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ABSTRACT

In today’s digital world, it is common to exchange sensitive data between different

parties. There are many examples of sensitive data or documents that require a

digital exchange, such as banking information, insurance data, health records. In

many cases, the exchange exists between unknown and untrusted parties. Therefore,

it is essential to execute the data exchange over a fair non-repudiation protocol. In

digital communication, non-repudiation is undeniable evidence of one’s responsibility

regarding the validity of any data he shares/receives. Usually, this is achieved by the

use of a cryptographic digital signature. In this case, the parties cannot deny the

authenticity of their digital signature. The protocol satisfies the fairness property

if and only if it does not give the sender any advantages over the receiver or vice

versa, at any step during the exchange process. Combining fair exchange and non-

repudiation for digital exchange is critical in many applications and can be acquired

with or without the involvement of any trusted third party (TTP). However, without

the involvement of TTP, fairness becomes probabilistic, and the involvement of TTP

can cause significant dependency on the third party. Therefore, a peer-to-peer (P2P)

(aka offline) fair non-repudiation protocol that does not require a trusted third-party

is desirable in many applications. Blockchain is designed in such a way that the

network can handle the trustless environment and deliver the correct result. Thus,

if the exchanges are done leveraging Blockchain, it will ensure true fairness, and at

the same time, none of the participants have to deal with the trust issue. In this

thesis we propose a P2P fair non-repudiation data exchange scheme by leveraging

Blockchain and distributed ledger technology. The scheme combines on-chain and

off-chain communication patterns to enable the exchange of personal health records

between patients and healthcare providers. We provide an informal reasoning of the

proposed scheme. Moreover, we propose a design and implementation agnostic to

existing Blockchain platforms to enable unbiased evaluation of the proposed scheme.

Finally, we make a comparative analysis of the result derived from our approach with

the existing one.
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CHAPTER 1

Introduction

A healthcare system can be characterized as the technique by which healthcare is

financed, sorted out, and conveyed to a population. It incorporates issues of access

(for whom and to which services), uses, and resources (healthcare workers and offices).

The objective of a healthcare system is to improve the health of the population in

the best way conceivable, considering a society’s available resources and contending

needs. By the start of the twenty-first century, access to healthcare had come to be

addressed by most nations as fundamental human rights.

A healthcare system, is hence, more than the pyramid of publicly possessed of-

fices that convey individual health services. It incorporates, for instance, private

caregivers, behavior change programs, vector-control campaigns, medical coverage

associations, and occupational health and safety legislation.

The advancement of innovations has profoundly affected conventional healthcare

practices. Among the upsides of innovation in healthcare, the decrease in preventable

death cases, general improvement of patient well-being, a significant reduction in

treatment and recovery time, and the rise of new employment opportunities for medi-

cal workers are noteworthy. A by-product of technological advancement that affected

the healthcare system in a positive manner is the digitalization of health records,

which leads to higher patient care, improved public health, and ease of workflow.

Although healthcare services has customarily been structured around the care

providers, situated in organizations, for example, medical clinics, hospitals or special-

ists’ offices, thanks to the technological advancement, and because of the demands, the

practice of keeping the services to institution-centric is now gradually shifting towards
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1. INTRODUCTION

patient-centric (Emily et al. [42] referred as “shift left”). By creating community-

based treatment services, mobile units providing care when and where required, and

telemedicine, with shift left, the care goes to the patients instead of patients coming

to the care-providers. The paradigm of shifting the services in the left direction will

not only reduce the cost but also improve the overall quality of life (figure 1.0.1).

Fig. 1.0.1: Shifting left will help in both ways, reduce the cost of care as well as
improve the quality of life [42]

Nevertheless, the confrontation of numerous technological progressions postures

new difficulties. Some of the critical challenges, which can be categorized into non-

technical and technical in general, currently faced by the healthcare industry are:

Non-Technical Challenges:

• Patient Experience. Patients are now looking forward to having a streamlined

patient experience so that they avail “self-service” to find the answers of most

2



1. INTRODUCTION

questions, issues, or concerns (e.g., downloading an immunization record, book-

ing an appointment, taking care of their bills, or checking their record/insurance

status) at whenever, wherever, and however is most convenient for them. For

healthcare organizations offering services from various areas, it is additionally

significant for each employee to have the current patient data. Not only will it

convey a superior patient experience but also help to avoid fatal mishaps such

as drug interactions.

• Invoicing and Payment Processing. To meet patient desires and improve the

client experience, healthcare providers have to ensure the billing system is

patient-friendly. They should offer paperless articulations, and a diversify pay-

ment methods (e.g., eCheck, Visa) through an online patient portal and use the

most modern payment systems, for example, mobile and text-to-pay. However,

at the same time, healthcare providers are required to pursue strict rules to

protect patient information. They have to guarantee that their payment portal

and processing system are entirely compliant; otherwise, they risk incurring a

huge penalty.

• Price Transparency. Numerous patients are now examining price estimation for

different services before settling on a choice. Any system that does not make

their pricing public might be dropped from even consideration at first. Price

transparency became an important buzzword in 2019 and probably be a mighty

issue to look into in the coming years.

Technical Challenges:

• Cybersecurity. Because of the exceptionally delicate patient data gathered by

healthcare organizations, the industry has become an ideal target for cyber-

criminals. In 2017, the US medical and healthcare sector experienced more

than 350 information ruptures, uncovering 4.93 million patient records [106].

Sadly, this pattern gives no indications of backing off. In the first half of 2019,

there as of now were 32 million patient records broke [31]. At the point when

3



1. INTRODUCTION

a breach happens, in addition to the fact that one is compromising classified

patient data, healthcare providers additionally face a hefty punishment if they

found to have disregarded the many compliant standards of the industry.

• Medical records accessibility. Even though more medical information is being

produced regularly, it is dissipated over various parties and their systems, in-

cluding payers, suppliers, and patients. There is no single “source of truth”

that a healthcare provider can use to enhance the patient experience.

For example, when patients switch insurance plans or healthcare providers,

most practices depend on patients’ self-reporting to reproduce their records.

Accordingly, not all the data are transferred appropriately, and it is challenging

to harness the power of data for generating accurate insights. Also, information

originates from numerous sources in a variety of formats. At present, there is no

single framework to recover, store, and break down information from different

sources at scale.

So, to completely use all the patient information from various sources, health-

care organizations need to actualize the non-relational information system.

Thus, information from different sources can be used regardless of whether the

datasets come in various formats. To do so, a recognized patient identifier is

required to avoid patient data mismatch. At the same time, a thorough and

transparent procedure of sharing the information is highly demanding since it

will ensure the responsibility regarding the safety of the data.

Despite the mentioned challenges, the new paradigm, for arrangement of perva-

sive health services at reasonable costs, has been embraced by nations, for example,

USA[1], Canada[1], U.K.[89], Korea [22], and European Union ([47], [55], [30]).

1.1 Healthcare Applications

Over the last decades, like all other industries, the healthcare domain is also prior-

itizing applications or software over the paper-based system for data management.

4



1. INTRODUCTION

There can be different types of Healthcare Applications, such as:

• Medical Practice Management (MPM) Application: Focus on smoothing the

day-to-day task of a medical facility. The goal is to make sure practitioners

spend less time on administrative paperwork and more time on patient treat-

ment.

Example: Prime Suite [59], eClinicalWorks [41].

• Health Records (HRs) Management Application: Contains detail information of

a patient such as demographics, medical history, laboratory results, allergies,

etc. This information is required to be shared among the physicians in order to

provide more accurate treatment.

Example: CureMD [26], IO Practiceware [73]

• E-prescribing Management Application: Instead of sending ambiguous hand-

written notes, it allows medical providers to send clear, accurate, and under-

standable prescriptions.

Example: DrChrono [39], DrFirst [40]

• Hospital Management Application: Deals with the management of patient data,

doctor and medical staff information, and hospital billing.

Example: SoftClinic [105], Practo’s Insta [67]

• Healthcare Customer Relationship Management (CRM) Application: Helps health-

care organizations collect, progress, and manage customer relationships more

efficiently and effectively.

Example: Deskera [34], DocEngage [36]

Several healthcare providers and insurance agencies today utilize one or the other

form of electronic version of medical record systems, which is why we are focusing on

healthcare management applications.

5



1. INTRODUCTION

1.1.1 e-Health, EHRs, and PHRs

There has been a ton of research in the electronic healthcare area with an emphasis on

using the electronic patient records for patient monitoring and diagnosis. The arrange-

ment of health services utilizing digital innovation has been named as e-Health [102].

Also, conventional clinical settings with paper-based medical records and remedies

have likewise progressed to the Personal Health Records (PHRs) and the Electronic

Health Records (EHRs), an electronic adaptation of patient healthcare data. The

PHRs are constrained by patients themselves [69] while; the EHRs are overseen by

the healthcare providers [61]. The e-Health requires the entire remaking and digitiza-

tion of the healthcare infrastructure, including generation, supply, and management

[22].

1.2 Requirements of Healthcare Applications

1.2.1 General Requirements

Since modern healthcare systems moving towards paperless, they tend to reduce

significant workforce requirements and become a very cost-effective way of treating

patients. Also, physicians can have all the information in one place, which leads to

better treatment and thus increases efficiency.

A healthcare management application should possess functionalities like Data

management, Patient history, Patient scheduling, E-prescribing, etc.

• Data Management: Medical practitioners would be allowed to add and store

patient information electronically. Also, other physicians would be able to view

and/or modify it.

• Patient History: The application should stores information about existing prob-

lems, allergies, medications, etc.

• Patient Scheduling: It may allow the medical providers to schedule patients

easily, register them, and choose a reason for their visit.

6



1. INTRODUCTION

• E-prescribing: Instead of sending ambiguous handwritten prescriptions, the

application may allow medical providers to send prescriptions to pharmacies

electronically.

1.2.2 Security and Privacy Requirements

A patient may have numerous healthcare service providers, including primary care

physicians, specialists, and therapists. Moreover, a patient may enroll with several

medical coverage organizations for various sorts of insurance, for example, medical,

dental, and vision [116]. Subsequently, the health records of a patient may exist in

the database of different caregivers in the healthcare services community. From the

clinical point of view, it is essential to get to the present-day patient health data

[114]. Nonetheless, sharing and coordination of the records, that are overseen by

several service providers are slow and expensive [116] and requires viable, secure, and

minimal cost to share among the providers.

Recent trends in healthcare, fixating on getting to the data anytime and any-

where, energize moving the healthcare systems towards more patient-centric rather

than institution-centric. Even though records sharing offers a considerable advan-

tage, it also entails threats as far as privacy and security [38] of data. The idea of

privacy-preserving is extensively more than merely keeping up the confidentiality of

information. Metri et al. [80] argue that threats to data protection include spoofing

identity, messing with the data, denial of data access, and data divulgence.

In spoofing, the assailant claims to be a legitimate client, while information alter-

ing includes noxious adjustments and change of the content. Repudiation is concerned

with the users who deny his role after performing an action within the system. Data

divulgence is the presentation of data to the entities who have no privilege to get

the data [80]. Thus parties involving data sharing should be aligned with the gov-

ernmental rules and regulations regarding that. In the United States, for instance,

use and exposure of the Protected Health Information (PHI) ought to be as per the

necessities of the Health Insurance Portability and Accountability Act (HIPAA). The

HIPAA requires that keeping up the privacy of the healthcare information is not an

7



1. INTRODUCTION

alternative, yet a commitment [1]. In Canada, according to the Personal Informa-

tion Protection and Electronic Documents Act (PIPEDA), institutions must get an

individual’s consent if they collect, use or disclose that individual’s personal infor-

mation [88] (among others, medical records also fall under the umbrella of personal

information).

In case of storing or trading health records over the internet, according to Abbas

et al. [1], eight security and privacy criteria are required, namely, Integrity, Con-

fidentiality, Authenticity, Accountability, Audit, Non-repudiation, Anonymity, and

Unlinkability.

• Integrity. The data stored in the system is the exact representation of the

intended information and is authentic when presented to someone. It is not

altered and, if required, edited by an authorized person for the right reason in

a corrected manner, keeping the record of edition for auditing purposes.

• Confidentiality. The system should have a robust mechanism to keep the record

in a secured position, which is inaccessible to an unauthorized party.

• Authenticity. The system should make sure that only the authentic individual is

getting access to the information, and the information provided to the requester

is accurate.

• Accountability. Accountability means the obligation of an individual on en-

trusted property. The individual will be accountable for his/her activities, ac-

cept responsibility, and transparently disclose the results.

The healthcare applications should have a mechanism of assigning individuals

who will take responsibility for his/her actions. The patient should be able to

monitor who has accessed their data and up to what level. If agreed upon, the

patient can decide who can have his/her data.

• Audit. Audit is a systematic review of the security of an organization’s data by

estimating how well it adapts to a set of established criteria.

8



1. INTRODUCTION

The healthcare applications should ensure that all the healthcare data is secure,

and all the data access activities are being monitored.

• Non-repudiation. The system ensures that there is no denial of action by any

person after performing any activity with the stored data. It is a by-product of

accountability; one should be liable for his action.

• Anonymity. The system should have a technique to hide the identity of a patient

or participant. No outsider (or even insider in some particular cases) can trace

back any individual based on the generated health data stored in the system.

• Unlinkability. To ensure that, no matter how many times a requester requests

for health data, he cannot be traced back by others with the help of the request

to send it the first time. In other words, the information flow will not derive

any idea about the user to a third party.

Table 1.2.1 stated the requirements for common healthcare applications.

9
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Security and
Privacy Re-
quirement

Medical
Practice
Manage-
men Appli-
cation

Health
Records
Manage-
ment Ap-
plication

E-
prescribing
Manage-
ment Ap-
plication

Hospital
Manage-
ment Ap-
plication

Healthcare
Customer
Relation-
ship Man-
agement
Applica-
tion

Integrity Required Required Required Required Required

Confidentiality Required Required Required Required Required

Authenticity Required Required Required Required Required

Accountability Required Required Required Required Required

Audit Required Required Required Required Required

Non-
repudiation

Required Required Required Required Required

Anonymity NAa Required NA NA NA

Unlinkability NA Required NA NA NA
a NA = Not Applicable

Table 1.2.1: Security and privacy requirements for common healthcare application

There is no specific classification on the approaches for privacy-preservation, which,

in turn, can guarantee the fulfillment of one or more above mentioned requirements.

However, Abbas et al. [1] classified the approaches into two groups at the top level.

• Cryptographic. Handles the privacy risks utilizing specific encryption schemes

and cryptographic primitives.

• Noncryptographic. Uses policy-based authorization models which allows the

data having access control policies.

The cryptographic approaches are again subdivided into three groups.

• Public Key Encryption (PKE)

• Symmetric Key Encryption (SKE)

• Alternative cryptographic primitives

Figure 1.2.1 illustrates the whole taxonomy.
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Fig. 1.2.1: Taxonomy of the privacy preserving approaches [1]

1.3 Non-repudiation and Fair Exchange

1.3.1 Non-repudiation

While issues, for example, integrity, confidentiality, authentication, and access control,

have been considered seriously, enthusiasm for non-repudiation conventions has just

come as of late [71].

As stated, Non-repudiation is the ability to provide irrefutable evidence of one’s

responsibility regarding the validity of any data he shares/receives. Because patients

want to access their medical records and exchange that with other care providers for

their benefit, the role in the exchange and the usage of that data is an important issue

here. Thus non-repudiation can make sure participants (Alice and Bob), engaging

in the exchange of medical records, will have evidence of their participation in the

procedure. This evidence will justify and balanced out all the petition in the future.

Thus, along with sharing the information, participants will provide Proof of Origin

(POO) and Proof of Receipt (POR) of the information as an indication of their en-

gagement. If there should arise an occurrence of disagreement (e.g., Alice denying

having sent given information or Bob denying having it), an adjudicator can assess

these confirmations and decide for one of the parties without any ambiguity.

• Proof of Origin. A proof of origin is a non-repudiation origin of data which,

when presented to any adjudicator, will unambiguously guarantee that whether

or not the data was indeed originated by Alice (the sender).

• Proof of Receipt. A proof of receipt is a non-repudiation receipt of data which,

11
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when presented to any adjudicator, will unambiguously guarantee that whether

or not the data was indeed received by Bob (the receiver).

Nevertheless, the exchange of POO and POR, in order to maintain the non-

repudiation criteria, must be done in a fair manner.

1.3.2 Fair Exchange

A protocol that ensures, during the exchange of items between two parties, neither of

the party will be in any favorable situation. That is, the exchange has to be atomic.

At any point during the exchange, the process will ensure that either both the parties

will get what they want, or none of them will get anything.

In terms of medical records exchange, Alice will send her records and POO of that

records if and only if she gets or have the guarantee to get the POR from Bob, and

Bob will send the POR of that records only when he gets the records and POO of

that records.

1.4 Problem Definition

In a paper-based scenario, the exchange of non-repudiation evidence is easy to achieve

because both parties will be physically available at the same time. However, it is not

as simple when the same exchange has to be done over a computer network. As a

matter of fact, Even et al. [98] proved that achieving fairness in a deterministic two-

party signing protocol is impossible because information exchange over the computer

network is non-simultaneous.

Researchers have proposed many alternative solutions to maintain a strong fair

exchange protocol in digital exchange. A strong fair exchange protocol does not

require a human judge, and if any disputes occur, it will be handled within the scope

of the transaction. On the other hand, a weak fair exchange can not offer any such

solution. However, it can gather proof so that a misbehaving party can be identified.

The protocol assumes that the misbehaving party can be brought to justice [93].

12
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Strong fair exchange can be achieved in many ways, with or without involving any

third party. However, without any involvement of a third party, it mostly remains

probable while the involvement of the third party brought the dependency and trust

issue.

A P2P (aka offline) fair non-repudiation protocol that does not require a trusted

third-party while electronically exchanging large-sized sensitive medical records con-

currently maintaining the confidentiality of the records is desirable in many healthcare

applications, which cannot be served by either of the above proposition.

1.5 Contribution

One solution to achieve the above goal (a fair non-repudiation protocol that does not

require a trusted third party) can be done by involving distributed ledger technology

(aka Blockchain). Blockchain, by design, come up with a technique where one does not

have to depend on a single party or intermediary to hold up the data. Thus, instead of

putting trust in a third party, the participants can take advantage of using a trustless

Blockchain network. Even though the researchers have already started working on

this issue, none of them are focused on maintaining fairness while exchanging medical

records. Thus, the contributions to this study are,

• Proposing a scheme that will highlight maintaining true fair-exchange pol-

icy without any involvement of trusted third party while exchanging medical

records.

• Utilizing off-chain communication protocol to enable the exchange of personal

health records in a P2P manner which in turns reduces the storage overhead on

the shared distributed ledger.

• Use a platform-agnostic approach while implementing the scheme which will

provide a reference implementation that could be used by other research teams

to test new fair-exchange schemes that will take advantage of Blockchain.

13
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• A comparative analysis of the result derived from the proposed approach with

the existing one.

1.6 Organization of the rest of the thesis

The rest of the thesis is organized as follows:

• Chapter 2 layouts some basic cryptographic techniques which are necessary to

ensure fairness in digital exchange along with a detail description of ways to

maintain fairness in digital exchange.

• Chapter 3 presents the related and previous works in the field.

• Chapter 4 explains the concepts of the Blockcahin and how it works.

• Chapter 5 introduces the proposed approach and model it at a high level followed

by an informal reasoning of each step of the proposed approach.

• Chapter 6 presents the design and implementation of the proposed scheme and

experimental results obtained from that.

• Chapter 7 lists the conclusion and discusses future work.
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CHAPTER 2

Preliminary

Consider a naive protocol, for example, where Alice sends a signed message (M) to

Bob, who answers with a signed receipt for the given message. If none of them trust

each other, this convention is not appropriate, as Bob may not send the subsequent

message. The convention could be modified in an accompanying manner: Alice sends

a guarantee to the message to Bob, who answers with a receipt, and, in the third

step, Alice sends the message itself to Bob. Here, we have another issue, as in this

time, it is Alice who is in a favorable position, being the first to acquire her total

proof, and henceforth could decline to send the last message.

Even though ensuring fairness over a digital exchange is hard to achieve, we can

meet the goal by leveraging some facts. Nevertheless, in order to understand how

the different approaches of ensuring fairness for digital exchange works, we need to

know some cryptographic techniques which are used in these approaches. Thus, in

this chapter, those cryptographic techniques followed by a well-detailed explanation

of the different approaches of ensuring fairness are clarified.

2.1 Cryptographic techniques required in ensuring

fairness

2.1.1 Secure Hash Algorithms

A secure hash algorithm converts the arbitrary input-length data to a predefined

fixed-length output. No matter how big or small in size, the original data is, the size
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of the hash value of that original data is always the same. Two essential characteristics

of a secure hash function are:

• A hash algorithm will always generate the same hash value for the same input

data. However, it will generate a completely different value even if a slight

modification is made on the original data.

• A secure hash function is a one-way function. One can only get the hash value

from the original data, but will not get (or even guessed) the original data from

the hash value. That is, the function can not be reversed engineered.

The following examples will give a better understanding of secure hash.

Example 1.

Original Text: Hello

Hash value:

185f8db32271fe25f561a6fc938b2e264306ec304eda518007d1764826381969

Example 2.

Original Text: This is a hash value

Hash value:

b3118a3288630e2591f2f05f5f78e39e2f44257f8de3f409f2af2fa8c13d53bb

Example 3.

Original Text: hello

Hash value:

2cf24dba5fb0a30e26e83b2ac5b9e29e1b161e5c1fa7425e73043362938b9824

Here, three original texts are applied over a SHA-256 hash function. Even though

the original texts are different in size (see example 1 and 2), the size of the hash value

as output is always the same. Also, because of a slight modification in the original

text of example 3 from 1 (H in example 1 is capital, whereas, in 3, it is small), two

completely different hash values are generated.

A hash algorithm is suppose to give one output for one input. If a hash algorithm

generates same output for two different inputs, it is called collision. Unfortunately,
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recently, some of the algorithms failed to be total collision resistant such as MD5 and

SHA1 [82].

2.1.2 Symmetric Encryption

Symmetric encryption is a technique where both encryption and decryption can be

done by the same key. By applying any symmetric encryption algorithm, data will

be converted into a form that is not human-understandable. To have the original

data from the encrypted data, one has to have the encryption key and decipher the

encrypted records with that key (figure 2.1.1). Examples of symmetric encryption

algorithms are AES, DES, and Blowfish.

Fig. 2.1.1: How symmetric encryption works [66]

The below example explains symmetric encryption technique. In the example, we

encrypted an original text “Hello” with a symmetric key AES-256 (base64 encoded).

Thus, we get a cipher text “rVjJBGgF6FIKmQO2UANOkQ==”. Later, we decrypt

the cipher text with the same key and get the original text “Hello”.

Encryption:

Original Text: Hello

Key (AES-256): 17Brx9O3eP44AEV84TTmBVxTCs7TCSJg1uMVpcDNlwI=

Cipher text: rVjJBGgF6FIKmQO2UANOkQ==
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Decryption:

Cipher Text: rVjJBGgF6FIKmQO2UANOkQ==

Key (AES-256): 17Brx9O3eP44AEV84TTmBVxTCs7TCSJg1uMVpcDNlwI=

Original text: Hello

2.1.3 Asymmetric Encryption

Asymmetric encryption is a technique where encryption and decryption are done by

two different keys. Here an asymmetric key pair, commonly known as public-private

key pair, originated by using some mathematical formulas, is used for encryption and

decryption. Every public key has its correspondent private key, which is extremely

difficult to guess. If a message is encrypted with a public key, it can only be decrypted

by its corresponded private key and vice-versa. Thus, if someone kept the private key

to himself and shares the public key to others, the sender of the message can encrypt

the message with the public key, and only the right recipient (owner of the private key

of that correspondent public key) can decrypt the message. In this way, the message

can be exchanged securely. RSA, El Gamal, and ECC are few examples of asymmetric

encryption algorithms. Figure 2.1.2 illustrates how asymmetric encryption works.
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Fig. 2.1.2: How asymmetric encryption works [115]

For convenience, we are explaining the asymmetric encryption with the below ex-

ample as well. Here, two keys (public and private) are generated by using the RSA

encryption algorithm. The public key is used for encrypting the original text “Hello”,

which provides us a cipher text. Later on, the cipher text is deciphered with the

private key to get the original text again.

Encryption:

Original Text: Hello

Public Key:

—–BEGIN PUBLIC KEY—–

MFwwDQYJKoZIhvcNAQEBBQADSwAwSAJBALPLfv2T06sMfx7CRweN4AW

vtdL91qUlJeCgVt1ryTSiOjQXaFMTLXdIrkl9Wj4nzUAJRtrPjnu8dfVhwY+ogQ

8CAwEAAQ==

—–END PUBLIC KEY—–
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Cipher text:

pmEUxc/PS+YyZkjnbT1j/pF62WWKTMJ7ZXDixrm7Bx+PgDwOPWd1ur

Hmwd0eSE/hcS9yL0D4NNDU7bbnqNHJbg==

Decryption:

Cipher Text:

pmEUxc/PS+YyZkjnbT1j/pF62WWKTMJ7ZXDixrm7Bx+PgDwOPWd1ur

Hmwd0eSE/hcS9yL0D4NNDU7bbnqNHJbg==

Private Key:

—–BEGIN RSA PRIVATE KEY—–

MIIBOgIBAAJBALPLfv2T06sMfx7CRweN4AWvtdL91qUlJeCgVt1ryTSiOjQXaFMT

LXdIrkl9Wj4nzUAJRtrPjnu8dfVhwY+ogQ8CAwEAAQJAFMuImJOse7AqU8hsprcG

HiJAiXLKjLdLNjvVUC7TSr72rMvRwN//g9k0XL70vYz6KVXIE7ULQIO3lTkzYujK

oQIhAPOf1YNq9dZqBLNgg/7Z+Nl/uXekWiuFJHQcy5vO96l7AiEAvO2asuYqBoq9

9h2u3vRE2Mos6Gy6UZ5pzWYAcc5UQH0CIGNLVsOcWZxNU6MkiEfb4VAMfbQkuVeZ

iXUFs3rKjSh3AiEAjUpUyz3+Z+4SqqEASpT7d/WbKCdIIAoMriN+aZ4YvDECIEtL

1K8f4t9/ERxa8gJgQyQGnXLqAiSAML86x9X/EXgh

—–END RSA PRIVATE KEY—–

Original text: Hello

2.1.4 Digital Signature

Using the concept of public-private key pair, a digital signature works to ensure the

originality of any message. It works as follows:

1. Sender (aka signer) will generate his/her public-private key pair. Keep the

private key to himself/herself and shares the public key with the receiver (aka

verifier) of the message.

2. The sender generates a hash value of the message with a hash function and

encrypts the hash value with his/her private key. He/She then sends both

encrypted hash value and the message to the receiver.
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3. The receiver decrypts the hash value with the public key he/she has. At the

same time generates a hash value of the received message using the same hash

function. Then compares the two hashes. If those hashes match, it means the

message has not been forged on its way, and indeed it is originated from the

sender.

Figure 2.1.3 clarifies the concept in a more helpful manner.

Fig. 2.1.3: How digital signature works [37]

2.2 Fair exchange protocols

Now that we have a better understanding of the required cryptographic techniques,

let us deduce the approaches of maintaining fairness with these techniques. At a high

level, fair exchange protocols can be categorized in two broader categories, and then

one of the categories can again be subdivided into three sub-categories. Figure 2.2.1

depicted the categories.
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Fig. 2.2.1: Ways of the achieving fairness in digital exchange

2.2.1 Probabilistic fair-exchange protocols

The sender will divide the main message into n parts (where only the sender knows

the actual value of n) and sends one part at a time along with his/her digital signature

of that part (which will count as POO of that part). After receiving each part of the

original message and verifying the POO, if satisfied, the receiver will provide his POR

for that part. The whole process will keep running until each of the participants gets

their desired document (see figure 2.2.2).

Fig. 2.2.2: Probabilistic fair-exchange protocol. Message M is divided up to n parts
(M1, M2...... Mn).
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The Probabilistic fair-exchange protocol is called probabilistic because, instead

of “yes” or “no” as an outcome, the result of fairness comes as a probable manner.

However, this protocol does not require a third party to interfere.

2.2.2 Trusted Third Party (TTP)-dependent fair-exchange

protocol

The TTP-dependent fair-exchange protocol ensures true fairness provided that a third

party, trusted by both sender and receiver, is involved during the exchange procedure.

It can again be subdivided into three categories [71]:

2.2.2.1 Online TTP

The exchange of all the items (token of interest/commitment in the exchange, original

message, POO, and POR) is done through TTP. There is no P2P communication

between the sender and the receiver of the message. The step-by-step procedure of

this protocol is as follows which is also drawn by figure 2.2.3:

1. Alice sends her message (M) with her digital signature on it to TTP.

2. TTP shares the hash of the message as a proof to Bob that he/she has the

message from Alice, without revealing the original message

3. Bob sends his POR with his digital signature on it.

4. If satisfied, TTP shares the message to Bob and POR to Alice.
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Fig. 2.2.3: Trusted Third Party (TTP)-dependent (online) fair-exchange protocol

2.2.2.2 Inline TTP

The exchange of the essential items (original message, POO, and POR) is done

through TTP. However, the sender and receiver can have peer-to-peer communication

and share a token of interest/commitment between them without the involvement of

TTP. A general guideline of how the protocol works are as follows and also explained

in figure 2.2.4:

1. Alice sends the hash of message (M), as her commitment in the exchange,

without revealing the original M, to Bob.

2. Bob sends the hash of POR, as his commitment in the exchange, without re-

vealing the original POR, to Alice.

3. Alice sends her M with her digital signature on it to TTP.

4. Bob sends his POR with his digital signature on it to TTP.

5. TTP shares M with Bob and POR with Alice.
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Fig. 2.2.4: Trusted Third Party (TTP)-dependent (inline) fair-exchange protocol

2.2.2.3 Offline TTP

In this protocol, the involvement of TTP is least, only when a dispute needs to resolve.

Otherwise, sender and receiver can exchange all items in a P2P manner. In a nutshell,

the protocol works as follows:

1. Alice encrypts the message (M) with TTP’s public key, puts her digital signature

on the encrypted message, and sends the encrypted digitally signed message to

Bob.

2. Bob verifies the signature and makes sure that the encrypted message indeed

came from Alice. Then sends his encrypted POR (encryption is done by TTP’s

public key) to Alice, with his digital signature on the encrypted POR.

3. Alice verifies the signature and makes sure that the encrypted POR indeed came

from Bob, She then sends the original message to Bob.

4. Upon receiving the message, Bob sends the original POR to Alice with his

digital signature attached.
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If a dispute occurs, such that step 4 was not completed or Bob sends incorrect

POR,

5. Alice presents the encryted POR she received from Bob along with her message

to TTP

6. TTP decrypts the POR, sends it to Alice and at the same time sends the

message to Bob

Since the participants directly communicate with each other unless any dispute

occurs and at the same time, it ensures fairness, fair-exchange with offline TTP is also

known as Optimistic Fair Exchange. Figure 2.2.5 depicts the offline fair exchange in

a nicer manner.

Fig. 2.2.5: Trusted Third Party (TTP)-dependent (offfline) fair-exchange protocol

Though a TTP-involved fair-exchange protocol ensures fairness every time, ir-

respective of their type, dependency on a trusted third party is a major drawback

here.
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CHAPTER 3

Literature Review

As healthcare services move towards a patient-centric approach, rather than institu-

tion centric, the exchange of the Personal Health Records (PHRs) among the patient

and the service provider(s) is a vital factor for providing proper treatment. At the

same time, the electronic exchange of information should maintain all the security

and privacy criteria (according to Abbas et al. [1], Non-repudiation is one). Though

a significant amount of work has been done on maintaining non-repudiation i.e., fair

exchange policy for electronic exchange in some areas like contract-signing protocols

([12], [29], [98]), certified e-mail systems ([60], [65], [118]), and e-payment schemes

in electronic commerce ([18], [49], [79], [90]), the PHR exchanges have not received

sufficient attention.

Electronically exchanging personal health records while maintaining a fair ex-

change policy is trickier and cannot be achieved with the existing schemes of contract

signing protocols, certified e-mail systems, or e-payment schemes in electronic com-

merce. This is mainly because healthcare data are large-sized, stored in different

formats, as well as sensitive. That is why, unlike others, we must also consider the

challenge of exchanging large-sized data and maintaining its confidentiality.

The literature review section is thus categorized into the following three groups,

and in each group, the previous works in that arena are discussed.

• Fair exchange without the involvement of Blockchain

• Use of Blockchain in healthcare

• Fair exchange with the involvement of Blockchain
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3.1 Fair exchange without Blockchain

3.1.1 Related works which follow the probabilistic approach

Since the fair exchange is a fundamental problem in digital exchange, many re-

searchers have already considered this issue. Among them Damgard et al. [29], Even

et al. [46], Goldreich et al. [54], Luo et al. [75] and Markowitch et al. [76] examined

the probabilistic approach where the whole message is exchanged chunks-by-chunks.

This approach is beneficial in the sense that it does not require any third party; thus,

the bottleneck issue can be resolved. The main disadvantage of this approach is that

it never guarantees true fairness and has the “unsatisfactory property of uncertain

termination” ([12], [113]). Another problem is that this protocol assumes that the

two parties have “equivalent computational resources”, which is unrealistic in most

cases [113].

3.1.2 Related works which follow online/inline TTP based

approach

In case of the protocols which are designed to take extensive help from an online/inline

TTP, all or some of the messages are exchanged via a third party (Ben-Or et al. [12],

Coffey et al. [23], Deng et al. [33], Jianying et al. [68], Kremer et al. [71]). This

protocol always ensures fairness throughout the exchange. Of course, the protocol

also has drawbacks, namely excessive trust towards a third party and the bottleneck

issue. Since every message is transferred via TTP, the process is slow, especially

when many users put trust in the same TTP. Another limitation of this protocol is

a single point failure issue. If the TTP is compromised by an attacker, the adversary

would have the exchanged items instead of the intended recipients.

3.1.3 Related works which follow offline TTP based approach

A better alternative to the above approach could be the use of offline TTP (Asokan

et al. [4], Ateniese et al. [6], Feng et al. [48], Maruyama et al. [78], Park et
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al. [90], Wang et al. [113]). This approach is more practical and can handle the

bottleneck issue quite easily. Nevertheless, in some scenarios where an offline fair-

exchange policy is used, Bob can take advantage by using Alice’s partial confirmation

(or commitment) generated at the first step as a bargaining chip (as this step confirms

that the encrypted message is indeed coming from Alice which means she is interested

in this business deal). To mitigate this issue, Huang et al. [62] works on Ambiguous

Optimistic Fair Exchange. Based on the idea of fully anonymous group signature and

with the help of non-interactive witness indistinguishable (NIWI) proof along with

non-interactive zero-knowledge (NIZK) proof, their scheme shows that the partial

confirmation will seem ambiguous and no outsider can deduce whether Alice or Bob

generated this partial confirmation.

Though offline TTP is widely accepted and indeed an optimistic solution since

it can solve the problems that arise by the probabilistic approach and online/inline

TTP approach, it still has a significant drawback, putting trust in a third party. A

convenient solution to this can be the replacement of the TTP with a “trustless”

Blockchain network.

3.2 Use of Blockchain in healthcare data

Seeing its potentiality, the research community has started to realize the utilization

of Blockchain beyond the financial applications. This decentralized technology can be

immensely useful in developing applications in different domains such as healthcare,

logistics, supply chain management, and the Internet of Things (IoTs), among others

([5], [10], [81]).

Kumar et al. [72] discussed the overall utilization of Blockchain in the health-

care industry. They acknowledged the fact that a Blockchain-based solution could

significantly help in areas like clinical data sharing, global data sharing, maintaining

medical history, research and clinical trials, healthcare data access control, drug sup-

ply chain management, and billing/payers of the industry. However, to do so, they

also pointed out the key requirements such as nationwide interoperability, data secu-
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rity, data consistency/integrity/immutability, and cost/resources effectiveness, which

should be considered before diving into a Blockchain-based solution.

In [101], Shen et al. proposed an efficient way of sharing healthcare data with

Blockchain. Their method creates a bridge between immutable small-sized trace

records of health data and mutable records of large-sized original data. This way, the

patient can grant access to their medical records to a requester, and the requester can

retrieve them from another healthcare provider who holds the data for the patient, and

each peer-to-peer exchange can be logged into Blockchain as an immutable snippet.

Azaria et al. [7] demonstrates the utilization of Blockchain for accessing medical

data. Their decentralized framework (called MedRec) handles EHRs of patients and

offers a way to recover their data from various healthcare service providers. The

framework, based on the Ethereum platform, offers two distinct incentives for the

medical stakeholder to take an interest in the Blockchain network. One is cryptocur-

rency Ether itself, which is required to execute exchanges in an Ethereum Blockchain.

Ether coins should be bought from the cryptocurrency market either by the patients

or service providers. The subsequent incentive is the aggregated anonymized medical

data, which is essential for the research in the industry. The system performs based

on the principle of smart contracts, which contains metadata about the ownership of

records, data integrity, and permissions.

Mikula et al. [83] proposed a system for identity and access management for

electronic health records with Blockchain. Using Hyperledger Fabric’s smart contract,

their proposed system authenticates the identity of the user before granting access to

a database containing medical records.

However, none of the above works cover a specific issue: ensuring fair exchange

policy while maintaining the confidentiality of the data.
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3.3 Fair exchange with Blockchain

Even though the idea of using Blockchain in ensuring fairness in digital exchange is

fairly new, some researchers have already worked on this.

A solution for secure certified electronic mail exchange following the fair exchange

protocol is proposed in [60] by Hinarejos et al. In their design, they assume that,

though a participant has the decryption key of a POR, it will only be effective when

it is published on the Blockchain. However, the drawbacks of that design are they

have used the Bitcoin Blockchain as a message board. Bitcoin is a payment system

and thus should not be overloaded by using it as a message board. Also, In our case,

one of the parties involved in the exchange could be patients who may not possess

bitcoin. Eventually, he or she could not use their protocol. Another issue is that

bitcoin is a public Blockchain. Thus, if a pending transaction, due to any reason,

could not convert to a valid transaction, the receiver of the message would be in

an advantageous situation that contradicts the rule of fair exchange. In [79], Meng

et al. proposed a fair exchange policy for exchanging physical goods that leverage

crypto-currencies. In this design, a common public escrow account is opened on a

themis Blockchain from which currency can only be withdrawn if someone has both

the secret keys. Both buyer and seller share their encrypted secret keys to their

selective mediators of the network using the Shamir secret sharing approach [100]

and then provides the ciphertext to the other party (Alice to Bob and vice versa).

If no dispute occurs, the buyer will send his original secret key to the seller. The

seller can use that to unlock the escrow account. If a dispute arises, the seller will

notify the mediators of the network, and if more than half of the mediators work, the

seller can recover the private key from them. However, their protocol is particularly

designed to ensure fair exchange policy while exchanging cryptocurrency for physical

goods, which is not our area of work since we are working on exchanging the data

over the digital platform. At the same time, the use of mediators introduce a trusted

party and consequently shifted to a central model. The protocol proposed in [49] by

Ferrer-Gomila et al. offered true fairness without the involvement of any TTP which
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is very specific to contract signing. In the solution, the contract will only be valid if it

receives approval from the Blockchain network even though the unencrypted contract

is shared between the parties without any involvement of Blockchain. It may not be

an issue for contract signing protocol, but in our case, we cannot explicitly rely on

their design. If a malicious party gets the unencrypted health data outside the chain

without providing any partial or full POR in the first step, he/she will terminate

the exchange protocol immediately. Also, they designed their scheme, considering

that one of the users must have crypto-currency from the Blockchain to support their

scheme.

As none of the proposed fair exchange solutions with Blockchain technology is

designed for exchanging sensitive large-sized PHRs; we are motivated to fill this crucial

gap.
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CHAPTER 4

Blockchain

Blockchain, a Distributed Ledger Technology (DLT), is a network for sharing and

maintaining the database of static or dynamic data (records/transactions) amongst

all the participants in the network. Viriyasitavat et al. [110] defined Blockchain as:

“A technology that enables immutability, and integrity of data in which a record

of transactions made in a system are maintained across several distributed nodes that

are linked in a peer-to-peer network.”

Although most of the current Blockchains are used for financial exchanges, this is

not the only usage of Blockchain. In the most generic case, exchanges could be seen

just as atomic changes to the system state, and thus Blockchain can be utilized to

timestamp archives and secure them from adjustments.

This chapter demonstrates the overall concepts of Blockchain and its functionality.

4.1 Blockchain

Blockchain, as the name suggests, is a combination of multiple blocks containing data.

Each block is connected with others through a strong cryptographic technique (a hash

value) and finally formed into a chain. Thus, it is called the Blockchain. Figure 4.1.1

and 4.1.2 demonstrate what a block, in Blockchain, contains in general and how the

chain is formed in an illustrative manner.
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Fig. 4.1.1: What a block, in blockchian, contains in general

Fig. 4.1.2: How the blocks are chained up

Each data/transaction in the block is signed (following the protocol of digital

signature) by the initiator of that data/transaction, which makes sure the data/-

transactions are not generated by a malicious person and, as such, protects the block

and later on the chain to have false data. The hash of each block is generated by

passing the data that block contains and “LastHash” (hash of the previous block) to a

hash function. In that way, the hash ensures that, once a block is added to the chain,

it is extremely difficult for anyone to alter any of the data it contains. The reason is,

changing data would lead to generating a new hash and will not be matched with the

“LastHash” of the next block. Consequently, if anyone wants to change the hash of a

block, he/she has to change the hash of all the blocks next to it. For changing a hash,

for some of the Blockchains demands computationally powerful machines, which is

costly.

The Blockchain network is entirely decentralized and designed in such a manner

that peers do not have to deal with a middle-man while making any transaction. In
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other words, no one has to put trust in a third party to deal with his or her data.

That is why it is also known as a trustless network. In the Blockchain, not only the

ledger is distributed, but also, there is no central authority to manage the network

like a traditional distributed database system. The power of maintaining the overall

network is hand out to all the participants in the network. Each participant holds

a copy of a synchronized ledger by himself. As a result, participants can witness

their data whenever they want. Since the ledger is consensually maintained and the

network is not governed by a single participant, a successful tear-down of the network

is highly unlikely. Where in a centralized system, the attacker has to penetrate only

one point, in a decentralized distributed ledger system, he/she has to modify the

data of more than half of the total nodes of the network to make the system obsolete.

Figure 4.1.3 demonstrates how a Blockchain network works with a sample diagram.

Fig. 4.1.3: How Blockchain works [77]

Blockchain can be categorized based on two points [58]: a) Access to data and

b) Access to transaction processing. Based on access to data, a Blockchain can be

public or private and based on access to transaction processing, a Blockchain can be

permissionless or permissioned.
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• Public Blockchain. No restriction on reading Blockchain data and submitting

transactions for the inclusion into the chain.

• Private Blockchain. Direct access to Blockchain data and submitting transac-

tions are limited to a predefined party.

• Permissionless Blockchain. No restriction on any node for transaction process-

ing.

• Permissioned Blockchain. The power of processing a transaction is limited to a

predefined party.

4.1.1 Characteristics of Blockchain

A Blockchain system can be characterized based on multiple factors such as Decen-

tralization, Transparent, and Consensus Driven [9].

• Decentralization. In a conventional centralized database system, exchanges are

trusted or supported through central trusted mediators that assurance legiti-

macy, which acquires extra cost, and as a consequence the performance turns

into a major issue when utilizing central servers [110]. Blockchain is a promising

answer for the distributed decentralized transaction management problems [35],

being managed among peers in a P2P network.

A Blockchain system operates without a central hub, and the decision power is

distributed amongst the different entities/participants in the network. Thus it

can handle a single point of failure issue very well.

• Transparent. Blockchain offers both “privacy” and “transparency” in an aggre-

gated way. The privacy of a user is maintained with a powerful cryptographic

mechanism (typically the address of the user is kept hidden with a hash func-

tion/public key or pseudo address). Thus a user can be anonymized. At the

same time, the transaction of an address is open to view by anyone in the net-

work at any time, depending on the type of the system (public/private). This
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level of transparency is not always supported by a centralized system where

central authority in the name of “security purpose” can cut down the rights of

the users of accessing their data.

• Consensus Driven As there is no central authority, any change in the ledger

has to be timely maintained by all the nodes in the network; thus, the role

of the consensus mechanism comes. Due to the fact that the ledger has to be

synchronized to maintain the data integrity, all the participants must come to

an agreement with the inclusion or exclusion of data. As a result, the consensus

mechanism is the backbone of any valid transaction to be executed and stored

in Blockchain. The idea of consensus mechanism, different types, and how each

of the type works is explained in an elaborated fashion in section 4.2.

4.1.2 Smart Contract

A unique feature of Blockchain is Smart Contract. It is an automated version of the

traditional contract with a set of procedures designed by the Blockchain network to

process the input and generates output. The terms and conditions of the contract,

agreed by several involved parties, will be written on code, and then the contract

will be included in the transaction and submitted to the network. Once added to the

chain, the contract will be automatically triggered when the pre-written conditions are

met. A smart contract helps to reduce transaction costs by omitting the involvement

of third-party in a contract. Some of the Blockchain platforms that support smart

contracts are Ethereum and Hyperledger. Figure 4.1.4 illustrates how smart contracts

works.
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Fig. 4.1.4: How smart contract works

4.2 Consensus Mechanism

The generation of the agreement between all the nodes for any state of the ledger is

called a consensus mechanism. There are many ways of achieving this agreement, and

the mechanism is chosen based on the type and use of the network. However, each

consensus mechanism ensures one thing; in every transaction, one node or a group

of nodes is acting as a miner/validator and is always responsible for validating that

transaction. That node, to prove its worthiness of being a miner/validator, has to

bear some fees. These fees could come in the form of requiring huge computational

power to find the solution of a problem, lodging some crypto-assets in the network

as a stake, having huge computational space to store solutions of a problem, etc.,

depending on which consensus algorithm is picked up for that network. This entire

process confirms, even if someone does not trust any node in the network, he/she can

trust the chain. In a broader way, the mechanisms can be classified into four types: a)

Work-based mechanisms, b) Stake-based mechanisms, c) Byzantine Fault Tolerance

(BFT) based mechanisms, and d) Other mechanisms (which does not fall into any of
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the three previous types).

4.2.1 Work-based consensus mechanisms

A computationally expensive, yet easy to prove once solved, the puzzle is presented

among the nodes. The answer to the puzzle is a hash value, which acts as the hash

address for that block. All the nodes in the network will compete with each other to

find (aka mine) the solution of that puzzle. The mining is done by a “trial and error”

basis. Out of an enormous amount of possibilities, only one value is the answer to

the puzzle. Thus every node has to try several times with different possible values

and check whether that value is the correct answer or not. This process is called

mining. The node who finds the answer first (aka miner) gets the right to add the

new block to the chain and in return, gets the incentive for solving the puzzle. All the

blocks carry the hash value of its own, as well as the hash value of its previous block.

As a result, once a block is added to the chain, it is challenging in terms of cost to

change the data since all the blocks have to be added again with a new hash address.

This is practically unmanageable because of the extremely high expense of solving

the puzzle in order to generate the hash. Keeping this concept as a foundation, some

of the consensus algorithms which have been forked up from there are: a) Proof of

Work [103], b) Proof of Meaningful Work [99], c) Semi-Synchronous Proof of Work

[87], d) Delayed Proof of Work [56], and e) Proof of Participation and Fees [50].

4.2.2 Stake-based consensus mechanisms

To confirm a transaction, unlike work-based, in the stake-based mechanism, the node

(here mentioned as validator) is chosen deterministically. All the nodes which are

going to participate in the competition to get selected as a validator have to lock up

some crypto-assets in the network as a stake. The selection of validator is made with

some algorithmic way, and it depends on the amount a node deposits as the security

payment. For example, if one node deposited ten cryptocurrencies while another

deposited a hundred, the chance of being selected as a validator for the second node
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will be ten times more. This way, unlike Proof of Work or any other work-based

mechanisms, one does not have to spend money/cryptocurrency on computationally

powerful machines to mine a solution that could go in vain if he/she could not mine

first. Some of the examples of consensus mechanisms which are derived from the

concept as mentioned above are: a) Proof of Stake [17][57], b) Delegated Proof of

Stake [107], c) Proof of Stake Time [96], d) Proof of Stake Velocity [97], and e) Proof

of Importance [25].

4.2.3 Byzantine Fault Tolerance (BFT) based consensus mech-

anisms

Unlike Work-based and Stake-based consensus mechanisms, BFT based mechanisms

usually work on private Blockchains. The advantage of using BFT based mechanisms

is, it ensures that the system will work even in the presence of malicious/faulty nodes.

Moreover, since in private Blockchain, every node knows each other at a certain level,

it affirms accountability as well. The idea derives from the concept of Byzantine

Generals’ problem, a real historical situation. Here all the validator nodes have to

give an opinion on the validity of a block. As long as the block gets positive feedback

above a threshold value, it is valid. The validators do not have to put any asset as

a stake or invest in machines having high computational power, so it is economically

friendly as well. The different consensuses which are derived from this primary ground

are: a) Practical Byzantine Fault Tolerance protocol [27], b) Delegated Byzantine

Fault Tolerance protocol [24], and c) Federated Byzantine Agreement protocol [91].

4.2.4 Other consensus mechanisms

There are some other consensus mechanisms which doesn’t follow any of the previous

categories, such as:

• Proof of Burn.[104] Instead of spending money on computational power to get

the selector/validator role, in proof of burn, one has to burn virtual coins. The

idea can be similar to buying a mining rig with the virtual coin. The more
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one burns, the higher the possibility he has to be selected as a leader. The

motivation is to encourage the nodes for the short term loss in order to gain

the long term achievement. Also, once a node burns the coin, it will ensure

a time frame within which he will validate the blocks. However, to prevent

early adopters from benefiting too much, every time a node validates a block, a

portion of the rig, i.e., the power of the burnt coin decays. So to maintain the

hatching power, one has to burn coin periodically.

• Proof of Elapsed Time.[95] It is a lottery-like algorithm where a potential partic-

ipant has to download the “trusted code” and broadcasts the request in order to

join the network. The request has to be signed by specialized hardware, which

generates a public/private key pair. Once joined in the network, in order to get

selected as the “leader” to validate a transaction during each round of consen-

sus, the participant has to wait a certain amount of time defined by the “trusted

code.” In order to make sure the fairness of the selection (i.e., distribution of

the waiting time amongst the participants) specialized hardware is used, which

confirms the authenticity of the “trusted code”.

• Proof of Authority.[28] It uses the concept of PoS; however, instead of keeping

stake, which has monetary value, here the participants stake their real identity.

The selection of validator is made by rotation in order to reasonably select the

validator. Since the real identity of the validator will be flashed, this consensus

is usually used for permission Blockchain. It is environmentally friendly as well

since there is no need for excessive power consumption in order to mine a block.

A similar kind of consensus mechanism, which follows the PoA from a certain

point, is Proof of Reputation [51].

• Proof of Activity.[13] Here both the PoW and PoS protocols are combined in

order to provide an extra layer of security while validating the blocks. First,

with PoW, the header of the block is found out. However, instead of transaction

data, the block contains only the address of the miner. Then a random group

of validators is selected following the Proof of Stake protocols who signs in that
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block and the last person to sign it, fills with transaction data, and then join it

with the chain. The incentives are distributed among the miner and validators.

Table 4.2.1 shows the different Blockchain platforms which uses these consensus

mechanisms.

Name of the consensus pro-
tocol

Type of Blockchain suit-
able to use

Used in

Proof of Work Public & Private Bitcoin [14]

Proof of Meaningful Work Public & Private Vrenelium [111]

Semi-Synchronous Proof of Work Public & Private
Purple Protocol (under devel-
opment) [92]

Delayed Proof of Work Public & Private Komodo [70]

Proof of Participation and Fees Public & Private
Not used yet (Proposed on
2018) [50]

Proof of Stake Public & Private Ethereum [44]

Delegated Proof of Stake Public & Private BitShares [15]

Proof of Stake Time Public & Private VeriCoin [109]

Proof of Stake Velocity Public & Private Reddcoin [94]

Proof of Importance Public & Private NEM [85]

Practical Byzantine Fault Toler-
ance Protocol

Private Hyperledger Fabric [63]

Delegated Byzantine Fault Tol-
erance Protocol

Private Neo [86]

Federated Byzantine Agreement Public & Private BRAVO [19]

Proof of Burn Public & Private Slimcoin [104]

Proof of Elapsed Time Private Hyperledger Sawtooth [64]

Proof of Authority Public & Private Ethereum Kovan [45]

Proof of Reputation Private GoChain [53]

Proof of Activity Public & Private Decred [32]

Table 4.2.1: Different consensus mechanisms and their use in different Blockchain
platforms
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CHAPTER 5

Methodology

The electronic adaptation of medical records can be classified into Electronic Health

Records (EHRs) and Personal Health Records (PHRs). Healthcare providers use

EHRs, which is a collection of patients’ health data, and maintained that throughout a

specific time by storing accurately in a repository [3]. It helps the care providers (e.g.,

hospitals, research centers, or clinics) to have improved management of patient health

information [20]. Unfortunately, care providers are not very interested in sharing these

records among themselves. Even if they agreed to share, the sharing procedure would

take much time because of all the regulatory and compliant issues. Also, these records

usually are not put into in a similar format in various organizations, thus if exchanged,

will hinder the desired goal. As a consequence, the interoperability issue comes into

the scene [2]. To address these problems, the PHRs idea was proposed in 2006 [108]

and was characterized as an ISO (International Organization for Standardization)

standard (ISO/TR 14292) in 2012 [3].

The PHRs are a representation of health records, which, unlike EHRs, is managed

by the patient [108]. Patients can decide either to allow the care providers having

their PHRs or keep them private. Numerous EHRs for the same patient can coexist;

however, only one PHRs of the same patient would exist. The PHRs can incorporate

information from multiple sources, extending from gadgets connected to the patient

to data stored in different care providers’ system [108].

Figure 5.0.1 explains how the PHRs and EHRs, despite the fact, they can be

integrated to exchange information for patient’s wellbeing, can be different [3].
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Fig. 5.0.1: Relationship between EHRs and PHRs [3]

Even though patients are the main stakeholders of their PHRs, as per figure 5.0.1,

those data can be exchanged with different healthcare providers, research teams, and

insurance companies. The exchange can happen in two ways.

1. Patient, himself/herself, share his/her records for his/her benefit.

2. Different care providers (hospitals, research teams, and insurance companies),

with the proper consent from the patient, exchanged the data among themselves

for the betterment of the patient.

We are focusing on point no. 1. Thus, in our exchanges, we have two main stake-

holders in general; patient (sender of the medical records) and healthcare provider(s)

(receiver of the medical records). Patients can share their record by hand-to-hand or

electronically by using the application which supports the exchange. Nevertheless,

any application which will be designed to help these exchanges (for both point 1 and

point 2) should possess the privacy and security criteria mentioned in [1]. Out of the

eight criteria, in this research, we are targeting to maintain the Non-repudiation cri-

teria by ensuring fair-exchange policy while digitally exchanging the medical records
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from patients to a healthcare provider. In this chapter, we are going to deduce the

problem statement and a detailed methodology to achieve the goal. As Blockchain

is an essential tool in this thesis, we will highlight the requirements of the type of

network and states the different rules of the network, which are crucial to fulfilling

the target. Finally, we will present an informal reasoning of the logic of the proposed

methodology based on our targeted criteria.

5.1 Design Goals and Assumptions

Goals:

1. Fair Exchange:

(a) We will electronically transfer a medical record, M, from party A (say,

Alice) to party B (say, Bob). After the completion of the exchange, neither

Alice nor Bob can deny their role in the exchange, i.e., Alice cannot say

she did not send M, and at the same time, party, Bob cannot deny that he

did not receive M. Both the sender and receiver of M will have valid proof

that will testify against anyone’s falsified claims.

(b) During the exchange, at any step, neither of the parties will be in any

favorable situation. By favorable, we mean, if one party starts acting

malicious and terminates the exchange protocol after a certain step, he/she

will not have any document which can provide him/her any personal gain.

2. Maintain data confidentiality: M will remain confidential during the whole ex-

change procedure. Only the intended persons (Alice or Bob) can know the

true meaning of M after the completion of the exchange procedure. Any other

participants during or after the exchange cannot find out what M is.

3. No requirement of any TTP: During the whole exchange, neither Alice nor Bob

has to trust any other party.
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4. Reduce storage overhead: The medical records will be exchanged in a P2P

manner (off-chain) which will significantly reduce the storage overhead for the

participants in the Blockchain network.

Assumption: A constant and secure communication channel has been established

among all the participants, whether it is a Blockchain network or a P2P communica-

tion channel. Table 5.1.1 shows the protocol notation.

Table 5.1.1: Protocol notation

A Alice

B Bob

BC Blockchain

M Medical Record

EK(M) Encrypted medical records using encryption key k1 & k2

SX Digital Signature of X

Y, SX Digital Signature of X on item Y

Xpub Public key of X

Xpriv Private key of X

RSX Reputation score of X

AdrX Blockchain address of X

k1 First symmetric key

k2 Second symmetric key

HX Hash of item X

Z, t maximum validity time, t, of an item Z

C Hash of (EK(M), Bpub(k1), Hk2
)

POO Partial Proof of Origin

POO Full proof of Origin

POR Partial Proof of Receipt

POR Full Proof of Receipt
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5.2 Design rationale

• In our scheme, we are using Blockchain to maintain an immutable timestamp

record, which will help to exchange the POO and POR fairly.

It will help us to achieve goal no. 1(a).

• Here, we are going to use a private Blockchain, which will create a barrier to

leaving the network at any time and without informing anyone. The reason

is since the recipient in the Blockchain network does not have any leverage,

and any malicious recipient can take the key from the waited transactions list

and can leave the network before any pending transaction is approved following

the consensus protocol, which in turn will keep him/her in an advantageous

situation during the overall exchange procedure, we can not rely on a public

Blockchain. As a general rule of any private Blockchain, any participant can

only leave the network once he/she has fulfilled all the rules defined by the

network. Consequently, the use of private Blockchain will help to ensure that

neither of the party (Alice or Bob) will be in any favorable situation during the

exchange.

This makes sure to fulfill goal no. 1(b).

• The exchange of items will happen in two phases. The idea is, even though

the encrypted message (medical records), 1st part of the decryption key, partial

POO, and partial POR will be exchanged in a P2P fashion (in phase I; we will

call if off-chain), without any dependency on TTP, the conversion of partial to

full POO or POR will only happen when the exchange of the 2nd part of the

decryption key and partial POO and partial POR are recorded in the Blockchain

(in phase II; we will call it on-chain). The reason for splitting the overall

exchanges into two phases is explained in subsection 5.2.3.

Thus, we will be able to accomplish goal no. 2, 3, and 4.

The complete design scheme is presented in subsection 5.2.2.
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5.2.1 Private Blockchain requirement

A private Blockchain will limit the Blockchain data to a pre-defied group [58]. Even

though there exists some private Blockchain platforms, to justify our Proof of Concept

(PoC), we are not going to use any current existing platforms, rather going to create

one with policies specially tailored to our necessity. The reasons for doing so are:

• In compared to public Blockchain network, as per their design, private networks

are not open. We simply can not get into any private networks and work with

our PoC, as it has specific rules and regulations and designed for a specific

purpose.

• In existing private Blockchain platforms, the participants in the network has

to know each other up to a certain extent (as existing platforms are designed

mainly for collaborating different business institutions/entities so that they can

do their business in a transparent way). Hence, existing platforms mostly used

BFT based consensus protocol, which works based on voting and trust. One of

our design goals is to remove the dependency on a “trusted third party”, which

does not allow us to go with the current platforms.

• Private Blockchains do not allow one to modify the rules according to users’

necessity, which is a significant hindrance to work with our PoC.

Due to the above reasons, for our PoC, we are are going to use a platform-agnostic

approach for implementing the scheme, which will also provide a reference for imple-

mentation and testing for other research teams. We are going to create a private

Blockchain with the following policies:

Policies for our Private Blockchain:

1. The private Blockchain is going to use Proof of Work (PoW) consensus protocol,

a work-based protocol whose detail explanation is as follows:

Any block in a Blockchain contains its ID, data, and the ID of its previous

block. The ID is generated by hashing the combination of the data that the

48



5. METHODOLOGY

block contains, the previous block’s ID, and a specific number (nonce). The

addition of a nonce will require that the hash value be a unique hash (a hash

starts with a certain number of zeros). Nodes have to mine out the nonce.

Mining the nonce is computationally expensive since they have to get it through

a trial and error basis. The node, who mine the nonce first, will add the new

block into the chain, and because of his/her work, in return, will receive the

incentives. Since any change in the data of a block will result in generating a

completely new hash, an attacker has to mine the nonce of that block and all

the blocks previous to that block in the chain. Mining nonce requires costly

and computationally powerful machines, and no one would want to waste their

powerful machines by going through the old blocks as long as the return on

investment (personal gain by changing the data) does not suit them; which is

the reason of using PoW in our design. Figure 5.2.1 offers a simple example of

how the hash value in PoW is generated.

Fig. 5.2.1: Proof of Work: Finding out the unique hash of the current block, a hash
starts with a certain number of zeros, by mining the nonce
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2. Miners will be rewarded with a reputation score instead of cryptocurrency.

As the participants in our Blockchain platform are patients and healthcare

providers, instead of dealing with expensive cryptocurrencies, we are motivating

the miners by providing a reputation score as a reward.

3. Each transaction will cost a specific reputation score (which is significantly less

than the mining reward) and will be deducted from the sender’s reputation

score wallet.

This will prevent from posting unnecessary transactions into the Blockchain

network and will help to reduce the storage overhead.

4. Each node has to maintain a level of reputation score to stay in the network.

This will ensure the active participation of the nodes in the network. As each

transaction will cost a certain reputation score, to fill up those gaps in their

wallet, the participants have to mine new blocks. Thus, the overall competi-

tiveness between nodes in the network in finding the nonce value will increase

which is crucial for any PoW to work unbiasedly.

5. A node has to post the “leave” request in the network, and once it is mined

only then he/she can leave the network. From that point, that node will neither

be able to get any new block to his chain nor can see the pending transactions

in the pool.

This will create an immutable snippet in the Blockchain network, and the par-

ticipant in the network can check whether or not the recipient is in the network

before posting any transaction against his/her name.
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5.2.2 Design of the Scheme

We are denoting the transaction of data from one party to another by P
M−→ Q, which

means P is sending certain information, M, to Q. Let us say Alice (patient) and Bob

(healthcare provider) agreed to share a medical record. The original medical records

will be encrypted with cascade encryption technique before sending. Gaži et al. [52]

defines cascade encryption as:

“A simple and practical construction, used to enlarge the key space of a blockcipher

without the need to switch to a new algorithm. Instead of applying the blockcipher only

once, it is applied l times with l independently chosen keys.”

With cascade encryption technique, medical records will be encrypted twice with

two different symmetric key. This will allow us to exchange the records securely

following fair-exchange policy while providing enough information to an adjudicator

who can assess the information to decide for one of the parties without any ambiguity

should any occurrence of disagreement regarding the exchange of records happen.

The P2P OFE protocol will occur according to the following four steps which are

also sketched in Figure 5.2.2.

Fig. 5.2.2: Proposed P2P OFE scheme with Blockchain
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1. A
(EK(M), Bpub(k1), Hk2 , POO)
−−−−−−−−−−−−−−−−−−−−−−→ B

where POO = (C, SA) and C = Hash of (EK(M), Bpub(k1), Hk2).

In this step, Alice will encrypt M two times; first with k2 (let’s say the result

of encrypting M with k2 is M′) and then will encrypt M′ with k1 (let’s say the

result of encrypting M′ with k1 is EK(M)). She will encrypt k1 with Bob’s public

key, Bpub. k2 will stay secret known only by Alice. Then, she will generate POO

which is a combination of the hash of the tuple (EK(M), Bpub(k1) and Hk2) along

with her digital signature on that hash.

Then, Alice will send the (a) encrypted message EK(M), (b) symmetric key (k1)

encrypted with Bob’s public key, Bpub(k1), (c) hash of the second symmetric

key, (Hk2), and (d) partial proof of origin, POO to Bob.

2. B
POR−−−→ A; where, POR = ((POO, t), SB). t starts from now.

In the second step, Bob computes the partial proof of receipt, POR, which is

a tuple of POO and t, signed by his digital signature. Then, sends POR to

Alice.

3. A
transfer (POO, POR, Bpub(k2), Hk1) to Adrb−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ BC

In the third step, Alice will send the transaction of transferring the token of

their exchanges at the first and second steps along with the second symmetric

key encrypted with Bob’s public key, Bpub(k2) and a hash of k1, Hk1 to Bob’s

address, in the Blockchain.

4. BC
(POO, POR, Bpub(k2), Hk1)−−−−−−−−−−−−−−−−−−−−−→ B

At step 4, from the Blockchain network, a miner, after mining the nonce, will

validate and broadcast that transaction to the rest of the nodes by adding a

new block containing that transaction on the current chain, and in returns, will

be rewarded with a reputation score.

Steps 1 and 2 are the phase I (off-chain) of the overall exchange, where as steps 3

and 4 are phase II (on-chain). As, the full POO or full POR will contain two things;
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POO or POR and the block id, which includes the token of off-chain exchange, after

step 4, the POO and POR, exchanged at step 1 and 2, will convert into full POO

and full POR.

In Blockchain, all the nodes will be assigned an ID (the public key of that node)

which will be counted as the address of the node. The list of available nodes in the

network (their IDs) can be found by calling an Application Programming Interface

(API). Every node, before posting a transaction, can check whether the recipient is

available in the network or not through that list.

5.2.3 Off-chain and On-chain Exchange

One important decision when building a Blockchain solution is to decide what data

would be stored on-chain and what will be stored off-chain. It is essential to ensure

that only the necessary data will be stored on-chain. Since any data stored on-chain

will remain permanently on the network and readable by any member/node in the

network. Moreover, Blockchain is not designed to store documents. In particular,

storing large documents such as medical images and medical test results is not rec-

ommend for two main reasons. First, every node/member in the network is required

to keep a permanent copy of the ledger, the ledger size increase over time and never

decrease. Therefore, storing massive and large data on the ledger will result in even-

tually eliminating nodes that could not provide the required storage. Second, the

ledger is readable by all the nodes/members of the network. Therefore, there are

many privacy and compliance issues if the data is stored on a shared ledger. For that

reason, we do not store or exchange any readable medical records on the chain. All

the medical records and health-related data are exchange over secure P2P connec-

tions off-chain. A detailed record and digital fingerprint for all the exchanged data

off-chain is stored on-chain as a tokenized exchange transactions.

The tokenization and digital fingerprint of the health data is a straight forward

process. The data is randomly salted and hashed using a secure hashing algorithm.

Then the signed hashed data, and the original data are sent to the receiver off-chain

over a secure P2P connection. Upon receiving the data, the receiver will validate
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the data and sign the validation results using the receiver’s private-key and send it

back to the sender. Finally, the hashed data, receiver’s acknowledgment, and the

decryption key is signed with the sender’s private-key and posted on-chain.

5.3 Informal reasoning of the scheme

Logic in security-sensitive applications demands careful reasoning to find out any

loophole in the design. By analyzing different security aspects, one can find out

whether or not the tested design/protocol can meet all the claimed objectives, even

in the presence of an active adversary. Researchers have pointed out numerous useful

ways ([11], [16], [21], [74]) of reasoning different cryptographic protocols to formally

analyze the performance in maintaining information security, such as confidentiality,

authentication, integrity or non-repudiation, in an insecure network, should the tested

protocol is applied. Since the goal of this thesis is to propose a framework which

can ensures fairness in digitally exchanging medical records, we are not analyzing

the strength or weakness of a particular cryptographic primitive. Instead, we are

analyzing the logic of the overall framework based on two of our targeted criteria,

Fairness and Confidentiality.

5.3.0.1 Fairness

Our primary objective is to make sure neither the sender nor the recipient at any

point during the overall exchange procedure should be in a favorable situation. Here,

we are going to analyze the fairness of the proposed scheme during each step of the

procedure and find out whether or not the scheme is offering the desired goal.

Step 1:

In this step, A is sending the encrypted medical records, along with the 1st symmetric

key and the partial proof of origin, POO. Thus, at the end of the step, B cannot

decrypt the record since he does not have the 2nd symmetric key. He can only have

the 2nd symmetric key if he sends the partial proof of receipt, POR, in the second step.
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Result: At the end of the step, true fairness retained since neither of the parties is

in an advantageous/disadvantageous situation.

Step 2:

In this step, B will send his partial proof of receipt, POR provided that he received,

and checked the originality of the different items received in step 1. Even though

he has the encrypted medical records now, he still needs the 2nd symmetric key to

decipher the records. On the other hand, after receiving the partial proof of receipt,

POR, A has to post their P2P exchanged items as a token along with the 2nd sym-

metric key in Blockchain, to convert the partial proof of receipt, POR, into full proof

of receipt, POR.

Result: At the end of the step, true fairness retained since neither of the parties is

in an advantageous/disadvantageous situation.

Step 3:

In this step, A posted the transaction (token of their exchanges in steps 1 and 2 along

with the 2nd symmetric key) in the Blockchain network. In this stage, the posted

transaction now should be in the waiting pool, waiting to be mined to have a block of

its own, assuming A followed the requirement of posting a transaction correctly. At

this point, A still cannot claim to have POR as the transaction is in the waiting pool;

thus, she does not have the block ID, which is an essential element to convert a partial

proof of receipt, POR, into full proof of receipt, POR. Likewise, B cannot claim to

have full proof of origin, POO, as it also requires the block ID. Even though, he can

get the 2nd symmetric key from the transaction in the waiting pool and decrypts the

message now, he cannot leave the network as he has to post the leave request in the

network. If he posts the request before A posts the items in the network, A will not

post the items. Moreover, if he posts after A posts the items in the network, before

mining the leave request of B, the items posted by A, will be mined.
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Result: At the end of the step, true fairness retained since neither of the parties is

in an advantageous/disadvantageous situation.

Step 4:

In this step, the waited transaction, posted by A in step no. 3 has been mined, and

the transaction has the block ID. Thus, both A and B can claim to have the full proof

of origin, POO, and full proof of receipt, POR.

Result: At the end of the step, true fairness retained since neither of the parties is

in an advantageous/disadvantageous situation.

5.3.0.2 Confidentiality

One of the key requirements while exchanging medical records, digitally or not, is

to maintain its confidentiality from an unauthorized party. In the proposed scheme,

the records are exchanged after performing cascade encryption. To get the original

message, an attacker has to have both the decryption keys. Both the symmetric keys,

k1 and k2, are encrypted with B’s public key, Bpub, before sending. Thus only B can

have both the keys and can decrypt the exchanged records.

Another issue could be the sending of incorrect 2nd symmetric key by A in step

no. 3. In that case, B will have both of the symmetric keys and their hashes with A’s

signature on it, after step 4. B then can submit the keys and hashes, to any regulator,

who eventually can discover that A is guilty.
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CHAPTER 6

Experiments and Results

Evaluating the results of a scheme will help to give a detailed insight into the behavior

of a scheme. However, before gauging, one could use some benchmark, which will help

to determine the performance. In this chapter, the details about the experimental

setup, its results, and the analysis of those results based on our goal is presented.

6.1 Key points for comparison

According to our design goals (section 5.1), we have following targets to achieve:

1. Fair Exchange:

(a) At the end of the exchange no party, participated in the exchange, can

deny their role.

(b) During the exchange, at any step, under no circumstances, can either of

the party be in an advantageous situation.

2. Maintain data confidentiality: Only the intended recipient of the message can

know the true meaning of Message, M, during or at the end of the exchange.

3. No requirement of any TTP: Neither sender nor recipient has to depend on any

trusted third party.

4. Reduce storage overhead: By exchanging the original records off-chain, the stor-

age overhead for the participants in the Blockchain network will be reduced.
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Based on our design goals, before going to have a performance comparison, we are

addressing some comparison points and prioritize them on table 6.1.1.

Comparison Points and their priorities:

1. Fair Exchange: Whether the scheme can always ensure true fairness at any

point in the exchange.

2. Requirement of trusted third party: Is there any requirement of a trusted third

party for the scheme to work.

3. Requirement of Blockchain: Is there any requirement of a Blockchain for the

scheme to work. If yes, what type of Blockchain is needed there.

4. Data Confidentiality: Whether the data are exchanged confidentially or not.

By confidential, we mean, only the sender and the receiver, or a party trusted

by both of them, can know the real meaning of the exchanged data.

5. Data Exchange: Whether the actual data are exchanged on Blockchain or not. If

Blockchain is not involved in actual data exchange, we call it off-chain, otherwise

on-chain

6. Scalability of the network: In the case of Blockchain-based approach, how large

the network was at the time of testing

7. Consensus Mechanism: What consensus is used in the Blockchain
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Table 6.1.1: Priority of the key comparison points

Sl no. Comparison Point Priority

1 Fair Exchange Primary

2 Requirement of TTP Primary

3 Data Confidentiality Primary

4 Data Exchange Primary

5 Requirement of Blockchain Primary

6 Scalability of the network Secondary

7 Consensus Mechanism Secondary

The top five comparison points (marked as a “primary priority”) will decide

whether or our design goals (section 5.1) can be fulfilled. On the other hand, the

comparison point with “secondary priority” (Sl no. 6-7) will help us to analyze the

performance of our design.

Before presenting the result of our work and comparing them with the previous

works (works mentioned in section 3.1, 3.2, and 3.3), we are stating the status of

those works in tables 6.1.2, 6.1.4, and 6.1.6 according to the comparison points. If a

previous work can get “Yes”, “No”, “Maintained”, “Off-chain” and “Yes” on the pri-

mary comparison points, Fair Exchange, Requirement of TTP, Data Confidentiality,

Data Exchange and Requirement of Blockchain as an outcome respectively, only then

we will consider that, that work may achieve our design goals.

6.1.1 Previous works on fair exchange without Blockchain:

As there has been much work done already on fair exchange without Blockchain, for

the convenience while comparing the schemes, here we grouped the papers worked

with the same approach and gave them a common name. So, ( [29], [46], [54], [75] and

[76]) is referring as probabilistic approach. Similarly, ([4], [6], [12], [23], [33], [48], [62],
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[68], [71], [78], [90], [113]) is referring as TTP involved approach. Table 6.1.2 shows

the status of these works on the comparison points and table 6.1.3 shows whether we

can achieve our design goals with these works.

Table 6.1.2: Comparison of different schemes which works on fair exchange without
Blockchain

Comparison Point Probabilistic Approach TTP Involved Approach

Fair Exchange No Yes

Requirement of TTP No Yes

Data Confidentiality Maintained in some works Maintained in some works

Data Exchange Off-chain Off-chain

Requirement of BCa (Type) No No

Scalability of the network Not Applicable Not Applicable

Consensus Mechanism Not Applicable Not Applicable
a BC = Blockchain

Table 6.1.3: Fulfillment of the design goals

Design Goal Probabilistic Approach TTP Involved Approach

Goal 1(a) 7

Goal 1(b) 7

Goal 2 7 7

Goal 3 7

Goal 4

According to table 6.1.3, both the probabilistic approach and TTP involved ap-

proach failed to achieve all of our goals because of not showing the desired output in

one or more primary comparison points in table 6.1.2.
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6.1.2 Previous works on use of Blockchain in healthcare data:

None of the works mentioned in table 6.1.4 focused on ensuring fairness. As a re-

sult, the schema of these works can not help us to achieve all of our goals (table 6.1.5).

Table 6.1.4: Comparison of different schemes which works on use of Blockchain in
healthcare data

Comparison Point Kumar et al. Shen et al. Azaria et al. Mikula et al.

Fair Exchange No No No No

Requirement of TTP No No No No

Data Confidentiality Not Applicable Maintained Maintained Not mentioned

Requirement of BCa (Type) Yes (Not Mentioned) Yes (Not Mentioned) Yes (Public) Yes (Private)

Data Exchange Not Applicable Off-chain Off-chain Off-chain

Scalability of the network Not Applicable Tested upto 100 nodes Tested on Ethereum Tested on Hyperledger Fabric

Consensus Mechanism Not Applicable BFT-SMaRtb Not Mentioned PBFTc

a BC = Blockchain; b BFT-SMaRt = Byzantine Fault-Tolerant (BFT) State Machine Replication; c PBFT = Practical Byzantine Fault
Tolerance protocol

Table 6.1.5: Fulfillment of the design goals

Design Goal Kumar et al. Shen et al. Azaria et al. Mikula et al.

Goal 1(a) 7 7 7 7

Goal 1(b) 7 7 7 7

Goal 2 Not Applicable Not Mentioned

Goal 3

Goal 4 Not Applicable
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6.1.3 Previous works on fair exchange with Blockchain

Although the works of Meng et al. [79], Hinarejos et al. [60], and Ferrer-Gomila et

al. [49] can ensure fairness without any involvement of TTP, their design schema

is strictly specific to their targeted goals. For example, Meng et al. [79] work on

ensuring fair exchange policy while exchanging physical goods for crypto-currency.

Here, not all of the items are exchanged electronically, which is why we put “Not

applicable” in the “Data Confidentiality” point (table 6.1.6). On the other hand,

even though the protocol of Hinarejos et al. [60] is suitable in ensuring fairness in

his use-case, his protocol will not help us to ensure fairness in ours. Hence, although,

their work is showing all the expected outcomes on the comparison points, it failed to

fulfill all of our goals as in their case they are using a public Blockchain which could

help a malicious receiver being in an advantageous situation during the exchange.

Finally, Ferrer-Gomila et al. [49] exchanged the items unencrypted, which violates

our goal no. 2.

The overall status of their works based on the comparison points is in table 6.1.6

and based on fulfillment of our design goals is in Table 6.1.7.

Table 6.1.6: Comparison of different schemes which works on fair exchange with
Blockchain

Comparison Point Hinarejos et al. Meng et al. Ferrer-Gomila et al.

Fair Exchange Yes Yes Yes

Requirement of TTP No No No

Data Confidentiality Maintained Not Applicable Not Maintained

Requirement of BCa (Type) Yes(Public) Yes(Public) Yes (Not Mentioned)

Data Exchange Off-chain Off-chain Off-chain

Scalability of the network Tested with Bitcoin Network Tested up to 128 nodes Tested with Bitcoin’s test network

Consensus Mechanism PoW DPoSb PoW
a BC = Blockchain; b DPoS = Delegated Proof of Stake
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Table 6.1.7: Fulfillment of the design goals

Design Goal Hinarejos et al. Meng et al. Ferrer-Gomila et al.

Goal 1(a)

Goal 1(b) 7

Goal 2 Not Applicable 7

Goal 3

Goal 4

As a result, from table 6.1.3, 6.1.5, and 6.1.7, we conclude that neither of the

previous works was able to maintain all of our mentioned design goals. Thus, rather

than comparing the performance of ours (for both off-chain and on-chain exchange)

with any existing fair-exchange protocol, we are analyzing our scheme by observing

the behavior of the Blockchain network (whether it fulfills all the mentioned private

Blockchain network policies or not) in addition to finding out the fulfillment of the

key comparison points in section 6.3. We also calculate the time required to perform

the various tasks in off-chain exchanges before exchanging the messages.
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6.2 Experimental Setup

6.2.1 Equipment Specifications

We have experimented our design on a workstation with the following specifications

(table 6.2.1):

Table 6.2.1: Specifications of the experimental equipment

Specification Value

Processor Intel(R) Core(TM) i7-5500 U

Frequency 2.40 GHz

RAM 12 GB

Operating System Windows 8.1 (64-bit)

6.2.2 Network Creation

To implement the proposed scheme, we are using the following technologies: NodeJS,

Redis (an in-memory data grid), and Python. Using Redis, we construct a cluster

of nodes connected over Pub/Sub architecture and provides the backbone for the

Blockchain communication channels. Python is using to write and executing all the

logics for off-chain exchange (steps 1 and 2 of the scheme, see subsection 5.2.2).

Finally, NodeJS is used to implement the business logic of the Blockchain network.

6.2.3 Dataset Description

In our experiment, we used a synthetic dataset of patient data from EMRBOTS.ORG

[43]. The dataset had records of 10000 patients, which were organized into four

different tables according to their criteria.

Patient Core Populated Table: It contains a unique patient ID along with per-

sonal information of the patient (gender, date of birth, race, marital status, language,
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and population percentage below poverty).

Admissions Core Populated Table: It contains a unique patient ID, admission

ID each time a patient is admitted along with the start and end date of the admission.

Admissions Diagnoses Core Populated Table: It contains a unique patient

ID, admission ID, diagnosis code, and diagnosis description each time a patient is

admitted.

Labs Core Populated Table: It contains a unique patient ID, lab name (differ-

ent health information such as White Blood Cell Count, Red Blood Cell Count,

Hemoglobin, Hematocrit, Mean Corpuscular Volume, Mch, Mchc, Rdw, Platelet

Count, Absolute Neutrophils, Absolute Lymphocytes, Neutrophils, Lymphocytes,

Monocytes, Eosinophils, Basophils, Metabolism and Urinalysis) results of the each

lab test (in value and unit) and date-time of the lab test.

Out of 10000 patient IDs in Patient Core Populated Table, we randomly selected

1000 IDs, and then based on those 1000 patient IDs (each ID represents different

patient), we merged all the four tables and generated 1000 different files. Thus each

file now contains a detail description of an individual patient along with multiple

medical records (records every time that patient is admitted). In this way, we have

created 1000 PHRs. The size of the records are ranging from 2 KB to 1 KB.
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6.3 Experimental Results

We are presenting the results in two parts; off-chain and on-chain. In off-chain, we

will measure the time taken to perform the required tasks before exchanging the

items. In on-chain, we will analyze the behavior of the network by changing the

number of participants in the network. We will monitor whether every time our

designed network can maintain all the policies mentioned in subsection 5.2.1 along

with fulfilling the primary and secondary priorities of key comparison points. Also,

we will increase the difficulty level of PoW and measure the time required to mine

a block for that difficulty. The difficulty level of PoW is determined by how many

numbers of zeros there should be at the beginning of a hash. The network will start

with a lower difficulty as, in this case, there is only one block (genesis block) with

some pre-defined data in that, and will keep increasing in proportion to the number

of the blocks in the chain. It will help us to measure the optimal difficulty of PoW

for our network (where mining a block is neither too fast nor too slow).

6.3.1 Off-chain Exchange

We have measured the time required for performing each task in step 1 (performing

cascade encryption on original medical records, EK(M), encrypting the first symmet-

ric key with B’s public key, Bpub(k1), Hashing the second symmetric key, Hk2 , and

creating the partial proof of origin, POO) and step 2 (verifying partial proof of origin,

POO, and creation of partial proof of receipt, POR) of the design scheme (subsection

5.2.2). Table 6.3.1 and 6.3.2 present the results.

Table 6.3.1: Time taken to perform each task of Step 1 of the scheme

Task For 1000 PHRs For 1 PHR (avg.)

EK(M) 27 sec .027 sec

Bpub(k1) 8 sec .008 sec

Hk2 2 sec .002 sec

POO 38 sec .038 sec

Total 75 sec .075 sec
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Table 6.3.2: Time taken to perform each task of Step 2 of the scheme

Task For 1000 PHRs For 1 PHR (avg.)

Verify POO 5 sec .005 sec

POR 15 sec .015 sec

Total 20 sec .020 sec

Here, we have calculated the time taken to perform the tasks for 1000 PHRs and

then find the average for 1 PHR by dividing the result with 1000.

6.3.2 On-chain Exchange

We have analyzed our on-chain exchange several times by creating a Blockchain net-

work with a different number of nodes at each time. In each case, our network was

able to maintain all the primary priorities and thus fulfill our design goals (see table

6.3.3 and table 6.3.4).

Table 6.3.3: Status of our approach based on the comparison points

Comparison Points Our approach (P2P OFE)

Fair Exchange Yes

Requirement of TTP No

Data Confidentiality Maintained

Data Exchange Off-chain

Requirement of Blockchain Yes (Private)

Scalability of the network Up to 250 nodes

Consensus Mechanism PoW
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Table 6.3.4: Fulfillment of the design goals

Design Goal Our approach (P2P OFE)

Goal 1(a)

Goal 1(b)

Goal 2

Goal 3

Goal 4

In our Blockchain network, all the nodes have the right to mine, post or view

transactions. Once a node posts a transaction in the Pub/Sub channel, the transac-

tion will first enter the “transaction-pool-map” and distributed across the Blockchain

network. “Transaction-pool-map” is a list, managed by each node, where every un-

mined transaction will be queued. A node can call the “transaction-pool-map” API

and can check how many transactions are there waited to be mined (see figures 6.3.1

and 6.3.2 where two nodes, running at two different ports, calling the API and getting

the same list of unmined transactions). When a node tries to mine, all the transac-

tions in the “transaction-pool-map”, present at the time of mining, will be considered

as the “data” of a block and that node will start finding the nonce value for that block

(see figure 6.3.3 where a block is formed with 120 transactions in it). We have exper-

imented with the on-chain exchange several times while each time considering some

nodes in the Blockchain network as healthcare providers and rests as patients. We

have posted numerous transactions by different patient nodes to different healthcare

provider nodes (each patient node posts one transaction to one healthcare provider

node) and tested the capacity of the “transaction-pool-map”. The waiting time of

each transaction to be mined depends on the time required to mine a block. Table

6.3.5 states the result.
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Table 6.3.5: Capacity of “transaction-pool-map”

No. of Healthcare
provider nodes

No. of Patient
nodes

Total nodes

Total no. of trans-
actions in the
“transaction-pool-
map”

5 50 55 50

5 75 80 75

5 100 105 100

10 200 210 200

Fig. 6.3.1: Snapshot of a node, running at port 3000, calling the “transaction-pool-
map” API and getting the list of unmined transactions.
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Fig. 6.3.2: Snapshot of a node, running at port 3759, calling the “transaction-pool-
map” API and getting the list of unmined transactions.

Fig. 6.3.3: Snapshot of a node, running at port 3921, mined a block of 120 transactions
on it (in the “data” block).
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Also, we monitored and found out that our private Blockchain network, in each

case, was maintaining all the policies we mentioned in the subsection 5.2.1.

Finally, we measured the time taken to mine a block varying the difficulty level

which is showing in the figure 6.3.4.

Fig. 6.3.4: Time requirement for mining a block

The average time to mine a transaction in Bitcoin is approximately 10 minute. If

we consider the Bitcoin Blockchain as a standard, in our case, the optimal difficulty

level could be from 21 to 28. Unfortunately, in case of a network with 250 nodes, the

mining is taking excessive amount of time in compare to others. The reason is, since,

in our experiment, we have created the network within the same work station, the

time requirement depends on the number of the nodes in the network. If a network is

created with different work stations, the time requirement for mining a block would

have been different as in that case, every node will have an individual machine to

compute and find the nonce.

The complete source code, for both off-chain and on-chain exchange, along with

the dataset are available in Appendix section of this report.
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CHAPTER 7

Conclusion and Future Work

Had there is no sharing of data, patients have to undergo the same procedure of stor-

ing their medical records every time they go to a new healthcare provider. The process

is not only tedious but also error-prone, which leads to a loss of potential informa-

tion. Sharing of personal health records can quickly resolve the case considering the

non-repudiation documents are exchanged fairly. With non-repudiation documents

in hand, the parties involved in the exchanged can be reluctant knowing that they

have strong evidence that will opposed to a misrepresented case. In this thesis, a new

approach to achieving true fairness while exchanging personal health records from

a patient to a healthcare provider is introduced. The approach is optimistic in the

sense that the original health records are exchanged in a P2P manner and thus does

not require any third party to interfere. The token of exchange of original records is

then posted on the Blockchain network, which ensures that the non-repudiation doc-

uments, proof of origin, and proof of receipt, of the record are exchanged fairly. The

scheme guarantees non-repudiation and fair exchange by utilizing the immutability

property of the shared distributed ledger. To our knowledge, this is the first approach

to achieve fairness in digital exchange with the help of Blockchain technology, consid-

ering the exchange of large-sized sensitive medical records. The future work of this

thesis are discussed below.
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7.1 Future Works

We want to extend our works on the following points in the future:

• Extend the scheme to enable exchanging personal health records between health-

care providers on behalf of the patients while allowing the patients to selectively

decide how and when they wish to share their data and with whom.

• Test the effect of using other consensus algorithms as a replacement of the

default PoW on the scalability of the Blockchain network.

• Investigate the behaviors of the network in case of massive node failures, where

a node suddenly disconnects from the network.
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APPENDIX

LIST OF ABBREVIATIONS

TTP Trusted Third Party

P2P Peer-to-Peer

EHRs Electronic Health Records

PHRs Personal Health Records

PHI Protected Health Information

HIPAA Health Insurance Portability and Accountability Act

PIPEDA Personal Information Protection and Electronic Documents Act

PKE Public Key Encryption

SKE Symmetric Key Encryption

POO Proof of Origin

POR Proof of Receipt

SHA1 Secure Hashing Algorithm Version 1.0

SHA-256 Secure Hashing Algorithm, 256 bits

MD5 Message-Digest algorithm 5

AES Advanced Encryption Standard

DES Data Encryption Standard

RSA Rivest, Shamir, and Adelman

ECC Elliptic-curve cryptography

NIWI Non-Interactive Witness Indistinguishable
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NIZK Non-Interactive Zero-Knowledge

IoTs Internet of Things

DLT Distributed Ledger Technology

BFT Byzantine Fault Tolerance

ISO International Organization for Standardization

PoC Proof of Concept

PoW Proof of Work

OFE Optimistic Fair Exchange

API Application Programming Interface

KB Kilobytes

SOURCE CODE

The source code of this thesis is available in the following repository:

https://github.com/nasim-shourav/P2P-OFE.git
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