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ABSTRACT 

A CORE REFERENCE HIERARCHICAL PRIMITIVE ONTOLOGY FOR ELECTRONIC MEDICAL 

RECORDS SEMANTICS INTEROPERABILITY 

 

Ziniya Zahedi 

Old Dominion University, 2020 

Director: Dr. T. Steven Cotter 

 

 Currently, electronic medical records (EMR) cannot be exchanged among hospitals, 

clinics, laboratories, pharmacies, and insurance providers or made available to patients outside of 

local networks.  Hospital, laboratory, pharmacy, and insurance provider legacy databases can 

share medical data within a respective network and limited data with patients.  The lack of 

interoperability has its roots in the historical development of electronic medical records.  Two 

issues contribute to interoperability failure.  The first is that legacy medical record databases and 

expert systems were designed with semantics that support only internal information exchange.  

The second is ontological commitment to the semantics of a particular knowledge representation 

language formalism.  This research seeks to address these interoperability failures through 

demonstration of the capability of a core reference, hierarchical primitive ontological 

architecture with concept primitive attributes definitions to integrate and resolve non-

interoperable semantics among and extend coverage across existing clinical, drug, and hospital 

ontologies and terminologies. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Theoretical Formulation 

Currently, electronic medical records (EMR) cannot be exchanged among hospitals, 

clinics, laboratories, pharmacies, and insurance providers or made available to patients outside of 

local networks.   Hospital, laboratory, pharmacy, and insurance provider legacy databases can 

share medical data within a respective network and limited data with patients.  The lack of 

interoperability has its roots in the historical development of electronic medical records. 

Two issues contribute to interoperability failure.  The first is that legacy medical record 

databases and expert systems were designed with semantics that support only internal 

information exchange.  The second is ontological commitment to the semantics of a particular 

knowledge representation language formalism.  Uschold and Gruninger (1996) observe that 

ontological design for interoperability involves a tradeoff: “… making too many ontological 

commitments can limit extensibility, making too few can result in the ontology being consistent 

with incorrect or unintended worlds (i.e., models).”  The universality of knowledge 

representation semantics was not considered in legacy medical record databases and expert 

systems, which severely limits extensibility needed for interoperability. 

Hierarchical primitive ontologies present the potential to resolve complex conceptual 

semantic spaces like those in electronic patient medical records.  Recognizing the implications of 

primitive ontology theory for ontology engineering, Rector (2003) proposed normalization and 

modularization of proper ontologies (Welty and Guarino, 2001) to yield hierarchical primitive 

ontologies. Stuckenschmidt, Parent, and Spaccapietra (2009) provided a survey of ontology 
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partitioning and modularization approaches to identify and connect primitive classes. However, 

no work has investigated building hierarchical primitive ontologies to integrate semantics of 

existing biomedical ontologies and terminologies. 

 

1.2 Purpose 

This research seeks to demonstrate the capability of a core reference, hierarchical 

primitive ontological architecture with integrated primitive concept ontology extraction and 

concept attributes decomposition to integrate and resolve non-interoperable semantics among 

and extend coverage across existing clinical, drug, and hospital ontologies and terminologies.  A 

primitive concept is defined as follows: 

Definition: Every primitive concept is its own semantic hypernym and must be uniquely 

specified by its set of “is-a” existential primitive attributes. 

This research contributes to the interoperability and transferability of electronic patient 

medical records and, thus, contributes to societal quality of health. The proposed project 

investigated the potential for increased patient electronic medical records semantics 

interoperability coverage through development of a patient medical records core reference, 

primitive ontology hierarchy. 

   

1.3 Problem 

The capability for accurate transmission of patient medical information and records 

within and among hospitals, clinics, laboratories, pharmacies, and insurance providers does not 

currently exist due to lack of interoperable medical terminology semantics. 
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CHAPTER 2 

BACKGROUND OF THE STUDY 

 

2.1 Socio-Technical Medical Records Literature Review 

Medical Records 1920s to 1960s 

Prior to the 1920s, medical records existed only in the form of narratives documenting 

symptom and outcome observations and documentation of prior successful cures.  With scientific 

advancements of the 20th century, physicians realized that to improve the diagnosis and 

treatment of illnesses they needed to have a standard way of documenting and communicating 

medical information with other physicians.  To accomplish standardization, the American 

College of Surgeons (ACOS) established the American Association of Record Librarians 

(AARL) in 1928 to “… elevate the standards of clinical records in hospitals and other medical 

institutions” (AHIMA, 2018).  The Association has authorized three name changes: (1) in 1938 it 

became the American Association of Medical Record Librarians (AAMRL) and focused its work 

on the creation of standards and regulations for medical records; (2) in 1970 its name changed to 

the American Medical Record Association (AMRA), and the organization extended its 

standardization activities to include community health centers and other health service providers; 

and (3) in 1991 it became the American Health Information Management Association (AHIMA), 

with the new name reflecting the transition to data-driven decision making in healthcare.  In the 

1960s, the AAMRL drove standardization of paper-based medical records, and standardization 

of electronic records has continued through the AMRA and AHIMA. 
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Medical Records 1960s and 1970s 

The primary driver toward electronic medical records was the passage into law of 

Medicare and Medicaid in 1965.  The law required hospitals to collect and document healthcare 

services provided for reimbursement.  Although computers were being increasingly used for 

billing and accounting, paper-based records remained the primary documentation mechanism.  

As computers became affordable, hospital department specific databases were coded to support 

patient registration and billing and laboratory and pharmacy records.  Initial EMRs were 

developed by and used within academic medical facilities, but none of the electronic systems 

translated all the information in paper-based medical records into electronic form. 

Medical Records 1980s 

Diagnosis-related Groups (DRG) were introduced in the early 1980s to determine 

Medicare payment schedules for medical service “products” within case groups.  The state of 

New Jersey experimented with implementing DRGs in its hospital systems for three years.  Full 

integration was never achieved.  In parallel to development of DRGs, the Master Patient Index 

(MPI) was introduced by Wiedemann (2010) to be used across healthcare departments for 

sharing patient information.  The MPI is an indexed database of patients within a healthcare 

provider linked together by a medical record number identifier.  Even with the advancement of 

DRGs and the MPI, by the end of the 1980s hospital departments still could not share patient 

information with each other let alone external clinics, pharmacies, insurance providers, or 

patients. 

Medical Records 1990s 

By the early 1990s, most EMRs were still a hybrid of paper and electronic data deployed 

on a combination of mainframe and personal computers (Evans, 2016).  The complexity and 
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inadequacies of the mixed paper-electronic medical records was the driver behind the Institute of 

Medicine’s call to shift to a complete electronic medical record system (Institute of Medicine, 

1997).  However, other medical professionals noted that the initial cost of a completely 

computerized EMR system was prohibitive and advocated that only key data be computerized as 

a complement to the paper-based system (Regan, 1991).   

Advances in computing technology and the Internet made online access to health 

information possible.  At the same time, competition in healthcare and the health insurance 

industries drove consolidation of hospitals into health systems competing on delivery of 

integrated health care (Ginsburg, 2005).  Efforts were initiated in the medical profession to 

transition from paper-based to electronic medical records. Networks of EMR workstations were 

linked to create and process inpatient orders, but creation of electronic orders required more 

physician time than the traditional paper charts, broke down physician-nurse communication 

based around the paper-based system, and actually induced errors putting patient health and life 

at risk (Wachter, 2017).  Similarly, initial implementation of nurse workstations failed due to 

excessive manual data entry time.  Data entry errors and poor-quality data limited the usefulness 

of early EMRs and put patients at risk (Tierney, et. al., 1993).  Despite the noted implementation 

and interoperability problems, the massive amounts of health care data also proved valuable for 

epidemiological studies (Hierholzer, 1992).  Recognizing the potential informational value, the 

medical community pressed forward with EMR implementation. 

Medical Records 2000 to Present 

By the late 1990s, EMR implementation had not overcome the interoperability barriers.  

On the other hand, the merger of individual hospitals into health care systems drove the need for 
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information interoperability.  Integrated EMRs provided the potential for improved decision 

making and reduction of the incidence of errors.   

In 2004, President Bush established the Office of the National Coordinator for Health 

Information Technology (ONCHIT) with the goal of implementing electronic health records 

(EHRs), nationwide within ten years.  While there was bipartisan support for healthcare EMRs, 

the US Congress allocated no funding for ONCHIT.  President Bush reallocated $42 million 

from within the Department of Health and Human Services budget to fund ONCHIT (Wachter, 

2017).  Under its first director, the ONCHIT set forth its primary goal of planning and designing 

the implementation of a National Health Information Network (NHIN) to promote electronic 

health information exchange among HIEs.  Realizing that a NHIN could not be achieved without 

healthcare information standardization, the ONCHIT made grants to the American National 

Standards Institute (ANSI) to coordinate the creation of Health Information Technology 

Standards and to create the Health Information Security and Privacy Collaborative.   The 

ONCHIT also awarded a grant to a collaboration among the American Health Information 

Management Association (AHIMA), the Healthcare Information and Management Systems 

Society (HIMSS) and the National Alliance for Health Information Technology (NAHIT) to 

create and administer the Certification Commission for Health Information Technology 

(CCHIT).  Since 2006, CCHIT has been the sole certifying agency for EMR software 

applications (Gur-Arie, 2013). 

By the time Barack Obama entered office in 2009, progress toward EMR implementation 

was not realized.  NAHIT had voluntarily dissolved itself.    President Obama re-initiated 

implementation of electronic medical records as a part of the American Recovery and 

Reinvestment Plan (ARRP) with a goal of access of all citizens to their electronic medical 
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records by 2014 (Manos, 2014).  The Health Information Technology for Economic and Clinical 

Health Act (HITECH Act) was part of the ARRP.  The HITECH Act objective was to motivate 

the implementation of EMRs and to support EMR technology improvement by providing 

monetary incentives for demonstration of use of EMRs.  The monetary incentives were offered 

from 2011 to 2015 after which time penalties were imposed for failing to demonstrate EMR use.  

EMR adoption grew as a result of the renewed support.  By 2015, 96% of hospitals and 87% of 

physician practices were using EHRs.  The renewed emphasis did not overcome the original 

implementation and interoperability problems and induced other problems (Evans, 2016).  Adler-

Milstein (2017) notes that the major technical issue still to be overcome is interoperability; 

specifically, “Why can’t (EMR) systems talk to each other?  The substantial increase in 

electronic health record adoption across the nation has not led to health data that can easily 

follow a patient across care settings.”  Adler-Milstein’s research suggests that the reason for 

interoperability failure is technological and multidisciplinary.  Technological challenges include 

standardization of medical terminology semantics, software applications, and healthcare provider 

procedures.  Multidisciplinary challenges center on balancing national policy versus private 

EMR software vendors’ profitability.  “Though billions in monetary incentives fueled EHR 

adoption itself, they only weakly targeted interoperability.” 

 

2.2 Patient Medical Records Interoperability Literature Review 

The recent acceleration in the deployment of electronic health record (EHR) systems has 

precipitated the emergence of a few dominant terminologies widely adopted in the clinical 

community. Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT) and the 

Logical Observation Identifiers, Names, and Codes (LOINC®) are the two that have become 
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international standards. The RxNorm,terminology is used in the United States, but similar 

national drug terminologies exist in other countries (e.g., the NHS Dictionary of medicines and 

devices (dm+d) (2018) in the U.K., the Australian Medicines Terminology (AMT) (2018) in 

Australia).  SNOMED CT, LOINC, and RxNorm have been used and referenced in many articles 

over time, but none of the articles discussed how they could contribute in building an 

interoperable system. This work will discuss the history and structure of these terminologies 

briefly before moving to a detailed investigation. 

2.2.1 Brief History of SNOMED CT 

The Structured Nomenclature of Pathology (SNOP) was initiated in 1965.  As illustrated 

in Figure 1, versions of SNOMED have been developed both in terms of content structure and 

representation. 

 

 

Figure 1: Development of SNOMED CT. 

(Source: Dunham, 1978; Spackman, 1997; and Wang et al., 2001) 

 



9 

 

 

SNOP and SNOMED-International versions used multi-axial systems, but SNOMED-RT 

abandoned the self-standing axes and started using description logic. SNOMED CT continued to 

use the same logic as its underlying representation. SNOMED CT was first released in January 

2003, and since then the updated versions have been released twice a year. The January 2018 

release contains 341,000 active concepts, 1,062,000 active relationships and 1,156,000 active 

descriptions. The largest categories of concepts in SNOMED CT are disorders (22%), procedures 

(17%), body structures (11%), clinical findings other than disorders (10%), and organisms (10%) 

(Bodenreider et al., 2018). 

SNOMED has always been kept simple enough so that it can be used widely by 

clinicians. The relationships between concepts and allowed values are determined and specified 

by the concept model. SNOMED CT is now being used by over 32 countries (as of May 2018) 

with a population over 2 billion. 

2.2.2 Brief History of RxNorm 

At the beginning of the 21st century, there was no standardized drug terminology 

(Sperzel et al., 1998). While many companies provided clinical information, their codes for 

drugs were all different. For example, the same transdermal patch delivering 0.583 milligrams of 

nicotine per hour for 24 hours (e.g., to help with smoking cessation) is referred to in three of the 

major drug knowledge bases with the varying codes and names listed in Table 1 (Bodenreider et 

al., 2018). 
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Table 1: Differences in Drug Names and Codes. 

Codes Drug Names 

2707 nicotine 14 mg/24 hr transdermal film, extended release 

102712 Nicotine 14 MG/24 HR Transdermal Patch, Extended Release 

016426 
NICOTINE 14 mg/24 hour TRANSDERM PATCH, TRANSDERMAL 

24 HOURS 

 

 

Differences in capitalization and abbreviation are problematic when the system is trying 

to communicate. The lack of drug code standardization generated the need to create RxNorm. 

RxNorm makes the drug terminologies interoperable. RxNorm was introduced in 2002 through 

the Unified Medical Language System (UMLS), a terminology integration system, and was 

established as independent terminology in 2004 (Bodenreider, 2004).  RxNorm files are publicly 

available and downloaded about 1,000 times each month. RxNav (the browser that allows users 

to explore RxNorm from a variety of names and codes including proprietary names and codes 

(RxNav, 2018)) has over 2,000 unique users and serves some 500,000 queries annually. The 

RxNorm API has over 20,000 unique users and serves some 800 million queries annually. The 

main use cases of RxNorm are electronic prescribing, information exchange, formulary 

development, reference value sets, and Analytics. 

2.2.3 Brief History of LOINC 

The Regenstrief Institute, a non-profit medical research organization associated with 

Indiana University initiated Logical Observation Identifiers, Names, and Codes (LOINC®) in 

1994. LOINC is clinical terminology for identifying health measurements, observations, and 

documents. LOINC was first released in May 1995 when it contained only terms for laboratory 
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testing.  By December 1996, it had already added about 1500 clinical terms including vital signs 

for measurements, ECG measures, etc. LOINC had 60 releases in the last 20 years, and it has 

grown in other domains as well such as radiology (Vreeman et al., 2005), standardized survey 

instruments and patient-reported outcomes measures (Vreeman et al., 2010), clinical documents, 

nursing management data (Frazier el al., 2001), and nursing assessments (Dentler et al., 2011).  

A semantic data model that contains six majors and up to four minors is used by LOINC 

to create specified concepts. The attributes are: 

1. Component (e.g., what is measured, evaluated, or observed), 

2. Kind of property (e.g., mass, substance, catalytic activity), 

3. Time aspect (e.g., 24-hour collection), 

4. System type (e.g., context or specimen type within which the observation was made), 

5. Type of scale (e.g., ordinal, nominal, narrative), 

6. Type of method (e.g., procedure used to make the measurement or observation) 

(Bodenreider et al., 2018). 

LOINC has been adopted widely in the United States and internationally. There are more 

than 60,000 registered users from 170 countries, and it has been translated into 18 variants of 12 

languages (Vreeman et al., 2012). More than 30 countries have adopted LOINC as a national 

standard. 

2.2.4 Brief History of SNOMED CT, RxNorm, and LOINC Integration 

After EMRs were introduced in 1994, different electronic systems communicated with 

each other by sending clinical information using the messaging systems called Health Level 

Seven (HL7) or ASTM 1238 (American Society for Testing and Materials). This created 

decoding problems as the terminologies were not granular enough and were focused more on 
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coding for billing. HL7 did not deliver the expected clinical results, so the need for a 

standardized terminology consisting of interoperable parameters emerged. To improve 

interoperability, the collaboration between the developers of SNOMED CT, RxNorm, and 

LOINC has increased over the past few years. SNOMED CT is being leveraged as the building 

blocks of LOINC for a more consistent clinical and laboratory observation. The new 

international drug model in SNOMED- CT facilitates the development of compatible drug 

models in RxNorm for better consistency. Even though this collaboration has focused on 

improving interoperability, cross-coverage among these terminologies is still low. 

Research into Medical Terminologies Integration 

The U.S. National Library of Medicine, Lister Hill National Center for Biomedical 

Communications has led the research effort for the integration, dissemination, and quality 

assurance of drug ontologies and biomedical ontologies.  According to Oliver Bodenreider 

(2018), Senior Scientist and Chief of the Cognitive Science Branch, “Despite the best efforts of 

human editors and the use of formalisms, such as description logics, content errors remain 

frequent in biomedical terminologies, which justifies the development of multiple approaches to 

identifying these problems” (p. 4).  

There have been many quality assurance (QA) effort studies, but these studies merely 

focused on the main problem area where errors occur more frequently within the subsets of 

terminologies (Ochs, et al., 2015; Ochs, et al., 2013; Zhang, et al., 2017). Even though these 

efforts were somewhat accommodating to human reviewers, they are still not truly effective. As 

part of the “Medical Ontology Research” project, Bodenreider’s team has explored quality 

assurance and interoperability issues in a variety of biomedical terminologies including drug 

terminologies (RxNorm), standard clinical terminologies (SNOMED CT, LOINC), and 
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specialized terminologies, such as HPO – the Human Phenotype Ontology and the Orphanet 

terminology for rare diseases. They have reviewed 32 investigations that were performed as part 

of the project. Half of the investigations revealed quality assurance issues for which they 

developed some auditing and evaluation methods, and half were interoperability issues related.  

Structural, semantic, lexical, and transformation methods were applied to audit terminology 

quality.  Structural methods use the taxonomic structure of concept lattices.  Semantic methods 

use description logic-based concept definitions.  Lexical methods were based on term properties.  

Other evaluation methods included transforming the representation of a terminology to a 

different formalism (semantic architecture, frames, rules, and ontologies) and evaluating for 

compliance to that formalism, evaluating terminologies to specified principles, and mapping to 

other ontologies.   

Bodenreider’s application of structural-lexical methods to SNOMED CT extracted 6,801 

non-lattice subgraphs that matched four primary lexical patterns.  A random sample of 59 small 

subgraphs out of 2,046 amenable to visual inspection showed that all 59 contained errors as 

confirmed by terminology experts.  The most frequent error was missing “is-a” relationships.  An 

investigation of partial mappings between the Human Phenotype Ontology (HPO) and 

SNOMED CT revealed that there were 7,358 HPO concepts that did not completely map to 

SNOMED CT.  A reference list of mappings between the Disease Ontology (DO) and SNOMED 

CT showed that 2,453 of the 6,931 DO concepts had no mapping to SNOMED CT (Bodenreider, 

2018). 

In summary, the quality assurance processes developed by the U.S. National Library of 

Medicine have proven effective in identifying a limited number of errors with precision.  

However, the quality assurance processes still rely heavily on human evaluation and are thus 
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slow and reactive relative to medical terminology development.  Most important, current quality 

assurance processes are not able to identify the root cause of interoperability errors. 

  

2.3 Interoperability Limitations of Existing Medical Ontologies and Terminologies 

Semantic interoperability deficiencies (inconsistent semantics, missing semantics, 

missing links, and incomplete coverage) in patient medical record terminologies and ontologies 

can be traced to differences in biomedical terminology standards, limited terminology coverage, 

static mappings among biomedical terminologies, and missing hierarchical relationships across 

biomedical terminologies. 

Barbarito (2012) points out that the everyday workflow in information technologies (ITs) 

have a certain degree of independence. This independence may be the cause of difficulty in 

interoperability between information systems standards. Thus, interoperability failures result 

from a lack of standard coding system in data dictionary (Lau and Shakib, 2005). Most of the 

time, the electronic data collected do not follow any standard code or structure, which causes 

communication problems between healthcare providers. Data standardization means that the 

same set of codes needs to be used throughout a system. For example, in the domain of "sex", it 

could be decided to code the sex of male as "1", female as "2", and unknown as "3". This domain 

will always consist of three members, "male", "female" and "unknown", and will be coded by 

following this standard, thus forming a vocabulary for data standardization. If all data about sex 

is coded consistently according to this vocabulary, the data should always be understandable and 

usable for analysis. Standard vocabularies will be the pathway to create interoperability between 

systems. Both Barbarito (2012) and Lau and Shakib (2005) offer data standardization as a 

solution. The Lombardy case mentioned by Barbarito (2012) shows the whole process and how 
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this region in Italy became interoperable by just following a twofold approach. First, the political 

and operative push towards the adoption of the Health Level 7 (HL7) standard within each 

hospital failed to interlink databases among hospitals.  Second, providing a technological 

infrastructure for data sharing based on regionally recognized interoperability specifications 

failed to provide interoperability across regions. Data standardization means terminologies 

communicate with each other seamlessly without failing to understand each other’s codes. 

Bodenreider (2010) studied 13 different terminologies and ontologies over a 12 year 

period for terminology coverage. Some of the notable studies include: 

• Unified Medical Language System (UMLS): Bodenreider found thousands of 

inconsistent concepts throughout the system even though those were not indicative of any 

errors. A pattern of false synonymy was found which could create “real” errors. 

• RxNorm: This is a vast terminology that relies on human editors. Multiple 

inconsistencies and missing links were identified, and 62% of the inconsistencies were 

fixed as of January 2009. 

• SNOMED: A limited number of coverage errors were detected which defeated the 

Quality Assurance Mechanisms that were in place. Some of the errors were fixed. 

Bodenreider established that the terminologies themselves are inconsistent because of the 

lack of standardization and coverage.  Until the terminology coverages are fixed from within, the 

interoperability issues will continue to exist. 

Cholan and Bodenreider (2018) sought to identify the gaps and similarities between 

clinical research value sets and healthcare quality value sets. They have gathered the lists of 

value sets from Clinical Data Interchange Standards Consortium (CDISC) which was developed 

for clinical data exchange used by the Food and Drug Administration and from Value Set 
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Authority Center (VSAC), which maintains value sets for clinical quality measures. VSAC uses 

codes and terms from standard terminologies like SNOMED CT, RxNorm, and LOINC. After 

mapping and evaluating the interoperability between VSAC and CDISC, the authors found 

limited interoperability between the two. There is a different number of value sets in CDISC, and 

each value set has limited to no coverage by SNOMED CT or LOINC. Biomedical terminologies 

are dynamic with changes in term definitions, dropping terms, adding terms, and local extensions 

requiring constant monitoring and revisions to maintain the static mappings up to date (Lau and 

Shakib, 2005). Without constant monitoring static patient data may become non-interpretable. 

For example: standard vocabularies may retire or delete certain codes. If patient data is stored 

using the retired or deleted code it will no longer be interoperable with other systems. Thus, 

constant updating and monitoring are required to maintain interoperability of static data sets. 

Bodenreider (2016) conducted a study to identify missing hierarchical relationships from 

logical definitions of concept names in SNOMED CT.  The study inferred hierarchical 

subClassOf relationships among the concepts using the ELK reasoner and compared the derived 

hierarchy to the original SNOMED CT hierarchy.  From manual comparison of the hierarchies, 

the study identified 559 (3.5%) potentially missing out of a total of 15,833 hierarchical 

relationships.  Of the 559 potentially missing hierarchical relationships, 436 (2.8%) were found 

to be valid.  Cui, et al. (2017), introduced a hybrid structural-lexical method for systematically 

identifying missing hierarchical relationships in SNOMED CT.  They extracted all non-lexical 

subgraphs using the scalable MapReduce algorithm.  Four lexical patterns associated with a 

specific error type indicating missing hierarchical relationships were identified.  They found 

6,801 non-lattice subgraphs matching these lexical error patterns out of which 2,046 were 

admissible to manual inspection.  A random sample of 100 patterns was taken.  Of the sample, 
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59 were reviewed in detail by domain experts, and all 59 contained hierarchical errors.  The 

domain experts identified missing “is-a” errors due to incomplete or inconsistent modeling of the 

concept to be the most frequent. 

In summary, this literature review identified the following issues with EMR 

interoperability. 

• The transition from paper-based to electronic medical records did not identify 

interoperability issues and increased the risk of diagnosis and treatment errors due to 

the breakdown of physician-nurse communication.  Specifically, there are human 

consequences and impacts arising from medical terminology interoperability failures. 

• Despite national investments toward implementing electronic health records over the 

last thirty years, significant interoperability issues remain. 

• Semantic interoperability deficiencies in patient medical record terminologies and 

ontologies can be traced to differences in terminology standards, limited terminology 

coverage, static mappings among terminologies, false synonymy, and missing 

hierarchical relationships across biomedical terminologies. 
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CHAPTER 3 

RESEARCH METHODOLOGY 

 

3.1 Overall Research Design: The Hierarchical Ontology Architecture 

The word “ontology” originated within Philosophy to mean a systematic explanation of 

“being.”  Within knowledge and ontology engineering, ontology means a set of concept 

categories, their attributes, and axiomatic relationships within and between them that specifies a 

knowledge area or domain.  This work defines ontology as a set of logical concepts and axioms 

that specify their interrelationships designed to account for a discipline’s body of knowledge. 

Roussey, et. al., (2011) argue that a four-level hierarchy of ontologies based on language 

expressivity and formality, Figure 2, is necessary to fully specify a knowledge discipline.  

 

 

 

Figure 2: Ontology Hierarchy (Rousey, et al.). 
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• A top-level foundational ontology specifies a broad taxonomic and axiomatic 

structural scope of low granularity for a general body of knowledge.  It specifies the 

taxonomic and axiomatic basis for underlying core reference ontologies and domain 

ontologies.  Foundational ontologies are designed and implemented using a top-down 

approach and general methodologies such as BFO, Cyc, DOLCE, GFO, PROTON, 

and SUMO (Mascardi & Paolo, 2007). 

• A core reference ontology provides the taxonomic and axiomatic scope structure of 

finer granularity for a sub-discipline within a body of knowledge by integrating 

differing domain viewpoints.  Core reference ontologies are designed and 

implemented using a top-down approach with reference to the discipline’s 

foundational ontology using a general methodology such as SENSUS (Jones, Bench-

Capon, & Visser, 1998). 

• A domain ontology provides the specific taxonomic and axiomatic structure necessary 

to organize knowledge about a discipline.  Domain ontologies are designed and 

constructed using a middle-out approach with reference to the relevant core reference 

ontology using a general methodology such as SENSUS. 

• An application or local ontology provides the specific taxonomic and axiomatic 

structure necessary to organize specific competency knowledge within a discipline’s 

domain.  Application ontologies are designed and constructed using a bottom-up 

approach with reference to the relevant domain ontology using a specific 

methodology such as CommonKADS, DILIGENT, Enterprise Model Approach, 

KACTUS, KBSI IDEF5, METHONTOLOGY, or TOVE  (Corcho, Fernandez-Lopez, 

& Gomez-Perez, 2003) (Cristani & Cuel, 2005). 
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• A task ontology provides the taxonomic and axiomatic structure necessary to specify 

the design of the components, methods, diagnosis, and satisfaction criteria to solve a 

particular problem.  A task ontology selects appropriate methods via the methods 

ontology for a particular problem (Chandrasekaran and Josephson, 1997). 

• A methods ontology provides the taxonomic and axiomatic structure necessary to 

specify a collection of analyses and sub-analyses, control information for passing 

information among and invoking analyses and sub-analyses, and control information 

for problem solution (Chandrasekaran and Josephson, 1997). 

Obrst (2010) argues that for engineering purposes, an ontological architecture may need 

to be layered within levels in order to represent consistent and coherent theories. 

… upper ontologies are most abstract making assertions about constructs … that 

apply all lower levels ….  Mid-level ontologies are less abstract and make 

assertions that span multiple domain ontologies.  (p. 29) 

Assuming only primitive ontologies, Obrst’s layered hierarchical architecture is 

represented in Figure 3.  In Figure 3, a line direct link, primitive propagation indicates that a 

lower-level ontology is a proper subcategory of a higher-level ontology category, and an open 

arrow, primitive-modular link indicates that a lower-level ontology references a higher-level 

ontology. 
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Figure 3: Representation of Obrst’s Layered Hierarchical Primitive Ontology Architecture. 

 

3.2 Sample Collection - Establishing the Corpus 

This research used SNOMED CT glossary textual definitions downloadable from 

https://confluence.ihtsdotools.org/display/DOCGLOSS/textual+definition, RxNorm normalized 

names and codes standardized list downloadable from https://www.nlm.nih.gov/research/ 

umls/rxnorm/index.html, and LOINC core definitions downloadable from 

https://loinc.org/downloads/.  Primary-foreign key relations were numerically encoded and not 

usable for this research purpose. 

 

3.3 The Core Reference Ontology Development Method 

The first problem addressed was the selection of the ontology development method that 

produces a hierarchy of primitive ontologies. General ontology learning methods are clustering, 

syntactic similarity, extraction patterns, hierarchical decision tree, semantic lexicon construction, 

and information content. Since ontology learning is a relatively new field, only two standards 



22 

 

 

have been applied for evaluation of learned ontologies: human expert evaluation and comparing 

the learned ontology to a previously learned gold-standard ontology.  Neither were available for 

this research. Rather, this research applied text mining and analysis within a SENSUS-like 

method to develop the primitive patient electronic medical records semantics integration 

ontology.  The primitive semantics integration ontology was verified using Gomez-Perez’s 

(1996, 1999, 2001, 2004) method for evaluating and verifying taxonomies and ontologies against 

Welty and Guarino’s (2001) definitions of a proper ontology and Rector’s (2003) normalization 

and modularization criteria for primitive ontology structure. 

The second problem addressed was what primitive breadth is necessary and sufficient to 

assure semantic translation among ontologies and terminologies with minimal human 

intervention. Coverage was applied as the metric to evaluate core reference primitive breadth. 

The third problem addressed was identifying the limits of ontological semantics 

completeness such that incomplete or missing hierarchical branches can be identified. Concept 

lattices of the learned ontology were developed and tested for core reference ontological closure 

and completeness using Formal Concept Analysis. 

To address these problems, the general strategy for building the patient electronic 

medical records interoperability ontology was to apply text mining as the logical basis for 

identifying seed terms (primitive concepts) and hierarchical path interrelationships within a 

SENSUS-like ontology method and to verify ontological properness applying Welty and 

Guarino’s (2001) criteria, normalization and modularity applying Rector’s  criteria, and 

completeness, closure, coupling, and cohesion using Formal Concept analysis.  The outcome 

objective of this strategy is a human understandable theoretical basis for the core reference 
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ontology and a machine readable hierarchical taxonomic logic shareable across the medical 

terminology SNOMED CT, RxNorm, and LOINC domains.   

The extraction and definition of electronic medical records core reference primitive 

concepts followed the text mining steps of the semantic axiomatic set theory method set forth in 

Cotter, Mahmud, and Zahedi (2020).  For the extraction and definition of EMR primitive 

concepts, the Qualitative Data Analysis (QDA) portions of the method were not necessary 

because the medical terminology was already embedded in the medical terminologies included in 

the ontological semantic axiomatic set theory design.  The modified EMR primitive concept 

extraction method is set forth as follows. 

Primitive Concept Extraction Method Process 1: Primitive concept taxonomic seed terms and 

axiomatic relationships extraction. 

1. Conduct a structured literature search in the knowledge discipline of interest. 

2. Build a corpus of peer reviewed articles, professional society papers, consensual 

terminologies, government documents, etc., that spans the discipline’s body of 

knowledge. This research used existing formal medical terminologies as the corpus. 

3. Perform text mining to extract manifest and latent candidate primitive concept categories 

and correlations among them as candidates for primitive concept nouns or noun phrases 

and axiomatic relationships at the relevant ontology level. 

4. For each primitive concept candidate noun seed term, identify it in WordNet’s or the 

domain-specific terminology’s noun hypernym-hyponym hierarchy.   

a. If the candidate noun seed term is the hypernym concept primitive, specify its 

definition, “is-a” existential primitive attributes and “has-a” state-modification 

attributes in the ontology dictionary and synset terms in the ontology thesaurus.  
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b. If the candidate noun seed term is not the hypernym primitive concept but is a 

synonym of the hypernym concept primitive, compare the hypernym concept 

primitive’s WordNet or terminology definition to the candidate noun term’s usage in 

the discipline’s corpus.  If the WordNet or terminology hypernym concept primitive’s 

meaning can be substituted for the noun candidate term with no loss in discipline-

specific meaning, specify the noun candidate term as the ontology concept primitive 

and specify the WordNet or terminology hypernym concept primitive’s definition and 

attributes in the ontology dictionary and the WordNet or terminology synset terms, 

using the WordNet hypernym concept primitive as the synonym, in the ontology 

thesaurus. 

c. If the candidate noun seed term is a hyponym of a WordNet or terminology 

hypernym, extract the candidate noun seed term’s definition or intended meaning 

from the discipline’s corpus.  If the WordNet or terminology hypernym concept 

primitive’s meaning can be substituted for the noun candidate term with no loss in 

discipline-specific meaning, specify the noun candidate term as the ontology concept 

primitive, and specify the WordNet or terminology hypernym concept primitive’s 

definition and attributes in the ontology dictionary and the WordNet or terminology 

synset terms, using the WordNet hypernym concept primitive as the synonym, in the 

ontology thesaurus.     

5. If a candidate noun seed term is not included in WordNet’s or the terminology’s noun 

hypernym-hyponym hierarchy or its synonym or hyponym discipline-specific meaning 

cannot be substituted for the WordNet or terminology hypernym’s definition:  
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a. Gather candidate noun seed terms into a two-way contingency table by joint 

frequencies, estimate and rank terms by marginal frequencies (rank 1 = highest 

frequency, rank 2 = next highest frequency, etc.), and apply Santus, Lenci, Lu, and 

Walde’s [67] SLQS(w1, wi) entropy measure to each ranked term relative to the rank 1 

term to determine semantic generality.  Determine differences in rank by plotting 

each SLQS(w1, wi) entropy measure, beginning with SLQS(w1, w1) = 0, versus rank on 

a Scree plot.   

b. A smooth Scree plot with no obvious inflection point indicates the strict order of 

generality with the rank 1 term being the hypernym of the candidate terms.  For this 

case, the correlations between the primitive concept term and other primitive concept 

terms are those estimated from text mining.   

c. A Scree plot with two or more terms at and above the first inflection point on the 

Scree plot indicates equivalence of generality of those terms.  Integrate the 

semantically equivalent terms into a latent primitive term that communicates the 

discipline’s intended meaning.  Integrate the semantically equivalent terms’ 

individual correlations with the other primitive terms into a weighted correlation 

Cor(Lp, Pj) = ij (fi Cor(Li, Pj) / i fi), where Li is each semantically equivalent term in 

the new latent primitive concept term and Pj are the other primitive concept terms 

correlated with each Li. 

Primitive Concept Extraction Method Process 2: Encoding the ontology and linking primitive 

concept seed terms. 

6. Encode the noun primitive concepts and the axiomatic relationships in an ontology editor 

and test for controlled natural language consistency and consistency to OWL 2. 
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7. Test the noun “is-a” existential primitive attributes for Welty and Guarino’s (2001) 

proper taxonomy characteristics of rigidity, identity, unity and dependence.  Test the 

structure of the noun primitive concepts and the axioms for Rector’s (2003) 

normalization and modularity.  Test the noun-attribute relationships for completeness and 

closure through the construction of a Formal Concept Analysis lattice (1999). Meeting 

these criteria ensures that the primitive ontology meets Gómez-Pérez’s evaluation criteria 

for inconsistency errors and incomplete errors. 

For the core reference EMR ontology, the MedTerms Medical Dictionary at 

https://www.medicinenet.com/script/main/alphaidx.asp?p=o_dict was used as a supplement to 

the WordNet dictionary in Primitive Concept Extraction Method Process 1. 

 

3.4 Verifying the Primitive Ontology 

The developed core reference patient medical records ontology was coded in Fluent 

Editor using controlled natural language.  During encoding, concept classes and attributes 

definitions were verified using Fluent Editor’s Validate RL+ for consistency with the World 

Wide Web Consortium (W3C) Web Ontology Language OWL2 semantic profiles. 

In the second verification step, Gomez-Perez’s (1996, 1999, 2001, 2004) process for 

evaluating and verifying taxonomies and ontologies was applied to assess meeting Gruber’s 

(1995) ontological design criteria of clarity, coherency, extendibility, minimal encoding bias, and 

minimal ontological commitment was applied.  Formally, Gomez-Perez’s process evaluates for 

the following errors. 

• Inconsistency errors  
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➢ Circularity errors result from a concept being defined as a semantic specialization 

or generalization of itself.  Taxonomic circularity errors are tested by the distance 

criteria.  No circularity exists at a distance 0; that is, the concept is a unique 

concept.  Circularity errors of distance 1 … n means that a concept has a 

semantically equivalent definition in subclass 1 … n. 

➢ Partition errors result from disjoint decompositions. 

▪ Common classes in disjoint decompositions occur when there is a partition of 

a concept class A {a1, a2, …, an} into class A {a1, a2, …, ai} and class B {aj, 

ak, …, an}. 

▪ Common instances in disjoint decompositions occur when several instances 

belong to more than one class of a disjoint decomposition. 

▪ External instances in exhaustive decompositions occur when there is an 

exhaustive decomposition of all concept classes and some instances of a class 

A {aj, ak, …, an} do not belong to any class. 

➢ Semantic or instance errors result from an incorrect semantic or instance 

classification. 

• Incomplete errors result from the over-specification or imprecise specification of a 

concept class. 

➢ Incomplete concept classification results from an incomplete decomposition of 

the knowledge in a concept class. 

➢ Partition errors result when disjoint and exhaustive knowledge among classes is 

incompletely defined. 
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▪ Disjoint knowledge omission occurs when a set of subclasses is omitted in the 

taxonomy. 

▪ Exhaustive knowledge omission occurs when a class is decomposed into two 

or more subclasses that carry the same knowledge. 

• Redundancy errors occur in a taxonomy when there is more than one axiomatic 

hierarchical definition of a subclass relationship or there exists more than two classes 

or instances with the same formal definition. 

➢ Redundancies of Subclass-Of relations. 

➢ Redundancies of Instance-Of relations. 

➢ Identical formal definitions of two or more classes. 

➢ Identical formal definitions of two or more instances. 

The result of applying Gomez-Perez’s criteria is verification that the core reference hierarchical 

primitive ontological taxonomy is composed of maximally separated, axiomatically logical 

conceptual categories. 

The third verification step was verification of a proper ontology structure by applying 

Guarino and Welty’s (2000) and Welty and Guarino’s (2001) subsumption criteria for concept 

“is-a” attributes and Rector’s (2003) criteria for hierarchical “is-kind-of” attribute relationships.  

Welty and Guarino specify that for arbitrary properties (attributes), the statement “ subsumes , 

to mean that, necessarily:” 

x (x) → (x)                   (1) 

Welty and Guarino develop “is-a” attribute proper subsumption on the philosophical concepts of 

rigidity, identity, unity, and dependence.  Refer to Guarino and Welty (2000) and Welty and 

Guarino (2001) for the proofs linking these philosophical concepts to “is-a” attribute proper 
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subsumption.  To assure accuracy of specification, this work directly quotes Guarino and 

Welty’s “is-a” attribute proper subsumption definitions. 

Rigidity depends on the concept of essentiality.  Welty and Guarino (2001, p. 57) define 

three levels of rigidity: 

Definition 1: A rigid property is a property that is essential to all its (concept’s) 

instances, i.e., a property : (xt (x, t) → t (x, t)). 

Definition 2: A non-rigid property is a property that is not essential to some of its 

(concept’s) instances, i.e., a property :  (x, t (x, t) ⋂  (t  (x, t)).  

Definition 3: An anti-rigid property is a property that is not essential to all its (concept’s) 

instances, i.e., a property : (xt (x, t) → (t  (x, t)). 

where  means necessarily true in all possible worlds and  means possibly true in at least one 

possible world.  Rigid properties are designated with +R, non-rigid properties with -R, and anti-

rigid properties with ~R. 

Welty and Guarino (2011, pp. 58-59) refer to the philosophical concept of identity as the 

ability to distinguish a specific instance of a concept class from other instances of the same class 

by means of at least one of its characteristic properties.  Welty and Guarino (2011, pp. 58-59) 

define “… an identity condition (IC) for an arbitrary attribute property  …as a suitable relation 

satisfying:” 

                                 (x) ⋂ (y) → ((x, y)  x = y)         (2) 

This definition admits the following definitions of identity: 

Definition 4: An IC is a sameness formula  that satisfies either of the following 

conditions assuming the predicate E for actual existence. 

(E(x, t) ⋂ (x, t) ⋂ E(y, t) ⋂ (y, t) ⋂ x = y → (x, y, t, t)        (3) 
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(E(x, t) ⋂ (x, t) ⋂ E(y, t) ⋂ (y, t) ⋂ (x, y, t, t) → x = y)        (4) 

Definition 5: Any property carries an IC iff it is subsumed by a property supplying this 

IC, including the case where it supplies the IC itself. This property is marked as +I 

attribute. 

Definition 6: A property  supplies and IC iff (i) it is rigid, (ii) there is an IC for it, and 

(iii) the same IC is not carried by all the properties subsuming . Therefore, +O attribute. 

Definition 7: Any property carrying an IC is called a sortal. 

A property carrying an IC is designated as +I (−I otherwise), and any property supplying an IC is 

designated as +O (−O otherwise). 

Conversely, Welty and Guarino (2011, p. 55) note that unity is “… the problem of 

distinguishing the parts of an instance from the rest of the world by means of a unifying relation 

that binds the parts, and only the parts together.”  Based on this concept, Welty and Guarino 

(2011, pp. 59-60) define unity as: 

Definition 8: An object x is a whole under  iff  is a relation such that all the members 

of a certain division x are linked by , and nothing else is linked by . 

Definition 9: A property  carries a unity condition (UC) iff there exists a single relation 

 such that each instance of  is necessarily a whole under . 

Definition 10: A property has anti-unity if every instance of the property is not 

necessarily a whole. 

Welty and Guarino recognize three types of unity− (1) Topological based on a physical 

relationship; (2) Morphological based on some combination of topological unity and shape; and 

(3) Functional based on functional purpose. Any attribute property carrying an UC is designated 
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as +U (−U otherwise). Any attribute property that has anti-unity is designated as ~U, but ~U 

implies −U. 

Welty and Guarino (2011) distinguish between intrinsic and extrinsic properties based on 

whether they depend on the properties of their own concept entities and instances or the 

properties of other concept entities and instances.  An intrinsic property is inherent to the concept 

entity or instance, whereas an extrinsic property is at least partially dependent on the properties 

of other concept entities or instances.  Welty and Guarino (2011, p. 60) define dependence as: 

Definition 11: A property  is externally dependent on a property  if, for all its 

instances x, necessarily some instances of  must exist, which is neither a part nor a 

constituent of x: 

                    x (f(x) → y (y) ⋂ P(y, x) ⋂ C(y, x))     (5) 

An externally dependent attribute property is designated as +D (−D otherwise). 

At the core reference ontology level, Welty and Guarino define a proper taxonomy as one 

that possesses the combinations of rigidity, identity, unity, and dependence as illustrated in Table 

2. 
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Table 2: Core Reference Ontological Property Kinds. 

 Property Combination 

Meta-Property Rigidity Identity Unity Dependence 

Category +R +O, -I +U +D 

    -D 

Role ~R +O, -I +U +D 

Attribute ~R +O, -I +U -D 

 -R   +D 

    -D 

 

 

To assure a primitive taxonomy, Rector (2003) added the criteria of modularity and 

explicitness to Guarino and Welty’s criteria for a proper taxonomy.  Rector set forth a two-step 

normalization.  First, assure a proper ontology relative to Welty and Guarino’s criteria.  Second, 

normalize the ontology to assure a primitive architecture.  Rector defines a primitive taxonomy 

as one that has “… independent disjoint skeleton … restricted by simple trees” (p. 1).  The 

essence of Rector’s normalization proposal is that a primitive ontology “… should consist of 

disjoin homogeneous trees” (p. 2). 

• Each concept can have one and only one primitive parent. 

• Each categorical branch of a primitive ontology must be logical and homogeneous. 

• Each primitive ontology must clearly distinguish self-standing concepts and explicit 

partitioning among self-standing concepts. 

• Subsumption of each primitive concept by one and only one other primitive concept. 
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To normalize a proper ontological taxonomy, Rector proposed applying relational 

database normal forms.  Formal definitions of normal forms are set forth as follows (Vieria, 

2007, 157-158). 

• First Normal Form (1NF): Eliminate repeating duplicate groups of data [concepts] to 

guarantee Atomicity (data [concept attributes] that are self-contained and 

independent). 

• Second Normal Form (2NF): Every row of data [instance] in a 1NF table [primitive 

ontology] must be unique and depend only on the table’s whole key [the concept’s 

attributes]. 

• Third Normal Form (3NF): A table [primitive ontology] must be in 2NF and no 

column data in any row [sub-concept] can have any dependency [equivalent 

attributes] on any other non-key column [sub-concept] (i.e., data in one column 

cannot be derived from the data in any other column [sub-concept attributes in one 

hierarchical branch cannot be derived from another sub-concept hierarchical branch]). 

• Boyce-Codd Normal Form (BC-NF): 

➢ All candidate keys are composite keys [all composite concepts are derivable only 

from independent parent concepts or other composite concepts themselves 

derived ultimately from independent parent concepts]. 

➢ There is more than one candidate key [composite concept]. 

➢ The candidate keys [composite concepts] each have at least one column [concept] 

that is in common with another candidate key [concept]. 
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• Fourth Normal Form (4NF):  No data column [sub-concept] may depend on another 

column [sub-concept] other than a primary key column and depends on the whole 

primary key [class concept or composite concept]. 

• Fifth Normal Form (5NF): A table [proper ontology] must be in 4NF, and if a table is 

decomposed further to eliminate redundancy and anomaly, when the decomposed 

tables [primitive ontologies] are re-joined by means of candidate keys [concepts], the 

original data [concept attributes] may not be lost and no new records [concept 

attributes] must arise. 

In seeking to assure a primitive ontological architecture, Rector’s goals were ontology re-use, 

maintainability, and evolution.  Development of a hierarchical primitive ontological architecture 

at each ontological level also assures meeting Gruber’s criteria of clarity, coherency, 

extendibility, minimal encoding bias, and minimal ontological commitment.   

Rector noted the following issues that must be addressed in transforming a proper 

ontology to a primitive ontology. 

• The notion of a “primitive concept” and “primitive sub-concepts” hierarchically 

dependent on only their respective primitive parent concept can be difficult to 

demonstrate. 

• Whether or not a concept should be part of a primitive ontology might be better 

expressed by metaknowledge; however, not all ontology languages permit reasoning 

over metaknowledge.  Rector advocates that the criterion for concept normalization 

include specifications of “self-standing” and “partitioning” concepts. 
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• The notions of ontology normalization and ontology views are not established in 

ontology theory.  Rector advocates a provision for concept axes to demonstrate 

separation. 

• Provide concept indexing pointers.  If an ontology is modular, the same information 

will point to only one primitive branch.  Under this approach, concept lattices inferred 

from normalized and well modularized ontologies will be complete and closed under 

Formal Concept Analysis. 

This research assured normalization to achieve primitive hierarchical dependence through 

restricted definition of each primitive concept’s primitive “is-a” attributes to meet the criteria of 

coverage, completeness, and closure. 

Formal Concept Analysis has long been applied in knowledge discovery (Poelmans, 

Elzinga, & Dedene, 2010) knowledge processing (Poelmans, Ignatov, Kuznetsov, & Dedene, 

2013), and ontology learning (Cimiano, Hotho, and Staab, 2005).  The Complete Lattice 

definition, Closure Operator definition, and Basic Theorem of Concept Lattices (Ganter and 

Wille, 1999) are necessary and sufficient to demonstrate the formalism of hierarchical primitive 

ontology branches within concept lattices.   

Complete Lattice Definition: An ordered set V:= (V, ) is a lattice if for any two 

elements x and y in V the supremum x  y and the infimum x ˄ y always exist. V is called 

a complete lattice if the supremum X and the infimum X exist for any subset of X of 

V.   Every complete lattice V has a largest element V called the unit element of the 

lattice, denoted by 1.  Dually, the smallest element 0  is called the zero element 

(Ganter and Wille, 1999; p. 5). 
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Closure Operator Definition: A closure operator  on G is a map assigning a closure X 

 G to each subset X  G under the following conditions: 

 (1) X  Y  X  Y, monotony.   

 (2) X  X, extensity.   

 (3) X = X, idempotency. 

Closure Theorem:  If U is a closure system on G then 

U X :=  {A  U | X  A}           (6) 

defines a closure operator on G.  Conversely, the set 

   U  := { X | X  G}           (7) 

of all closures of a closure operator  is always a closure system, and 

         U  =  and UU = U          (8) 

Proof provided by Ganter and Wille (1999, p. 8). 

Basic Theorem on Concept Lattices: The concept lattice B(O objects, A attributes, I 

relations) is a complete concept lattice in which infimum and supremum are given by: 

 t  T (Ot, At) = (  Ot , (  At))              (9) 

 t  T (Ot, At) = ( ( Ot ),  At)            (10) 

A complete lattice V is isomorphic to B(O, A, I) if and only if there are mappings  : O 

→ V and  : A → V such that (O) is supremum-dense in V, (A) is infimum-dense in V, 

and oIa is equivalent to o  a for all o  O and all a  A. 

Proof provided by Ganter and Wille (1999, pp. 20-22). 

Algebraic decomposition of closed and complete concept lattices provides the means for 

identifying hierarchical primitive ontology branches within concept lattices.  This research 
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adapts the formal definitions of cohesion and coupling from software engineering (Lindig and 

Snelting, 1997) to define modular primitive concepts. 

Modular Concept Object Definition: A modular concept object (MCO) consists of a set 

of set of objects o  O and a set of attributes a  A such that a A, o  O: (o, a)  V  

a  A and o O, a  A: (o, a)  V  o  O, where the MCO  O  A. 

Thus, in a modular concept object, all objects O have only attributes A, and all attributes A only 

describe objects O.   

In order to map a modular concept object to Rector’s proper ontology normal forms, we 

need a definition of the term “cohesion.”  Cohesion indicates the strength of relationship among 

modular objects O in an MCO via shared attributes A. 

Cohesion Definition: A MCO (o, a) has maximal cohesion if o  O, a  A : (o, a)  V.  

A MCO ((o, ō), (ā,  o)) has normal cohesion if  ō  O a  A : (ō, a)  V and  ā  A 

o  O : (o, ā)  V. 

Maximal cohesion means that two or more concept objects within an MCO are described by the 

same attributes.  Conversely, two sets of attributes maximally interfere if they describe the same 

concept objects.  Normal cohesion means that concept objects in an MCO are not described by 

the same attributes (each concept object is described by at least one attribute not used by the 

other objects in the MCO).   

Coupling indicates the strength of relationship among modular concept objects via shared 

objects O and attributes A. 

Coupling Definition 1: Let O1  MCO1 and O2  MCO2 be two modular concept objects 

and let a  A be an attribute.  MCO1 and MCO2 be are coupled via a, iff a  O1  O2. 
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Coupling Definition 2: Let A1, A2  A be two sets of disjoint attributes, and let o  O be 

an object.  Then A1,2 interfere via o, iff o  A1  A2. 

Coupling definition 1 states that two conceptual objects are coupled if they require the same 

global attribute (or some intersection of global attributes) to define their respective existence.  

Similarly, two sets of attributes interfere if they are used to define the existence of the same 

conceptual object.   

The Complete Lattice and Closure Operator definitions, Basic Theorem of Concept 

Lattices, cohesion and coupling definitions can be combined with tree structures from graph 

theory to specify the properties of a proper, normalized primitive ontology. 

Basic Tree Theorem:  Let T be a graph G with n vertices.  Then, T has the following 

properties: 

(i) T is a tree; 

(ii) T contains no cycles and has n – 1 edges; 

(iii) T is connected and has n – 1 edges; 

(iv) T is connected and each edge is a bridge; 

(v) Any two vertices of T are connected by exactly one path; and 

(vi) T contains no cycles, but the addition of any new edge creates exactly one cycle 

(proofs provided by Wilson, 1996, p. 44). 

A forest is a collection of connected trees that itself forms a tree with no cycles. 

Forest Corollary: If G is a forest with n vertices and k components, then G has n – k 

edges (Wilson, 1996, p.44). 

Spanning Forest Theorem:  If T is any spanning forest of a graph G, then 

(i) Each cutset of G has an edge in common with T; and 
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(ii) Each cycle of G has an edge in common with the complement of T (proofs 

provided by Wilson, 1996, p. 45). 

Under the assumption of maximal cohesion within only concept object sets, each 

MCO(O, A) cross table corresponds to maximal primitive ontology rectangles in attributes.  

Absence of couplings or interferences of attributes among concept leads to a pure, modular 

primitive ontological tree structure. 

 

3.5 Potential Research Benefits 

The primary benefit of this research is a first demonstration of the capability of a core 

reference, hierarchical primitive ontological architecture and concept attributes definitions to 

integrate and resolve non-interoperable semantics among and extend coverage across existing 

clinical, drug, and hospital ontologies and terminologies. 

 

3.6 Potential Methodology Risks and Limitations 

The primary risks of this research were set forth as problems needing resolution in 

section 3.3 above.  As part of the SENSUS-like ontology development method, algorithms will 

have to be developed to identify (1) the primitive depth necessary and sufficient to assure 

semantic translation among ontologies and terminologies with minimal human intervention and 

(2) ontological semantics completeness such that incomplete or missing hierarchical branches 

can be identified.  The primary limitation with this research is the inability to access SNOMED 

CT, RxNorm, and LOINC directly, having instead to use only their glossary textual definitions, 

normalized names and codes, and core definitions.  Since primary-foreign key relations were 

numerically encoded and not usable for this research purpose, some a priori specified axiomatic 
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interrelationships among categories and terms may not be fully discovered by this methodology.  

Conversely, it is expected that latent axiomatic interrelationships not currently encoded among 

SNOMED CT, RxNorm, and LOINC will be discoverable by this hierarchical primitive ontology 

development methodology. 

Similarly, this research did not address identification and encoding of modular 

ontological branches.  In his work, Rector did not succinctly delineate primitive from modular 

hierarchies.  Modular concepts are those that are common knowledge units across knowledge 

domains and, hence, not restricted to hierarchical primitive “is-a” attribute propagation.  This 

work’s restrictive primitive concepts “is-a” attributes definitions extend Rector’s definitional 

criteria such that primitive concepts propagate naturally within the breadth of their combined “is-

a” attributes through “has-a” attributes state modifications.  Conversely, modular concepts are 

linked through restricted sets of “is-a” attributes which act as primary-foreign key relationships 

between atomic, self-contained but related units of knowledge.  Future research is needed to 

develop axiomatic definitions and to extend the hierarchical primitive concept ontology 

development method to partition primitive from modular concepts and properly propagate them 

hierarchically. 
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CHAPTER 4 

RESULTS 

 

4.1 Taxonomy Classes/Categories 

 There are two steps to identify the taxonomy classes/categories: (1) The SNOMED CT, 

LOINC, and RxNorm terminologies were collected in plain text format in a corpus folder. (2) 

Text mining was performed using the R statistical software package “tm” to identify the classes 

and categories. Detailed R code and term explanations relevant to the text mining can be found 

in Appendix A.  

The most frequent terms that appeared from the text mining are:  

▪ English– 1045658,  

▪ Oral– 318479,  

▪ Drug– 250376,  

▪ Clinic– 239966,  

▪ Active– 177078,  

▪ Tablet– 175466  

▪ Solution– 113492 

▪ Substance– 109371 and 

▪ Topic– 102873.  

To get more detailed information, the lower frequency was set to 49000, and common 

English words (use, random, english, find, first, however) were removed and cleaned. Figure 4 

represents the frequency of words. 



42 

 

 

 

Figure 4: Frequency of Words by Order. 

 

The words “minimum” and “additives” were kept as they relate to drug additives and 

minimum dosage. In parallel, to create a taxonomic structure for the ontology, hclust (cluster 

dendrogram) and CLUSPLOT were plotted and analyzed. By changing the sparsity and the 

means of the document-term matrix, multiple plots were plotted to analyze in depth and to 

interpret the results in text mining. 

The hierarchical clustering (hclust) as shown in Figures 5, 6, and 7 are based on 

agglomerative hierarchical clustering strategy that works with the following logic (Mahmud, 

2018): 

Step 1: Assigning each observation to its own cluster. 
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Step 2: Identifying the pair of clusters that are closer to each other by Euclidian distance 

and then merging them. This means there is now one cluster less than before. 

Step 3: Computing the Euclidian distance between the new cluster and each of the old 

clusters. 

Step 4: Repeating step 2 and step 3 until it reaches a single cluster containing all the 

documents. 

Cluster dendograms at 5%, 10%, 15%, 20%, and up to 45% sparsity were created to 

explore the taxonomic categories. The full sequence of diagrams are presented in Appendix B. In 

Figure 5, the dendrogram shows an hclust plot at 10% non-sparsity. This means 10 percent zero 

terms are removed from the document-term matrix (dtm). Following the Euclidean distance 

method and “complete” method in hclust plot, this figure shows hierarchical plot of nodes and 

leaves. As the sparse terms changed from 10% to 15% in Figure 6, nothing changed visibly 

except the cluster pattern.  When 15% changed to 20% (Appendix B), a cluster mass of more 

terms appeared in the diagram. However, at this point it was a lot more noise than the usable 

terms.  
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Figure 5: Cluster Dendrogram for 10% Sparsity. 
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Figure 6: Cluster Dendrogram for 15% Sparsity. 
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Figure 7: Summarized Cluster Dendogram. 

 

In the above clustering analyses, the number of clusters was not pre-specified, and further 

analyses are needed to evaluate the data. For in-depth analyses K-means clustering where the 

number of clusters is pre-specified was performed. Cluster plots at 5%, 10%, 15%, and 20% 

sparsity with 3 through 9 means were plotted to explore the potential number of independent 

taxonomic categories. The full sequence of plots is presented in Appendix C. 

This analysis generates K-corpus clusters, and the logic and algorithm that were used 

herein are similar to Mahmud’s (2018) which were used for building the Foundational Ontology. 

The steps are below (Mahmud, 2018). 

 Step 1: Assigning the document randomly to k bins. 

 Step 2: Computing the location of the centroid of each bin. 

 Step 3: Computing the distance between each document and each centroid. 

 Step 4: Assigning each document to the bin corresponding to the centroid closest to it. 

Step 5: Terminating the computation if no document is moved to a new bin. Otherwise, 

go to step 2. 
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Figures 8, 9, 10, 11, 12, 13, 14 and 15 show K-means clustering for the analyzed corpus 

for 4, 5, 6, and 7 clusters (K-means) with 10% and 15% sparsity respectively. The cluster plots 

shown in these figures work in a mathematical space whose dimensionality equals the number of 

concept terms in the corpus. In this case, SNOMED CT has 352,567, LOINC has 92,369, and 

RxNorm has 1,044,971 distinct concepts, which are substantial numbers, so it was neither 

feasible nor possible to visualize using normal means. To visualize, Principle Component 

Analysis (PCA) is applied to reduce the number of dimensions to two (component 1 and 

component 2) for 3, 4, 5, 6, 7, 8, and 9 clusters (in this analysis) in such a way that the reduced 

dimensions explain as much of the variability as possible among the clusters. The variability 

explained with 5% sparsity was 99.84%, but the plots are full of noise. Sparsity 10 and 15 

provided plots that are acceptable with the variability of 96.44%. 

Figures 8 and 9 have four clusters (K=4) with 10% and 15% sparsity respectively, and 

most of the core terms appeared in cluster numbers 2, 3, and 4. Figures 10 and 11 have five 

clusters (K=5) with 10% and 15% sparsity respectively, and most of the core terms appeared in 

cluster numbers 1, 2, 4, and 5. Figures 12 and 13 have six clusters (K=6) with 10% and 15% 

sparsity respectively, and most of the core terms appeared in cluster numbers 2, 3, 4, and 5. 

Figures 14 and 15 have seven clusters (K=7) with 10% and 15% sparsity respectively, and most 

of the core terms appeared in cluster numbers 1, 2, 5, and 6. For K=4, CLUSPLOT has four 

clusters, and one of them is noise. The rest of the clusters do not have the terms in clear 

formation. For K=5, CLUSPLOT has five clusters, and the formation becomes clearer. The term 

“Active” got its own cluster. For K=6, CLUSPLOT has six clusters, and the formation is almost 

similar to K=5. It has two noise clusters while K=5 only had one noise cluster. For K=7, 

CLUSPLOT has seven clusters and cluster 7 has terms “Medical” and “Devices” separated out 
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with few other noise terms. K=3, K=8, and K=9 clusters were also analyzed.  These can be found 

in Appendix C.  

 

 

Figure 8: CLUSPLOT for 10% Sparsity, K=4 means. 
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Figure 9: CLUSPLOT for 15% Sparsity, K=4 means. 

 

Figure 10: CLUSPLOT for 10% Sparsity, K=5 means. 
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Figure 11: CLUSPLOT for 15% Sparsity, K=5 means. 

 

Figure 12: CLUSPLOT for 10% Sparsity, K=6 means. 
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Figure 13: CLUSPLOT for 15% Sparsity, K=6 means. 

 

Figure 14: CLUSPLOT for 10% Sparsity, K=7 means. 
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Figure 15: CLUSPLOT for 10% Sparsity, K=7 means. 

 

To create the taxonomic hierarchy, both the cluster dendrogram and CLUSPLOT were 

evaluated side-by-side. This also allowed identification of (i) the core terms and (ii) potential 

relationships among the terms (within the same and between different clusters). The cluster 

dendrogram provides an overall picture of the terms appearing in the corpus in hierarchy (and 

possible clusters to form). Figures 10 to 13 show that the three clusters (for K=5, the clusters 

were 2, 3, and 4 and for K=6, the clusters were 2, 4, and 5) contain all the major terms. The only 

change from K=5 to K=6 was the noise cluster #3 from K=5 became noise cluster #3 and #4 in 

K=6. From the above analyses, it was determined that K=5 with 10% sparsity is the stabilized 

version. 
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4.2 Ontological Relationships 

Now that core taxonomic terms are identified, the next step is to find the taxonomic 

relationships among the terms within and outside of the clusters. To achieve that, a relationship 

matrix was created for finding associations within “tm” text mining by pulling out the 

correlations between the specified term frequency distributions and the frequency distributions in 

other terms in tm text mining (Table 3). 

For this analysis, the minimum correlation 0.80 was used, because the joint SNOMED 

CT, RxNorm, and LOINC corpus were pre-specified terminologies. The correlation coefficient 

of 1.0 in the table is strongly correlated (being +1 is perfectly positively correlated, and 0 is not 

correlated) and is marked in orange. Drug and Clinic are correlated with a correlation coefficient 

of +1 (Table 3) which corresponds to them being in the same cluster in CLUSPLOTS (Figures 8 

– 15). Clinic and Pharmacology has a +1 correlation co-efficient which defines strong axiomatic 

relationship. 

All the correlation coefficients between the terms (Table 3) are strongly correlated 

ranging from 0.93 to 1.0.  The lowest correlation coefficient amongst the terms in Table 3 is 0.93 

which is between Medical and Organ. Active, Acid, and Product are frequently used words and 

top-level terms but are independent axioms as they are not strongly correlated to other top-level 

terms. The strong correlation amongst terms are logical as they are taken out of structured 

medical terminologies. 
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Table 4: Axiomatic Relationships between EMR Core Reference Ontology Primitive 

Composite Primitive Dependency Axiom 

Treatment Clinic within Clinic is strongly correlated with Drug. 

between Clinic is strongly correlated with Pharmacology. 

between Clinic is strongly correlated with Substance.  

between Clinic is strongly correlated with Device. 

between Clinic is strongly correlated with Medical. 

between Clinic is strongly correlated with Chemical.  

between Clinic is strongly correlated with Organ.  

Drug within Drug is strongly correlated with Clinic. 

between Drug is strongly correlated with Pharmacology. 

between Drug is strongly correlated with Substance.  

between Drug is strongly correlated with Device. 

between Drug is strongly correlated with Medical. 

between Drug is strongly correlated with Chemical.  

between Drug is strongly correlated with Organ. 

Active Active   

Medication Product   

Pharmacology between Pharmacology is strongly correlated with Clinic. 

between Pharmacology is strongly correlated with Drug. 

within Pharmacology is strongly correlated with Substance. 

between Pharmacology is strongly correlated with Device. 

between Pharmacology is strongly correlated with Medical. 

between Pharmacology is strongly correlated with Chemical.  

between Pharmacology is strongly correlated with Organ.  

Substance between Substance is strongly correlated with Clinic. 

between Substance is strongly correlated with Drug. 

within Substance is strongly correlated with Pharmacology. 

between Substance is strongly correlated with Device. 

between Substance is strongly correlated with Medical. 

between Substance is strongly correlated with Chemical.  

between Substance is strongly correlated with Organ.  
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Table 4: Axiomatic Relationships between EMR Core Reference Ontology Primitive (continued) 

Composite Primitive Dependency Axiom 

Diagnosis Acid   

Device between Device is strongly correlated with Clinic. 

between Device is strongly correlated with Drug. 

between Device is strongly correlated with Pharmacology. 

between Device is strongly correlated with Substance.  

within Device is strongly correlated with Medical. 

within Device is strongly correlated with Chemical.  

within Device is strongly correlated with Organ. 

Medical between Medical is strongly correlated with Clinic. 

between Medical is strongly correlated with Drug. 

between Medical is strongly correlated with Pharmacology. 

between Medical is strongly correlated with Substance.  

within Medical is strongly correlated with Device. 

within Medical is strongly correlated with Chemical.  

within Medical is strongly correlated with Organ. 

Chemical between Chemical is strongly correlated with Clinic. 

between Chemical is strongly correlated with Drug. 

between Chemical is strongly correlated with Pharmacology. 

between Chemical is strongly correlated with Substance.  

within Chemical is strongly correlated with Device. 

within Chemical is strongly correlated with Medical. 

within Chemical is strongly correlated with Organ.  

Organ between Organ is strongly correlated with Clinic. 

between Organ is strongly correlated with Drug. 

between Organ is strongly correlated with Pharmacology. 

between Organ is strongly correlated with Substance.  

within Organ is strongly correlated with Device. 

within Organ is strongly correlated with Medical. 

within Organ is strongly correlated with Chemical. 

 

 

 Table 4 above shows logical axiomatic relationships within and between EMR core 

reference ontology design composite and primitive concepts, and the composite primitives 

inherit their primitive properties from their primitives. 
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4.3 EMR Core Reference Ontology Specification 

 

 Table 5 shows the specifications for EMR core reference ontology design. For this 

ontology design, only nouns have been used as primitive concepts. 

 

Table 5: Specification of EMR Primitive Concepts. 

Candidate 

Noun Term 

WordNet 

Hypernym(s) 

Hypernym in 

EMR Core 

Reference 

Ontology 

Definition Is-a 

Attributes 

Synonyms 

Clinic Medical 

Institution 

 

Clinic Medical 

specialists’ 

practice. 

Medicine 

Practice 

Dispensary 

Drug Medical 

substance 

Drug Matter that is 

used as a 

medicine or 

narcotic 

Medicine 

Matter 

Pharmaceutical 

Active Active agent Active Medical agent 

capable of 

producing a 

physiological 

response. 

Agent 

Medicine 

Physiological 

Response 

Pathology 

Acid Acid  Acid Any of various 

water-soluble 

substances 

having a pH less 

than 7 and 

reacting with a 

base to form a 

salt 

Chemical 

Matter 

pH 

Anti-alkaline 

Product Product Product Matter formed 

as a result of a 

chemical 

reaction. 

Chemical 

Reaction 

Matter 

Chemical 

substance 

Pharmacology Pharmacology Pharmacology The science or 

study and 

application of 

drugs: their 

nature, 

properties, 

preparation, uses 

and effects. 

Effects 

Medicine 

Treatment 

Nonsurgical 

medicine 
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Table 5: Specification of EMR Primitive Concepts (continued). 

Candidate 

Noun Term 

WordNet 

Hypernym(s) 

Hypernym 

in EMR 

Core 

Reference 

Ontology 

Definition Existential 

Attributes 

(is-a 

attributes) 

Synonyms 

Substance Matter Substance Matter of a 

particular kind or 

constitution; the 

real physical 

matter of which a 

person or thing 

consists. 

Matter Substamtia 

Device Instrument Device A physical item 

used in medical 

treatment. 

Instrument 

Medicine 

Treatment 

Instrument 

Medical Examination, 

Scrutiny 

Medical The study or 

practice of 

medicine. 

Medicine 

Practice 

Study 

 

Aesculapian, 

medicinal 

Chemical Matter Chemical Matter produced 

by a reaction 

involving 

changes in atoms 

or molecules 

Matter 

Reaction 

Chemic 

Organ Organ Organ A fully 

differentiated, 

structural unit in 

a living entity 

that is 

specialized for 

some particular 

function. 

Function 

Structure 

Unit 

Unit, Element, 

Part 

 

 

Table 5 shows that the nouns are primitive concepts in terms of EMR. Clinic’s hypernym 

could be medical institution, but medical institution is a broader term, and it is a hypernym at the 

foundational ontology level. At the core reference level, clinic is the hypernym.  

Drug could be medical substance (WordNet hypernym), but medical substance is broader 

and is primitive at the foundational level. Thus, in the EMR core reference ontology, Drug is the 
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primitive as it means “matter that is used as a medicine or narcotic” without any ambiguity. The 

same applies for Substance, Device, Medical, and Chemical.  

For substance, “constituent” could be the hypernym, but it is at the foundational level. 

Constituent means an artifact that is one of the individual parts of which a composite entity is 

made up; especially a part that can be separated from or attached to a system. Thus, it could be 

"spare components for cars" or "a component or constituent element of a system", but none of 

these definitions apply to EMR. Substance in EMR means “matter of a particular kind” or 

constitution or “the real physical matter of which a person or thing consists.” Substance is also 

the term that is widely used in the medical field (as it is one of the most frequent terms that 

appeared in the medical terminologies) instead of constituent. For example: DNA is the 

substance of our genes. Thus, at the EMR core reference level, Substance is the primitive. 

The hypernym for device could be instrumentation, but that is also a broader term. The 

meaning of Device is a “physical item used in medical treatment,” which is the hypernym in 

EMR. A device in EMR means medical devices or applicators used for medical purposes, but 

instrumentation mostly refers to music. The definition of instrumentation in WordNet refers to 

the instruments called for in a musical score or arrangement for a band or orchestra. Device is a 

frequent term that appeared in the terminologies and is the hypernym for the EMR core reference 

ontology. 

Medical in terms of EMR core reference ontology means a physical examination without 

any ambiguity; thus, it is the primitive concept for EMR core reference ontology. Its hypernym 

could be examination but does not apply to the EMR otology as the examination refers to 

school/college administered examinations as well. 
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Like medical, chemical does not have any ambiguity when used in EMR core reference 

ontology, but its hypernym “material” has other meanings. The synonym of material is stuff and 

is used in different fields such as in engineering, building, production, and so on. Chemical in the 

medical terminology means the tangible substance or material produced by or used in a reaction 

involving changes in atoms or molecules. 

The rest of the terms which are active, acid, product, pharmacology, and organ are 

already primitives according to WordNet. 

 

Table 6: Attributes of EMR Primitive Concepts. 

Candidate 

Noun Term 

Definition Role Existential 

Attributes 

(is-a attributes) 

State-

Modification 

Attributes 

(has-a 

attribute 

Clinic Medical specialists’ practice. Health facility Medicine 

Practice 

Profession 

Curing  

Generalist 

Specialist 

Drug Matter that is used as a 

medicine or narcotic 

Nonsurgical 

treatment 

Medicine 

Matter 

Profession 

Curing  

Pharmaceutic 

Active Medical agent capable of 

producing a physiological 

response. 

Energetic Agent 

Medicine 

Physiological 

Response 

Causal 

Profession 

Curing 

Body 

Pathology 

Acid Any of various water-soluble 

substances having a pH less 

than 7 and reacting with a 

base to form a salt 

Matter with an 

excess of 

hydrogen atoms  

Chemical 

Matter 

pH 

Chemic 

Pharmaceutic 

0 to 7 

potential 

hydrogen 

Product Matter formed as a result of 

a chemical reaction. 

Formulation Chemical 

Reaction 

Matter 

Chemic 

Decompositio

n 

Synthesis 

Pharmaceutic 
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Table 6: Attributes of EMR Primitive Concepts (continued). 

Candidate 

Noun Term 

Definition Role Existential 

Attributes 

(is-a attributes) 

State-

Modification 

Attributes 

(has-a 

attribute 

Pharmacology The science or study and 

application of drugs: their 

nature, properties, 

preparation, uses and 

effects. 

Study and 

application of 

drugs. 

Effects Pharmacolog

y 

Substance Matter of a particular kind or 

constitution; the real 

physical matter of which a 

person or thing consists. 

Elemental 

matter. 

Matter Pharmaceutic 

Device A physical item used in 

medical treatment. 

Physical use Instrument 

Medicine 

Treatment 

Tool 

Profession 

Curing  

Diagnosis 

Prognosis 

Medical The study or practice of 

medicine. 

Healing practice Medicine 

Practice 

Study 

 

Profession 

Curing  

Generalist 

Specialist 

Understanding 

Chemical Matter produced by a 

reaction involving changes 

in atoms or molecules 

Composition of 

atoms or 

molecules. 

Matter 

Reaction 

Pharmaceutic 
Decomposition 

Synthesis 

Organ A fully differentiated, 

structural unit in a living 

entity that is specialized for 

some particular function. 

Functional unit 

of an entity. 

Function 

Structure 

Unit 

Transformatio

n 

Composition 

Element 

 

 

Existential Attributes: 

Existential attributes are essential for the existence of a concept. In the absence of any of 

these attributes, the concept would fall apart. These attributes are associated with “is-a” 

relationships with the concept.  
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State-Modification Attributes: 

State-Modification attributes are required to explain a certain state of the concept. These 

attributes are not essential for the existence of a concept and associated with “has-a” 

relationships with the concept.  

For each of the core primitive taxonomic terms, a list of attributes is documented in Table 

6. A few attributes in the table may sound similar but have different meanings. Conversely, some 

attributes need more elaboration. For example, the taxonomic term “Drug” has Medicine and 

Pharmaceutic attributes. Drug is used in the profession of Medicine for curing a disease and 

Pharmaceutic plays a role in creating and distributing those cures. Thus, Medicine is listed as 

“is-a” attribute and Pharmaceutic as “has-a” attribute. Another example could be Organ. For 

Organ Unit is listed as an “is-a” attribute, and Element is listed as a “has-a” attribute. Even 

though they may sound similar, Unit is a whole of something, while Element is a part of 

something. 

 

4.4 EMR Core Reference Ontology Design 

The taxonomic classes of Figure 7, the axiomatic relationship defined in Table 4, and the 

attributes defined in Table 6 were encoded into an EMR core reference design ontology in Fluent 

Editor using its controlled natural language (CNL). Fluent Editor’s controlled natural language 

(CNL) is a restricted English for human communication that encodes ontology semantics 

consistent with and translatable into description logic, SWRL rules, and OWL standards. Thus, 

ontologies encoded in Fluent Editor’s CNL meet Gruber’s criteria of clarity, coherency, 

extendibility, minimal encoding bias, and minimal ontological commitment. To conform strictly 
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with minimal ontological commitment, only the following hierarchical and axiomatic 

relationships were used. 

  Hierarchical:  “is-a” existential. 

    “has-a” state modification. 

  Axiomatic: “be strongly correlated with” in accordance with definitions derived 

from Table 3. 

Figure 16 shows the ontology developing window, and Figure 17 shows the taxonomic and 

axiomatic relationships that were encoded following CNL. Figure 17 demonstrates Taxonomic 

hierarchy from “thing.” A “thing” can be either a “physical-thing” or an “abstract-thing.” A 

physical-thing has presence in time and space whereas an abstract-thing does not have such 

presence.  

The ontologies were materialized in OWL2-RL+ and validated with the OWL2-RL+ 

reasoned. The Fluent Editor CLN EMR core reference design ontology encoding is presented in 

Appendix D. 
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Figure 16: Fluent Editor Development Window. 

 



65 

 

 

  

F
ig

u
re

 1
7
: 

F
lu

en
t 

E
d
it

o
r-

 E
M

R
 C

o
re

 R
ef

er
en

ce
 O

n
to

lo
g
y
 D

es
ig

n
 



66 

 

 

4.5 Proofs of Ontological Concept-Attribute Relationships 

Assessment of the core reference primitive ontology against Welty and Guarino’s (2001) 

subsumption criteria for concept “is-a” attributes is set forth in Table 7. The properties of each 

‘is-a” attribute meet the category criteria specified in Table 2. Table 7 also demonstrates that 

each primitive concept acts as a primary key for its “is-a” attributes meeting Rector’s (2003) 

normalization criteria necessary and sufficient for modularity and explicitness.  

 

Table 7: Core Reference Primitive Ontology Design “is-a” Attribute Properties. 

Candidate 

Noun Term 

Existential 

Attributes 

(is-a attributes) 

Attribute Property Property Combination 

Clinic Medicine Learned profession that 

is mastered in a medical 

school and devoted to 

curing diseases and 

injuries. 

+R +O, -I +U -D 

Practice The exercise of a 

profession. 

+R +O, -I +U -D 

Drug Medicine Learned profession that 

is mastered in a medical 

school and devoted to 

curing diseases and 

injuries. 

+R +O, -I +U -D 

Matter An entity that has 

physical existence. 

+R +O, -I +U -D 

Active Agent Capable of producing a 

certain effect. 

+R +O, -I +U -D 

Medicine Learned profession that 

is mastered in a medical 

school and devoted to 

curing diseases and 

injuries. 

+R +O, -I +U -D 

Physiological Of or consistent with an 

organism's normal 

functioning. 

+R +O, -I +U -D 
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Table 7: Core Reference Primitive Ontology Design “is-a” Attribute Properties (continued). 

Candidate 

Noun Term 

Existential 

Attributes 

(is-a attributes) 

Attribute Property Property Combination 

 Response A bodily process 

occurring due to the 

effect of some 

antecedent stimulus or 

agent. 

+R +O, -I +U -D 

Acid Chemical 

 

Material produced by or 

used in a reaction 

involving changes in 

atoms or molecules. 

+R -O, +I +U +D 

Matter An entity that has 

physical existence. 

+R +O, -I +U -D 

pH The number of moles of 

hydrogen ions per cubic 

decimeter that provides 

a measure on a scale 

from 0 to 14 of the 

acidity or alkalinity of a 

solution. 

+R +O, -I +U -D 

Product Chemical Material produced by or 

used in a reaction 

involving changes in 

atoms or molecules. 

+R -O, +I +U +D 

Reaction A process in which one 

or more substances are 

changed into others. 

+R +O, -I +U -D 

Matter An entity that has 

physical existence. 

+R +O, -I +U -D 

Pharmacology Effects Act to bring into 

existence. 

+R +O, -I +U -D 

 Medicine Learned profession that 

is mastered in a medical 

school and devoted to 

curing diseases and 

injuries. 

+R +O, -I +U -D 

 Treatment Therapy +R +O, -I +U -D 

Substance Matter An entity that has 

physical existence. 

+R +O, -I +U -D 
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Table 7: Core Reference Primitive Ontology Design “is-a” Attribute Properties (continued). 

Candidate 

Noun Term 

Existential 

Attributes 

(is-a attributes) 

Attribute Property Property Combination 

 

Device Instrument An instrumentality 

invented for a particular 

purpose. 

+R +O, -I +U -D 

Medicine Learned profession that 

is mastered in a medical 

school and devoted to 

curing diseases and 

injuries. 

+R +O, -I +U -D 

Treatment Care provided to 

improve a situation. 

+R +O, -I +U -D 

Medical Medicine Learned profession that 

is mastered in a medical 

school and devoted to 

curing diseases and 

injuries. 

+R +O, -I +U -D 

Practice The exercise of a 

profession. 

+R +O, -I +U -D 

Study A branch of knowledge. +R +O, -I +U -D 

Chemical Matter An entity that has 

physical existence. 

+R +O, -I +U -D 

Reaction A process in which one 

or more substances are 

changed into others. 

+R +O, -I +U -D 

Organ Function What something is used 

for. 

+R +O, -I +U -D 

Structure A complex entity 

constructed of many 

parts. 

+R +O, -I +U -D 

Unit A specific measure of 

amount. 

+R +O, -I +U -D 

 

 

Table 7 shows that all attribute properties of EMR core reference ontology are classified 

as +R, +O, −I, +U, and –D except for Acid-Chemical and Product-Chemical. In section 3.4, the 

third verification step was for a proper ontology structure by applying Guarino and Welty’s 
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(2000) and Welty and Guarino’s (2001) subsumption criteria for concept “is-a” attributes and 

Rector’s (2003) criteria for hierarchical “is-kind-of” attribute relationships.  Below are the 

assessment criteria (details are in section 3.4). 

1. Rigid properties are designated with +R, non-rigid properties with -R, and anti-rigid 

properties with ~R. 

2. A property carrying an Identity (IC) is designated as +I (−I otherwise), and any 

property supplying an Identity (IC) is designated as +O (−O otherwise). 

3. Any attribute property carrying a Unity (UC) is designated as +U (−U otherwise). 

Any attribute property that has anti-unity is designated as ~U, but ~U implies −U. 

4. An externally dependent attribute property is designated as +D (−D otherwise). 

 In Table 7, all the attribute properties are rigid (+R), not carrying (-I) but supplying IC 

(+O), carrying UC (+U), and externally independent (-D) except Acid-Chemical and Product-

Chemical. For Acid-Chemical and Product-Chemical, IC, UC, and dependability are different 

than the rest. For both cases, the attribute property is, “material produced by or used in a reaction 

involving changes in atoms or molecules” which implies that Acid and Product are externally 

dependent on Chemical, and without Chemical, these two are nonexistent while for other 

attributes that is not the case. For example: Chemical-Matter’s attribute property is, “an entity 

that has physical existence” which implies that Matter is not externally dependent on Chemical 

and can exist by itself.  

Concept lattices were developed to assess modularity, completeness, cohesion, coupling, 

and closure. In Figure 17, concepts (objects) are marked in the white boxes, and attributes are 

marked in the grey boxes. When a concept node contains a blue filled upper semicircle, it means 

that there is an attribute attached to this concept. When there is a black filled lower semicircle, it 
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means that there is only a concept attached. When there is a white filled upper semicircle, it 

means the attributes of that concept are attached to more than one concept. 

Figure 18 graphically demonstrates the conformance to Formal Concept Analysis’s 

Complete Lattice Definition, Closure Operator Definition, Basic Theorem on Concept Lattices, 

and the Spanning Forest Theorem. EMR core reference ontology concept lattices in Figures 19 

through 29 graphically demonstrate conformance to the Modular Concept Object Definition, 

Cohesion Definition, Coupling Definitions, and the Primitive Ontology Definition. 

 

 

Figure 18: EMR Core Reference Ontology Primitive Concept Lattice for Existential Attributes. 
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Figure 19: Lattice Path for Clinic. 

 

Figure 20: Lattice Path for Drug. 
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Figure 21: Lattice Path for Active. 

 

Figure 22: Lattice Path for Acid. 
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Figure 23: Lattice Path for Pharmacology. 

 

 

Figure 24: Lattice Path for Product. 
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Figure 25: Lattice Path for Substance. 

 

Figure 26: Lattice Path for Chemical. 
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Figure 27: Lattice Path for Device. 

 

Figure 28: Lattice Path for Medical. 
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Figure 29: Lattice Path for Organ. 

 

To summarize, the developed ontology is written in Web Ontology Language (OWL 2) 

which is a universal language in web semantics and thus meets semantic extendibility criteria. 

Therefore, semantic extendibility criteria are met in addition to modular extendibility.   
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CHAPTER 5 

DISCUSSION 

 

5.1 Overview of the Core Reference Ontology 

This research proposed the development of a core reference primitive ontology for 

electronic medical records semantics interoperability. A core reference ontology provides the 

taxonomic and axiomatic scope structure of finer granularity than a foundational ontology for a 

core sub-discipline within a discipline’s body of knowledge by integrating differing domain 

viewpoints.  Likewise, the core reference ontology level provides the first opportunity to identify 

and incorporate cross domain latent composite concept keys necessary for the proper propagation 

of primitive concepts to domain and application level ontologies. 

Currently, electronic medical records (EMR) cannot be exchanged among hospitals, 

clinics, laboratories, pharmacies, and insurance providers or be made available to patients. This 

research examined the interoperability problem amongst the medical terminologies and proposed 

an extraction method to contribute to the resolution of interoperability issues by identifying core 

reference primitive concepts and building operational axioms based on the correlation amongst 

them, which can be propagated to domain and application level ontologies in the future. This 

research identified primitive concepts for EMR core reference ontology (Figure 7) and their 

structure that specify a core reference hierarchical ontology and how those terms are 

axiomatically correlated with each other. 

The development of this core reference ontology took a different approach than what 

Bodenreider and other researchers have done previously. Previous research used bottom-up 

manual approaches for identifying incomplete terms and missing terminology links among 
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medical terminologies.  This core reference ontology applied a top-down, primitive concept 

identification approach to integrate the three dominant medical terminologies to establish 

interoperability at the core reference ontology level. According to Gomez-Perez (2004), the 

bottom up approach constructs a hierarchy using some clustering techniques; documents similar 

in content are associated with the same concept in the ontology, and then a concept for each 

cluster of documents relative to the same topic in the hierarchy is assigned using a bottom-up 

concept assignment mechanism. Conversely, for the top down approach, first the most general 

concepts of the ontology are selected. Then more specific concepts are added by classifying them 

in the already present structure. The top-down approach uses a downward knowledge acquisition 

process, which assures that the knowledge engineer considers all possible cases while avoiding 

redundant acquisition (Ganter and Stumme, 2003). 

In this research, the top-down primitive identification approach ensured the identification 

of the manifest and latent dimensions within and across the three terminologies. Identified 

hierarchical latent categories are treatment, active, medication, and diagnosis. These terms were 

all buried within the terminologies and were ignored as a means to integrate. Identification of 

these top primitive latent categories ensures integration by establishing the latent connections 

amongst the terminologies.  Subsequent constrained propagation of the core reference primitives 

through the domain and application level terms provides the potential to make these 

terminologies interoperable. Hence, the structural implications of identifying the manifest and 

latent ontological dimensions provides better potential to achieve interoperability than the 

current medical terminology development approach of trying to integrate existing terminologies 

from the bottom up. 

 



79 

 

 

5.2 Research Implications 

Currently, the methods that are used to develop interoperable medical terminologies are: 

• Structural methods which use the taxonomic structure of concept lattices.   

• Semantic methods which use description logic-based concept definitions.   

• Lexical methods which were based on term properties.   

• Other evaluation methods included transforming the representation of a terminology 

to a different formalism and evaluating for compliance to that formalism, evaluating 

terminologies to specified principles, and mapping to other ontologies.   

All methods (discussed in detail in Chapter 2) have limitations. For example: Application 

of structural-lexical methods to SNOMED CT extracted 6,801 non-lattice subgraphs that 

matched four primary lexical patterns.  A random sample of 59 small subgraphs out of 2,046 

amenable to visual inspection showed that all 59 contained errors as confirmed by terminology 

experts.  The most frequent error was missing “is-a” relationships.  (Bodenreider, 2018) 

The core reference ontology method for EMR developed herein provides the basis that 

can contribute to overcoming these issues. This ontology used the top three terminologies and 

defined the primitives and semantic integration at the core reference level.  The subsequent 

propagation of this core reference EMR primitive ontology to domain and application level EMR 

ontologies presents the potential to achieve maximum interoperability and to resolve non-lattice 

subgraphs, missing “is-a” relationships, incomplete mappings, and axiomatic relationships 

among them. This research has established the basis for hierarchical propagation of core 

reference primitive concepts to domain and application ontologies in patient electronic medical 

records. 
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5.3 Research Limitations 

The primary limitation of this research was the inability to access SNOMED CT, 

RxNorm, and LOINC directly and having to use only their glossary textual definitions, 

normalized names and codes, and core definitions in the corpus.  Since primary-foreign key 

relations were numerically encoded and not usable for this research purpose, some a priori 

specified axiomatic interrelationships among categories and terms might not have been fully 

discovered by this methodology.   

Some other major risks and limitations of this research were set forth as problems 

needing resolution in section 3.3 and are summarized below. 

1.  The first limitation was the selection of the ontology development method that 

produces a hierarchy of primitive ontologies. Since ontology learning is a relatively 

new field, only two standards have been applied for evaluation of learned ontologies: 

(1) human expert evaluation and (2) comparing the learned ontology to a previously 

learned gold-standard ontology. Neither was available for this research.  

2.  The second limitation was related to the first. Specifically, what primitive breadth is 

necessary and sufficient to assure semantic translation among ontologies and 

terminologies with minimal human intervention? 

3.  The third limitation was identifying the limits of ontological semantics completeness 

such that incomplete or missing hierarchical branches can be identified.   

 To address these limitations, this research used a top-down strategy for building the 

patient electronic medical records core reference ontology to improve interoperability.  The 

strategy integrates text mining and content analysis as the logical basis for identifying and 

extracting manifest and latent seed terms (primitive concepts- Figure 7) and hierarchical path 
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interrelationships within the SENSUS-like ontology Process 1 and 2 methods and verified the 

ontological properness by applying Welty and Guarino’s (2001) criteria; normalization and 

modularity applying Rector’s criteria; and completeness, closure, and cohesion using Formal 

Concept analysis (Figure 17 to Figure 28). 

Another limitation that must be addressed in future research is that an ontology and its 

associated knowledge base are dynamic entities in that they must change with the addition of 

new knowledge. Biomedical terminologies which are the basis of this EMR core reference 

ontology, are dynamic with changes in term definitions, dropping terms, adding terms, and local 

extensions requiring constant monitoring and revisions maintain the static mappings up to date 

(Lau and Shakib, 2005). Without constant monitoring and automatic updating, static patient data 

may become non-interpretable and therefore non-interoperable. For example, standard 

vocabularies may retire or delete certain codes. If patient data is stored using the retired or 

deleted code, it will no longer be interoperable with other systems. Thus, automated monitoring 

and updating will be required to maintain interoperability of static data sets. There are tools and 

software available currently, but none have been tested in the core reference ontological EMR 

environment as this is a newly developed ontology. There are popular approaches like Protégé 

and CHAO that could be implemented to maintain the Ontology, but are these approaches 

enough? The answer to this question is out of the scope of this research but points to a path for 

future research.  

Another point to note is that EMR interoperability is a major problem. Smith (1988) 

defines three criteria for a problem: (1) a gap between current and desired state, (2) difficulty in 

bridging that gap, and (3) someone must wish to bridge the gap. While it seems straightforward, 

in practice it is not. Solving a problem like EMR interoperability failure is complex not only 
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because there are no fully interoperable ontologies but also because of the necessity of having 

stakeholders involved in strategy implementation.  Stakeholder involvement is necessary because 

(1) stakeholders have radically different world views and different frames of reference for 

understanding problems and (2) constraints and resources to solve the interoperability issues 

change over time; therefore, the interoperability problem may never have a complete solution.  
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CHAPTER 6 

CONCLUSIONS 

 

6.1 Primary Contributions of this Study 

 Electronic medical records were supposed to be beneficial for all. Electronic medical 

records were supposed to make medicine safer, bring higher-quality care, and empower patients 

all while also being economical. Electronic medical records were supposed to help researchers 

who would harness the big data to reveal the most effective treatments for disease and sharply 

reduce medical errors. Patients were supposed to get true portable health records which would 

enable them to share their medical histories with doctors and hospitals anywhere in the country. 

A recent study done by Kaiser Health News (KHN) and Fortune (Schulte and Fry, 2019), spoke 

with more than 100 physicians, patients, IT experts and administrators, health policy leaders, 

attorneys, top government officials and representatives at more than a half-dozen HER/EMR 

vendors, including the CEOs of two of the companies. The interviews reveal a tragic missed 

opportunity: rather than an electronic ecosystem of information, the nation’s thousands of EMRs 

largely remain a sprawling, disconnected patchwork (Schulte and Fry, 2019). The systems cannot 

communicate with each other unless there is a standardized and seamless flow of information. 

Thus, having a fully interoperable system will have a major positive impact on healthcare. 

However, the lack of interoperability in healthcare systems and services has long been identified 

as one of the major challenges in healthcare, and prior work has been unable to mitigate it.  As 

noted by Adler-Milstein (2017), after 30 years of monetary investment and research into the 

development of electronic medical record terminologies, the major technical issue still to be 

overcome is lack of semantics interoperability.  This research reviewed prior approaches to 
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resolving medical terminology differences and identified the interoperability errors driving the 

interoperability problem.  The primary contribution of this research is that it applied a top-down, 

primitive concept identification approach to EMR ontology development by integrating the three 

dominant medical terminologies to establish interoperability at the core reference ontology level, 

which is different than prior approaches. 

 This research is the first demonstration of the capability of a core reference, hierarchical 

primitive ontological architecture with integrated primitive concept ontology and concept 

attributes decomposition to integrate and resolve non-interoperable semantics among and extend 

coverage across existing clinical, drug, and hospital ontologies and terminologies. By using the 

methodology of this research and by propagating it to domain and application ontology levels, 

this developed and integrated core reference ontology has the potential to mitigate and improve 

the interoperability issues. 

 Other primary contributions of this study are summarized below. 

• Discipline:  Within ontology engineering, this research was the first demonstration of 

the ability of primitive concepts to integrate inconsistent terminologies. 

• Other Disciplines:  This research demonstrated the capability of hierarchical 

primitive ontological architectures to integrate and resolve non-interoperable 

semantics which can be extended directly to other disciplines to contribute to the 

resolution of non-interoperable semantics and knowledge. 

• Higher Education and Training:  EMR core reference ontology extends the theory 

and techniques for development of modular hierarchical primitive ontological 

architectures. 

• Broader Society:  This research contributed to interoperability and transferability of 



85 

 

 

electronic patient medical records; thus, it contributes to societal quality of health. 

 

6.2 Widening the Scope 

The scope of this research includes developing and designing a hierarchical core 

reference ontology in Electronic Medical Records. The developed ontology used the top three 

most used medical terminologies, named SNOMED CT, RxNorm, and LOINC, at the definition 

level. One extension of this research would be applying the primitive ontology methodology 

directly to these three databases as opposed to just applying it to definitions; this has the potential 

to provide a fully interoperable EMR system. 

This scope may also be widened by extending the knowledge discovered in this research 

to all medical terminologies. The outcome of this EMR ontology is a human understandable 

theoretical basis for the ontology and a machine readable hierarchical taxonomic logic shareable 

across medical domains. This core reference primitive ontology can be propagated to domain and 

application level ontologies to improve medical record interoperability across all medical fields.  

The development of this EMR core reference ontology around which EMR machine intelligence 

knowledge can be encoded to form the basis for informed transition to artificially intelligent 

electronic medical records. 

 Another way the scope could be widened is by using the primitive concept ontology 

development methodology in non-medical ontologies where the same interoperable problems 

exist. The top-down, primitive concept identification approach has the potential to improve the 

underlying interoperability issues in non-medical fields as well. 
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6.3 Suggestions for Future Research 

 This core reference ontology is only the first version and needs to be updated frequently 

so that it does not become static. EMR is not a static field. Medical terminologies used in EMR 

are dynamic with changes in term definitions, dropping terms, adding terms, and local extensions 

requiring constant monitoring and revisions to maintain the static mappings up to date (Lau and 

Shakib, 2005). If patient data is stored using retired or deleted code it will no longer be 

interoperable with other systems. There are tools and software available currently, but none of 

them have been tested in the EMR environment as this core reference ontology applied a top-

down, primitive concept identification approach to integrate the three dominant medical 

terminologies to establish interoperability at the core reference ontology level, which has not 

been used in EMR before. To keep the EMR primitive ontology interoperable, automated 

updating and maintenance methods will be needed.  These methods must be developed and 

refined with future primitive ontology engineering research.  

 This core reference EMR primitive ontology must be propagated to domain and 

application level EMR ontologies to achieve maximum interoperability.  Future research must 

specify the axiomatic ontology set theory necessary and sufficient for primitive propagation, 

identification of modular semantic subsets, and proper propagation of primitive and modular 

subsets with their interoperable axioms. 

 The primitive concepts identification process and methodologies can be extended to other 

applicable disciplines where interoperability problems exist.  This research methodology could 

be used by ontology engineers in those disciplines even if they are not in the medical field. 
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APPENDIX A 

DETAILED R CODE 

 

> #Package installation 

> install.packages("tm") 

> library(tm) 

> install.packages("SnowballC") 

> library(SnowballC) 

> install.packages("ggplot2") 

> library(ggplot2) 

> install.packages("cluster") 

> library(cluster) 

> install.packages("fpc") 

> library(fpc) 

 

> #Create corpus 

> cname <- file.path("C:", "Corpus_LRS_txt") 

> cname 

> docs <- VCorpus(DirSource(cname)) 

> docs <- tm_map(docs, content_transformer(tolower)) 

 

> #Strip digits/numbers 

> docs <- tm_map(docs, removeNumbers) 
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> #Remove punctuation 

> docs <- tm_map(docs, removePunctuation) 

 

> #Remove stopwords using the standard list in tm 

> docs <- tm_map(docs, removeWords, stopwords("english")) 

 

> #Stem document 

> docs <- tm_map(docs, stemDocument) 

 

> #Document-term matrix 

> dtm <- DocumentTermMatrix(docs) 

> tdm <- TermDocumentMatrix(docs) 

> dtm 

> freq <- colSums(as.matrix(dtm)) 

> ord <- order(freq) 

> freq <- sort(colSums(as.matrix(dtm)), decreasing=TRUE) 

> head(freq, 25) 

 

> #Remove custom English words 

> docs <- tm_map(docs, removeWords, "rxnorm") 

> docs <- tm_map(docs, removeWords, "mthspl") 

> docs <- tm_map(docs, removeWords, "nddf") 

> docs <- tm_map(docs, removeWords, "mgml") 
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> docs <- tm_map(docs, removeWords, "snomedctus") 

> docs <- tm_map(docs, removeWords, "find") 

> docs <- tm_map(docs, removeWords, "mmsl") 

> docs <- tm_map(docs, removeWords, "hpx") 

> docs <- tm_map(docs, removeWords, "first") 

> docs <- tm_map(docs, removeWords, "however") 

> docs <- tm_map(docs, removeWords, "eng") 

> docs <- tm_map(docs, removeWords, "random") 

> docs <- tm_map(docs, removeWords, "use") 

> docs <- tm_map(docs, removeWords, "add") 

 

> #Document-term matrix 

> dtm <- DocumentTermMatrix(docs) 

> tdm <- TermDocumentMatrix(docs) 

> dtm 

> freq <- colSums(as.matrix(dtm)) 

> ord <- order(freq) 

> freq <- sort(colSums(as.matrix(dtm)), decreasing=TRUE) 

> head(freq, 25) 

> docs <- tm_map(docs, removeWords, "mmx") 

> dtm <- DocumentTermMatrix(docs) 

> tdm <- TermDocumentMatrix(docs) 

> dtm 
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> freq <- colSums(as.matrix(dtm)) 

> ord <- order(freq) 

> freq <- sort(colSums(as.matrix(dtm)), decreasing=TRUE) 

> head(freq, 25) 

> wf <- data.frame(word=names(freq), freq=freq) 

> head(wf) 

 

> #Cluster diagram 

# 

> p <- ggplot(subset(wf, freq>49000), aes(x = reorder(word, -freq), y = freq)) + 

geom_bar(stat = "identity") + 

  theme(axis.text.x=element_text(angle=45, hjust=1)) 

> p 

# 

> dtmss5 <- removeSparseTerms(dtm, 0.5) *** Change the sparsity value for 0.5, 010, 0.15, 

0.20, 0.25, 0.30, 0.35, and 0.45 

> d5 <- dist(t(dtmss5), method="euclidian") 

> fit <- hclust(d=d5, method="complete") 

> plot(fit, hang=1, main = "Cluster Dendogram - 5% Sparsity") ***Change the naming 

convention based on sparsity value 

 

> #CLUSPLOT 

> groups <- cutree(fit, k = 7) 



97 

 

 

> rect.hclust(fit, k = 7, border = "red") *** Change the value for means (K) to 3, 4, 5, 6, 7, 8, and 

9 

# 

> d5_7 <- dist(t(dtmss5), method="euclidian") 

> kfit <- kmeans(d5_7,7) *** Change the value for 3, 4, 5, 6, 7, 8, and 9 

> clusplot(as.matrix(d5_7), kfit$cluster, color=T, shade=T, labels=2, lines=0, main = 

"CLUSPLOT - 5% Sparsity, k = 7 means") *** Change the naming convention based on the 

value of K and sparsity  

 

> #Association of terms (*** Change the frequencies from 0.99 to 0.80) 

# 

> findAssocs(dtm, c("eng"), corlimit = 0.999999999) 

> findAssocs(dtm, c("oral"), corlimit = 0.99) 

> findAssocs(dtm, c("drug"), corlimit = 0.99) 

> findAssocs(dtm, c("clinic"), corlimit = 0.99) 

> findAssocs(dtm, c("activ"), corlimit = 0.99) 

> findAssocs(dtm, c("tablet"), corlimit = 0.99) 

> findAssocs(dtm, c("eng"), corlimit = 0.80) 

> findAssocs(dtm, c("drug"), corlimit = 0.80) 

> findAssocs(dtm, c("clinic"), corlimit = 0.80) 

> findAssocs(dtm, c("activ"), corlimit = 0.80) 

> findAssocs(dtm, c("product"), corlimit = 0.80) 

> findAssocs(dtm, c("pharmacolog"), corlimit = 0.80) 
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> findAssocs(dtm, c("substanc"), corlimit = 0.80) 

> findAssocs(dtm, c("acid"), corlimit = 0.80) 

> findAssocs(dtm, c("devic"), corlimit = 0.80) 

> findAssocs(dtm, c("medic"), corlimit = 0.80) 

> findAssocs(dtm, c("chemic"), corlimit = 0.80) 

> findAssocs(dtm, c("organ"), corlimit = 0.80) 

> findAssocs(dtm, c("cell"), corlimit = 0.80) 

> findAssocs(dtm, c("eng"), corlimit = 0.80) 
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APPENDIX B 

ADDITIONAL DENDOGRAM FIGURES 
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APPENDIX C 

ADDITIONAL CLUSPLOTS 
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APPENDIX D 

EMR CORE REFERENCE ONTOLOGY ENCODING 

 
Title: 'EMR Core Reference Ontology design'. 

Author: 'Ziniya Zahedi'. 

Namespace: 'http://ontorion.com/namespace'. 

 

Comment: 'Primitive concept definitions'. 

Every clinic is a primitive-concept. 

Every drug is a primitive-concept. 

Every active is a primitive-concept. 

Every acid is a primitive-concept. 

Every product is a primitive-concept. 

Every pharmacology is a primitive-concept. 

Every substance is a primitive-concept. 

Every device is a primitive-concept. 

Every medical is a primitive-concept. 

Every chemical is a primitive-concept. 

Every organ is a primitive-concept. 

 

Comment: 'Primitive concepts existential attribute specifications'. 

Every medicine is a clinic. 

Every practice is a clinic. 

Every specialist is a clinic. 
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Every medicine is a drug. 

Every matter is a drug. 

Every agent is an active. 

Every medicine is an active. 

Every physiological is an active. 

Every response is an active. 

Every chemical is an acid. 

Every matter is an acid. 

Every ph is an acid. 

Every chemical is a product. 

Every reaction is a product. 

Every matter is a product. 

Every effects is a pharmacology. 

Every medicine is a pharmacology. 

Every treatment is a pharmacology. 

Every matter is a substance. 

Every instrument is a device. 

Every medicine is a device. 

Every treatment is a device. 

Every medicine is a medical. 

Every practice is a medical. 

Every study is a medical. 

Every matter is a chemical. 
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Every reaction is a chemical. 

Every function is an organ. 

Every structure is an organ. 

Every unit is an organ. 

 

Comment: 'Primitive concepts state modification attribute specifications'. 

Every clinic has-profession equal-to 'medicine'. 

Every clinic has-profession equal-to 'Practice'. 

Every clinic has-curing equal-to 'medicine'. 

Every clinic has-curing equal-to 'Practice'. 

Every clinic has-generalist equal-to 'medicine'. 

Every clinic has-generalist equal-to 'Practice'. 

Every clinic has-specialist equal-to 'medicine'. 

Every clinic has-specialist equal-to 'Practice'. 

Every drug has-profession equal-to 'medicine'. 

Every drug has-profession equal-to 'Matter'. 

Every drug has-curing equal-to 'medicine'. 

Every drug has-curing equal-to 'Matter'. 

Every drug has-pharmaceutic equal-to 'medicine'. 

Every drug has-pharmaceutic equal-to 'Matter'. 

Every active has-causal equal-to 'agent'. 

Every active has-causal equal-to 'medicine'. 

Every active has-causal equal-to 'physiological'. 
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Every active has-causal equal-to 'response'. 

Every active has-profession equal-to 'agent'. 

Every active has-profession equal-to 'medicine'. 

Every active has-profession equal-to 'physiological'. 

Every active has-profession equal-to 'response'. 

Every active has-curing equal-to 'agent'. 

Every active has-curing equal-to 'medicine'. 

Every active has-curing equal-to 'physiological'. 

Every active has-curing equal-to 'response'. 

Every active has-body equal-to 'agent'. 

Every active has-body equal-to 'medicine'. 

Every active has-body equal-to 'physiological'. 

Every active has-body equal-to 'response'. 

Every active has-pathology equal-to 'agent'. 

Every active has-pathology equal-to 'medicine'. 

Every active has-pathology equal-to 'physiological'. 

Every active has-pathology equal-to 'response'. 

Every acid has-chemic equal-to 'chemical'. 

Every acid has-chemic equal-to 'matter'. 

Every acid has-chemic equal-to 'pH'. 

Every acid has-pharmaceutic equal-to 'chemical'. 

Every acid has-pharmaceutic equal-to 'matter'. 

Every acid has-pharmaceutic equal-to 'pH'. 
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Every acid has-0 to 7 potential hydrogen equal-to 'chemical'. 

Every acid has-0 to 7 potential hydrogen equal-to 'matter'. 

Every acid has-0 to 7 potential hydrogen equal-to 'pH'. 

Every product has-chemic equal-to 'chemical'. 

Every product has-chemic equal-to 'reaction'. 

Every product has-chemic equal-to 'matter'. 

Every product has-decomposition equal-to 'chemical'. 

Every product has-decomposition equal-to 'reaction'. 

Every product has-decomposition equal-to 'matter'. 

Every product has-synthesis equal-to 'chemical'. 

Every product has-synthesis equal-to 'reaction'. 

Every product has-synthesis equal-to 'matter'. 

Every product has-pharmaceutic equal-to 'chemical'. 

Every product has-pharmaceutic equal-to 'reaction'. 

Every product has-pharmaceutic equal-to 'matter'. 

Every pharmacology has-result equal-to 'effects'. 

Every pharmacology has-result equal-to 'medicine'. 

Every pharmacology has-result equal-to 'treatment'. 

Every pharmacology has-profession equal-to 'effects'. 

Every pharmacology has-profession equal-to 'medicine'. 

Every pharmacology has-profession equal-to 'treatment'. 

Every pharmacology has-curing equal-to 'effects'. 

Every pharmacology has-curing equal-to 'medicine'. 
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Every pharmacology has-curing equal-to 'treatment'. 

Every pharmacology has-therapy equal-to 'effects'. 

Every pharmacology has-therapy equal-to 'medicine'. 

Every pharmacology has-therapy equal-to 'treatment'. 

Every substance has-pharmaceutic equal-to 'matter'. 

Every device has-tool equal-to 'instrument'. 

Every device has-tool equal-to 'medicine'. 

Every device has-tool equal-to 'treatment'. 

Every device has-profession equal-to 'instrument'. 

Every device has-profession equal-to 'medicine'. 

Every device has-profession equal-to 'treatment'. 

Every device has-curing equal-to 'instrument'. 

Every device has-curing equal-to 'medicine'. 

Every device has-curing equal-to 'treatment'. 

Every device has-diagnosis equal-to 'instrument'. 

Every device has-diagnosis equal-to 'medicine'. 

Every device has-diagnosis equal-to 'treatment'. 

Every device has-prognosis equal-to 'instrument'. 

Every device has-prognosis equal-to 'medicine'. 

Every device has-prognosis equal-to 'treatment'. 

Every medical has-profession equal-to 'medicine'. 

Every medical has-profession equal-to 'practice'. 

Every medical has-profession equal-to 'study'. 
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Every medical has-curing equal-to 'medicine'. 

Every medical has-curing equal-to 'practice'. 

Every medical has-curing equal-to 'study'. 

Every medical has-generalist equal-to 'medicine'. 

Every medical has-generalist equal-to 'practice'. 

Every medical has-generalist equal-to 'study'. 

Every medical has-specialist equal-to 'medicine'. 

Every medical has-specialist equal-to 'practice'. 

Every medical has-specialist equal-to 'study'. 

Every medical has-understanding equal-to 'medicine'. 

Every medical has-understanding equal-to 'practice'. 

Every medical has-understanding equal-to 'study'. 

Every chemical has-pharmaceutic equal-to 'matter'. 

Every chemical has-pharmaceutic equal-to 'reaction'. 

Every chemical has-decomposition equal-to 'matter'. 

Every chemical has-decomposition equal-to 'reaction'. 

Every chemical has-synthesis equal-to 'matter'. 

Every chemical has-synthesis equal-to 'reaction'. 

Every organ has-transformation equal-to 'function'. 

Every organ has-transformation equal-to 'structure'. 

Every organ has-transformation equal-to 'unit'. 

Every organ has-composition equal-to 'function'. 

Every organ has-composition equal-to 'structure'. 
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Every organ has-composition equal-to 'unit'. 

Every organ has-element equal-to 'function'. 

Every organ has-element equal-to 'structure'. 

Every organ has-element equal-to 'unit'. 

 Every organ has-element equal-to 'function'. 

Every organ has-element equal-to 'structure'. 

Every organ has-element equal-to 'unit'. 

 

Comment: 'Primitive axioms specifications'. 

Every clinic is-strongly-correlated-with a drug. 

Every clinic is-strongly-correlated-with a pharmacology. 

Every clinic is-strongly-correlated-with a substance. 

Every clinic is-strongly-correlated-with a device. 

Every clinic is-strongly-correlated-with a medical. 

Every clinic is-strongly-correlated-with a chemical. 

Every clinic is-strongly-correlated-with an organ. 

Every drug is-strongly-correlated-with a clinic. 

Every drug is-strongly-correlated-with a pharmacology. 

Every drug is-strongly-correlated-with a substance. 

Every drug is-strongly-correlated-with a device. 

Every drug is-strongly-correlated-with a medical. 

Every drug is-strongly-correlated-with a chemical. 

Every drug is-strongly-correlated-with an organ. 
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Every pharmacology is-strongly-correlated-with a clinic. 

Every pharmacology is-strongly-correlated-with a drug. 

Every pharmacology is-strongly-correlated-with a substance. 

Every pharmacology is-strongly-correlated-with a device. 

Every pharmacology is-strongly-correlated-with a medical. 

Every pharmacology is-strongly-correlated-with a chemical. 

Every pharmacology is-strongly-correlated-with an organ. 

Every substance is-strongly-correlated-with a clinic. 

Every substance is-strongly-correlated-with a drug. 

Every substance is-strongly-correlated-with a pharmacology. 

Every substance is-strongly-correlated-with a device. 

Every substance is-strongly-correlated-with a medical. 

Every substance is-strongly-correlated-with a chemical. 

Every substance is-strongly-correlated-with an organ. 

Every device is-strongly-correlated-with a clinic. 

Every device is-strongly-correlated-with a drug. 

Every device is-strongly-correlated-with a pharmacology. 

Every device is-strongly-correlated-with a substance. 

Every device is-strongly-correlated-with a medical. 

Every device is-strongly-correlated-with a chemical. 

Every device is-strongly-correlated-with an organ. 

Every medical is-strongly-correlated-with a clinic. 

Every medical is-strongly-correlated-with a drug. 
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Every medical is-strongly-correlated-with a pharmacology. 

Every medical is-strongly-correlated-with a substance. 

Every medical is-strongly-correlated-with a device. 

Every medical is-strongly-correlated-with a chemical. 

Every medical is-strongly-correlated-with an organ. 

Every chemical is-strongly-correlated-with a clinic. 

Every chemical is-strongly-correlated-with a drug. 

Every chemical is-strongly-correlated-with a pharmacology. 

Every chemical is-strongly-correlated-with a substance. 

Every chemical is-strongly-correlated-with a device. 

Every chemical is-strongly-correlated-with a medical. 

Every chemical is-strongly-correlated-with an organ. 

Every organ is-strongly-correlated-with a clinic. 

Every organ is-strongly-correlated-with a drug. 

Every organ is-strongly-correlated-with a pharmacology. 

Every organ is-strongly-correlated-with a substance. 

Every organ is-strongly-correlated-with a device. 

Every organ is-strongly-correlated-with a medical. 

Every organ is-strongly-correlated-with a chemical. 
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