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Abstract

Background: Administrative health records (AHRs) and electronic medical records (EMRs) are two key sources of
population-based data for disease surveillance, but misclassification errors in the data can bias disease estimates.
Methods that combine information from error-prone data sources can build on the strengths of AHRs and EMRs.
We compared bias and error for four data-combining methods and applied them to estimate hypertension prevalence.

Methods: Our study included rule-based OR and AND methods that identify disease cases from either or both data
sources, respectively, rule-based sensitivity-specificity adjusted (RSSA) method that corrects for inaccuracies using a
deterministic rule, and probabilistic-based sensitivity-specificity adjusted (PSSA) method that corrects for error using a
statistical model. Computer simulation was used to estimate relative bias (RB) and mean square error (MSE) under
varying conditions of population disease prevalence, correlation amongst data sources, and amount of misclassification
error. AHRs and EMRs for Manitoba, Canada were used to estimate hypertension prevalence using validated case
definitions and multiple disease markers.

Results: The OR method had the lowest RB and MSE when population disease prevalence was 10%, and the RSSA
method had the lowest RB and MSE when population prevalence increased to 20%. As the correlation between data
sources increased, the OR method resulted in the lowest RB and MSE. Estimates of hypertension prevalence for AHRs
and EMRs alone were 30.9% (95% CI: 30.6–31.2) and 24.9% (95% CI: 24.6–25.2), respectively. The estimates were 21.4%
(95% CI: 21.1–21.7), for the AND method, 34.4% (95% CI: 34.1–34.8) for the OR method, 32.2% (95% CI: 31.8–32.6) for
the RSSA method, and ranged from 34.3% (95% CI: 34.1–34.5) to 35.9% (95% CI, 35.7–36.1) for the PSSA method,
depending on the statistical model.

Conclusions: The OR and AND methods are influenced by correlation amongst the data sources, while the RSSA
method is dependent on the accuracy of prior sensitivity and specificity estimates. The PSSA method performed
well when population prevalence was high and average correlations amongst disease markers was low. This study will
guide researchers to select a data-combining method that best suits their data characteristics.
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Background
Prevalence and incidence are essential measures for
disease surveillance, to describe the burden of disease in a
population and compare health status across populations
and over time. Routinely-collected electronic health data-
bases, such as administrative health records (AHRs),
which are captured for healthcare system management
and remuneration, are important sources for estimating
disease prevalence and incidence because they provide
information for the entire population and can therefore be
used for surveillance of both common and rare conditions
[1–5]. As well, they systematically capture information
over time, which enables monitoring of trends. Electronic
medical records (EMRs), digital versions of patient me-
dical charts, are also increasingly being used for disease
surveillance because they have many of the same advan-
tages as AHRs and they also capture clinical information
such as body mass index, smoking, and alcohol use [6–9].
However, both AHRs and EMRs are prone to misclassi-

fication errors [5, 9–13], including false negative cases in
which individuals are incorrectly classified as not having a
disease and false positive cases in which individuals are
incorrectly classified as having a disease [14]. The magni-
tude and types of errors in each of these data sources may
not be the same [15–17], therefore one source should not
be routinely recommended over the other source for
population-based disease surveillance.
Combining information from EMRs and AHRs is an

alternative to using one error-prone source over the other;
data-combining methods capitalize on the strengths of
each source for ascertaining cases to estimate chronic
disease incidence and prevalence, and therefore help to
reduce the impact of error. Data-combining methods
based on both deterministic (i.e., rule-based) approaches
and probabilistic models have been proposed [18–27].
However, there have been few comparisons of these
methods [28–30]. Moreover, there have been limited
investigations about the factors that may influence the
accuracy of these methods.
The purpose of this study was to compare several

methods for combining information from two error-
prone data sources for estimating disease prevalence,
including rule-based and model-based methods. The
objectives were to: (1) compare the bias and precision of
data-combining methods and (2) estimate hypertension
prevalence from AHRs and EMRs alone as well as from
four data-combining methods. We selected hypertension
because it is a common measure of health status
included in national and international disease surveil-
lance reports [4, 31].

Methods
The first objective relied on computer simulation
techniques. The second objective was achieved using

population-based AHR and EMR data from the province
of Manitoba, Canada.

Computer simulation
The computer simulation generated data from two
sources using a model in which multiple disease markers
are associated with the probability of disease presence/
absence [32]. Specifically, we used copulas to generate
multiple binary disease markers [33] for each data
source. Copulas are constructed by specifying the joint
distribution of correlated random variables that follow a
standardized uniform distribution. The disease markers
were assumed to be error-free with complete infor-
mation. True disease status for each member of the
population was generated from a Bernoulli distribution via
a logistic regression model. To obtain the specified preva-
lence estimates, values of the regression coefficients and
marker prevalence were selected based on previous
epidemiological studies about hypertension [34, 35].
Subsequently, error-prone measures of disease status were

generated based on pre-selected values of sensitivity (SnY j )
and specificity (SpY j

) for the jth data source (j = 1, 2)

[36]. A conditional Bernoulli process was used [37]:

Y 1 ¼ P D ¼ 1ð Þ U < P Y 1 ¼ 1j D ¼ 1ð Þ½ �
þP D ¼ 0ð Þ U < 1−P Y 1 ¼ 0j D ¼ 0ð Þ½ �

ð1Þ

where Y1 is an error-prone measure of disease status from
the first data source, P(D = 1) is the indicator of popula-
tion disease status, P(Y1 = 1 | D = 1) and P(Y1 = 0 | D = 0)
are the sensitivity and specificity for the first data source,
and U is a random variable that follows a uniform
distribution.
A total of 500 replications of the simulation model

were produced for each of 144 combinations of simula-
tion conditions; the four data-combining methods were
applied to the data for each replication to estimate
prevalence. The simulation conditions included all pos-
sible combinations of true population prevalence (prevT)
of 10 and 20%, prevalence for each error-prone data
source (prevY 1

; prevY 2
) ranging in values from 5 to 18%,

correlation between data sources (ρY 1Y 2
) of 0.65 and 0.85,

number of disease markers (Nx) of 8 and 16, average cor-
relation amongst the disease markers (ρx ) of 0.00, 0.20,
and 0.50 and correlation pattern amongst the disease
markers (ρx ðpatternÞ ) that was unstructured or exchange-

able. True prevalence of 20% was chosen to reflect the
estimated prevalence of hypertension observed in previous
studies about population prevalence [38], whereas the true
prevalence of 10% was chosen to reflect the lower preva-
lence observed in a specific sub-group like younger adults
[39]. We focused on prevalence values for the data sources
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that were lower than the true population prevalence since
both AHRs and EMRs often underestimate chronic
disease cases [9–13]. Data source correlation values were
chosen to test the effect of moderate and high associations
between data sources [40]. The average correlation and
correlation pattern were relevant for investigations about
the PSSA method [20]. The data-combining methods were
evaluated using percent absolute relative bias (RB) and
mean square error (MSE) [41]. Percent absolute RB was
calculated as:

RB ¼ prevT−prevmj j
prevT

� 100 ð2Þ

where prevm is the mean prevalence for a data-combining
method across the replications. MSE was calculated as

MSE ¼ σ2prevm þ j prevT − prevm j2; where σ2prevm is
the variance of the estimates. The simulation study
was conducted using R software version R-3.4.4 for
Windows [42].

Population-based data sources and study cohort
The study data for Objective 2 were AHRs and EMRs
from the Manitoba Population Research Data Repository
housed at the Manitoba Centre for Health Policy (MCHP),
a research unit at the University of Manitoba. The pro-
vince of Manitoba has universal healthcare, which means
that virtually all health system contacts are captured in
AHRs for the entire population of 1.3 million residents.
The study observation period was fiscal years 2005/06 to
2008/09 (a fiscal year extends from April 1 to March 31).
AHRs included hospital discharge abstracts, physician

billing claims, and Drug Program Information Network
(DPIN) records. Hospital discharge abstracts contain
records of discharges from acute care facilities; each
abstract captures up to 25 diagnosis codes that use the
World Health Organization’s International Classification
of Diseases (ICD), 10th revision, Canadian version
(ICD-10-CA). Physician billing claims are submitted
by fee-for-service physicians to the ministry of health for
provider remuneration. Each claim includes a single

three-digit ICD-9-CM code for the diagnosis best reflect-
ing the reason for the visit. The DPIN is an electronic,
online, point-of-sale database that contains information
about prescriptions filled by community pharmacies. Each
approved drug is assigned a Drug Identification Number
(DIN) by Health Canada; DINs can be linked to the World
Health Organization’s Anatomical Therapeutic Chemical
(ATC) codes [43].
EMRs used were obtained from the Manitoba Primary

Care Research Network (MaPCReN) which is a practice-
based research network comprised of consenting primary
care providers (mostly family physicians). The MaPCReN
repository includes information on health problems, bill-
ing data, medications, laboratory results, selected risk fac-
tors, referrals, and procedures for primary care patients
[10]. EMRs from Manitoba has been previously used to
evaluate the quality of these data for measuring hyperten-
sion [44]. Approximately 22% of the provincial population
is represented in the MaPCReN repository, which covers
all geographic regions and various practice configurations
within the province [45].
EMRs and AHRs were linked using an encrypted

unique personal health identification number (PHIN)
available in the population registry; the registry captures
information on dates of healthcare coverage, demo-
graphic characteristics, and location of residence.
The PHIN is available on each record in all of the data

sources. Any identifying data, such as names and ad-
dresses were removed from the data by the provincial
ministry of health prior to record linkage. Before linkage,
key variables including sex, birth date, postal code, and
PHIN were formatted in the same way on each file to
account for formatting differences, such as capitalization,
justification, and leading zeroes.
Validated case ascertainment algorithms for hyperten-

sion were applied to each data source [9, 12]. Table 1
lists the components of these algorithms, including ICD
diagnosis codes and ATC prescription drug codes.
The study cohort included Manitoba residents 18+ years

of age with at least one encounter in EMR data during the
study observation period. The EMR data were linked to

Table 1 Hypertension case ascertainment algorithms from administrative health records (AHRs) and electronic medical records
(EMRs)

Data source Contact frequency, source
and duration

ICD 9-CM/10-CA diagnosis codes ATC medication codes

AHR 1 + H or 2 + P in 2 years ICD-9-CM: 401–405 ICD-10-CA: I10-I13, I15

EMR (2 + P in 2 years) or 1 + PL
or 1 + Rx ever

ICD-9-CM: 401–405 C07AB04, C09XA02, C03DB01, C08CA01, C07AB03, C07CB03,
C09AA07, C09AA01, C07AG02, C03BA04, C09AA08, C09AA02,
C09BA02, C09CA02, C09DA02, C08CA02, C09AA09,C03AA03,
C03EA01, C03BA11, C09CA04, C09DA04, C09AA03, C09BA03,
C09DA01, C02LB01, C03BA08, C09CA07, C07AA06, C09AA10,
C03DB02, C09CA03, C08DA01

H Hospital discharge abstract, P Physician billing claim, PL Problem list, Rx Drug codes; ICD-9-CM/10-CA International Classification of Diseases, 9th Revision, Clinical
Modification and 10th version of the Canadian version, ATC Anatomic Therapeutic Chemical classification system
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AHR data for all cohort members. To be retained in the
cohort, an individual required a minimum of 7 years of
health insurance coverage before the study index date and
7 years of coverage after the study index date, in order to
implement the EMR case ascertainment algorithm for
hypertension [46]. The study index date was the date of
the individual’s first record in EMR data.

Model covariates
Socio-demographic and comorbidity measures were used
to describe the study cohort and as covariates (i.e.,
markers) in the statistical model for the probabilistic data-
combining method. Socio-demographic measures, which
included sex, age group (18–44, 45–64, 65+ years), in-
come quintile, and region of residence, were defined at
the study index date. Income quintile is an area-level
measure of socioeconomic status defined using Statistics
Canada Census data and based on total household in-
come for dissemination areas, the smallest geographic
unit for which Census data are publicly released [47].
Postal codes from the population registry were used to
assign individuals to income quintiles. Region was based
on regional boundaries and was defined as Winnipeg and
non-Winnipeg.
Comorbidity measures included the Charlson comor-

bidity score (CCS) and multiple disease-specific measures.
The CCS is a summary measure based on ICD diagnosis
codes from hospital discharge abstracts and physician bill-
ing claims [48]; it was derived using data for the one-year
period prior to the study index date. The CCS was defined
as a categorical variable with values of 0, 1 to 2, and 3+.
Disease-specific covariates included chronic obstructive
pulmonary disease (COPD), diabetes, depression, demen-
tia, obesity, cerebrovascular disease, congestive heart
failure, coronary heart disease, renal disease, and sub-
stance abuse, all of which have been used in previous
research as indicators of hypertension in probabilistic
models [49–51]. The first five covariates were defined
from both AHRs and EMRs. The remaining covariates
were defined from AHRs only because EMR case as-
certainment algorithms have not been developed. Case
ascertainment algorithms for AHRs were based on
the two-year period prior to the index date in accord-
ance with previous recommendations [49], while EMR
case ascertainment algorithms did not have a time
period requirement. Finally, obesity, another covariate
for the probabilistic model, was defined from EMRs
(obese = body mass index > 30.0; not obese = body
mass index ≤30.0; missing).

Data-combining methods
Four data-combining were selected based on previous
research [21]. We included rule-based OR and AND
methods, which use a deterministic rule to classify

individuals as having the target disease or not having the
target disease. The OR method identified individuals as
hypertension cases if they met the case ascertainment
algorithm for either EMRs or AHRs, and the AND
method identified individuals as hypertension cases if they
met the case ascertainment algorithm for both EMRs and
AHRs [24]. The OR and AND methods assume: (1)
observed disease status is 100% sensitive and specific, and
(2) observed disease status from two data sources is con-
ditionally independent on the true disease status.
We also considered a rule-based sensitivity and speci-

ficity adjusted (RSSA) method, which uses information
about the accuracy of case ascertainment algorithms
from prior validation studies to correct the estimated
number of true disease cases [25, 26, 52]. The number
of individuals ascertained as disease cases was weighted
by the average values of sensitivity and specificity for
each source identified from three Canadian validation
studies about hypertension [5, 9–13]. Specifically, the
average sensitivity and specificity values used were 0.72
and 0.95 for AHRs and 0.87 and 0.90 for EMRs. The
RSSA method assumes that observed disease status from
the two data sources is conditionally independent.
The probabilistic sensitivity-specificity (PSSA) method

was also considered; it assumes that true disease status
is associated with disease markers [20]. The sensitivities
and specificities of the two data sources are modelled via
a Bayesian regression model with a probit link function.
The model can be decomposed into an outcome model
(i.e., true outcome given disease markers) and a report-
ing model (i.e., reported status given true outcome and
disease markers). It was assumed that the joint distri-
bution of the reported (i.e., observed) disease status was
conditional on the true disease status and observed
markers. Using a Gibbs sampling technique, values of
the unobserved true disease status is sampled from the
posterior distribution conditional on the disease markers
[53]. Model convergence was assessed using diagnostics
recommended in previous research [54].
We considered four models for the PSSA method

using different subsets of covariates (i.e., markers) based
on theory, previous research, and empirical estimates of
correlation amongst the covariates. For Model 1, which
was the full model, the covariates included all socio-
demographic variables, the CCS, and all disease-specific
markers. For Model 2, only EMR-defined measures of
COPD, diabetes, dementia, depression and obesity were
selected for model inclusion. In addition, given that the
CCS includes some comorbid conditions already identified
as disease-specific markers, it was excluded. For Model 3,
we excluded markers with correlations > |0.60|. For Model
4, which was the reduced model, we limited our attention
to covariates strongly associated with hypertension pre-
valence based on previous research [50, 51], including age,
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sex, diabetes, obesity, cardiovascular disease, COPD (a
proxy for smoking status) [55] and substance use.
For each of the PSSA models, visual graphical as-

sessment using traceplots demonstrated that model
convergence was reached after the 500th iteration
[see Additional file 1]. We ran a total of 10,000
iterations of the Gibbs sampler for each model. In
addition, we used Gelman–Rubin diagnostics to en-
sure the Potential Scale Reduction Factor (PSRF) of
all parameters was close to one [56], suggesting that
10,000 iterations were sufficient for attaining conver-
gence. Once we decided that the chain has converged
at iteration 500, we discarded the first 500 samples
as burn-in samples and used the remaining 9500
samples for inference.

Statistical analysis for numeric example
Descriptive analyses were conducted using frequencies
and percentages. Associations amongst the covariates
and case ascertainment algorithms were estimated using
tetrachoric and polychoric correlations [57].
Hypertension prevalence estimates and 95% confi-

dence intervals (95% CIs) were calculated for each
data combining-method and for each data source on
its own. We also calculated sex and age-group strati-
fied estimates and their 95% CIs. For the OR and
AND methods, we assumed a normal approximation
to the binomial distribution when calculating the 95%
CIs. For the RSSA and PSSA methods we constructed
95% CIs using the percentile bootstrap method; the
number of bootstrap samples was set to 999 following
previous recommendations [58].
Model fit was assessed for the PSSA method using

the Deviance Information Criterion (DIC) [59], which
is a penalized measure of the log of the likelihood
function. Smaller values of the DIC indicate a better
fitting model [60].

Results
Computer simulation
The simulation results are reported in Table 2; for the
PSSA method we reported results for an exchangeable
correlation amongst the model covariates; similar results
were obtained for an unstructured correlation and are
therefore not reported. Absolute RB ranged from 0.2 to
108.8% and MSE ranged from 0.00 to 6.16 across the
simulation conditions.
When true prevalence was 20%, the outcome prevalence

combination of (18, 10%) for the two data sources resulted
in the smallest percent absolute RB and MSE values for
the OR method. However, for the AND, RSSA and PSSA
methods, the absolute RB and MSE values were smallest
for outcome prevalence combination (18, 15%). The RSSA
method had the smallest absolute RB when ρy1y2 = 0.65

and the OR method resulted in average absolute RB that
was the smallest when ρy1y2 = 0.85.

When the average marker correlation was either ρx =
0.00 or ρx = 0.20 and true prevalence was 20%, the PSSA
method had the smallest absolute RB (3.7%) when ρy1y2 =

0.85 and outcome prevalence was (15, 15%). As the aver-
age marker correlation increased from ρx = 0.00 to ρx =
0.50, the absolute RB and MSE values for the PSSA
method increased by more than 90%, irrespective of the
correlation between the data sources. The absolute RB
showed very little variation (less than 7%) when the aver-
age marker correlation was ρx = 0.00 compared to ρx =
0.20. When the average marker correlation was zero (i.e.,
independent markers), the PSSA method produced pre-
valence estimates that were stable. This result suggests
that each of the markers was providing unique infor-
mation to the model.
When true prevalence was 10%, Table 2 revealed that

absolute RB ranged from 0.3 to 375.0% and MSE ranged
from < 0.01 to 18.41 across the simulation conditions.
The RSSA method had the smallest percent absolute RB
and MSE when the outcome prevalence combination
was (8, 7%), regardless of the correlation between data
sources. As outcome prevalence went from (8, 7%) to (5,
5%), performance of the RSSA and AND methods got
worse. For example, the percent absolute RB and MSE
for the RSSA method went from 8.4% and 0.01 to 30.9%
and 0.10, when ρy1y2 = 0.85. On the other hand, when

ρy1y2 = 0.65, the average absolute RB and MSE went from

1.1% and < 0.01 to 28.8% and 0.08. The OR method
resulted in absolute RB that was the smallest when the
outcome prevalence was (8, 5%) and (5, 5%) regardless
of the correlation between the data sources. For
example, for outcome (8, 5%), the average absolute RB
and MSE were 3.3% and < 0.01 when ρy1y2 = 0.85, and

12.8% and 0.02 when ρy1y2 = 0.65.

The PSSA method had the smallest absolute RB (1.1
and 6.3%) for outcome prevalence (8, 5%) and (5, 5%)
when ρx = 0.00 and correlation between the data sources
was ρy1y2 = 0.85. As the average marker correlation in-

creased, the absolute RB and MSE values of the PSSA
method increased substantially. For example, under out-
come prevalence (8, 5%) and ρy1y2 = 0.85, the PSSA

method had absolute RB of 1.1, 10.7 and 230.5% when
the average marker correlation was 0.00, 0.20 and 0.50,
respectively. When Nx = 8, the values of MSE for the
PSSA method increased. For example, under outcome
prevalence (8, 5%) and ρx = 0.00, the MSE value went
from 0.12 to 2.78 when ρy1y2 = 0.85 and 0.28 to 4.31

when ρy1y2 = 0.65. Under all of the three outcome pre-

valence conditions, average absolute RB and MSE values
of the PSSA method increased as the average marker
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Table 2 Percent absolute relative bias (RB) and mean squared error (MSE) for computer simulation study

prevY1 ; prevY2 ρx RB; prevT = 20%

ρY1Y2
= 0.85 ρY1Y2

= 0.65

OR AND RSSA PSSA (16) PSSA (8) OR AND RSSA PSSA (16) PSSA (8)

18, 15% 0.00 9.5 47.5 7.5 9.5 11.3 23.1 59.4 1.3 48.3 49.5

0.20 9.0 47.7 7.9 2.1 7.4 22.9 59.4 1.5 41.7 54.3

0.50 10.1 47.2 7.0 24.3 21.1 23.7 59.1 0.9 99.0 78.6

18, 10% 0.00 0.3 58.6 18.2 1.1 3.0 10.8 67.1 12.8 28.9 37.5

0.20 0.9 58.9 18.7 5.9 5.9 10.5 67.2 13.0 31.1 54.3

0.50 0.2 58.3 17.7 48.8 26.1 11.2 66.8 12.4 108.8 90.1

15, 15% 0.00 4.1 49.2 11.5 3.7 4.3 17.6 61.7 5.8 41.3 42.5

0.20 3.6 49.4 12.0 3.1 3.6 17.2 61.9 6.1 37.6 50.1

0.50 4.8 48.7 10.9 20.5 12.5 18.1 61.5 5.3 102.0 70.7

prevY1 ; prevY2 ρx MSE; prevT = 20%

ρY1Y2
= 0.85 ρY1Y2

= 0.65

OR AND RSSA PSSA (16) PSSA (8) OR AND RSSA PSSA (16) PSSA (8)

18, 15% 0.00 0.04 0.90 0.02 0.06 0.47 0.22 1.41 < 0.01 0.99 1.76

0.20 0.03 0.91 0.03 0.02 0.52 0.21 1.41 < 0.01 0.82 2.25

0.50 0.04 0.89 0.02 1.06 1.47 0.23 1.40 0.00 4.68 4.46

18, 10% 0.00 < 0.01 1.37 0.13 0.02 0.69 0.05 1.80 0.07 0.40 1.70

0.20 < 0.01 1.39 0.14 0.06 1.16 0.05 1.80 0.07 0.70 3.48

0.50 < 0.01 1.36 0.13 2.28 2.32 0.05 1.79 0.06 5.36 6.16

15, 15% 0.00 0.01 0.97 0.05 0.03 0.46 0.13 1.53 0.01 0.74 1.62

0.20 0.01 0.98 0.06 0.02 0.72 0.12 1.53 0.02 0.74 2.20

0.50 0.01 0.95 0.05 1.03 1.29 0.13 1.51 0.01 4.84 3.96

prevY1 ; prevY2 ρx RB; prevT = 10%

ρY1Y2
= 0.85 ρY1Y2

= 0.65

OR AND RSSA PSSA (16) PSSA (8) OR AND RSSA PSSA (16) PSSA (8)

8, 7% 0.00 11.5 55.8 8.4 9.7 35.0 29.6 67.1 1.1 76.2 154.9

0.20 10.5 56.1 9.2 42.6 37.8 28.7 67.4 0.3 196.7 217.1

0.50 13.1 54.9 7.1 216.1 43.3 30.7 66.6 2.0 307.6 286.5

8, 5% 0.00 2.9 59.7 16.0 1.1 50.5 12.2 73.4 13.5 45.3 114.9

0.20 3.2 59.7 15.8 10.7 85.1 12.0 73.9 13.8 235.2 273.4

0.50 3.8 59.2 15.3 230.5 198.2 14.2 73.3 12.1 322.2 334.8

5, 5% 0.00 14.7 70.0 30.9 6.3 92.1 7.4 78.7 28.4 61.0 193.0

0.20 15.4 70.2 31.5 134.4 149.1 8.0 78.7 28.8 271.0 217.9

0.50 13.6 69.5 30.0 275.7 222.1 6.3 78.2 27.4 333.8 375.0

prevY1 ; prevY2 ρx MSE; prevT = 10%

ρY1Y2
= 0.85 ρY1Y2

= 0.65

OR AND RSSA PSSA (16) PSSA (8) OR AND RSSA PSSA (16) PSSA (8)

8, 7% 0.00 0.01 0.31 0.01 0.28 2.01 0.09 0.45 < 0.01 0.87 6.33

0.20 0.01 0.31 0.01 1.29 1.31 0.08 0.45 < 0.01 5.19 8.53

0.50 0.02 0.30 0.01 5.60 6.72 0.10 0.44 < 0.01 9.97 12.77

8, 5% 0.00 < 0.01 0.36 0.03 0.12 2.78 0.02 0.54 0.02 0.28 4.31

0.20 < 0.01 0.36 0.03 0.59 3.59 0.02 0.55 0.02 7.28 12.63

0.50 < 0.01 0.35 0.02 6.39 8.45 0.02 0.54 0.02 10.91 16.73
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correlation increased. As the correlation between the
data sources went from ρy1y2 = 0.85 to ρy1y2 = 0.65,

average absolute RB and MSE values increased substan-
tially. For example, under outcome prevalence (8, 7%) and
ρy1y2 = 0.85, the absolute RB values were 35.0, 37.8 and

43.3% when ρx = 0.00, 0.20 and 0.50, and 154.9, 217.1 and
286.5% when ρy1y2 = 0.65.

The results showed an increase in the absolute RB and
MSE for each data-combining method when true pre-
valence was 10% compared with when it was 20%. In
terms of the effect of the correlation between data
sources, the absolute RB and MSE for the OR, AND and
PSSA methods became smaller as the correlation in-
creased from ρy1y2 = 0.65 to ρy1y2 = 0.85. The best results

were obtained for the RSSA when ρy1y2 = 0.65 and the OR

method when ρy1y2 = 0.85.

The effect of the average marker correlation on per-
formance of the PSSA method was evident for all
simulation conditions. The estimated prevalence became
more biased as correlation increased. The percent abso-
lute RB and MSE across all simulation conditions were
46.7% and 1.86 when ρx = 0.00 and 160.4% and 6.68 when
ρx = 0.50.

Results for numeric example
A total of N = 121,144 individuals had at least one
encounter in EMRs that could be linked to AHRs in the
study observation period. After exclusions, the study
cohort included n = 68,877 individuals (Fig. 1). Close to
half of the individuals in the cohort were between 18
and 44 years of age. Slightly more than half of the cohort
members were female and the majority were urban
residents. Cohort members were equally distributed
across most income quintiles, with the exception of
the lowest quintile where they tended to be under-
represented. More than 83% of the individuals in the
cohort had a CCS score of 0 (Table 3).
In terms of the disease-specific covariates, individuals

with diagnosed depression constituted 10.3% of the
study cohort when identified from AHRs and 16.0%
when identified from EMRs. A total of 1.9% of the study
cohort had COPD when identified from AHRs and 0.3%
when identified from EMRs.

The tetrachoric correlation for AHR and EMR case as-
certainment algorithms was 0.90 (95% CI: 0.89–0.90).
When stratifying the cohort by sex, the association
between AHR and EMR case ascertainment algorithms
was similar for males, with a value of 0.88 (95% CI:
0.88–0.90), and for females, with a value of 0.90 (95%
CI: 0.90–0.91). Across age groups, the correlation co-
efficient had values of 0.89 (95% CI: 0.88–0.90) for ages
18 to 44 years, 0.87 (0.86–0.87) for ages 45 to 64 years,
and 0.76 (95% CI: 0.74–0.77) for ages 65+ years.
The estimated hypertension prevalence using each data-

combining method for the entire study cohort is shown in
Fig. 2; the results stratified by sex and age group are
reported in Table 4. The prevalence estimates for AHR
and EMR case ascertainment algorithms had values of
30.9% (95% CI: 30.6–31.2) and 24.9% (95% CI: 24.6–25.2),
respectively, which were significantly different. The
estimated prevalence using the OR method was close
to the estimate for AHRs (34.4%; 95% CI: 34.1–34.8).
The AND method produced the lowest estimate. The

Table 2 Percent absolute relative bias (RB) and mean squared error (MSE) for computer simulation study (Continued)

5, 5% 0.00 0.02 0.49 0.10 0.57 6.96 0.01 0.62 0.08 1.92 9.37

0.20 0.02 0.49 0.10 4.82 8.11 0.01 0.62 0.08 9.11 9.70

0.50 0.02 0.48 0.09 8.71 10.08 < 0.01 0.61 0.08 11.79 18.41

OR Rule-based OR method, AND Rule-based AND method, RSSA Rule-based sensitivity-specificity adjusted method, PSSA Probabilistic-based sensitivity-specificity
adjusted; prevT denotes true population prevalence; prevY1

; prevY2
denotes outcome prevalence; ρY1Y2

denotes correlation between data sources; ρx denotes
average correlation amongst disease markers using the exchangeable correlation pattern. * in PSSA(*) denotes the number of model markers (i.e., covariates) for
PSSA method; we multiplied each MSE value by 100; The bolded simulation condition are consistent with the conditions observed for our numeric example
of hypertension

Fig. 1 Study flowchart
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RSSA method produced an estimate substantially
lower than the OR method.
For the PSSA method, the mean absolute correlation

values amongst the covariates included in Models 1
through 4 were: 0.18, 0.17, 0.13, and 0.16, respectively.

Model 1 produced the highest prevalence estimate of
35.9% (95% CI: 35.7–36.1). Model 4 had the lowest esti-
mate at 34.3% (95% CI: 34.1–34.5); these estimates were
significantly different. Model 4 resulted in the lowest
DIC (Table 5). As Table 4 reveals, similar patterns were
observed for the data-combining methods across age
groups as well as for males and females. The PSSA
model fit statistics also produced consistent results,
regardless of the stratification variables.

Discussion
Four data-combining methods that use information from
two error-prone data sources for ascertaining chronic
disease cases were compared. A simulation study was
conducted to evaluate the performance of the methods.
Then a numeric example for hypertension prevalence
estimation was applied to real-world data. The investi-
gated methods can benefit population health surveillance
programs that inform health promotion and chronic
disease prevention initiatives.
Under simulation conditions in which the two data

sources were highly correlated, the estimated prevalence
from the OR method was only slightly biased. For simu-
lation conditions in which the two data sources were not
highly correlated, the RSSA method had the lowest abso-
lute RB and MSE among all other data-combining
methods. Performance of the PSSA method was in-
fluenced by both the number of covariates and magni-
tude of their correlation.
In the numeric example, there was a high correlation

between the AHR and EMR case ascertainment algo-
rithms for hypertension, which provided a limited margin
of improvement for the data-combining methods. The
high degree of overlap left a small number of individuals
classified as disease cases in one data source but not the
other. Other studies have found a high degree of asso-
ciation between these two data sources for conditions with
well-defined diagnostic criteria, including hypertension
and diabetes [40, 61].
In our study cohort, the naïve estimates of hypertension

prevalence from AHRs and EMRs were higher than those
obtained from three Canadian studies, which had values
of 19.6 and 21.3% for AHRs [13, 31, 39] and 22.8% for
EMRs [46]. However, our results are consistent with those
from another Canadian study that estimated hypertension
prevalence to be between 27 and 30% using AHRs [5].
The patterns in terms of sex and age stratified prevalence
estimates were consistent with previous studies [5, 39, 49],
which lends face validity to our findings.
Amongst the rule-based methods, the AND and RSSA

methods produced estimates of prevalence that were
significantly lower than the OR method. This was some-
what surprising given the high degree of correlation be-
tween AHR and EMR case definitions. However, it also

Table 3 Socio-demographic characteristics and case
ascertainment markers for the study cohort

Characteristics Frequency %

Sex

Male 29,802 43.3

Female 39,075 56.7

Age group

18–44 years 33,007 47.9

45–64 years 26,243 38.1

65+ years 9627 14.0

Region

Non-Winnipeg 30,871 44.8

Winnipeg 38,006 55.2

Income quintile

Not found 8888 12.9

Q1 (lowest) 8858 12.9

Q2 10,278 14.9

Q3 12,154 17.6

Q4 14,106 20.5

Q5 (highest) 14,593 21.2

Charlson Comorbidity Score

0 57,649 83.7

1 to 2 10,348 15.0

3+ 880 1.3

AHR-defined diseases

Cerebrovascular disease 916 1.3

Congestive heart failure 558 0.8

COPD 1287 1.9

Coronary heart disease 2623 3.8

Dementia 625 0.9

Depression 7098 10.3

Diabetes 4176 6.1

Obesity 1623 2.4

Renal disease 916 1.3

Substance abuse 1387 2.0

EMR-defined diseases

COPD 181 0.3

Dementia 1130 1.6

Depression 11,005 16.0

Diabetes 6435 9.3

Obesity 15,191 22.1

Q Income quintile, COPD Chronic obstructive pulmonary disease
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points to the need for almost complete overlap between
the two data sources for the AND method to produce
similar results to the OR method. Prevalence estimates
for the PSSA method were similar for Models 1 through
3, but were significantly lower for Model 4 than for
Model 1. The low variation in prevalence estimates for
the first three models might be attributed to the low
mean correlation amongst the markers. Our simulation
study revealed that when the average correlation
amongst the marker was zero (i.e., independent
markers), the PSSA method produced prevalence esti-
mates that were unbiased. The low correlation amongst
the markers suggest that each marker was providing
unique information to the model.

This study has some limitations. First, the simulation
study focused on a limited number of simulation condi-
tions. At the same time, we selected scenarios that are
representative of real-world data [34, 35, 38]. Another
limitation is that we focused on only a single chronic
disease in our numeric example, and it had a rela-
tively high prevalence. Greater differences across data-
combining methods might be revealed for a chronic
disease having lower prevalence in the population. We
selected hypertension in part because a number of prior
studies have demonstrated the feasibility of using adminis-
trative data for case ascertainment.
The key strength of this study was the use of both

computer simulation and a real numeric example to

Fig. 2 Hypertension prevalence estimates (%) for data-combining methods in the numeric example. Note: Error bars represent 95% confidence
intervals; OR = rule-based OR method; AND = rule-based AND method; RSSA = rule-based sensitivity-specificity adjusted method; PSSA =
probabilistic-based sensitivity-specificity adjusted method

Table 4 Hypertension prevalence estimates (%) from administrative health records (AHRs) and electronic medical records (EMRs) in
the numeric example

Data Source/Method Males (95% CI) Females (95% CI) 18–44 years (95% CI) 45–64 years (95% CI) 65+ years (95% CI)

AHR only 31.7 (31.2–32.2) 30.3 (29.8–30.8) 10.3 (10.0–10.6) 40.5 (39.9–41.1) 75.3 (74.4–76.2)

EMR only 26.0 (25.5–26.5) 24.1 (23.7–24.5) 9.0 (8.7–9.3) 33.5 (32.9–34.1) 56.4 (55.4–57.4)

OR 35.7 (35.2–36.2) 34.0 (33.5–34.5) 12.8 (12.4–13.2) 45.3 (44.7–45.9) 78.8 (78.0–79.6)

AND 22.1 (21.6–22.6) 20.9 (20.5–21.3) 6.4 (6.1–6.7) 28.7 (28.1–29.3) 53.0 (52.0–54.0)

RSSA 33.4 (32.8–33.9) 31.3 (30.6–31.8) 11.9 (11.6–12.3) 42.2 (41.6–42.8) 73.8 (72.9–74.7)

PSSA, model 1 37.1 (36.8–37.3) 34.9 (34.7–35.1) 13.9 (13.7–14.2) 46.9 (46.7–47.3) 79.7 (79.4–80.0)

PSSA, model 2 37.0 (36.8–37.2) 34.7 (34.5–35.0) 13.6 (13.4–13.9) 46.1 (45.9–46.4) 79.4 (79.1–79.7)

PSSA, model 3 36.5 (36.2–36.7) 34.5 (34.3–34.7) 12.8 (12.6–13.0) 46.3 (46.0–46.6) 79.4 (79.1–79.8)

PSSA, model 4 35.1 (34.9–35.4) 33.2 (32.9–33.5) 12.2 (11.9–12.4) 44.8 (44.5–45.1) 79.1 (78.8–79.5)

CI Confidence interval, OR Rule-based OR method, AND Rule-based AND method, RSSA Rule-based sensitivity-specificity adjusted method, PSSA Probabilistic-based
sensitivity-specificity adjusted method, PSSA, model 1 covariates are sex, age group, region, income quintile, Charlson comorbidity score, chronic obstructive
pulmonary disease (A, E), diabetes (A, E), depression (A, E), dementia (A, E), obesity (A, E), cerebrovascular disease (A), congestive heart failure (A), coronary heart
disease (A), renal disease (A), substance abuse (A); PSSA, model 2 covariates are sex, age group, region, income quintile, chronic obstructive pulmonary disease (E),
diabetes (E), depression (E), dementia (E), obesity (E), cerebrovascular disease (A), congestive heart failure (A), coronary heart disease (A), renal disease (A),
substance abuse (A); PSSA, model 3 covariates are sex, age group, region, income quintile, chronic obstructive pulmonary disease (E), diabetes (E), depression (E),
dementia (E), obesity (E), coronary heart disease (A), renal disease (A), substance abuse (A); PSSA, model 4 covariates are sex, age group, chronic obstructive
pulmonary disease (E), diabetes (E), obesity (E), coronary heart disease (A), congestive heart failure (A), substance abuse (A); A and E denote disease-specific
covariates that were identified from AHRs and EMRs, respectively
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investigate data-combining methods. We compared
methods using two population-based data sources that are
available in many jurisdictions worldwide. Moreover, this
research investigated different sets of case ascertainment
markers when applying the PSSA method, to assess the
utility and feasibility of these markers as proxy measures of
hypertension.

Conclusions
Our research demonstrates that the choice of a data-
combining method depends on the characteristics of the
data. It is important for researchers to carefully consider
the expected magnitude of correlation amongst data
sources when estimating disease prevalence using a
data-combining method as well as the accuracy of the
individual data sources. When correlation between data
sources is very high, using the OR method or the AND
method will result in comparable estimates of pre-
valence. When correlation is low, however, we re-
commend using the OR method. If both data sources
tend to poorly capture true non-disease cases, then the
AND method is preferable.
In our simulation study, the RSSA method produced

large RB and MSE when we underestimated the specifi-
city of case ascertainment algorithms compared to when
true estimates of specificity of the case ascertainment
algorithms were defined. Therefore, the RSSA method
should be used with caution if accurate estimates of
sensitivity and specificity of case ascertainment algo-
rithms are not available from published sources. In the
simulation, the estimated prevalence from the RSSA
method was less biased when true prevalence was 20%
compared to 10%. Thus, we recommend using the RSSA
when true prevalence is higher, as it is less affected by
potentially sparse data.
For the PSSA method, we recommend including a rich

set of markers to estimate disease prevalence, especially
when true prevalence is low. The PSSA method works
best when correlation between the two data sources is

high, the average marker correlation is low and the true
prevalence is high.
The methods used in this study can be extended to

combine more than two data sources. For example,
future research could investigate including survey data
as a third data source. For example, the population-
based Canadian Community Health Survey is used to
produce prevalence estimates for many conditions,
including hypertension [62], even though it is prone to
recall bias. Combining this data source with both AHRs
and EMRs might be helpful to epidemiologists and public
health staff who routinely use only a single source to
report disease prevalence estimates. The PSSA models
only included covariates with complete information.
However, covariates could potentially be characterized by
missing data. Further research could extend this method
to account for missingness in the markers [63, 64].
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