRC (national development and reform council), 2016). Data collected for Northeast and North China shows that productivity and profit per farm first increases as farm size increases and then decreases (Huang and Ding, 2016), with the causal mechanisms unclear. Many large farmers lack local-specific planting techniques because their previous career has been in real estate and business sectors.

Separate policy incentives are needed to improve N management practices in small (>200 million small farmers, <1ha) and large farms (3 million large farms). Firstly, small and large farmers are equally important since they each roughly account for half of cropland. Secondly, although small and large farms are confronted with the same learning cost of new technologies and the same environmental and yield benefit per hectare land(\$/ha), large farms benefit substantially more from technological improvements due to economies of scale and greater resilience against risks. Thirdly, considering limited fiscal budget, educating small number of large farmers are a lot cheaper than educating large numbers of small farmers. We provide more detailed policy remedies in Section 6.

5. Technological Solutions to the NUE Challenge and Their Costs and Benefits

5.1 N Fertilizer Strategies

5.1.1 Reduce Over-Application

There's great potential to reduce N use to secure food supply while decreasing environmental impacts. China's national nitrogen fertilizer input could be reduced by 28% with current management practices unchanged, and yields won't decrease, according to a meta-analysis of 232 experiments nationwide for major crops [*L Xia et al.*, 2017]. In regions where historical heavy nitrogen inputs have led to substantial nitrate accumulation in soil, even more ambitious reduction is possible, e.g. 70% in maize systems in Shaanxi province (Zhang *et al.*, 2015a).

Figure 8. Current Chinese farmers' nitrogen fertilizer application amount (numbers in black, data source (Chen Xinping, 2016)) and recommended N input amount that optimizes farmers' profits (red, derived from 1757 wheat experiments, data source (Wu, 2014b; Wu, 2014a)) in major wheat production agri-ecological zones in China. Map is appropriated from [*WU*, 2014].

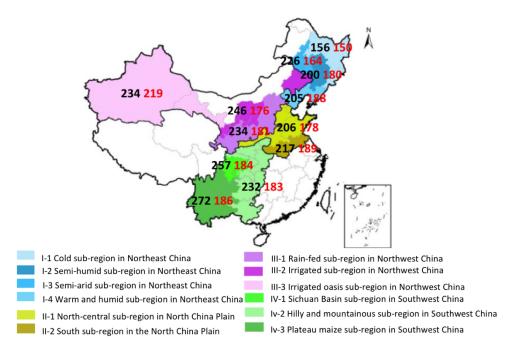


Figure 9 Current Chinese farmers' nitrogen fertilizer application amount (numbers in black, data source (Chen Xinping, 2016)) and recommended N input amount that optimizes farmers' profits (red, derived from 1726 national maize experiments, data source (Wu, 2014b; Wu, 2014a)) in major maize production agri-ecological zones in China. Map is appropriated from [*WU*, 2014].

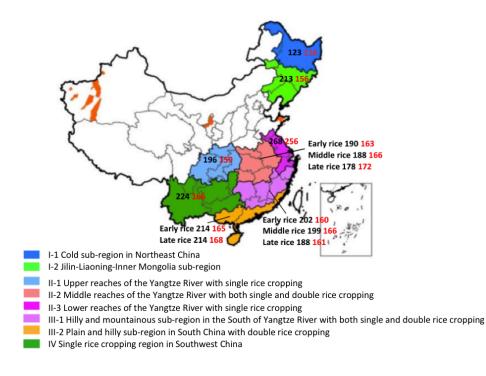


Figure 10 Current Chinese farmers' nitrogen fertilizer application amount (numbers in black, data source (Chen Xinping, 2016)) and recommended N input amount that optimizes farmers' profits (red, derived from 1177 national rice experiments, data source (Wu, 2014b; Wu, 2014a)) in major rice production agri-ecological zones in China. Map is appropriated from [*WU*, 2014].

Here we focus on crop- and region- specific N use recommendations that can optimize farmers' net returns (i.e. profit, grain sales minus fertilizer and seed costs) and calculate the associated environmental and economic benefits (see Methods). Profit-optimizing N input levels strike a balance between environmental integrity and farmers' profitability. These levels are provided in Chen Xinping (2016), Wu (2014a) and Wu (2014b) and selected through statistical analysis of 4660 nationwide field experiments (Figure 8, 9, and 10). Figure 11 and 12 present associated monetarized benefits, i.e. environmental

benefits from reduced NH₃ emission, NO₃-leaching and runoff and GHGs emission, as well as economic benefits of N fertilizer purchase savings, and crop yield increases.

In order to achieve profit maximization, fairly large N reductions are needed for a number of regions: maize in Yunnan Province (a 86 kgN/ha reduction, which is 31.6% of the current application level), rice in upper Yantze River Basin (a 58 kgN/ha reduction, which is 25.9% of the current application level), early rice in Lower Yantze River Basin (a 42 kgN/ha reduction, 20.8% of the current application level), and wheat in North China Plain (a 56 kgN/ha reduction, which is 27% of the current application level).

Yield increase benefit will be the primary driver for farmers to reduce N use. It is one order of magnitude larger than all other types of benefits for all crop production regions (Figure 11). For example, the largest yield benefit achieved is \$1177/ha for wheat production in III-1, \$766 for maize production in I-3, and \$1228 for rice production in II-3 (Figure 11 and Table S10). In comparison, the largest total environmental benefit is \$44/ha for wheat production in III-1, \$94.2/ha for maize production in IV-3 and \$26/ha for rice production in IV (Figure 12, Table S9 and S11).

There's a geographical mismatch between where the largest economic benefits occur and where the largest environmental benefits occur (Figure 12). For rice production, I-1 has the largest economic benefits of \$1228/ha while the smallest environmental benefits of \$3/ha. Given environmental benefits are external to farmers, policy interventions such as environmental-friendly payments and demonstration projects are needed to incentive farmers in agri-ecological regions that have high (low) environmental (yield) benefits to improve practices. These prioritized regions include wheat production in III-1 and II-1, maize production in IV-3 and IV-1, and rice production in IV (Figure 12 and Table S11).

Policymakers may also prioritize N use reduction for one crop over others if specific environmental goals (e.g. air pollution, water pollution or climate mitigation) are prioritized (Figure 12). N use reduction for wheat generate NH₃ emission and GHGs mitigation benefits that are comparable or much larger than NO₃-leaching and runoff mitigation benefits. N use reduction for maize generate NO₃-leaching and runoff mitigation benefits that are much larger than NH₃ and GHGs mitigation benefits. N use reduction for rice generates significant GHGs mitigation benefits but little NH₃ mitigation benefits. If the eutrophication issue in southern China's river network is prioritized, N use reduction for maize production needs to be prioritized over other crops. If the issue of high NH₃ emission and severe PM_{2.5} air pollution over North China Plain is prioritized, N use amount reduction for wheat needs to be prioritized. Sum of all types of environmental benefits achieved through N reduction is the largest for maize, followed by wheat and rice. N fertilizer purchase savings are larger for rice and maize than wheat.

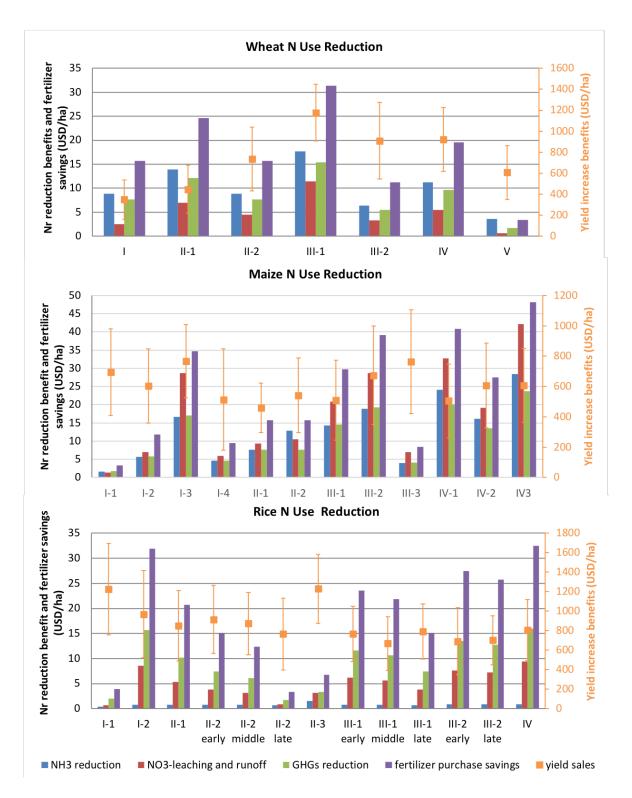


Figure 11 Environmental benefits, i.e. NH₃ reduction (bars, in blue), NO₃-leaching and runoff reduction (bars, in red) and GHGs reduction (bars, in green), and fertilizer purchase savings (bars, in purple) when N application amount is reduced to profit maximization

levels for different wheat, maize and rice agri-ecological zones. Increase of yield sales are also provided (markers, in orange, secondary y axis).

Despite large yield benefits from our analysis, yields achieved enjoyed by farmerse will highly depend on climate conditions in one specific year and how well farmers can master the technology. Yield effects from researchers' field experiments cannot always been fully replicated by farmers. Farmers' capabilities of reproducing yields achieved in researchers' plots vary. Furthermore, even though these yield benefits are larger than other types of benefits, they are small compared to farmers' off-farm earning, which represent an opportunity cost of farmers' time (detailed discussion in Section 6) and can be a major impediment for technology adoption.

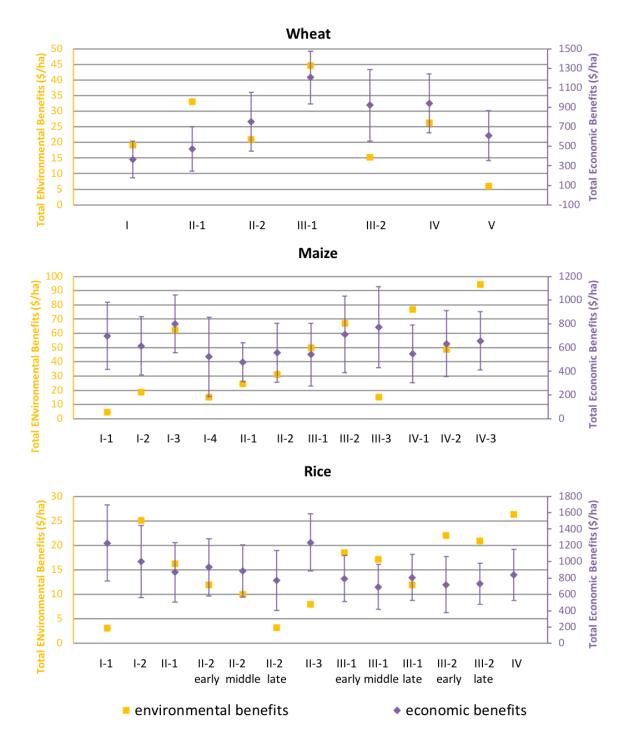


Figure 12 Total environmental (yellow) and economic (purple, secondary y axis) benefits when reducing N use amount to profit maximization levels for different wheat, maize and rice agri-ecological zones.

5.1.2 Optimized N Application Frequency

Theoretically two applications instead of one increase grain crop yields by 5.9% and decrease emissions of nitrous oxide by 5.4%, ammonia by 32% and nitrate leaching and runoff by 25%, according to a meta-analysis of 241 filed experiments for major crops in China (Xia *et al.*, 2017).

We find that yield benefit is the largest type of benefit provided by splitting application. In Table 3 we estimate labor costs, yield and environmental benefits associated with a second application (see Methods) for rice and wheat production regions. Yield benefit is \$100-150/ha and environmental benefit \$30-80/ha with reduced damage from NH₃ emission being the major component. Total benefits justify labor costs of \$3-56/ha.

Technology	Labor	Benefits			
recipient	cost	(\$/ha)			
	(\$/ha)				
		Yield	NH ₃	NO ₃ -	N ₂ O
		gains	reduction	reduction	reduction
IV rice	3-56	159.6	64.0	14.2	0.9
III-1 wheat	3-56	111.6	29.1	6.4	0.7
II-2 rice	3-56	129.9	55.1	12.2	0.7
IV wheat	3-56	105.9	24.5	5.4	9.7

Table 3 Costs and benefits of conducting a second fertilizer dressing application.

Cost-benefit calculation of splitting N application can vary by region because of large uncertainties in labor cost and yield effects. Labor costs in farming season v.s. non-farming season (e.g. ¥150/d v.s. ¥100/d) vary, and labor costs in different provinces vary (e.g. ¥200-400/d in Heilongjiang province v.s. ¥60 in Hebei province). Yield increase achieved always depend on other factors such as plot quality, planting techniques, management and climate conditions.

Besides N application frequency, farmers can optimize the partitioning between N applied as starter fertilizer and as dressing. Current N applied as starter fertilizers are unnecessarily high; more N can be applied as dressing instead. Reducing starter fertilizer N by 10% or more increased yield by 4.1% and reduced various Nr emissions and especially NH₃ by 61.5% (Xia *et al.*, 2017). For rice production in Ningxia and Hebei provinces, changing the ratio of based/top-dressed N ratio from current 0.3 to 0.5 increases yield by 19.6% and decreases N₂O by 3.4%, NH₃ by 10% and N-leaching by 12%(Xia, 2011; Liu *et al.*, 2012).

5.1.3 Machine Application

Using machinery to place N fertilizers deeply near crop roots can substantially reduce N loss and reduce labor input, compared to conventional hand application. Nationally on average for three grain crops (maize, wheat and rice), machine application increases yield by 10% and reduces N₂O and NO₃ emissions by 15% for all crops. NH₃ losses to the air is reduced by 35% for wheat and rice and by 70% for maize (Xia et al. 2016).

Machine application provides two types of labor savings: 1) machine has higher time efficiency of application, i.e. 1.5-7.5h/ha compared to 3.75-14h/ha through hand broadcasting (Table S5), 2) machines can simultaneously conduct seeding, tillage or irrigation when applying fertilizers, generate additional labor savings. In this analysis, only the first type of labor savings is quantified due to lack of data.

Table 4 summarizes the cost and benefit of machine application for several rice, wheat and maize production regions. Similar to the previous two technologies examined, yield benefit also dominates the total benefits. Our analysis also indicates that machine application is affordable if farmers have access to machine rental services. Although machine prices on the Chinese market range from ¥4k-30k and present a high-upfront cost compared to a rural household's annual income, e.g. ¥1.2k in 2016 ((EOCSSB), 2017), farmers can rent machines from rental centers or from farmers' professional cooperatives at low or no cost.

Technology	Costs	Benefits	Benefits						
recipient	(\$/ha)	(\$/ha)							
	Machine	Yield	Labor	NH ₃	NO ₃ -	N ₂ O			
	rental	gains	savings	reduction	reduction	reduction			
III-1 wheat	21	189.2	3-16	31.8	4.4	2.1			
IV wheat	21	179.4	3-16	26.8	3.1	27.1			
IV-3 maize	21	194.8	3-16	34.6	11.4	3.5			
II-1 maize	21	189.5	3-16	23.6	6.1	2.6			

Table 4 Costs and benefits of using machine to deeply place nitrogen fertilizers.

IV rice	21	270.5	3-16	70.0	4.2	2.5	
II-2 rice	21	220.2	3-16	60.3	3.2	2.0	

5.1.4 New-efficient fertilizers

New-efficient fertilizers, i.e. coated time-release fertilizers and inhibitor fertilizers can generate large benefits of reduced Nr pollution. Coated fertilizers allow nutrients to be released gradually with time, thus avoid a second application. When combined with conventional fast-released N, crop nitrogen demand can be better accommodated thus higher NUE can be achieved. Dry-farmed land is not suitable for coated fertilizers as low moisture content in soil prevents N from being released as designed (Trenkel, 2010). Coated fertilizers increase NUE in rice systems by $5-10\%^7$ and increase yield by $20\%^8$, and decrease total emissions of nitrogen pollutants by more than 50% in China (Xia et al., 2016). Rice production in southern China, mostly located in ecological sensitive zones and near river network, can benefit significantly from reduced N leaching. Published experiments have found little change in NUE and yield using coated fertilizers in maize and wheat systems, yet these results are puzzling as emissions have decreased by 60% for ammonia, 49% for nitrate and 38% for nitrous oxide (Xia et al., 2016). Various coated fertilizer products available on the Chinese market remain more pricy than conventional fertilizers (Table S13) and has a very low adoption rate.

⁷ Personal communications with Tingyu Li

⁸ Personal communications with Tingyu Li

Nitrification inhibitors (NI) reduces the conversion rate of ammonium to nitrite and the conversion rate of nitrite to nitrate. Experiments in China have found that NIs reduce nitrous oxide by 40% and nitrate leaching by 82%, increase yield by 10%, yet increase ammonia emissions by 28% averaged for three major crops nationally (Xia *et al.*, 2016). This is because North China Plain has alkaline soils where NH₃ will increase when using NI. Such side-effect can be mitigated if urease inhibitor (UI) is used together with NI in alkaline soil conditions. UIs reduce the hydrolysis conversion rate of urea to ammonium, thus efficiently reduce ammonia emissions, by up to 50% according to experiments in China. Nitrous oxide emissions decrease by 28% as well (Xia *et al.*, 2016).

We design four scenarios where new efficient fertilizers, in their most suitable regions, replace conventional ones. The 100%CRF_rice scenario targets rice production in a biodiversity-rich area in southern China, i.e. single rice cropping in southwest China (IV in Figure 11). A relatively large N use reduction is expected, from current 224 kg N/ha to 166 kg N/ha to optimize farmers' profit (Figure 11). Instead of using 224kg N/ha as urea at a price of 4 /kg urea N, sulfur-polymer coated fertilizer (the cheapest CRF on Chinese market) at a price of 5.6 /kg N is applied. This will result in 60.8% reduction of NH₃ emission, 49% reduction of NO₃-leaching, 50% reduction of N₂O emission, 5-10% increase of yield and avoid labor cost for a second N application. The 50%CRF_50%urea_wheat scenario targets wheat production in irrigated sub-region in North China Plain (III-1 in figure 9). In this scenario, instead of using 240 kg N/ha as urea, 120 kg N/ha is supplied with CRF and 120kg N/ha as urea to better meet crop N demand. In UI (NBPT)_rice scenario, urease inhibitor fertilizer is used for early rice

production in middle Yantze River Basin (II-2 in Figure 11). In NI (DCD)_wheat scenario, nitrification inhibitor fertilizer is used for wheat production in the middle and lower Yantze River Basin (IV in Figure 9) where eutrophication frequently happens in Lake Tai and Lake Boyang.

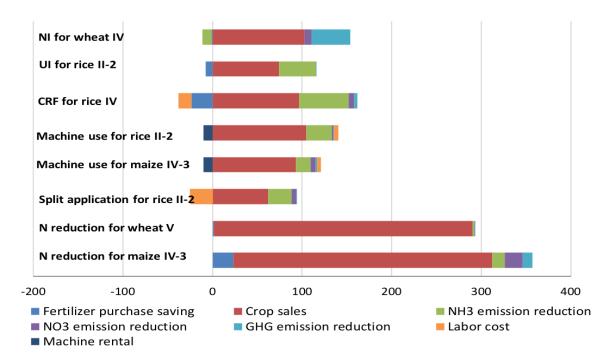
Benefits and costs of implementing these four new efficient fertilizers are summarized in Table 5. In all scenarios, yield gains alone would justify the increased fertilizer purchase costs. Reduced Nr benefits are a lot higher than that achieved in the nitrogen fertilizer use amount reduction strategy (Section 5.1.1), due to the very large percentage Nr reduction enabled with various types of efficient N fertilizers.

 Table 5 Costs and benefits of implementing four scenarios where new efficient fertilizers

 replace conventional fertilizers.

	Technology	Costs	Benefit	S			
	recipient	(\$/ha)	(\$/ha)				
Strategy		Fertilizer	Yield	Labor	NH ₃	NO ₃ -	N ₂ O
		costs	gains	savings	reductio	reduction	reductio
		increase			n		n
100%CRF_rice	IV rice	50.2	202.9	3-56	121.7	13.7	8.3
50%CRF_50%u	III-1 wheat	26.9	0	3-56	55.2	14.4	5.3
rea							
_wheat							
UI	II-2 rice	15.8	156.4	0	86.2	0.0	1.6
(NBPT*)_rice							
NI	IV wheat	2.7	215.3	0	-21.1	17.0	90.2
(DCD**)_wheat							

*NBPT is used at 0.05% of N use rate (Rawluk et al., 2001)


** DCD is used at a rate of 1.25kg DCD/ha (Yang et al., 2016)

5.1.5 Other techniques and highly-sophisticated farming

In addition to the strategies discussed in previous sections targeting the amount, method and type of N fertilizer applied, there're other strategies such as reducing flood irrigation, returning crop residues back to cropland, frequent crop growth monitoring and flexible nitrogen application prescription, and using water-soluble fertilizers that integrate irrigation and nutrient management. These strategies can benefit both yield and pollution mitigation. For example, furrow irrigation for maize in comparison to conventional irrigation reduces NH₃ emissions by 9-27% and increases yield by 10-16%, according to field experiments in Shaanxi Province (Han *et al.*, 2014). Compared to burning wheat straw, returning that straw to the soil reduces ammonia emissions by 84%, according to experiments in Hebei Province (Zhang *et al.*, 2011).

Nitrogen application amount could be further reduced (compared to the reduction proposed in 5.1.1 with all other management unchanged) if nitrogen management (application frequency, timing, depth, etc) and planting techniques (crop variety, planting density, etc) can simultaneously be improved so crop nitrogen supply can be better synchronized with crop demand. Integrated soil-crop system management (ISSM) modeling and in-season root-zone N fertilization strategies (Chen et al., 2011; Cui et al., 2013b; Chen et al., 2014) use models with inputs of localized climate and crop information to provide recommendations regarding both planting and N management. This system was experimented with maize and wheat production and prescribed improvements such as deep tillage, a certain fraction of N to be applied during shooting stage (60% or wheat but 50% for maize in North China Plain), exact timing of dressing to be applied (e.g. during 6~8 leaf stage for continuous maize in Northeast China), etc. When management follows these recommendations, maize yields doubled at 66 planting sites, with no fertilizer use increase. This system has been promoted nationally through a ten-year campaign involving local technicians, fertilizer producers, farmers and researchers. It generates large savings of chemical inputs, i.e. 1.2 Mt reduction of nitrogen fertilizer use per Mg grain produced, and large reductions of emissions, i.e. 94 kg, 129 kg and 115 kg CO₂-eq reduction of greenhouse gas emissions respectively per

Mg of maize, rice and wheat produced and ~1.5kg reduction of N per Mg of grain produced (Cui *et al.*, 2018).

5.1.6 Summary of N Fertilizer Strategies

Figure 13 Costs and benefits (in rmb/mu, including fertilizer purchase savings, crop sales, NH₃ emission reduction, NO₃⁻ emission reduction, GHG emission reduction, labor cost and machine rental) associated with various representative fertilizer N strategies implemented on a specific grain crop production region. NI is short for nitrification inhibitor, UI for urease inhibitor, and CRF for controlled-release fertilizer.

Figure 13 summarizes the costs and benefits associated with the implementation of various N fertilizer application technologies. Yield increase benefit dominates total benefits for all strategies. Yield increase benefit alone, in all cases, justifies total costs. New efficient fertilizers have extremely large potential for pollution reduction, e.g. CRF

is the technology that generates the largest unit NH₃ reduction per land area and NI generates the largest unit GHG reduction. Our dataset for N use reduction predicts larger yield benefits than all other individual technologies, indicating these experiments may not perfectly control other N management, it is likely multiple N management have occurred in these experiments.

5.2 Manure Management

Advanced technologies exist for reducing emissions during animal feeding and housing, manure collection, composting, storage, treatment and spreading.

5.2.1 Low-crude protein animal feed

Conventional animal feed includes 15-20% more N and 20-30% more P than animals actually need⁹. Low-crude protein animal feed reduces these nutrients without harming animal growth and reduces nutrient content in animal manure excreted (N by 10% and P by 10-20%). It reduces the production cost of animal feed and Nr leakage from animal manure, providing a win-win solution for both the environment and animal raisers.

5.2.2 Animal housing technologies

Conventional practices leave animal manure inside animal houses for an extended period time before removing them by flushing animal floor with large amount of water. This results in large fraction of manure N emitted as NH₃, as high as 15-20%. A conveyor belt system can automatically remove manure in a timely manner thus reducing NH₃ in animal

⁹ Personal communications with Lin Ma

houses by 50-80%¹⁰. Such system works extremely well for small to middle-sized chicken and pig farms which account for 70% of China's chicken and pig production. It generates electricity savings, e.g. 2kwh/day for a typical 10k chicken farm, because ventilation is saved since manure has been removed timely so order is avoided. For a chicken farm with 20k chicken, the belt system costs \pm 80k and consumes 2-3kwh/d electricity. Another option for pig manure is separating dry and wet manure instead of flushing with lots of water, which reduces NH₃ emission and water withdrawal by up to 50%¹¹. This can be realized at a cost of \pm 30-50 per pig.

5.2.3 Manure composting

Traditional open-space composting emits 43% of manure N as NH₃. Aerobic composting within reactors can reduce NH₃ emission by 50-60%, reduce N-leaching to zero and increase N content in residues by 10-20%¹². The reactor allows shorter composting period, one week compared to months in conventional composting. Although upfront cost is high, e.g. a reactor with 40t capacity costs ¥1500k for a 10000-head pig farm, this cost can be recovered in two or three years through inorganic fertilizer sales, a by-product of composting, e.g. 400-600t/yr. There are some additional costs, including electricity consumption of ¥15k/year, labor cost of ¥30k/year, and reactor depreciation cost of ¥10k/year. The reactor is extremely suitable for landless concentrated animal systems.

¹⁰ Personal communications with Baoming Li

¹¹ Personal communications with Baoming Li

¹² Personal communications with Lin Ma

Anaerobic digestion producing biogas is another valuable option. One ton of manure can generate $300-500m^3$ of biogas¹³. Manure needs to be in the biogas storage facility for one month to release 75% of biogas production potential. In Germany, farmers have manure be within the facility longer, for 2-4 months before another 4 months for composting, to release 90% of biogas production potential. During biogas production, most manure N can be converted to ammonium and potentially incur NH₃ emissions. Most biogas stations are built underground to avoid large fluxes of NH₃ to the air. A 10-15m³ capacity station costs $\frac{12}{2}k$; larger-scale stations cost $\frac{12}{2}.5k$ per m³ biogas capacity.

5.2.4 Manure storage

Conventional open-space manure storage emits 15-25% of N as NH_3 . Adding H_3PO_4 to manure, especially suitable for landless concentrated systems¹⁴, can reduce NH_3 emissions by 60-70% In China, H_3PO_4 spray facilities are still under development in China since H_3PO_4 cannot be sprinkled in a way that causes harm to animals' skin. A H_3PO_4 spray facility in Denmark costs ¥7 million.

5.2.5 Manure spreading

Injecting manure into land using machines reduces NH₃ emissions by 30-50% compared to surface manure application¹⁵. Manure N can also substitute N supplied with synthetic N fertilizers. Assuming manure N replacing 25% of nitrogen fertilizers, manure produced

¹³ Personal communications with Renjie Dong

¹⁴ Personal communications with Lin Ma

¹⁵ Personal communications with Zhaohai Bai

from a 5000 head pig farm can serve 730 ha cropland in a typical wheat-maize rotation system.

5.2.6 Waste treatment system

China's livestock waste discharge standard has in the past regulated only NO₃-N content in waste water. As a result, many animal farms use technologies that convert N to NH₄-N to avoid violation of standard, however, this results in substantial loss of N as NH₃-N. To address this issue, a new standard has been drafted to regulate both NO₃-N and NH₄-N and is now under public review. This will increase demands for waste treatment systems that can reduce all types of N emission, e.g. total N content by 57% and total P by 96%¹⁶. Upfront cost of a system is ¥5.6million and operation cost is ¥107k/year.

6. Socioeconomic Barriers Against Agricultural Technology Transfer

Although our analysis of the various technologies above indicates that yield benefits are larger than visible costs, farmers' adoption rates of these technologies have been surprisingly low. We identified major barriers, including high learning cost due to lack of support, and high opportunity cost of not engaging in off-farm activities and low total benefits due to small plot sizes.

Existing work indicated that Chinese farmers have very poor nutrient knowledge. Many scholars have argued that the primary reason for China's N overuse is that farmers simply don't know they are overusing – they stick to their way of using responsive inorganic N

¹⁶ Personal communications with Lin Ma

fertilizers in 1960-70s and think yield will continue to increase when additional N is applied as in the past (Huang *et al.*, 2008). Many farmers prefer buying fertilizers that are well packaged, with beautiful colored granules, and advertised as being produced from advanced facilities. Farmers even frequently buy false products or products that have passed the usage date. Researchers working with farmers within Hebei Province observed that the majority of agricultural labor are poorly-educated elder people and women. Less than one third of farmers understand the meaning of N-P-K formulation and the way N, P and K nutrients work.

Lack of systematic support from the public and private sectors have contributed to smallholders' poor nutrient management knowledge. Although farmers can obtain some information from public extensions and fertilizer industry, support from these stakeholders have been weak, resulting in high learning costs faced by farmers.

China's public agricultural extension agents spend limited time helping famers and have conflicts of interests. In 1970s, the central government substantially reduced funding for agricultural public extension. As a result, extension staff turned to commercial activities for funding. This created conflicts of interests. In order to obtain rebates, some agents would recommend more fertilizers, pesticides and seeds than farmers actually needed. Also, the more time agents spend raising money, the less time they spend helping farmers in the field. In 2000s, extension agents spent only 81 days delivering technical help to farmers, yet 56 days on commercial activities, 135 days in office and 92 days on other activities. For stations that obtain no funding from central government and remain self-

funded, agents' time spent on commercial activities are even more, i.e. 190 days (Hu *et al.*, 2012b). In addition, agents don't have enough financial resources to offer farmers' support. In 2002, the average budget per agent (including salaries and extension expenditures) was only ¥14304 per year.

Fertilizer producers can help with knowledge transfer. Fertilizer producers have increasingly engaged in fertilizer application demonstration projects in order to advertise their products and provided fertilizer application guidance to farmers as part of their customer service. However, since producers' ultimate goal is to expand customer base, their service strives to cover as many villages as possible instead of equipping farmers with nutrient management techniques. Furthermore, China's fertilizer producers in the past have produced products based on company's production capability, available technologies and equipment, rather than based on crops' localized needs. As a result, uniform formula fertilizers have dominated the Chinese market until recently when localand crop- specific formulas appeared.

For the way forward, fertilizer producers are likely to be profit-maximizing through value-added innovative fertilizers. Fertilizer producers in the future will likely focus on adding micro-nutrients such as zinc and microorganisms to fertilizers. These can strengthen crop roots and improve fruit/vegetable quality. The more appealing the products are to farmers, the more profitable they are.¹⁷ Prescribed formulas that can benefit Nr pollution mitigation are not appealing to producers, because designing local

¹⁷ Personal communications with Yanfeng Wang, Vice president at Xin Yangfeng Fertilizer

specific formulas requires costly soil test yet prescriptions can easily be copied by other companies, given China's limited intellectual property protection.

In addition, due to the very small plot size, yield benefits achieved through improved management for farmers are still too small compared to earnings from off-farm jobs. Figure 12 indicates that yield benefits from implementing technologies are ~¥100/mu, in rare cases yield benefits are as high as ¥300/mu when technologies are combined. However, this only translates into earnings of ¥500-1500 for a typical 5-mu farm in China. In comparison, the earnings from off-farm jobs are very high, e.g. per capita rural household income from off-farm jobs was ¥7745 in 2014, accounting for 72% of total per capita net income¹⁸. 274 million farmers engaged in off-farm jobs in 2014.

Yield benefits still remain too small for farmers to care. Considering the small plot size, management practices that cause a 5% yield increase are not appealing to farmers.¹⁹ Farming is not a prestigious nor profitable business in China. The profit margin for major crops is only ¥0.23/kg, calculated using a grain yield level of 470kg/mu, monetized production cost of ¥1069/mu and grain price ¥2.5/kg ((EOCSSB), 2015). Agricultural tax has not been removed until 2000.

7. Opportunities and Policy Recommendations

7.1 Improving N management is cost-effective for large farmers

¹⁸ http://www.stats.gov.cn/tjsj/zxfb/201704/t20170428 1489334.html

Although for small farmers economic benefits are too small to care, for large farmers total benefits increase with farm sizes and can justify technology learning cost and opportunity costs. Large farms take up more than 50% of China cropland area, meaning their improvements of practices are critical to solve the N challenge China faces. To educate a limited number of large farmers are a lot easier and less costly than to educate millions of small farmers. There can be a win-win situation for large farms and the society.

7.2 Farmer organizations as a learning community for small farmers

Farmers' professional cooperatives (FPCs) are important institutional arrangements that can enable knowledge sharing and mutual learning among smallholders and have been succesfull in countries such as Japan. In Japan, similar organizations at village level are effective in delivering management knowledge. They gain villagers' respect and trust through helping resolve conflicts and taking care of the disadvantaged. FPCs can serve as middlemen between the government and farmerse. They can also increase farmers' bargaining power in front of food retailers and processing companies.

FPCs in China has a long way to go before being capable of fostering technology sharing and transfer. The Chinese government recognized the legal status of FPC in 2006. It further encouraged formation of new FPCs by providing preferable taxation policies and subsidies for FPC-scale machinery purchase. Statistics show by 2016 1.8 million FPCs are registered and are present at 21% Chinese villages. However, less than 1% of these cooperatives actually serve the expected functionality. They are mostly formed to obtain governmental subsidies. For the way forward, we expect FPCs to help facilitate mutual learning within smallholders.

7.3 Researchers help with education programs and formula fertilizer prescription Researchers have played an increasingly effective role in educating both small and large farmers. Compared to extension agents who spend a limited number of days in field, there're researchers working in the countryside and providing on-site help for farmers. For example, China Agricultural University has built 71 rural working stations in 21 provinces, where master students and professors live in the countryside for years and interact with farmers on a daily basis. Once long-term trust relationships between researchers and farmers are formed, farmers become increasingly willing to take researchers' suggestions regarding planting and nutrient management²⁰. One station in Quzhou, Hebei has realized a 20% increase in crop yields after five years' intervention to farmers' conventional practices. Education efforts require long-term investments in human capital and funding and in this case, \$200,000 has been provided by the local Quzhou government. Scaling up this education effort to nationwide is estimated to cost \$600 million per year (Zhang *et al.*, 2016).

Researchers have also been actively harnessed the industry and public extension in order to increase yields and improve N management (Cui *et al.*, 2018). Researchers designed formulas with optimized N:P:K rationing for local crops for fertilizer company. For example, CAU researchers have prescribed formulas for 3 major crops and 17 cash crops,

²⁰ Personal communications with Weifeng Zhang

help built 18 demonstration sites and reached 31,448 fertilizer salesmen and farmers during 2011-2015.²¹

7.4 Private fertilizer application service contracting

The newly-emerged fertilizer application service contracting in China can avoid irrational high use of agricultural chemical inputs since service suppliers will prioritize profitmaximization. Private agribusiness companies in China offers contracting services including seeding, pesticide application, fertilizer application, crop harvesting and selling.

Service contractors can be quite innovative with designing solutions that harness efforts from relevant stakeholders to save N use and boost yields. Contractors are responsible for purchasing agricultural inputs and the entire crop production processes. Crop sales will be split between contractors and farmers. A pricing chart of various contracting services is provided in Table S12. Risky averse small farmers especially are attracted to service contracting, because they are guaranteed with economic returns at no risk. Contracting companies also benefit from economies of scale; they operate like a large farm except for compared to conventional farmers companies are equipped with planting techniques, management knowledge, etc and are more risk-resilient.

²¹ from materials provided by Zhenling Cui

Knowledge of management and local farming techniques and agricultural chemical input market is essential for contracting service companies to be successful. Large farmers who aggregate land to cultivate but are not familiar with farming could lose money. The success of the contracting service relies on knowledge about local agricultural input markets and local cropping techniques.

Service contracting companies is still pretty new in China (Table S12). However, there're informal contracting activities among farmers. For example, farmers who own machines rent their machines out or help others apply fertilizers and seeds, charging ¥450/ha or ¥150/100kgN applied (doesn't include fertilizer purchase fee).

Production contracting is not new globally (Eaton and Shepherd, 2001). It generates risks and opportunities for both farmers and agribusinesses and have positive implication for farmers' earnings and equity(Zhang, 2012). For example, in Kenya a sugar company contracts with 1800 farmers and assign one field officer to help with transplanting, spacing, fertilizer application, cultivation and harvesting for every 65 sugarcane growers. In India agribusinesses contract with tomato growers resulting increased yield and income levels.

7.5 Environmental-friendly payment and performance-based indicators

Policies that encourage environmental-friendly practices can be complemented by performance-based indicators. Both the European Union (EU) and U.S. have agrienvironmental payments delivered to farmers to reduce negative externalities of agricultural production (N and P pollution, biodiversity loss, etc) and to foster rural development (reward agriculture's positive externality such as attractive landscape, etc) (Baylis *et al.*, 2008).

Development of crop nitrogen censors can help policymakers monitor and assess outcomes of farmers' nitrogen management. Besides time-consuming lab tests of crop tissue, a number of in-the-field options (spectroradiometers, reflectometers, satellite imagery) can provide fast determination of crop N supply based on leaf optical and electrical properties (Muñoz-Huerta *et al.*, 2013). Furthermore, N use in large mechanized farms can be monitored by adding N amount meters to fertilizer application machines.

7.6 Public extension system reform

Regarding the inefficiencies of public extensions, in 2003 Chinese government launched a nationwide pilot program covering 12 counties to separate the public and commercial functions of extensions, and experimented with farmers' monitoring and evaluation mechanisms in 30 villages (Hu *et al.*, 2012a). Although until now there's no sign that the reform will scale to nationwide.

7.7 Remove N fertilizer subsidies

High subsidies for N fertilizers in China has been criticized as responsible for farmers' overuse of N, fortunately these subsidies have been removed in 2015. N fertilizer

production in used to get preferable prices for natural gas purchases and electricity consumption, railway transportation and value-added tax (VAT) was also waived. Research estimates that no VAT alone subsidizes ¥56 for one ton of urea and total subsidies add up to ¥20 billion for 40 million ton urea production(Cheng *et al.*, 2010).

7.8 Agricultural policy reform

Chinese agriculture has not yet transformed into a professional and skillful one due to historical agricultural policies. There are research pointing out that systematic discrimination against the rural poor and peasantry existed as a result of a city-prioritized state-capitalism development model (Whyte, 2010) (Naughton, 2004) (Huang, 2008) (Remington, 2015). In the 1960s, grain prices were kept low to guarantee the well-being and satisfaction of urban dwellers in 1960s (Oi, 1993) (Bates, 1981). It was until 2004, agricultural taxation that has lasted for a century was terminated (Qu *et al.*, 2011). The Hukou system (person/household needs to be registered as city or countryside) has operated from 1960s until now, binding people to where they are born and constraining easy relocation. When migration constraints to cities was later relaxed, rural migrants engaged in the dirty, difficult and dangerous city jobs (construction, hauling, domestic service and street-corner commerce). They were less likely to be employed in state-owned enterprises and government agencies and could hardly enjoy the same social benefits as people with 'city Hukou'.

Chinese farmers' management skills need to be improved with knowledge and financial support of the government. Farmers who are bound to their cropland do not view

71

themselves as proud and professional suppliers of food for people in China. Instead, life is not very promising since growing crops receives less revenue than engaging in other decent jobs such as the financial sector, real estate sector, small businesses, etc. Under this socioeconomic condition, farmers lack the capital, land and incentives to achieve better nutrient management.

8. Uncertainties and Limitations

Despite that this Chapter has made great efforts pulling together available knowledge across multiple disciplines, some conclusions have been drawn upon limited data support. Here below I point out where validity of conclusions can be improved:

This work can be more comprehensive if more private sector experts can be included for their insights on the fertilizer industry and service contracting services. In comparison, collaborators of this chapter, although mostly from China Agricultural University, are prestigious researchers in crop science and have broad collaborations with all major agricultural research institutions and universities within China.

For the overview of current N fertilizer application in China, finds regarding adoption of new efficient fertilizers are less solid compared to N application amount and method. We developed our understanding of adoption rate of new efficient fertilizer products based on collaborators' knowledge with a heavy representation of practices in the North China Plain. Instead, current N application amount has been based on thousands of surveys and based on several governmental projects researching farmers' N application in order to

72

prescribe N fertilizer application. Results regarding machine application of N is also quite solid, i.e. estimated from machinery oil consumption summarized from thousands of surveys conducted with national representation.

Our analysis of the Nr mitigation effects associated with implementation of various N management heavily relies on one meta-analysis paper which statistically summarizes available field experiment results conducted for major grain crops in China (Xia et al., 2017). There's a lack of research for effects of various management combined.

References

- Development Research Center (DRC) for the State Council of China and Shandong Supply and Marketing Cooperatives, 2015, Scale service and agricultural modernization: theory development and practices by Shandong supply and marketing cooperatives (in Chinese), China Development Press.
- (EOCSSB), E.O.o.C.S.S.B., 2015. China statistical year book. China Statistical Publication House (in Chinese).
- (EOCSSB), E.O.o.C.S.S.B., 2016. China statistical year book, accessed of <u>http://www.stats.gov.cn/tjsj/ndsj/2016/indexch.htm</u>. China Statistical Publication House (in Chinese).

(EOCSSB), N.B.o.S.o.C., 2017. China Statistical Yearbook China Statistics Press.

- Bai, Z., Li, X., Lu, J., Wang, X., Velthof, G.L., Chadwick, D., Luo, J., Ledgard, S., Wu,
 Z., Jin, S., Oenema, O., Ma, L., Hu, C., 2017. Livestock Housing and Manure
 Storage Need to Be Improved in China. Environmental Science & Technology 51, 8212-8214.
- Bai, Z., Ma, L., Jin, S., Ma, W., Velthof, G.L., Oenema, O., Liu, L., Chadwick, D.,
 Zhang, F., 2016. Nitrogen, Phosphorus, and Potassium Flows through the Manure
 Management Chain in China. Environmental Science & Technology 50, 1340913418.
- Bates, R.H., 1981. Markets and states in tropical Africa: the political basis of agricultural policies. Univ of California Press.
- Baylis, K., Peplow, S., Rausser, G., Simon, L., 2008. Agri-environmental policies in the EU and United States: A comparison. Ecological economics 65, 753-764.

- Bouwman, A.F., Beusen, A.H.W., Lassaletta, L., van Apeldoorn, D.F., van Grinsven,
 H.J.M., Zhang, J., Ittersum van, M.K., 2017. Lessons from temporal and spatial
 patterns in global use of N and P fertilizer on cropland. Scientific Reports 7,
 40366.
- Chen, S., Zhang, S., Sun, X., 2012. Design and experiment of self-propelled high-groundclearance spreader for paddy variable-rate fertilization (in Chinese with English abstract). Tranactions of the Chinese society of Agricultural Engineering (Transactions of the CSAE), 16-21.
- Chen, X., Cui, Z., Fan, M., Vitousek, P., Zhao, M., Ma, W., Wang, Z., Zhang, W., Yan, X., Yang, J., 2014. Producing more grain with lower environmental costs. Nature 514, 486-489.
- Chen, X.-P., Cui, Z.-L., Vitousek, P.M., Cassman, K.G., Matson, P.A., Bai, J.-S., Meng, Q.-F., Hou, P., Yue, S.-C., Römheld, V., 2011. Integrated soil–crop system management for food security. Proceedings of the National Academy of Sciences 108, 6399-6404.
- Chen Xinping, W.L., Zhang Fusuo, 2016. Fertilizer use recommendations for China's three major crops in their typical agri-ecological zones (in Chinese). China Agricultural Press.
- Cheng, C., Yanshi, Wen, T., 2010. Real cost of N fertilizers (working paper) (http://m.greenpeace.org/china/Global/china/_planet-2/report/2010/8/cf-n-rpt.pdf).
- Chinese NDRC (national development and reform council), N.A.S.a.M.C., Chinese Ministry of Agriculture, 2016. Information summary on the production costs and revenues of national agricultural products (in Chinese), China's Statistical Press.

- Cui, Z., Wang, G., Yue, S., Wu, L., Zhang, W., Zhang, F., Chen, X., 2014. Closing the N-Use Efficiency Gap to Achieve Food and Environmental Security.
 Environmental Science & Technology 48, 5780-5787.
- Cui, Z., Yue, S., Wang, G., Meng, Q., Wu, L., Yang, Z., Zhang, Q., Li, S., Zhang, F., Chen, X., 2013a. Closing the yield gap could reduce projected greenhouse gas emissions: a case study of maize production in China. Global Change Biology 19, 2467-2477.
- Cui, Z., Yue, S., Wang, G., Zhang, F., Chen, X., 2013b. In-season root-zone N management for mitigating greenhouse gas emission and reactive N losses in intensive wheat production. Environmental science & technology 47, 6015-6022.
- Cui, Z., Zhang, H., Chen, X., Zhang, C., Ma, W., Huang, C., Zhang, W., Mi, G., Miao,
 Y., Li, X., Gao, Q., Yang, J., Wang, Z., Ye, Y., Guo, S., Lu, J., Huang, J., Lv, S.,
 Sun, Y., Liu, Y., Peng, X., Ren, J., Li, S., Deng, X., Shi, X., Zhang, Q., Yang, Z.,
 Tang, L., Wei, C., Jia, L., Zhang, J., He, M., Tong, Y., Tang, Q., Zhong, X., Liu,
 Z., Cao, N., Kou, C., Ying, H., Yin, Y., Jiao, X., Zhang, Q., Fan, M., Jiang, R.,
 Zhang, F., Dou, Z., 2018. Pursuing sustainable productivity with millions of
 smallholder farmers. Nature.
- Eaton, C., Shepherd, A., 2001. Contract farming: partnerships for growth. Food & Agriculture Org.
- FAO, 2015. FAOSTAT Database. Rome, Italy: Food and Agriculture Organization of the United Nations. (<u>http://www.fao.org/faostat/en/ - data</u>) Accessed March 13, 2018.
 FAO, 2018. China at a glance

(http://www.fao.org/china/fao-in-china/china-at-a-glance/en/).

- Galloway, J.N., Aber, J.D., Erisman, J.W., Seitzinger, S.P., Howarth, R.W., Cowling,E.B., Cosby, B.J., 2003. The nitrogen cascade. Bioscience 53, 341-356.
- Gao, Y., Yu, G., Luo, C., Zhou, P., 2012. Groundwater nitrogen pollution and assessment of its health risks: a case study of a typical village in rural-urban continuum, China. PloS one 7, e33982.
- Gu, B., Ju, X., Chang, J., Ge, Y., Vitousek, P.M., 2015a. Integrated reactive nitrogen budgets and future trends in China. Proceedings of the National Academy of Sciences 112, 8792-8797.
- Gu, B.J., Ju, X.T., Chang, J., Ge, Y., Vitousek, P.M., 2015b. Integrated reactive nitrogen budgets and future trends in China. Proceedings of the National Academy of Sciences of the United States of America 112, 8792-8797.
- Guo, J.H., Liu, X.J., Zhang, Y., Shen, J.L., Han, W.X., Zhang, W.F., Christie, P., Goulding, K.W.T., Vitousek, P.M., Zhang, F.S., 2010. Significant Acidification in Major Chinese Croplands. Science 327, 1008-1010.
- Han, K., Yang, Y., Zhou, C., Shangguan, Y., Zhang, L., Li, N., Wang, L., 2014.Management of Furrow Irrigation and Nitrogen Application on Summer Maize.Agronomy Journal 106, 1402-1410.
- Hu, R., Cai, Y., Chen, K.Z., Huang, J., 2012a. Effects of inclusive public agricultural extension service: Results from a policy reform experiment in western China. China Economic Review 23, 962-974.
- Hu, R., Huang, J., Chen, K.Z., 2012b. The public agricultural extension system in China: development and reform. Background Paper prepared for the Roundtable Consultation on Agricultural Extension, Beijing, 15-17.

- Huang, J., Ding, J., 2016. Institutional innovation and policy support to facilitate smallscale farming transformation in China. Agricultural Economics 47, 227-237.
- Huang, J., Hu, R., Cao, J., Rozelle, S., 2008. Training programs and in-the-field guidance to reduce China's overuse of fertilizer without hurting profitability. Journal of Soil and Water Conservation 63, 165A-167A.
- Huang, Y., 2008. Capitalism with Chinese characteristics: Entrepreneurship and the state. Cambridge Univ Press.
- Ju, X., Zhang, F., Bao, X., Römheld, V., Roelcke, M., 2005. Utilization and management of organic wastes in Chinese agriculture: past, present and perspectives. Science in China Series C: Life Sciences 48, 965-979.
- Keeler, B.L., Gourevitch, J.D., Polasky, S., Isbell, F., Tessum, C.W., Hill, J.D., Marshall,J.D., 2016. The social costs of nitrogen. Science advances 2, e1600219.
- Lassaletta, L., Billen, G., Grizzetti, B., Anglade, J., Garnier, J., 2014a. 50 year trends in nitrogen use efficiency of world cropping systems: the relationship between yield and nitrogen input to cropland. Environmental Research Letters 9, 105011.
- Lassaletta, L., Billen, G., Grizzetti, B., Anglade, J., Garnier, J., 2014b. 50 year trends in nitrogen use efficiency of world cropping systems: the relationship between yield and nitrogen input to cropland. Environ Res Lett 9.

Lipton, M., 1977. Why poor people stay poor: urban bias in world development.

Liu, R., Li, Y., Zhang, A., Wang, F., Zhao, T., Chen, C., Hong, Y., Yang, Z., 2012. Effect of postponing N application on rice yield and N losses in Yellow RIver Irrigation Area. Journal of Soil and Water Conservation.

- Ma, L., Velthof, G.L., Wang, F.H., Qin, W., Zhang, W.F., Liu, Z., Zhang, Y., Wei, J., Lesschen, J.P., Ma, W.Q., Oenema, O., Zhang, F.S., 2012. Nitrogen and phosphorus use efficiencies and losses in the food chain in China at regional scales in 1980 and 2005. Science of The Total Environment 434, 51-61.
- Ma, L., Zhang, W., Ma, W., Velthof, G., Oenema, O., Zhang, F., 2013. An analysis of developments and challenges in nutrient management in China. J Environ Qual 42, 951-961.
- Muñoz-Huerta, R.F., Guevara-Gonzalez, R.G., Contreras-Medina, L.M., Torres-Pacheco, I., Prado-Olivarez, J., Ocampo-Velazquez, R.V., 2013. A review of methods for sensing the nitrogen status in plants: advantages, disadvantages and recent advances. Sensors 13, 10823-10843.
- Naughton, B.J., 2004. The western development program. Holding China together: Diversity and national integration in the post-Deng era, 1-25.
- Oi, J.C., 1993. Reform and urban bias in China. The Journal of Development Studies 29, 129-148.
- Pozzer, A., Tsimpidi, A.P., Karydis, V.A., De Meij, A., Lelieveld, J., 2017. Impact of agricultural emission reductions on fine-particulate matter and public health. Atmos. Chem. Phys. 17, 12813.
- Qu, F., Kuyvenhoven, A., Shi, X., Heerink, N., 2011. Sustainable natural resource use in rural China: Recent trends and policies. China Economic Review 22, 444-460.
- Ranganathan, J., Vennard, D., Waite, R., Dumas, P., Lipinski, B., Searchinger, T., 2016.Shifting diets for a sustainable food future. World Resources Institute:Washington, DC, USA.

- Rawluk, C.D.L., Grant, C.A., Racz, G.J., 2001. Ammonia volatilization from soils fertilized with urea and varying rates of urease inhibitor NBPT. Canadian Journal of Soil Science 81, 239-246.
- Remington, T.F., 2015. Why is interregional inequality in Russia and China not falling? Communist and Post-Communist Studies 48, 1-13.

Schiermeier, Q., 2009. Prices plummet on carbon market. Nature 457, 365.

State Oceanic Administration, P.s.R.o.C., 2018. Bulletin of China Marine Ecological Environment Status (in Chinese

http://www.soa.gov.cn/zwgk/hygb/zghyhjzlgb/201806/t20180606_61389.html) assessed July 15th, 2018.

- Steffen, W., Richardson, K., Rockström, J., Cornell, S.E., Fetzer, I., Bennett, E.M., Biggs, R., Carpenter, S.R., de Vries, W., de Wit, C.A., 2015. Planetary boundaries: Guiding human development on a changing planet. Science 347, 1259855.
- Strokal, M., Kroeze, C., Wang, M., Ma, L., 2017. Reducing future river export of nutrients to coastal waters of China in optimistic scenarios. Science of The Total Environment 579, 517-528.
- Strokal, M., Ma, L., Bai, Z., Luan, S., Kroeze, C., Oenema, O., Velthof, G., Zhang, F., 2016. Alarming nutrient pollution of Chinese rivers as a result of agricultural transitions. Environ Res Lett 11, 024014.
- Sutton, M.A., Howard, C.M., Erisman, J.W., Billen, G., Bleeker, A., Grennfelt, P., van Grinsven, H., Grizzetti, B., 2011. The European nitrogen assessment: sources, effects and policy perspectives. Cambridge University Press.

- Trenkel, M.E., 2010. Slow- and controlled-release and stabilized fertilizers : an option for enhancing nutrient use efficiency in agriculture. IFA, International fertilizer industry Association, Paris.
- Varshney, A., 2014. Beyond urban bias. Routledge.
- Wang, C., Liu, J.-X., Makkar, H.P.S., Wei, N.-b., Xu, Q.-m., 2014. Production level, feed conversion efficiency, and nitrogen use efficiency of dairy production systems in China. Tropical animal health and production 46, 669-673.
- Wang, M., Kroeze, C., Strokal, M., Ma, L., 2017. Reactive nitrogen losses from China's food system for the shared socioeconomic pathways (SSPs). Science of the Total Environment 605, 884-893.
- Whyte, M.K., 2010. One country, two societies: rural-urban inequality in contemporary China. Harvard University Press.
- Wu, L., 2014a. Fertilizer recommendations for three major cereal crops based on regional fertilizer formula and site specific adjustment in China; doctoral thesis for the Department of Plant Nutrition in China Agricultural University.
- Wu, L., 2014b. Nitrogen fertilizer demand and greenhouse gas mitigation potential under nitrogen limiting conditions for Chinese agriculture production (doctoral thesis).
 Department of plant nutrition, China Agricultural University.
- Xia, L., Lam, S.K., Chen, D., Wang, J., Tang, Q., Yan, X., 2017. Can knowledge-based N management produce more staple grain with lower greenhouse gas emission and reactive nitrogen pollution? A meta-analysis. Global change biology 23, 1917-1925.

- Xia, L., Ti, C., Li, B., Xia, Y., Yan, X., 2016. Greenhouse gas emissions and reactive nitrogen releases during the life-cycles of staple food production in China and their mitigation potential. Science of the Total Environment 556, 116-125.
- Xia, W., 2011. Characteristics of N cycling in wheat-maize rotation systems under optimized N application schemes (doctoral thesis at Chinese Academy of Agricultural Sciences).
- Yang, H., 2013. Livestock development in China: animal production, consumption and genetic resources. Journal of Animal Breeding and Genetics 130, 249-251.
- Yang, M., Fang, Y., Sun, D., Shi, Y., 2016. Efficiency of two nitrification inhibitors (dicyandiamide and 3, 4-dimethypyrazole phosphate) on soil nitrogen transformations and plant productivity: a meta-analysis. Scientific Reports 6, 22075.
- Ying, H., Ye, Y., Cui, Z., Chen, X., 2017. Managing nitrogen for sustainable wheat production. Journal of Cleaner Production 162, 1308-1316.
- Zhang, D., Shen, J., Zhang, F., Li, Y.e., Zhang, W., 2017. Carbon footprint of grain production in China. Scientific Reports 7, 4126.
- Zhang, Q.F., 2012. The Political Economy of Contract Farming in China's Agrarian Transition. Journal of Agrarian Change 12, 460-483.
- Zhang, S., Gao, P., Tong, Y., Norse, D., Lu, Y., Powlson, D., 2015a. Overcoming nitrogen fertilizer over-use through technical and advisory approaches: A case study from Shaanxi Province, northwest China. Agriculture, Ecosystems & Environment 209, 89-99.

- Zhang, W., Cao, G., Li, X., Zhang, H., Wang, C., Liu, Q., Chen, X., Cui, Z., Shen, J., Jiang, R., 2016. Closing yield gaps in China by empowering smallholder farmers. Nature 537, 671-674.
- Zhang, W.-f., Dou, Z.-x., He, P., Ju, X.-T., Powlson, D., Chadwick, D., Norse, D., Lu, Y.-L., Zhang, Y., Wu, L., 2013. New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China. Proceedings of the National Academy of Sciences 110, 8375-8380.
- Zhang, X., Davidson, E.A., Mauzerall, D.L., Searchinger, T.D., Dumas, P., Shen, Y., 2015b. Managing nitrogen for sustainable development. Nature 528, 51-59.
- Zhang, Y., Liu, J., Mu, Y., Pei, S., Lun, X., Chai, F., 2011. Emissions of nitrous oxide, nitrogen oxides and ammonia from a maize field in the North China Plain. Atmospheric Environment 45, 2956-2961.
- Zhao, Z., Bai, Z., Wei, S., Ma, W., Wang, M., Kroeze, C., Ma, L., 2017. Modeling farm nutrient flows in the North China Plain to reduce nutrient losses. Nutrient Cycling in Agroecosystems 108, 231-244.

Chapter 3: Improving Air Quality and Nitrogen Use Efficiency in China via Cost-effective Agricultural Nitrogen Management

1. Introduction

China's population-weighted annual PM_{2.5} (fine particulate matter with aerodynamic diameter less than 2.5 μ m) reached 54.3 μ g/m³ in 2013, among the highest in the world (Brauer *et al* 2016), and has large associated adverse impacts on public health (Burnett *et al* 2018). To date, China's control strategies have focused primarily on pollutants other than ammonia (NH₃), reducing emissions of primary PM_{2.5} by 35%, nitrogen oxides (NO_x (NO_x = NO + NO₂)) by 17% and sulfur dioxide (SO₂) by 62% from 2010 to 2017, resulting in reductions in PM_{2.5} concentrations by 33% over this period (Zheng *et al* 2018). In contrast, emissions of NH₃ have remained high (Zhang *et al* 2018) and stable between 2010-2017 at~12 Tg (Zheng *et al* 2018).

However, NH₃ controls can in some cases be the most effective mechanism for reducing PM_{2.5} in winter in the eastern U.S. (Pinder *et al* 2007), Europe (Banzhaf *et al* 2013, Megaritis *et al* 2013), and China' s Pearl River Delta, and in summer in Europe (Wang *et al* 2011). NH₃ emission reductions reduce PM_{2.5} by reducing the inorganic fraction of PM_{2.5}, i.e. secondary inorganic aerosols (SIA, the sum of ammonium, nitrate and sulfate aerosols). Although at high NH₃ concentrations, reduction of NO_x and SO₂ are generally more effective at reducing PM_{2.5} formation, reductions in NH₃ can be more effective at moderate and lower NH₃ levels (Seinfeld and Pandis 2016, Meng *et al* 1997). In general, as marginal costs of further SO₂ and NO_x emission reductions increase, NH₃ emission controls become increasingly attractive. Europe,

which already has stringent controls on SO_2 and NO_x , for example, has recently set national ceilings for NH₃ (EC 2010). China's 2018 "Three-year Action Plan Fighting for a Blue Sky" for the first time encourages NH₃ emission reductions from agricultural management changes, although it has not set a quantitative target.

Research on the benefits of NH₃ emission reductions needed to inform policy has faced a number of limitations including a lack of accurate, geographically varied NH₃ emission inventories and incomplete aerosol formation chemistry in atmospheric chemistry models. Earlier bottom-up NH₃ emission inventories have low spatial resolution and no seasonality, (e.g. the NH₃ emission inventory used by the GAINS model [Greenhouse Gas and Air Pollution Interactions and Synergies]), or use NH₃ emission factors primarily developed for other regions (Zhang *et al* 2018, Paulot *et al* 2014). Previous inventories of NH₃ emissions in China vary by a factor of two and have discrepancies in spatial distribution and seasonality (Zhang *et al* 2018). In this paper, we address the limitation of past NH₃ emission inventories by using a new improved NH₃ emission inventory, which adds dependence of NH₃ emission rates on climate and soil conditions (Paulot and Jacob 2014) and local agricultural practices (Zhang *et al* 2018, Huang *et al* 2012).

A critical question for public policy is typically the extent to which benefits exceed costs and whether a full range of policy impacts are included in a cost-benefit analysis. A recent paper found that with a 50% reduction in NH₃ emissions in China, annual benefits due to reduced PM_{2.5} related mortalities and reduced nitrogen deposition valued at US\$12 billion barely exceeded the annual costs of control technology and yield reductions resulting from worsened acid rain together valued at US\$9.4 billion (Liu *et al* 2019a). That paper, however, employed

85

little of the emerging work on management opportunities in China's agricultural sector through which NH₃ emission mitigation can be realized and did not consider the large co-benefits of improved agricultural practices beyond air quality and nitrogen deposition. Our work utilizes their findings but in addition conducts a comprehensive analysis of various management opportunities. We evaluate a full range of associated impacts including air quality, nitrogen use efficiency (NUE), crop yields, greenhouse gas emissions (GHGs) and reactive nitrogen water pollution (Figure 1) and we estimate technological adoption costs using data collected for China.

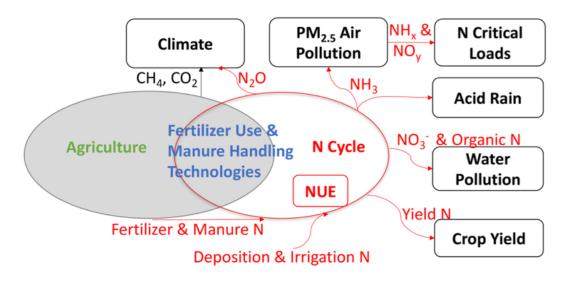


Figure 1. Effects of changes in agricultural practices. NH_x for reduced N and NO_y for oxidized N.

The opportunities of improving fertilizer application and manure handling we identified help improve China's extremely low NUE and reduce air pollution. China's total agricultural NUE (including grain crops, cash crops, fruits and vegetables) is only 25-28%, compared to high NUE achieved in Europe and North America of 52% and 68% (Zhang *et al* 2015, Lassaletta *et al* 2014). Manure disposal in China results in leakage of 2/3 of manure N to the environment (Bai *et*

al 2016a, 2017), resulting in increased air pollution, algal blooms, and groundwater contamination (Sun *et al* 2012).

In this study, key agricultural nitrogen management technologies for China are identified. The potential of each technology to reduce NH₃ emissions and PM_{2.5} formation is examined using a recent process-based NH₃ emission model for China at $0.25^{\circ} \times 0.25^{\circ}$ latitude \times longitude resolution (Zhang *et al* 2018) and the WRF-Chem (Weather Research and Forecasting – Chemistry) air quality model at 27km \times 27km for January and July of 2012. In addition, implications for NUE (defined as N_{crop}/(N_{dep} + N_{bfix} + N_{irri} + N_{fert} + N_{manu}), where N_{crop}, N_{dep}, N_{bfix}, N_{irri}, N_{fert}, and N_{manu} represent, respectively, N content in harvested crop, atmospheric deposition, biological fixation, irrigation water, fertilizer application, and manure used as fertilizer), crop yields, GHG mitigation, and water quality improvements are quantified. Furthermore, we compare benefits achieved (including value of avoided premature deaths, yield gains, labor savings, GHG mitigation, reduced Nr pollution, and reduced N deposition from Liu et al (2019)) with total costs (including worsened acid rain adopted from Liu et al (2019) and our estimated technological adoption costs (20-26)).

2. Results

2.1 NH₃ mitigation technologies for China

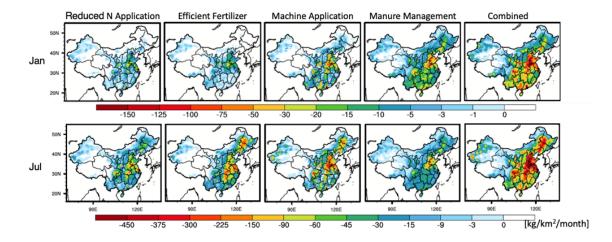
We focus exclusively on measures that have substantial potential to be economically costeffective and utilize the following scenarios (see Table S1 and SI for details):

Reduced N application describes realistic N fertilizer use reduction for China's crops, vegetables and fruits. China has lower crop production while using more fertilizer nitrogen inputs than most other parts of the world. Excess N fertilizer application increases NH₃ emissions and decreases crop yields (Wu 2014, Wu et al 2015a, 2014, Chen Xinping 2016). Excess N supply decreases yields by allowing rapid growth of crops, especially growth of stems near crop roots, resulting in ineffective tiller and low earing rate (for maize and rice), high chance of lodging (for rice), pest diseases and crop senescence (for all grain crops) (Ghorbani et al 2010), as well as prohibiting root elongation (for maize) (Mi et al 2010). In the Reduced N Application scenario, N application rates for maize, wheat and rice are reduced to levels that optimize farmers' net return (profit minus seed and fertilizer input cost) (Wu 2014, Wu et al 2015a, 2014, Chen Xinping 2016). The quantity reduced is generated by a statistical analyses of ~5500 controlled field experiments during 2005-2010 (Table S2 and SI)(Wu 2014, Wu et al 2015a, 2014, Chen Xinping 2016). 1/3 of N is applied during sowing and 2/3 of N at 5thleaf stage. This can increase grain yield by ~5-10% across agroecological regions and reduce emissions of Nr (Wu et al 2015a, 2014). Nitrogen application rates for vegetables and fruits are reduced following recommendations derived from field experiments (Feng 2014, Liyou Tang and Xuejun Zhou 2014, He et al 2016, Dong et al n.d., Wang et al 2013, Zhao et al 2017a, Shen 2014).

Efficient Fertilizer describes the use of controlled-release and urease inhibitor fertilizers, which substantially reduce NH₃ emission rates by 40-70% depending on crop type and N application rates (Trenkel 2010).

Machine Application describes replacing hand application of fertilizers by machine deep placement of N in croplands other than hilly regions. Only 30% of Chinese cropland is fertilized using machine application of N (MOA (Chinese Ministry of Agriculture) 2015). A Chinese government policy document calls for increasing the percentage of machine fertilized area to 40% of cropland by 2020 (MOA (Chinese Ministry of Agriculture) 2015). Deep placement of N near crop roots can substantially reduce NH₃ losses to the air (i.e., by 35% for wheat and rice systems and by 70% for maize) (Xia *et al* 2016). We also discuss the implications of two variations of this scenario: deep placement of N by hand and machine broadcasting.

Manure management is based on a recent review paper showing the effectiveness of acidification and aerobic composting as well as cropland injection of manure for reducing NH₃ emissions during storage and manure spreading, and the effectiveness of reducing unnecessarily high protein content in animal feed to reduce total N content in manure (Cao *et al* 2018).


The Combined scenario combines all improvements in the four scenarios above.

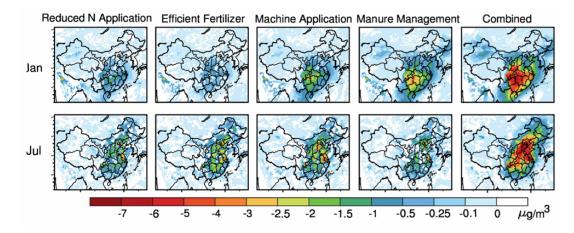
2.2 NH₃ emissions

NH₃ emissions in the *Baseline* case (Figure S1) and N management scenarios are summarized in Table 1. Total and spatial distributions of reductions of NH₃ emissions achieved through implementation of each N management scenario are presented in Table 1 and Figure 2, respectively. The most ambitious scenario, *Combined*, reduces NH₃ emissions by up to 34% annually (Table 1). Three scenarios, i.e., *Efficient Fertilizer*, *Machine Application*, and *Manure Management*, each result in the same moderate annual reduction of ~11% and up to 30% reduction locally in January and 50% in July (Figure S2).

Table 1 China's national total NH₃ emissions (annual, January and July, in unit of Tg) in the base case (year 2012) and agricultural N management scenarios. NH₃ emissions reductions achieved through implementation of each N management scenario are shown as a percent of *Baseline* NH₃ emissions.

Annual NH ₃	January	July	Annual	January	July
Emissions	(Tg)	(Tg)	reduction	reduction	reduction
(Tg)			(%)	(%)	(%)
14.0	0.66	1.66	-	-	-
13.1	0.64	1.54	6.4	3	7
12.5	0.65	1.45	10.7	2	13
12.5	0.62	1.43	10.7	6	14
12.5	0.58	1.50	10.7	12	10
9.3	0.51	1.01	33.9	23	39
	Emissions (Tg) 14.0 13.1 12.5 12.5 12.5	Emissions (Tg) (Tg) 0.66 14.0 0.66 13.1 0.64 12.5 0.65 12.5 0.62 12.5 0.58	Emissions (Tg) (Tg) (Tg) 0.66 1.66 13.1 0.64 1.54 12.5 0.65 1.45 12.5 0.58 1.50	Emissions(Tg)(Tg)reduction(Tg)(Tg)(%)14.00.661.66-13.10.641.546.412.50.651.4510.712.50.581.5010.7	Emissions (Tg) (Tg) reduction reduction (Tg) (%) (%) (%) 14.0 0.66 1.66 - - 13.1 0.64 1.54 6.4 3 12.5 0.65 1.45 10.7 2 12.5 0.58 1.50 10.7 12

Figure 2. Changes of NH₃ emissions (in kg/km²/month, negative means reduction) in N management scenarios compared to *Baseline* NH₃ emissions in January and July of the year 2012.

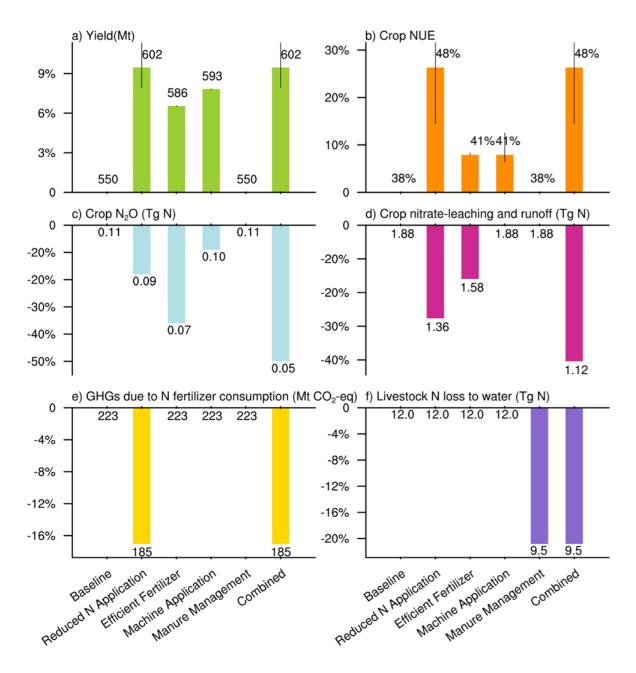

Wintertime reduction of NH₃ emissions relies mainly on improved manure management, which results in a 10-20% nationwide reduction (Table 1 and Figure S2). Summertime reduction of NH₃ emissions can be achieved in multiple scenarios, including *Machine Application*, *Efficient Fertilizer* and *Manure Management*, which results in a 10%-14% nationwide reduction.

2.3 PM_{2.5} air quality benefits

We evaluate modeled NH₃(g) against satellite observations (see Supplementary Information). Modeled NH₃(g) concentrations at 918hPa are in good agreement with AIRS (Atmospheric Infrared Sounder) observations over China, especially in July of 2012 (Warner *et al* 2016) (Figure S3 and S4 and Table S3). Modeled daily and monthly NH₃ column density are in better agreement with IASI (Infrared Atmospheric Sounding Interferometer) observations for January and July of 2012 (Damme *et al* 2017) (Figure S5, S6, S7 and S8) than other NH₃ emission inventories such as NH₃ in MIX (Li *et al* 2017a, Kang *et al* 2016).

We evaluate modeled PM_{2.5}, ammonium (NH₄⁺), nitrate (NO₃⁻) and sulfate (SO₄²⁻) concentrations for the *baseline* scenario during January and July of 2012 against PM_{2.5} observations at U.S. embassy locations (Anon n.d.) and as many published speciated PM_{2.5} observations during the same time period as available, including observations collected in Beijing (US Embassy at Beijing 2012)(Sun *et al* 2015), Shanghai (Wang *et al* 2016), Xiamen, Quanzhou, Putian and Fuzhou (Wu *et al* 2015b), Guangzhou (Lai *et al* 2016) and Jinsha (Zhang *et al* 2014). The WRF-Chem model in general reproduces observations well especially in July (Figures S9 and S10). In January, WRF-Chem's underestimation of sulfate is prominent at four coastal sites but barely noticeable in Beijing and Shanghai. Modeled daily and hourly PM_{2.5} and speciated PM_{2.5} correlate well with observations (Figure S11, Table S4 and S5).

As NH₃ emissions primarily affect the inorganic fraction of PM_{2.5}, mainly secondary inorganic aerosols (SIA, [SIA] = [NH₄⁺] +[NO₃⁻] +[SO₄²⁻]), we present SIA concentrations at the surface (the lowest model level with a thickness of 18m), as a result of NH₃ emission reductions, achieved through implementation of each N management scenario in Figure 3. In the *Combined* scenario, up to 8 μ g/m³ (28%) reduction of SIA can be achieved in both January and July (Figures 3 and S12). *Manure Management* and *Machine Application* scenarios are the most effective scenarios to reduce SIA in January, with reductions up to 4 μ g/m³. In July the four individual management scenarios each generate SIA reductions across China of between 0.5-4 μ g/m³. Regions that have the largest SIA reduction are central and southern China in January, and the North China Plain in July.


Figure 3. Changes in ground-level (surface layer in WRF-Chem is 18m thick) concentrations (in unit of μ g/m³, negative values mean reductions) of secondary inorganic aerosol (SIA, the sum of ammonium, nitrate and sulfate aerosols) in management scenarios compared to the *Baseline* simulation, in January and July of 2012.

Reductions of SIA are driven mainly by reductions of nitrate and ammonium aerosols with sulfate concentrations remaining unchanged in both January and July (Figures S13 and S14). This is because changes in NH₃ emissions do not directly impact sulfate aerosol, but changes in other aerosols (ammonium and nitrate) can slightly modulate the simulated oxidants of SO₂ (e.g., O₃, H₂O₂) and further formation of sulfate. Increased (decreased) formation of ammonium and nitrate will decrease (increase) the available oxidants for SO₂.

Meanwhile, as found in Liu et al. (2019), reduced NH₃ emissions will increase the acidity of precipitation in China. This mainly occurs by favoring production of NH₄HSO₄ which is more acidic than (NH₄)₂SO₄ and shifting NH₃(g)-NH₃(aq)-NH₄⁺(aq) equilibrium towards NH₃(g)

which releases more $H^+(aq)$ (Liu *et al* 2019b). Reduced NH₃ emissions will also decrease N deposition and are thus beneficial for sensitive ecosystems. These two effects are not simulated in this study but are incorporated into the cost-benefit analysis section by adopting results from Liu et al (2019).

2.4 Mortality effects of reduced PM_{2.5}: We estimate reductions of premature mortality due to reduced exposure to PM_{2.5} for our scenarios (Table S6). The *Combined* scenario saves 30,500 (95% confidence interval (CI): 18,400; 39,900) lives, which is nearly 3% of the 1.3 million premature deaths resulting from exposure to PM_{2.5} in China in 2012. Other scenarios reduce premature mortality by 5300-8800 persons. Considering the uncertainties of existing NH₃ emission inventories for China (ranging from 10Tg to 17Tg (Huang *et al* 2012, Gu *et al* 2012, Kang *et al* 2016), compared to 14Tg in this study), we estimate that the range of reduced mortality for the *Combined* scenario is 27400 to 30700 persons, which is -10% to +0.7% of our estimate of 30500 persons (see Supplementary Information, Figure S15 and Table S7).

Figure 4. Co-benefits achieved through implementing NH₃-mitigating nitrogen management scenarios. Y-axes show % changes of metrics in each scenario, (scenario – baseline) / baseline. Numbers associated with each bar show the absolute value of the metric. a) China's national total grain yields (wheat, maize and rice, in Mega tonnes), b) average grain crop system NUE, c) grain crop N₂O emissions (in Tg N), d) grain crop NO₃-leaching and runoff (in Tg N), e) life-cycle GHG emitted during N fertilizer manufacture, transport and application for grain crops (in

Mega tonnes CO₂-eq), and f) livestock N loss to water (in Tg N). Error bars in plot a) indicate the range of estimated metrics that originate from the standard deviation of surveyed crop yields and surveyed N application rates in each grain crop production region (Wu 2014). Error bars in plot b) originate from the range of NUE achieved in individual grain crop production regions.

2.5 Yield effects:

We estimate that the *Reduced N Application, Machine Application,* and *Efficient Fertilizer* scenarios respectively increase national crop yields of the major grains (maize, wheat and rice) by 52, 43 and 36 Mega tonnes (9%, 8% and 7% of the *Baseline* crop yields) (Figure 4 and Table S8). We conservatively estimate that yield gain achieved in the *Combined* scenario is the same as that in *Reduced N Application* scenario.

2.6 Change in NUE

Average cropping system NUE for grain crops increases from the current value of 38% to 48% in *Reduced N Application* scenario, 41% in *Machine Application* and *Efficient Fertilizer* scenarios and as high as 48% in *Combined* scenario (Figure 4, SI Table S9 and S10).

2.7 Greenhouse Gases

Reduced N application rates in *Reduced N Application* and *Combined* scenarios reduces lifecycle GHG emissions from N fertilizer manufacture, transport, application and post-application by 38 Mega tonnes CO₂-eq. *Machine Application* and *Efficient Fertilizer* scenarios reduce N₂O emissions equivalent to 4.7 Mega tonnes CO₂-eq and 18.8 Mega tonnes CO₂-eq, respectively (Figure 4 and Table S9 and S10). **2.8 Water pollution**: NO_3^- -leaching and runoff from croplands are lowered by 28%, 16% and 40% in *Reduced N Application, Efficient Fertilizer* and *Combined* scenarios, respectively. The *Manure Management* and *Combined* scenario both reduce N loss to water systems from manure by ~20% (2.5 Tg of 12 Tg N loss in 2010 to water from animal manure).

2.9 Cost-benefit analysis

Table 2 shows economic benefits achieved and costs incurred through implementation of each agricultural N management scenario. The last three lines of Table 2 provide total benefits, total costs, and net benefits for each scenario. For metrics that have large uncertainty, Table 2 presents results with a range of monetary values in the form of medium (low to high) estimate(s) considering possible ranges of economic parameters selected²². In Tables S11, S12, and S13, we provide details of the origin of these estimates. Table S14 provides nine benefit/cost ratios for each scenario when benefits and costs are each at low, medium and high levels.

 Table 2: Economic benefits & costs calculated for agricultural nitrogen management scenarios in

 US\$ billions/annum, as well as values of economic parameters used. We provide a range of estimates,

 in the form of a mid-range (low; high estimate), for cost and benefit metrics that are sensitive to the

 selected values of economic parameters.

	Reduced N	Efficient	Machine	Manure		Economic parameters
Metrics	Application	Fertilizer	Application	Management	Combined	used (with ranges)

²² A currency conversion rate of US\$1=RMB6.95 is used. Currency exchange rates in 2012 and 2018 are both approximately this value. Prices for grain and labor costs are for the year 2012.

						Value of statistical life
						US\$0.124 million
Value of lives						/person (Xu <i>et al</i> n.d.)
saved from PM _{2.5}						(US\$0.09; 0.25 million
air pollution	0.70	1.08	0.65	1.08	3.77	/person) (Xie 2011,
related deaths	(0.51; 1.41)	(0.78; 2.18)	(0.47; 1.32)	(0.79; 2.19)	(2.74; 7.61)	Nielsen and Ho n.d.)
Reduced						
conventional N						
fertilizer purchase						Urea price: US\$0.6 kg ⁻¹
expenditure ¹	1.62	0	0	0	1.62	N (Table S15)
						2012 crop wholesale
						prices in China:
						Rice US\$0.40 kg ⁻¹
						Wheat US\$0.34 kg ⁻¹
						Maize US\$0.27 kg ⁻¹
						(Chinese NDRC
						(national development
Increased crop						and reform council)
sales	15.7	12.3	14.1	0	15.7	2016)
						Damage cost of NO ₃ -N
						is \$1.32/kg N, with
						\$0.2/kg N from
						drinking water health
Reduced damage						impacts and \$1.12/kg N
from NO ₃ -						from eutrophication (Gu
leaching and						et al 2012, Ying et al
runoff	0.61	0.41	0.06	0.33	0.65	2017) (Table S16)
Reduced social						Social costs of carbon
cost of carbon						\$20.4/tonne CO ₂ -eq
(CO ₂ -eq)	0.76	0.28	0.16		0.76	(Schiermeier 2009)
emissions	(0.38; 1.89)	(0.14; 0.7)	(0.08; 0.4)	0	(0.38; 1.89)	(10; \$50/tonne CO ₂ -eq)

						Decreases in time
						needed for machine
						application compared to
						hand application
						4h/ha (2.5; 7.5h/ha).
						Costs of labor varies
						across provinces
			0.45		0.45	(US\$7.34; 43.2 d ⁻¹),
Labor savings	0	0	(0.2;0.7)	0	(0.2;0.7)	provided in Table S17
Reduced N						
deposition (by						
scaling benefits						
estimated by Liu						
et al)(Liu <i>et al</i>						
2019a)	0.24	0.41	0.41	0.41	1.29	
						Organic fertilizer sale
						price US\$43.2 tonne ⁻¹
Organic fertilizer				5.14 (2.74-	5.14 (2.74-	(US\$28.8; 143.9 tonne ⁻
sales	0	0	0	20.5)	20.5)	¹)
Yield reductions						
from worsened						
acid rain (scaled						
from Liu et						
al)(Liu <i>et al</i>						
2019a)	0.64	1.07	1.07	1.07	3.39	
Technological						
costs of improving						Fertilizer application
N management					14.36	machine rental price
resulting in NH ₃		4.09	3.92	6.35	(8.26;24.06	US\$5.8 ha ⁻¹ (US\$2.9;
emission	0	(2.75; 5.42)	(1.31; 7.84)	(4.2;10.8))	8.6 ha ⁻¹)

reduction (this						Composting reactor
study)						lifetime 30 yr(20yr;
						50yr)
						Discount rate 4% (2%;
						15%)
						Controlled-release
						fertilizer price: US\$0.9
						kg ⁻¹ N (0.8; 1.0 kg ⁻¹ N)
						NBPT urease inhibitor
						price: US\$14.4 kg ⁻¹
						applied at 0.001kg kg ⁻¹
						N (Xia <i>et al</i> 2017)
						(Table S15)
Technological						
costs of achieving						
NH ₃ emission						
reduction						
(obtained by						
scaling costs from						
Liu et al)(Liu et al						
2019a)	0.84	1.41	1.41	1.41	4.47	
	19.6(19.1;2	14.5(14.0;	15.8(15.3;	7.0 (4.3;	29.4	
Total benefits ²	2.2)	16.0)	16.3)	23.4)	(25.3;50.0)	
					17.75	
		5.16 (3.82;	4.99 (2.38;	7.42 (5.27;	(11.65;	
Total costs ³	0.64	6.49)	8.91)	11.87)	27.45)	
	19.0		10.8	-0.46 (-7.6;	11.7 (-2.12;	
Net benefits ⁴	(18.5;21.5)	9.3 (7.6; 12.2)	(6.4;13.9)	18.2)	38.3)	

¹Subsidies for fertilizer production in China including subsidies for electricity, natural gas, and rail transportation for fertilizer producers was removed in 2015. For urea, subsidies accounted for ~3% of

price. Reduced conventional N fertilizer expenditure here is for farmers, savings for society is 103% of this value.

²Total benefits = reduced $PM_{2.5}$ mortality + reduced fertilizer expenditure + increased crop sales + reduced NO_3^- leaching and runoff + labor savings + reduced social costs of carbon + reduced N deposition + organic fertilizer sales

 3 Total costs = acid rain costs + technological costs estimated by this study

⁴ Net benefits (medium estimate) =Total benefits (medium estimate) – Total costs (medium estimate estimate)

Net benefits (low estimate) =Total benefits (low estimate) – Total costs(high estimate)

Net benefits (high estimate) = Total benefits (high estimate) – Total costs(low estimate)

Our individual N management options remain cost-effective and generate net benefits ranging from US\$9.3 to19 billion/annum, except for the *Manure Management* scenario alone which we only accounts for some of its benefits (see Discussions and Conclusions). *Reduced N Application* has benefit/cost ratios of 30-35, *Machine Application* 2-7, *Efficient Fertilizer* 2-4 and *Manure Management* 0.4-4. Our *Combined* scenario remains cost-effective except under high cost and low benefit estimates and delivers benefits of US\$29 (25; 50) billion per year against costs of US\$18 (12; 27) billion/annum (benefit/cost ratio of 0.9-4.3).

Our comprehensive cost-benefit analysis incorporates our calculations of yield, GHG mitigation and Nr pollution mitigation benefits of NH₃-mitigating N management, and includes acid rain and nitrogen deposition impacts calculated by Liu et al (Liu *et al* 2019a). By including these additional components we find US\$9.4-19 billion/annum net monetary benefits across NH₃- mitigating measures (*Reduced N Application, Machine Application, Efficient Fertilizers and Combined*) which reduce NH₃ emissions by 6-34%. In contrast, Liu et al (2019) estimated that for a 50% reduction in NH₃ emissions net benefits totaled only US\$0.4 billion.

Unlike Liu et al. (2019), we include yield benefits from improved agricultural management valued at US\$12.3 to 15.7 billion/annum (range for medium estimates across the scenarios) and various NUE and GHG related benefits each valued at ~ US\$1 billion/annum. All scenarios reduce PM_{2.5} related premature deaths by US\$0.65 to 3.77 billion/annum. All scenarios reduce damage from NO₃⁻-leaching and runoff by US\$0.06 to 0.65 billion/annum and reduce N deposition damage by US\$ 0.24 to 1.29 billion/annum (adopted from Liu et al (2019)). Reduced N Application and Combined scenarios, through reduction of nitrogen use for grain crops, reduce N fertilizer expenditure by US\$1.62 billion/annum and reduce life-cycle GHGs related to N fertilize manufacture/production/transport by US\$0.76 billion/a. Machine Application, through deeply placing N near plant roots in a time efficient way, saves US\$0.2 to 0.7 billion/annum of labor compared to conventional surface broadcasting by hand. Machine Application and Efficient Fertilizer, through deep placement of N and slow-release of N, respectively, reduced N₂O emissions valued at US\$0.16 and US\$0.28 billion/annum, respectively. Total benefits sum to US\$7 to 30 (4;50) billions/annum across scenarios. Of these benefits, Liu et al (2019) only included reduction in N-deposition and air pollution impacts totaling only \$US12 billion for an NH₃ emission reduction (50%) much larger than any of our scenarios (6-34%).

Because of the large total benefits we obtain, we find benefits exceed total costs (technological adoption costs + acid rain costs) in most cases despite the fact that our technological adoption

costs, estimated using data collected for China, are 250% to 450% of those obtained by scaling Liu's costs from the GAINS model. We find that although *Machine Application, Efficient Fertilizer* and *Manure Management* scenarios achieve similar levels of national NH₃ emission reductions, their technological adoption costs are dramatically different. *Machine Application* has a cost of US\$3.92 (1.31; 7.84) billion/annnum, which is less than 60% of *Manure Management* costs of 6.96 (4.27; 23.43). Scaling Liu et al (2019) technological adoption costs based on levels of NH₃ emission reduction achieved would generate a uniform cost of US\$1.41 billion/annum for these three scenarios. Acid rain costs valued at US\$0.64-3.39 billion across scenarios (scaled from Liu et al (2019)) are included in our estimate of total costs.

Manure management measures are less clearly beneficial in summer compared to other scenarios, due to large fixed costs and price uncertainties. However, in winter the benefits of manure management for reducing PM_{2.5} are substantial. Using lower protein feeds reduces animal feed purchase costs and has no adverse impacts on the animals and hence is always beneficial. Costs of purchasing and operating manure injection machines are more than fully compensated over the machine lifetime by savings from reduced N fertilizer purchases (SI) however logistical complications can be an impediment. Using aerobic composting reactors for manure storage introduces cost uncertainties, because of large variations in sale prices for organic fertilizer, discount rate and machine lifetime (e.g. organic fertilizers of low and high quality sold at US\$29 tonne⁻¹ and US\$144 tonne⁻¹ respectively, machine lifetime of 20-50yr and discount rate ranging from 2 to 14%). As a result of these uncertainties, the *Manure Management* scenario is beneficial only under high benefit and low/medium cost estimates.

3. Discussion and Conclusions

China's rapid economic development and success in addressing food insecurity have created multiple environmental challenges including air pollution, water pollution, unsustainable agricultural N use, increased greenhouse gas emissions, etc. To address these concerns, the Chinese government has signaled a change in direction for agricultural nitrogen use by setting a number of short-term policy goals for 2020. These include the "Three-year Action Plan Fighting for a Blue Sky" (DRC, 2018) which for the first time identifies NH₃ in efforts to address PM_{2.5} air pollution, "Zero N fertilizer use increase by 2020" (MOA (Chinese Ministry of Agriculture) 2015) which is a first step towards a future reduction in N use, "Action Plan of converting animal manure to nutrients (2017-2020)", a goal of "75% processing rate of livestock and poultry waste" which identifies the importance of managing manure disposal to avoid damage to the environment (MOA (Chinese Ministry of Agriculture) 2017), a tightened regulatory standard for discharge of animal waste to rivers drafted for public review (Ministry of Ecology and Environment of the P.R. China n.d.), and a goal of having 400 counties demonstrate 'High Efficiency and High Yield Agriculture'.

Contradictory to previous work that views Chinese air pollution and NUE challenges as completely separate issues (Liu *et al* 2019a), in this study we identify four agricultural N management technologies that address multiple environmental problems including air quality, and three out of four technologies prove to be independently cost-effective. Our agricultural nitrogen management scenarios reduce NH_3 emissions by up to 34% nationally and reduce $PM_{2.5}$ air pollution by up to 8 μ g/m³ both in January over central China (i.e. Hunan, Hubei, Guizhou and Chongqing provinces, etc) and in July over the North China Plain (i.e. Hebei, Beijing, Tianjin and Shandong provinces, etc).

The evaluation of yield, NUE, reactive N water pollution and GHG implications of improved N management are largely neglected in other studies. We include them and find they represent ~80% of total benefits (49–51)(Liu *et al* 2019a). We find that co-benefits from N management applied to grain crops alone and livestock husbandry include 36 -52 million tonnes (7%-9%) increase in national crop yields, 0.01- 0.05 Tg N (9%-50%) decrease of N₂O emissions, 0.23- 0.62 Tg (14%-38%) decrease of NO₃-leaching, 0.06-0.14 Tg (23%-56%) decrease of NO₃- runoff, increase of average grain crop NUE from the current value of 38% to up to 48%, 4.7 -38 Mega tonnes CO₂-eq decrease of life-cycle GHGs, and 0-2.5 Tg N (0-21%) decrease of N loss to water from animal farms. . Incorporating acid rain and N deposition impacts from Liu et al (2019), we find that individual N management options deliver net benefits of US\$9.4-19 billion/annum and remain cost-effective, except for the *Manure Management* scenario under low and medium benefit estimates. Our *Combined* scenario delivers benefits of US\$30 (25; 50) billion/annum against costs of US\$18 (12; 27) billion/annum.

Our estimated benefits remain conservative. For example, recent findings indicate that urease inhibitors can reduce NH₃ emission rates from fertilized fields by 84% in China (Li *et al* 2017b), while we use 42-58%. Our analysis of yield, GHGs and water pollution co-benefits leaves out potential gains of improved fertilizer management for Chinese vegetables and fruits, as well as

crops other than the three major grain crops (i.e. maize, wheat, and rice). Our yield gain estimation for the Combined scenario is conservative and assumes no cumulative effects of multiple nitrogen management strategies due to lack of field experiments. Our Manure Management scenario does not include technologies that deal with Nr emissions within animal houses (e.g. conveyer belts to collect chicken manure) and that have more economic potential, e.g. anaerobic digestion that will generate biogas), nor does it tackle direct manure discharge to water bodies (which is estimated to be 30-70% of total manure in the year 2000 (Strokal et al 2016)) and is a major source of water pollution (Chadwick et al 2015)) and damage effect of manure odor and pathogen content. Including these benefits could make manure management improvements appear more attractive. Our *Machine Application* scenario assumes deep placement of N by machinery. However, deep placement of N by hand is more cost-effective (Table S20), mainly because the NH₃, N₂O, NO₃-leaching and runoff benefits remain with deep placement, the loss of labor savings is small, and the cost of large machine rental is removed. In contrast, machines that broadcast fertilizers (frequently dressing machines) are not cost-effective since the only benefit they achieve is saving labor costs while machine rental costs are estimated to be 10 times larger. Our valuation of avoided premature deaths from reduced exposure to PM2.5 is also conservative, since the values of statistical life is from 2010 and will increase as the Chinese economy continues to develop.

The yield changes estimated in this study exclude other factors influencing yields such as depletion of aquifers and ground-level ozone pollution which decrease crop yields, as well as climate change for which the impact is uncertain. Climate change (with CO₂ fertilization effect included) is projected to increase Chinese grain crop yield (except maize) slightly by 3-15% in

the 2020s (Piao *et al* 2010). However, climate change (with CO₂ fertilization effect excluded) is projected to decrease grain crop yields by 37% (Erda Lin *et al* 2005), making it even more crucial to implement other yield-increasing technologies to secure food supply. Research finds that improved N management, together with improved planting techniques and seed varieties can increase crop yields in China by ~15-30% (Chen *et al* 2014, Cui *et al* 2018).

Compared to the alternative PM_{2.5} control strategies of reducing NO_x and SO₂ emissions, reducing NH₃ emissions incur technological adoption costs (estimated here to range US\$0 to ~4000/tonne NH₃ across technologies and estimated to be US\$1500/tonne NH₃ by Liu et al (2019)) are lower or comparable to technological adoption costs of reducing SO₂ emissions in China (ranging from US\$2500-5000/tonne SO₂ across major mega cities (Kanada *et al* 2013)). However, since the same mass reduction of SO₂, NO_x and NH₃ result in different levels of PM_{2.5} reduction, and different externalities are associated with NO_x and SO₂ emission reductions (reduced O₃ pollution and acid rain) compared to NH₃ emission reductions, future research is needed to provide comprehensive cost-benefit analyses for unexploited SO₂ and NO_x mitigating technologies.

Despite our finding of net economic benefits, financing and socioeconomic barriers and uneven distribution of costs and benefits prevent Chinese farmers and livestock ranchers from easily improving their N management practices. The largest opportunities exist with the 15% of farmers in China that cultivate approximately half of the cropland (Anon n.d.) and with industrialized animal farms, because improvements in their practices realize economies of scale and incur lower transaction costs than smallholders. Educating the 224 million smallholders

(cultivating land <2/3ha) who cultivate the other half of available cropland (Anon n.d.) has high transaction costs. One rural research station in the North China Plain, funded by the central and local government, has helped local farmers increase yields from 68% to 97% of attainable level by forming trust relationships between researchers and farmers allowing for improved management and planting techniques. Scaling such education programs to nationwide smallholders would cost US\$ 60 billion (Zhang *et al* 2016). In addition, except for improvements in yields and reduced labor costs, benefits of changed farming practices accrue to society at large rather than to the farmer. Agro-environmental payments and 'polluters pay' rules are needed to address the unequal distribution of costs and benefits (Matthews 2013, Baylis *et al* 2008, Knowler and Bradshaw 2007).

Overall, our findings support an increased emphasis on improved agricultural nitrogen management to address multiple challenges China faces including air pollution, food security, low agricultural nitrogen use efficiency and climate change.

4. Materials and Methods

4.1 Agricultural nitrogen management scenarios.

We design five agricultural N management scenarios based on a literature review (SI Table S1 and S19).

4.2 NH₃ emissions in the *Baseline* and N management scenarios. We utilize an NH₃ emission model to obtain baseline NH₃ emissions for the year 2012 (Figure S1) and NH₃ emissions in the five N management scenarios. The NH₃ emission model we use was published in Zhang et al (Zhang *et al* 2018) and is the most updated and best available bottom-up high-resolution NH₃

emission estimation tool for China. The model represents N fertilizer application for 21 crops (including spring and summer maize, winter and spring wheat, early and late rice, potato, sweet potato, rapeseed, soybean, groundnut, tobacco, cotton, citrus, banana, grape, apple, pear, other fruits, vegetables). Crop NH₃ emission factors are parametrized including fertilizer application timing, rate, type, and method, as well as a number of climate variables (temperature, wind, etc.) and local soil (pH) conditions. The model represents major animal production (cattle, goat, sheep, pig and poultry) in grazing, intensive and free-range systems. Total ammonium nitrogen (TAN) content excreted by outdoor animals are subject to NH₃ volatilization and are without further management. TAN excreted by indoor animals goes through several stages of management, i.e. animal housing, manure storage and manure spreading, with each stage suspect to NH₃ volatilization. NH₃ emissions are gridded at $0.25^{\circ} \times 0.25^{\circ}$ resolution.

4.3 Air quality simulation. We use the Weather Research and Forecasting – Chemistry (WRF-Chem) model v3.6.1 to simulate PM_{2.5} formation in the base case and in agricultural N management scenarios. WRF-Chem is an online-coupled meteorology-chemistry model widely used for air quality research (Gao *et al* 2016, Qin *et al* 2017). The chemical and physical schemes, emission inventories and initial/boundary conditions used are provided in the SI.

We conduct 6 sets of simulations: one *Baseline* and five agricultural management scenarios. The only difference between the *Baseline* and management scenario simulations are modified NH₃ emissions due to various agricultural N management options. Each simulation set includes one month of simulation for January and one month of simulation for July (in all cases after six days of spin-up) for the year 2012. The model resolution is 27 km by 27 km with the domain covering

China and parts of other Asian countries (9[®]N-58[®]N latitude, 60[®]E-156[®]E longitude). There are 37 vertical levels extending from the surface to 50hPa with an 18m deep surface layer.

4.4 Estimating yield, GHGs, NUE and water pollution implications. We evaluate co-benefits of yield, NUE, NO₃⁻-leaching and runoff to water, GHGs, labor savings and fertilizer purchase expenditure through implementation of improved N management scenarios exclusively for grain crops (wheat, maize and rice) and livestock husbandry. All calculations are conducted at agroecological regional levels and aggregated to national estimates using crop planting areas listed in the 2009 China Statistical Yearbook. Definition of wheat, maize and rice regions are the same as that defined in (22). For the Baseline scenario, we estimate emissions of N₂O, NO₃leaching and NO₃-runoff based on the amount of N fertilizer used using statistical relationships built from field measurements (Cui et al 2013, 2014) (listed in Table S18). Baseline nitrogen fertilizer application amounts and yields are from over 5000 large-scale household farm surveys conducted under National 948 Project (2003-Z53) and Agricultural Research Project (200803030) (Table S2) (Wu 2014, Wu et al 2015a, 2014, Chen Xinping 2016). For Machine Application and Efficient Fertilizer scenarios, we estimate Nr emissions by scaling the Baseline Nr emissions and yields by management-specific factors which represent the effect of technology on yield and Nr emissions. These factors are obtained from a meta-analysis of field experiments (listed in Table S19) (Xia et al 2017). We estimate Nr emissions in the Combined scenario by scaling emissions in the Reduced N Application scenario with management technology impact factors (listed in Table S19) (Xia et al 2017). We estimate yield increases in the Combined scenario using yield achieved in *Reduced N* Application scenario. We estimate reduced N loss to water from animal farms achieved in the Manure Management scenario using estimates of total

110

N lost from animals and contribution by various manure handling stages (Bai *et al* 2016b, 2018). We calculate NUE for each scenario, using additional data of atmospheric N deposition from the atmospheric model (Zhao *et al* 2017b), manure N production (Zhang *et al* 2018, p 3), N content in irrigation water (Gu *et al* 2015)and crop N content (Bouwman 2013). We calculate GHGs mitigation for scenarios that have reduced N application rates using a reported value of 13.5 tons CO₂-eq GHGs (including N₂O, CH₄ and CO₂ with GWP at 100-yr time scale) emitted per ton of N fertilizer consumed in China during nitrogenous fertilizer manufacture, transport, application and postapplication (Zhang *et al* 2013). We calculate GHGs mitigation for scenarios that have conventional N application rates by converting reduced N₂O emission due to management to CO₂-eq.

4.5 Economic analysis. We monetize all the benefits using value of statistical life, social costs of CO₂-eq emissions (Schiermeier 2009), damage costs (including global warming, health impacts, eutrophication, and acidification) of N₂O and NO₃-leaching and runoff (Table S15), wholesale grain prices (Chinese NDRC (national development and reform council) 2016), fertilizer sale prices (Xia *et al* 2017), and labor costs (SI). We conduct our own cost analysis for implementing each N management scenario. We calculate costs and benefits when economic parameters used are at low, medium and high levels.

Reference

- Anon Development Research Center (DRC) for the State Council of China and Shandong Supply and Marketing Cooperatives, 2015, Scale service and agricultural modernization: theory development and practices by Shandong supply and marketing cooperatives (in Chinese), China Development Press
- Anon PM2.5 observation by StateAir: U.S. Department of State Air Quality Monitoring Program (available at http://stateair.net)
- Bai Z, Li X, Lu J, Wang X, Velthof G L, Chadwick D, Luo J, Ledgard S, Wu Z, Jin S, Oenema
 O, Ma L and Hu C 2017 Livestock Housing and Manure Storage Need to Be Improved in
 China *Environ. Sci. Technol.* 51 8212–4
- Bai Z, Ma L, Jin S, Ma W, Velthof G L, Oenema O, Liu L, Chadwick D and Zhang F 2016a
 Nitrogen, Phosphorus, and Potassium Flows through the Manure Management Chain in
 China *Environ. Sci. Technol.* 50 13409–18
- Bai Z, Ma L, Jin S, Ma W, Velthof G L, Oenema O, Liu L, Chadwick D and Zhang F 2016b
 Nitrogen, Phosphorus, and Potassium Flows through the Manure Management Chain in
 China *Environ. Sci. Technol.* 50 13409–18
- Bai Z, Ma W, Ma L, Velthof G L, Wei Z, Havlík P, Oenema O, Lee M R F and Zhang F 2018
 China's livestock transition: Driving forces, impacts, and consequences *Science Advances* 4 Online: http://advances.sciencemag.org/content/4/7/eaar8534
- Banzhaf S, Schaap M, Wichink Kruit R J, Denier Van Der Gon H A C, Stern R and Builtjes P J
 H 2013 Impact of emission changes on secondary inorganic aerosol episodes across
 Germany Atmos. Chem. Phys. 13 11675–93

- Baylis K, Peplow S, Rausser G and Simon L 2008 Agri-environmental policies in the EU and United States: A comparison *Ecological economics* **65** 753–64
- Bouwman L 2013 Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900-2050 period (vol 110, pg 20882, 2011)
 Proc. Natl. Acad. Sci. U. S. A. 110 21195–21195
- Brauer M, Freedman G, Frostad J, van Donkelaar A, Martin R V, Dentener F, Dingenen R van,
 Estep K, Amini H, Apte J S, Balakrishnan K, Barregard L, Broday D, Feigin V, Ghosh S,
 Hopke P K, Knibbs L D, Kokubo Y, Liu Y, Ma S, Morawska L, Sangrador J L T,
 Shaddick G, Anderson H R, Vos T, Forouzanfar M H, Burnett R T and Cohen A 2016
 Ambient Air Pollution Exposure Estimation for the Global Burden of Disease 2013
 Environmental Science & Technology 50 79–88
- Burnett R, Chen H, Szyszkowicz M, Fann N, Hubbell B, Pope C A, Apte J S, Brauer M, Cohen A, Weichenthal S, Coggins J, Di Q, Brunekreef B, Frostad J, Lim S S, Kan H, Walker K D, Thurston G D, Hayes R B, Lim C C, Turner M C, Jerrett M, Krewski D, Gapstur S M, Diver W R, Ostro B, Goldberg D, Crouse D L, Martin R V, Peters P, Pinault L, Tjepkema M, van Donkelaar A, Villeneuve P J, Miller A B, Yin P, Zhou M, Wang L, Janssen N A H, Marra M, Atkinson R W, Tsang H, Quoc Thach T, Cannon J B, Allen R T, Hart J E, Laden F, Cesaroni G, Forastiere F, Weinmayr G, Jaensch A, Nagel G, Concin H and Spadaro J V 2018 Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter *Proceedings of the National Academy of Sciences*
- Cao Y, Xing X, Bai Z, Wang X, Hu C and Ma L 2018 Technological developments for reducing ammonia volatilization in mixed crop-livestock system (in Chinese) vol (03):566-580
 (China Agricultural Science)

- Chadwick D, Wei J, Yan'an T, Guanghui Y, Qirong S and Qing C 2015 Improving manure nutrient management towards sustainable agricultural intensification in China *Agriculture, Ecosystems & Environment* **209** 34–46
- Chen X, Cui Z, Fan M, Vitousek P, Zhao M, Ma W, Wang Z, Zhang W, Yan X and Yang J 2014 Producing more grain with lower environmental costs *Nature* **514** 486–9
- Chen Xinping W L 2016 Fertilizer use recommendations for China's three major crops in their typical agri-ecological zones (in Chinese) (China Agricultural Press)
- Chinese NDRC (national development and reform council) N A S and M C 2016 Information summary on the production costs and revenues of national agricultural products (in Chinese), China's Statistical Press
- Cui Z, Wang G, Yue S, Wu L, Zhang W, Zhang F and Chen X 2014 Closing the N-Use Efficiency Gap to Achieve Food and Environmental Security *Environ. Sci. Technol.* **48** 5780–7
- Cui Z, Yue S, Wang G, Meng Q, Wu L, Yang Z, Zhang Q, Li S, Zhang F and Chen X 2013
 Closing the yield gap could reduce projected greenhouse gas emissions: a case study of maize production in China *Global Change Biology* 19 2467–77
- Cui Z, Zhang H, Chen X, Zhang C, Ma W, Huang C, Zhang W, Mi G, Miao Y, Li X, Gao Q,
 Yang J, Wang Z, Ye Y, Guo S, Lu J, Huang J, Lv S, Sun Y, Liu Y, Peng X, Ren J, Li S,
 Deng X, Shi X, Zhang Q, Yang Z, Tang L, Wei C, Jia L, Zhang J, He M, Tong Y, Tang
 Q, Zhong X, Liu Z, Cao N, Kou C, Ying H, Yin Y, Jiao X, Zhang Q, Fan M, Jiang R,
 Zhang F and Dou Z 2018 Pursuing sustainable productivity with millions of smallholder
 farmers *Nature*

- Damme M V, Whitburn S, Clarisse L, Clerbaux C, Hurtmans D and Coheur P-F 2017 Version 2 of the IASI NH₃ neural network retrieval algorithm: near-real-time and reanalysed datasets *Atmospheric Measurement Techniques* **10** 4905–14
- Dong S, Yu D and Zhu Y N use amount experiments for grape production in Anhui province (in Chinese) *Agricultural Technology Bulletin*
- EC 2010 Directive on National Emission Ceilings (NEC, 2001/81/EC) http://ec.europa.eu/environment/air/pollutants/ceilings.htm
- Erda Lin, Wei Xiong, Hui Ju, Yinlong Xu, Yue Li, Liping Bai and Liyong Xie 2005 Climate
 change impacts on crop yield and quality with CO2 fertilization in China *Philosophical Transactions of the Royal Society B: Biological Sciences* 360 2149–54
- Feng S 2014 Primary study on application amount of N fertilizer on winter potato (in Chinese) Journal of Guangxi Agriculture 29
- Gao M, Carmichael G R, Wang Y, Saide P E, Yu M, Xin J, Liu Z and Wang Z 2016 Modeling study of the 2010 regional haze event in the North China Plain Atmos. Chem. Phys. 16 1673
- Ghorbani R, Wilcockson S, Koocheki A and Leifert C 2010 Soil Management for Sustainable
 Crop Disease Control: A Review Organic Farming, Pest Control and Remediation of
 Soil Pollutants: Organic farming, pest control and remediation of soil pollutants
 Sustainable Agriculture Reviews ed E Lichtfouse (Dordrecht: Springer Netherlands) pp
 177–201 Online: https://doi.org/10.1007/978-1-4020-9654-9_10
- Gu B J, Ge Y, Ren Y, Xu B, Luo W D, Jiang H, Gu B H and Chang J 2012 Atmospheric
 Reactive Nitrogen in China: Sources, Recent Trends, and Damage Costs *Environ. Sci. Technol.* 46 9420–7

- Gu B J, Ju X T, Chang J, Ge Y and Vitousek P M 2015 Integrated reactive nitrogen budgets and future trends in China *Proc. Natl. Acad. Sci. U. S. A.* **112** 8792–7
- He Y, Wang L, Jing T and Liu Y 2016 Effects of reduced nitrogen application on soil nutrient, agronomic trait and yield in banana plantation *Chinese Journal of Tropical Agriculture* 36
- Huang X, Song Y, Li M, Li J, Huo Q, Cai X, Zhu T, Hu M and Zhang H 2012 A high-resolution ammonia emission inventory in China *Global Biogeochem Cy* **26** n/a-n/a
- Kanada M, Dong L, Fujita T, Fujii M, Inoue T, Hirano Y, Togawa T and Geng Y 2013 Regional disparity and cost-effective SO2 pollution control in China: A case study in 5 mega-cities *Energy Policy* **61** 1322–31
- Kang Y, Liu M, Song Y, Huang X, Yao H, Cai X, Zhang H, Kang L, Liu X, Yan X, He H,
 Zhang Q, Shao M and Zhu T 2016 High-resolution ammonia emissions inventories in
 China from 1980 to 2012 Atmospheric Chemistry and Physics 16 2043–58
- Knowler D and Bradshaw B 2007 Farmers' adoption of conservation agriculture: A review and synthesis of recent research *Food Policy* **32** 25–48
- Lai S, Zhao Y, Ding A, Zhang Y, Song T, Zheng J, Ho K F, Lee S and Zhong L 2016
 Characterization of PM2.5 and the major chemical components during a 1-year campaign in rural Guangzhou, Southern China *Atmospheric Research* 167 208–15
- Lassaletta L, Billen G, Grizzetti B, Garnier J, Leach A M and Galloway J N 2014 Food and feed trade as a driver in the global nitrogen cycle: 50-year trends *Biogeochemistry* **118** 225–41
- Li M, Zhang Q, Kurokawa J, Woo J-H, He K, Lu Z, Ohara T, Song Y, Streets D G and Carmichael G R 2017a MIX: a mosaic Asian anthropogenic emission inventory under the

international collaboration framework of the MICS-Asia and HTAP *Atmos. Chem. Phys.* **17** 935

- Li Q, Cui X, Liu X, Roelcke M, Pasda G, Zerulla W, Wissemeier A H, Chen X, Goulding K and Zhang F 2017b A new urease-inhibiting formulation decreases ammonia volatilization and improves maize nitrogen utilization in North China Plain *Scientific Reports* **7** 43853
- Liu M, Huang X, Song Y, Tang J, Cao J, Zhang X, Zhang Q, Wang S, Xu T, Kang L, Cai X, Zhang H, Yang F, Wang H, Yu J Z, Lau A K H, He L, Huang X, Duan L, Ding A, Xue L, Gao J, Liu B and Zhu T 2019a Ammonia emission control in China would mitigate haze pollution and nitrogen deposition, but worsen acid rain *PNAS* 201814880
- Liu M, Huang X, Song Y, Tang J, Cao J, Zhang X, Zhang Q, Wang S, Xu T, Kang L, Cai X, Zhang H, Yang F, Wang H, Yu J Z, Lau A K H, He L, Huang X, Duan L, Ding A, Xue L, Gao J, Liu B and Zhu T 2019b Ammonia emission control in China would mitigate haze pollution and nitrogen deposition, but worsen acid rain *PNAS* **116** 7760–5
- Liyou Tang and Xuejun Zhou 2014 Fertilizer application for citrus in Taihu County *Anhui Agriculture Science Bulletin* **20** 53–4
- Matthews A 2013 Greening agricultural payments in the EU's Common Agricultural Policy *Bio*based and Applied Economics Journal 27
- Megaritis A G, Fountoukis C, Charalampidis P E, Pilinis C and Pandis S N 2013 Response of fine particulate matter concentrations to changes of emissions and temperature in Europe *Atmos. Chem. Phys.* **13** 3423–43
- Meng Z, Dabdub D and Seinfeld J H 1997 Chemical Coupling Between Atmospheric Ozone and Particulate Matter *Science* **277** 116–9

- Mi G, Chen F, Wu Q, Lai N, Yuan L and Zhang F 2010 Ideotype root architecture for efficient nitrogen acquisition by maize in intensive cropping systems *Sci. China Life Sci.* 53 1369–73
- Ministry of Ecology and Environment of the P.R. China Standard of animal waste discharge to waters (draft version for public review) available at http://www.mee.gov.cn/gkml/hbb/bgth/201103/W020110328492079276914.pdf
- MOA (Chinese Ministry of Agriculture) 2017 Action plan for manure nutrient usage (2017-2020) http://www.moa.gov.cn/nybgb/2017/dbq/201801/t20180103 6134011.htm
- MOA (Chinese Ministry of Agriculture) 2015 Action plan for zero increase of fertilizer consumption by 2020

(http://jiuban.moa.gov.cn/zwllm/tzgg/tz/201503/t20150318 4444765.htm)

- Paulot F and Jacob D J 2014 Hidden Cost of U.S. Agricultural Exports: Particulate Matter from Ammonia Emissions *Environ. Sci. Technol.* **48** 903–8
- Paulot F, Jacob D J, Pinder R W, Bash J O, Travis K and Henze D K 2014 Ammonia emissions in the United States, European Union, and China derived by high-resolution inversion of ammonium wet deposition data: Interpretation with a new agricultural emissions inventory (MASAGE NH3) J. Geophys. Res., [Atmos.] 119 4343–64
- Piao S, Ciais P, Huang Y, Shen Z, Peng S, Li J, Zhou L, Liu H, Ma Y, Ding Y, Friedlingstein P, Liu C, Tan K, Yu Y, Zhang T and Fang J 2010 The impacts of climate change on water resources and agriculture in China *Nature* 467 43–51
- Pinder R W, Adams P J and Pandis S N 2007 Ammonia Emission Controls as a Cost-Effective Strategy for Reducing Atmospheric Particulate Matter in the Eastern United States *Environ. Sci. Technol.* **41** 380–6

Qin Y, Wagner F, Scovronick N, Peng W, Yang J, Zhu T, Smith K R and Mauzerall D L 2017 Air quality, health, and climate implications of China's synthetic natural gas development *Proceedings of the National Academy of Sciences* **114** 4887–92

Schiermeier Q 2009 Prices plummet on carbon market Nature 457 365

- Seinfeld J H and Pandis S N 2016 Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (John Wiley & Sons)
- Shen H 2014 Nitrogen fertilizer amount reduction experiments for open-air vegetables (in Chinese) *Shanghai Vegetables* **3** 75–6
- Strokal M, Ma L, Bai Z, Luan S, Kroeze C, Oenema O, Velthof G and Zhang F 2016 Alarming nutrient pollution of Chinese rivers as a result of agricultural transitions *Environmental Research Letters* 11 024014
- Sun B, Zhang L, Yang L, Zhang F, Norse D and Zhu Z 2012 Agricultural non-point source pollution in China: causes and mitigation measures *Ambio* **41** 370–9
- Sun Y L, Wang Z F, Du W, Zhang Q, Wang Q Q, Fu P Q, Pan X L, Li J, Jayne J and Worsnop D
 R 2015 Long-term real-time measurements of aerosol particle composition in Beijing,
 China: seasonal variations, meteorological effects, and source analysis *Atmospheric Chemistry and Physics* 15 10149–65
- Trenkel M E 2010 *Slow- and controlled-release and stabilized fertilizers : an option for enhancing nutrient use efficiency in agriculture* (Paris: IFA, International fertilizer industry Association)
- US Embassy at Beijing 2012 PM2.5 daily measurement at U.S. embassy in Beijing (available at http://www.stateair.net/web/historical/1/1.html)

- Wang H L, Qiao L P, Lou S R, Zhou M, Ding A J, Huang H Y, Chen J M, Wang Q, Tao S K, Chen C H, Li L and Huang C 2016 Chemical composition of PM2.5 and meteorological impact among three years in urban Shanghai, China *Journal of Cleaner Production* 112 1302–11
- Wang S X, Xing J, Jang C R, Zhu Y, Fu J S and Hao J M 2011 Impact Assessment of Ammonia Emissions on Inorganic Aerosols in East China Using Response Surface Modeling Technique Environ. Sci. Technol. 45 9293–300
- Wang X, Yanan Tong, Fen Liu and Zuoping Zhao 2013 Evaluation of the situation of fertilization in apple fields in Shaanxi province (in Chinese) *Plant Nutrition and Fertilizer Science* 19 206–13
- Warner J X, Wei Z, Strow L L, Dickerson R R and Nowak J B 2016 The global tropospheric ammonia distribution as seen in the 13-year AIRS measurement record *Atmospheric Chemistry and Physics* **16** 5467–79
- Wu L 2014 Nitrogen fertilizer demand and greenhouse gas mitigation potential under nitrogen limiting conditions for Chinese agriculture production (doctoral thesis) *Department of plant nutrition, China Agricultural University*
- Wu L, Chen X, Cui Z, Wang G and Zhang W 2015a Improving nitrogen management via a regional management plan for Chinese rice production *Environ. Res. Lett.* **10** 095011
- Wu L, Chen X, Cui Z, Zhang W and Zhang F 2014 Establishing a Regional Nitrogen
 Management Approach to Mitigate Greenhouse Gas Emission Intensity from Intensive
 Smallholder Maize Production *PLOS ONE* 9 e98481

- Wu S-P, Schwab J, Yang B-Y, Zheng A and Yuan C-S 2015b Two-Years PM2.5 Observations at Four Urban Sites along the Coast of Southeastern China *Aerosol and Air Quality Research* 15 1799–812
- Xia L, Lam S K, Chen D, Wang J, Tang Q and Yan X 2017 Can knowledge-based N management produce more staple grain with lower greenhouse gas emission and reactive nitrogen pollution? A meta-analysis *Global Change Biology* **23** 1917–25
- Xia L, Ti C, Li B, Xia Y and Yan X 2016 Greenhouse gas emissions and reactive nitrogen releases during the life-cycles of staple food production in China and their mitigation potential *Science of The Total Environment* **556** 116–25
- Zhang F, Cheng H, Wang Z, Lv X, Zhu Z, Zhang G and Wang X 2014 Fine particles (PM2.5) at a CAWNET background site in Central China: Chemical compositions, seasonal variations and regional pollution events *Atmospheric Environment* **86** 193–202
- Zhang L, Chen Y, Zhao Y, Henze D K, Zhu L, Song Y, Paulot F, Liu X, Pan Y and Lin Y 2018 Agricultural ammonia emissions in China: reconciling bottom-up and top-down estimates *Atmos. Chem. Phys.* 18 339
- Zhang W, Cao G, Li X, Zhang H, Wang C, Liu Q, Chen X, Cui Z, Shen J and Jiang R 2016 Closing yield gaps in China by empowering smallholder farmers *Nature* **537** 671–4
- Zhang W, Dou Z, He P, Ju X-T, Powlson D, Chadwick D, Norse D, Lu Y-L, Zhang Y and Wu L 2013 New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China Proceedings of the National Academy of Sciences 110 8375–80
- Zhang X, Davidson E A, Mauzerall D L, Searchinger T D, Dumas P and Shen Y 2015 Managing nitrogen for sustainable development *Nature* **528** 51–9

- Zhao S, Weifeng Zhang, Yuanmao Jiang and Fusuo Zhang 2017a Factors leading to excessive nitrogen fertilization on apple in the Loess Plateau *Journal of Plant Nutrition and Fertilizer* 23 484–91
- Zhao Y, Zhang L, Chen Y, Liu X, Xu W, Pan Y and Duan L 2017b Atmospheric nitrogen deposition to China: A model analysis on nitrogen budget and critical load exceedance *Atmospheric environment* 153 32–40
- Zheng B, Tong D, Li M, Liu F, Hong C, Geng G, Li H, Li X, Peng L and Qi J 2018 Trends in China's anthropogenic emissions since 2010 as the consequence of clean air actions *Atmos. Chem. Phys.* 18 14095–111

Chapter 4: Environmental and Dietary Health Co-benefits and Tradeoffs in Potential Future Chinese Dietary Choices

1. Introduction

China needs to address increasing environmental damage from agriculture. China's very high nitrogen (N) fertilizer use and poor manure handling has resulted in substantial N loss to the environment. For example, ammonia emissions (NH₃) that are ~5 times of that in the U.S.(Hoesly et al., 2018), contributing ~10%-18% to health-damaging particulate air pollution (PM_{2.5})(Wang et al., 2011a). Direct emissions of greenhouse gas (GHG), including nitrous oxide from fertilizer application and methane from livestock husbandry, account for 8% of the country's total GHG emissions. With indirect GHG emissions (land use change, food processing and transportation) included, agriculture is responsible for 18% of national GHGs(Chen and Zhang, 2010; Vermeulen et al., 2012). Agriculture withdraws 64% of surface and ground water and occupied 72% of land(FAOSTAT, 2015).

Demand-side dietary strategies can help mitigate agricultural environmental damage, yet recent dietary transitions in China and in most places of the world have not followed a proenvironmental path. Diets have shifted towards food products such as meat, fruits and vegetables which are more resource- and emission- intensive than stable crops(Eshel et al., 2014). As a result, environmental burdens posed by agriculture have increased (Figure 1). Despite increased environmental burden, recent dietary transitions also overall have worsened dietary health. Although China's undernourishment rate has dropped, overweight, obesity and premature deaths attributable to dietary risks have surged in the past decade. As of 2017, more than ¼ of global premature deaths attributable to dietary risks, i.e. 3.4 million deaths, happened in China. Diet-related deaths in China in 2017 is 2 times of that back in 1990. These dietary premature deaths (mainly heart disease, stroke, Type II diabetes and site-specific cancers) are attributable to risk factors including low intake of whole grains, nuts, seeds, fruits and vegetables and high intake of sodium and red meat(World Cancer Research Fund/American Institute for Cancer Research, 2018).

Previous studies have examined impacts of dietary changes in European, U.S. and China on the environment (Westhoek et al., 2014; Heller and Keoleian, 2015; Song et al., 2015; Behrens et al., 2017; Lei and Shimokawa, 2017), in some cases, exploring dietary change strategies that can bring simultaneous benefits for dietary health and GHG mitigation(Friel et al., 2009; Lock et al., 2010; Song et al., 2017; Springmann et al., 2018). To our knowledge, there has not yet been study evaluating effectiveness of dietary changes for reducing PM_{2.5} air pollution through reducing emissions of ammonia (NH₃), although NH₃ emissions are mainly emitted from agriculture and have been found to limit formation of inorganic PM_{2.5} in winter in the eastern U.S.(Pinder et al., 2007), Europe (Banzhaf et al., 2013; Megaritis et al., 2013), and China' s Pearl River Delta, and even in summer in Europe(Wang et al., 2011b). In addition, several Chinese governmental action plans (e.g. the "2018 Action Plan for Fighting for Agricultural Pollution"(Ministry of Agriculture and Ministry of Ecology and Environnment of P.R. China, 2018), "Three-year Action Plan Fighting for a Blue Sky" (DRC, 2018), "Citizen Nutrition Plan

for 2017-2030"(State councile of P.R. China, 2017), etc) exist but tackle agricultural environmental pollution and nutrition issues separately. For the way forward, it is crucial to identify possible dietary choices that can reverse current tendency of diets being increasingly harmful for the environment and health. This can better inform China's air pollution, climate change, agricultural nitrogen use and nutrition policies, and help realize multiple Sustainable Developmental Goals (including Zero Hunger, Good Health and Well-Being, Responsible Consumption and Production and Climate Action).

In this study, we draw lessons from historical evolvement of Chinese diets as well as associated dietary and environmental consequences and analyze four potential future Chinese diets for their impacts on health and the environment. We construct future dietary scenarios that represent worst/best cases for dietary health and environment. When estimating baselined Chinese diets, we utilize China Health and Nutrition Survey (Popkin et al., 2009; Carolina Population Center at University of North Carolina at Chapel Hill and Chinese Center for Disease Control and Prevention, 2011; He et al., 2018), which is more representative of people's actual food intake, compared to national statistics of food consumption, which suffers from over-reporting especially regarding livestock products(Zhong, 1997; Fuller et al., 2000; Ma et al., 2004) and other errors during the surveying process conducted by local bureaucracies (Peng et al., 2019). We evaluate environmental impacts including NH₃ emissions, PM_{2.5} air pollution, consumptionbased GHG emissions, total water footprint (TWF), land appropriation (LA), and land use change carbon emissions (LUCC) resulting from growing the consumed food. We evaluate health impacts of changes in PM2.5 air quality triggered by changes in food demand thus production, as well as dietary health impacts.

2. Results

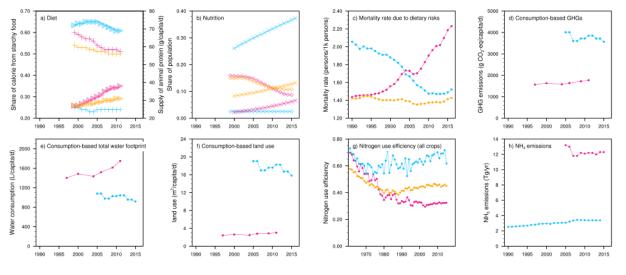

2.1 A historical perspective: Chinese diets, health & environment

Fig. 1 provides an overview of evolving Chinese diets, dietary health and major food-related environmental burdens during the last decade, in the context of the global and U.S. trends (as we include a future scenario of U.S. diet capturing potential westernization of Chinese diets). Structural changes of diets in China have occurred at rates more rapid than that globally and in the U.S..

In the past decade, China has experienced dietary shifts towards more animal products, associated with decreased undernourishment but increased obesity and dietary related premature deaths (Fig. 1). During 1998-2016, per capita meat protein supply in China have increased by 46%, at a rate much more rapid than global rates. The share of starchy food in total calories dropped from 60% in 1998 to 50% in 2011, approaching the global level. Undernourishment in China has dropped from 16% in 1999 to 9% in 2016. In contrast, obesity rates have surged from 2% in 2002 to 7% in 2012(Bygbjerg, 2012; National Health and Family Planning Commission, 2015; World Bank, 2017). China's all-cause mortality rates from dietary risks have increased from 0.14% in 1990 to 0.22% in 2017, in comparison to a global stabilization around 0.14%.

All indicators of agricultural environmental damage have worsened during this time period, except for NH₃ emissions. Food consumption-based per capita life-cycle GHG emissions increased by 13% during 1997-2011, which have been less than ½ of that in the U.S.. National total food-related GHGs have increased from 700Mt in 1997 to 842 Mt in 2011, accounting for 15% of total national GHGs in 1997 and 7% in 2011(Climate Action Tracker for China (available at https://climateactiontracker.org/countries/china/),). Food consumption-based per capita total water footprint (TWP) also has increased by 25% during 1997-2011, much higher than that in the U.S.. National total food-related water withdrawal accounted for only 22% of the country's renewable internal freshwater back in 1997 but as much as 30% in 2011(The World Bank DataBank(available at

https://data.worldbank.org/indicator/ER.H2O.INTR.K3?locations=CN),). Food consumptionbased per capita land use has increased by 50%. Nitrogen use efficiency (NUE) for all crops in China has decreased from 70% in 1960 to 35% in 2012, in comparison to crop NUE globally that also declined but stabilized at around 50%. Low NUE indicates large fraction of agricultural N lost to the environment as nitrate (NO₃—leaching and runoff) causing eutrophication, N₂O emission causing climate change, and PM_{2.5}-contributing NH₃ emissions which have been 12Tg/yr.

China • US • Global > Supply of protein from animal sources + Share of calories from starchy food <> Undernourishment × Obesity • Others

Fig. 1 Historical trends of diet and associated health and environmental implications in China, the United States (US) and the globe. a) Diet: Share of calories from starchy food (including cereals, roots and tubers, left) and supply of protein from animal sources (right) (g/capita/day), adopted from FAO Food Security Indicators ^{17–19}; b) Nutrition: rates of undernourishment and obesity, adopted from FAO Food Security Indicators (FAOSTAT, 2015); c) Mortality rate due to dietary risks (persons/1000 persons, adopted from Global Burden of Diseases 2017 Study (Institute for Health Metrics and Evaluation (IHME), 2018); d) Food consumption-based greenhouse gas emissions (g CO_2 -eq/capita/day) adopted from ; e) Food consumption-based total water footprint (TWF) (L/capita/day) adopted from (IMPLAN's regional economic research data for the United States (available at http://www.implan.com/data/);; He et al., 2019); f) Food consumption-based land use (m²/capita/day) adopted from (IMPLAN's regional economic research data for the United States (available at http://www.implan.com/data/),; He et al., 2019); g) Nitrogen use efficiency: average for all crops and h) NH₃ emissions (Tg/yr) adopted from (Zhang et al., 2018, p. 3; Hoesly et al., 2018). Colors indicate country/globe; Shapes indicate characteristics (see legend above).

2.2 Baseline diet and four future dietary scenarios:

Changing Chinese dietary choices have adversely impacted health and the environment in China, for the way forward, it is critical to identify possible consumer-side dietary change strategies that can benefit public health and environmental protection. We model individuals' (see Methods) choices of food among ~4000 Chinese food products and estimate national food consumption under *Baseline* condition and four dietary scenarios, in order to analyze their implications for health and the environment:

Baseline diet describes Chinese diets in 2011, constructed by mapping the latest China Health and Nutrition Survey (CHNS) for 2011(Carolina Population Center at University of North Carolina at Chapel Hill and Chinese Center for Disease Control and Prevention, 2011) to national population based on eating habits and socioeconomic status. Supplemental Appendix Table S1 and S2 provides *Baseline* per capita (national total consumption divided by national population) daily food intake and consumption (consumption = intake + food loss (food loss ratios provided in Table S3)) without and with standardization of food items. The standardization process (See Supplemental Appendix materials and Table S4) defines a reference food item within a specific major food group with certain content of nutrients and then converts consumption of other subgroup food items to consumption of this referenced 'standard' food item.

US Diet describes that Chinese intake of nutrients will match those included in a typical US diet, through choosing among food products available on the Chinese market. Nutrient intake of the U.S. people is from the U.S. Centers for Disease Control and Prevention's National Health and Nutrition Examination Survey (NHNES)(Centers for Disease Control and Prevention,) during 2005-2016.

Soy Replaces Red Meat (SRRM) describes all red meat (goat, sheep, beef and pork) consumption in *Baseline* diet is removed with loss of protein compensated by soybean

products. This scenario potentially can benefit both environmental and health by reducing red meat production/consumption(Melina et al., 2016).

Chinese Dietary Guideline Diet (CDG) describes that Chinese follow a nutritionally healthy diet, i.e. Balanced Dietary Patterns (recommended by the Chinese government's '2016 Chinese Dietary Guideline') based on their daily activity levels. The recommendations of food intake are by major food groups (e.g. fruits, leafy vegetables, whole grains) with intake of each sub-group food items not specified (e.g. apple v.s. banana, etc). We assume that people's preferences among various sub-group food items are the same as that in *Baseline*.

Lancet-EAT Dietary Recommendations (EAT) describes that Chinese adults (>20yrs old) follow a nutritionally healthy and environmentally sustainable diet recommended by the EAT-Lancet Commission(Willett et al., 2019). Diets of those below <20 yrs old are the same as *Baseline*.

Supplemental Appendix Table S5 and Figure S1 and Fig. 2 provides national food intake and consumption in *Baseline* and dietary scenarios. Food loss during production and consumption processes in dietary scenarios are estimated using *Baseline* loss ratios.

Supplemental Appendix Table S6 provides national food production in dietary scenarios as a ratio of *Baseline*. We estimate production by assuming production of a food product will scale up/down following the same ratio that consumption has changed, except for crops that are used

for animal feed (soybean, vegetables, maize, wheat and rice). Changes in production of these crops reflect both changes in human consumption and changes in production for animal feed. We also assume that net import of food (e.g. soybean) as a share of total domestic supply (Supplemental Appendix Table S7) in dietary scenarios is the same as that in *Baseline*.

2.3 Environmental Implications:

2.3.1 NH₃ emissions. Two future scenarios, *US* and *CDG* diets significantly increase NH₃ emissions in China. Baseline NH₃ emissions are 13.9 Tg NH₃/yr, with 5.3 Tg NH₃ from nitrogen fertilizer application and 6.8 Tg NH₃ from manure management (Table 1). *US* diet results in NH₃ emissions of 40.2 Tg (~290% of that in *Baseline*) because of its high consumption of fruits, poultry, dairy products and nuts which are respectively 4, 3, 16 and 8 times of consumption of *Baseline* (Fig. 2). *CDG* diet results in NH₃ emissions of 29.8 Tg (~220% of that in *Baseline*) because of its high consumption of fruits, vegetables, eggs, dairy products, aquatic products, soy products, root vegetables and nuts which are respectively 10, 2, 2, 16, 5, 2, 4 and 32 times of *Baseline* (Fig. 2) despite its low consumption of red meat, poultry and grain which is respectively ½, 4/5 and 3/5 of that in *Baseline*.

Two future scenarios, *SRRM* and *EAT* diets significantly decrease NH₃ emissions in China. *SRRM* diet results in NH₃ emissions of 8.7 Tg (~63% of that in *Baseline*) because it removes Nintensive production of pigs, beef cattle and goat. Associated animal feed production also decreased, e.g. maize (46% decrease), wheat (28% decrease) and rice (6% decrease). Locally NH₃ emission reduction achieved through shifting to *SRRM* can be as high as 20% in eastern China and 60% in northeastern, middle and western China where animal density is high (Fig. 2). *EAT* diet results in NH₃ emissions of 11.4 Tg (72% of that in *Baseline*). Although *EAT* requires significant (moderate) increase consumption of fruits, soy products and nuts (vegetables and root vegetables) compared to *Baseline*, it also significantly cuts consumption of red meat (by 77%), poultry (by 33%) and eggs (62%) (Fig. 2 and Table S5). Locally NH₃ emission reduction can be as high as 60%, with spots in western China, lower basin of Yantze River and eastern China experience increased NH₃ emissions in January and July (Fig. 3).

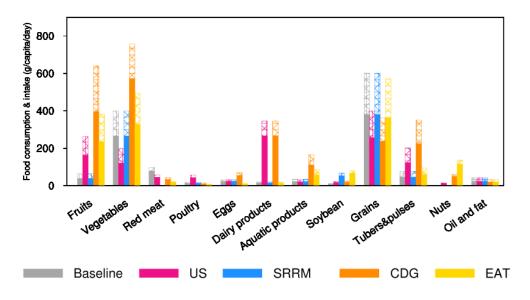


Fig. 2. Food intake (solid bars; fresh food weight with non-edible portion included), food loss (bars with filled patterns; including food loss during production, processing and consumption) and food consumption (solid bars plus bars with filled patterns) by food type for *Baseline* Chinese diet (estimated from the latest China Health and Nutrition Survey (CHNS) for 2011(Carolina Population Center at University of North Carolina at Chapel Hill and Chinese Center for Disease Control and Prevention, 2011)) and four future dietary change scenarios (*US*: typical 2011 US diet; *Soy Replaces Red Meat (SRRM)*: All red meat replaced with soy products; *Chinese Dietary Guideline (CDG)*: Recommendation of Chinese dietary guidelines; *Lancet-EAT Dietary Recommendations (EAT)*: healthy and sustainable diet recommended by Lancet EAT project). The unit is g/capita/day. Definitions of vegetables and fruits are based on Chinese habits, e.g. cucumber, tomato, loofah and zucchini are categorized as vegetables; watermelon and muskmelon as fruits. All scenarios have daily per capita calorie intake of around 1800-1900 kcal.

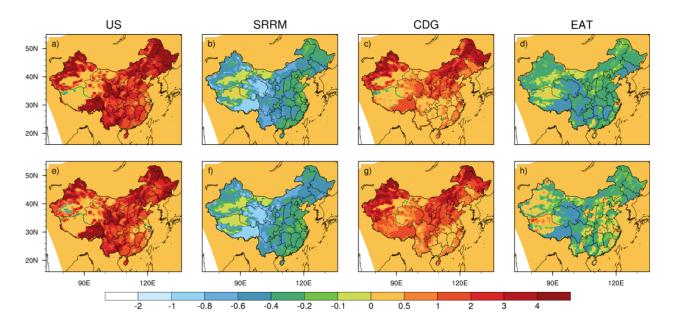


Fig. 3. Changes of NH₃ emissions in dietary change scenarios compared to *Baseline* NH₃ emissions divided by *Baseline* NH₃ emissions (scenario-*Baseline/Baseline*) in (a-d) January and (e-h)) July of the year 2012. The dietary change scenarios including US (a, e), SRRM (b, f), CDG (c, g), and EAT (d, h) are described in the text.

2.3.2 $PM_{2.5}$ air quality. Evaluation of WRF-Chem's simulation of NH₃ and speciated PM_{2.5} concentrations and meteorology against satellite and ground-based observations can be found in Supplemental Appendix Figures S2-S8 and Table S8-S10 and Guo et al (2019).

Heavily increased (decreased) NH_3 emissions in the US and CDG (SRRM and EAT) scenarios increases (decreases) $PM_{2.5}$ air pollution in China. The US and CDG scenarios increase

secondary inorganic aerosols (SIA, secondary inorganic fraction of $PM_{2.5}$ including sulfate, nitrate, and ammonium) concentrations nationwide and by up to 10 μ g/m³ locally, e.g. in wintertime eastern China and summertime North China Plain.

EAT and *SRRM* diets achieve comparable SIA reduction in winter (up to 12 μ g/m³ reduction in middle China). In summer, *EAT* generates slightly smaller SIA reduction than SRRM, e.g. 6-10 μ g/m³ in *EAT* vs. 10-12 μ g/m³ in *SRRM* over the North China Plain. However, *EAT* reduces annual NH₃ emissions by only 18% (compared to 37% achieved by *SRRM*). This indicates that SIA production in summertime eastern China is not limited by NH₃ (but NO_x and SO₂), thus the differences between changes in NH₃ emissions achieved in *EAT* and *SRRM* does not heavily impact SIA reduction achieved in these two scenarios.

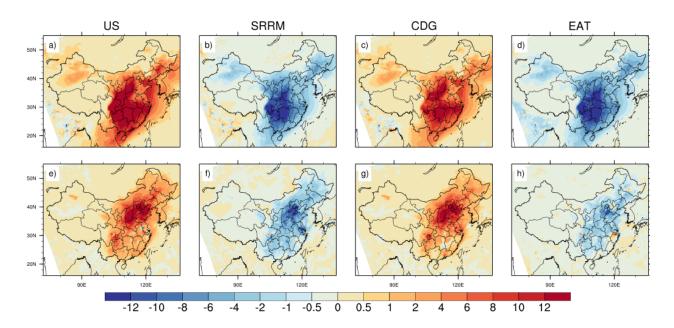
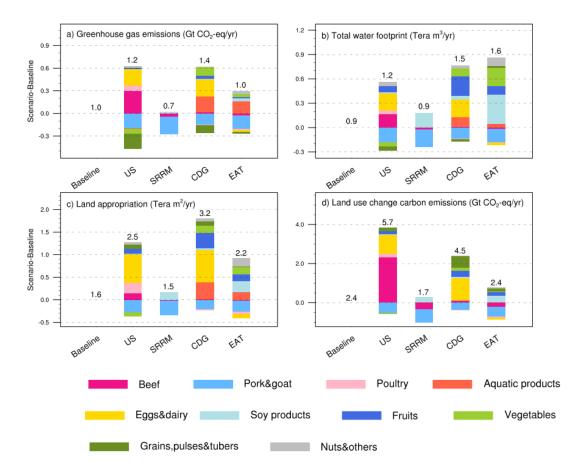



Fig. 4. Changes in ground-level concentrations of secondary inorganic aerosol (SIA) (in unit of μ g/m³, negative values mean reductions) in dietary change scenarios compared to the *Baseline* simulation, in (a-d) January and (e-h) July of 2012.

2.3.3 Other Environmental Impacts. Implications of dietary changes for consumption-based lifecycle GHGs, total water footprint, land appropriation and land-use change carbon emissions are presented in Fig. 5 (Supplemental Appendix Table S11-S14). Shifting from *Baseline* to three scenarios, *US, CDG* and *EAT,* worsens multiple environmental impacts, i.e. respectively increases GHG emissions by 20%, 40% and 0, increases TWF by 33%, 67% and 78%, increases LA by 56%, 100% and 38%, and increases LUCC emissions by 138%, 88% and 0 (Table 1). The only scenario that reduces these environmental impacts are *SRRM* where GHGs, TWF, LA and LUCC are respectively reduced by 30%, 0, 6% and 29% compared to *Baseline*.

Changes in consumption of meat, eggs/dairy products, and vegetables are major drivers of changes in environmental burden (Fig. 5). The US scenario consumes less pork (more poultry and beef) than baseline and results in increased GHGs and LUCC but decreased LA. Other scenarios all consume less red meat than baseline thus mitigate all environmental impacts associated with red meat consumption. High consumption of eggs/dairy, poultry and aquatic products in US and CDG scenarios resulting significant increases of environmental burdens. Increased soybean consumption in SRRM and EAT scenarios result in large TWF and LA requirements, yet negligible GHGs and LUCC impacts. High vegetable consumption in US, CDG and EAT scenario worsens TWF, LA and LUCC.

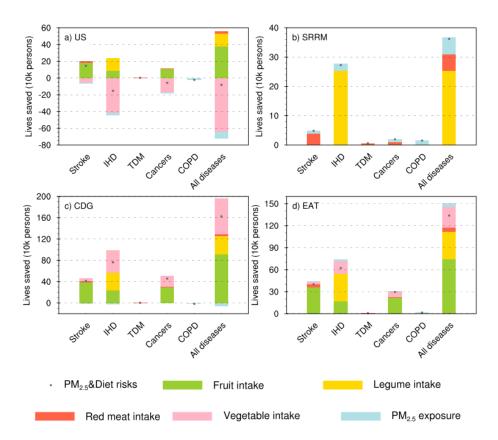


Fig. 5 Environmental impacts of food consumption in China in baseline and four dietary change scenarios. The bars represent changes of metrics when shifting from baseline to each dietary scenario. Numbers above each bar show the absolute value of the metric. a) Life-cycle food consumption-based GHG emissions emitted during food production and transportation (Giga tonne CO₂-eq/yr); b) Food consumption-based total water footprint (TWF) (Tera m³/yr); c) Food consumption-based land appropriation (Tera m²/yr); d) Land-use change carbon emissions indicating the opportunity cost of land (Giga tonne CO₂-eq/yr). For any food produced outside China and later imported for Chinese consumption, their environmental impacts are accounted by assuming emission factors during production/transportation are the same as those produced within China for indicator a), b) and c). Colors denote impacts from changes in consumption of different food types.

2.4 Health Implications. US and CDG respectively increase $PM_{2.5}$ related premature mortalities by 0.08 million and 0.06 million. Instead, SRRM and EAT respectively reduce premature mortality due to exposure to $PM_{2.5}$ by 0.057 and 0.055 million.

All scenarios generate significant dietary health benefits ranging from 0.02-1.4 million avoided premature mortalities. *CDG* generates the largest dietary benefit of 1.4 million avoided deaths, followed by *EAT* of 1.1 million. In both cases increased fruit intake acts as the major driver followed by increased vegetable intake. *SRRM* generates dietary benefits of 0.36 million avoided deaths with 0.056 million from reduced red meat consumption and 0.25 million from increased legume intake. *US* diet generates the smallest dietary health benefits of 0.02 million avoided premature deaths due to mixed effects of increased fruit intake (saves 0.38 million), reduced red meat intake (saves 0.02 million) and reduced vegetable intake (increases 0.64 million).

Combining $PM_{2.5}$ and dietary risk factors, *CDG* and *EAT* achieve public health benefits of reducing respectively 1.6 and 1.3 million premature deaths, followed by *SRRM* (0.29 million). The *US* case increases premature deaths by 0.08 million.

Fig. 6 Lives saved (10000 persons) from five diseases in four dietary change scenarios compared to baseline scenario, due to changes in food consumption and changes in exposure to PM_{2.5} air pollution. Colors of bars indicate risk factors and grey dots denote all individual risks combined. End-point diseases considered include stroke, ischemic heart disease (IHD), Type II Diabetes (TDM), cancers (including colon and rectum cancers, lung cancer and other cancers, chronic obstructive pulmonary disease (COPD), and all these diseases.

 Table 1. Environmental and health implications of Chinese dietary shifts from 2011 Baseline diet

 towards four potential future diets. For each metric, both Baseline values and changes in dietary

 change scenario, scenario-Baseline, are provided. Negative values mean mitigation of environmental

 impacts and lives saved.

Metric			Baseline	Scenario-baseline				
			value	US	SRRM	CDG	EAT	
Environment	NH ₃ emissions	Total	13.9	26.3	-5.1	15.8	-2.5	
	(Tg/yr)	Fertilizer	5.3	0.8	-1.1	4.8	1.4	
		Manure	6.8	25.5	-4.1	11.1	-3.8	
	GHG emissions (1	0.2	-0.3	0.4	0.0		
	Total Water Foot	0.9	0.3	0.0	0.6	0.7		
	m³/yr)							
	Land appropriation	1.6	0.9	-0.1	1.6	0.6		
	Land-use change	2.4	3.3	-0.7	2.1	0.0		
	emissions (Gt CO	D_2 -eq)						
Premature	Exposure to PM ₂	N/A	7.9	-5.7	6	-5.5		
mortalities (10k	Four dietary risks	N/A	-2.0	-29.3	-136.4	-110.9		
persons)	Fruit intake	N/A	-37.8	0	-91.3	-74.2		
	Legume intake	N/A	-15.4	-25.3	-33.6	-37.6		
	Red meat intake	N/A	-2.5	-5.6	-3.4	-5.3		
	Vegetable intake	N/A	64.1	0	-68.5	-28.4		
	PM _{2.5} and dietary	N/A	8.11	-36.2	-162.6	-133.9		

3. Conclusion

Food security in China achieved through increasing N fertilizer application and intensive resource use, as well as recent dietary shifts towards more animal products have resulted in rising environmental and dietary health concerns. These include increasing GHGs, land and water use, as well as increasing obesity, overweight and premature deaths attributable to dietary risks. It is critical that policies can shape future dietary pathways towards that are both beneficial to public health and the environment. Experiences from more developed regions such as the U.S.(Wang et al., 2014; Rehm et al., 2016) and Europe(Novaković et al., 2014) indicate that as society further develops, high-income groups will shift towards balanced diets.

Here we analyze the health and environmental co-benefits and trade-offs associated with dietary shifts from 2011 *Baseline* Chinese diets towards four potential future dietary choices: *U.S. diet (US), Soy Replaces Red Meat (SRRM,* red meat protein replaced by soy bean protein), *Chinese Dietary Guideline Diet (CDG)* and *Lancet-EAT Dietary Recommendations (EAT,* non-political dietary recommendations). For the first time we evaluate impacts of dietary changes on NH₃ emissions and PM_{2.5} air quality, as well as a full range of environmental (GHGs, water, and land) and health implications (through exposure to PM_{2.5} and through intake of nutrients).

Our analysis for China indicates that healthy-eating does not necessarily benefit the environment and multiple environmental impacts may not change in the same direction. All four dietary scenarios reduce diet-related premature deaths by 0.02-1.4 million, yet two scenarios, *US* and *CDG* degrade all environmental impacts examined and one scenario *EAT* delivers mixed impacts. *EAT* increases water and land use, yet mitigates NH₃ emissions and PM_{2.5} air pollution and keeps GHG emissions unchanged.

We find opportunities for substantially improving dietary health, i.e. shifting from *Baseline* diet towards all dietary scenarios, especially towards the two balanced diet scenarios. The two balanced diets, *CDG* and *EAT*, each avoid 1.4 and 1.1 million premature deaths attributable to the four dietary risks considered. Instead, *US* and *SRRM* respectively only avoid 0.02 and 0.3 million premature deaths. Dietary health benefits can be gained only if consumption of fruits, vegetables, nuts and whole grains increase and consumption of red meat decreases.

We also find opportunities for mitigating $PM_{2.5}$ air pollution, i.e. shifting from *Baseline* diet towards *SRRM* and *EAT* diets. *SRRM* and *EAT* respectively reduce NH₃ emissions by 37% and 18% thus decrease $PM_{2.5}$ concentrations by up to 8 ug/m³, avoiding ~0.0057 and 0.0055 million premature deaths due to exposure to $PM_{2.5}$. To note, the $PM_{2.5}$ -related health benefits are rather small compared to dietary health benefits.

We also find opportunities for addressing climate change and natural resource conservation, i.e., shifting towards *SRRM* diet. *SRRM* reduces GHGs by 30%, LA by 6% and LUCC by 29%. In other dietary scenarios, land appropriation, GHG and LUCC emissions increase mainly driven by increased dairy products and red meat consumption. Instead, increased total water footprint is mainly driven by increased vegetables, soybean, and dairy consumption.

Policymaking in the real world need to optimize dietary health and all environmental objectives. Although *SRRM* provides a win-win strategy for health and the environment, it remains a choice too radical for consumers to immediately accept. *EAT* is a no-regret choice, it delivers dietary health benefits that are ~3.7 times of *SRRM*, mitigates China's air pollution by up to 8 ug/m³, keeps GHG emissions unchanged, although slightly increases land use and water use. *CDG* is not as good as *EAT* since it worsens China's PM_{2.5}, largely due to the very high dairy consumption requirement. However, *CDG* presents a better option than the *US* diet. In the *US* diet, dietary health benefits (from increased fruit and legume consumption and decreased red meat consumption) are largely offset by increased health risks from decreased vegetable consumption and worsened air quality. The high beef consumption and high dairy consumption in *US* diet is detrimental for all environment impacts examined in this study. Rapid westernization of Chinese diets in the past two decades needs to be taken with caution.

National dietary guidelines provide important references for the general public to improve their diets, our analysis indicates great opportunities for Chinese dietary guideline to improve. These include reducing recommended share of red meat within total meat, as well as adjust recommended milk intake levels. In the past, national dietary guidelines have solely considered the nutrition aspects of diets, however, for the way forward taking environmental footprints into consideration can be increasingly important. Given multiple food choices can fulfill one specific dietary purpose, there is definitely room to minimize environmental impacts while keeping micro-nutrients supply unchanged.

Nutrition, compared to air pollution, matters more to overall public health, although individuals can choose their diets but not clean air based on their wish. The significant dietary health benefits achieved through balanced diets are significantly larger than health benefits of improved air quality achieved through reduced consumption and production of nitrogen-intensive products in *EAT* and *SRRM*. This demonstrates the need to enhance public education of nutrition, as well as the need of adopting production-side mitigation technologies to mitigate adverse environmental impacts associated with balanced diets. Guo et al (2019) shows that cost-effective improved N management can reduce NH₃ emission by up to 34% nationwide. This allows some space for increasing production of fruits and vegetables to gain some dietary benefits while keeping NH₃ emission and PM_{2.5} air pollution unchanged.

There's also a need for better understanding the gaps between baseline diets indicated by dietary surveys and macro-level statistics to better understand people's actual diets. In this study, we utilized Chinese nutritional surveys to construct baseline Chinese diets because of macro-level food consumption data for China obtained from Chinese national statistics suffer from 'human errors' (Supplemental Appendix) and Chinese nutritional survey data realistically captures dietary preferences of people with different socioeconomic status and eating habits. We have noted that for many countries in the world the macro-level food consumption data has a higher estimation of livestock product intake and a lower estimation of grain intake than dietary surveys(Del Gobbo et al., 2015). For China, macro-level data indicates substantially higher intake of vegetables and fruits than the data we used and the Global Dietary Database (Supplemental Appendix Table S15). Although dietary surveys can be vulnerable to underreporting, which has been shown especially serious among population with severe obesity issues,

143

macro food consumption data suffers from aggregation of errors during surveying food production, export/import, other utilizations and stock, etc. More research is needed to improve the quality of baseline diet data, since baseline diet is critical for understanding how far people are from a healthy and sustainable diet.

Overall our analysis indicates opportunities with changing diets to improve dietary health and environmental objectives including air pollution and climate change mitigation, and water and land use reduction.

4. Methods

4.1 *Baseline* diet and dietary scenarios. *Baseline* diet is from China Health and Nutrition Survey (CHNS) for 2011(Carolina Population Center at University of North Carolina at Chapel Hill and Chinese Center for Disease Control and Prevention, 2011) which sampled 10000 random people in twelve provinces with distinct socioeconomic and demographic backgrounds and tracked their food intake (types and weights) in three consecutive days. We then match diets of individuals outside the sample areas to those within based on socioeconomic conditions (indicated by income) and eating habits (indicated by province of residence), using demographic information of CHNS samples and of all Chinese provided by China Family Panel Studies (CFPS).

U.S. Diet is estimated using intake of major nutrients reported by U.S. Centers for Disease Control and Prevention's National Health and Nutrition Examination Survey (NHNES)(Centers for DIsease Control and Prevention,) during 2005-2016 period. *Soy Replaces Red Meat (SRRM)* describes all red meat (goat, sheep, beef and pork) consumption is removed and loss of animal protein is fulfilled by increased intake of soybean products. This scenario demonstrates a situation where potentially environmental and health co-benefits can be achieved, since reduced livestock production and corresponding animal feed production will lower environmental damage and reduced red meat intake will reduce health risks(Melina et al., 2016).

Chinese Nutritional Guideline Diet (CNG) is based on China's Balanced Dietary Patterns from 2016 Chinese Dietary Guideline, which includes intake amount of 14 food groups for people at 11 energy requirement levels. We determine the exact combination of foods in sub- food groups (the Chinese Food Content Tables, 2002 & 2004 version) by randomizing individual's choices within each food group for 10000 times through Monte-Carlo simulations while keeping people's dietary preferences within each food group the same as their baseline diets indicated by 2011 CHNS survey.

Lancet-EAT Nutritional Recommendations (EAT) is based on diets provided by EAT-Lancet Commission(Willett et al., 2019), which applies universally to all adults regardless of age and country of origin.

4.2 Estimates of agricultural production. *Baseline* agricultural production for the year 2012 is obtained from Chinese Statistical Yearbook. Production of one food type in dietary scenarios are estimated by scaling *Baseline* with factors equal to the ratio of food consumption in dietary scenarios to *Baseline* consumption. This rule applies to all agricultural products except for animal feed crops (maize, wheat, rice and soybean). Changes of animal feed crop production should reflect both changes in human food demand and changes in animal feed demand as a result of changed animal production (see Supplemental Appendix).

4.3 NH₃ emissions. We utilize an NH₃ emission model to obtain baseline NH₃ emissions and NH₃ emissions in dietary change scenarios. The NH₃ emission model we use was published in Zhang et al (Zhang et al., 2018) and is the most updated and best available bottom-up high-resolution NH₃ emission estimation tool for China.

4.4 Air quality simulation. We use the Weather Research and Forecasting – Chemistry (WRF-Chem) model v3.6.1, an online-coupled meteorology-chemistry model, to simulate PM_{2.5} formation in baseline and scenarios at 27km by 27 km resolution for January and July of 2012 (after six days of spin-up). Details of model set-up are provided in Supplementary Appendix.

4.5 Estimate consumption-based lifecycle GHG emissions, water, land use and land-use carbon emissions. For baseline and each dietary scenario, GHG emissions are estimated using 300 lifecycle assessment (LCA) covering the emissions from cradle to farm gate worldwide following the methodology in He et al (2019)(He et al., 2019). Total water footprints are estimated using the Water Footprint Network database(Water Footprint Network (available at https://waterfootprint.org/en/),), which includes average water consumption for 352 plant-based and 106 animal-based products during the period of 1996-2005. Land appropriation are estimated using Food and Agriculture Organization Statistics (FAOSTAT) field data for plant-based food (averaged for the time period of 1996-2005) in China provided and plant to animal meat conversion factors. Land use change related carbon emissions are estimated using food-specific factors reported in Searchinger et al 2018(Searchinger et al., 2018). This metric goes beyond life-cycle consumption-based GHGs and land use metrics since it considers the

opportunity cost of one piece of land if it is used for producing one specific type of food compared to for producing another type of food/biofuel and compared to simply remaining as forests for global carbon storage purposes. It measures the carbon efficiency of the land analyzed compared to global-average carbon efficiency.

We introduce the Monte Carlo simulation to estimate the uncertainty of the impacts of diets on the environment due to uncertainties in climate, technologies, errors from various evaluations, etc. We run a simulation repeated for 10000 trials. In each trial, environmental impact factors of each food group are generated from the assumed distribution with a specific mean and standard deviation retrieved from the dataset of environmental impact factors. We assume log normal distributions for GHG emissions of each food group based on the distribution of factors of our collection of LCA studies, and retrieve the mean and standard deviation for each food group. For water consumption, we assume a normal distribution for each of the 352 plant-based and 106 animal-based products from the Water Footprint Network database, and a 15% of the means as the standard deviations for each product following a previous study ³⁵. For land appropriation, we assume normal distributions and 5% of the means from the FAOSTAT data as the standard deviations for each food group due to the observations of the flat change in productivity over time in FAOSTAT. The simulation is repeated for 100 trials. We then link these generated factors to the CHNS dataset to evaluate the individual dietary environmental impacts.

4.6 Health impacts of exposure to PM_{2.5} and diets. We calculate premature mortality of four diseases (chronic obstructive pulmonary disease (COPD), lung cancer, ischemic heart disease (IHD) and ischemic stroke) due to exposure to PM_{2.5} for adults (\geq 25 y old).

For each province in China, we calculate number of premature deaths of each disease based on

147

$$Mort_{i,P} = POP_P \times Mortbase_{i,P} \times (1 - \frac{1}{RR_{i,P}})$$

where $Mort_{i,P}$ is the number of premature mortality in province P from disease *i*; $POP_{j,P}$ is the number of exposed targeted population in province P considering adults (≥ 25 y old) in 2012 from 2013 China Statistical Yearbook(All China Marketing Research Co. Ltd, 2014); *Mortbase*_{*i*,P} is the baseline mortality rate in province P for disease *i* in 2012 from Global Burden of Disease study (Burnett et al., 2014); $RR_{i,P}$ is the relative risk factor for one disease *i* adopted from (Burnett et al., 2018). Relative risk factors for IHD and stroke are by age groups. There are 12 age groups considered, i.e. 25-29, 30-34, 35-39, 40-44, 45-49,50-54,55-59,60-64,65-69,70-74,75-79 and over 80 y old. Relative risk factors for lung cancer and COPD are the same for all people ≥ 25 y old.

We consider four dietary risk factors (intakes of red meat, vegetables, fruits and legumes) and six end-point diseases (coronary heart disease (CHD), stroke, type II diabetes (T2DM), colon and rectum cancers, lung cancer and other cancers). We estimate the mortality attributable to dietary risk factors by calculating "population attributable fractions (PAFs)" using relative risk factors reported in Aune et al., 2017), Kim et al(Kim Kyuwoong et al.,) and those used in Springmann et al., 2018) (Supplemental Appendix Table S16).

In cases of one disease attributable to multiple risk factors, we assume PAFs combine multiplicatively, i.e. $PAF_{TOT} = 1 - \prod_i (1 - PAF_i)$.

References

- All China Marketing Research Co. Ltd. 2014. China census data by county 2000-2010 http://map.princeton.edu/search/details/#/9107c437-8169-4444-9427-3b6957a09bca. Accessed March 6, 2019.
- Aune, D., E. Giovannucci, P. Boffetta, L.T. Fadnes, N. Keum, et al. 2017. Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality—a systematic review and dose-response meta-analysis of prospective studies. Int J Epidemiol 46(3): 1029–1056. doi: 10.1093/ije/dyw319.
- Banzhaf, S., M. Schaap, R.J. Wichink Kruit, H.A.C. Denier Van Der Gon, R. Stern, et al. 2013.
 Impact of emission changes on secondary inorganic aerosol episodes across Germany.
 Atmos. Chem. Phys. 13(23): 11675–11693.
- Behrens, P., J.C. Kiefte-de Jong, T. Bosker, J.F. Rodrigues, A. de Koning, et al. 2017. Evaluating the environmental impacts of dietary recommendations. Proceedings of the National Academy of Sciences: 201711889.
- Burnett, R., H. Chen, M. Szyszkowicz, N. Fann, B. Hubbell, et al. 2018. Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter.
 Proceedings of the National Academy of Sciences. doi: 10.1073/pnas.1803222115.
- Burnett, R.T., C.A. Pope, M. Ezzati, C. Olives, S.S. Lim, et al. 2014. An integrated risk function for estimating the global burden of disease attributable to ambient fine particulate matter exposure. Environ. Health Perspect. 122(4): 397–403. doi: 10.1289/ehp.1307049.
- Bygbjerg, I.C. 2012. Double burden of noncommunicable and infectious diseases in developing countries. Science 337(6101): 1499–1501.

- Carolina Population Center at University of North Carolina at Chapel Hill and Chinese Center for Disease Control and Prevention. 2011. China Health and Nutrition Survey (CHNS), available at http://www.cpc.unc.edu/projects/china.
- Centers for DIsease Control and Prevention. National Health and Nutrition Examination Survey (available at https://www.cdc.gov/nchs/nhanes/index.htm).
- Chen, G.Q., and B. Zhang. 2010. Greenhouse gas emissions in China 2007: inventory and inputoutput analysis. Energy Policy 38(10): 6180–6193.

Climate Action Tracker for China (available at https://climateactiontracker.org/countries/china/).

- Del Gobbo, L.C., S. Khatibzadeh, F. Imamura, R. Micha, P. Shi, et al. 2015. Assessing global dietary habits: a comparison of national estimates from the FAO and the Global Dietary Database. The American journal of clinical nutrition 101(5): 1038–1046. doi: 10.3945/ajcn.114.087403.
- Eshel, G., A. Shepon, T. Makov, and R. Milo. 2014. Land, irrigation water, greenhouse gas, and reactive nitrogen burdens of meat, eggs, and dairy production in the United States. Proc. Natl. Acad. Sci. U. S. A. 111(33): 11996–12001. doi: 10.1073/pnas.1402183111.

FAOSTAT. 2015. Food Security Indicators (1990-2016).

- Friel, S., A.D. Dangour, T. Garnett, K. Lock, Z. Chalabi, et al. 2009. Public health benefits of strategies to reduce greenhouse-gas emissions: food and agriculture. The Lancet 374(9706): 2016–2025.
- Fuller, F., D. Hayes, and D. Smith. 2000. Reconciling Chinese meat production and consumption data. Economic Development and Cultural Change 49(1): 23–43.

- He, P., G. Baiocchi, K. Feng, K. Hubacek, and Y. Yu. 2019. Environmental impacts of dietary quality improvement in China. Journal of Environmental Management 240: 518–526.
 doi: 10.1016/j.jenvman.2019.03.106.
- He, P., G. Baiocchi, K. Hubacek, K. Feng, and Y. Yu. 2018. The environmental impacts of rapidly changing diets and their nutritional quality in China. Nature Sustainability 1(3): 122.
- Heller, M.C., and G.A. Keoleian. 2015. Greenhouse gas emission estimates of US dietary choices and food loss. Journal of Industrial Ecology 19(3): 391–401.
- Hoesly, R.M., S.J. Smith, L. Feng, Z. Klimont, G. Janssens-Maenhout, et al. 2018. Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS). Geoscientific Model Development 11(1): 369–408. doi: https://doi.org/10.5194/gmd-11-369-2018.
- IMPLAN's regional economic research data for the United States (available at http://www.implan.com/data/).
- Institute for Health Metrics and Evaluation (IHME). 2018. Global Burden of Disease Study 2017 (GBD 2017) Results. Seattle, United States: Institute for Health Metrics and Evaluation (IHME), Available from http://ghdx.healthdata.org/gbd-results-tool.
- Kim Kyuwoong, Hyeon Junghyeon, Lee Sang Ah, Kwon Sung Ok, Lee Hyejin, et al. Role of Total, Red, Processed, and White Meat Consumption in Stroke Incidence and Mortality: A Systematic Review and Meta-Analysis of Prospective Cohort Studies. Journal of the American Heart Association 6(9): e005983. doi: 10.1161/JAHA.117.005983.
- Lei, L., and S. Shimokawa. 2017. Promoting dietary guidelines and environmental sustainability in China. China Economic Review. doi: https://doi.org/10.1016/j.chieco.2017.08.001.

- Lock, K., R.D. Smith, A.D. Dangour, M. Keogh-Brown, G. Pigatto, et al. 2010. Health, agricultural, and economic effects of adoption of healthy diet recommendations. The Lancet 376(9753): 1699–1709.
- Ma, H., J. Huang, and S. Rozelle. 2004. Reassessing China's livestock statistics: an analysis of discrepancies and the creation of new data series. Economic Development and Cultural Change 52(2): 445–473.
- Megaritis, A.G., C. Fountoukis, P.E. Charalampidis, C. Pilinis, and S.N. Pandis. 2013. Response of fine particulate matter concentrations to changes of emissions and temperature in Europe. Atmos. Chem. Phys. 13(6): 3423–3443.
- Melina, V., W. Craig, and S. Levin. 2016. Position of the Academy of Nutrition and Dietetics:
 Vegetarian Diets. Journal of the Academy of Nutrition and Dietetics 116(12): 1970– 1980. doi: 10.1016/j.jand.2016.09.025.
- Ministry of Agriculture and Ministry of Ecology and Environnment of P.R. China. 2018. 2018 Action Plan for Fighting for Agricultural Pollution (available at http://www.mee.gov.cn/xxgk2018/xxgk/xxgk03/201811/t20181108_672959.html).
- National Health and Family Planning Commission. 2015. 2015 Report on Chinese nutrition and chronic disease.
- Novaković, R., A. Cavelaars, A. Geelen, M. Nikolić, I.I. Altaba, et al. 2014. Review Article Socio-economic determinants of micronutrient intake and status in Europe: a systematic review. Public Health Nutrition 17(5): 1031–1045. doi: 10.1017/S1368980013001341.
- Peng, L., Q. Zhang, Z. Yao, D.L. Mauzerall, S. Kang, et al. 2019. Underreported coal in statistics: A survey-based solid fuel consumption and emission inventory for the rural

residential sector in China. Applied Energy 235: 1169–1182. doi: 10.1016/j.apenergy.2018.11.043.

- Pinder, R.W., P.J. Adams, and S.N. Pandis. 2007. Ammonia Emission Controls as a Cost-Effective Strategy for Reducing Atmospheric Particulate Matter in the Eastern United States. Environ. Sci. Technol. 41(2): 380–386. doi: 10.1021/es060379a.
- Popkin, B.M., S. Du, F. Zhai, and B. Zhang. 2009. Cohort Profile: The China Health and Nutrition Survey—monitoring and understanding socio-economic and health change in China, 1989–2011. International Journal of Epidemiology 39(6): 1435–1440. doi: 10.1093/ije/dyp322.
- Rehm, C.D., J.L. Peñalvo, A. Afshin, and D. Mozaffarian. 2016. Dietary intake among US adults, 1999-2012. Jama 315(23): 2542–2553.
- Searchinger, T.D., S. Wirsenius, T. Beringer, and P. Dumas. 2018. Assessing the efficiency of changes in land use for mitigating climate change. Nature 564(7735): 249. doi: 10.1038/s41586-018-0757-z.
- Song, G., M. Li, P. Fullana-i-Palmer, D. Williamson, and Y. Wang. 2017. Dietary changes to mitigate climate change and benefit public health in China. Science of The Total Environment 577: 289–298.
- Song, G., M. Li, H.M. Semakula, and S. Zhang. 2015. Food consumption and waste and the embedded carbon, water and ecological footprints of households in China. Science of The Total Environment 529: 191–197.
- Springmann, M., K. Wiebe, D. Mason-D'Croz, T.B. Sulser, M. Rayner, et al. 2018. Health and nutritional aspects of sustainable diet strategies and their association with environmental

impacts: a global modelling analysis with country-level detail. The Lancet Planetary Health 2(10): e451–e461. doi: 10.1016/S2542-5196(18)30206-7.

State councile of P.R. China. 2017. Citizen Nutrition Plan for the 2017-2030 Time Period (available at http://www.gov.cn/zhengce/content/2017-07/13/content_5210134.htm).

The World Bank DataBank(available at

https://data.worldbank.org/indicator/ER.H2O.INTR.K3?locations=CN).

- Vermeulen, S.J., B.M. Campbell, and J.S. Ingram. 2012. Climate change and food systems. Annual Review of Environment and Resources 37(1): 195.
- Wang, D.D., C.W. Leung, Y. Li, and et al. 2014. Trends in dietary quality among adults in the united states, 1999 through 2010. JAMA Internal Medicine 174(10): 1587–1595. doi: 10.1001/jamainternmed.2014.3422.
- Wang, S., J. Xing, C. Jang, Y. Zhu, J.S. Fu, et al. 2011a. Impact assessment of ammonia emissions on inorganic aerosols in East China using response surface modeling technique. Environ. Sci. Technol. 45(21): 9293–9300.
- Wang, S.X., J. Xing, C.R. Jang, Y. Zhu, J.S. Fu, et al. 2011b. Impact Assessment of Ammonia Emissions on Inorganic Aerosols in East China Using Response Surface Modeling Technique. Environ. Sci. Technol. 45(21): 9293–9300.

Water Footprint Network (available at https://waterfootprint.org/en/).

Westhoek, H., J.P. Lesschen, T. Rood, S. Wagner, A. De Marco, et al. 2014. Food choices, health and environment: effects of cutting Europe's meat and dairy intake. Global Environmental Change 26: 196–205.

- Willett, W., J. Rockström, B. Loken, M. Springmann, T. Lang, et al. 2019. Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. The Lancet 393(10170): 447–492. doi: 10.1016/S0140-6736(18)31788-4.
- World Bank. 2017. Prevalence of undernourishment (% of population).
- World Cancer Research Fund/American Institute for Cancer Research. 2018. Diet, nutrition, physical activity and cancer: a global perspective, continuous update project expert report 2018, available at dietandcancerreport.org.
- Zhang, L., Y. Chen, Y. Zhao, D.K. Henze, L. Zhu, et al. 2018. Agricultural ammonia emissions in China: reconciling bottom-up and top-down estimates. Atmos. Chem. Phys. 18(1): 339.
- Zhong, F. 1997. Exaggeration and causes of meat production statistics overreporting in China. Chinese Rural Economy 10: 63–6.

Chapter 5: Conclusions

Food is essential to human survival. Food production has created a wide range of severe environmental problems and food consumption has important dietary health consequences. Chinese agriculture feeds 21% of the global population mainly through intensive use of inputs such as synthetic nitrogenous fertilizers, water, land, etc, however, farmers' management skills and machinery coverage remain low. This results in substantial reactive nitrogen leakage to the environment causing air and water pollution, as well as greenhouse gas emissions and land appropriation. Such environmental damage has been further worsened by recent dietary shifts towards more animal products. However, despite decreased undernourishment rates over the past decade, mortalities attributable to dietary risks and obesity rates in China have increased due to underconsumption of fruits, vegetables, whole grains and nuts and overconsumption of red meat, sugar, etc.

We are at a critical juncture confronted with grand challenges of food security, climate change, air pollution, water pollution, resource exploitation and rural development; policy interventions are needed to transform agricultural production and consumer diets into ones that are healthy for the economy, the environment and public health. My dissertation explores the effectiveness of strategies from both the agricultural production side and consumer side in China in addressing one or multiple challenges posed by agriculture. Special attention has been paid to strategies that can generate more than one type of benefit or benefits that are internal to stakeholders (e.g. yield benefit, dietary health gains, etc). This is because co-benefits and benefits internal to

stakeholders are more likely to incentivize changes in action compared to benefits that are largely dispersed at regional and global levels (e.g. climate change mitigation).

Chapter 2 focuses on costs and benefits associated with production-side technologies that can increase Chinese agricultural nitrogen use efficiency (NUE) and explores how to enhance technology and knowledge transfer by removing existing barriers. I find that adopting NUEincreasing management, i.e. reduced N fertilizer application, split application, use of new efficient fertilizers (controlled-released fertilizers and inhibitors) and machine deep placement, brings yield benefit of ¥70-300/mu (1ha=15mu). The yield benefit is much larger than any other type of benefit, including labor savings (<¥10/mu), fertilizer purchase savings (<¥30/mu), reactive nitrogen emission reduction (\leq ¥60/mu), and greenhouse gas emission reduction (<\\$30/mu)), but still remains too small for farmers to care, compared to relatively high off-farm earnings. Reasons that prevent farmers from improving practices also include high learning costs due to weak knowledge support from governmental extension schools and fertilizer sellers. I identify separate mechanisms for smallholders (who cultivate cropland <10mu) and large farmers (who cultivate cropland > 10mu and altogether cultivate 50% of China's cropland) through which technology transfer can be enhanced. Smallholders' improvement of practices relies on the development of farmers' professional cooperatives, private service contractors, as well as long-term education programs. Large farmers can benefit from economies of scale when they improve management and can be educated at significantly lower transaction costs.

Chapter 3 focuses on the potential of production-side technologies in reducing emissions of NH₃ and PM_{2.5} air pollution in China and generating co-benefits of yield increase, water pollution

157

mitigation, GHGs mitigation, etc. We identify cost-effective agricultural nitrogen (N) management opportunities in China: *Reduced N Application, Efficient Fertilizer, Machine Application, Manure Management*, and *Combined*. We find that when these approaches are applied to Chinese agriculture, they can annually achieve 6.4%-34% NH₃ emission reductions nationally in 2012, 0-8 µg/m³ reduction of secondary inorganic aerosols locally and ~5,000-30,000 avoided PM_{2.5}-related premature mortalities. We find multiple co-benefits from these approaches when applied to grain crops and livestock of: 36-52 Mega tonnes (7%-9%) increase in national crop yields, 0.01- 0.05 Tg N (9%-50%) decrease of N₂O emissions, 0.23-0.62 Tg N(14%-38%) decrease of NO₃-leaching, 0.06-0.14 Tg N (23%-56%) decrease of NO₃-runoff, 4.7 - 38 Mega tonnes CO₂-eq decrease of GHGs, and up to 2.5 Tg N (21%) decrease of N loss to water from animal farms. Total benefits from all N management strategies combined are US\$30 (25; 50) billion/annum, compared to costs of US\$18 (12; 27) billion/annum.

Chapter 4 focuses on the potential of consumer-side dietary shifts in reducing emissions of NH₃ and PM_{2.5} air pollution in China, water and land use and greenhouse gas emissions, as well as reducing premature mortalities attributable to dietary risks. All future diets examined deliver dietary health benefits yet with distinct environmental impacts. Two balanced diets, *Chinese Nutritional Guideline Diet* (*CNG*) and *Lancet-EAT Nutritional Recommendations* (*EAT*), each avoid 1.4 and 1.1 million diet-related premature mortalities, and two extreme diets, *U.S. Diet* (*US*) and *Soy Replace Red Meat Diet* (*SRRM*), respectively avoid 0.02 and 0.3 million. However, *US* and *CNG* diets significantly increase ammonia emissions, PM_{2.5} concentrations, land and water use, and greenhouse gas emissions (GHGs). *SRRM* decreases these impacts and *EAT* increases some (water and land use) but decreases others (ammonia emissions and PM_{2.5}). With

SRRM providing a win-win for health and the environment, a combination of *SRRM* and *EAT* provides realistic future change in direction for Chinese diets to optimize health plus environmental objectives. Significant dietary health benefits achieved in the two balanced diets call for developments of production-side pollution-mitigating technologies.

Based on the findings from my dissertation, I suggest the following future research needed to better identify strategies to mitigate environmental and health damage from the agricultural sector and beyond:

1. Comprehensive cost-benefit analyses for controlling NO_x, SO₂ and NH₃ emissions

 NO_x and SO_2 emissions, in addition to NH_3 emissions, are important precursors to $PM_{2.5}$ air pollution. Unlike that NH_3 emissions are mostly from the agricultural sector, NO_x and SO_2 emissions are from energy, residential and transportation sectors. Effectiveness of NH_3 mitigation for reducing $PM_{2.5}$ will decrease as emissions of NO_x and SO_2 decrease. Instead, effectiveness of NO_x and SO_2 emission mitigation for reducing $PM_{2.5}$ will increase as emissions of NO_x and SO_2 decrease.

Recent command-and-control regulations in China have reduced NO_x and SO₂ emissions by 17% and 62%, respectively, during 2010 to 2017. The PM_{2.5} air quality benefits of mitigating NH₃ emissions claimed in Chapter 3 were based on air quality modeling of emissions for the year 2012. Mitigation of NH₃ emissions at present will lead to smaller reduction in PM_{2.5}, considering emissions of NO_x and SO₂ have decreased. Future research is needed to fully

understand how the effectiveness of reducing NO_x , SO_2 and NH_3 emissions for reducing $PM_{2.5}$ concentrations evolves over time.

One obstacle for a comprehensive cost-benefit analysis of controlling NO_x and SO_2 emissions is to include evaluation of co-benefits provided beyond $PM_{2.5}$ air quality improvements. Reducing NO_x and SO_2 emissions will mitigate acid rain. Reducing NO_x emissions will also mitigate ground-level O_3 air pollution.

Another obstacle is lack of knowledge about current adoption of emission control technologies, unexploited technologies and their costs. Technologies within various sectors (energy, transportation, residential, etc) need to be considered. Knowledge about current status of technology adoption and unexploited technologies, at provincial level, is needed. This type of comprehensive review work has not yet existed for China, either.

GAINS-China model provides a good tool analyzing the mitigation potential of precursor emissions and associated costs at provincial levels. Coupling this tool with atmospheric chemistry modeling could inform China's future air pollution policymaking.

2. Future global burden of reactive nitrogen under different socioeconomic pathways

Future agricultural and industrial N mobilization, dependent upon population growth, dietary changes and production technologies, will have implications for future global burdens of reactive nitrogen, as well as associated water and air pollution and climate change. Since recent work finds that the global planetary boundary has been exceeded by almost twice

(Steffen et al., 2015), this work will help identify how severe future challenge of reactive nitrogen will be for the globe.

Previous work has been limited by idealized future projections of agricultural activities and simple modeling tools not capable of fully capturing interactions of global agriculture with the environment. Previous research has either utilized projections for future livestock and crop production that lack geographical variations (e.g. livestock production under different socioeconomic pathways provided by IIASA²³ and fertilizer consumption provided by CMIP6) or modeling tools that are not process-based (e.g. N flow/budgeting models (Bodirsky et al., 2014; Billen et al., 2014)).

Utilizing future projections of agricultural activities that are of high geographical resolution (work of Dr. Benjamine Bodirsky) and a flow of agricultural nitrogen model that is coupled to the community earth system model (published in Riddick et al. (2015) and Vira et al., (2019) can improve our understanding of the future global burden of N.

Also with future development of land model within earth system model (ESM), ESM will provide a great tool for studying interaction of agriculture with the environment, including N cycling, C cycling and climate-agriculture interactions. ESM will be complementary to existing models at farm- and regional levels such as EPIC, GEPIC and IMAGE.

Modeling agriculture and its impacts are difficult because agricultural management that varies greatly geographically currently is poorly understood and represented in models. Also, interaction of agriculture with the environment is dependent on local climate and atmospheric

²³ https://tntcat.iiasa.ac.at/SspDb/dsd?Action=htmlpage&page=10

chemistry conditions. A few efforts that aim to improve these representations of management and climate dependence have been at country-level or using parameterization (Paulot et al. 2014; Zhang et al., 2018). There has been a few recent work which couples nutrient models with earth system models to study impacts of nitrogen management on water pollution and air pollution (Lee et al., 2014; Riddick et al., 2015; Nevison et al., 2016).

3. Optimizing Chinese dietary strategies for multiple environmental objectives

Chapter 4 of this dissertation identifies a dietary change strategy, i.e. soy replaces red meat (SRRM), that provides a win-win for PM_{2.5} air quality, greenhouse gas emissions (GHGs), total water footprint, land use and dietary health. However, this SRRM dietary change strategy is not optimal since the associated dietary health benefit is only less than ¼ of that achieved through balanced diet examined (i.e. the Chinese Dietary Guideline diet and the Lancet-EAT diet recommendations). There're opportunities of slightly increasing fruit and vegetable consumption to an extent that other environmental objectives remain no worse than the status quo but additional dietary health benefits can be gained.

An optimization framework is needed to address the dilemma that dietary changes cannot always simultaneously benefit dietary health and various environmental objectives including air quality, GHGs, water and land use. Dietary change such as increased fruits and vegetable consumption substantially benefit dietary health but requires substantial nitrogen, water and land input to agriculture. An optimal diet for Chinese can be determined only when different weights are assigned to objectives including dietary health, air quality, water use, land use and greenhouse gas emissions.

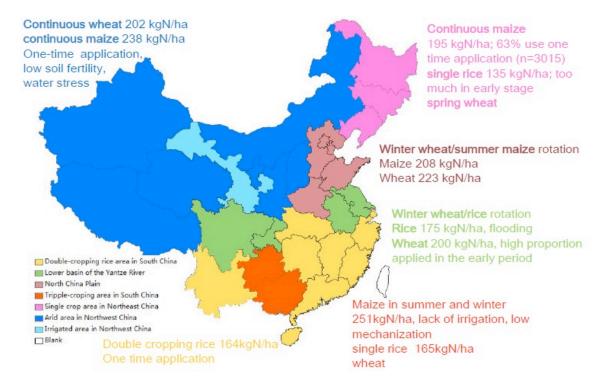
4. Improving data quality and better understanding current diets

Large gaps exist between diets indicated by dietary surveys and national statistics, which affects the validity of conclusions in Chapter 4. Although expected improvements are out of scope of this dissertation, future work is needed to improve understanding of current Chinese diets.

Chinese baseline diets indicated by nutritional surveys and national statistics are distinct especially regarding fruit, vegetable, legume and red meat intake. Dietary surveys would show that the Americans eats more fruits and legume, but less vegetables and red meat than Chinese (He et al 2018; Global Dietary Database). Statistics data agrees that Americans eat less vegetables than Chinese but indicates that Chinese eats more legume and less red meat than China (FAO Food Balance Sheet).

Both data have caveats. National statistics for food consumption in China have been found to suffer from 'human errors' (Zhong et al., 1997; Ma et al., 2004). Local governmental officials would over-report agricultural production especially for livestock product since agriculture is part of their political performance to be examined. For many countries in the world statistics of food consumption reports higher livestock product intake and lower grain intake than dietary surveys. Furthermore, national statistics data in China suffers from aggregation of errors because it requires surveys conducted by local governmental agents regarding food production, export/import, other utilizations and stock, etc. Food consumption

163


is estimated by calculating the balance of different food usages. In contract, dietary surveys can be vulnerable to under-reporting, which has been shown especially serious among population with severe obesity issues in the US (Freedman et al., 2014). More research is needed to improve the quality of baseline diet data, since baseline diet is critical for understanding how far people are from a healthy and sustainable diet.

References:

- Adeh, E.H., S.P. Good, M. Calaf, and C.W. Higgins. 2019. Solar pV power potential is Greatest over croplands. Scientific reports 9.
- Billen, G., L. Lassaletta, and J. Garnier. 2014. A biogeochemical view of the global agro-food system: Nitrogen flows associated with protein production, consumption and trade.
 Global Food Security-Agriculture Policy Economics and Environment 3(3–4): 209–219. doi: 10.1016/j.gfc.2014.08.003.
- Bodirsky, B.L., A. Popp, H. Lotze-Campen, J.P. Dietrich, S. Rolinski, et al. 2014. Reactive nitrogen requirements to feed the world in 2050 and potential to mitigate nitrogen pollution. Nature Communications 5. doi: ARTN 3858 10.1038/ncomms4858.
- Freedman LS, et al. (2014) Pooled results from 5 validation studies of dietary self-report instruments using recovery biomarkers for energy and protein intake. Am J Epidemiol 180(2):172–188.
- Lee, M., S. Malyshev, E. Shevliakova, P.C.D. Milly, and P.R. Jaffe. 2014. Capturing interactions between nitrogen and hydrological cycles under historical climate and land use:
 Susquehanna watershed analysis with the GFDL land model LM3-TAN. Biogeosciences 11(20): 5809–5826.
- Ma, H., Huang, J. & Rozelle, S., 2004, Reassessing China's livestock statistics: an analysis of discrepancies and the creation of new data series.
- Nevison, C., P. Hess, S. Riddick, and D. Ward. 2016. Denitrification, leaching, and river nitrogen export in the Community Earth System Model. Journal of Advances in Modeling Earth Systems.

- Paulot, F., et al. "Ammonia emissions in the United States, European Union, and China derived by high-resolution inversion of ammonium wet deposition data: Interpretation with a new agricultural emissions inventory (MASAGE_NH3)." *Journal of Geophysical Research: Atmospheres* 119.7 (2014): 4343-4364.
- Riddick, S.N., D.S. Ward, P. Hess, N. Mahowald, R.S. Massad, et al. 2015. Estimate of changes in agricultural terrestrial nitrogen pathways and ammonia emissions from 1850 to present in the Community Earth System Model. Biogeosciences 12(18).
- Steffen, Will, et al. "Planetary boundaries: Guiding human development on a changing planet." *Science* 347.6223 (2015): 1259855
- Rosenzweig, C., J. Elliott, D. Deryng, A.C. Ruane, C. Muller, et al. 2014. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc. Natl. Acad. Sci. U. S. A. 111(9): 3268–3273. doi: 10.1073/pnas.1222463110.
- Vira, Julius, et al. An improved mechanistic model for ammonia volatilization in Earth system models: Flow of Agricultural Nitrogen, version 2 (FANv2). Geoscientific Model Development Discussions. https://doi.org/10.5194/gmd-2019-233
- Zheng B, et al. (2018) Trends in China's anthropogenic emissions since 2010 as the consequence of clean air actions. *Atmos Chem Phys* 18(19):14095–14111.
- Zhang, Lin, et al. "Agricultural ammonia emissions in China: reconciling bottom-up and topdown estimates." *Atmospheric Chemistry and Physics* 18.1 (2018).
- Zhong, F. Exaggeration and causes of meat production statistics overreporting in China. *Chinese Rural Economy* **10**, 63–6 (1997).

Appendix for Chapter 2

Technological, Social and Policy Options for Increasing Nitrogen Use Efficiency in China

Figure S1 major cropping systems in China, as well as their N fertilizer application features. Data source: Zhenling Cui.

Table S1: Farmers' machine use during fertilizer applications for three major crops in their primary production regions in China, data from a survey of 1000 farms across China provided by Weifeng Zhang. Crop codes: 101 = spring maize; 102 = summer maize; 103 = autumn maize; 201 = winter wheat; 301 = single-crop rice; 302 = double-cropped early rice; 303 = double-cropped late rice. Area codes: I = triple-cropping area in South China, II = double-cropping rice area in South China, III = lower basin of the Yangtze River (paddy–upland rotation area), IV = North China Plain, V = irrigated area in Northwest

Crop		No.	Farm	Mach	ine	Machine	Machine Time spent on		N use	Annual
Region		of	size	applic	cation	rental	fertilize	er	(kg	fertilizer
		farms	(ha)	cover	age	cost	application (h/ha)		N/ha)	purchase
						(¥/ha)				(¥/ha)
				%	% of	_	Hand	Machine	_	
				of	farm					
				land	ers					
				area						
Maize	I101	50	0.07	14	14	350	163	15	253	2766
	I103	40	0.07	20	20	350	166	19	232	2547
	III102	32	0.60	38	31	1050	65	2	208	1764
	IV102	703	0.92	59	35	376	20	3	214	2282
	V101	16	0.09	6	6	566	104	N/A	328	2439
	VI101	128	0.30	40	8	566	67	3	287	2534
	VI102	85	3.44	85	2	434	30	7	246	1991
	VII10	195	0.78	59	22	350	21	2	231	2790
	1									
Wheat	II201	16	0.65	50	50	300	13	1	180	1772
	III201	162	1.08	25	19	838	19	3	209	1817
	IV201	800	0.85	36	23	360	21	2	254	2513
	VI201	111	2.76	63	7	410	19	4	210	2297
Rice	I301	30	0.06	3	3	1200	60	N/A	178	2109

China; VI = arid area in Northwest China, VII = single crop area in Northeast China. Data compiled and delivered to me by Dan Zhang.

1302	104	0.07	3	3	1200	44	N/A	185	2463
I303	105	0.07	3	3	1200	42	N/A	188	2475
II301	142	0.17	4	4	1200	49	1	154	1912
II302	88	0.25	3	2	1200	33	1	154	1661
II303	91	0.25	3	2	1200	32	1	156	1695
III301	206	0.86	5	4	1500	24	2	251	1991
IV301	51	0.33	6	4	1800	24	1	304	2407
VII30	85	12.40	47	5	602	6	4	114	1424
1									

Table S2: NH₃ volatilization (kg N/ha) under a certain level of fertilizer nitrogen input (kg N/ha) for maize, rice and wheat in North, Central and South China. Unpublished work from Cui et al.

Crop type	Region	NH ₃ volatilization (Y; kg N/ha)
		with respect to fertilizer N input (x;
		kg N/ha)
Maize	North China	Y=2.53+0.058x
	Central China	Y=7.98+0.099x
	South China	Y=1.93+0.071x
Rice	North China	Y=3.83+0.1x
	Central China	Y=-0.54+0.2x
	South China	Y=4.95+0.17x
Wheat	North China	Y=3.21+0.068x
	Central China	Y=2.69+0.069x

South China	Y=-0.61+0.13x	

Table S3: modeled N₂O emission and NO₃⁻leaching (kg N/ha) under a certain level of fertilizer nitrogen input (kg N/ha) for maize ((Cui *et al.*, 2013)), rice and wheat (both adopted from (Cui *et al.*, 2014)).

Crop	N ₂ O emission (Y; kg N/ha)	NO ₃ ⁻ leaching (Y; kg	NO ₃ ⁻ runoff (Y; kg
	with respect to fertilizer N	N/ha) with respect to	N/ha) with respect to
	input (x; kg N/ha)	fertilizer N input (x; kg	fertilizer N input (x; kg
		N/ha)	N/ha)
Spring maize	Y=0.576exp(0.0049x)	Y=4.46exp(0.0094x)	N/A
Summer maize	Y=0.593exp(0.0045x)	-	
Wheat	Y=0.33exp(0.0054x)	Y=2.7exp(0.0088x)	-
Rice	Y=0.37exp(0.0061x)	Y=2.2exp(0.0071x)	Y=2.12exp(0.0071x)

	Health	Eutrophication	Acidification	Global	Total
	\$/kg N	\$/kg N	\$/kg N	warming	\$/kg N
				\$/kg N	
NO ₃ -N	0.2	1.12	_	_	1.32
N ₂ O-N	0.3	-	_	11.2	11.5
NH ₃ -N	3.3	0.24	1.87	_	5.41
NH ₃ -N	2.54	0.24	1.87	_	4.65
(adjusted by					
author)					

Table S4 Damage costs of NO₃-N, N₂O and NH₃-N in Ying *et al.* (2017) and references therein and NH₃-N with adjustments by author.

Table S5: Available machinery options for starter fertilizer and dressing on the Chinese market by crop, together with their prices and time efficiencies in comparison to hand application (based on information available online).

Purpose	Machine type	Price (¥)	Time	Hand	Notes
			efficiency	application	
			(h/ha)	time	
				efficiency	
				(h/ha)	
Applying	Seed and fertilizer	3-4k	5-7.5		
starter	application	plus a			
fertilizer for	machine	tractor			
maize		(10k)			

	Deep tillage and				
	fertilizer				
	application				
	machine				
Applying	High ground-			5	
dressing for	clearance dressing				
maize	machine				
	Hand-push			-	
	liquid/water-soluble				
	fertilizer				
	application				
	machine				
Applying	Seed and fertilizer	3k	2.5-5	7.5-15	Save
starter	application	plus a			37.5kg/ha
fertilizer for	machine	tractor			seeds
wheat		(10k)			
	Rotary tillage and		2-5	-	
	fertilizer deep				
	placement machine				
Applying	Wheat seeding		3.75	3.75-15	
dressing for	machine			depending on	
wheat	Hand-push			geography	
				1	1

				and farmers'	
				experience	
Applying	No-tillage machine	30k	1.5	15	
starter	or rotary tillage	plus a			
fertilizer for	machine (Northeast	tractor			
rice	China)	(10k)			
	Water-soluble		3.75		
	fertilizer				
	application				
	machine (South				
	China)				
Applying	Water-soluble		3.75	15	
dressing for	fertilizer				
rice	application				
	machine (South				
	China)				

Table S6: labor cost in China in 2015 by province, unit $\frac{1}{4}$ /day; source: *Information Summary on the Production Costs and Revenues of National Agricultural Products*. Labor cost is the amount of payment a person with mid-level working capacity should receive for working for one day (8 h); it also represents the opportunity cost of time. Labor cost per day in one year = rural household family earnings per person in last year*the village's population/the village's population with employment/working days in a year (=250 days)

Province	Labor cost	Province	Labor cost
	(¥/day)		(¥/day)
Beijing	95	Hubei	75
Tianjin	84	Sichuan	73
Hebei	68	Fujian	98
Shanxi	48	Jiangxi	74
Neimenggu	70	Hunan	71
Heilongjiang	79	Guangdong	85
Jiangsu	56	Guangxi	54
Liaoning	65	Hainan	77
Jilin	81	Chongqing	65
Shanghai	110	Guizhou	43
Zhejiang	75	Yunan	54
Anhui	61	Shaanxi	46
Shandong	68	Gansu	71
Henan	63	Ningxia	53
Qinghai	60	Xinjiang	72

Table S7: Prices ($\frac{1}{2}$ kg⁻¹ N) of regular fertilizers, controlled-released fertilizers, and fertilizers with nitrification inhibitor (NI) and urease inhibitor (UI), from (Xia *et al.*, 2017).

Fertilizer type		Category ^a	Price or cost	
Regular fertilizer (Xia et al., 2016)		Urea	4 ¥ kg ⁻¹ N	
		P fertilizer	$3 \neq kg^{-1} P_2 O_5$	
		K fertilizer	$4 \neq kg^{-1} K_2 O$	
Controlled-releas	se fertilizer	CRF (sulfur-coated)	5.6¥kg-1 N	
		CRF (polymer-coated)	7.2 ¥ kg-1 N	
		CRF (polymer and sulfur-coated)	6.4 ¥ kg-1 N	
Slow-released	Nitrification	DCD	15 ¥ kg^{-1}	
fertilizer	inhibitor	DMPP(C ₅ H ₈ N ₂ ·H ₃ O ₄ P)	150 ¥ kg ⁻¹	
		СР	100¥ kg ⁻¹	
		HQ	$70 \pm kg^{-1}$	
	Urease	NBPT	100 ¥ kg^{-1}	
	inhibitor	NAM	25 ¥ kg^{-1}	
		THA	15 ¥ kg ⁻¹	
		ASQ	15 ¥ kg ⁻¹	

a. The price of urea, P and K fertilizer, staple grains referred to (Xia *et al.*, 2016). The price of controlled-release fertilizers referred to Chinese Fertilizer Website (<u>www.fert.cn</u>). The price of various nitrification and urease inhibitor products referred to Chinese GuideChem Website (<u>china.guidechem.com</u>).

	Cattle (million head at the	Lamb (million head at the	Pig (million head)
	end of the year)	end of the year)	
No.1	Sichuan (9.8)	Neimenggu (5777)	Sichuan (72)
No.2	Henan (9.3)	Xinjiang (3995)	Henan (61)
No.3	Yunan (7.6)	Shandong (2235)	Hunan (60)
No.4	Neimenggu (6.7)	Gansu (1939)	Shandong (48)

Table S8 the top four provinces of cattle, lamb and pig production in China in 2016((EOCSSB), 2016).

Table S9 Current N fertilizer application amount, recommended N use levels (Chen Xinping, 2016), (Wu,
2014a) and (Wu, 2014b) and the environmental benefits of N use reduction for major crop (wheat, maize,
rice) production regions.

				Wheat				
	Current	Recom-	NH ₃	\$ of NH3	NO ₃	\$ of NO ₃	GHGs	\$ of
Region	N (kg	mended N	reduction	reduction	reduction	reduction	reduction	GHGs
	N/ha)	(kg N/ha)	(kg N/ha)	(\$/ha)	(kg N/ha)	(\$/ha)	(kg CO ₂ -	reduction
							eq/ha)	(\$/ha)
Ι	134	106	1.90	8.85	1.92	2.53	378.0	7.7
II-1	206	162	2.99	13.91	5.31	7.01	594.0	12.1
II-2	198	170	1.90	8.85	3.37	4.45	378.0	7.7
III-1	240	184	3.81	17.70	8.68	11.46	756.0	15.4
III-2	200	180	1.38	6.42	2.53	3.34	270.0	5.5
IV	200	165	2.42	11.23	4.16	5.49	472.5	9.6
V	144	138	0.78	3.63	0.49	0.65	81.0	1.7
				Maize				
I-1	156	150	0.35	1.6	1.1	1.4	81.0	1.7
I-2	200	180	1.22	5.7	5.3	7.0	283.5	5.8
I-3	226	164	3.60	16.7	21.7	28.7	837.0	17.1
I-4	205	188	0.99	4.6	4.5	6.0	229.5	4.7
II-1	206	178	1.62	7.6	7.2	9.4	378.0	7.7
II-2	217	189	2.77	12.9	7.9	10.5	378.0	7.7
III-1	234	181	3.07	14.3	15.8	20.8	715.5	14.6
III-2	246	176	4.06	18.9	21.7	28.7	945.0	19.3
III-3	234	219	0.87	4.0	5.3	7.0	202.5	4.1

IV-1	257	184	5.18	24.1	24.8	32.7	985.5	20.1
IV-2	232	183	3.48	16.2	14.6	19.2	661.5	13.5
IV-3	272	186	6.11	28.4	31.9	42.1	1161.0	23.7
				Rice				
I-1	123	116	3.26	0.40	0.25	0.66	94.5	2.0
I-2	213	156	26.51	0.83	3.20	8.61	769.5	15.7
II-1	196	159	34.41	0.76	1.97	5.30	499.5	10.2
II-2	190	163	25.11	0.74	1 42	2.92	264.5	7.4
Early			25.11	0.74	1.43	3.83	364.5	7.4
II-2	188	166	20.46	0.74	1.16	2 12	207.0	(1
Middle			20.46	0.74	1.16	3.13	297.0	6.1
II-2	178	172	5 50	0.71	0.21	0.94	01.0	1.7
Late			5.58	0.71	0.31	0.84	81.0	1.7
II-3	268	256	11.16	1.50	1.16	3.12	162.0	3.3
III-1	202	160	22.20	0.70	2.20	(17	567.0	11.6
Early			33.20	0.79	2.29	6.17	567.0	11.6
III-1	199	166	20.92	0.79	2.11	5 (7	526.5	10.7
Middle			30.83	0.78	2.11	2.11 5.67		10.7
III-1	188	161	21.24	0.72	1 41	2 79	264.5	7.4
Late			21.34	0.73	1.41	3.78	364.5	7.4
III-2	214	165	20 72	0.07	2.05	7 ((661 5	12.5
Early			38.73	0.87	2.85	7.66	661.5	13.5
III-2	214	168	26.26	0.00	2 70	7.07	(21.0	12.7
Late			36.36	0.88	2.70	7.26	621.0	12.7
IV	224	166	45.85	0.92	3.51	9.44	783.0	16.0

Table S10 Current N fertilizer application amount, recommended N use levels (Chen Xinping, 2016), (Wu, 2014a) and (Wu, 2014b) and the economic benefits of N use reduction for major crop (wheat, maize, rice) production regions.

	Current	Recom-	Fertilizer	Crop yield	Crop sales change
Region	N (kg	mended N	purchase	change	(rmb/ha)
	N/ha)	(kg N/ha)	savings	(t/ha)	
			(rmb/ha)		
				Wheat	
Ι	134	106	112	1.07±0.58	2493±1351
II-1	206	162	176	1.37 <u>±</u> 0.7	3192±1631
II-2	198	170	112	2.26 ± 0.93	5265±2167
III-1	240	184	224	1.76±0.83	8410±1934
III-2	200	180	80	2.79±1.12	6500±2610
IV	200	165	140	2.82±0.93	6571 <u>±</u> 2167
V	144	138	24	1.86±0.79	4334 <u>+</u> 1841
				Maize	
I-1	156	150	24	2.64±1.08	4963±2030
I-2	200	180	84	2.29±0.93	4305±1748
I-3	226	164	248	2.91±0.92	5471±1730
I-4	205	188	68	1.95±1.27	3666±2388
II-1	206	178	112	1.75±0.62	3290±1166
II-2	217	189	112	2.06±0.94	3873±1767
III-1	234	181	212	1.94 <u>+</u> 1	3647 <u>±</u> 1880

III-2	246	176	280	2.56 <u>+</u> 1.23	4812±2312
III-3	234	219	60	2.9±1.3	5452 <u>+</u> 2444
IV-1	257	184	292	1.92 <u>+</u> 0.92	3610±1730
IV-2	232	183	196	2.3 ± 1.1	4324 <u>+</u> 1993
IV-3	272	186	344	2.3 <u>+</u> 0.93	4343 <u>+</u> 1748
				Rice	
I-1	123	116	28	3.17 <u>+</u> 1.21	8749 <u>+</u> 3340
I-2	213	156	228	2.51±1.15	6928±3174
II-1	196	159	148	2.2 ± 0.94	6072±2594
II-2	190	163	108	2.37±0.9	6541 <u>±</u> 2484
Early			100	2.57 10.9	004112404
II-2	188	166	88	2.26±0.83	6238±2291
Middle			00	2.20 - 0.00	0200-2291
II-2	178	172	24	1.98±0.95	5465 ± 2622
Late			24	1.98 <u>-1</u> 0.95	5405 <u>1</u> 2022
II-3	268	256	48	3.18±0.91	8777 <u>±</u> 2512
III-1	202	160	168	1.99±0.73	5492±2015
Early			100	1.99 <u>1</u> 0.75	3492 <u>1</u> 2013
III-1	199	166	156	1.73±0.71	4775±1960
Middle			150	1.75 <u>-</u> 0.71	1//0_1/00
III-1	188	161	108	2.05±0.73	5658±2015
Late			100	2.03 <u>1</u> 0.75	5050 <u>+</u> 2015
III-2	214	165	196	1.79±0.89	4940 <u>±</u> 2456
Early			170	1./7 <u>1</u> 0.07	עדעד <u>י</u> עדעד <u>י</u> עדעד
III-2	214	168	184	1.82 <u>+</u> 0.65	5023±1794

Late						
IV	224	166	232	2.09±0.81	5768 <u>+</u> 2236	

Table S11 Environmental and economic benefits of reducing N use amount for different agri-ecological regions for major crops.

Region	Environmental benefits (\$/ha)	Economic benefits (\$/ha)
Wheat		
Ι	19.08	364.7
II-1	33.02	471.5
II-2	21	752.7
III-1	44.56	1208.7
III-2	15.26	921.2
IV	26.32	939.5
V	5.98	610.1
	Maize	
I-1	4.7	698.1
I-2	18.5	614.4
I-3	62.5	800.6
I-4	15.3	522.7
II-1	24.7	476.2
II-2	31.1	557.9
III-1	49.7	540.2
III-2	66.9	712.8
III-3	15.1	771.6
IV-1	76.9	546.2

IV-2	48.9	632.8
IV-3	94.2	656.1
	Rice	
I-1	3.06	1228.7
I-2	25.14	1001.8
II-1	16.26	870.8
II-2	11.07	020.9
Early	11.97	930.8
II-2	0.07	99 5 (
Middle	9.97	885.6
II-2	2.25	7(0.4
Late	3.25	768.4
II-3	7.92	1235.5
III-1	10.54	702.4
Early	18.56	792.4
III-1	17.17	(22.2
Middle	17.15	690.3
III-1	11.01	207.2
Late	11.91	807.2
III-2	22.02	710.0
Early	22.03	719.0
III-2		
Late	20.84	728.9
IV	26.36	840

Service	Price
Fertilizer top dressing	¥ 400/time
Fertilizer deep placement	¥ 700/time
Soil N test	¥500/ha
Machine rental	Chongqing: ¥150/d
	Shandong: ¥30/d
	Hebei: free, ¥180/d
Fertilizer + seed application machine rental or	¥450/ha
Drivers help broadcast fertilizers + seed with	
machine	
Machine application of fertilizer (fertilizer	¥150/100kgN
purchase cost excluded)	
Hand broadcasting fertilizer	¥450/ha or ¥100-150/d (different crops vary)

Table S12: Various fertilizer application services existing in rural China and their prices.

Table S13: New-efficient fertilizer products on the Chinese market, i.e. controlled-release fertilizers and inhibitor fertilizers, their formulation, producers, controlled-release N or inhibitor content and prices (based on information online).

Product	Formulation	Description	Producer	Controlled-	Ex-work	Retail
Name	(N-P-K)			release N	price (no	price
				content	$Vat \frac{1}{2}{t}^{24}$	$({}^{\pm}/t)^{25}$

²⁴ This is primary dealer's price for domestic product and country dealer's price for imported product

²⁵ Usually is 2-3 times of ex-work price for imported product and the same as ex-work price for domestic product

Wofute	28-6-6	Polymer-coated +	KINGSTA	8%	2200	3900
For crops		Sulphur-coated				
		urea, 90 days				
		release period,				
		bulk blending				
		(BB) Fertilizer				
蓝膜缓控释	27-5-8	Polymer-coated +	Nongda	8%	2200	4300
For crops		Sulphur-coated				
		urea, 90 days				
		release period, BB				
		Fertilizer				
Kongdejiu	26-10-12	Polymer-coated	Maoshi	9%	2700	4500
控得久		urea, 60days				
For crops		release period				
		(50%) + regular				
		urea (50%), BB				
		Fertilizer				
Agroleaf 爱果	16-10-16	POLY-S Emax	ICL	10%	6200	9000
利丰		Polymer-Coated				
For flowers		BB fertilizer				
Agromaster 易	16-5-22	Emax Polymer-	ICL	16%	6300	11000
迈施		Coated NPK				
For flowers		fertilizer				

OSMOCOTE	11-11-18	OSMOCOTE	ICL	11%	12000	240000
奥绿肥		Polymer-Coated				
For flowers		NPK fertilizer				
Basaka 巴萨	16-8-12	Polymer-Coated	Compu	16%	12000	240000
克		NPK compound				
For flowers		NPK fertilizer				
nitrification	N/A	Imported: US Bach,	I	100%	Imported:	N/A
inhibitor +		Nitrapin/entrench fro	om Dow,		300000-	
urease		DMPP from German	ny BASF,		350000	
inhibitor		Agrho N from Norw	vay Solvi		Domestic:	
		Domestic: Zhejiang	aofutuo		130000-	
					160000	
Compu 康普	15-15-15	DMPP	Compu	NI 0.1%-	4700	6600
		Nitrification		0.08%		
		inhibitor NPK				
		fertilizer				
Nitrophoska	15-15-15	DMPP	Eurochem	NI 0.1%-	4200	5800-
狮马		Nitrification		0.08%		6600
		inhibitor NPK				
		fertilizer				
Agrotain	20-8-11	NBPT Urease	Koch	UI 0.1%-	4200	6600
		inhibitor NPK	Agronomic	0.08%		
		fertilizer	Services			
			Agrium			

Table S14: Various agricultural services and their pricings in Shandong province, 2014, with wheat and maize as an example.

Service item	Content	Market price	Cooperative	Farmers'
		(¥/mu)	price with	savings (¥/mu)
			discounts (¥/mu)	
Tillage	In spring and fall	70	55	15
Seed supply	Wheat 15kg/mu	80	65	15
	Maize 1.75kg/mu	50	35	15
Fertilizer supply	Wheat 50kg/mu	145	145	Formula
	Maize 50kg/mu	145	145	fertilizers
				require less N
				input, save 20
Apply fertilizer	Wheat	75	65	10
together with	Maize	35	30	5
seed				
Pest control	5 applications	105	90	15
Irrigation	3 applications	105	75	30
Harvest	Wheat	65	55	10
	Maize	65	55	10
Straw return	Maize	50	45	5
Drying	Dry the maize for	55	55	Increase quality
	farmers			save 45
Total		1045	915	195
Buying grain	Price is 4 cents/kg	higher than mark	tet price.	<u> </u>

References:

- Development Research Center (DRC) for the State Council of China and Shandong Supply and Marketing Cooperatives, 2015, Scale service and agricultural modernization: theory development and practices by Shandong supply and marketing cooperatives (in Chinese), China Development Press.
- (EOCSSB), E.O.o.C.S.S.B., 2016. China statistical year book, accessed of <u>http://www.stats.gov.cn/tjsj/ndsj/2016/indexch.htm</u>. China Statistical Publication House (in Chinese).
- Chen Xinping, W.L., Zhang Fusuo, 2016. Fertilizer use recommendations for China's three major crops in their typical agri-ecological zones (in Chinese). China Agricultural Press.
- Cui, Z., Wang, G., Yue, S., Wu, L., Zhang, W., Zhang, F., Chen, X., 2014. Closing the N-Use Efficiency Gap to Achieve Food and Environmental Security. Environmental Science & Technology 48, 5780-5787.
- Cui, Z., Yue, S., Wang, G., Meng, Q., Wu, L., Yang, Z., Zhang, Q., Li, S., Zhang, F., Chen, X., 2013. Closing the yield gap could reduce projected greenhouse gas emissions: a case study of maize production in China. Global Change Biology 19, 2467-2477.
- Wu, L., 2014a. Fertilizer recommendations for three major cereal crops based on regional fertilizer formula and site specific adjustment in China; doctoral thesis for the Department of Plant Nutrition in China Agricultural University.
- Wu, L., 2014b. Nitrogen fertilizer demand and greenhouse gas mitigation potential under nitrogen limiting conditions for Chinese agriculture production (doctoral thesis).Department of plant nutrition, China Agricultural University.

- Xia, L., Lam, S.K., Chen, D., Wang, J., Tang, Q., Yan, X., 2017. Can knowledge-based N management produce more staple grain with lower greenhouse gas emission and reactive nitrogen pollution? A meta-analysis. Global change biology 23, 1917-1925.
- Xia, L., Ti, C., Li, B., Xia, Y., Yan, X., 2016. Greenhouse gas emissions and reactive nitrogen releases during the life-cycles of staple food production in China and their mitigation potential. Science of the Total Environment 556, 116-125.
- Ying, H., Ye, Y., Cui, Z., Chen, X., 2017. Managing nitrogen for sustainable wheat production. Journal of Cleaner Production 162, 1308-1316.

Appendix for Chapter 3

Improving Air Quality and Nitrogen Use Efficiency in China via Cost-effective Agricultural Nitrogen Management

1. Agricultural NH₃ mitigation technologies and scenarios

1.1 Reduced N Application

This scenario describes appropriate and realistic N fertilizer use amount reduction for China's crops, vegetables and fruits. FAOSTAT shows that in China's N application rates in 2013 was 223 kgN/ha, higher than 79 kgN/ha in the U.S. and 195 kgN/ha in Netherlands. However, China's yields of cereal (5.9 t/ha), vegetables (23.9 t/ha), and fruits (excluding melons) (11.1 t/ha) are all significantly lower than U.S.'s and Netherland's yields of cereal (7.3 t/ha and 8.6t/ha), vegetable (32.6 t/ha and 57.1 t/ha), fruits (23.8 t/ha and 33.7 t/ha). In response to fertilizer N input, crops' yield will first increase and then flattens out after reaching a plateau (Zhang et al., 2015).

In case of enough excess N supply, yield even decreases (Wu, 2014). In-the-field experience shows that:

1) Over-application of N fertilizer will cause over-growing, ineffective/unproductive tiller and low earing rate for maize and rice, thus adversely affect grain absorption of nutrient in later growing stages. 2) Over application of N also causes over-growing of stems near root areas, making crops more susceptible to lodge thus adversely affects yield. 3) Over application of N results in rapid growth of crop and high cropland crown density, increasing the incidence of pest diseases and crop senescence (Ghorbani et al., 2010). 4) For maize, over application of N can inhibit root elongation thus hurt yield. Most farmers improperly apply all N fertilizers in one application, resulting in high nitrate levels near crop root areas adversely impacting growth of lateral roots. More detailed description of mechanisms can be found in Mi et al (2010) and references therein (Mi et al., 2010).

Controlled experiments find lowered yield at higher N application rates: 1) For rice, increase of N application rates from optimized levels to 150% of optimized levels cause a decrease of yield in all production regions (reference the columns called 'yield at MN' and 'yield at 150% MN' in Table 2 of Wu et al 2015 (Wu et al., 2015a)). 2) For maize, increase of N application rates from RNR to 150%RNR decreases yields (Table 1 in Gao et al (2012)(Gao et al., 2012))

Instead, optimized N fertilizer application (reducing N application rates accompanied with split application) has resulted in increased yield. For maize, recommended N application rates (Table 2 a column called N rate under regional N management approach N) are lower than farmers' average practices (Table 1 a column called 'N rate') in most regions yet grain yields under recommended practices are higher than conventional practice (Wu et al., 2014). In detail, the recommended practices include reduced N rate and split application, i.e. 'approximately onethird of the granular urea was applied by broadcasting at sowing, while the remainder was applied as a side-dressing at the six-leaf stage'.

In reality, farmers' N application rates vary substantially across individuals (e.g. 238 ± 107 kgN/ha across 523 maize farmers in North China Plain Region II, compared to recommended

rate of 177kg N/ha in (Wu et al., 2014)). It is important that both farmers who apply excess N and not sufficient N can adjust their application rates, which will lead to higher total yields.

Lastly, N fertilizer input is not linearly correlated with grain N intake for many reasons: Research finds that N absorption by above ground crop during maturity stage (N_m hereafter) can increase even if N application rates decrease, e.g. for rice in Northeastern China, when N application amount is optimized to 85-145kg N/ha, compared to the current farmers' practice of 77-185 kgN/ha, yield increases to 7.9-9.6 t/ha compared to current yield of 6-9.16t/ha. N absorption during maturity stage by above ground fraction increases to 95-115 kgN/ha, compared to current value of 80.2-112.5kgN/ha (Peng et al., 2006, 2007).

Crop need for nutrient is different across agroecological regions. Rice grown south of the Yantze River Basin absorbed more N during maturity stage, i.e. 135-196 kgN/ha yet the yield is lower, i.e. 7.2-7.6t/ha. This is because rice in northeastern China grows less leaves, have lower plant height, and experiences lower accumulated temperature than others (e.g. rice south of Yantze River), thus absorb less N to grow its above ground fraction during maturity stage (9).

Under similar N application levels, maize grown in Northeastern China can have higher yield, because of high organic matter content in soil, summer precipitation in synchrony with maize growing season, deep seeding with machinery. One research finds that due to these preferable conditions, even without N fertilizer application, maize, single cropped in Jilin province, has yield as high as 7.6t/ha. Optimized N application amount will increase yield to 9.8t/ha (Gao et al., 2012). In comparison, the North China Plains have wheat-maize rotation and has much

higher NH₃ emission volatilization rate at similar levels of N due to alkaline soils. In southwestern hilly maize fields, abundant precipitation concentrates in summer, resulting in a lot of N lost through leaching and runoff.

Yield N content does not increase linearly with yield. As maize yield increases, the amount of N needed per unit of maize decreases. Considering 6 ranges of grain yield (<7.5 Mg/ha, 7.5–9 Mg/ha, 9–10.5 Mg/ha, 10.5–12 Mg/ha, 12–13.5 Mg/ha and >13.5 Mg/ha), N uptake requirements per Mg grain yield were 19.8, 18.1, 17.4, 17.1, 17.0 and 16.9 kg respectively (Hou et al., 2012).

Reduced N Application scenario reduces N application for China's grain crops (wheat, maize and rice) to levels that optimize farmers' profit (Table S2) and for China's vegetables and fruits based on field experiment recommendations. We utilize data on current N application rates and crop yields from over 5000 large-scale household farm surveys conducted under National 948 Project (2003-Z53) and Agricultural Research Project (200803030) (Wu, 2014; Wu et al., 2014, 2015a; Chen Xinping, 2016) and data on recommended nitrogen application levels and yields derived statistical analysis of ~5500 controlled field experiments during 2005-2010 (Wu, 2014; Wu et al., 2014; Wu et al., 2014, 2015a; Chen Xinping, 2016). We reduce N use levels for vegetables and fruits are reduced following recommendations derived from field experiments (Dong et al.,; Hong et al., 2006; Wang et al., 2013; Feng, 2014; Shen, 2014; He et al., 2016; Zhao et al., 2017a).

1.2 Machine Application

This scenario describes increased machinery use during fertilizer application. China's machinery coverage rate is still relatively low. More than half of rice production regions, most maize production and some wheat production are dominated by hand application²⁶. The Chinese government set a policy target that by 2020 machinery use for fertilizer application will increase to 60%. Machine Application can place N fertilizers deeply near crop root areas and thus substantially reduce NH₃ losses to the air, i.e., by 35% for wheat and rice systems and by 70% for maize (Xia et al., 2016). Persuading farmers to use less N is difficult as risk-averse farmers will fear yield loss and changing behavior of millions of small farmers incur high transaction costs. In comparison, promoting machinery use appears more attractive to farmers because it is equipment upgrading and one machine rental center can serve all farmers in one village. Literature review shows that starter fertilizer and dressing machinery options exist in the Chinese market for major crops and vegetables, i.e., seed and starter fertilizer application machine, hand-push liquid fertilizer application machine, high ground-clearance dressing machine, etc (Chen et al., 2012).

In *Machine Application* scenario, we switch all hand broadcasting to machine application, except for rice production in hilly areas where machines are difficult to operate and fruit production where current N is already applied through deep placement.

1.3 Efficient Fertilizer

This scenario describes the use of controlled-release fertilizer and urease inhibitor fertilizer, both substantially reducing NH_3 emission rates by more than 50%. Controlled-release fertilizers are regular fertilizers that are coated, allowing nutrients to release gradually with time (Trenkel, 2010). Urease inhibitor fertilizers reduce hydrolysis rate of urea, prevent rapid accumulation of NH_4^+ , and thus reduce NH_3 emission (Trenkel, 2010). N use amount reduction and machine application both require change of farmer behavior, yet efficient fertilizers can easily be promoted by governmental subsidies and fertilizer seller marketing. In this scenario, reduced NH_3 emission rates are by crop type and by N application rates and presented in Table S19 based on reference (Xia et al., 2017).

1.4 Manure Management

This scenario depicts improved manure storage, manure spreading and animal feed. Each step of manure handling, i.e., feed N intake, animal housing, manure collection, composting, storage, treatment and spreading, is susceptible to N loss as NH₃. Animal housing and final disposal are two most important processes for N loss. For example, 39% of manure N is volatilized as NH₃ during housing and storage, amounting to 6.7 Tg NH₃-N emissions in 2010(Bai et al., 2016). Due to great variations in management across animal types and farms, and absence of systematic recommendation for manure handling. In manure management scenario, through acidifying manure to store and utilizing aerobic composting reactors, NH₃ emission rates during storage are reduced by 60% for all indoor animals. Other analyses have found that through injecting manure into land with specially-designed machines, NH₃ emission rate during spreading is reduced by ~80% (Cao et al., 2018).To conservatively estimate this potential, we assume that only 25% of

farms adopt this spreading of manure. Through using low-protein animal feed, N content of manure for chicken, cattle and pig decreases by 10%.

1.5 Combined

This scenario combines management improvements in the four scenarios described above. This means N fertilizer is applied at reduced rates, in the forms of new-efficient fertilizers and with machine. Animal housing, manure spreading and animal feed is also improved. This scenario provides an NH₃ emission reduction ceiling, demonstrating potentials of the several most realistic and easy-to-implement agricultural management improvements. NH₃ emission reduction through technologies combined is modeled by NH₃ emission model(Zhang et al., 2018). Because there is little experimentation with these combined results, we estimate that the lower rend of benefits would be the same as that achieved in *Reduced N Application* scenario and the higher end of benefits would be accumulative benefits from individual technologies.

The four individual NH₃-mitigating N management opportunities we proposed are easier-toimplement than other production-side technologies and demand-side dietary transitions. For example, we didn't include in our scenario we didn't include in our scenario such as applying water-soluble or liquid fertilizer together with irrigation water, and precision agriculture which provide guidance on how much N to apply during which crop growth period through detailed crop modeling (Chen et al., 2011), etc. In reality, many farmers in China spend considerable amount of time in off-farm jobs yet limited time farming. Reducing meat consumption, thus lower animal production, can reduce NH₃ emissions. It can be very difficult for Chinese consumers for now. Because it is only within the past decade that meat consumption has

195

increased due to increased household income. It is more difficult to change people's mind than to introduce people with new technologies, e.g. machinery, new-type of fertilizers, etc.

Even among the four individual management opportunities, some is easier than others. For example, improved manure management is easier to implement than all fertilizer application management, mainly because animal production in China is more industrialized than crop production. There're a few big monopolies of animal production companies who raise animals themselves but also contract with small animal farmers to collect their produce. It would incur much smaller transaction costs for the government to impose regulations on these larger producers and they can work with their contract farmers, compared to the government works with millions of small crop farmers.

2. NH₃ emission factors in NH₃ emission model by Zhang et al (2018)

Emission factors of NH₃ from fertilizer application is estimated as a function of soil pH, cation exchange capacity, fertilizer type, and application mode adapted from Bouwman et al. (2002) (Bouwman et al., 2002) (cf. Figure 4 of Zhang et al (2018)). The estimated NH₃ emission factors are in good agreement with an ensemble of measured emission factors in China from the literature with values ranging from 2.2% to 50.9% (cf. Figure 6 of Zhang et al. (2018)). The function of Bouwman et al. (2002), although is developed mainly based on NH₃ emission factor measurements in Europe and the US, generally captures the emission factor measurements in China, except for those for ammonium bicarbonate, which requires 70% increase to match the Chinese measurements.

Baseline NH₃ emissions in China in the year 2012 were 14 Tg NH₃, with 0.66 Tg emitted in January and 1.66 Tg emitted in July (Table 1). High NH₃ emissions in January occur in the North China Plain (612 kg/km²/month [Figure S1]) due to concentrated agricultural activities and alkaline soils susceptible to NH₃ volatilization. High NH₃ emission regions in July include central China, northeastern China and the North China Plain (rates as high as 1530 kg/km²/month) due to high summer temperatures and heavy fertilizer application.

3. Air quality simulation

We use the Weather Research and Forecasting – Chemistry (WRF-Chem) model v3.6.1 to simulate PM_{2.5} formation in the base case and in agricultural N management scenarios. WRF-Chem is an online-coupled meteorology-chemistry model widely used for air quality research (Gao et al., 2016; Qin et al., 2017). The chemical and physical schemes used are Carbon-Bond Mechanism Version Z (CBMZ) for gas-phase chemistry, 4-bin Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) for aerosol chemistry, the Rapid Radiative Transfer Model for General Circulation Models (RRTMG) scheme for shortwave and longwave radiation, the Morrison scheme for cloud microphysics (Morrison et al., 2005), the Yonsei University scheme for boundary layer parameterization (Hong et al., 2006), and the Noah land surface model for surface processes (Chen and Dudhia, 2001). Meteorological boundary conditions come every 6 hours from the 2012 National Centers for Environmental Prediction (NCEP) Final Analyses data. Chemical initial and boundary conditions are from a 2014 simulation of the global chemical transport model, Model for Ozone and Related Tracers Version 4 (MOZART-4). Anthropogenic emissions of air pollutants (except for NH₃) are from the Multi-resolution emission inventory for China (MEIC) (<u>http://www.meicmodel.org</u>)(Li et al., 2017) for the year 2012 and from HTAP (Hemispheric Transport of Air Pollutants) v2.2 outside China (Janssens-Maenhout et al., 2015) for the year 2010. Biogenic emissions are calculated online using the Model of Emissions of Gases and Aerosols from Nature (MEGAN) scheme (Guenther et al., 2006) and open biomass burning emissions are from Global Fire Emission Database version 4 (GFED v4, <u>www.globalfiredata.org) for the year 2012</u>.

We conduct 6 sets of simulations: one *Baseline* and five agricultural management scenarios. The only difference between the *Baseline* and management scenario simulations are modified NH₃ emissions due to various agricultural N management options. Each simulation set includes one month of simulation for January and one month of simulation for July (in all cases after six days of spin-up) for the year 2012. The model resolution is 27 km by 27 km with the domain covering China and parts of other Asian countries (9°N-58°N latitude, 60°E-156°E longitude). There are 37 vertical levels extending from the surface to 50hPa with an 18m deep surface layer. We turn off aerosol-radiation interactions (ARIs) to minimize the impact of aerosol concentration changes due to perturbations in boundary-layer meteorology. We keep aerosol-cloud interactions (ACIs) on. Our tests indicate that turning it off generates a large and uniform impact on PM_{2.5} concentrations in eastern China and because developments of ACIs in the model are more recent and less certain than ARIs we keep the indirect feedback on.

4. Evaluation of 2012 baseline NH₃(g) concentration

We conduct evaluations of modeled NH₃ concentration against satellite observations, i.e. modeled NH₃(g) concentration at 918hPa against AIRS (Atmospheric Infrared Sounder) satellite observation, and modeled column density of NH₃ (g) against IASI (Infrared Atmospheric Sounding Interferometer) satellite observation. Our NH₃ emission inventory provides reasonably good comparison over China in January and July of 2012. Our inventory outperforms MIX NH₃ inventory (the NH₃ emission inventory published in Kang et al (2016)(Kang et al., 2016) and Huang et al (2017) (Huang et al., 2012) and used in Liu et al (2019) and MIX inventory (Li et al., 2017)).

We run both WRF-chem and GEOS-chem (another well-known atmospheric chemistry model frequently used by atmospheric scientists) with NH₃ emissions from Zhang et al (Zhang et al., 2018, p. 3) (used in this study) and MIX NH₃ inventory (the NH₃ emission inventory published in Kang et al (2016)(Kang et al., 2016) and Huang et al (2017) (Huang et al., 2012)and used in Liu et al (2019)). We extracted modeled NH₃ concentration at 918hPa averaged over regions that AIRS satellite provides reliable observations (AIRS mask region, Figure S3). The AIRS observations are NH₃(g) concentration before smoothing through two-dimensional penalized least squares provided by Warner J.K.. Warner's paper provide AIRS observations that are after smoothing (Warner et al., 2016).

AIRS observation shows a strong summer-winter contrast of NH₃ concentration, which is better captured by NH₃ emission inventory used in this study. Zhang et al (2018) NH₃ outperforms MIX NH₃ especially in July, where both WRF-chem and GEOS-chem simulation with MIX NH₃ is -25%~-75% lower than AIRS observation yet both WRF-chem and GEOS-chem simulation with Zhang et al (2018) NH₃ is within 25% of AIRS observation (Figure S4 and Table S3).

We evaluate NH₃ column density simulated by WRF-chem using both Zhang et al (2018) NH₃ (this study) and MIX NH₃ emissions (published in Kang et al (2016) (Kang et al., 2016) and Huang et al (2017) (Huang et al., 2012)) against IASI observations for January and July of 2012 over China. We processed IASI column NH₃ density according to v2.2 instruction (Damme et al., 2017)²⁷. Only observations with relative error <100% are used and unweighted averages are used. IASI pixels are then mapped to closest WRF-chem grids (27km ×27km resolution, 9.0-57.6°N and 59.6-156.3°E domain) following two principals: 1) multiple pixels could be mapped to the same grid. 2) In this case, average values of IASI are used for comparison. WRF-chem grids and periods without valid IASI observations are removed.

We first compare daily values of mapped IASI data to WRF-chem simulation using two NH₃ emission inventories using orthogonal distance regression (Figure S5 and S6). We then compare monthly means of all valid daily mapped IASI and WRF-chem simulations (Figure S7 and S8). Overall Zhang et al (2018) NH₃ is much better than MIX NH₃. The correlation of IASI and WRF-chem simulation (regardless of which NH₃ emission inventory is used) is much worse in January than in July, probably due to large IASI uncertainty in winter.

5. Evaluation of 2012 baseline PM_{2.5} simulation

²⁷ <u>http://cds-espri.ipsl.fr/etherTypo/index.php?id=1730&L=1</u>

We evaluate modeled $PM_{2.5}$, ammonium (NH₄⁺,) nitrate (NO₃⁻) and sulfate (SO₄²⁻) concentrations during January and July of 2012 against as many published speciated PM observations during the same time period as possible, i.e., Beijing from (US Embassy at Beijing, 2012)(Sun et al., 2015), Shanghai (Wang et al., 2016), Xiamen, Quanzhou, Putian and Fuzhou (Wu et al., 2015b), Guangzhou (Lai et al., 2016), and Jinsha (Zhang et al., 2014). Observational sites mainly represent the North China Plain, Yantze-River Delta and coastal regions. Unfortunately, there is a lack of representation for inland China during wintertime. The WRF-Chem model well captures observations, especially in July (Figures S9 and S10). In July, modeled mean ammonium, nitrate, sulfate and PM_{2.5} concentrations averaged across eight sites are 3.4, 3.9, 7.1 and 33.4 μ g/m³, decently close to observations of 3.1, 2.7, 6.9 and 36.2 μ g/m³ (Figure S10). In January, modeled mean ammonium, nitrate, sulfate and PM_{2.5} concentrations averaged across six sites are 4.3, 8.1, 6.0 and 66.9 μ g/m³, compared to observations of 8.5, 10.1, 14.0 and 83.7 μ g/m³ (Figure S9). The model underestimation of sulfate in winter is prominent at four coastal sites in Fujian province, but barely noticeable in Beijing and Shanghai. In January at Beijing, modeled ammonium, nitrate, sulfate and PM_{2.5} concentrations are 6.9, 9.4, 10.5 and 174.9 μ g/m³, compared to observations of 6.9, 8.3, 10.2 and 175.3 μ g/m³. In January at Shanghai, modeled ammonium, nitrate, sulfate and PM_{2.5} concentrations are 7.5, 13.5, 9.6 and 93.4 μ g/m³, compared to observations of 7.5, 10.2, 11.6 and 53.1 μ g/m³. The fact that our model does not include the latest sulfate production mechanism – heterogeneous SO_2 oxidation at the surface of liquid aerosols, results in underestimation of sulfate. Model's underestimation at coastal sites originate from other factors such as models' flaws in simulating complex terrain geography and sea breeze as well as flaws in emission inventory in that region.

6. Health impacts of exposure to PM_{2.5}

We calculate premature mortality of four diseases due to exposure to $PM_{2.5}$ for adults (≥ 25 y old) in five agricultural nitrogen management scenarios. The four diseases considered are chronic obstructive pulmonary disease (COPD), lung cancer, ischemic heart disease (IHD) and ischemic stroke.

For each province in China, we calculate number of premature deaths of each disease based on

$$Mort_{i,P} = POP_P \times Mortbase_{i,P} \times (1 - \frac{1}{RR_{i,P}})$$

where *Mort*_{*i*,*P*} is the number of premature mortality in province P from disease *i*; *POP*_{*j*,*P*} is the number of exposed targeted population in province P considering adults (≥ 25 y old) in 2012 from 2013 China Statistical Yearbook and (All China Marketing Research Co. Ltd, 2014); *Mortbase*_{*i*,*P*} is the baseline mortality rate in province P for disease *i* in 2012 from Global Burden of Disease study (Burnett et al., 2014); *RR*_{*i*,*P*} is the relative risk factor for one disease *i* adopted from (Burnett et al., 2018). Relative risk factors for IHD and stroke are by age groups. There are 12 age groups considered, i.e. 25-29, 30-34, 35-39, 40-44, 45-49,50-54,55-59,60-64,65-69,70-74,75-79 and over 80 y old. Relative risk factors for lung cancer and COPD are the same for all people ≥ 25 y old.

7. Estimating co-benefits achieved in scenarios. We exclusively evaluate co-benefits generated through improved N management in grain crop (wheat, maize and rice) production. Benefits due to improved management in vegetable and fruit production are excluded, due to lack of data for reliable estimation.

We divide China's crop production into seven wheat production regions, thirteen maize regions and thirteen rice regions, following the definitions in (2).For each region, we obtain current N fertilizer use amount and yield for the base case from more than 5000 large-scale household farm surveys in 17 provinces conducted in 2008 and 2009 under the umbrella of national projects including 948 Project (2003-Z53) and Agricultural Research Project (200803030). Survey questionnaires were designed by China Agricultural University, researching farmers' fertilizer application timing, amount and fertilizer types. Surveys are conducted by 27 researchers in research institutions and local soil-fertilizer station agents. Two to three counties were picked from each province, three to five towns picked from each county, two to three villages picked in each town and eight to ten farmers picked from each village.

For each region, we obtain recommended reduced N use amount and corresponding yield for the *Reduced N Application* scenario using statistical analysis of nationwide field experiments (~2000 for wheat, ~2000 for maize, ~1500 for rice) conducted under 3141 Experiment Project by the Soil Testing and Fertilizer Prescription Program by Chinese Ministry of Agriculture during 2005-2010 (Wu, 2014).

These field experiments aim to test the effect of nitrogen fertilizer application levels on crop yields under a as much as possible controlled setting. Each experiment includes four sets of treatment: no N fertilizer application, an agent-recommended N application level, 50% of recommended N application level and 150% of recommended N application level. Agent-recommended N application levels were come up with by local agricultural technicians

depending on local soil tests and experiences, and recommended levels varied across plots. Management aims to stay consistent in all treatments of experiments: 1) urea is the selected N fertilizer to apply. 2) 1/3 N is applied as base fertilizer and 2/3 used as dressing. 3) Application of P fertilizers are all the same and there is no organic fertilizer added. 4) Seed varieties are determined by agronomists and chosen among seeds used by local farmers. During the experiments, farmers are in charge of daily management such as pest control and agricultural technicians are in charge of fertilizer application and testing yields.

Gathering experiment data of yields under various N application levels for each crop agroecological region, a curve estimating the relationship of yield with respect to N input is produced using statistical analysis. A N application level that optimizes farmers' net returns (yield sales minus N fertilizer purchase costs) is generated for each crop agroecological zone

For each region in the *Baseline* and *Reduced N Application* scenario, we then estimate emissions of NH₃, N₂O, NO₃-leaching and NO₃-runoff based on N use amounts using statistical relationships built from field measurements (Cui et al., 2013, 2014)

For each region, we estimate Nr emissions and crop yields in the *Machine Application* and *Efficient Fertilizer* scenarios through scaling the *Baseline* Nr emissions and yields by management-specific factors which represent the effect of technology on yield and Nr emissions. These factors are obtained from a meta-analysis of field experiments (Xia et al., 2017). For each region, we estimate Nr emissions in the *Combined* scenario by scaling emissions in the *Reduced N Application* scenario with management technology impact factors (Xia et al., 2017).

We estimate life-cycle greenhouse gas emissions (CH_4 , N_2O , and CO_2) during nitrogenous fertilizer manufacture, transport, application and postapplication using the reported value of 13.5 tons CO₂-eq GHGs (including N₂O, CH₄ and CO₂ with GWP at 100-yr time scale) emitted per ton of N fertilizer consumed in China (Zhang et al., 2013). Zhang et al (2013) used 'a life cycle assessment approach to estimate GHG emissions due to the main components of the N fertilizer chain in China, primarily using Chinese-specific parameters rather than IPCC tier 1 default values. GHGs during fossil fuel mining are estimated using two published literatures. GHGs during ammonia synthesis are estimated using surveys of 230 fertilizer companies conducted by Chinese Nitrogen Fertilizer Industry Association. GHGs during fertilizer manufacture are estimated using specific energy consumption rate of each fertilizer product from surveys and a literature. GHGs during transporting energy and N fertilizer products are estimated using average transportation distances by train and truck for coal, crude oil and N fertilizer from China's national statistics 2) estimate multiplied and GHG emission factors of these processes from IPCC.' Regarding N₂O emission from post-application, Zhang et al (2013) 'discriminated between upland fields and paddy fields, analyzed published field measurements in China (a total of 853) through meta-analysis method and estimated direct and indirect N₂O emission factors for these two field types.'

For crop system NUE calculations, we utilize N content in crop yield (Bouwman et al., 2005, pp. 1970–2030), N biological fixation and deposition (Zhao et al., 2017b), N manure production

(Zhang et al., 2018) and N in irrigation water (estimated from irrigation water use and observed N content at surface waters at observational sites) (Gu et al., 2015).

We then aggregate all crop regional estimates to obtain national total values by using crop planting areas listed in the 2009 China Statistical Yearbook.

The *Manure Management* scenario includes two technologies that reduce manure N loss to water. One technology is improved animal feed applied to cattle, pig and chicken husbandry. This technology reduces manure N content from these animals by 10%. We assume that N loss to water from these animals will be proportionally reduced by 10%. *Baseline* manure N loss to water from cattle, pig and chicken husbandry is estimated to be 10 Tg, using N loss to water from all animal manure in China in 2010 (i.e. 12 Tg) (Bai et al., 2018) and a ratio of 5/6 which is the relative contribution of cattle, pig and chicken manure to livestock total N loss to the environment (Bai et al., 2016). The other technology is composting reactors applied to pig farms. This technology reduces N loss to water during manure is 1.5 Tg, using N loss to water from all animal manure in China in 2010 (i.e. 12 Tg), a ratio of ~50% which is the contribution of manure storage among all manure handling stages to total N loss to the environment (Bai et al., 2016), and a ratio of ¼ which is the contribution of pigs among all animal types to total N loss to water (Bai et al., 2016).

8. Estimating benefits in monetary terms

We translate increased yield, mitigated greenhouse gas and mitigated reactive nitrogen pollution (including NH₃, N₂O and NO₃-leaching and runoff) into economic monetary values.

For one crop in one agri-ecological zone, we conduct the following benefit calculation:

$$Benefit = P_{crop} \cdot \Delta Yield - P_{fert} \cdot \Delta Q_N - DCost_{GHGs} \cdot LCE_{GHGs} \cdot \Delta Q_N - DCost_{N20} \cdot \Delta E_{N20} - DCost_{N03} \cdot \Delta E_{N03}$$
(1)

where ΔQ_N is the amount of N fertilizer application reduction compared to the baseline, $\Delta Yield$ is the difference between crop yield in scenario compared to the baseline, P_{crop} is grain wholesale price for the year 2012 (Chinese NDRC (national development and reform council), 2016), i.e. 2.76/kg for rice, 2.33/kg for wheat and 1.88/kg for maize. Pfert is fertilizer prices (Xia et al., 2017), i.e. urea price of $4 \text{ } \text{ } \text{kg}^{-1}$ N. *DCost_{CO2}* is the social cost of carbon – we use the price of CO₂-eq of 20.4 dollars per tonne for European market in 2008 (Schiermeier, 2009) as well as prices of 10, 30, 40 and 50 dollars per tonne to represent to highly uncertain nature of the social cost of carbon. LCE_{CO2} is life-cycle emission of GHGs during the production, transportation and application, i.e. 13.5 tons CO₂-eq GHGs per ton of N fertilizer consumed in China (Zhang et al., 2013). ΔE_{N20} and ΔE_{N03} are the change of Nr emissions in scenario compared to baseline. *DCost_{NO3-leaching}* is damage costs (including global warming, health, eutrophication, and acidification) of reactive nitrogen species (Gu et al., 2012; Ying et al., 2017). $DCost_{N2O}$ is damage cost of N₂O on public health through depleting stratospheric ozone, as the warming effect already taken into consideration in the GHG damage cost calculation. A currency conversion rate of 1USD=0.14¥ is used when needed.

We use the value of statistical life (VSL) to calculate economic effect of lives saved from reduced exposure to PM_{2.5}. The VSL estimates vary among countries and income groups and introduces controversies of judging value of lives. We use the value of 0.86 million Chinese Yuan, equivalent to 0.124 million USD (Xu et al.,). We also provide a range of economic values using two more estimates of Chinese VSL providing lower (0.09 million USD)(Nielsen and Ho,) and higher (0.25 million USD) (Xie, 2011) range.

9. Estimating costs of improving agricultural nitrogen management

Reduced N Application scenario

There's no additional cost associated with reduction of N application. Farmers' phycological cost of changing practices are difficult and excluded in this analysis.

Machine Application scenario

We calculate machine rental prices and labor savings if 60% of China's cropland (currently not fertilized with machines) can be fertilized with machine application instead of hand application. We estimate that machine application, compared to hand application, increases time efficiency of N fertilizer application by 2.25-7.5h/ha. The range represents variations across crop types, plot sizes and different levels of farmers' experience with hand application. Using provincial labor cost, we calculate labor savings for each agroecological region. We estimate that machine rental cost ranges 180 -560 ¥/ha. We estimate that 60% of cropland has the potential to be fertilized with machine, excluding around 30% which has already been dominated by machine and 10% hilly area not suitable for machine to operate. We exclude calculating upfront cost of purchasing

new machines assuming current machine rental centers at township and county levels as well as machine leasing among villagers are sufficient.

Efficient Fertilizer scenario

We calculate fertilizer purchase expenditure change when farmers shift from purchasing conventional fertilizers (e.g. urea) to controlled-release and urease inhibitor fertilizers(Xia et al., 2017). We use coated CRF with prices varying ± 5.6 -7.2/kg N and NBPT urease inhibitor applied at 1200mg/kg urea ("Abstract: Interaction of NBPT with Two Nitrification Inhibitors on Multiple Soils. (ASA, CSSA and SSSA International Annual Meetings (2016)),") at a price of 100 \pm kg⁻¹.

Manure Management scenario

A composting reactor which is suitable for a pig farm of 10000 heads incurs an upfront cost of ¥1500k. Varying the lifetime between 20-50yr and discount rate at 2%, 4% and 15%, we estimate the annual equipment cost varying between ¥47.7 k to 240 k/annum. Annual operational costs include electricity bill and labor cost. Electricity consumption costs ¥15k/annum. Labor which helps add manure and collect organic fertilizer costs ¥30 k/annum. Annual organic fertilizer production is 400-600t, assumed sold at a medium price of ¥300/tonne with a possible lower price of ¥200/tonne and higher price of ¥1000/tonne.

We scale estimate above to all pig farms, given China raised 476 million heads of pigs in 2012 (National Bureau of Statistics of the People's Republic of China, 2012). Since pig manure accounts for only 1/6 of all animal manures (Wang et al., 2018) and grazing animal manure v.s.

indoor animal manure is around 1:5(Wang et al., 2018), we estimate total cost through scaling up the costs of composters applied to pig to all indoor animals.

The upfront cost of a manure deep-placement machine is ¥10k. For a pig farm of 5000 heads, we assume manure urine N replaces 25% of nitrogenous fertilizers. These deep-placed N help serve N fertilizer needed by 11000ha of wheat/maize rotation systems, worthy of ¥8.71 million N fertilizer purchase expenditures. Cost information is provided by Lin Ma who commercialized the reactor and published in (Cao et al., 2018).So, manure injection machines in the long term generate net economic benefits which outweigh the upfront costs.

Low-protein animal feed should sell at a lower price than conventional feed, ideally generating animal feed purchase savings.

Combined scenario

We calculate fertilizer purchase expenditure in this scenario using reduced nitrogen application rates and prices of new-efficient fertilizers. We add to that costs for machine use and manure management.

10. Uncertainties and constraints

10.1 Sensitivity of air quality and public health benefits to uncertainties in NH₃ emissions in China.

Among more recent NH₃ emission inventories constructed for China, the lowest estimate is 10Tg/a by Huang et al (2017) and the highest estimate 17Tg/a by Gu et al (2015) (Gu et al., 2015), compared to 14Tg/a by Zhang et al (2018) which is used in this study. Perturbing (increase and decrease) our current NH₃ emission by 20% roughly exhausts the lower and higher bounds of existing NH₃ emission inventory estimations.

We first constructed two new 'perturbed' baselines – one with NH₃ emissions that are 20% higher than standard baseline (referred as 1.2NH₃base hereafter) and one with NH₃ emissions 20% lower than standard baseline (referred as 0.8NH₃base hereafter). On top of each new baseline, we constructed NH₃ emissions when all technologies are combined, by assuming NH₃ emission reduction achieved in percentage for each grid is the same as that achieved in *Combined* scenario compared to standard baseline. We conducted WRF-chem simulations for January and July of 2012.

Figure S15 shows the SIA reduction achieved in current All Combined scenario (first column), that achieved in All_combined_1.2NH₃base scenario if baseline NH₃ should be 1.2 times of Zhang et al (2018)'s estimate and that achieved in All_combined_0.8NH₃base scenario if baseline NH₃ should be 0.8 times of Zhang et al (2018)'s estimate. Figure S15 shows that SIA reduction (in ug/m³) through implementing all N management technologies combined are similar even if baseline NH₃ emission estimate is 20% higher or lower than that estimated by Zhang et al (2018).

These results, surprising and interesting, make sense. To note, even though the same percentage NH₃ reduction for each grid are imposed on standard NH₃ emissions, 1.2NH₃base and 0.8NH₃base, the absolute NH₃ emission reduction achieved in All_combined_0.8NH₃base (All_combined_1.2NH₃base) is 20% lower (higher) than that in All_combined. However, since the SIA reduction achieved are similar across All_combined_0.8NH₃base, All_combined, and All_combined_1.2NH₃base, the SIA reduction per unit NH₃ emission reduced probably increased by 40 – 50% when we changed from All_combined_0.8NH₃base to All_combined_1.2NH₃base. This indicates that the simulation shifted from a NH₃-rich regime to a NH₃-limited regime when NH₃ emissions changed from 120% of the baseline to 80% of the baseline.

We also calculated the avoided mortalities due to reduced $PM_{2.5}$ exposure if all nitrogen management technologies are combinedly implemented. Avoided mortalities are 30437 persons with current baseline, 27424 persons if NH₃ emissions are actually 20% higher than the current, and 30659 persons if NH₃ emissions are actually 20% lower than the current. Across the full range of uncertainties for NH₃ emission inventory, the range of public health benefits are around -10%~+0.7% of current results.

10.2 Air Quality Modeling Uncertainties

Uncertainties exist in the WRF-Chem simulations for estimating PM_{2.5} concentration changes. Here we turn off aerosol-radiation interactions (ARIs) and keep the aerosol-cloud interactions (ACIs) on. Our model's dust emission is calculated online and is sensitive to surface wind speed which would be affected by background aerosol concentrations if we turn on ARIs in the simulations. Although the best case is to fully turn off both ARIs and ACIs, given the scientific community's knowledge about ACIs is a lot less than ARIs, and our test of turning off ACIs gives a significant and geographically wide-spread effect on SIA concentrations in eastern China, we decided to keep ACIs on in the model as it is. In reality, when NH₃ emission reduction happens, changed aerosol concentrations will affect meteorology which may in return affect distribution and production of air pollutants.

Although our model captures observed speciated $PM_{2.5}$ concentrations in regions, current model chemistry does not include the most updated sulfate aerosol pathways, which may result in underestimation of sulfate and overestimation of nitrate in wintertime under meteorological conditions unfavorable for dispersion of pollutants. The absence of the most recent aerosol formation mechanism is not uncommon in most atmospheric chemistry models. Models include classic O₃/H₂O₂/OH oxidation pathways for producing sulfate aerosol, but not heterogeneous reactions on surfaces of particles including oxidation by NO₂ in aerosol water, through transition metal ions as catalysis, and by criegee intermediates (sCl) (21-22).

10.3 Co-benefits Analysis Uncertainties

Our agricultural analysis, although helpful in illustrating the magnitude of co-benefits achieved through implementation of NH₃ emission reduction technologies, is based on data with uncertainties. For example, in field experiments with reduced N application rates, scientists do provide farmers instructions on crop variety selection and pest control timing and frequencies. Although those instructions are consistent across experiments within agroecological region and across all nitrogen application rates, this advice could alter farmer practices for both baseline and reduced application rates compared to nonexperimental conditions. In addition, statistical relationships we use that relate Nr emissions to N application rates, although they differ by crop type and crop region, cannot by itself factor in some dependence of emissions on localized practices at atmospheric chemistry model grid level.

When estimating yield and N flows to demonstrate co-benefit achieved, we utilized a number of data sources (i.e., yields in field experiments, technological impact factors, statistical Nr emission models (see Methods)), conducted estimations at crop region levels and aggregated them to national values. Uncertainties of this bottom-up approach includes regional representation of yields and N use, accuracy of planting area statistics, lack of representation of localized-climate and soil conditions in Nr emission model, etc. However, when calculating the differences between scenarios and baseline, these terms should cancel out. We believe this approach is sufficient to demonstrate the magnitude of various co-benefits achieved.

Our baseline calculations are comparable to other published work. For example, we estimate crop N₂O emission is 0.11Tg N, together with animal N₂O emission of 0.3 Tg N reported in (Bai et al., 2018), close to the value of 0.4Tg N of total N₂O emission (Cui et al., 2013). Our annual yield estimation (550 million t) are close to, although slightly higher than, yield (496 million t) reported in China Statistical Yearbook for the year 2010. The discrepancy occurs probably because our yield data represent the average of a three-year time period (2008-2010). Climate change and water supply are important yield-affecting factors which are excluded from this analysis. A few climate indicators have observed to have changed over time (Piao et al., 2010): 1) **Temperature.** 'China's overall mean annual temperature has significantly increased over the past five decades. The largest warming is found in northeastern China with a trend of 0.36 °C per decade, and Inner Mongolia, with 0.4 °C per decade. The smallest warming trend is found over southwest China with a trend of 0.15 °C per decade.' 2) **Precipitation.** Agricultural crop production in middle and northeastern China is observed to experience an increase in drought from 1960 to 2005, yet grassland in northwestern China is observed to experience a decrease in drought. Overall within China annual number of rain days have decreased. 3) **River runoff.** Among the two major rivers, the Yangtze River shows a small and statistically insignificant increase in glacier mass has been observed, resulting in increased local runoff. 4) **Pest diseases.** Partially induced by climate change, cropland area exposed to crop diseases and insect pests have constantly increased by 250% from 1971 to 2007.

Climate change can increase crop yield through enhanced CO₂ fertilization and decreases crop yield through increased heat waves and droughts and decreased precipitation. One research using crop model estimates that climate change overall will increase crop yield of rainfed and irrigated rice by 3% and wheat by 15% and rainfed maize by 10%, yet decrease crop yield of irrigated maize by 1% in the 2020s in China (Piao et al., 2010). Excluding the CO₂ fertilization effect, yields of grain crops (rice, wheat and maize) can decrease by 5-20% in the 2020s (the range is projections made under different future emission change scenarios) (Piao et al., 2010). Another

crop and climate model research estimates a 37% decrease of crop yield from climate change without CO₂ fertilization effect (Erda Lin et al., 2005).

Despite these estimations, the magnitude of CO_2 fertilization effect on crop yields is still debated. One research finds that CO_2 level above 450ppm would have an adverse effect on grain quality. There is also contrasting research conclusion on the impact of temperature increase on crop yield – one research estimates 9.8% and 3.2% increase of crop yield for wheat and maize in China by 2090s considering purely impacts of climate warming (with CO_2 fertilization effect excluded). This is because high temperature positively affects crop's water use efficiency and thus yield (Erda Lin et al., 2005).

Uncertain climate model projection of rainfall because of imperfect simulation of clouds in climate model further complicates projecting future crop yield. Also, current crop model excludes the impacts of environmental forcers such as ground-level ozone exposure (which hurts crop yields), decrease of glacial water supply (which hurts crop yields), etc in its crop yield estimation.

Since overall climate change and water supply change is likely to decrease crop yield, this makes the development of agro-technology such as nitrogen management, planting techniques (better seed variety, appropriate planting density), etc even more necessary to secure global food supply.

ıt
st)
2014),
Zhou,
ole
ato
el
except
ch uses
NH ₃
by 58%

Table S1 Detailed descriptions of NH_3 mitigation scenarios.

Manure Management	During manure storage, acidification of manure and anaerobic composting
	reactors are used for all indoor animals, reducing NH3 emission rates during
	storage by 60%.
	During manure spreading, 25% of stored manure from indoor animals is
	applied deep below the surface to cropland using specialized machines,
	reducing NH ₃ emissions by 80% per hectare compared to surface application.
	Low-protein animal feed replaces conventional animal feed which includes
	more protein-N than chicken, cattle and pigs need. This results in a 10%
	decrease in N content of manure from these animals.
Combined	N application rates for grain crops, fruits and vegetables are reduced as in
	Reduced N Application scenario. These N are in applied in forms of new-
	efficient fertilizers as in Efficient Fertilizer scenario and placed deeply in
	cropland as in Machine Application scenario. Manure management is also
	improved as in Manure Management scenario.

Table S2 Current and recommended N fertilizer use amount, corresponding yield levels and N application reduction ratio for different production regions of wheat, maize and rice in China. SR, LR and ER are short for single rice cropping, late rice and early rice, respectively.

			Current		Yield under	
				Farmers'		
			yield		Farmers'	
		Current N		Profit		Recommended
	production		(Mg/ha)		Profit	
Crop		use amount		Maximization		N use amount
	region				Maximization	
		(kg N/ha/a)		N use amount		reduction
					N use amount	
				(kg N/ha/a)		
					(Mg/ha)	

	NW2	198	4.83	171	6.40	13.6%
	NE	134	4.58	99	4.80	26.1%
	NW1	206	4.60	161	5.59	21.8%
wheat	NCP1	240	6.75	179	6.78	25.4%
	NCP2	200	6.08	193	6.73	3.5%
	YR	200	5.15	184	5.84	8.0%
-	SW	144	3.88	131	4.45	9.0%
	NW1	234	6.93	181	8.13	22.6%
	NE2	201	9.03	150	9.18	25.4%
	NE1	156	8.59	150	8.85	3.8%
	NE3	226	8.80	164	9.01	27.4%
	NE4	205	8.68	188	8.76	8.3%
	NW2	246	8.22	176	10.38	28.5%
maize	SW2	234	7.15	219	9.83	6.4%
	NCP1	206	7.68	178	8.13	13.6%
	NCP2	217	7.14	177	8.37	18.4%
	SW1	257	5.41	174	7.46	32.3%
	SW2	232	5.36	183	7.71	21.1%
-	SW3	272	5.59	186	8.10	31.6%
-	NW3	234	7.15	221	10.33	
	NE1_SR	131	7.60	114	7.78	13.0%
	NE2_SR	163	8.07	155	8.90	4.9%
rice	UYR_SR	199	7.07	163	8.40	18.1%
	MYR_ER	197	6.66	167	6.75	15.2%
-	MYR_LR	193	6.94	170	7.10	11.9%

MYR_SR	206	7.05	172	7.88	16.5%
LYR_SR	316	7.61	224	8.97	29.1%
SC1_ER	206	7.00	162	7.03	21.4%
SC1_LR	212	6.85	162	6.95	23.6%
SC1_SR	223	7.43	171	8.14	23.3%
SC2_ER	217	6.54	163	6.69	24.9%
SC2_LR	244	6.47	164	6.70	32.8%
SW_SR	203	7.10	162	7.13	20.2%
	LYR_SR SC1_ER SC1_LR SC1_SR SC2_ER SC2_LR	LYR_SR 316 SC1_ER 206 SC1_LR 212 SC1_SR 223 SC2_ER 217 SC2_LR 244	LYR_SR 316 7.61 SC1_ER 206 7.00 SC1_LR 212 6.85 SC1_SR 223 7.43 SC2_ER 217 6.54 SC2_LR 244 6.47	LYR_SR 316 7.61 224 SC1_ER 206 7.00 162 SC1_LR 212 6.85 162 SC1_SR 223 7.43 171 SC2_ER 217 6.54 163 SC2_LR 244 6.47 164	LYR_SR 316 7.61 224 8.97 SC1_ER 206 7.00 162 7.03 SC1_LR 212 6.85 162 6.95 SC1_SR 223 7.43 171 8.14 SC2_ER 217 6.54 163 6.69 SC2_LR 244 6.47 164 6.70

Table S3: Monthly mean NH₃ concentrations (ppbv) at 918hPa observed by AIRS and simulated by WRF-Chem and GEOS-Chem with NH₃ emissions by Zhang et al (2018) and with MIX NH₃ emissions (Kang et al (2016)(Kang et al., 2016); Huang et al (2017) (Huang et al., 2012)).

NH ₃ cond	centration at 918hPa (ppbv) over AIRS mask	January of	July of 2012
		2012	
Satellite	AIRS observations before smoothed by using two-	1.57	5.76
	dimensional penalized least squares (Warner et al. (2017)		
	(Warner et al., 2016))		
Model	WRF-Chem simulation using Zhang et al (2018) NH ₃	0.62	6.35
	WRF-Chem simulation using MIX NH ₃	0.96	2.98
	GEOS-Chem simulation using Zhang et al (2018) NH ₃	0.53	4.61
	GEOS-Chem simulation using MIX NH ₃	0.51	2.48

Table S4: Evaluation of modeled daily SNA concentrations in Beijing against observations provided by (Chen et al, 2015) in January and July of 2012.

Variables	Pairs of data	Obs	Model	Mean bias	R	IOA*
		(ug/m^3)	(ug/m ³)	(ug/m ³)		
SO ₄ (January)	29	10.27	10.94	0.66	0.69	0.78
NO ₃ (January)	29	8.43	9.96	1.53	0.59	0.67
NH ₄ (January)	29	7.05	7.12	0.08	0.68	0.81
SO ₄ (July)	29	14.92	14.50	-0.42	0.25	0.52
NO ₃ (July)	29	12.16	13.66	1.49	0.15	0.44
NH ₄ (July)	29	8.60	9.41	0.81	0.19	0.51

*Index of agreement (IOA) was proposed by Willmott et al 1981 On the validation of models *Phys.*

Geogr. 2(2) 184-194

Table S5: Evaluation of modeled hourly PM_{2.5} concentrations in Beijing, Shanghai, Guangzhou and Chengdu against U.S. embassy observations in January and July of 2012.

PM _{2.5}	Pairs of data	Obs	Model	Mean bias	R	IOA ¹
		(ug/m ³)	(ug/m ³)	(ug/m^3)		
Beijing (January)	670	118.92	112.07	-6.85	0.72	0.81
Shanghai (January)	740	64.44	62.28	-2.16	0.50	0.70
Guangzhou (January)	82	80.16	66.53	-13.62	0.29	0.49
Beijing (July)	688	80.65	70.16	-10.49	0.52	0.69
Shanghai (July)	737	26.73	29.27	2.54	0.81	0.89
Guangzhou (July)	740	29.46	22.97	-6.50	0.46	0.65
Chengdu (July) ²	729	59.03	55.28	-3.75	0.70	0.84

¹Index of agreement (IOA) was proposed by Willmott et al 1981 On the validation of models *Phys.*

Geogr. 2(2) 184-194

² A comparison for Chengdu in January is not available due to too many invalid observations there.

Table S6 Avoided deaths (mean, low and high estimates with 95% confidence interval) from diseases due to reduced exposure to PM_{2.5} as a result of implementing agricultural nitrogen management.

Avoided deaths from	Reduced N	Machine	Efficient	Manure	Combined
diseases due to	Application	Application	Fertilizer	Management	.
exposure to PM _{2.5}					
(persons)					
COPD_mean	1,536	1,249	2,378	2,644	8,261
LC_mean	996	907	1,495	1,510	5,200
IHD_mean	2,061	2,101	3,258	3,112	11,414
Stroke_mean	1,037	1,015	1,572	1,496	5,562
Sum_mean	5,630	5,272	8,703	8,761	30,437
COPD_low	895	735	1,401	1,508	4,807
LC_low	722	664	1,098	1,073	3,773
IHD_low	1,386	1,438	2,214	2,095	7,781
Stroke_low	367	381	570	517	2,049
Sum_low	3,370	3,219	5,284	5,193	18,410
COPD_high	1,881	1,514	2,881	3,308	10,133
LC_high	1,140	1,028	1,687	1,762	5,947
IHD_high	2,618	2,642	4,121	3,980	14,471
Stroke_high	1,742	1,678	2,616	2,568	9,307
Sum_high	7,381	6,861	11,306	11,618	39,858

Table S7: Avoided deaths (mean, low and high estimates with 95% confidence interval) from diseases due to reduced exposure to PM_{2.5} as a result of implementing all agricultural nitrogen management combined for current NH₃ emission inventory and two perturbed NH₃ emission inventories.

Type of	Disease		All_combined_1.2NH ₃ bas	
estimate	Туре	All_combined	e	All_Combined_0.8NH ₃ base
Medium	COPD	8261	7505	8230
estimate	LC	5200	4680	5231
	IHD	11414	10271	11604
	Stroke	5562	4968	5595
	Sum	30437	27424	30659
Lower	COPD	4807	4370	4770
estimate	LC	3773	3394	3780
	IHD	7781	7029	7927
	Stroke	2049	1849	2070
	Sum	18410	16642	18546
Higher	COPD	10133	9201	10136
estimate	LC	5947	5354	6004
	IHD	14471	13017	14721
	Stroke	9307	8320	9388
	Sum	39858	35892	40248

Yield (million	Baseline	Reduced N	Machine	Efficient	Manure	
tonne)			Application	Application	Fertilizer	Management	Combined
Crop	Wheat	132551	147170	143657	140750	132551	147170
Туре	Maize	214450	240399	232155	226635	214450	240399
	Rice	203213	214921	217228	218845	203213	214921
	Sum	550214	602490	593041	586230	550214	602490

Table S8 Grain yield (wheat, maize, rice and sum) in baseline and five nitrogen agricultural management scenarios.

Table S9 Crop yield, crop Nr emissions (N₂O, NO₃-leaching and runoff), crop NUE, crop GHG emission, as well as N loss to water, GHG and N₂O emission from animal production in baseline and management scenarios. All values are China's national total values. Statistics for crop are calculated summing up wheat, maize and rice, excluding vegetables and fruits due to lack of data.

Environ	mental and economic	Baselin	Reduced N	Machine	Efficient	Manure	
indicato	indicators		Application	Applicatio	Fertilizer	Manageme	Combine
				п		nt	d
Crop	Yield (million tonne)	550	602	593	586	550	602
system	N ₂ O emission (Tg N)	0.11	0.09	0.10	0.07	0.11	0.06
	NO ₃ -leaching (Tg N)	1.62	1.16	1.62	1.39	1.62	1.00
	NO ₃ -runoff (Tg N)	0.26	0.20	0.26	0.19	0.26	0.12
	NUE	38%	48%	41%	41%	38%	48%
	Lifecycle greenhouse	223	185	223	223	223	185
	gas emissions						
	(GHGs) due to						

	fertilizer						
	manufacture,						
	transport and use						
	(Mega tonne CO ₂ -eq)						
Animal	N ₂ O emission (Tg N)	0.3	0.3	0.3	0.3	0.3	0.3
system	N loss to water (Tg	12	12	12	12	9.5	9.5
	N)						

Table S10 Co-benefits (in absolute amount and relative percentage compared to baseline levels) of yield, Nr loss, NUE, and greenhouse gas emissions due to fertilizer consumption achieved in management scenarios.

Types o	f co-benefit	Reduced N	Machine	Efficient	Manure	Combined
		Application	Application	Fertilizer	Management	
Crop	Yield increase	52 (9%)	43 (8%)	36 (7%)	0	52 (9%)
system	(million tonne)					
	N ₂ O emission	0.02 (18%)	0.01 (9%)	0.04 (36%)	0	0.05 (50%)
	reduction (Tg	and	and	and		and 23.5
	N)	9.4	4.7	18.8		
	and GHG					
	reduction					
	(Mega tonne					
	CO ₂ -eq)					
	NO ₃ -leaching	0.46 (28%)	0	0.23 (14%)	0	0.62 (38%)
	reduction (Tg					
	N)					

	NO ₃ -runoff	0.06 (23%)	0	0.07 (27%)	0	0.14 (56%)
	reduction (Tg					
	N)					
	NUE	0.10 (26%)	0.03 (8%)	0.03 (8%)	0	0.10 (26%)
	GHGs	38 (17%)	0	0	0	38 (17%)
	reduction due to					
	reduced N					
	fertilizer					
	consumption					
	(Mega tonne					
	CO ₂ -eq)					
Animal	N loss to water	0	0	0	2.5 (21%)	2.5 (21%)
system	reduction (Tg					
	N)					

Table S11 Low estimate of economic benefits & costs calculated for different agricultural control

scenarios

(US\$ billions/year) and value of economic parameters used.

	Reduced					
	N	Machine		Manure		
	Applicati	applicati	Efficient	manageme		Economic
Metrics	on	on	fertilizer	nt	Combined	parameters used
Value of lives						
saved from						Value of statistical
PM _{2.5} air	0.51	0.47	0.78	0.79	2.74	life

						0.09 million
pollution						
related deaths						USD/reduced
						person mortality
Reduced social						
cost of carbon						Social cost of
(CO ₂ -eq)						carbon
emissions	0.38	0.08	0.14	0	0.38	10\$/tonne CO ₂ -eq
						Differences in time
						efficiencies of
						Machine
						Application and
						hand application
Labor savings	0	0.2	0	0	0.2	2.5h/ha
Organic						
fertilizer sales	0	0	0	2.74	2.74	
						Fertilizer
						application
						machine rental
						price 20¥ ha ⁻¹
Estimated						Composting reactor
costs for						lifetime 50yr
improving N						Discount rate 2%
management						Organic fertilizer
(this study)	0	1.31	2.75	-16.2	-12.4	sale price 1000¥ t ⁻¹

Table S12 Medium estimate of economic benefits & costs calculated for different agricultural control scenarios

Reduced NMachine Manure Applicati applicati Efficient manageme Economic Metrics fertilizer Combined parameters used on on nt Value of lives Value of statistical saved from life PM2.5 air 0.0124 million pollution USD/reduced related deaths 0.70 0.65 1.08 1.08 3.77 person mortality Social costs of Reduced social carbon cost of carbon 20.4 \$/tonne CO2-(CO₂-eq) eq (Schiermeier, emissions 0.76 0.16 0.28 0 0.76 2009) Differences in time efficiencies of Machine Application and hand application Labor savings 0 0.45 0 0 0.45 4h/ha Organic fertilizer sales 0 0 0 5.14 5.14

(\$USD billions/year) and value of economic parameters used.

						Fertilizer
						application
						machine rental
						price 40¥ ha ⁻¹
Estimated						Composting reactor
costs for						lifetime 20yr
improving N						Discount rate 4%
management						Organic fertilizer
(this study)	0	3.92	4.09	0.01	8.02	sale price 300¥ t ⁻¹

Table S13 High estimate of economic benefits & costs calculated for different agricultural control

scenarios

(\$USD billions/year) and value of economic parameters used.

	Reduced					
	Ν	Machine		Manure		
	Applicati	applicati	Efficient	manageme		Economic
Metrics	on	on	fertilizer	nt	Combined	parameters used
Value of lives						Value of statistical
saved from						life
PM2.5 air						0.25 million
pollution						US\$/reduced
related deaths	1.41	1.32	2.18	2.19	7.61	person mortality
Reduced social						Social costs of
cost of carbon	1.89	0.4	0.7	0	1.89	carbon

(CO ₂ -eq)						50 \$/tonne CO ₂ -eq
emissions						
						Differences in time
						efficiencies of
						Machine
						Application and
						hand application
Labor savings	0	0.7	0	0	0.7	7.5h/ha
Organic						
fertilizer sales	0	0	0	20.5	20.5	
						Fertilizer
						application
						machine rental
						price 60¥ ha ⁻¹
Estimated						Composting reactor
costs for						lifetime 20yr
improving N						Discount rate 15%
management						Organic fertilizer
(this study)	0	7.84	5.42	8.89	22.5	sale price 1000¥ t ⁻¹

Table S14 Benefit/cost ratio for implementing agricultural nitrogen management scenarios.

	Reduced N	Efficient	Machine	Manure	
Metric (\$/\$)	Application	Fertilizer	Application	Management	Combined

high					
benefit/high					
cost	34.6	2.5	1.8	2.0	1.8
high					
benefit/medium					
cost	34.6	3.1	3.3	3.2	2.8
high					
benefit/low					
cost	34.6	4.2	6.8	4.4	4.3
medium					
benefit/high					
cost	30.7	2.2	1.8	0.6	1.1
medium					
benefit/medium					
cost	30.7	2.8	3.2	0.9	1.7
medium					
benefit/low					
cost	30.7	3.8	6.7	1.3	2.5
low					
benefit/high					
cost	29.8	2.2	1.7	0.4	0.9
low					
benefit/medium					
cost	29.8	2.7	3.1	0.6	1.4

low benefit/low					
cost	29.8	3.7	6.4	0.8	2.2

Table S15: Prices (¥ kg⁻¹ N) of regular fertilizers, controlled-released fertilizers, and fertilizers with

Fertilizer type	Category ^a	Price or cost
Regular fertilizer (Xia et al., 2016)	Urea	4 ¥ kg ⁻¹ N
Controlled-release fertilizer	CRF (sulfur-coated)	5.6 ¥ kg-1 N
	CRF (polymer-coated)	7.2 ¥ kg-1 N
	CRF (polymer and sulfur-coated)	6.4 ¥ kg-1 N
Urease inhibitor	NBPT	$100 \text{\$ kg}^{-1}$

nitrification inhibitor (NI) and urease inhibitor (UI), source (Xia et al., 2017)

a. The price of urea, P and K fertilizer, staple grains (Xia et al., 2016). The price of controlledrelease fertilizers referred to Chinese Fertilizer Website (<u>www.fert.cn</u>). The price of various nitrification and urease inhibitor products referred to Chinese Guide Chem Website (<u>china.guidechem.com</u>).

Table S16 Damage costs for China of NO₃-N, N₂O and NH₃-N emissions adjusted from European studies (Ying et al., 2017).

	Health	Eutrophication	Acidification	Global	Total
	\$/kg N	\$/kg N	\$/kg N	warming	\$/kg N
				\$/kg N	
NO ₃ -N	0.2	1.12	_	_	1.32
N ₂ O-N	0.3**	_	_	11.2	11.5

NH ₃ -N	3.3	0.24*	1.87*	_	5.41

*We didn't calculate the eutrophication and acidification damage costs from NH₃ emission given a recent study for China shows that reduced NH₃ emission actually worsens acid rain (55).

** We didn't calculate the health impacts from N_2O emission due to controversies of whether current stratospheric ozone levels have recovered to levels higher than desirable so further N_2O reduction is not needed.

Table S17 Labor cost in agroecological regions, mapped from provincial labor cost reported by China Statistical Yearbook(Chinese NDRC (national development and reform council), 2016). Labor cost is defined as the amount of payment a person with mid-level working capacity should receive for working for one day (8 h).

Сгор	Production region	Labor cost ($\frac{4}{d} = \frac{4}{8h}$)
Wheat	NW2	63
	NE	70
	NW1	51
	NCP1	140
	NCP2	62
	YR	106
	SW	55
Maize	NW1	60
	NE2	81
	NE1	300
	NE3	60
	NE4	65

	NW2	67	
	SW2	68	
	NCP1	140	
	NCP2	62	
	SW1	60	
	SW2	68	
	SW3	55	
Rice	NE1_SR	300	
	NE2_SR	73	
	UYR_SR	60	
	MYR_ER	67	
	MYR_LR	67	
	MYR_SR	67	
	LYR_SR	56	
	SC1_ER	81	
	SC1_LR	81	
	SC1_SR	81	
	SC2_ER	85	
	SC2_LR	85	

Table S18: N_2O emission and NO_3^- -leaching levels (kg N/ha) under a specific level of fertilizer nitrogen input (kg N/ha) for maize (Cui et al., 2013), rice and wheat in China (Cui et al., 2014).

Crop	N ₂ O emission (Y; kg N/ha)	NO ₃ ⁻ -leaching (Y; kg	NO ₃ ⁻ runoff (Y; kg
	with respect to fertilizer N	N/ha) with respect to	N/ha) with respect to
	input (x; kg N/ha)	fertilizer N input (x; kg	fertilizer N input (x; kg
		N/ha)	N/ha)
Spring maize	Y=0.576exp(0.0049x)	Y=4.46exp(0.0094x)	N/A
Summer maize	Y=0.593exp(0.0045x)		
Wheat	Y=0.33exp(0.0054x)	Y=2.7exp(0.0088x)	
Rice	Y=0.37exp(0.0061x)	Y=2.2exp(0.0071x)	Y=2.12exp(0.0071x)

Table S19 Impact of agricultural nitrogen management technologies on crop yield, NH_3 , N_2O and NO_3 leaching and runoff in China (Xia et al., 2017).

		NH ₃	N ₂ O		NO ₃₋
	yield	Emissio	emission		runoff
	increase	n change	change	NO ₃ -leaching	change
condition	(%)	(%)	(%)	change (%)	(%)
if N rate <200	7.64	-70.20	-31.40	-14.05	-39.74
if 200 < N rate					
<300	5.17	-42.57	-27.14	-19.37	-15.01
if N rate >300	17.75	-66.26	-56.70	-38.50	-28.58
if N rate <200	6.02	-58.11	-24.81	N/A	N/A
if 200 < N rate					
<300	6.22	-42.24	-48.38	N/A	N/A
if N rate >300	14.21	-42.24	-35.05	N/A	N/A
if N rate <200	5.41		-14.60	N/A	-15.47
	if N rate <200 if 200 < N rate <300 if N rate >300 if N rate <200 if 200 < N rate <300 if N rate >300	increase condition (%) if N rate <200	yieldEmissioincreasen changecondition(%)if N rate <200	yieldEmissioemissionincreasen changechangecondition(%)(%)(%)if N rate <200	yieldEmissioemissionincreasen changechangeNO3-leachingcondition(%)(%)(%)change (%)if N rate <200

	if 200 < N rate				
Machine	<300	9.00	-14.60	N/A	-15.47
Application	if N rate >300	8.55	-14.60	N/A	-15.47

Table S20 Cost-benefit analysis for Machine Application scenario and its two variations.

			Machine
			Application
			scenario
		Machinery	(fertilizer deep
	Deep Placement	surface	placement by
Metrics	of N by hand	broadcasting	machine)
Value of lives			
saved from			
PM _{2.5} air			
pollution	0.65		0.65
related deaths	(0.47; 1.32)	0	(0.47; 1.32)
Increased crop			
sales	14.1	0	14.1
Reduced			
damage from			
NO ₃ -leaching			
and runoff	0.06	0	0.06
Reduced social	0.16		0.16
cost of carbon	(0.08; 0.4)	0	(0.08; 0.4)

(CO ₂ -eq)			
emissions			
Labor savings	0	0.2~0.7	0.2~0.7
Reduced N			
deposition (by			
scaling			
benefits			
estimated by			
Liu et al)(Liu			
et al., 2019)	0.41	0	0.41
Labor cost	0.4~1.4*	0	0
Costs of			
worsened acid			
rain (by			
scaling			
benefits			
estimated by			
Liu et al)(Liu			
et al., 2019)	1.07	0	1.07
Technological			
costs for			
improving N			
management			
resulting in		3.92	3.92
NH ₃ emission	0	(1.31; 7.84)	(1.31; 7.84)

 reduction (this

 study)

 15.38 (15.12;

 15.81(15.31;

 Total benefits*

 16.29)
 0.45 (0.2;0.7)

 16.31)

 Total costs**

 1.97 (1.47; 2.88)

 3.92 (1.31; 7.84)

 4.99 (2.38; 8.91)

*we roughly estimate that the time needed for dig soil to apply fertilizers deeply will be two times of that needed for surface broadcasting by hand.

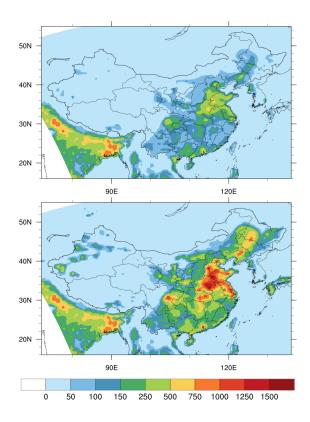


Figure S1 baseline NH₃ emissions (in kg/km²/month) in January (1st row, 0.66Tg) and July (2nd row, 1.66Tg) of 2012.

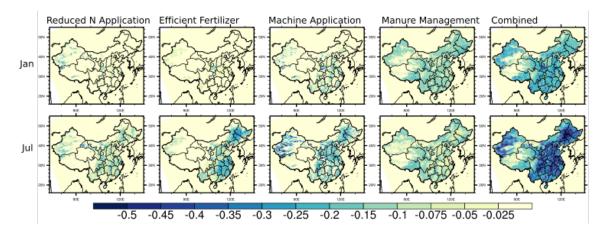


Figure S2 NH₃ emission reduction ratios in management scenarios compared to baseline in January and July of 2012.

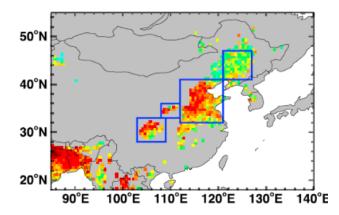


Figure S3: Pixels (the colored grid boxes within blue rectangles) where AIRS observations are extracted for comparison against model NH₃ concentration.

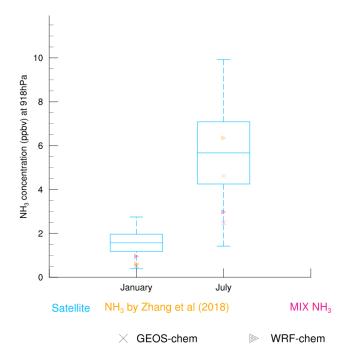


Figure S4: NH₃ concentration (ppbv) at 918hPa observed by AIRS (blue boxes with $\pm 25\%$ and $\pm 75\%$ ranges provided) and NH₃ concentration (ppbv) at 918hPa simulated by WRF-chem (in ×) and GEOS-chem (in rectangle) with NH₃ emissions by Zhang et al (2018) (orange) and with MIX NH₃ emissions (pink) (published in Kang et al (2016)(Kang et al., 2016) and Huang et al (2017) (Huang et al., 2012)) for January and July of 2012.

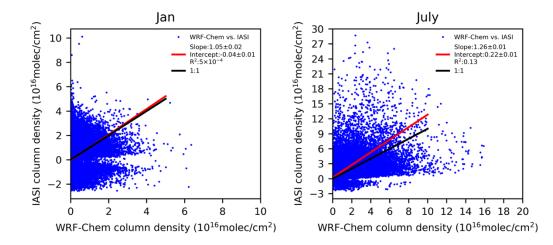


Figure S5: Daily NH₃ column density observed by IASI and simulated by WRF-chem with Zhang et al (2018) NH₃ (this study) for January (number of valid pixels: N=70063) and July (N=96557).

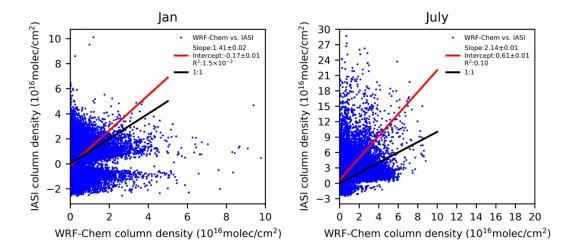
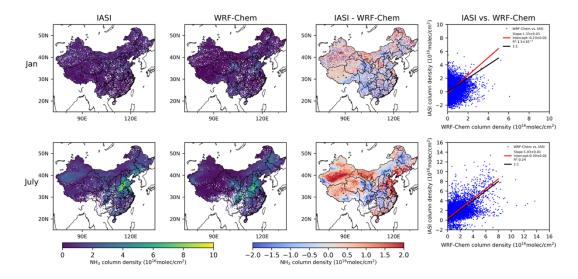
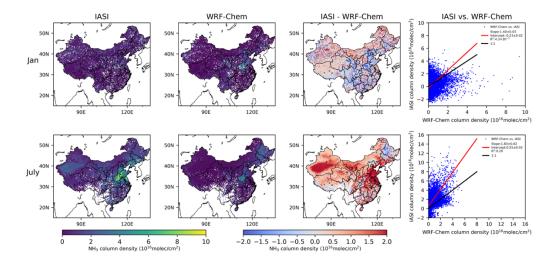




Figure S6: Daily NH₃ column density observed by IASI and simulated by WRF-chem with MIX NH₃ for January (number of valid pixels: N=70063) and July (N=96557).

Figure S7 Monthly mean NH₃ column density observed by IASI (1st column) and simulated by WRF-chem with Zhang et al (2018) NH₃ (this study) (2nd column), as well as their difference (IASI-WRF-chem, 3rd column) for January (number of valid pixels: N=23506) and July (N=20767). An orthogonal distance regression (4th column) is also provided.

Figure S8 Monthly mean NH₃ column density observed by IASI (1st column) and simulated by WRF-chem with MIX NH₃ emissions (published in Kang et al (2016) (Kang et al., 2016) and Huang et al (2017) (Huang et al., 2012)) (2nd column), as well as their difference (IASI-WRF-

chem, 3rd column) for January (number of valid pixels: N=23506) and July (N=20767). An orthogonal distance regression (4th column) is also provided.

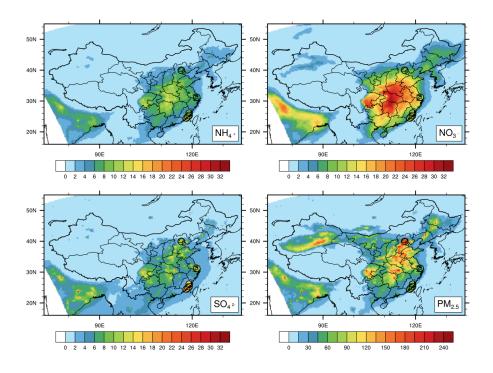


Figure S9 Evaluation of modeled ammonium (NH₄⁺,) nitrate (NO₃⁻), sulfate (SO₄²⁻) and PM_{2.5} concentrations (in µg/m³) against observations during January of 2012. All observational and modeled values are monthly, except for four sites in the southeast where observation was conducted during the first 15 days of January so modeled concentrations are also averaged among that same period of time. Across observational sites, for NH₄⁺, observations average at 8.5 ug/m³ and model estimated 4.3 ug/m³. For NO₃⁻, observations average at 10.1 ug/m³ and model estimated 8.1 ug/m³. For SO₄²⁻, observations average at 14.0 ug/m³ and model estimated 66.9 ug/m³.

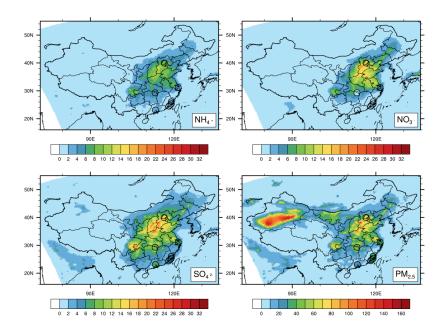


Figure S10 Evaluation of modeled ammonium (NH4⁺,) nitrate (NO3⁻), sulfate (SO4²⁻) and PM_{2.5} concentrations (in µg/m³) against observations during July of 2012. All observational and modeled values are monthly, except for four sites in the southeast where observation was conducted during the first 15 days of July, so modeled concentrations are also averaged among that same period of time. Across observational sites, for NH4⁺, observations average at 3.1 ug/m³ and model estimated 3.4 ug/m³. For NO3⁻, observations average at 2.7 ug/m³ and model estimated 7.1 ug/m³. For PM_{2.5}, observations average at 36.2 ug/m³ and model estimated 33.4 ug/m³.

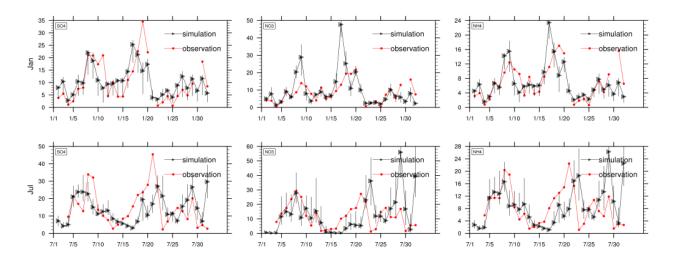


Figure S11: Comparison of modeled daily concentrations of sulfate, nitrate and ammonium aerosols (black triangles) against observations (red dots) in Beijing in January and July of 2012. The error bar of modeled results denotes the range of concentrations in the eight grid cells surrounding the grid cell where Beijing is located. Source of observation data is from Chen et al. (2015).

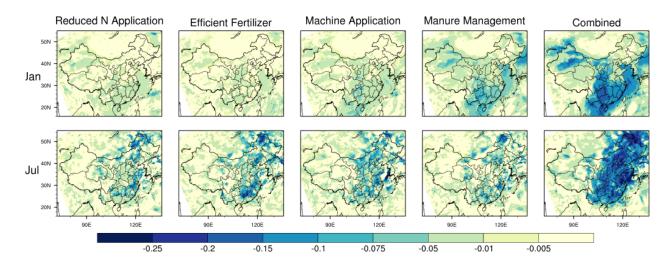


Figure S12 SIA concentration reduction ratios in management scenarios compared to baseline emission in January and July of 2012.

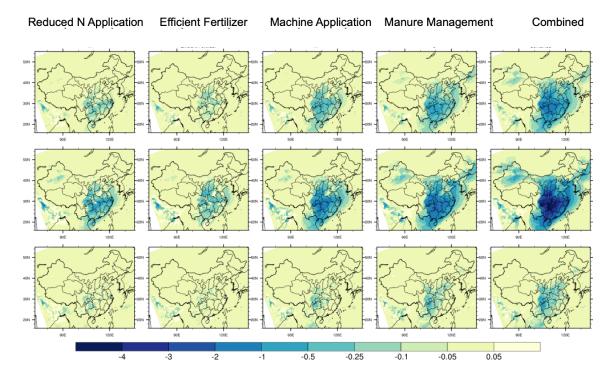


Figure S13 Changes in ammonium (1st row), nitrate (2nd row) and sulfate (3rd row) aerosol concentrations (in μ g/m³) in management scenarios compared to baseline simulation in January 2012.

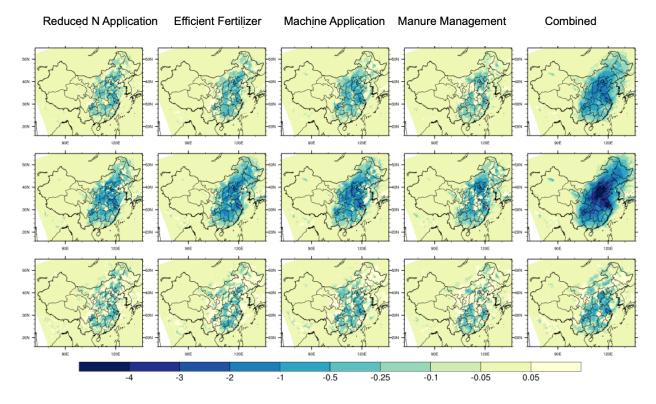


Figure S14 Changes in ammonium (1st row), nitrate (2nd row) and sulfate (3rd row) aerosol concentrations (in μ g/m³) in management scenarios compared to baseline simulation in July 2012.

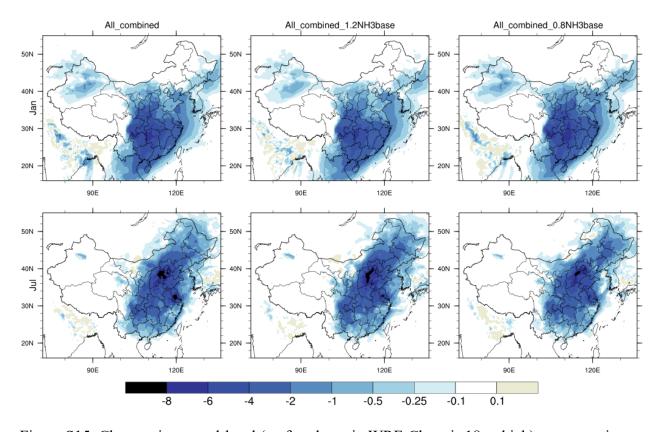


Figure S15: Changes in ground-level (surface layer in WRF-Chem is 18m thick) concentrations (in unit of μ g/m³, negative values mean reductions) of secondary inorganic aerosol (SIA, the sum of ammonium, nitrate and sulfate aerosols) in management scenarios compared to the *Baseline* simulation, in January and July of 2012 if baseline NH₃ emission is Zhang et al (2018) (first column, all_combined), 20% higher than Zhang et al (2018) (second column, All_combined_1.2NH₃base), and 20% lower than Zhang et al (2018) (third column, All_combined_0.8NH₃base).

References

Abstract: Interaction of NBPT with Two Nitrification Inhibitors on Multiple Soils. (ASA, CSSA and SSSA International Annual Meetings (2016)).

https://scisoc.confex.com/scisoc/2016am/webprogram/Paper100563.html (accessed 4 April 2019).

- All China Marketing Research Co. Ltd. 2014. China census data by county 2000-2010 http://map.princeton.edu/search/details/#/9107c437-8169-4444-9427-3b6957a09bca. Accessed March 6, 2019.
- Bai, Z., L. Ma, S. Jin, W. Ma, G.L. Velthof, et al. 2016. Nitrogen, Phosphorus, and Potassium
 Flows through the Manure Management Chain in China. Environ. Sci. Technol. 50(24):
 13409–13418.
- Bai, Z., W. Ma, L. Ma, G.L. Velthof, Z. Wei, et al. 2018. China's livestock transition: Driving forces, impacts, and consequences. Science Advances 4(7). doi: 10.1126/sciadv.aar8534.
- Bouwman, A.F., L.J.M. Boumans, and N.H. Batjes. 2002. Estimation of global NH3 volatilization loss from synthetic fertilizers and animal manure applied to arable lands and grasslands. Global Biogeochemical Cycles 16(2): 8-1-8–14. doi: 10.1029/2000GB001389.
- Bouwman, A.F., G.V. Drecht, and K.W.V. der Hoek. 2005. Global and regional surface nitrogen balances in intensive agricultural production systems for the periode of 1970-2030.
 Science press, beijing.
- Burnett, R., H. Chen, M. Szyszkowicz, N. Fann, B. Hubbell, et al. 2018. Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter.
 Proceedings of the National Academy of Sciences. doi: 10.1073/pnas.1803222115.

- Burnett, R.T., C.A. Pope, M. Ezzati, C. Olives, S.S. Lim, et al. 2014. An integrated risk function for estimating the global burden of disease attributable to ambient fine particulate matter exposure. Environ. Health Perspect. 122(4): 397–403. doi: 10.1289/ehp.1307049.
- Cao, Y., X. Xing, Z. Bai, X. Wang, C. Hu, et al. 2018. Technological developments for reducing ammonia volatilization in mixed crop-livestock system (in Chinese). China Agricultural Science.
- Chen, X.-P., Z.-L. Cui, P.M. Vitousek, K.G. Cassman, P.A. Matson, et al. 2011. Integrated soil– crop system management for food security. Proceedings of the National Academy of Sciences 108(16): 6399–6404.
- Chen, F., and J. Dudhia. 2001. Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Monthly Weather Review 129(4): 569–585.
- Chen, S., SHiping Zhang, and XIngzhao Sun. 2012. Design and experiment of self-propelled high-ground-clearance spreader for paddy variable-rate fertilization (in Chinese with English abstract). Tranactions of the Chinese society of Agricultural Engineering (Transactions of the CSAE) (28(11)): 16–21.
- Chen Xinping, W.L. 2016. Fertilizer use recommendations for China's three major crops in their typical agri-ecological zones (in Chinese). China Agricultural Press.
- Chinese NDRC (national development and reform council), N.A.S. and M.C. 2016. Information summary on the production costs and revenues of national agricultural products (in Chinese), China's Statistical Press.

- Cui, Z., G. Wang, S. Yue, L. Wu, W. Zhang, et al. 2014. Closing the N-Use Efficiency Gap to Achieve Food and Environmental Security. Environ. Sci. Technol. 48(10): 5780–5787. doi: 10.1021/es5007127.
- Cui, Z., S. Yue, G. Wang, Q. Meng, L. Wu, et al. 2013. Closing the yield gap could reduce projected greenhouse gas emissions: a case study of maize production in China. Global Change Biology 19(8): 2467–2477. doi: 10.1111/gcb.12213.
- Damme, M.V., S. Whitburn, L. Clarisse, C. Clerbaux, D. Hurtmans, et al. 2017. Version 2 of the IASI NH₃ neural network retrieval algorithm: near-real-time and reanalysed datasets.
 Atmospheric Measurement Techniques 10(12): 4905–4914. doi: https://doi.org/10.5194/amt-10-4905-2017.
- Dong, S., D. Yu, and Y. Zhu. N use amount experiments for grape production in Anhui province (in Chinese). Agricultural Technology Bulletin.
- Erda Lin, Wei Xiong, Hui Ju, Yinlong Xu, Yue Li, et al. 2005. Climate change impacts on crop yield and quality with CO2 fertilization in China. Philosophical Transactions of the Royal Society B: Biological Sciences 360(1463): 2149–2154. doi: 10.1098/rstb.2005.1743.
- Feng, S. 2014. Primary study on application amount of N fertilizer on winter potato (in Chinese). Journal of Guangxi Agriculture 29. doi: 1003—4374(2014)04—0016—03.
- Gao, M., G.R. Carmichael, Y. Wang, P.E. Saide, M. Yu, et al. 2016. Modeling study of the 2010 regional haze event in the North China Plain. Atmos. Chem. Phys. 16(3): 1673.
- Gao, Q., C. Li, G. Feng, J. Wang, Z. Cui, et al. 2012. Understanding Yield Response to Nitrogen to Achieve High Yield and High Nitrogen Use Efficiency in Rainfed Corn. Agronomy Journal 104(1): 165–168. doi: 10.2134/agronj2011.0215.

- Ghorbani, R., S. Wilcockson, A. Koocheki, and C. Leifert. 2010. Soil Management for
 Sustainable Crop Disease Control: A Review. In: Lichtfouse, E., editor, Organic
 Farming, Pest Control and Remediation of Soil Pollutants: Organic farming, pest control
 and remediation of soil pollutants. Springer Netherlands, Dordrecht. p. 177–201
- Gu, B.J., Y. Ge, Y. Ren, B. Xu, W.D. Luo, et al. 2012. Atmospheric Reactive Nitrogen in China:Sources, Recent Trends, and Damage Costs. Environ. Sci. Technol. 46(17): 9420–9427.
- Gu, B., X. Ju, J. Chang, Y. Ge, and P.M. Vitousek. 2015. Integrated reactive nitrogen budgets and future trends in China. Proceedings of the National Academy of Sciences 112(28): 8792–8797. doi: 10.1073/pnas.1510211112.
- Guenther, A., T. Karl, P. Harley, C. Wiedinmyer, P.I. Palmer, et al. 2006. Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos. Chem. Phys. 6(11): 3181–3210. doi: 10.5194/acp-6-3181-2006.
- He, Y., L. Wang, T. Jing, and Y. Liu. 2016. Effects of reduced nitrogen application on soil nutrient, agronomic trait and yield in banana plantation. Chinese Journal of Tropical Agriculture 36(12).
- Hong, S.-Y., Y. Noh, and J. Dudhia. 2006. A new vertical diffusion package with an explicit treatment of entrainment processes. Monthly Weather Review 134(9): 2318–2341.
- Hou, P., Q. Gao, R. Xie, S. Li, Q. Meng, et al. 2012. Grain yields in relation to N requirement:Optimizing nitrogen management for spring maize grown in China. Field Crops Research 129: 1–6.
- Huang, X., Y. Song, M. Li, J. Li, Q. Huo, et al. 2012. A high-resolution ammonia emission inventory in China. Global Biogeochem Cy 26(1): n/a-n/a. doi: 10.1029/2011GB004161.

- Janssens-Maenhout, G., M. Crippa, D. Guizzardi, F. Dentener, M. Muntean, et al. 2015.
 HTAP_v2. 2: a mosaic of regional and global emission grid maps for 2008 and 2010 to study hemispheric transport of air pollution. Atmos. Chem. Phys. 15(19): 11411–11432.
- Kang, Y., M. Liu, Y. Song, X. Huang, H. Yao, et al. 2016. High-resolution ammonia emissions inventories in China from 1980 to 2012. Atmospheric Chemistry and Physics 16(4): 2043–2058. doi: https://doi.org/10.5194/acp-16-2043-2016.
- Lai, S., Y. Zhao, A. Ding, Y. Zhang, T. Song, et al. 2016. Characterization of PM2.5 and the major chemical components during a 1-year campaign in rural Guangzhou, Southern China. Atmospheric Research 167: 208–215. doi: 10.1016/j.atmosres.2015.08.007.
- Li, M., Q. Zhang, J. Kurokawa, J.-H. Woo, K. He, et al. 2017. MIX: a mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP. Atmos. Chem. Phys. 17(2): 935.
- Liu, M., X. Huang, Y. Song, J. Tang, J. Cao, et al. 2019. Ammonia emission control in China would mitigate haze pollution and nitrogen deposition, but worsen acid rain. PNAS: 201814880. doi: 10.1073/pnas.1814880116.
- Liyou Tang, and Xuejun Zhou. 2014. Fertilizer application for citrus in Taihu County. Anhui Agriculture Science Bulletin 20: 53–54.
- Mi, G., F. Chen, Q. Wu, N. Lai, L. Yuan, et al. 2010. Ideotype root architecture for efficient nitrogen acquisition by maize in intensive cropping systems. Sci. China Life Sci. 53(12): 1369–1373. doi: 10.1007/s11427-010-4097-y.
- Morrison, H., J.A. Curry, and V.I. Khvorostyanov. 2005. A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description. Journal of the Atmospheric Sciences 62(6): 1665–1677.

- National Bureau of Statistics of the People's Republic of China. 2012. China Statistical Yearbook 2012.
- Nielsen, C.P., and M.S. Ho. The Valuation of Health Damages, in Clearer Skies Over China: Reconciling Air Quality, Climate, and Economic Goals. London: The MIT Press
- Peng, S., R.J. Buresh, J. Huang, J. Yang, Y. Zou, et al. 2006. Strategies for overcoming low agronomic nitrogen use efficiency in irrigated rice systems in China. Field Crops Research 96(1): 37–47. doi: 10.1016/j.fcr.2005.05.004.
- Peng, X., Y. Liu, S. Luo, L. Fan, T. Song, et al. 2007. Effects of Site-Specific Nitrogen Management on Yield and Dry Matter Accumulation of Rice from Cold Areas of Northeastern China. Agricultural Sciences in China 6(6): 715–723. doi: 10.1016/S1671-2927(07)60104-7.
- Piao, S., P. Ciais, Y. Huang, Z. Shen, S. Peng, et al. 2010. The impacts of climate change on water resources and agriculture in China. Nature 467(7311): 43–51. doi: 10.1038/nature09364.
- Qin, Y., F. Wagner, N. Scovronick, W. Peng, J. Yang, et al. 2017. Air quality, health, and climate implications of China's synthetic natural gas development. Proceedings of the National Academy of Sciences 114(19): 4887–4892. doi: 10.1073/pnas.1703167114.

Schiermeier, Q. 2009. Prices plummet on carbon market. Nature 457(7228): 365.

- Shen, H. 2014. Nitrogen fertilizer amount reduction experiments for open-air vegetables (in Chinese). Shanghai Vegetables 3: 75–76.
- Sun, Y.L., Z.F. Wang, W. Du, Q. Zhang, Q.Q. Wang, et al. 2015. Long-term real-time measurements of aerosol particle composition in Beijing, China: seasonal variations,

meteorological effects, and source analysis. Atmospheric Chemistry and Physics 15(17): 10149–10165. doi: 10.5194/acp-15-10149-2015.

- Trenkel, M.E. 2010. Slow- and controlled-release and stabilized fertilizers : an option for enhancing nutrient use efficiency in agriculture. IFA, International fertilizer industry Association, Paris.
- US Embassy at Beijing. 2012. PM2.5 daily measurement at U.S. embassy in Beijing (available at http://www.stateair.net/web/historical/1/1.html).
- Wang, M., L. Ma, M. Strokal, Y. Chu, and C. Kroeze. 2018. Exploring nutrient management options to increase nitrogen and phosphorus use efficiencies in food production of China. Agricultural Systems 163: 58–72. doi: 10.1016/j.agsy.2017.01.001.
- Wang, H.L., L.P. Qiao, S.R. Lou, M. Zhou, A.J. Ding, et al. 2016. Chemical composition of PM2.5 and meteorological impact among three years in urban Shanghai, China. Journal of Cleaner Production 112: 1302–1311. doi: https://doi.org/10.1016/j.jclepro.2015.04.099.
- Wang, X., Yanan Tong, Fen Liu, and Zuoping Zhao. 2013. Evaluation of the situation of fertilization in apple fields in Shaanxi province (in Chinese). Plant Nutrition and Fertilizer Science 19: 206–213.
- Warner, J.X., Z. Wei, L.L. Strow, R.R. Dickerson, and J.B. Nowak. 2016. The global tropospheric ammonia distribution as seen in the 13-year AIRS measurement record. Atmospheric Chemistry and Physics 16(8): 5467–5479. doi: https://doi.org/10.5194/acp-16-5467-2016.

- Wu, L. 2014. Nitrogen fertilizer demand and greenhouse gas mitigation potential under nitrogen limiting conditions for Chinese agriculture production (doctoral thesis). Department of plant nutrition, China Agricultural University.
- Wu, L., X. Chen, Z. Cui, G. Wang, and W. Zhang. 2015a. Improving nitrogen management via a regional management plan for Chinese rice production. Environ. Res. Lett. 10(9): 095011. doi: 10.1088/1748-9326/10/9/095011.
- Wu, L., X. Chen, Z. Cui, W. Zhang, and F. Zhang. 2014. Establishing a Regional Nitrogen Management Approach to Mitigate Greenhouse Gas Emission Intensity from Intensive Smallholder Maize Production. PLOS ONE 9(5): e98481. doi: 10.1371/journal.pone.0098481.
- Wu, S.-P., J. Schwab, B.-Y. Yang, A. Zheng, and C.-S. Yuan. 2015b. Two-Years PM2.5
 Observations at Four Urban Sites along the Coast of Southeastern China. Aerosol and Air
 Quality Research 15(5): 1799–1812. doi: 10.4209/aaqr.2015.05.0363.
- Xia, L., S.K. Lam, D. Chen, J. Wang, Q. Tang, et al. 2017. Can knowledge-based N management produce more staple grain with lower greenhouse gas emission and reactive nitrogen pollution? A meta-analysis. Global Change Biology 23(5): 1917–1925.
- Xia, L., C. Ti, B. Li, Y. Xia, and X. Yan. 2016. Greenhouse gas emissions and reactive nitrogen releases during the life-cycles of staple food production in China and their mitigation potential. Science of The Total Environment 556: 116–125.
- Xie, X. 2011. The value of health: method for environmental impact assessment and strategis for urban air pollution control PhD Dissertation.
- Xu, X., R. Chen, H. Kan, and X. Ying. Meta-analysis of contingent valuation studies on air pollution-related value of statistical life in China (in Chinese). China Health Resources.

- Ying, H., Y. Ye, Z. Cui, and X. Chen. 2017. Managing nitrogen for sustainable wheat production. Journal of Cleaner Production 162: 1308–1316. doi: https://doi.org/10.1016/j.jclepro.2017.05.196.
- Zhang, L., Y. Chen, Y. Zhao, D.K. Henze, L. Zhu, et al. 2018. Agricultural ammonia emissions in China: reconciling bottom-up and top-down estimates. Atmos. Chem. Phys. 18(1): 339.
- Zhang, F., H. Cheng, Z. Wang, X. Lv, Z. Zhu, et al. 2014. Fine particles (PM2.5) at a CAWNET background site in Central China: Chemical compositions, seasonal variations and regional pollution events. Atmospheric Environment 86: 193–202. doi: 10.1016/j.atmosenv.2013.12.008.
- Zhang, X., E.A. Davidson, D.L. Mauzerall, T.D. Searchinger, P. Dumas, et al. 2015. Managing nitrogen for sustainable development. Nature 528(7580): 51–59.
- Zhang, W., Z. Dou, P. He, X.-T. Ju, D. Powlson, et al. 2013. New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China. Proceedings of the National Academy of Sciences 110(21): 8375–8380.
- Zhao, S., Weifeng Zhang, Yuanmao Jiang, and Fusuo Zhang. 2017a. Factors leading to excessive nitrogen fertilization on apple in the Loess Plateau. Journal of Plant Nutrition and Fertilizer 23: 484–491. doi: 10.11674/zwy.16166.
- Zhao, Y., L. Zhang, Y. Chen, X. Liu, W. Xu, et al. 2017b. Atmospheric nitrogen deposition to China: A model analysis on nitrogen budget and critical load exceedance. Atmospheric environment 153: 32–40.

Appendix for Chapter 4

Environmental and Dietary Health Co-benefits and Tradeoffs in Potential Future Chinese Dietary Choices

Estimating food consumption based on diets

We calculate food consumption by adding food waste to food intake. We account for food waste during production, post-harvesting, food processing, packaging, distribution and consumption, using food waste ratios reported by FAO(Gustavsson *et al* 2011) (Table S1).

We report both food intake and food consumption under baseline, under both non-standardized food types (Table S2) and standardized food types (Table S3). Among the ~5000 types of Chinese food products we model, food products under the same food group can vary significantly in nutrition composition. Cooking methods of food also affect nutrition and energy supply. For example, different types of pork have substantially different fat and protein contents and energy supply. One gram of strawberry has much less calorie supply than one gram of grapes. Cooked rice and rice congee have substantially different energy supply.

It is thus problematic to report raw weight of food given large within-food-group variation; we thus standardize food items to allow better comparison following guidelines of calculating food weight equivalent provided by Chinese Dietary Guidelines. The standardized food types are defined as food with certain amount of nutrients and energy supply (Table S).

Estimating agricultural production based on food consumption

Baseline agricultural production in 2012 in NH₃ emission model is from production data in China Statistical Yearbook. In order to estimate agricultural production in dietary scenarios for the sake of NH₃ emission simulation, we scale up baseline production in NH₃ emission model using a production scale factor.

A production scale factor for a specific agricultural product equals to the ratio of its consumption in a dietary scenario to consumption in baseline diet. This rule applies to all agricultural products except for maize, wheat, rice and soybean.

Maize, wheat, rice and soybean are important animal feed crops. Thus, changes of their production in dietary scenarios should reflect both changes in human food demand and changes in animal feed demand as a result of changed animal production. We follow three steps to estimate their production in dietary scenarios as percentages of baseline production.

First, we obtain the partitioning between crop production (rice, wheat, maize and soybean) for animal feed, for human food and for other purposes (Table 2). Usages of rice, wheat and maize are directly from FAO Food Balance Sheet in 2011. Usages of soybean include soybean for animal feed, for human food, for processing and others. 80% of processed soybean is for animal feed and 20% is for soybean oil²⁸. We thus add the processed soybean for animal feed to primary soybean for animal feed as total soybean for animal feed. We assume crop production for other

²⁸ http://www.chyxx.com/industry/201805/638760.html

usages stay unchanged in scenarios compared to baseline. The two steps adjust crop production for feed and for food, respectively.

Second, crop production for animal feed in scenarios with respect to that in baseline will be proportionally to total meat (beef, goat, poultry and pork) consumption in scenarios with respect to that in baseline. Our dietary scenario results show that total meat (beef, goat, poultry and pork) consumption in Balanced Diet scenario is 46% of that in baseline, similarly 26% in EAT_Balanced diet, 97% in US Diet scenario, and 32.6% in Zero Red Meat scenario. Thus, crop production for animal feed in Balanced Diet scenario will be 46% of that in baseline, in EAT_Balanced diet 26%, in US Diet scenario 97%, and in Zero Red Meat scenario 32.6%.

Third, we calculate crop production for human food in scenarios by multiplying baseline crop production for human food in baseline and the ratio of human crop consumption in scenarios to that in baseline. Table 2 summarizes production amount in scenarios as percentages of that in baseline by food type.

For one crop, P denotes production. C denotes consumption.

$$P_{base} = P_{base_{animalfeed}} + P_{base_{humanfood}} + P_{base_{others}}$$

$$P_{scenario} = P_{base_{animalfeed}} \times \frac{C_{scenario_{meat}}}{C_{base_{meat}}} + P_{base_{humanfood}} \times \frac{C_{scenario}}{C_{base}} + P_{base_{others}}$$

$$\frac{P_{scenario}}{P_{base}} = \frac{P_{base_{animalfeed}}}{P_{base}} \times \frac{C_{scenario_{meat}}}{C_{base_{meat}}} + \frac{P_{base_{humanfood}}}{P_{base}} \times \frac{C_{scenario}}{C_{base}} + \frac{P_{base_{others}}}{P_{base}}$$

Crop import is quite small quantity compared to domestic production, for wheat (0.4%), maize (2%) and rice (3%), except for soybean (377%) (Table 2). We assume that the ratio of import to domestic production stays unchanged in all dietary scenarios as that in baseline.

Production-based NH₃ emission model

We utilize a production-based NH₃ emission model to obtain baseline NH₃ emissions and NH₃ emissions in dietary change scenarios(Zhang *et al* 2018). The NH₃ emission model is the most updated and best available bottom-up high-resolution NH₃ emission estimation tool for China. The model represents production of eighteen crops (including maize, wheat, rice, potato, sweet potato, rapeseed, soybean, groundnut, tobacco, cotton, citrus, banana, grape, apple, pear, other fruits, vegetables). Crop NH₃ emission factors are parametrized with fertilizer application timing, rate, type, method, as well as a number of climate (temperature, wind, etc.) and soil (pH) conditions. The model represents production of major animals (cattle, goat, sheep, pig and poultry) in grazing, intensive and free-range systems. Total ammonium nitrogen (TAN) content produced by outdoor animals are subject to NH₃ volatilization and are without further management. TAN produced by indoor animals goes through several stages of management, i.e. animal housing, manure storage and manure spreading, with each stage suspect to NH₃ volatilization. NH₃ emissions are gridded at $1/4^{\circ} \times 1/4^{\circ}$ resolution.

Air quality simulation

We use the Weather Research and Forecasting – Chemistry (WRF-Chem) model v3.6.1 to simulate PM_{2.5} formation from baseline emissions and from emissions in agricultural N management scenarios. WRF-Chem is an online-coupled meteorology-chemistry model widely used for air quality research (Gao *et al* 2016, Qin *et al* 2017). The physical and chemical schemes used are Carbon-Bond Mechanism Version Z (CBMZ) for gas-phase chemistry, 4-bin Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) for aerosol chemistry, RRTMG scheme for shortwave and longwave radiation, the Morrison scheme for cloud microphysics (Morrison *et al* 2005), the Yonsei University scheme for boundary layer mixing (Hong *et al* 2006), and the Noah land surface model for land surface (Chen and Dudhia 2001). Meteorological boundary conditions are from the 2014 National Centers for Environmental Prediction (NCEP) Final Analyses data for every 6 hours. Chemical initial and boundary conditions are a 2014 simulation of the global chemical transport model, Model for Ozone and Related Tracers Version 4 (MOZART-4).

Anthropogenic emissions of air pollutants are from the Multi-resolution emission inventory for China (MEIC) (http://www.meicmodel.org) (Li *et al* 2017) and from HTAP (Hemispheric Transport of Air Pollutants) v2.2 outside China (Janssens-Maenhout *et al* 2015). Biogenic emissions are calculated online using the Model of Emissions of Gases and Aerosols from Nature (MEGAN) scheme (Guenther *et al* 2006) and open biomass burning emissions are from Global Fire Emission Database version 4 (GFED v4, www.globalfiredata.org).

We conduct 4 sets of simulations: one baseline and three dietary change scenarios where the only difference from the baseline simulation is modified NH₃ emissions due to dietary changes. Each

simulation set includes one month of simulation for January and one month of simulation for July (both after six days of spin-up) for the year 2012. The model resolution is 27 km by 27 km with the domain covering China and parts of other Asian countries (9°N-58°N, 60°E-156°E) and with 37 vertical levels extending from the surface to 50hPa. We turn off direct aerosol-climate feedback to minimize the impact of aerosol concentration change due to meteorology, which would in return feedback to aerosol concentration simulation.

Evaluation of 2012 baseline NH₃(g) concentration

We conduct evaluations of modeled NH₃ concentration against satellite observations, i.e. modeled NH₃(g) concentration at 918hPa against AIRS (Atmospheric Infrared Sounder) satellite observation, and modeled column density of NH₃ (g) against IASI (Infrared Atmospheric Sounding Interferometer) satellite observation. Our NH₃ emission inventory provides reasonably good comparison over China in January and July of 2012. Our inventory outperforms MIX NH₃ inventory (the NH₃ emission inventory published in Kang et al (2016)(Kang *et al* 2016) and Huang et al (2017) (Huang *et al* 2012) and used in Liu et al (2019) and MIX inventory (Li *et al* 2017)).

We run both WRF-chem and GEOS-chem (another well-known atmospheric chemistry model frequently used by atmospheric scientists) with NH₃ emissions from Zhang et al (Zhang *et al* 2018, p 3) (used in this study) and MIX NH₃ inventory (the NH₃ emission inventory published in Kang et al (2016)(Kang *et al* 2016) and Huang et al (2017) (Huang *et al* 2012)and used in Liu et al (2019)). We extracted modeled NH₃ concentration at 918hPa averaged over regions that AIRS satellite provides reliable observations (AIRS mask region, Figure S2). The AIRS observations are NH₃(g) concentration before smoothing through two-dimensional penalized least squares provided by Warner J.K.. Warner's paper provide AIRS observations that are after smoothing (Warner *et al* 2016).

AIRS observation shows a strong summer-winter contrast of NH₃ concentration, which is better captured by NH₃ emission inventory used in this study. Zhang et al (2018) NH₃ outperforms MIX NH₃ especially in July, where both WRF-chem and GEOS-chem simulation with MIX NH₃ is -25%~-75% lower than AIRS observation yet both WRF-chem and GEOS-chem simulation with Zhang et al (2018) NH₃ is within 25% of AIRS observation (Table S8).

We evaluate NH₃ column density simulated by WRF-chem using both Zhang et al (2018) NH₃ (this study) and MIX NH₃ emissions (published in Kang et al (2016) (Kang *et al* 2016) and Huang et al (2017) (Huang *et al* 2012)) against IASI observations for January and July of 2012 over China. We processed IASI column NH₃ density according to v2.2 instruction (Damme *et al* 2017)²⁹. Only observations with relative error <100% are used and unweighted averages are used. IASI pixels are then mapped to closest WRF-chem grids (27km ×27km resolution, 9.0-57.6°N and 59.6-156.3°E domain) following two principals: 1) multiple pixels could be mapped to the same grid. 2) In this case, average values of IASI are used for comparison. WRF-chem grids and periods without valid IASI observations are removed.

²⁹ <u>http://cds-espri.ipsl.fr/etherTypo/index.php?id=1730&L=1</u>

We first compare daily values of mapped IASI data to WRF-chem simulation using two NH₃ emission inventories using orthogonal distance regression (Figure S3 and S4). We then compare monthly means of all valid daily mapped IASI and WRF-chem simulations (Figure S5 and S6). Overall Zhang et al (2018) NH₃ is much better than MIX NH₃. The correlation of IASI and WRF-chem simulation (regardless of which NH₃ emission inventory is used) is much worse in January than in July, probably due to large IASI uncertainty in winter.

Evaluation of 2012 baseline PM_{2.5} simulation

We evaluate modeled $PM_{2.5}$, ammonium (NH_4^+ ,) nitrate (NO_3^-) and sulfate (SO_4^{2-}) concentrations during January and July of 2012 against as many published speciated PM observations during the same time period as possible, i.e., Beijing from (US Embassy at Beijing 2012)(Sun *et al* 2015), Shanghai (Wang *et al* 2016), Xiamen, Quanzhou, Putian and Fuzhou (Wu *et al* 2015), Guangzhou (Lai *et al* 2016), and Jinsha (Zhang *et al* 2014). Observational sites mainly represent the North China Plain, Yantze-River Delta and coastal regions. Unfortunately, there is a lack of representation for inland China during wintertime. The WRF-Chem model well captures observations, especially in July (Figures S7 and S8). In July, modeled mean ammonium, nitrate, sulfate and PM_{2.5} concentrations of 3.1, 2.7, 6.9 and 36.2 µg/m³ (Figure S10). In January, modeled mean ammonium, nitrate, sulfate and PM_{2.5} compared to observations of 8.5, 10.1, 14.0 and 83.7 µg/m³ (Figure S9). The model underestimation of sulfate in winter is prominent at four coastal sites in Fujian province, but barely noticeable in Beijing and Shanghai. In January at Beijing, modeled

265

ammonium, nitrate, sulfate and PM_{2.5} concentrations are 6.9, 9.4, 10.5 and 174.9 μ g/m³, compared to observations of 6.9, 8.3, 10.2 and 175.3 μ g/m³. In January at Shanghai, modeled ammonium, nitrate, sulfate and PM_{2.5} concentrations are 7.5, 13.5, 9.6 and 93.4 μ g/m³, compared to observations of 7.5, 10.2, 11.6 and 53.1 μ g/m³. The fact that our model does not include the latest sulfate production mechanism – heterogeneous SO₂ oxidation at the surface of liquid aerosols, results in underestimation of sulfate. Model's underestimation at coastal sites originate from other factors such as models' flaws in simulating complex terrain geography and sea breeze as well as flaws in emission inventory in that region.

Consumption-based Life-cycle GHG emissions, water and land use

We utilize GHG emissions per gram of food from over 300 lifecycle assessment (LCA) studies covering the emissions from cradle to farm gate worldwide following the methodology in He et al (2019)(He *et al* 2019). We utilize water consumption per gram of food in China from water footprint database of Water Footprint Network(Anon n.d.). The network includes average water consumption for 352 plant-based and 106 animal-based products during the period of 1996-2005. We utilize land appropriation for plant-based food from the average of 1996-2005 field data for China provided by the Food and Agriculture Organization Statistics (FAOSTAT), while we estimate this indicator for animal-based food using conversion factors. Details of quantification for each of these three footprints are included in SI.

We introduce the Monte Carlo simulation to estimate the uncertainty of the impacts of diets on the environment due to uncertainties in climate, technologies, errors from various evaluations, etc. We run a simulation repeated for 10000 trials. In each trial, environmental impact factors of each food group are generated from the assumed distribution with a specific mean and standard deviation retrieved from the dataset of environmental impact factors. We assume log normal distributions for GHG emissions of each food group based on the distribution of factors of our collection of LCA studies, and retrieve the mean and standard deviation for each food group. For water consumption, we assume a normal distribution for each of the 352 plant-based and 106 animal-based products from the Water Footprint Network database, and a 15% of the means as the standard deviations for each product following a previous study ³⁵. For land appropriation, we assume normal distributions and 5% of the means from the FAOSTAT data as the standard deviations for each food group due to the observations of the flat change in productivity over time in FAOSTAT. The simulation is repeated for 100 trials. We then link these generated factors to the CHNS dataset to evaluate the individual dietary environmental impacts.

Opportunity cost of land

We quantify the land-use carbon emissions of agricultural production using life-cycle landchange carbon emission factors for crops and livestock products reported in Searchinger et al 2018(Searchinger *et al* 2018). This metric goes beyond life-cycle consumption-based GHGs and land use metrics since it considers the opportunity cost of one piece of land if it is used for producing one specific type of food compared to for producing another type of food/biofuel and compared to simply remaining as forests for global carbon storage purposes. It measures the carbon efficiency of the land analyzed compared to global-average carbon efficiency.

Health impacts of exposure to PM_{2.5}

We calculate premature mortality of four diseases due to exposure to $PM_{2.5}$ for adults (≥ 25 y old) in three dietary changes scenarios. The four diseases considered are chronic obstructive pulmonary disease (COPD), lung cancer, ischemic heart disease (IHD) and ischemic stroke. For each province in China, we calculate number of premature deaths of each disease based on

$$Mort_{i,P} = POP_P \times Mortbase_{i,P} \times (1 - \frac{1}{RR_{i,P}})$$

where $Mort_{i,p}$ is the number of premature mortality in province P from disease *i*; $POP_{j,p}$ is the number of exposed targeted population in province P considering adults (≥ 25 y old) in 2012 from 2013 China Statistical Yearbook(All China Marketing Research Co. Ltd 2014); *Mortbase*_{*i*,*p*} is the baseline mortality rate in province P for disease *i* in 2012 from Global Burden of Disease study (Burnett *et al* 2014); $RR_{i,p}$ is the relative risk factor for one disease *i* adopted from (Burnett *et al* 2018). Relative risk factors for IHD and stroke are by age groups. There are 12 age groups considered, i.e. 25-29, 30-34, 35-39, 40-44, 45-49,50-54,55-59,60-64,65-69,70-74,75-79 and over 80 y old. Relative risk factors for lung cancer and COPD are the same for all people ≥ 25 y old.

Health impacts of diets

We quantify the public health implications of various dietary changes considering four dietary risk factors (including intakes of total red meat, vegetables, fruits and legumes) and six end-point diseases (including coronary heart disease (CHD), stroke, total cancers, Type II diabetes (T2DM), Colon and rectum cancers, and lung cancer). In detail, total red meat intake has been found positively associated with mortalities from stroke, T2DM, and colon and rectum cancers.

Vegetable and fruit intakes have been found negatively associated with mortalities from CHD, stroke, total cancer and lung cancer. Legume intake has been found negatively associated with CHD. We estimate the mortality attributable to dietary risk factors by calculating "population attributable fractions (PAFs)" following the formula below,

$$PAF = \frac{\int RR(x)P(x)dx - \int RR(x)P'dx}{\int RR(x)P(x)dx}$$

Where RR(x) is the relative risk of one specific end-point disease for risk factor level x, P(x) is the number of populations exposed to this risk level x in baseline scenario and that P'(x) is the number of people exposed to risk level x in one dietary change scenario. We utilize relative risk factors reported in Aune et al(Aune *et al* 2017), Kim et al(Kim Kyuwoong *et al* n.d.) and those used in Springmann et al(Springmann *et al* 2018). Population data and baseline mortality for diseases of relevance are from Global Burden of Disease (Institute for Health Metrics and Evaluation (IHME) 2018). In cases of mortality of one disease attributable to multiple risk factors, we assume PAFs combine multiplicatively, i.e. $PAF_{TOT} = 1 - \prod_i (1 - PAF_i)$.

Uncertainty analysis

An alternative to nutritional surveys, i.e. macro statistics from FAO Food Balance Sheet (FBS), could also be used to estimate baseline Chinese diets. However, in this study, we decided to rely more on nutritional surveys to construct baseline Chinese diets for two reasons. The first reason is the quality of Chinese national statistics of agricultural production and supply has been criticized as of poor quality. The second reason is that nutritional survey data more realistically capture people's dietary preference variations depending on age, sex and region and more accurately estimate food waste.

FAO Food Balance Sheet's estimation of per capita food supply in China is estimated by subtracting non-human food usages, e.g. food for animal feed, food for export, food for seed, food for processing, etc from total agricultural production reported by Chinese State Statistics Bureau. China's official statistics, in nature, rely on household and enterprise surveys. In particular, a number of research pointed out severe mis-reporting issues(Peng et al 2019, Holz 2004). One research finds that increase of meat production reported by statistics during 1990s cannot be explained by stagnation of consumption and decline of livestock product export. Given lack of refrigerated storage facilities particularly in rural China, stock holdings are less likely to be able to explain the discrepancies(Fuller et al 2000). That research, through interviews, also finds that 'human errors' probably remains the most important source of data errors since the central government had set targets of agricultural production for regional government to achieve and frequently utilized agricultural production to assess the political performance of bureaucrats at regional and village levels(Fuller *et al* 2000). Another research echoes that China's official livestock production data series has been a level two to three times as high as its consumption data series since the year 1999 and official statistics over years fall short of various statistical tests, indicating poor data quality and consistency (Ma et al 2004). Other research finds that fishery output data suffer from similar issues(Li and Haomiao n.d.) and that township and village enterprise output statistics are also overstated(Zheng n.d.).

FAO FBS's data of per capita food supply includes food waste during food processing, cooking, and dine-out, and non-edible portion of food. Obtaining food intake has to involve using models to estimate food waste. A number of studies found that FAO data substantially overestimate

270

individual's total calorie intake, e.g. a Chinese diet of over 3000kcal/day/capita from FAO FBS compared to those reported(Zhou *et al* 2003).

FAO data provides national level per capita food consumption, exclude substantial dietary variations among people in different age groups, of different sexes, at different income levels and with rural or urban backgrounds. Instead, in two of our dietary change scenarios, i.e. Chinese Nutritional Guideline diet and US diet, diets vary depending on people's sex, age, daily calorie intake and activity level. It is thus infeasible to model each person's dietary transitions to these two diets based on FAO data which captures only diets for the nation on average.

Macro statistics data (e.g. FAO Food Balance Sheet) of per capita food supply is the best suitable for cross-country comparison as they are estimated with relatively comparable methodologies using data reported

Similar to previous finds, we find that for China FAO food consumption data, compared to nutritional survey data mapped to nationwide population, overestimates consumption of livestock products but underestimates consumption of grains (Table S9)(Del Gobbo *et al* 2015).

A large body of literature utilize non-macro statistics data to inform diet, nutrition and human health, e.g. survey(Yang *et al* 2017, Miller *et al* 2016, Conrad *et al* 2017)and GENuS model that combines multiple data sources(Smith 2012).

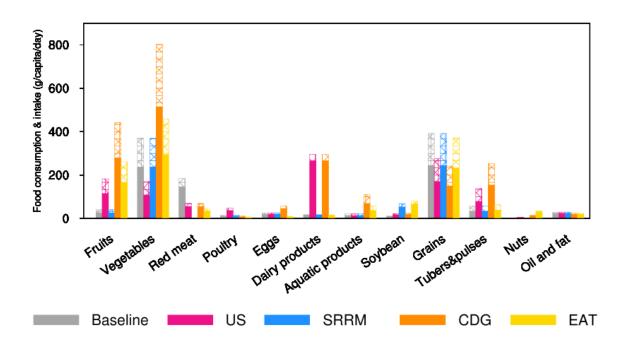
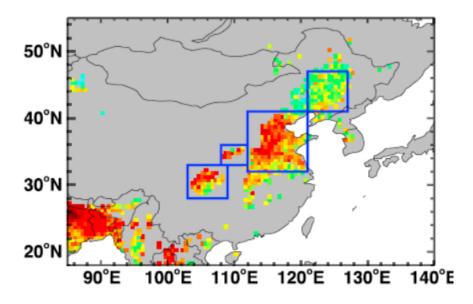



Figure S1. Food intake (solid bars; fresh food weight with non-edible portion included), food loss (bars with filled patterns; including food loss during production, processing and consumption) and food consumption (solid bars plus bars with filled patterns) by 'standardized' food type for *Baseline* Chinese diet (estimated from the latest China Health and Nutrition Survey (CHNS) for 2011(Carolina Population Center at University of North Carolina at Chapel Hill and Chinese Center for Disease Control and Prevention 2011)) and four future dietary change scenarios (*US*: typical 2011 US diet; *Soy Replaces Red Meat (SRRM)*: All red meat replaced with soy products; *Chinese Dietary Guideline (CDG)*: Recommendation of Chinese dietary guidelines; *Lancet-EAT Dietary Recommendations (EAT)*: healthy and sustainable diet recommended by Lancet EAT project). The standardization process (See Supplemental Appendix materials and Table S4) defines a reference food item within a specific food group with certain content of representative nutrients and then converts consumption of all food items

within the same food group to consumption of this referenced 'standard' food item. The unit is g/capita/day. Definitions of vegetables and fruits are based on Chinese habits, e.g. cucumber, tomato, loofah and zucchini are categorized as vegetables; watermelon and muskmelon as fruits. All scenarios have daily per capita calorie intake of around 1800-1900 kcal.

Figure S2 Pixels (the colored grid boxes within blue rectangles) where AIRS observations are extracted for comparison against model results.

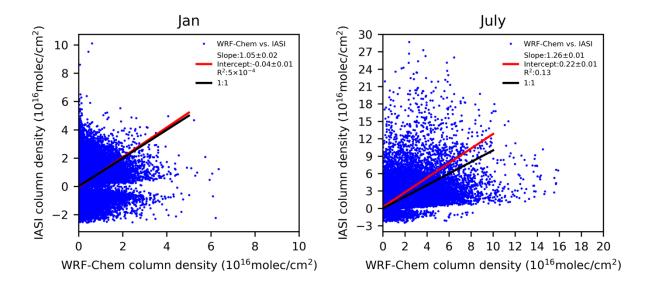


Figure S3: Daily NH_3 column density observed by IASI and simulated by WRF-chem with Zhang et al (2018) NH_3 (this study) for January (number of valid pixels: N=70063) and July (N=96557).

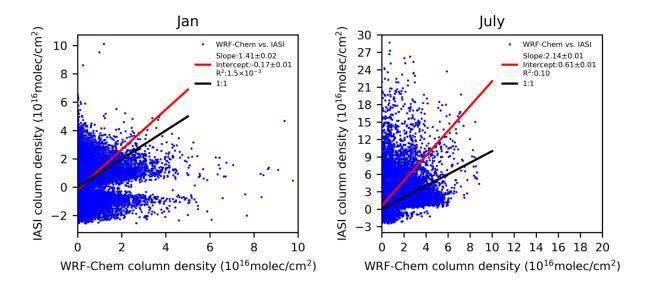
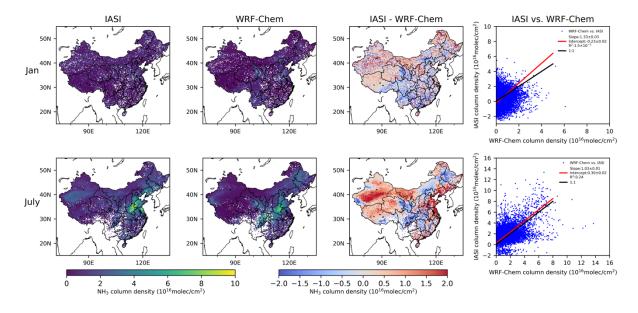
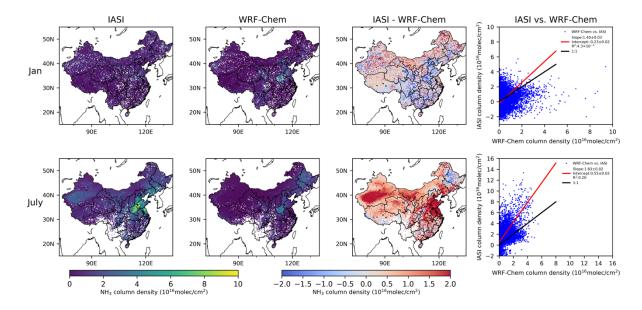




Figure S4: Daily NH₃ column density observed by IASI and simulated by WRF-chem with MIX NH₃ for January (number of valid pixels: N=70063) and July (N=96557).

Figure S5: Monthly mean NH₃ column density observed by IASI (1st column) and simulated by WRF-chem with Zhang et al (2018) NH₃ (this study) (2nd column), as well as their difference (IASI-WRF-chem, 3rd column) for January (number of valid pixels: N=23506) and July (N=20767). An orthogonal distance regression (4th column) is also provided.

Figure S6: Monthly mean NH₃ column density observed by IASI (1st column) and simulated by WRF-chem with MIX NH₃ emissions (published in Kang et al (2016) (Kang *et al* 2016) and Huang et al (2017) (Huang *et al* 2012)) (2nd column), as well as their difference (IASI-WRF-chem, 3rd column) for January (number of valid pixels: N=23506) and July (N=20767). An orthogonal distance regression (4th column) is also provided.

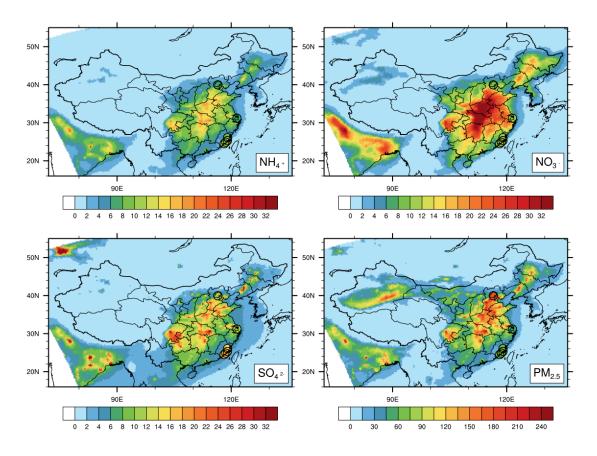


Figure S7 Evaluation of modeled ammonium (NH₄⁺,) nitrate (NO₃⁻), sulfate (SO₄²⁻) and PM_{2.5} concentrations (in μ g/m³) against observations during January of 2012. All observational and modeled values are monthly, except for four sites in the southeast where observation was conducted during the first 15 days of January so modeled concentrations are also averaged among that same period of time.

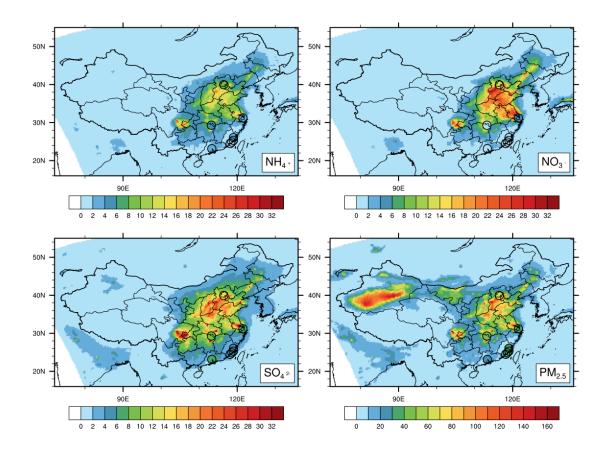


Figure S8 Evaluation of modeled ammonium (NH₄⁺,) nitrate (NO₃⁻), sulfate (SO₄²⁻) and PM_{2.5} concentrations (in μ g/m³) against observations during July of 2012. All observational and modeled values are monthly, except for four sites in the southeast where observation was conducted during the first 15 days of July, so modeled concentrations are also averaged among that same period of time.

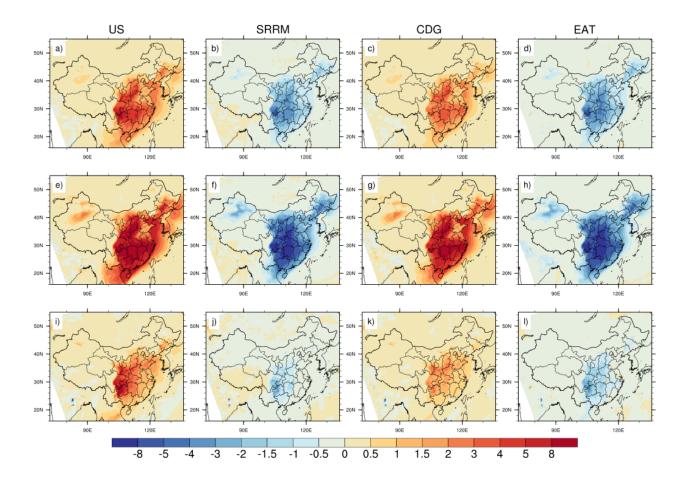


Figure S9 Changes in ammonium (1st row, a)-d)), nitrate (2nd row, e)-h)) and sulfate (3rd row, i)l)) aerosol concentrations (in μ g/m³) in dietary change scenarios compared to baseline simulation in January 2012.

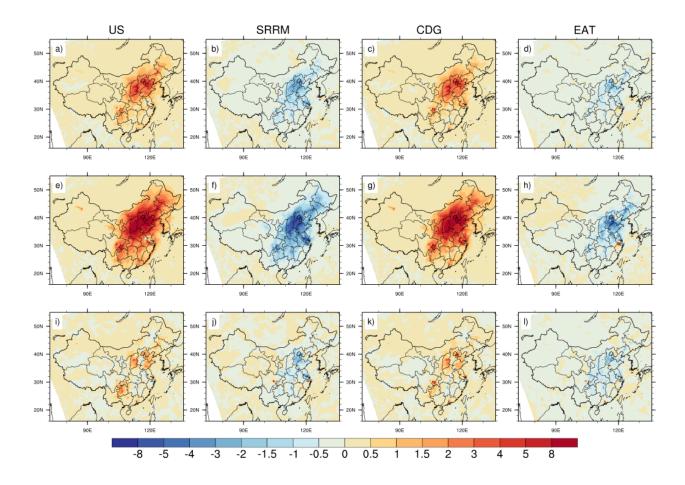


Figure S10 Changes in ammonium (1st row, a)-d)), nitrate (2nd row, e)-h)) and sulfate (3rd row, i)l)) aerosol concentrations (in μ g/m³) in dietary change scenarios compared to baseline simulation in July 2012.

Table S1: *Baseline* food intake (in g/day/capita; net of food waste and non-edible portion) and consumption (in g/day/capita; including food waste and non-edible portion) in China in 2011 for each type of 'non-standardized' food product.

Food type	Intake (g/day/capita)	Consumption (g/day/capita)
(non-		
standardized)		

apple	12.4	20.3
banana	0.7	1.2
citrus	2.8	4.2
pear	1.5	2.4
grape	0.6	1
Other fruits	21.1	34.6
vegetables	264	396.7
Pig meat	75	93.6
Poultry meat	13.6	17.3
beef	3.8	4.7
Goat and sheep	0.4	0.5
Egg products	25.1	31.8
Dairy product	16	20.9
Aquatic		
products	23.3	34.8
rice	231	365.2
wheat	142.9	221
maize	6.5	9.7
potato	25.9	49.1
Sweet potato	1.5	2.7
Other coarse		
pulse	14.7	21.6
groundnut	1.1	1.2
Other nuts	0.5	0.6
Rapeseed oil	24.4	28.2

Soy products	21.6	21.6

Table S2: *Baseline* food intake (in g/day/capita; net of food waste and non-edible portion) and consumption (in g/day/capita; including food waste and non-edible portion) in China in 2011 for each type of 'standardized' food product. The standardization process converts food items under the same food group but with diverse nutrition composition to a pre-defined reference 'standard' food item. We follow the process elaborated in He et al (2019)(He *et al* 2018).

Food type (standardized)	Intake (g/day/capita)	Consumption
		(g/day/capita)
apple	9.7	15.4
banana	0.8	1.2
citrus	2.0	3.1
pear	1.1	1.7
grape	0.4	0.7
Other fruits	12.4	19.6
vegetables	237.5	370.4
Pig meat	143.2	180.7
Poultry meat	11.8	14.9
beef	3.4	4.3
Goat and sheep	0.4	0.5
Egg products	20.9	26.4
Dairy product	15.8	17.7
Aquatic products	14.8	23.0

140.6	225.9	
99.5	159.8	
3.8	6.2	
20.4	39.4	
1.5	3.0	
6.8	11.0	
0.7	0.9	
0.1	0.1	
24.4	29.6	
9.4	11.5	
	99.5 3.8 20.4 1.5 6.8 0.7 0.1 24.4	99.5 159.8 3.8 6.2 20.4 39.4 1.5 3.0 6.8 11.0 0.7 0.9 0.1 0.1 24.4 29.6

Table S3 Ratios of food loss occurred during different stages of food production and consumption for various food groups.

		Post-harvest				
	Agricultural	handling &	Processing&			
Food groups	production	storage	packaging	Distribution	Consumption	Left*
cereals	2.0%	10.0%	10.0%	2.0%	20.0%	62.2%
roots &						
tubers	20.0%	7.0%	15.0%	9.0%	10.0%	51.8%
oilseeds &						
pulses	6.0%	3.0%	5.0%	1.0%	4.0%	82.3%
fruits &						
vegetables	10.0%	8.0%	2.0%	8.0%	15.0%	63.5%
meat	2.9%	0.6%	5.0%	6.0%	8.0%	79.3%

fish &						
seafood	15.0%	2.0%	6.0%	11.0%	8.0%	64.1%
milk	3.5%	1.0%	1.2%	0.5%	5.0%	89.2%
others	0.0%	0.0%	0.0%	0.0%	0.0%	100.0%

Left=(1-Loss_Agricultural production)(1-Loss_Post-harvest and storage)*(1-Loss_Food processing and packaging)*(1-Loss_Food distribution)*(1-Loss_Food consumption)

Table S4 the key nutrient and its content of the representative food items defined in Chinese Dietary Guidelines.

Food groups	Standardized item	Key nutrient for	Content of key	Energy supply
		standardizing	nutrient per item	
Cereals and pulses		Carbohydrate	80g/100g	267-360kcal/100g
tubers	Potato	Carbohydrate	20g/100g	80-113kcal/100g
Livestock and	Lean pork	Energy	140kcal/100g	140kcal/100g
poultry				
Eggs and egg	Chicken egg	Protein	14g/100g	130-200kcal/100g
products				
Soybean and	Soybean	Protein	35g/100g	260-400kcal/100g
soybean products				
Dairy products	Uncondensed	Protein	3g/100g	22-55 kcal/100g
	milk			
Aquatic products	Fish	Energy	100kcal/100g	100kcal/100g
Nuts	Sunflower seed	Fat	50g/100g	400-550kcal/100g
Fruits	Apple	Energy	50kcal/100g	50kcal/100g

Table S5 China's national total food consumption (including non-edible portion and food waste) by food type in *Baseline* and in four dietary change scenarios as a ratio of baseline. The second column displays national total consumption (unit: gram) of various food products in 2011 representative of current diet. The third, fourth, fifth and sixth column displays the ratio of food consumption in dietary change scenarios with respect to baseline consumption respectively. China's national population of 1303366480 persons are used.

Food types	Baseline	The ratio	of consumption	in scenarios to	o consumption in			
	national		Baseline					
	consumption	US	SRRM	CDG	EAT			
	by food type							
	(g/day)							
apple	2.64E+10	3.44	1.00	8.53	5.06			
banana	1.56E+09	18.02	1.00	28.11	14.56			
citrus	5.49E+09	12.51	1.00	22.50	13.02			
pear	3.15E+09	1.83	1.00	28.34	15.86			
grape	1.29E+09	11.31	1.00	36.47	19.19			
other fruits	4.51E+10	2.98	1.00	6.80	4.34			
vegetables	5.17E+11	0.46	1.00	2.17	1.24			
pig	1.22E+11	0.19	0.00	0.35	0.23			

poultry for					
meat	2.25E+10	3.24	1.00	0.75	0.47
cattle for					
beef	6.19E+09	8.09	0.00	1.28	0.37
goat and					
sheep	6.70E+08	1.19	0.00	1.88	0.50
chicken for					
eggs	4.14E+10	0.96	1.00	2.21	0.38
cattle for					
milk	2.73E+10	16.66	1.00	16.74	0.96
aquatic					
products	4.53E+10	0.92	1.00	4.78	2.50
rice	4.76E+11	0.13	1.00	0.54	1.00
wheat	2.88E+11	1.26	1.00	0.49	0.85
maize	1.26E+10	7.26	1.00	6.66	1.61
potato	6.40E+10	2.21	1.00	3.32	0.76
sweet potato	3.56E+09	0.05	1.00	4.84	0.97
other coarse					
pulse	2.81E+10	4.10	1.00	6.52	2.26
other tubers	6.13E+09	1.27	1.00	7.68	1.37
groundnut	1.59E+09	5.54	1.00	6.75	16.51
other nuts	7.92E+08	14.42	1.00	85.22	193.05
rapeseed oil	3.67E+10	1.00	1.00	0.83	0.81
soy products*	2.81E+10	1.92	5.80	2.16	6.95
soybean**	1.50E+10	1.92	5.80	2.16	6.95

* include various products that are made of soybean, e.g. bean curd, tofu, etc.

** soybean content in soy products

Table S6 Food production in four dietary change scenarios as a ratio of baseline production. This ratio equals to food consumption in scenario as a ratio of baseline production for all food types except for animal feed crops.

Food types	The ratio of production in scenarios to production under					
			Baseline			
	US	SRRM	CDG	EAT		
apple	3.44	1.00	8.53	5.06		
banana	18.02	1.00	28.11	14.56		
citrus	12.51	1.00	22.50	13.02		
pear	1.83	1.00	28.34	15.86		
grape	11.31	1.00	36.47	19.19		
other fruits	2.98	1.00	6.80	4.34		
vegetables	0.55	0.93	1.93	0.41		
pig	0.19	0.00	0.35	0.23		
poultry for						
meat	3.24	1.00	0.75	0.47		
cattle for beef	8.09	0.00	1.28	0.37		
goat and sheep	1.19	0.00	1.88	0.50		
chicken for						
eggs	0.96	1.00	2.21	0.38		
cattle for milk	16.66	1.00	16.74	0.96		

aquatic				
products	0.92	1.00	4.78	2.50
rice	0.28	0.93	0.58	0.94
wheat	1.19	0.81	0.50	0.72
maize	1.31	0.43	0.94	0.54
potato	2.21	1.00	3.32	0.76
sweet potato	0.05	1.00	4.84	0.97
other coarse				
pulse	4.10	1.00	6.52	2.26
other tubers	1.27	1.00	7.68	1.37
groundnut	5.54	1.00	6.75	16.51
other nuts	14.42	1.00	85.22	193.05
rapeseed oil	1.00	1.00	0.83	0.81
soy products	1.05	0.75	0.69	0.92

Table S7 Domestic food supply and food utilization (including animal feed, human food and others) foranimal feed crops in China in 2011, data from FAO's Food Balance Sheet (FBS).

Crop	Supply	Utilization		
	Net import as a	Animal feed as a	Human food as a	Other
	percentage of domestic	percentage of	percentage of	utilizations as a
	production	supply	supply	percentage of
				supply
Rice	0.39%	8.6%	82.0%	9.3%
Wheat	2.09%	22.8%	75.1%	2.1%

Maize	2.84%	66.9%	5.3%	27.8%
Soybean	376.69%	73.6%	7.9%	18.4%
Vegetables	8%	9%	83%	8%

Table S8: Monthly mean NH₃ concentrations (ppbv) at 918hPa observed by AIRS and simulated by WRF-Chem and GEOS-Chem with NH₃ emissions by Zhang et al (2018) and with MIX NH₃ emissions (Kang et al (2016)(Kang *et al* 2016); Huang et al (2017) (Huang *et al* 2012)).

NH ₃ cond	centration at 918hPa (ppbv) over AIRS mask	January of	July of 2012
		2012	
Satellite	AIRS observations before smoothed by using two-	1.57	5.76
	dimensional penalized least squares (Warner et al. (2017)		
	(Warner <i>et al</i> 2016))		
Model	WRF-Chem simulation using Zhang et al (2018) NH ₃	0.62	6.35
	WRF-Chem simulation using MIX NH ₃	0.96	2.98
	GEOS-Chem simulation using Zhang et al (2018) NH ₃	0.53	4.61
	GEOS-Chem simulation using MIX NH ₃	0.51	2.48

Table S9: Evaluation of modeled daily SNA concentrations in Beijing against observations provided by (Chen et al, 2015) in January and July of 2012.

Variables	Pairs of data	Obs	Model	Mean bias	R	IOA*
		(ug/m^3)	(ug/m^3)	(ug/m^3)		
SO ₄ (January)	29	10.27	10.94	0.66	0.69	0.78
NO ₃ (January)	29	8.43	9.96	1.53	0.59	0.67
NH ₄ (January)	29	7.05	7.12	0.08	0.68	0.81
SO ₄ (July)	29	14.92	14.50	-0.42	0.25	0.52

NO ₃ (July)	29	12.16	13.66	1.49	0.15	0.44
NH ₄ (July)	29	8.60	9.41	0.81	0.19	0.51

*Index of agreement (IOA) was proposed by Willmott et al 1981 On the validation of models *Phys. Geogr. 2(2) 184-194*

Table S10: Evaluation of modeled hourly PM_{2.5} concentrations in Beijing, Shanghai, Guangzhou and Chengdu against U.S. embassy observations in January and July of 2012.

PM _{2.5}	Pairs of data	Obs	Model	Mean bias	R	IOA ¹
		(ug/m ³)	(ug/m ³)	(ug/m^3)		
Beijing (January)	670	118.92	112.07	-6.85	0.72	0.81
Shanghai (January)	740	64.44	62.28	-2.16	0.50	0.70
Guangzhou (January)	82	80.16	66.53	-13.62	0.29	0.49
Beijing (July)	688	80.65	70.16	-10.49	0.52	0.69
Shanghai (July)	737	26.73	29.27	2.54	0.81	0.89
Guangzhou (July)	740	29.46	22.97	-6.50	0.46	0.65
Chengdu (July) ²	729	59.03	55.28	-3.75	0.70	0.84

¹Index of agreement (IOA) was proposed by Willmott et al 1981 On the validation of models *Phys.*

Geogr. 2(2) 184-194

² A comparison for Chengdu in January is not available due to too many invalid observations there.

 Table S11 Consumption-based life-cycle GHG emissions associated with national food consumption per

 day by food type in *Baseline* and four dietary scenarios.

Food types	Life-cycle				
	GHG				
	emissions				
	(kg CO ₂ -				
	eq/day)	GF	HG emissions in sc	enario/GHG emi	ssions in Baseline
					EAT
	Baseline	US	SRRM	CDG	
apple	3.52E+06	3.44	1.00	8.53	4.13
banana	5.69E+05	18.52	1.00	27.61	16.26
citrus	7.59E+05	12.64	1.00	22.12	14.14
pear	4.19E+05	1.84	1.00	28.34	17.79
grape	1.72E+05	11.41	1.00	36.47	15.16
other fruits	6.82E+06	2.62	1.00	6.87	4.39
vegetables	3.38E+08	0.46	1.00	1.92	1.30
pig	6.34E+08	0.16	0.00	0.35	0.23
poultry for					
meat	8.54E+07	3.17	1.00	0.75	0.48
cattle for					
beef	1.19E+08	7.92	0.00	1.27	0.37
goat and					
sheep	7.55E+06	1.21	0.00	1.88	0.46
chicken for					
eggs	1.04E+08	0.95	1.00	2.21	0.38
cattle for					
milk	3.13E+07	20.40	1.00	16.74	0.96

aquatic						
products	1.56E+08	0.90	1.00	4.74	3.77	
rice	7.87E+08	0.10	1.00	0.54	0.95	
wheat	1.78E+08	1.39	1.00	0.50	0.83	
maize	4.59E+06	5.89	1.00	6.66	1.62	
potato	1.18E+07	2.22	1.00	3.32	0.84	
sweet potato	652848	0.05	1.00	4.83	1.05	
other coarse						
pulse	1.75E+07	3.59	1.00	6.59	2.08	
other tubers	1.12E+06	1.30	1.00	7.68	1.07	
groundnut	1.70E+06	5.97	1.00	6.75	15.22	
other nuts	8.50E+05	61.88	1.00	85.21	188.11	
rapeseed oil	1.52E+08	1.00	1.00	0.83	0.75	
soy products	1.43E+07	1.37	5.05	2.17	8.58	

 Table S12 Consumption-based life-cycle total water footprint associated with national food consumption

 per day by food type in *Baseline* and four dietary scenarios.

Food types	Total Water					
	Footprint					
	(TWF)					
	(m^3/day)		Ratio of TWF in sc	enarios to TWF	under Baseline	
					EAT	
	Baseline	US	SRRM	CDG		
apple	2.18E+07	3.44	1.00	8.53	4.66	

banana	7.96E+05	18.52	1.00	28.10	13.88
citrus	4.55E+06	12.64	1.00	22.68	14.35
pear	2.85E+06	1.84	1.00	28.34	16.49
grape	4.62E+05	11.41	1.00	36.56	19.18
other fruits	4.91E+07	2.62	1.00	7.00	2.70
vegetables	2.75E+08	0.46	1.00	1.93	3.27
pig	5.79E+08	0.16	0.00	0.35	0.22
poultry for					
meat	5.45E+07	3.17	1.00	0.87	0.47
cattle for					
beef	6.60E+07	7.92	0.00	1.26	0.37
goat and					
sheep	3.25E+06	1.21	0.00	1.78	0.46
chicken for					
eggs	1.01E+08	0.95	1.00	2.21	0.37
cattle for					
milk	3.05E+07	20.40	1.00	16.76	1.03
aquatic					
products	8.57E+07	0.90	1.00	4.84	2.43
rice	5.07E+08	0.10	1.00	0.54	1.11
wheat	3.64E+08	1.39	1.00	0.49	0.86
maize	1.26E+07	5.89	1.00	6.69	1.56
potato	1.54E+07	2.22	1.00	3.32	0.95
sweet potato	937545.7	0.05	1.00	4.84	0.83

other coarse					
pulse	3.76E+07	3.59	1.00	6.54	2.15
other tubers	1.75E+06	1.30	1.00	7.64	1.29
groundnut	2.80E+06	5.97	1.00	6.75	16.17
other nuts	1.48E+06	61.88	1.00	85.37	210.64
rapeseed oil	1.56E+08	1.00	1.00	0.83	0.85
soy products	9.69E+07	1.37	6.17	2.16	11.20

 Table S13 Consumption-based land appropriation associated with national food consumption per day by

 food type in *Baseline* and four dietary scenarios.

Food types			Land Appropri	ation (m ² /day))	
					EAT	
	Baseline	US	SRRM	CDG		
apple	2.85E+07	3.44	1.00	8.53	4.92	
banana	7.61E+05	18.52	1.00	28.11	14.83	
citrus	7.86E+06	12.64	1.00	22.73	14.49	
pear	3.82E+06	1.84	1.00	28.34	16.74	
grape	1.02E+06	11.41	1.00	36.45	19.54	
other fruits	6.62E+07	2.62	1.00	6.97	2.78	
vegetables	4.70E+08	0.46	1.00	1.92	1.96	
pig	8.79E+08	0.16	0.00	0.35	0.24	
poultry for						
meat	2.89E+08	3.17	1.00	0.75	0.48	
cattle for						
beef	5.76E+07	7.92	0.00	1.30	0.37	

goat and						
sheep	7.60E+06	1.21	0.00	2.04	0.64	
chicken for						
eggs	4.13E+08	0.95	1.00	2.21	0.38	
cattle for						
milk	9.13E+07	20.40	1.00	16.72	0.99	
aquatic						
products	2.76E+08	0.90	1.00	4.83	2.74	
rice	5.82E+08	0.10	1.00	0.55	1.03	
wheat	7.54E+08	1.39	1.00	0.49	0.83	
maize	2.15E+07	5.89	1.00	6.62	1.59	
potato	4.29E+07	2.22	1.00	3.32	0.74	
sweet potato	2060508	0.05	1.00	4.84	0.91	
other coarse						
pulse	1.16E+08	3.59	1.00	6.56	2.22	
other tubers	3.61E+06	1.30	1.00	7.79	1.43	
groundnut	4.70E+06	5.97	1.00	6.75	16.35	
other nuts	2.08E+06	61.88	1.00	84.55	212.99	
rapeseed oil	1.44E+08	1.00	1.00	0.82	1.03	
soy products	1.07E+08	1.37	5.48	2.17	6.94	

 Table S14 Consumption-based land use change carbon emissions associated with national food

 consumption per day (in kton CO₂-eq/day) by food type in *Baseline* and four dietary scenarios.

Food types	Baseline	US	SRRM	CDG	EAT	

fruits	9.0E+01	4.6E+02	9.0E+01	9.1E+02	5.5E+02
vegettables	3.7E+02	1.7E+02	3.7E+02	7.9E+02	4.5E+02
pork&goat	1.9E+03	4.8E+02	0.0E+00	8.5E+02	4.7E+02
poultry&aquatic	2.4E+02	7.8E+02	2.4E+02	1.8E+02	1.1E+02
dairy&eggs	6.1E+02	3.2E+03	6.1E+02	3.8E+03	3.3E+02
soy	1.6E+02	3.2E+02	9.5E+02	3.6E+02	1.1E+03
grains&pulses	2.2E+03	2.7E+03	2.2E+03	3.7E+03	2.7E+03
nuts&others	1.8E+02	2.5E+02	1.8E+02	2.4E+02	3.7E+02
beef	8.9E+02	7.2E+03	0.0E+00	1.1E+03	3.3E+02
other tubers	5.2E+01	9.8E+01	5.2E+01	2.1E+02	3.5E+01
aquatic	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Sum	6.68E+03	1.57E+04	4.71E+03	1.22E+04	6.45E+03

Table S15 China's baseline food intake (g/day/capita) in the year 2011 estimated by macro-level statistics (1st column, IMPACT model estimations using a harmonized set of FAO's Food Balance Sheet data to exclude food waste and non-edible portion of food) and by dietary surveys (mapping food intake of a sampled population of ~8000 people to nationwide (2nd column, *Baseline* used in this study, excluding food waste and non-edible portion).

Food type	Food intake	Food intake
	derived from	derived from
	national	nutritional surveys
	statistics (net	(net of food waste
	of food waste	and non-edible
		part, population

	and non-edible	re-weighted,		
	part)	adult)		
apple	43.2	12.4		
banana	3.6	0.7		
citrus	8.0	2.8		
pear	4.7	1.5		
grape	2.0	0.6		
Other fruits	53.6	21.1		
vegetables	556.0	264		
Pig meat	94.0	75		
Poultry		13.6		
meat	30.0			
beef	15.0	3.8		
Goat and		0.4		
sheep	9.0			
Egg		25.1		
products	47.0			
Dairy		16.0		
product	89.0			
Aquatic		23.3		
products	40.0			
rice	162.0	231.0		
wheat	113.0	142.9		
maize	12.0	6.5		
potato	145.3	25.9		

Sweet		1.47
potato	10.7	
Other		14.7
coarse pulse	4.0	
groundnut	13.9	1.1
Other nuts	1.1	0.45
Rapeseed		24.4
oil	17.0	
Soy		40.0
products	34.7	

Table S16 Relative risk (RR) factors used for public health analysis in this research. RRs are from

		Risk facto	ors			
		red meat	Vegetable	Fruit	Legume	
End-point diseases		intake	intake	intake	intake	Exposure to PM2.5
						RR varies by age
	mean		0.84	0.95	0.77	group
						RR varies by age
	low		0.8	0.92	0.65	group
						RR varies by age
IHD	high		0.88	0.99	0.9	group
						RR varies by age
Stroke	mean	1.1	0.95	0.77		group

					RR varies by age
	low	1.05	0.87	0.7	group
					RR varies by age
	high	1.15	1.03	0.84	group
	mean		0.93	0.94	
Other	low		0.91	0.91	
cancers	high		0.95	0.97	
	mean	1.15			
	low	1.07			
T2DM	high	1.24			
Colon and	mean	1.14	0.93	0.94	
rectum	low	1.04	0.91	0.91	
cancers	high	1.24	0.95	0.97	
					RR varies by age
COPD					group
					RR varies by age
	mean		0.93	0.94	group
					RR varies by age
	low		0.91	0.91	group
					RR varies by age
Lung cancer	high		0.95	0.97	group

Reference

All China Marketing Research Co. Ltd 2014 China census data by county 2000-2010 http://map.princeton.edu/search/details/#/9107c437-8169-4444-9427-3b6957a09bca. Accessed March 6, 2019.

Anon Water Footprint Network (available at https://waterfootprint.org/en/)

Aune D, Giovannucci E, Boffetta P, Fadnes L T, Keum N, Norat T, Greenwood D C, Riboli E, Vatten L J and Tonstad S 2017 Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality—a systematic review and dose-response meta-analysis of prospective studies *Int J Epidemiol* 46 1029–56

- Burnett R, Chen H, Szyszkowicz M, Fann N, Hubbell B, Pope C A, Apte J S, Brauer M, Cohen A, Weichenthal S, Coggins J, Di Q, Brunekreef B, Frostad J, Lim S S, Kan H, Walker K D, Thurston G D, Hayes R B, Lim C C, Turner M C, Jerrett M, Krewski D, Gapstur S M, Diver W R, Ostro B, Goldberg D, Crouse D L, Martin R V, Peters P, Pinault L, Tjepkema M, van Donkelaar A, Villeneuve P J, Miller A B, Yin P, Zhou M, Wang L, Janssen N A H, Marra M, Atkinson R W, Tsang H, Quoc Thach T, Cannon J B, Allen R T, Hart J E, Laden F, Cesaroni G, Forastiere F, Weinmayr G, Jaensch A, Nagel G, Concin H and Spadaro J V 2018 Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter *Proceedings of the National Academy of Sciences*
- Burnett R T, Pope C A, Ezzati M, Olives C, Lim S S, Mehta S, Shin H H, Singh G, Hubbell B,
 Brauer M, Anderson H R, Smith K R, Balmes J R, Bruce N G, Kan H, Laden F, Prüss-Ustün A, Turner M C, Gapstur S M, Diver W R and Cohen A 2014 An integrated risk function for estimating the global burden of disease attributable to ambient fine particulate matter exposure *Environ. Health Perspect.* 122 397–403

- Carolina Population Center at University of North Carolina at Chapel Hill and Chinese Center for Disease Control and Prevention 2011 *China Health and Nutrition Survey (CHNS), available at http://www.cpc.unc.edu/projects/china*
- Chen F and Dudhia J 2001 Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity *Monthly Weather Review* **129** 569–85
- Conrad Z, Chui K, Jahns L, Peters C J and Griffin T S 2017 Characterizing trends in fruit and vegetable intake in the USA by self-report and by supply-and-disappearance data: 2001–2014 *Public Health Nutrition* **20** 3045–50
- Damme M V, Whitburn S, Clarisse L, Clerbaux C, Hurtmans D and Coheur P-F 2017 Version 2 of the IASI NH₃ neural network retrieval algorithm: near-real-time and reanalysed datasets *Atmospheric Measurement Techniques* **10** 4905–14
- Del Gobbo L C, Khatibzadeh S, Imamura F, Micha R, Shi P, Smith M, Myers S S and Mozaffarian D 2015 Assessing global dietary habits: a comparison of national estimates from the FAO and the Global Dietary Database *The American journal of clinical nutrition* **101** 1038–46
- Fuller F, Hayes D and Smith D 2000 Reconciling Chinese meat production and consumption data *Economic Development and Cultural Change* **49** 23–43
- Gao M, Carmichael G R, Wang Y, Saide P E, Yu M, Xin J, Liu Z and Wang Z 2016 Modeling study of the 2010 regional haze event in the North China Plain Atmos. Chem. Phys. 16 1673

- Guenther A, Karl T, Harley P, Wiedinmyer C, Palmer P I and Geron C 2006 Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature) *Atmos. Chem. Phys.* 6 3181–210
- Gustavsson J, Cederberg C, Sonesson U, Otterdijk R and Meybeck A 2011 Global food losses and food waste (Swedish Institute for Food and Biotechnology and FAO) available at http://www.fao.org/3/a-i2697e.pdf
- He P, Baiocchi G, Feng K, Hubacek K and Yu Y 2019 Environmental impacts of dietary quality improvement in China *Journal of Environmental Management* **240** 518–26
- He P, Baiocchi G, Hubacek K, Feng K and Yu Y 2018 The environmental impacts of rapidly changing diets and their nutritional quality in China *Nature Sustainability* **1** 122
- Holz C A 2004 China's Statistical System in Transition: Challenges, Data Problems, and Institutional Innovations *Review of Income and Wealth* **50** 381–409
- Hong S-Y, Noh Y and Dudhia J 2006 A new vertical diffusion package with an explicit treatment of entrainment processes *Monthly Weather Review* **134** 2318–41
- Huang X, Song Y, Li M, Li J, Huo Q, Cai X, Zhu T, Hu M and Zhang H 2012 A high-resolution ammonia emission inventory in China *Global Biogeochem Cy* **26** n/a-n/a
- Institute for Health Metrics and Evaluation (IHME) 2018 Global Burden of Disease Study 2017 (GBD 2017) Results. Seattle, United States: Institute for Health Metrics and Evaluation (IHME), Available from http://ghdx.healthdata.org/gbd-results-tool.
- Janssens-Maenhout G, Crippa M, Guizzardi D, Dentener F, Muntean M, Pouliot G, Keating T, Zhang Q, Kurokawa J and Wankmüller R 2015 HTAP_v2. 2: a mosaic of regional and global emission grid maps for 2008 and 2010 to study hemispheric transport of air pollution *Atmos. Chem. Phys.* **15** 11411–32

- Kang Y, Liu M, Song Y, Huang X, Yao H, Cai X, Zhang H, Kang L, Liu X, Yan X, He H,
 Zhang Q, Shao M and Zhu T 2016 High-resolution ammonia emissions inventories in
 China from 1980 to 2012 *Atmospheric Chemistry and Physics* 16 2043–58
- Kim Kyuwoong, Hyeon Junghyeon, Lee Sang Ah, Kwon Sung Ok, Lee Hyejin, Keum NaNa,
 Lee Jong-Koo and Park Sang Min Role of Total, Red, Processed, and White Meat
 Consumption in Stroke Incidence and Mortality: A Systematic Review and MetaAnalysis of Prospective Cohort Studies *Journal of the American Heart Association* 6
 e005983
- Lai S, Zhao Y, Ding A, Zhang Y, Song T, Zheng J, Ho K F, Lee S and Zhong L 2016
 Characterization of PM2.5 and the major chemical components during a 1-year campaign in rural Guangzhou, Southern China *Atmospheric Research* 167 208–15
- Li L and Haomiao L Recent Development in China's Fishery Economy: Reassessment of Statistics for Production and Consumption, working report (Center for Chinese Agricultural Policy, Chinese Academy of Sciences, Beijing, 2002)
- Li M, Zhang Q, Kurokawa J, Woo J-H, He K, Lu Z, Ohara T, Song Y, Streets D G and Carmichael G R 2017 MIX: a mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP *Atmos. Chem. Phys.* **17** 935
- Ma H, Huang J and Rozelle S 2004 Reassessing China's livestock statistics: an analysis of discrepancies and the creation of new data series *Economic Development and Cultural Change* **52** 445–73
- Miller V, Yusuf S, Chow C K, Dehghan M, Corsi D J, Lock K, Popkin B, Rangarajan S, Khatib R, Lear S A, Mony P, Kaur M, Mohan V, Vijayakumar K, Gupta R, Kruger A, Tsolekile

L, Mohammadifard N, Rahman O, Rosengren A, Avezum A, Orlandini A, Ismail N, Lopez-Jaramillo P, Yusufali A, Karsidag K, Iqbal R, Chifamba J, Oakley S M, Ariffin F, Zatonska K, Poirier P, Wei L, Jian B, Hui C, Xu L, Xiulin B, Teo K and Mente A 2016 Availability, affordability, and consumption of fruits and vegetables in 18 countries across income levels: findings from the Prospective Urban Rural Epidemiology (PURE) study *The Lancet Global Health* **4** e695–703

- Morrison H, Curry J A and Khvorostyanov V I 2005 A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description *Journal of the Atmospheric Sciences* **62** 1665–77
- Peng L, Zhang Q, Yao Z, Mauzerall D L, Kang S, Du Z, Zheng Y, Xue T and He K 2019 Underreported coal in statistics: A survey-based solid fuel consumption and emission inventory for the rural residential sector in China *Applied Energy* 235 1169–82
- Qin Y, Wagner F, Scovronick N, Peng W, Yang J, Zhu T, Smith K R and Mauzerall D L 2017 Air quality, health, and climate implications of China's synthetic natural gas development *Proceedings of the National Academy of Sciences* **114** 4887–92
- Searchinger T D, Wirsenius S, Beringer T and Dumas P 2018 Assessing the efficiency of changes in land use for mitigating climate change *Nature* **564** 249
- Smith M P 2012 Environmental and health regulation in the United States and the European Union: protecting public and planet (Palgrave Macmillan)
- Springmann M, Wiebe K, Mason-D'Croz D, Sulser T B, Rayner M and Scarborough P 2018 Health and nutritional aspects of sustainable diet strategies and their association with environmental impacts: a global modelling analysis with country-level detail *The Lancet Planetary Health* **2** e451–61

- Sun Y L, Wang Z F, Du W, Zhang Q, Wang Q Q, Fu P Q, Pan X L, Li J, Jayne J and Worsnop D
 R 2015 Long-term real-time measurements of aerosol particle composition in Beijing,
 China: seasonal variations, meteorological effects, and source analysis *Atmospheric Chemistry and Physics* 15 10149–65
- US Embassy at Beijing 2012 PM2.5 daily measurement at U.S. embassy in Beijing (available at http://www.stateair.net/web/historical/1/1.html)
- Wang H L, Qiao L P, Lou S R, Zhou M, Ding A J, Huang H Y, Chen J M, Wang Q, Tao S K, Chen C H, Li L and Huang C 2016 Chemical composition of PM2.5 and meteorological impact among three years in urban Shanghai, China *Journal of Cleaner Production* 112 1302–11
- Warner J X, Wei Z, Strow L L, Dickerson R R and Nowak J B 2016 The global tropospheric ammonia distribution as seen in the 13-year AIRS measurement record *Atmospheric Chemistry and Physics* **16** 5467–79
- Wu S-P, Schwab J, Yang B-Y, Zheng A and Yuan C-S 2015 Two-Years PM2.5 Observations at Four Urban Sites along the Coast of Southeastern China *Aerosol and Air Quality Research* 15 1799–812
- Yang C, Pinart M, Kolsteren P, Van Camp J, De Cock N, Nimptsch K, Pischon T, Laird E, Perozzi G and Canali R 2017 Perspective: essential study quality descriptors for data from nutritional epidemiologic research *Advances in Nutrition* **8** 639–51
- Zhang F, Cheng H, Wang Z, Lv X, Zhu Z, Zhang G and Wang X 2014 Fine particles (PM2.5) at a CAWNET background site in Central China: Chemical compositions, seasonal variations and regional pollution events *Atmospheric Environment* **86** 193–202

- Zhang L, Chen Y, Zhao Y, Henze D K, Zhu L, Song Y, Paulot F, Liu X, Pan Y and Lin Y 2018 Agricultural ammonia emissions in China: reconciling bottom-up and top-down estimates *Atmos. Chem. Phys.* 18 339
- Zheng H A Study on the Statistical Error of the Number of Employees Working in Collectively Owned Township and Village Enterprises" (Master's thesis, Center for Chinese Agricultural Policy, Chinese Academy of Sciences, Beijing, 2001)
- Zhou B, Stamler J, Dennis B, Moag-Stahlberg A, Okuda N, Robertson C, Zhao L, Chan Q,
 Elliott P and for the INTERMAP Research Group 2003 Nutrient intakes of middle-aged
 men and women in China, Japan, United Kingdom, and United States in the late 1990s:
 The INTERMAP Study *Journal of Human Hypertension* 17 623–30