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Yilei Zhang 

EXPLORING THE IMPORTANCE OF ACCOUNTING FOR NONLINEARITY IN 

CORRELATED COUNT REGRESSION SYSTEMS FROM THE PERSPECTIVE OF 

CAUSAL ESTIMATION AND INFERENCE 

The main motivation for nearly all empirical economic research is to provide 

scientific evidence that can be used to assess causal relationships of interest. Essential to 

such assessments is the rigorous specification and accurate estimation of parameters that 

characterize the causal relationship between a presumed causal variable of interest, whose 

value is to be set and altered in the context of a relevant counterfactual and a designated 

outcome of interest. Relationships of this type are typically characterized by an effect 

parameter (EP) and estimation of the EP is the objective of the empirical analysis. The 

present research focuses on cases in which the regression outcome of interest is a vector 

that has count-valued elements (i.e., the model under consideration comprises a multi-

equation system of equations). This research examines the importance of account for 

nonlinearity and cross-equation correlations in correlated count regression systems from 

the perspective of causal estimation and inference.  

We evaluate the efficiency and accuracy gains of estimating bivariate count 

valued systems-of-equations models by comparing three pairs of models: (1) Zellner’s 

Seemingly Unrelated Regression (SUR) versus Count-Outcome SUR - Conway Maxwell 

Poisson (CMP); (2) CMP SUR versus Single-Equation CMP Approach; (3) CMP SUR 

versus Poisson SUR. 

We show via simulation studies that it is more efficient to estimate jointly than 

equation-by-equation, it is more efficient to account for nonlinearity. We also apply our 
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model and estimation method to real-world health care utilization data, where the 

dependent variables are correlated counts: count of physician office-visits, and count of 

non-physician health professional office-visits. The presumed causal variable is private 

health insurance status. Our model results in a reduction of at least 30% in standard errors 

for key policy EP (e.g., Average Incremental Effect).  Our results are enabled by our 

development of a Stata program for approximating two-dimensional integrals via Gauss-

Legendre Quadrature.  

Joseph V. Terza, Ph.D., Chair 
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Chapter 1: Introduction 

1.1: Overview 

The main motivation for nearly all empirical economic research is to provide 

scientific evidence that can be used to assess causal relationships of interest. Essential to 

such assessments is the rigorous specification and accurate estimation of parameters that 

characterize the causal relationship between a presumed causal variable of interest, whose 

value is to be set and altered in the context of a relevant counterfactual and a designated 

outcome of interest. Relationships of this type are typically characterized by an effect 

parameter (EP) and estimation of the EP is the objective of the empirical analysis. The 

present research focuses on cases in which the regression outcome of interest is a vector 

that has count-valued elements (i.e., the model under consideration comprises a multi-

equation system of equations). This dissertation examines the importance of account for 

nonlinearity and cross-equation correlations in correlated count regression systems from 

the perspective of causal estimation and inference.  

1.2: Literature in Application 

Correlated multivariate count outcomes are common in many areas, including:1 

biology – e.g., counts of RNA sequences (see, e.g., Zhang et. al, 2017), where they 

 
1 There are many other applications of the correlated count regression models in various 

fields.  Examples from health economics include Atella et al. (2008), Cameron, Trivedi et 

al. (2004). Dong et al. (2011), Serhiyenko et al.(2018), Famoye (2010a), Famoye 

(2010b), Famoye (2015), Winkelmann (2000), Winkelmann (2012). Examples from other 

disciplines such as forest science include: Affleck et al. (2016), Fu et al. (2017), Ma et al. 
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examined regression models for multivariate counts with flexible mean–covariance and 

correlation structure using the counts data of DNA or RNA fragments within a genomic 

interval; civil engineering – e.g., crash related morbidity and mortality data (see, e.g., Ma 

et al., 2008), where they offered a multivariate Poisson-lognormal specification that 

simultaneously models crash counts by injury severity; and healthcare utilization metrics 

(see, e.g., Chib and Winkelmann, 2001); healthcare resources and costs: Mihaylova, 

Briggs, O’Hagan, & Thompson (2011) conducted a systematic review on models 

analyzing healthcare resources and costs. They suggested that future work should focus 

on using mixture models that account for correlation structures, specifically: “A major 

limitation of the implementation of more complicated models in the field of randomized 

trials is the need for the analytical framework to accommodate both costs and health 

effects and evaluate the summary cost‐effectiveness measures. In doing so, the analysis 

should allow for the correlation structure of different outcomes. The future development 

of such approaches in different situations is recommended, perhaps especially for two-

part models or mixture models (Mihaylova, Briggs, O’Hagan, & Thompson, 2011).” 

 

 

(2015), Mehta (2014), Parresol et al. (2001), Vonderach et al. (2018), and also in 

transportation science: Afghari et al. (2018), Lord et al. (2008), Sfeir et al. (2020), 

Zamzuri (2016), in finance and risk analysis: Chua et al (2019), McElroy et al. (1988), 

Guikema et al. (2008), in pharmacological and biological research: Leung et al (1992), 

Gueorguieva (2001), and in sociology research: King (1989). 
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1.3: Literature in Methodology 

The methodological work that has been done on correlated count regression 

model can be traced back to a few seminal works on Seemingly Unrelated Regression 

(SUR). Zellner (1962) is the first to propose a SUR framework where he introduces the 

linear seemingly unrelated regression model and showed efficiency gains of the SUR 

approach, Gallant (1973) extended Zellner’s framework to non-linear case.  

A strand of literature investigates multivariate count models (Gourieroux and 

Monfort (1984), Hausman et al. (1984), King (1989) and Winkelmann (2000)]. 

Gourieroux and Monfort (1984) specified a bivariate Poisson model using the nonlinear 

Least Square method to avoid the problems involved in integral computation related to 

maximum likelihood estimation. Gourieroux and Monfort (1984) specified a mixture 

model and analytically derived the likelihood function by assuming errors’ to be gamma 

distributed, they eventually arrived at negative binomial model under certain regularity 

assumptions; note that their mixture model is based on a multiplicative structural errors 

that only allows for overdispersion via a parameter that also controls the structural errors 

correlation. King (1989) proposed a bivariate Poisson model with Poisson errors. 

Winkelmann (2000) gave a weighted least square estimator with Negative Binomial 

specification. His model improved upon the previous ones by allowing for separate 

estimation of correlation and dispersion, but it still only allows for over-dispersion.  A 

common limitation of these models is that they are restricted in the covariances they can 

accommodate. 

Researchers have attempted to come with up models with less restricted or un-

restricted covariance. A few recent works include Famoye (2015) and Andreassen & 
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Jensen (2018). Famoye (2015) proposed a generalized restricted Poisson model, while 

Andreassen & Jensen (2018) specified the fully parametric model by deriving a three-

dimensional probability function based on Negative Binomial distributed margins. This 

model relies on maximum likelihood estimation (MLE), and it is shown to be almost 

computationally infeasible when the dimension of the outcomes goes higher than four. 

Historically, Aitchison and Ho (1989) offered the first general mixture model, 

where the conditional probability mass function’s integrand component is specified with 

a marginal term and a cross-equation heterogeneity term. In this model, the cross-

equation heterogeneity term is integrated out to get the marginal distribution of the 

outcomes given the covariates. This type of model is easily generalizable, while allowing 

for heteroskedasticity and a flexible cross-equation distribution, which enables greater 

generality on the outcomes’ covariance structure than prior work.  Since our model is a 

type of mixture model, it inherits these class properties. 

As previously discussed, a common problem with mixture models is that the 

likelihood functions required for MLE involve high dimension integrals that are difficult 

to calculate. The related literature takes several approaches towards addressing the 

problem.  At one end are studies, like Aitchison and Ho (1989), which leverage 

quadrature or simulation methods to directly compute the integrals and estimate the 

model.  At the other end are studies that attempt to circumvent the problem.  Such studies 

broadly fall into two camps: Bayesian methods and frequentist methods. 

Bayesian approaches are frequently able to avoid the direct computation of the 

likelihood and instead employ simulation methods – e.g., Metropolis Hasting or Markov 

Chain Monte Carlo – to derive their posterior distributions and calculate the relevant 
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expectations.  Examples in this vein include Ma et al. (2008), Mehta (2014), and Chua & 

Tsiaplias (2019). Ma et al. (2008) specified multivariate Poisson-lognormal likelihood 

function and the estimation is achieved by Bayesian methods. Similarly, Mehta (2014) 

specified multivariate Conway-Maxwell-Poisson marginal with multivariate normal 

cross-equation heterogeneity, the estimation is also achieved by Bayesian methods. Chua 

& Tsiaplias (2019) proposed a lognormal mixture model with both quadrature method 

and Expectation Maximization (EM) method for integration approximation.  

Frequentist have also sought to avoid the integration problem and typically do so 

by either (i) transforming count-outcomes into continuous or (ii) treating count-outcomes 

as though they were continuous, and thereby approximating them.  Particularly 

interesting examples of (i) are Parresol (2001) and Vonderach (2018), who are interested 

in forest size and characteristics.  Rather than using the number of trees in a forest as the 

outcome, they transform the problem instead use the total mass of all trees in the forest, 

which is a continuous response variable.  An example of (ii) occurs whenever one 

estimates a linear regression for a count outcome. 

We close by observing that the literature on Seemingly Unrelated Regressions 

(SUR) is the key inspiration for the core conjecture of this paper – that joint estimation is 

more efficient than equation-by-equation estimation.  This additional efficiency was first 

observed by Zellner (1962) in systems of linear equations estimation for continuous 

outcome variables and it was extended to systems of non-linear equations estimation for 

continuous outcome variables by Gallant (1973).  A key restriction of both of these 

seminal works is that they assume normal, additively separable errors.  McElroy and 

Burmeister (1988) subsequently showed that this intuition also applies to non-normal 
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errors by non-linear weighted least squares.  This approach has been subsequently 

generalized and applied in a variety of studies – e.g., Delgado (1992), Parresol (2001), 

Marshall (2003), and Vonderach (2018). 

1.4: Objectives 

The statistics and econometric literature focused on causal inference in such 

outcomes does not typically examine the efficiency gains of linear SUR versus nonlinear 

SUR models, and joint estimation versus equation-by-equation estimation. Inspired by 

Zellner and Gallant’s work where they demonstrate significant efficiency gains to joint 

estimation when the outcome variables are specified as correlated, continuous function of 

the parameters and covariates. We thus conjecture that similar efficiency gains also 

obtain when the outcomes are not-continuous, but rather correlated count-valued.  

The primary objective of the study is to produce evidence that is informative with respect 

to answering the following question: “Is the analytic and programming effort needed to 

account for nonlinearity in such models ‘worth it’ relative to the (i) conventional linear 

specification and estimation approach, the (ii) single-isolated-equation estimation 

approach, and the (iii) specification that is absent of dispersion flexibility?” 

To investigate this family of questions, we introduce a general (parametric) 

bivariate count model, wherein the joint distribution of the outcome variables is 

decomposed into two marginal distributions and a bivariate normal distribution, which 

links the two marginals together.  We then employ simulation studies to compare the 

efficiency of: (1) Zellner’s linear SUR model versus our Count-Outcome SUR model in 

terms of the policy effect parameters – either the average incremental effects (AIE, or 

average treatment effects (ATE) -- (2) joint estimation versus equation-by-equation 
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estimation, (3) Count-Outcome SUR model that does not account for dispersion 

flexibility versus dispersion flexible Count-Outcome SUR; we are particularly interested 

in the accuracy and efficiency gains of treatment effect measures (AIE or ATE).  

1.5: Main Findings and Significance 

We show via simulation studies that it is typically more efficient and accurate to 

estimate these models using our correlated count regression system than it is to estimate 

them using linear seemingly unrelated regression models developed by Zellner (1962): 

the percent bias of effect parameter is reduced by at least 89%, and the averaged absolute 

percent bias (AAPB) of our effect parameter is reduced by at least 49% in the case of 

Conway-Maxwell-Poisson marginals. 

We find that there are significant efficiency gains to joint estimation in the case of 

Poisson marginals. For instance, at certain parameter values, joint estimation results in 

standard errors for the Average Incremental Effect that are at least 40% smaller than 

those resulting from equation-by-equation estimation.  In the case of Conway-Maxwell-

Poisson (CMP) marginals, our findings are mixed -- there are certain parameter values 

with no efficiency gains attributable to joint estimation and others with small efficiency 

gains attributable to joint estimation.  The general finding, however, is clear: there are 

typically efficiency gains to joint estimation. 

We also find that accounting for dispersion flexibility matters. Our model with 

dispersion flexible marginals performs with more accuracy and efficiency in terms of 

effect parameters (AIEs) than the model with Poisson marginals (no flexibility in 

dispersion). For instance, when the cross-equation correlation rho = 0.75, the percent bias 

of effect parameter is reduced by 35%, and the averaged absolute percent bias (AAPB) of 
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our effect parameter is reduced by 30% by introducing dispersion parameters to our 

model.  

To explore the ramifications of this finding, we consider an application to health 

care, wherein a question of substantive interest is the extent to which the use of health 

services depends on insurance coverage (Chib and Winkelmann, 2001). Specifically, we 

employ data from the 1987 National Medical Expenditure Survey Data to estimate the 

policy effect of private health insurance status on two correlated measures of healthcare 

utilization: the number of doctor office visits; and the number of non-doctor office visits. 

Estimation of our joint model using Poisson marginals gives that the estimated ATE of 

having private insurance on the number of doctor office visits is 1.88 and the ATE of 

having private insurance on the number of non-doctor office visits is 4.00.  Further, we 

find that joint estimation of our model results in at least a 30% reduction in the standard 

errors of the ATE as compared to equation-by-equation estimations. 

Our model is estimated via MLE.  Yet, our likelihood function contains several 

improper integrals, which do not admit closed forms.  To surmount the associated 

technical challenges, we develop a Stata program for numerically approximating any 

two-dimensional (improper) integrals via Gauss-Legendre Quadrature methods.  Our 

validation work shows the program to be fast and accurate, and we leverage the program 

as part of our estimation routine.  The program will soon be available as a Stata package. 

Our work contributes to a growing literature that explores systems of equations 

models with count-valued outcomes -- e.g., Aitchison and Ho (1989), Famoye (2015), 

Gourieroux and Monfort (1984), and King (1989), among others.  These papers, 

however, make a key assumption: joint estimation is more efficient than equation-by-
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equation estimation. Our paper is the first, to our knowledge, to explicitly investigate and 

verify this assumption, with findings of large efficiency gains; we also relax certain key 

assumptions present in these earlier works and provide a new, more flexible numerical 

integration methods. Since commonly available estimation packages (e.g., in Stata) only 

offer equation-by-equation count-value models, a broader implication of our work is that 

many practitioners are leveraging larger standard errors than necessary. 

1.6: Organization of the Dissertation 

The balance of this dissertation is organized as follows. Section 2 introduces the 

model and describes its estimation, including the computation of the average incremental 

effect in the General Potential Outcomes Framework; Chapter 3 proposes the estimator 

for the deep parameters and the AIE in the seemingly unrelated count regressions context 

using Poisson marginals and Conway-Maxwell-Poisson marginals as examples. Chapter 

4 covers our Gauss-Legendre Quadrature program and its validation. Section 5 presents 

the simulation study results exploring the importance accounting for nonlinearity, cross-

equation correlation, and dispersion flexibility in count-outcome SUR Models. Section 6 

discusses the application to healthcare utilization data. Section 7 concludes and discusses 

limitations and future work.  
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Chapter 2: Potential-Outcomes-Based Causal Effect Specification, Identification, 

Estimation, and Inference In the Correlated Count Regressions Context 

In this chapter, the goal is to specify and estimate the causal effect of a presumed 

policy variable on a count-valued outcome using correlated dispersion-flexible count 

regression (CDCR) models to accommodate potential cross-equation correlations and 

dispersion flexibility. I begin with a general review of the PO framework as discussed in 

Terza (2019a). After detailing relevant concepts within the PO framework, I will use the 

concepts to specify the AIE in correlated count data context using the newly developed 

Correlated Dispersion Flexible Count Regression model, which I will discuss briefly in 

this chapter and detail (specifying their probability mass functions, conditional mean 

functions and the policy effects and the standard errors of the policy effects) in the next 

chapter. As already noted, and as it will be clearer later, casting the specification and 

estimation of the AIE is important to make conditions required for causality explicit.  

2.1: Specification of the Treatment Effect of Interest in the Potential Outcomes 

Framework 

The overarching objective of virtually every research study in empirical health 

economics, health services research and health policy analysis is to provide scientific 

evidence that can be used to assess the causal relationship between a X, whose value is to 

be exogenously set and altered in the context of the relevant counterfactual, and a 

designated outcome of interest Y.2  For this reason, we take the general potential 

 
2Henceforth, the symbol Y is used as the global replacement for the phrase “outcome of 

interest.”  
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outcomes framework (GPOF) detailed by Terza (2019a) as the appropriate setting for our 

discussion of the specification, identification and estimation of a policy-relevant EP 

based on the correlated dispersion flexible count regression model. In the GPOF, the 

distinction is drawn between two versions of the X: 

 

X ≡ the random variable representing the observable (factual) version of the 

distribution of the X; X is the element of the data generating process (DGP) from 

which the sampled values of the X are drawn.3 

and 

X* ≡ the random variable representing a hypothetical (counterfactual) 

exogenously mandated version of the X; it is not an element of the DGP. 

 

There are, likewise, two versions of the Y: 

  

Y ≡ the random variable representing the factual version of the distribution of the 

Y; Y is the element of the DGP from which the sampled values of the Y are 

drawn. 

and 

 

  

3 The DGP is defined as the joint distribution from which data on the observable data can 

be drawn. 
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Y
X*  ≡ the random variable representing the distribution of potential outcomes, 

defined as the distribution of values of the Y that would have manifested for a 

particular X*, which is not an element of the DGP. 

 

In the present study, we focus on specification, identification, estimation and inference 

for a causal effect parameter when the Y is a vector of count variables that are potentially 

correlated. For example, in an illustration discussed later, we consider the case in which 

the Y is 

 

(
Number of phyisican offfice visits

Number of non-phyisican offfice visits
) 

 

and the X is binary variable that represents the private health insurance status of a patient. 

Causal analysis and inference in the GPOF are based on a counterfactual in which: 

 

I:  a pre-counterfactual version of X* is set (X*  =  Xpre), to which there 

corresponds a potential outcome (Y
X*   =  YXpre); 

and 

II: as a “what if” thought experiment, Xpre is incremented by Δ so that the post-

counterfactual version of X* is Xpost  =  Xpre  +  Δ, to which there also 

corresponds a potential outcome (YXpost   =  YXpre+Δ). 
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The relevant EP is typically formulated as a function of the moments of YXpre+Δ and 

YXpre+Δ.  In the remainder of the discussion, we will focus on the following EP, the 

average incremental effect, which is 

 

AIE(Δ)  =  E[YXpre  +  Δ  ‒  YXpre]       

          (1) 

 

Where Δ = 1 ≡ an incremental change to the pre-counterfactual status of private insurance 

for each induvial in the population. In our empirical example of the policy effects of 

private health insurance on health care utilizations,  Δ𝑖 = 1 means individual i 

counterfactually switch from having no private insurance to having private insurance. On 

the contrary, Δj = − 1 means individual j counterfactually switch from having private 

insurance to having no private insurance. Note that when the policy variable is binary and 

Δ𝑗 = − 1, the AIE reverts to the ATE. 

Using the GPOF in this way to specify the EP based on a policy relevant 

counterfactual (e.g., (1) or (2)] ensures that this parameter is indeed causally interpretable 

– the change in the potential outcome is exclusively attributable to the imposed 

counterfactual change in the X.  Moreover, it serves to clearly and rigorously establish 

the EP as the estimation objective at the outset. 

There is a fundamental disconnect between the inherently counterfactual targeted 

EP and the relevant DGP – the latter produces observable data, while the former is based 

on random variables from which data cannot be sampled (for the most part). This raises 

two questions: 
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How do we establish statistical identification of the EP, given that such 

identification must be based on the relevant DGP? 

How do we consistently estimate the inherently counterfactual (unobservable) 

targeted EP using only DGP-produced factual (observable) sample data? 

 

We explore answers to these questions in the context of the version of the GPOF in which 

the Y is fractional.  Let us consider the case in which the X is exogenous. 

2.2: Fully Parametric (FP) Specification of Models in the Potential Outcomes 

Framework 

Effect parameters like AIEs and ATEs are not directly estimable from data 

because Xpre and YXpre  are counterfactual – they do not represent observable statistical 

populations from which samples can be drawn. As discussed by Terza (2019a and 

2019b), this gap between the estimation objective (the inherently counterfactual EP) and 

the observable data (the data generating process) can be bridged via parametric 

specification of the conditional probability distributions of the relevant potential outcome 

(Y
X*) given a vector of control covariates (Xo). To this end, following the approach 

proposed by Terza (2019a), I posit the following fully parametric structural specification 

for the distribution of (Y
X*|Xo): 

 

pmf(Y
jX*  | Xo)=f(Yj  |  Xjo)(Yj, X, Xjo; π) 

          (2) 

 



15 

where pmf(YjX*  | Xo)  is the conditional probability mass function of Y
X* given Xo, for j 

= 1, 2 and where  the “deep” parameters of the model are π. 

From the pmf expressions, it follows that the conditional mean of YjX*  is 

 

E[Y𝑗X*  | Xo] = m𝑗(X*, Xjo;  𝜋), 

          (3) 

where  

mj(X*, Xjo;  π) =  E[YjX*  | Xo] = ∫ YjX*

∞

−∞

f(Y
jX

*   |  Xjo)(YjX*, X*, Xjo; π) dY
jX

* 

For j = 1, 2 

Without loss of generality, we for now omit the subscript j (a.k.a., the bivariate outcome 

context) for now and look at the general expression of AIE.  

Using the conditional mean function expression and the law of iterated 

expectation (LIE), the AIE can be written as  

 

AIE(∆) = E[m(Xpre + Δ, Xo;  𝜋)] −  E[m(Xpre, Xo;  𝜋)] 

          (4) 

 

It is relatively easy to show the under general conditions, given a consistent estimate of π 

(say π̂), AIE can be consistently estimated using the following sample analog to the AIE 

expression above. 
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AIE(∆)̂  = ∑
1

n

n

i=1

{m(Xi
pre + Δi, Xoi; π̂)] - E[m(Xi

pre, Xoi; π̂)} 

          (5) 

 

where Xi
pre and Δi are the exogenously determined values of Xi

pre and Δ for the i-th 

observation in a sample of size n (i = 1 , … , n); and Xoi is the sampled value of Xo. 

2.3: Estimating the Treatment Effect of Interest 

In this section, I will first introduce the concept of Conditional Potential 

Outcomes Model (CPOM), first proposed by Terza (2019a), in the generic context, and 

also in the context of our particular model: the correlated count regression, then review 

conditions under which DGP version of CPOM is legitimate, and lastly detail the 

asymptotic properties, especially the asymptotic standard error of the AIE estimator. 

The conditional potential outcomes model (CPOM) specifies all moments of the 

distribution of (Y
X*  | X) up to a given order. The class of CPOM that we call minimally 

parametric (MP) (fully parametric (FP)]) comprises those for which it is assumed that, 

E[Y
X* | X]  = m(X, Xo;  π) 

( pmf /pdf (Y
X*  | Xo) = f(Y

X* | Xo)(YX* , Xo; π)), 

where m(.) is a known function, π is the vector of parameters. The FP CPOM of course 

implies a known form of the MP CPOM.  

In our correlated count regression context, the CPOM is fully parametric, since 

we specify the joint probability mass function of the two correlated outcomes, which is 

detailed in the equations at the beginning of the next chapter. Generically, our FP CPOM 

has the form: f(Y1, Y2 | X, Xo; π) =  f([Y
1X*,

Y
2X*] | Xo)(Y1X*, Y2X* , Xo; π)]. This of course 
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implies that we have the knowledge of the conditional mean function (first order) and 

higher order conditional moment. Note that it might or not might have closed forms. 

The identification of the relevant EP is tantamount to the identification of the 

relevant version of the CPOM.  As is made clear by the expression of estimated AIE, 

consistent estimation of the EP in (4) hinges on the existence of a consistent estimate of 

𝜋. With this in mind, and under conditions articulated by Terza (2019a), the following is 

legitimate: 

 

pmf/pdf(Y | Xo) = f(Y
X*  | Xo)(Y, X, Xo; π). 

          (6) 

 

In other words, under certain condition4, the relevant DGP can be obtained from our fully 

parametric specification by replacing the counterfactual random variables Y
X*  and X* 

with the observable random variables Y and X, respectively.  

 
4 Here, we formally establish conditions under which the above replacement holds. In the 

context of the FP CPOM, in which it is implicit that (a) Xo induces conditional 

independence between Y
X*  and X, if (b) conditional outcome invariance holds and (c) 

overlap holds, then pmf/pdf(Y | Xo) = f(Y
X*  | Xo)(Y, X, Xo; π).  For context, Terza 2019 

(a), defines conditional independence under the GPOF as follows: let A, B and C be 

vector or scalar variates, then B induces conditional independence between A and C if 

pmf/pdf(A|B,C) = pmf/pdf(A|B).  Additionally, the definition of overlap under the GPOF 
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From above replacement, it follows that π can be consistently estimated as the 

MLE obtained as  

 

π̂ = argmax ∑ q(π̌, Zi)

n

i=1

 

          (7) 

Where 

 

q(π̌, Zi) = 𝑙𝑛[f(Y
X*  | Xo)(Y𝑖, X𝑖, Xoi; π̌)] 

          (8) 

and  

Zi = [Y𝑖, X𝑖, Xoi] 

 

In addition to consistently estimate the deep parameters π , we need the the 

asymptotic standard errors of the effect parameters (EP) – the square root of estimated 

asymptotic variance. Terza (2016a and b) shows that the asymptotically correct standard 

error of AIE is: 

Asy VAR(AIE) = (
∑ ∇πaiei

̂n
i=1

n
) (AVAR(π̂)̂ )(

∑ ∇πaiei
n
i=1

n
)

'

+
∑ (aie

i
̂ − AIE)

2n
i=1

n
 

 

 

is the following: overlap holds if 0 < p(X| Xo)( x | xo) < 1, where p(X| Xo)( x | xo) denotes 

the conditional probability mass/density function of X given Xo = xo evaluated at X = x. 
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where aiei is shorthand notation for aie(Xpi
pre

, Δi, Xoi; π̂), AVAR(π̂)̂  is the estimated 

asymptotic covariance matrix of π̂, ∇πaie denotes the gradient of aie with respect to π, and 

∇πaiei
̂  represents ∇πaie with Xpi

pre
, Xoi and π̂ substituted for Xp

pre, Xo and π respectively. 

Now we have detailed the general fully parametric specification of our correlated 

count regression model in the Potential Outcomes Framework. In Chapter 3, we will 

introduce a particular fully parametric model: Correlated Dispersion-Flexible Count 

Regression (Seemingly Unrelated Count Regressions) model and cast our causal 

inference discussion into this model. 

  



20 

Chapter 3: A Proposed Estimator for the Deep Parameters and the AIE in the     

Seemingly Unrelated Count Regressions Context 

The main objective of this chapter is to introduce our model -- a novel fully 

parametric specification that is particularly suitable for corelated count-valued data. 

Understanding the specification of this model is essential to compare and contrast with 

existing system-of-equations models that, for instance, estimate linear system of 

equations, or impose restriction on the correlation structures across equations. By doing 

so, we introduce the conditional probability mass functions, and then introduce the 

underlying likelihood functions for MLE of all deep parameters. Then we provide the 

formulation and estimation of our effect parameter (AIE) based on the conditional mean 

functions.  

There are two major components under Chapter 3. In Section 3.1, introduce the 

generic version of our newly proposed model, which is an extension of Aitchison & Ho 

(1989) and discuss both its estimation of deep parameters via maximum likelihood 

methods and the estimation of the effect parameter (AIE); to lay the mathematical 

backgrounds necessary for the analyses in Chapters 5 and 6, to concretely illustrate 

abstract concepts, we focus on the cases of Poisson as our baseline model, and extend our 

baseline example to Conwy-Maxwell-Poisson marginal distributions, which is a 

distribution that accounts for dispersion flexibility that we introduce in Section 3.2.  
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3.1: The Generic Correlated Dispersion-Flexible Count Regression Model and        

the Conventional Poisson Specification 

Motivated by the potential short-comings of conventional linear system of 

equation estimation models (e.g, Zeller 1962), we focus on count-valued outcomes. In 

this section, we introduce the mathematical framework for the analysis.  

Specifically, in Section 3.1.1, I first introduce the generic correlated dispersion-

flexible count Potential Outcomes specification (i.e., the probability mass functions 

(PMF)), then I present an example, which utilizes the classic Poisson marginals. In this 

example, I provide the expressions of the PMF, the conditional mean functions, and the 

likelihood functions. As discussed before, the focus in this dissertation is on policy effect 

estimation for the case in which the outcomes (the Ys) are count valued, I thus also 

provide the expressions of the effect parameter and its standard errors. 

3.1.1: Probability Mass Function 

A single observation of our data is a quadruple (Y1, Y2, X,  X0), where (Y1, Y2) is 

the bivariate, count-valued outcome vector, X0 is a vector of covariates, and X is the 

policy variable of interest.  Taking (X,  X0) as given, the conditional distribution of 

(Y1, Y2) is  

 

f(Y1, Y2 | X, Xo; π) = ∫ ∫ [f(Y1  |  X,  X0, η1)(Y1, X, Xo, η
1
; 𝜋) ×

∞

─ ∞

∞

─ ∞

 

f(Y1 | X, X0, η2)(Y2, X, X0, η
2
; 𝜋) g(η

1
, η

2
; 𝜋)] dη

1
 dη

2
 

          (9) 
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where: (i) π is the vector of parameters, (ii) f(Yj |  Xp,X0, ηj)
(Y

j
, X, X0, η

j
; π) is the 

conditional marginal distribution of Yj given (X, X0, η
j
) for j = 1, 2; (iii) (η

1
, η

2
) are the 

“structural cross-equation heterogeneity terms” that serve to link the marginal 

distributions together and are independent of the covariates; and (iv) g(η
1
, η

2
; 𝜋) is the 

probability density function of (η
1
, η

2
).  Without loss of generality, we take g(η

1
, η

2
; 𝜋) 

to be a bivariate normal distribution with mean vector 0, marginal standard deviations of 

1, and correlation parameter of ρ
12

. Formally stated,  

 

(η
1
, η

2
)  ~  N (0 ,  Σ)  

          (10) 

where 

Σ  = [
1 ρ

12

ρ
12

1
] 

          (11) 

We thus write g(η
1
, η

2
; ρ

12
) instead of g(η

1
, η

2
; 𝜋) for the balance of the paper. 

This type of “mixture” probability mass function is well-studied in the count-

outcomes literature -- e.g., Aitchison and Ho (1989). One of the key advantages of this 

type of model is that it relaxes strong homoscedastic features of earlier bivariate count 

models and allows for flexible heteroscedasticity.  

Example (Case I): Poisson Model PMF 

For the Poisson case and j = 1, 2, the marginal distribution of the j-th outcome is,  
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f(Yj | X, X0, η1)(Yj, X, X0, η
j
; 𝜋)  = 

( λj)
Yj exp(- λj)

Yj!
 

          (12) 

 

where  

 

λj  = exp(Xβ
j
 + X0β

0j
 + σjηj

) 

          (13) 

The vector of parameters is thus π = [β
1,

 β
01,

 β
2,

 β
02,

 σ1, σ2, ρ
12

].5  

3.1.2: Conditional Mean Functions 

Given  X0, the “Average Incremental Effect (AIE)” is the expected change in the 

outcome vector that results from an increase in the policy variable from Xpre to Xpre + Δ  

where Δ  > 0 is the size of the increment.  Formally stated,  

 

AIE(Δ) = E[m(Xpre + Δ, Xo;  π)] −  E[m(Xpre, Xo;  π)] 

          (14) 

 

where m(.) is the expected value of the outcome vector given (X,  X0), i.e.,  

 

σ1 and  σ2 play roles analogous to the marginal standard deviations of η
1
 and η

2
 

respectively.  Thus, if (η
1
, η

2
) were not standardized to have variances of one, then the 

Poisson case would fail to be identified.  We model the marginal variation in (η
1
, η

2
) 

through (σ
1
, σ2) to simplify the integration come estimation. 



24 

 

m(X, X0; 𝜋)  =  E[Y | X,  X0; 𝜋] 

= [
∑ [y

1
∙∞

y1=1  f(Y
1
 = y

1
 | X, X0; π)]

∑ [y
2
∙∞

y2=1  f(Y
2
 = y

1
 | X, X0; π)]

] 

          (15) 

where  

  

f(Y
j
 = y | Xpre, X0; 𝜋) = ∑ f(Y1, Y2 | X, X0;  𝜋)

∞

yj=1

 

          (16) 

 

is the marginal distribution of Yj for j = 1, 2. We refer to m(X,  X0; π) as the “conditional 

mean function.”   

The AIE is a key object for the analyses in Chapters 5 and 6 and general policy 

analysis since it estimates the shift in outcomes resulting from a change in policy.  To 

foreshadow, in Chapter 6, we use the AIE to estimate the impact of expansions of health 

insurance on health care utilization and evaluate hypotheses concerning this estimate. 

Example (Case I): Poisson Model Conditional Mean Function 

 In the case of the Poisson specification, we have that   

 

m(X, X0; π) = [
 E(Y1| X, X0; π)

 E(Y2| X, X0; π)
] 

= [
∫ exp(Xβ

1
 + X0β

01
 + σ1η

1
)∫ g(η

1
,η

2
;ρ

12̂
)dη

2

∞

-∞
dη

1

∞

-∞

 ∫ exp(Xβ
2
 + X0β

02
 + σ2η

2
) ∫ g(η

1
,η

2
;ρ

12̂
)dη

1

∞

-∞
dη

2

∞

-∞

] 
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          (17) 

at the parameter vector π = [β
1,

 β
01,

 β
2,

 β
02,

 σ1, σ2, ρ
12

]. To see this, write for j = 1, 2, 

E(Yj | X, X0; π) = ∫ E (Yj | X, X0, η
j
; π) fηj | X, X0

(η
j
 | X, X0; π) dη

j

∞

-∞

 

= ∫ E (Yj | X, X0, η
j
; π) ∫ 𝑔(𝜂1, 𝜂2; 𝜌12̂)𝑑𝜂−𝑗

∞

−∞

dη
j

∞

-∞

 

= ∫ exp (Xβ
j
 + X0β

0j
 + σjηj

) ∫ g(η
1
,η

2
;ρ

12̂
)dη

-j

∞

-∞

∂η
j

∞

-∞

 

           (18) 

where E (Yj | X, X0, η
j
; π) is the conditional expectation of Yj  given (X, X0, η

j
), where 

fηj|X,X0
(η

j
 | X, X0; π) is the conditional distribution of η

j
 given (X, X0), and where 

∫ g(η
1
,η

2
;ρ

12̂
)dη

-j

∞

-∞
 is the marginal distribution of 𝜂𝑗. The first equality follows from the 

definitions of marginal and conditional probabilities; see below.  The second equality 

follows from the fact that the structural cross equation errors are independent of the 

covariates under the overall specification, so the conditional distribution equals the 

marginal distribution, i.e., fηj|X,X0
(η

j
 | X, X0; π) = ∫ g(η1, η2; ρ12̂)dη−j

∞

−∞
. The last 

equality follows from the Poisson assumption. 

To elaborate on the first equality in the display equation, let A, B, and C be 

random variables with joint distribution fABC(A, B, C) > 0, where A is discrete, and B 

and C are continuous with support equal to the real line and where f(.) is continuous.  

Then, 
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E(A | B = b) = ∫ E(A| B = b , C = c)fC|B(c|b)db

∞

−∞

. 

          (19) 

 

The argument is straightforward, 

 

∫ E(A|B=b, C=c)fC|B(c|b)dc

∞

−∞

= ∫ ∑ a fA|BC(a|b,c)fC|B(c|b)dc

∞

𝑎=1

∞

−∞

 

= ∑ a ∫ fA|BC(a|b,c)fC|B(c|b)dc

∞

−∞

∞

𝑎=1

 

= ∑ a ∫ fABC(𝑎, 𝑏, 𝑐)/fB(𝑏)dc

∞

−∞

∞

𝑎=1

 

= ∑ a fAB(𝑎, 𝑏)/fB(𝑏)

∞

𝑎=1

= E(A|B=b) 

 

The first equality is definitional.  The second equality follows by Fubini's Theorem since 

continuous functions are measurable.  The third equality follows from the fact that  

fA|BC(a|b,c)fC|B(c|b) = (fABC(𝑎, 𝑏, 𝑐)/fBC(𝑏, 𝑐))(fBC(𝑏, 𝑐)/fB(𝑏)) = fABC(𝑎, 𝑏, 𝑐)/fB(𝑏) 

by the definition of marginal and conditional probabilities.  The fourth equality follows 

from the definition of marginal probability.  The last equality is definitional. 

By setting 𝐴 = Yj, B = (X, X0), and C = η
j
, it is easily seen that equation (19) 

implies the first equality in equation (18) since the joint distribution of the random 

variables is continuous and strictly positive. 
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3.1.3: Maximum Likelihood Estimation (MLE) 

Maximum Likelihood Estimation (MLE) is used to estimate the parameters of the 

model from the data.  Specifically, my data {(Y1i, Y2i,  Xi,  X0i)}𝑖=1
𝑁  consist of N 

independent observations of the outcomes and covariates, each indexed i = 1 … N. The 

log-likelihood of the data is thus 

 

L(π) = ∑ {ln  f(Y1, Y2 | X, Xo)(Y1i, Y2i, Xi, Xoi; π)}

N

i=1

 

= ∑{ln

N

i=1

∫ ∫ [f(Y1 | X, Xo, η1)(Y1i, Xi , Xoi, η1
; π) 

∞

─ ∞

∞

─ ∞

× 

f(Y2 | X, Xo, η2)(Y2i, Xi , Xoi, η2
; π) g(η

1
, η

2
; ρ

12
)] dη

1
 dη

2
} 

           (20) 

 

We estimate the unknown, true parameters π from the data using maximum 

likelihood methods. The integrals in equation (20) generally lack closed form; this poses 

a central challenge in the estimation routine.  We surmount this problem by developing a 

new Stata program that accurately and quickly approximates the integrals using the 

Gauss-Legendre Quadrature; see Chapter 4 for details.  This program allows us to 

maximize equation (20) using Stata’s “moptimize” command, which employs hill-

climbing algorithms (e.g., variants of Newton-Raphson and Berndt–Hall–Hall–

Hausman), and obtain the MLE estimates π̂ of π.   
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Example (Case I): Poisson Model Maximum Likelihood Function 

The relevant version of the log likelihood function in Poisson case is: 

 

L(π) = 

∑ ln( ∫ ∫ [
( λ1i)

Y1i  exp( −  λ1i)

Y1i!
×

( λ2i)
Y2i exp( −  λ2i)

Y2i!
∙g(η

1
, η

2
; ρ

12
)] dη

1
 dη

2

∞

─ ∞

∞

─ ∞

N

i=1

 

           (21) 

Where λji = exp (Xiβj
 + Xoiβoj

 + σjηj
) for j =1, 2; and for i = 1…N. 

3.1.4: Estimation of the Average Incremental Effect and Its Standard Error 

Given  Xo, the “Average Incremental Effect (AIE)” is the expected change in the 

outcome vector that results from an increase in the policy variable from Xpre to Xpre + Δ,  

where Δ  > 0 is the size of the increment.  In symbols,  

 

AIE(Δ) = E[m(Xpre + Δ, Xo;  𝜋)] −  E[m(Xpre, Xo;  𝜋)] 

          (22) 

 

where m(.) is the expected value of the outcome vector given (X,  X0), i.e.,  

 

m(X, X0; π)= E[Y | X,  X0; π] = [
∑ [y1 ∙∞

y1=1  f(Y1  =  y1 | X,  X0;  π)]

∑ [y2 ∙∞
y2=1  f(Y2  =  y1 | X,  X0;  π)]

] 

          (23) 

 

where  
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f(Y
j
 = y | Xpre, X0; π)= ∑ f(Y1, Y2 | X, X0; π)

∞

yj=1

 

          (24) 

 

is the marginal distribution of Yj for j = 1, 2. We refer to m(X,  X0; π) as the “conditional 

mean function.”   

Given the MLE estimate π̂, an estimate of the Average Incremental Effect for an 

increment of Δ >  0 is  

 

AIÊ(Δ) =  κ1̂(Δ) - κ2̂(Δ) 

          (25) 

 

where 

κ1̂(Δ)  = ∑
1

N
m(Xi + ∆, X0i; π̂)

N

i=1

 

          (26) 

and  

κ2̂(Δ) = ∑
1

N
m(Xi, X0i; π̂)

N

i=1

 

          (27) 

 

Thus, we also have that 
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AIÊ =
∑ aiei

̂n
i=1

n
 

          (28) 

 

Also, to make statistical inferences regarding the effect parameter, we would like 

to seek the estimated asymptotically correct variance of AIE, the square root of which is 

the correct asymptotic standard error.  

Terza (2016a and b) has provided a generic formula for deriving the asymptotic 

variance of AIE as a function of estimated deep parameters, observation by observation 

AIE and the gradient of individual AIEs. This formulation is suitable for any casual 

estimation and inferences of effect parameters that involve maximum likelihood methods 

or pseudo-maximum likelihood estimation methods, and it is readily applicable in our 

model after obtaining the prerequisite elements. 

Terza (2016a and b) shows that the formulation of the estimated asymptotically 

correct variance of AIE is: 

Asy VAR(AIE) = (
∑ ∇πaiei

̂n
i=1

n
) (AVAR(π̂)̂ )(

∑ ∇πaiei
n
i=1

n
)

'

+
∑ (aie

i
̂ − AIE)

2n
i=1

n
 

           (29) 

 

where π̂ represents the vector of all deep parameter estimates, aiei is shorthand notation 

for aie(Xpi
pre

, Δi, Xoi; π̂), AVAR(π̂)̂  is the estimated asymptotic covariance matrix of π̂ 

∇πaie denotes the gradient of aie with respect to π, and ∇πaiei
̂  represents ∇πaie with Xpi

pre
, 

Xoi and π̂ substituted for Xp
pre, Xo and π respectively. 
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In terms of the procedure of obtaining each component of Asy VAR(AIE) in 

Stata/Mata, AVAR(π̂) can be obtained directly from the Stata output from the relevant 

State regression command. The term 
∑ (∇πaiei-ME)

2n
i=0

n
 is easily calculated using Mata, given 

that AIÊ =
∑ aiei

̂n
i=1

n
 has already been calculated. Direct calculation of the remaining 

component, 
∑ ∇πaiei

̂n
i=1

n
, requires analytic derivation of ∇π𝑎𝑖𝑒 and Mata coding of ∇πaiei

̂ . 

alternatively, we can use the Mata DERIV (which calculates the vectorized analytical 

derivation value) command to calculate the estimated asymptotically correct variance and 

corresponding t-stat without having the exact formulation of ∇πaiei
̂ . Use of the DERIV 

command allows us to avoid having to derive the explicit form of 
∑ ∇πaiei

̂n
i=1

n
 because it 

affords a way to numerically approximate the components of this gradient vector.  

At last, we can obtain the standard error of the average incremental effect by taking the 

square root of Asy VAR(AIE), i.e., s.e. (AIE) = √Asy VAR(AIE) . 

Example (Case I): Poisson Model Average Incremental Effects  

The above equations imply that the estimated AIE for the bivariate Poisson model 

is: 

 

AIÊ(Δ) = 

∑
1

N

N

i=1

[
 
 
 
 
 (∫ (exp ((Xi + Δ)β

1
̂  + X0iβ01

̂ +σ1̂η
1
)  −  exp ((Xi)β

1
̂  + X0iβ01

̂ +σ1̂η
1
))

∞

-∞

× ∫ 𝑔(𝜂1, 𝜂2; 𝜌12̂)𝑑𝜂2
∞

−∞
∂η

1
)

(∫ (exp ((Xi + Δ)β
2
̂  + X0iβ02

̂ +σ2̂η
2
)  − exp ((Xi)β

2
̂  + X0iβ02

̂ +σ2̂η
2
))

∞

-∞

∫ 𝑔(𝜂1, 𝜂2; 𝜌12̂)𝑑𝜂1
∞

−∞
∂η

2
)

 

]
 
 
 
 
 

 

          (30) 
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The analytical expression for the standard error of the AIÊ in the Poisson case 

follows as: 

 

∑ ∇πaiei
̂n

i=1

n
 

=
1

n
∑(exp((Xpi + 1)β

p
̂  + Xoiβo1

̂ +σ1̂η
1
) [[X

pi
 + 1]  Xo  η

1
] 

n

i=1

−  exp(Xpiβ1
̂  + X0iβ01

̂ +σ1̂η
1
)[Xpi  Xo η

1
])  

           (31) 

 

3.2: Generalization: Dispersion-Flexible Marginal Distributions – Conway-Maxwell-

Poisson (CMP) 

By using Poisson marginals, we have implicitly restricted the conditional mean 

(CM) of each outcome variable to equal its conditional variance (CV) given the 

covariates and structural errors; this is called the equi-dispersion restriction.  To mitigate 

this restriction, we consider incorporate dispersion-flexible, count-valued marginal 

distributions that allow for both under-dispersion (i.e., where the CV < CM) and over-

dispersion (i.e., CV > CM).  As a first step in this direction, we extend our simulation 

work to cover Conway-Maxwell-Poisson (CMP) marginals. 

3.2.1: Probability Mass Function of the CMP Case 

For j = 1, 2, a straight-forward implementation of the standard Conway-Maxwell-

Poisson (CMP) marginals yields,  

 



33 

f(Yj  |  X, X0, η1)(Yj, X, X0, η
j
; 𝜋)  = 

 (λj
o
)
Yj

(Yj!)
exp(ωj)Z(λj

o
, ωj)

, 

           (32) 

where 

 

λj
o
 = exp(Xβ

j
+ X0β

0j
 + 𝜎𝑗η

j
)

1
𝜎𝑗  

          (33) 

and 

 

Z(λj
o
, ωj)  = ∑

(λj
o)r

(r!)
exp(ωj)

∞

r=0

  

           (34) 

 

The vector of parameters is thus π = [β
1,

 β
01,

 β
2,

 β
02,

 σ1, σ2, ω1, ω2,  ρ
12

].  In this 

specification, the parameter ωj controls dispersion – i.e., over-dispersion occurs when 

ωj < 0, equi-dispersion when ωj = 0, and under-dispersion when ωj > 0 – and so 

contributes to the variance of Yj.  The CMP nests the case of Poisson marginals when ωj 

= 0 – and so allows for a great range of flexibility in applied modeling.  In addition, the 

CMP limits towards two other common count-valued specifications: the Geometric 

distribution when ωj → −∞ and λj
o
 < 1 and the Bernoulli distribution when ωj → ∞ with 

probability of success λj
o
 /1 + λj

o
. The nested Poisson allows for a simple statistical test of 

whether or not the specification varies significantly from the standard Poisson.  
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Unfortunately, this specification cannot be estimated as written dure to an 

identification problem – e.g., both  σj and ωj control the variance of 𝑌𝑗 and so are 

individually indeterminant. We thus reparametrize equation (34) by dividing the terms 

inside the exponential by 𝜎𝑗  so they become β
j

⊕ = β
j
/𝜎𝑗 and β

0j

⊕ = β
0j
/𝜎𝑗 respectively 

and we get  

 

λj
o
 = exp(Xβ

j

⊕ + X0β
0j

⊕
 + η

j
) 

          (35) 

 

This version of the model does not suffer from the identification concern and is 

rendered “neutral” with respect to the parameter σj. Modeling in this way: 1) allows for 

possible correlation between equations; 2) accommodates possible non-equi-dispersion in 

the data; and 3) avoids identification problems surrounding the multiplicity of 

parameters.   

3.2.2: Conditional Mean Functions of the CMP Case  

The conditional means function of the potential outcomes Y
jX

* under CM-Poisson 

marginals is as below. 

 

E[Y
jX

* | X0] = m(X*,X0;π)= λj∙ ∑
m∙( λj)

m-1

(m!)
exp(ωj)∙Z( λj,exp(ωj))

∞

m=0

 

(36) 

 

where  
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Z( λj, exp(ωj)) = ∑
( λj)

m

(m!)
exp(ωj)

∞

m=0

 

          (37) 

 

for j = 1, 2, and  λj = exp(X∗β
pj

+ X0β
0j

+ η
j
*),  ω1j are the dispersion parameters for each 

outcome, and 𝜋 = [β
1,

 β
01,

 β
2,
 β

02,
 ω1,  ω2],  

3.2.3: Maximum Likelihood Estimation (MLE) of the CMP case  

For correlated bivariate count outcomes (Y1, Y2), the log-likelihood function in 

the Conway-Maxwell-Poisson mixture single equation model Yj is: 

 

f(Y1Xp
∗ |  Xp, X0)(Y1i, Xpi, X0i; π)  = ∫ cmp(Y1i, Xpi, X0i; λ1,ω1) g*(η

1
*; σ1) dη

1
* 

∞

─ ∞

 

f(Y2Xp
∗ |  Xp, X0)(Y2i, Xpi, X0i; π) = ∫ cmp(Y2i, Xpi, X0i; λ2,ω2) g*(η

2
*, σ2) dη

2
* 

∞

─ ∞

 

          (38) 

 

where cmp(Yji, Xpi, X0i; λj,νj) are the Conway-Maxwell-Poisson density and  

λj = exp(X∗β
j
+ X0β

0j
+ η

j
*) for j = 1, 2, and g*(η

1
*)  and g*(η

2
*) are the univariate standard 

normal pdfs with mean 0, 0 and variance 1 and 1, and π = (β
1
,β

2
,ω1, ω2). 
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3.2.4: Estimation of the Average Incremental Effect and Its Standard Error for the 

CMP case  

Similarly, we would be able to consistently estimate the effect parameter (AIE) of 

the bivariate CMP model from the generic conditional mean function using their 

following sample analogs: 

 

AIE(Δ) = ∑
1

n
{m(Xpi

* +∆i,X0i;π̂)-m(Xpi
* ,X0i;π̂)}

n

i=1

 

= ∑
1

n
{ λji∙ ∑

m∙( λji(Xpi
pre

+Δ))
m-1

(m!)
exp(ωj)∙Z( λji(Xpi

pre
+Δ),exp(ωj))

∞

m=0

n

i=1

  

− λji∙ ∑
m∙( λji(Xpi

pre
))

m-1

(m!)
exp(ωj)∙Z( λji(Xpi

pre
),exp(ωj))

}

∞

m=0

 

          (39) 

 

where 

λji (Xpi
pre

+ Δ) =  exp((Xpi
pre

+ Δ)βpĵ + X0iβ0ĵ + ηj
∗) 

          (40) 

 

And 

λji (Xpi
pre

) =  exp(Xpi
pre

βpĵ + X0iβ0ĵ + ηj
∗)  

          (41) 
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The standard error of the AIE for the CMP case again follows Terza 2016 (a) and 

(b)’s formulation of a generic, simplified version of AIE’s asymptotic variance.  

 

s.e.(AIE)
𝐶𝑀𝑃

 = √Asy VAR(AIE)
𝐶𝑀𝑃 

          (42) 

where: 

Asy VAR(AIE)
𝐶𝑀𝑃

 = 

(
∑ ∇πaiei𝑐𝑚𝑝̂n

i=1

n
) (AVAR(π̂)̂ )(

∑ ∇πaiei𝑐𝑚𝑝n
i=1

n
)

'

+
∑ (aie

i
𝑐𝑚𝑝̂ − AIE)

2n
i=1

n
 

         (43) 

Where we replace the first component the CMP version observation wise AIE’s 

derivative with respect to the full set of parameters, π. 

 

∑ ∇πaieicmp̂n
i=1

n
 = 

∑
1

n
∇π{ λji∙ ∑

m∙( λji(Xpi
pre

+Δ))
m-1

(m!)
exp(ωj)∙Z( λji(Xpi

pre
+Δ),exp(ωj))

∞

m=0

n

i=1

 

 λji∙ ∑
m∙( λji(Xpi

pre
))

m-1

(m!)
exp(ωj)∙Z( λji(Xpi

pre
),exp(ωj))

∞

m=0

} 

(44) 

Since the formulation of above is analytically daunting, we actually do not need to 

explicit derive the expression above, instead, we use the Mata’s DERIV command to 

approximate its value evaluated at the value of our deep parameter estimates. 
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And the last component (aie
i
cmp̂ ) with CMP version observation wise AIE with 

estimated full set of parameters π̂, which we also have obtained when calculation the 

AIE; formally, we have that 

 

aieicmp̂ = 

∑
1

n
{ λji∙ ∑

m∙( λji(Xpi
pre

+Δ))
m-1

(m!)
exp(ωj)∙Z( λji(Xpi

pre
+Δ),exp(ωj))

∞

m=0

n

i=1

 

 λji∙ ∑
m∙( λji(Xpi

pre
))

m-1

(m!)
exp(ωj)∙Z( λji(Xpi

pre
),exp(ωj))

∞

m=0

} 

(45) 

 

Now we have introduced most of the analytical components of our model and 

prerequisites for causal estimation and inference. However, there is one additional 

technical challenge we need to solve before we could arrive at desired estimation results. 

As we have mentioned when we introduce our non-closed form likelihood functions in 

Section 3.1.3, the values of our target likelihood function are virtually impossible to 

calculate given existing built-in packages or commands within Stata/Mata or most other 

statistical software, as it involves high dimensional integration. In Chapter 4, we 

introduce our newly developed numerical integral approximation algorithm implemented 

in Stata/Mata that take care of the above issues. After understanding the theories and 

applications of this approximation program, the readers will be able to implement our 

model and, without technical challenges, produce or replicate our estimation results in 

Chapters 5 and 6.   
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Chapter 4: Bivariate Gauss-Legendre Quadrature 

In this section, we describe the details of our Gauss-Legendre quadrature (GLQ) 

methods for accurately approximating two-dimensional integrals by first overviewing the 

available methods, then reviewing the math behind GLQ and our implementation of it in 

Mata, before closing with two validation studies. 

4.1: Literature on Numerical Approximation of Non-Closed Form Integrals  

Many applications in empirical econometrics require the evaluation of two-

dimensional (2D) integrals – e.g., equations (20) and (21), and more generally in the 

computation of likelihood functions for MLE, expectations for M-estimators, and so on.  

Yet, it is generically impossible to derive an analytic closed form for such integrals 

outside of special cases.  This poses a significant challenge to estimation, inference, and 

prediction. 

Researchers have attempted to solve this “2D integration problem” in several 

ways.  One approach is implements Gaussian quadrature.  In Gaussian quadrature, one 

approximates an integral by evaluating its integrand at select points (i.e., “abscissas”) and 

then taking their weighted sum.  There are several ways in which to compute the 

abscissas, each with their advantages and disadvantages. For instance, Aitchison and Ho 

(1989), Chua and Tsiaplias (2019), and Kim et al. (2015) employ Gauss-Hermitian 

quadrature, whereas we employ GLQ.  Gauss-Hermitian Quadrature is a type of 

quadrature well-suited to approximating 2D wherein the method for selecting the 

abscissas and weights requires the integrand be written as f (x, y) e-x2-y2
, where the 

variables of integration are (x, y), and allows for improper integrals.  While many 

distributions can be transformed to fit into this form, others cannot.  In contrast, the 
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GLQ’s method for selecting the abscissas and weights only requires that the integrand be 

of the form 𝑓(𝑥, 𝑦) and so is more flexible, but requires that the integral be taken over a 

closed and bounded domain [−𝑀,𝑀]2, with bound 𝑀 < ∞.  Thus, its use for improper 

integrals always entails a small approximation error, which vanishes as 𝑀 → ∞.  From a 

practical standpoint, we find that the flexibility of GLQ outweighs the approximation 

error, especially when the bound is large.  

Another approach to solving the 2D integration problem is Monte-Carlo 

Simulation, wherein one randomly selects a large number of points in the domain of the 

integral, evaluates the integrand at each point, and then takes the average.  By the law of 

large numbers, the average converges to the value of the integral as the number of points 

grows large.  Such methods are common in applied work, including Chua and Tsiaplias 

(2019), Heiss and Winschel (2008), Train (2000), and Skrainka and Judd (2011).  

Skrainka and Judd conduct a detailed comparison of quadrature and Monte-Carlo 

methods, wherein they conclude that the accuracy and computation of the former often 

dominate the latter.  

In Bayesian estimation, it is common to circumvent the 2D integration problem 

by using methods that update the integrand without computing the integral and then 

employing (complex) simulation exercises to evaluate the updated integral.  Typical 

works in this literature include Chib and Winkelmann (2001), Hirano and Porter (2003), 

Mehta (2014), and Stegmueller (2013).  The focus of our paper, however, lies on classical 
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econometric methods and hypothesis testing for which the 2D integration problem poses 

challenges.6 

4.2: Approximation Algorithms and Mata Software Development  

In this section, we outline the methods of GLQ, with a focus on our Mata 

implementation of these procedures. (Mata is Stata’s low-level matrix programming 

language.)  

GLQ is based around the approximation of definite integrals.  To fix ideas, 

consider the following target of approximation: 

 

I = ∫∫ f(x, y)

d

c

dy dx

b

a

 

           (46) 

where the domain of (x, y) is [a, b] × [c, d], and the integrand is a generic continuous 

function 𝑓(x, y). 

As the first step of implementing the Gauss-Legendre quadrature approximation 

algorithm, transformation of the domain is required to the unit square. Here, we transform 

the arguments domains from [c, d] × [a, b] to [-1, 1] × [-1, 1] by the following steps: 

 

 
6 Regarding the broader, philosophical debate between Bayesians classical 

econometricians and statisticians, we do not take a side beyond observing that classical 

econometric methods and hypothesis testing are still central to many fields of economics, 

policy work, and other domains. 
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I = ∫∫ f(x,y)

d

c

dy dx  =

b

a

∫ ∫ f(x,
(d − c)u  + (d + c)

2
)(

d − c

2

1

-1

) du dx

b

a

 

= ∫ ∫ f(
(b − a)v + (b + a)

2
,
(d − c)u + (d + c)

2
)(

(d − c)(b − a)

4

1

-1

) du dv

1

-1

 

           (47) 

 

As the next step, we select the number of abscises to use, n.  The GLQ methods 

allows us to approximate I by as follows,  

 

I ≈ 
(d − c)(b − a)

4
∑∑ wi,1∙wj,2

n

i=1

∙

n

j=1

f(
(b − a)absi,1 + (b + a)

2
,
(d − c)absj,2 + (d + c)

2
) 

           (48) 

 

where the weights (wi,1,wj,2) and the abscises (absi,1, absj,2) for each 𝑖, 𝑗 pair are 

determined by the GLQ rules.  These rules are based on the roots of the Legendre 

polynomials and the order of the polynomials used in the approximation n; for details see 

Mander and Bowden (2012).  Observe that the higher number of quadrature points yields 

more accurate approximation. 

We implement equation (48) in Mata, along with appropriate code to compute the 

abscises and weights.  The results are presently available upon request and will be 

released as a Stata program for wide-spread distribution, which will accept user-

generated 2D integrands, the limits of integration, and the number of abscises and then 

compute the integrals. 
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Equation (46) concerns a definite integral.  Yet, most of the integrals in the 

present paper are improper and of the form  

 

I = ∫ ∫ f(x, y)

∞

-∞

dy dx

∞

-∞

 

           (49) 

The definition of an improper integral gives that there is a real number 𝑀 < ∞ such that 

 

∫ ∫ f(x, y)

∞

-∞

dy dx

∞

-∞

≈ ∫ ∫ f(x, y)

M

-M

dy dx

M

-M

. 

           (50) 

 

In addition, it is easily seen that if f (x, y) ≥ 0, then the above approximation 

becomes monotonically more accurate as M→∞.  Since the improper integral we seek to 

approximate in our count-valued models have strictly positive integrands, we 

approximate it by first choosing a suitably large M and then applying the methods 

discussed above.  

In our application, where the structural errors in our main specification are 

normally distributed, we find that setting M larger than five to eight standard deviations 

away from the mean does not lead to noticeable increases in the values returned from 

quadrature.  The implication is that five to eight standard deviations are sufficient for 

accurate approximation. 
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4.3: Validation of our Bivariate Gauss-Legendre Quadrature Software 

To validate the accuracy of our approximation software, we conducted two 

validation exercises. First, we applied our 2D Gauss-Legendre Quadrature program to 

approximate the cumulative distribution function of a bivariate Poisson model and 

compared the results to the empirical cumulative distribution function computed from 

simulated data, which was drawn in the same manner as described in Chapter 3.  Table 1 

provides the results and shows that the software accurately reproduces the true marginal 

cumulative distributions of both variables. The support of simulated bivariate Poisson 

distributed Y1 is [0, 18], and the support of simulated Y2 is [0, 19]. As we can observe, 

our approximation software can at least approximate the cumulative density for two 

decimal points. For instance, according to our 2D Gauss-Legendre Quadrature, Prob (Y1 

= 0) = 0.823859309, while the actual relative frequency of Y1 = 0 in the simulated 

dataset with sample size of 500,000 is equal to 0.824746.  

We not only looked at the CDFs, but also the joint PMFs during our validation. 

we used our program to approximate the joint distribution of the same model and 

compared it to the joint empirical distribution from the same simulated data.  Figures 1 

present the results and show that our program returns an accurate probability mass 

function. 

Secondly, we applied our 2D Gauss-Legendre Quadrature program to 

approximate the cumulative distribution function of a bivariate Conway Maxwell Poisson 

(CMP) model and compared the results to the empirical cumulative distribution function 

computed from simulated data. For simplicity, we set the linear indexes to be constant 

valued vector with each element equal to 0.5. The dispersion parameters (omegas) are set 
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at 0.75 for both count variables (Thus: we simulated under dispersed count variables), 

and the correlation coefficient rho is set at 0.5. Table 2 provides the bivariate CMP data 

generator validation result. The support of simulated Y1 is [0, 14], and the support of 

simulated Y2 is [0, 13]. Again, we can observe that our approximation software can 

approximate the cumulative density for at least two decimal points. For instance, 

according to our 2D Gauss-Legendre Quadrature, Prob (Y1 = 0) = 0.3278748, while the 

actual relative frequency of Y1 = 0 in the simulated Bivariate CMP dataset with sample 

size of 500,000 is equal to 0.32888. 

4.4: Advantages 

There are three main advantages of our Bivariate Gauss-Legendre Quadrature 

software. (1) It can approximate double integrals without any restrictions on the form of 

the integrand. (Hermitian Quadrature has such restrictions since it requires necessary 

transformations of the underlying integrand before it can be approximated using 

Hermitian integration); (2) It can accurately approximate any double integrals with 

quadrature points around 30 or higher. We will show validation of the accuracy of our 

software in the next section; (3) It significantly reduces the computational time compared 

to Monte Carlo based integral approximation, and Bayesian methods. The author has 

attempted one of the alternative methods: Monte Carlo integration for approximating 

double integrals during preparing the dissertation, the time needed for simulating 50,000 

observations of bivariate Poisson data with 5000 Halton draws is roughly 5 hours, for 

CMP distribution, the time needed is even much longer. While the 2D Gauss-Legendre 

Quadrature program takes less than 5 seconds for simulating 500,000 observations, 

thanks to the efficiency of Stata/Mata’s matrices operations.   
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Chapter 5: Simulation Study of the Importance Accounting for Nonlinearity, Cross-

Equation Correlation and Dispersion Flexibility in Count-Outcome SUR Models 

In this section, we evaluate, via simulation studies, the efficiency and accuracy 

gains of estimating a bivariate count valued systems-of-equations models via three 

comparisons:  

(1) Zellner SUR and Count-Outcome SUR (CMP);  

(2) CMP SUR Joint Estimation and Single Equation CMP Estimation;  

(3) CMP SUR Joint Estimation and Poisson SUR Joint Estimation.  

The first comparison allows us to assess the importance of “accounting for 

nonlinearity,” i.e., of using count-outcome estimators on count data, as opposed to using 

linear SUR estimators. The second comparison allows us to assess the importance of joint 

versus equation-by-equation estimation the presence of cross-equation correlation. The 

third comparison allows us to assess the role of the CPM versus Poisson marginals. 

In the subsequent subsection -- 5.1, 5.2 and 5.3 -- we detail the models to be 

compared (i.e., probability mass functions, conditional mean functions, likelihood 

functions and effect parameters and the standard errors of the effect parameters), the 

simulation study designs, as well as the simulation results of the three pairs of model 

respectively.  

5.1: Comparison Between Linear SUR and Count-Outcome SUR (CMP) Via a 

Simulation Study (Study I) 

In this section, we conduct the first pair of analytical comparison via simulation to 

answer the question: “does modeling nonlinearity matter, i.e., does the use of count-

outcome estimators on count data offer improvement over the use of linear estimators?" 
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To answer this question, we compare the accuracy and efficiency gains of the average 

incremental effect (AIE) estimation between Zellner (1962)’s Linear Seeming Unrelated 

Regression model and our Count-outcome Seemingly Unrelated Regression model.  

It is known that linear method is widely used in empirical economics and health 

science research, i.e., difference-in-differences, fixed effects estimations, as well as linear 

instrumental variable approach. The main motivation for linear models is the simplicity 

in its analytical forms, the known properties of its estimator, and ease in execution by 

existing built-in computational software. However, a priori there are potential 

shortcomings of conventional linear models when used with count-valued outcome(s). 

first, OLS does not account for the fact that count data are truncated at zero; thus, it could 

predict negative values for count-valued outcomes which are inherently restricted to 

positive (Woodridge, 2010; Gardner et al., 1995). Second, since count data are skewed to 

the right, they are unlikely to satisfy the normality assumption of OLS, making statistical 

tests based on this assumption invalid (Cameron and Trivedi, 2005; Gardner et al., 1995). 

Third, the validity of hypothesis tests in the OLS also depends on assumptions about 

homoscedasticity, which are unlikely to be met in count data (Winkelmann, 2018; 

Gardner et al., 1995, Cameron and Trivedi, 2005). Lastly, there are potential efficiency 

gains in terms of averaged treatment effects or averaged incremental effects when 

accounting for the nonlinearity (against using simple linear mode) to fit correlated count 

data. To date, not much work has been done to empirically or theoretically explore these 

shortcomings of applying linear system-of-equation models in count-data settings. 

Our model takes an alternative approach to account for the nonlinear nature of the 

correlated count data, and in turn introduces complexity in model specification and 
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potential difficulties in estimation. The main motivation for our modeling approach is the 

possible accuracy and efficiency gains in deep parameters as well as effect parameter 

estimations in the context of Seemingly Unrelated Regression. We thus conjecture that 

there are accuracy and efficiency gains in accounting for the nonlinearity of our count 

data. We will conduct a series of simulation studies to compare the AIE estimates by 

using Zeller (1962)’s linear SUR model with our model to investigate these hypotheses. 

5.1.1: Zeller (1962)’s Linear SUR Model Specification 

The data generating process of Zellner’s (1962) original specification is: 
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Where the error terms u has variance covariance structure of: 

 

V(u) = Σ = [

σ11I σ12I  ⋯ σ1JI

σ21I σ22I  ⋯ σ2JI

⋮ ⋮ ⋮
σJ1I     σJ2I   ⋯    σJJI

] 

          (52) 

where I is a unit matrix of order 𝑇 × 𝑇, σij=E(uitujt) for 𝑡 = 1,2… . , 𝑇, and 

i, j=1, 2 , …, M. 

The data generating process of the Zellner’s model is as below, the first moment 

has the form: 
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E(Y|X) = [X1β
1
,…,XJβJ

]
J×1

'
  

          (53) 

And the second moment of Zellner’s model has the form: 

 

Var(Y|X) = [

σ11I σ12I  ⋯ σ1JI

σ21I σ22I  ⋯ σ2JI

⋮ ⋮ ⋮
σJ1I     σJ2I   ⋯     σJJI

] 

          (54) 

where X is the matrix of explanatory variables and Y is the J×1 vector of outcomes, β
i
 

represent equation 𝒊’s deep parameters (𝑖 = 1,… 𝐽), 𝜎𝑖𝑗 is the covariance of equation 𝑖 and 

𝑗′𝑠 error terms, 𝜎𝑖𝑖 is the variance of equation 𝑖′𝑠 error term, and I is a unit matrix of order 

N × N. This model is conditionally first-and second-order homoscedastic. It is assumed in 

Zellner’s model, in each equation, the variances of the errors (or dependence variable) are 

the same for all observations, the means are the same for all observations.  

The linear SUR estimation procedure is as below. The linear seemingly unrelated 

regression estimator by Zellner is a two-step estimator. First, I estimate each equation 

using ordinary least squares and save the predicted residuals. Second, I use the predicted 

residuals to form a weight matrix and estimate the parameters using weighted least 

square. 

The estimator has the form: 

 

β̂
sur

 = (X'V-1X)
-1

X'V-1Y 

          (55) 
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Where X is the matrix of predictors of all equations stacked together, and V the 

Kronecker product of S and I, and it has the form below: 

 

V = S ⨂ IN 

          (56) 

 

Where 𝑆 is the variance covariance matrix of the OLS residuals, and 𝐼 is an identity 

matrix of size equal to the numbers of observations. The CMP SUR model is detailed in 

Chapter 3 under the generalization section. 

5.1.2: Conditional Mean Function and AIE Estimation of Zeller (1962)’s Linear 

SUR Model  

For the case where j = 2, given  X0, the “Average Incremental Effect (AIE)” 

under Zellner’s linear SUR model is the expected change in the outcome vector that 

results from an increase in the policy variable from Xpre to Xpre + Δ, where Δ  > 0 is the 

size of the increment.  In symbols,  

 

AIE(Δ) = E[m(Xpre + Δ, Xo;  𝜋)] −  E[m(Xpre, Xo;  𝜋)] 

          (57) 

 

where m(.) is the expected value of the outcome vector given (X,  X0), i.e.,  

 



51 

 

m(X, X0; π) = E[Y | X,  X0; 𝜋] = [
Xβ

1
 + X0β

01

Xβ
2
 + X0β

02

] 

          (58) 

The estimated AIE is: 

AIÊ(Δ) = ∑
1

N

N

i=1

[
(Xi + Δ)β

1
̂  + Xoiβo1

̂  −((Xi)β
1
̂  + Xoiβo1

)̂

(Xi + Δ)β
2
̂  + Xoiβo2

̂  −((Xi)β
2
̂  + Xoiβo2

)̂  
] 

          (59) 

and the standard error of the average incremental effect is formulated as: 

The standard error of the AIE for the Zellner SUR estimator is: 

 

s.e.(AIE)
𝑍𝑒𝑙𝑙𝑛𝑒𝑟

 = √Asy VAR(AIE)
𝑍𝑒𝑙𝑙𝑛𝑒𝑟

 

 

where 

Asy VAR(AIE)
𝑍𝑒𝑙𝑙𝑛𝑒𝑟

 = 

=(
∑ ∇πaiei

̂n
i=1

n
) (AVAR(π̂)̂ )(

∑ ∇πaiei
n
i=1

n
)

'

+
∑ (aie

i
̂ − AIE)

2n
i=1

n
 

= (
∑ Δn

i=1

n
) (AVAR(π̂)̂ )(

∑ Δn
i=1

n
)

'

+
∑ Δβ

1
̂ − β

1
̂ )

2n
i=1

n
 

= 1(AVAR(π̂)̂ )1 + 0 

= AVAR(π̂)̂ . 

           (60) 
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5.1.3: Design and Results 

This section shows the deep parameter estimation results of Zellner’s SUR model 

versus Count-Outcome SUR model (CMP case). Before showing the results, we 

introduce our simulation design. 

5.1.3.1: Simulation Design 

We focused on simulating a series of correlated and over-dispersed data. We 

would like to use our bivariate CMP distributed simulated data as a benchmark, so we 

could fit and test the performances of different candidate models. 

The main motivation of simulating such a dataset is that we often encounter 

health care utilization counts that have similar properties – correlated, highly skewed, and 

(sometimes or often) over-dispersed, i.e., where the mean of the outcome variable is 

small (smaller than the variance).  This focus is motivated as follows: when the mean is 

large and the variance is small, the conditional distribution of count data resembles the 

classical bell shape required by least squares and thus Zellner's SUR.  However, when the 

means are small and the variance (comparatively large), the conditional distribution of 

count data exhibits a skew shape that is not well-captured by the classical bell shape.  

Thus, least squares and derivative methods are expected to have performance challenges 

on such data.  Such data, consequently, provides fertile ground to investigate the 

similarity/differences. of the estimators. 

We developed Stata/Mata code to simulate data for bivariate CMP data. The 

protocol for the simulator is as follows: 
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1) Choose values for the elements of the parameter vector 

 

π' = [β'
1
,β'

2
, ω1, ω2] (β'

1
 = [β

1p
,β'

1o
] and β'

2
 = [β

2p
,β'

2o
]) 

 

where  ω1, ω2 are the dispersion parameters of each outcome, 

2) Generate a sample of simulated data on X and Xo; each assumed to be uniform 

distributed with means and variances chosen as part of the sampling design, 

3) Generate a sample of simulated data of η
1
*, η

2
*; assume to be bivariate standard 

normal with mean zeros and variance parameters both 1, and correlation 

coefficient ρ
12

 chosen as part of the sampling design, 

4) Generate a sample of outcomes vector by approximating the value of the joint 

probability mass function: 

 

f(Y
1X∗  , Y2X∗  | X,  X0) = 

 

∫ ∫ cmp(Y
1X*, X*,X0, η

1
*, ω1) cmp(Y

2X*, X*,X0, η
2
*, ω2)  g*(η

1
*, η

2
*) dη

1
* dη

2
*

∞

─ ∞

∞

─ ∞

 

 

To compare the efficiency of the estimated averaged AIE estimator based on 

corresponding equations in Chapter 3, we simulated samples with fixed sample size with 

large number of replications, using the data generator detailed in the previous section and 

applied the bivariate CMP MLE of the AIE to each of them, whose likelihood functions 

were approximated by Gauss-Legendre Quadrature rules. 
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Regarding our parameter choices, for all our sub-studies, we take X to be a 

uniformly distributed random variable with support [0.13, 1.87] and X0 = (X01, X02) to 

be a random vector where X01 is uniformly distributed on [0.13, 1.87] and X02 = 1 is a 

constant.   In the sub-study on under-dispersion, for simplicity, β
1
,β

2
 are set to be the 

same: we take β
1
= β

2
= 1,  β

01
=  β

02
= (−1, 0)′,  σ1= σ2 =  1,  ω1 =  ω2 = −0.1.  

However, the sampling design varies along one margin: four chosen ρ
12

 values 

determining the correlation coefficient of the bivariate normal distributed cross-equation 

heterogeneity terms η
1
*, η

2
*.  These values are the following: 

 ρ
12

 = 0.75 (strong positively correlated) 

 ρ
12

 = 0.5 

 ρ
12

 = 0.25   

 ρ
12

 = 0 (uncorrelated) 

(Note that ρ
12

 = 0.9 was not included in the sampling design under CMP model because, 

in this case, the MLE typically did not converge and it usually took much longer for the 

optimization program to finish.) This design is summarized in Table 20.  

The summary statistics of one simulated dataset is displayed in Table 21. As we 

can see, the outcome variables have means of 2.3, and standard deviations of 3.9. it is 

apparently over-dispersed (CM < CV). To illustrate the skewness of this simulated data, I 

created Figure 3, which illustrate the distributions of all simulated variables. As we can 

see, the count data, conditionally on all covariates, is not normally distributed – it is 

clustered around its (very small-valued) mean. Moreover, the logarithm of the outcomes 

is also not close to normally distributed. This nature of the data necessitates the 
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introduction of some type of nonlinear specifications that align with the true data 

generating process.  

Note that we chose the sampling design especially to exploit the skewness of the 

distribution, where the correlated count model likely will show advantages. As the 

conditional mean of the count outcome gets large while the variance is very small, the 

data likely can be well fitted with a linear specification. 

The simulation study also included a design of replication for the purpose of 

exploring the asymptotic statistical properties of the deep parameters and effect 

parameters.  

For each of these designs, 100 sample of size 10,000 were generated. In each 

replication, we 

1) Calculate the true AIE, which should be the same regardless of different 

sample sizes, 

2) Estimate the effect parameters using CMP SUR model, 

3) Estimate the effect parameters using Zellner Linear SUR model (not 

accounting for nonlinearity of the outcome data), 

4) Repeat 2) and 3) with 100 replications, 

5) Compared the 100-replication averaged AIE to the true AIE using criteria: the 

grand average of the absolute percentage bias (AAPB). 

The first comparison criteria the Grand Average of the Absolute Percentage Bias is 

calculated by the following formula, 
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AAPB AIE(∆)̂   = 
1

R
× ∑ |

AIE(∆)̂
r-AIE(∆)

AIE(∆)
|

R

r=1

 

          (61) 

 

where, r denotes the rth replication, AIE(∆)̂  denotes the estimated AIE with the increment 

being equal to ∆ and AIE(∆)denotes the true AIE value. Without loss of generality, we 

choose ∆ = 1.  

We conducted similar data generator validation exercise for our Bivariate CMP 

data as in Chapter 4.3. We display the result for one sampling design, where ρ
12

 = 0.5, 

and β
1
= β

2
= 1,  β

01
=  β

02
= (−1, 0)′,  σ1= σ2 =  1,  ω1 =  ω2 = −0.1. The other 

sampling designs can be validated using the same method and code. 

5.1.3.2: Results 

Table 13 displays the estimation of deep parameters of Zellner’s Linear 

Seemingly Unrelated Regression (SUR) Model with simulated over-dispersed data (N = 

50,000), the true parameter values are also shown for comparison purposes. As we can 

see, the linear SUR model tends to overestimate all coefficient parameters.  

Table 16 displays the effect parameter (Average Incremental Effect - AIE) 

estimation results of the first outcome variable Y1 under both Linear SUR Model and 

Count-Outcome SUR model (CMP case). We report the running average of the estimated 

AIE over 100 replications of simulated data and 100 replications of the corresponding 

AIE based on the MLE results, we also report the averaged absolute percent bias of the 

AIE estimates.  
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As we can see, for instance, the average AIE under Linear SUR model is 2.185 

(with averaged absolute percent bias 53%), while our Count-Outcome SUR model 

estimated average AIE is 4.502 (with averaged absolute percent bias 10%). This implies 

that our bivariate CMP model estimation is more accurate (|4.5 – 4.765|/4.765 < (|2.185 – 

4.765|/4.765 in terms of effect parameter estimation), and also more efficient (with much 

less variation in 100 replications: 10.48% < 53.06%). The Linear SUR model tend to 

under-estimate the AIE when data are over-dispersed.  

5.2: Comparison between CMP SUR and Single Equation CMP Approach via a 

Simulation Study (Study II) 

In this section, we present the results of simulation studies that compare the 

accuracies and efficiencies of the parameter and AIE estimates when the model is 

estimated jointly versus on an equation-by-equation basis. 

For context, in Chapter 2, described the joint estimation of the model by 

maximizing the joint log-likelihood of (Y1,Y2), to obtain estimates of the full parameter 

vector.  In contrast, estimation-by-equation estimation of the model involves two steps.  

First, we focus on Y1 and then maximize the log-likelihood of its marginal distribution 

(in our data) to estimate only the parameters that are relevant to Y1. Second, we focus on 

Y2 and then maximize the log-likelihood of its marginal distribution to estimate only the 

parameters that are relevant to Y2. Key to performing equation-by-equation estimation 

are the marginal distributions of Y1 and Y2, which we refer to as the “single equation 

model.” 

In our simulation exercises, we generate a sample of size N according to the 

chosen distribution at pre-specified true parameters.  We will then estimate the 
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parameters both in joint and equation-by-equation fashions and compute the associated 

AIEs under each approach.  We then write these to a database and replicate the sampling-

estimation exercise 100 times.  We finally leverage these replications to explore the 

efficiency and accuracy of the estimation methods. 

To illustrate our simulation result, we chose to compare between Count Outcome 

SUR model and Single Equation Count model. The CMP SUR model is again detailed in 

Chapter 3 under the generalization section. Here, we will focus on detailing the generic 

single equation count model specification and estimation.  

5.2.1: Generic Single Equation Model 

In the single equation model, for j = 1, 2, the distribution of Yj given covariates X 

and X0 is given by the marginal distribution of Y𝑗  under the model, i.e.,  

 

f(Y
j
 | X,  X0; 𝜋) = ∑ f(Yj, Y−j = y

−𝑗
 | X, X0; 𝜋)

∞

y−𝑗=0

 

= ∫ f(Yj  |  X, X0, η1)(Yj| X, X0, η
j
;𝜋) g(η

j
)

∞

─ ∞

dη
j
 

          (62) 

 

where g(η) is a univariate standard normal probability density function and 

f(Yj  |  X, X0, η1)(⋅) is the same as our baseline model.  The second equality follows from a 

bit of algebra: 
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∑ f(Yj, Y−j = y
−j

 | X, X0; π)

∞

y−j=0

 = ∑ ∫ ∫ [f(Yj  |  X,  X0, η1)(Yj| X, X0, η
j
; π)

∞

─ ∞

∞

─ ∞

∞

y−j=0

 

× f(Y-j | X, X0, η-j)
(y

−𝑗
| X, X0, η

2
; 𝜋) g(η

j
, η

-j
;𝜌12̂ )]dη

j
 dη

-j
 

= ∫ [f
(Yj  |  X,  X0, η1)

(Yj| X, X0, η
j
; 𝜋)

∞

─ ∞

 

× ∫ g(η
j
, η

-j
;𝜌12̂ ) ∑  f(Y-j | X, X0, η-j)

(y
−𝑗

| X, X0, η
2
; 𝜋)

∞

y−𝑗=0

] dη
-j
dη

𝑗

∞

─ ∞

 

= ∫ f(Yj  |  X, X0, η1)(Yj| X, X0, η
j
; 𝜋) g(η

j
)

∞

─ ∞

dη
j
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The first equality is definitional – see Chapter 3.  The second equality is due to a change 

in the order of integration.  And the third equality is due to the fact that the sum of any 

marginal distribution over its support is equal to one, i.e., 

∑  f(Y-j | X, X0, η-j)
(y

−𝑗
, X, X0, η

2
; 𝜋)∞

y−𝑗=0 = 1, and that g(η
j
)= ∫ g(η

j
, η

-j
;𝜌12̂ ) dη

-j

∞

─ ∞
. 

Observe that the single-equation model above does not involve ρ
12

.  Thus, the 

maximum likelihood estimation of the single equation model for either j = 1 or j = 2 does 

not provide an estimate of the correlation of the structural errors. 

The single equation model is estimated via MLE using univariate Gauss Legendre 

Quadrature.  For j = 1, 2, the associated log-likelihood is  
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Lj(π) = ∑ {ln f(Yji| Xi, Xoi; π)}

N

i=1

 

= ∑ ln

N

i=1

∫ f(Yj  |  X, X0, η1)(Yj, X, X0, η
j
;𝜋) g(η

j
)

∞

─ ∞

dη
j
 

          (64) 

 

This equation is maximized using methods analogous to those employed in Section 2. 

The above equation implies that, for j = 1, 2, the conditional mean function of the 

single equation model is, 

 

mj(X, X0; π) = 𝐸(Yj|X, X0; π) = ∑ y f(Y
j
= y | X,  X0).

∞

𝑦=1

 

          (65) 

 

Example Case I: Poisson Single Equation Model 

For j = 1, 2, the single observation probability mass function in the Poisson model 

is  

 

f(Yj |  X, X0)(Yj|X, X0i; π)  = ∫
( λj)

Yj  exp(- λj)

Yj!
g(η

j
) dη

j
 

∞

─ ∞

 

          (66) 

 

where  λj = exp (Xβ
j
 + X0iβ0j

 + σjηj
). And the conditional mean function of the potential 

outcomes Yj for j = 1, 2 is  
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mj(X, X0; π) = E(Yj|X,  X0; π) = ∫ exp (Xβ
j
 + X0β

0j
 + σjηj

) g(η
j
)dη

j

∞

-∞

. 

           (67) 

 

We first describe the details of the simulation and then we investigate the 

efficiency properties of joint versus equation-by-equation estimation in terms of 

efficiency and accuracy as the sample size increases.  Throughout, we focus on the case 

of Poisson marginals. 

5.2.2: Example Case I: Poisson Single Equation Model 

5.2.2.1: Simulation Results 

In this study, we use a Bivariate Poisson generator as the benchmark for joint 

versus single equation model comparison, the simulation design mirrors the design of the 

bivariate CMP generator in Study I, although there are slight changes on the parameters. 

See Table 19 for the parameter settings for this simulation. In terms of the procedure for 

replications, we again follow Study I but replace step (2) and (3) with Poisson SUR and 

Poisson Single-Equation models respectively. 

Tables 2 presents an example of the deep parameter estimation results under the 

joint estimation using for a trial run with 50,000 observations.  The table shows that all 

deep parameters are close to their true values and thereby validates the core accuracy of 

our estimation approach, including quadrature methods.  Further, estimation of these 

results took less than 30 minutes on a modern laptop, which shows that our methods are 

computationally efficient.  
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Table 4 reports the true AIE and the estimated AIEs for each method, as well as 

the AAPB.  The table shows, for instance, that at a 𝜌12 = 0.9, the AIE of the Poisson 

joint and equation-by-equation estimates are close to the true AIE; but that the joint 

estimate is about twice as efficient as the equation-by-equation estimate – e.g., AAPB of 

3.51% versus 6.76%.  Since this is a common result for each row of the table, we 

conclude that joint estimation is generally more efficient than equation-by-equation 

estimation in the case of Poisson marginals. 

5.2.3: Example Case II: Conway-Maxwell-Poisson Single Equation Model  

The single equation CMP model is straight forward: the probability mass function 

under the CMP distribution is given by the marginal distribution of Yj for j = 1, 2.  

Specifically,  

 

f(Yj |  X, X0)(Yj,X, X0i; π) = ∫
 (λj

o
)
Yj

(Yj!)
exp(ωj)Z(λj

o
, ωj)

g(η
j
) dη

j
 

∞

─ ∞
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where Z (⋅) and λj
o
 are given in Section 3.2.1. 

5.2.3.1: Simulation Results 

In this simulation study, we follow the same simulation design and use the same 

bivariate CMP outcome generator as Study I. In terms of the procedure for replications, 

we again follow Study I but replace step (3) with CMP Single-Equation model. 

Table 14 presents an example of the deep parameter estimation results under the 

joint estimation using for a trial run with 50,000 observations of the over-disperse sub-
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simulation.  The table shows that all parameters estimated using our CMP model are 

close to the true parameter values, thereby validating the effectiveness of the core 

estimation routine. 

Table 17 reports the true AIE and the estimated AIEs for each method, as well as 

the AAPB, for the over-disperse sub-simulation.  The table shows, for instance, that at a 

𝜌12 = 0.5, the AIE of the joint and equation-by-equation estimates are approximately 

equal to the true AIE and that both methods have an AAPB of approximately 25%, with 

joint estimation being slightly more efficient.  Other rows of the table – e.g., 𝜌12 = 0.75, 

show that both estimation methods have approximately the same efficiency, with 

equation-by-equation estimation being slightly more efficient. The overall finding for 

CMP marginals with over-dispersed data is thus that joint estimation does not perform 

worse than equation-by-equation estimations, which is consistent with the conclusion that 

joint estimation is slightly more efficient than equation-by-equation estimation. 

5.3: Comparison Between Count-Outcome Conway-Maxwell-Poisson SUR and 

Count-Outcome Poisson SUR via a Simulation Study (Study III)  

In Study III, we conduct a simulation comparison between our bivariate CMP 

model and bivariate Poisson model. We again follow the same simulation design and use 

the same bivariate count outcome generator as Study I. In terms of the procedure for 

replications, we follow Study I but replace step (3) with Poisson SUR model. 

Table 15 Columns 3-4 and 5-6 display all MLE deep parameter estimates and the 

standard errors under: (1) Count-Outcome SUR Model (Poisson case) and, (2) dispersion 

Flexible Count-Outcome SUR Model (Conway-Maxwell-Poisson case) on 50,000 

simulated over-dispersed data with correlation parameter sets to 0.75 and dispersion 
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parameter for both outcomes set to −0.1. The outcome variable Y1 has mean of 2.3671, 

variance of 15.45, minimum of 0, and maximum of 25. The second outcome variable Y2 

has mean of 2.337, variance of 15.13, minimum of 0 and maximum of 25. This data is 

over-dispersed since the conditional mean is smaller than the conditional variance. 

Traditional Poisson distribution unfortunately is not able to model any data generating 

process that has non-equi dispersion, since Poisson mean parameter is equal to its 

variance parameter. This suggests that we might need to introduce Conway-Maxwell-

Poisson marginals to better analyze data of this type.  

5.3.1: Simulation Results 

Table 18 shows the simulation results of our two effect parameters [AIEs] over 

100 replications with 10,000 observations for each replication) as well as the averaged 

absolute percent bias in both models. We chose four correlation designs: ρ
12

∈

{0, 0.25, 0.5, 0.75}.  

As we can see, our dispersion flexible SUR model performs with more accuracy 

and efficiency in terms of effect parameters (AIEs). For instance, when rho = 0.75, the 

Conway-Maxwell-Poisson SUR model estimated averaged AIE is 4.502 (with 10.48% 

average absolute percent bias), while the Poisson SUR model estimated averaged AIE is 

4.034 (with 34.19% average absolute percent bias). In this model, the true AIE is 4.765. 

The CMP SUR model estimates the AIE with better precision: (|4.765 - 4.502|/4.765 < 

(|4.765 - 4.034|/4.765) as well as smaller variation: 10.48% < 34.19%. The takeaway is 

that the Poisson SUR model is insufficiently flexible to handle certain types of over-

disperse data, necessitating the use of the CMP SUR model. 
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Chapter 6: Dispersion-Flexible Count-Outcome SUR Estimation in a Real-Data 

Context  

We have observed from the previous simulation studies that there might be 

significant differences using Linear SUR model versus our CDCR model in terms of the 

accuracy and efficiency of policy effect parameter estimations. To illustrate the utility of 

the Count Outcome SUR methods built in previous chapters of this dissertation, we 

consider an application of the Poisson and Conway-Maxwell Poisson marginal model to 

medical utilization data. We conduct a series of estimations and comparisons to 

illuminate the tradeoffs between the models, specifically: (1) Comparison between Linear 

SUR and Count-Outcome SUR (CMP); (2) Comparison between CMP SUR and Single 

Equation CMP Approach; (3) Comparison between Count-Outcome CMP SUR and 

Count-Outcome Poisson SUR. Note that (i) all comparisons will be based on accuracy 

and efficiency in estimation of the effect parameters - EP (in this case the average 

incremental effect AIE) and (ii) that, per our simulation results in Chapter 5, we regard 

the Count Outcome CMP SUR model as the benchmark.  Thus, one may think of the 

present exercise as illustrating the magnitudes of possible biases and efficiency loss in 

effect parameter estimations if we do not account for nonlinearity, cross equation 

correlation, or dispersion flexibility. 

6.1: Data Overview  

A central question of substantive policy interest is the extent to which the use of 

health services depends on insurance coverage (e.g., Chib and Winkelmann, 2001).  To 

address this question, we apply our model to medical care utilization data from the 1987 

National Australian Medical Expenditure Survey. This data is used by many previous 
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works such as Deb and Trivedi (1997), Chib and Winkelmann (2001), and Famoye 

(2015).  

The 1987 National Australian Medical Expenditure Survey Data reports several 

types of correlated count, medical utilization data – e.g., number of physician office 

visits, number of non-physician office visits, number of emergency room visits, etc. – and 

additional covariates – e.g., private insurance, geography, and so on – for elderly 

Australians over the age of 65.  Table 5 provides detailed summary statistics. 

We use a subset of the variables as part of the present exercise. Our outcomes are 

(i) the number of physician office visits, denoted Yo, and (ii) the number of non-

physician office visits, denoted Y1. Our covariates consist of a constant and all patient 

characteristics listed in Table 5, they are denoted Xo. And our policy variable is an 

indicator variable of a whether a patient has private health insurance, which is denoted X. 

For simplicity, we assume that the policy variable is exogenous to the other covariates 

and the outcomes; This assumption allows us to focus on the comparison of the methods 

without the complication of developing a control strategy for endogeneity (e.g., 

instrumental variables). One of the goals of future work is to fully incorporate 

econometric approaches for handling with endogenous policy variables. 

We choose ∆ = 1, so that the AIE gives (i) the difference between physician office 

visits in a counterfactual where everyone has private insurance and a counterfactual 

where no one has private insurance and (ii) the difference between non-physician office 

visits in a counterfactual where everyone has private insurance and a counterfactual 

where no one has private health insurance.  In other words, it answers the questions: what 
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happens to average physician and non-physician office visits as everyone in the 

population is switched from not having private insurance to having private insurance? 

6.2: Comparison Between Linear SUR and Count-Outcome SUR (CMP) in Real 

Data 

In this section, we compare the empirical results of the effect parameters (AIEs) 

under linear system of equation models versus count-outcome system of equation model. 

The main objective for such comparison is to answer the question: how much does 

accounting for nonlinearity matter in policy effect estimation?  

Table 6 shows the deep parameter estimations of the two correlated count 

outcomes under Zellner’s Linear SUR model. (I also included OLS model estimation 

results and put it next to Zellner’s Linear SUR model, so we can easily observe the 

potential efficiency gains in some deep parameters.) 

Table 9 shows the Policy Effect Parameter (AIE) Estimation Results using 

National Medical Expenditure Survey Data between Zellner’s Linear SUR model and our 

count-outcome SUR model – Conway Maxwell Poisson case.  

As we can see, the AIE(Y1) of our first outcome under Count-Outcome SUR 

Model - Conway-Maxwell-Poisson case is 2.5637, with standard error of AIE(Y1) equal 

to 0.763. The AIE (Y2) of our second outcome under Count-Outcome SUR Model - 

Conway-Maxwell-Poisson case is 22.358, with standard error of AIE(Y2) equal to 7.611.  

Linear SUR model estimated AIE(Y1) is equal to 1.6302, with standard error 

0.2784, and the Linear SUR Model estimated AIE(Y2) is equal to 0.5958, with standard 

error 0.2288. The effect parameter estimates between Linear SUR model and our Count-

Outcome SUR (CMP case) model differs significantly. The Linear SUR model tends to 
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underestimate the average incremental effects when the outcome variable shows 

nonlinearity. To visually illustrate the nonlinearity, see Figure 2 -- Histograms of Highly 

Skewed Distributed Count Outcomes (Dependent Variables) of 1987 National Australian 

Medical Expenditure Survey Data. We also observe that the data exerts nonlinearity even 

after taking logarithmic transformation. 

The standard errors of AIE under Linear SUR model are much smaller than those 

from and our Count-Outcome CMP model. This is a classical bias-efficiency tradeoff. 

6.3: Comparison Between CMP SUR and Single Equation CMP Approach in Real 

Data 

In this section, we compare the empirical results of the effect parameters (AIEs) 

under Single Equation Count-Outcome model versus Count-Outcome SUR model 

(Conway-Maxwell-Poisson case). The main objective for such comparison is to answer 

the question: how much does accounting for potential cross-equation correlation 

(estimation under a system-of-equation or SUR framework) matter in policy effect 

estimation?  

6.3.1: Poison Case Empirical Results  

Table 7 and Table 10 give the estimation results for both the joint and equation-

by-equation Poisson model.  Specifically, Table 7 reports the deep parameters and Table 

10 reports the AIEs.  In terms of deep parameter estimation, Table 7 shows that the joint 

estimation method typically achieves strictly larger t-statistics and thus smaller standard 

errors than under the equation-by-equation estimation method. 

In terms of EP estimation, Table 10 shows, under joint estimation, that the policy 

effect of having private insurance on the number of doctor office visits is 1.88 and that 



69 

the policy effect of having private insurance on the number of non-doctor office visits is 

4.00.  Further, under equation-by-equation estimation that ignores the cross-equation 

correlation, the table shows that the policy effect of having private insurance on the 

number of doctor office visits is 2.53 and that the policy effect of having private 

insurance on the number of non-doctor office visits is 2.98. The single equation model 

overestimates the policy effect on the number of doctor office visits and underestimates 

the policy effect on the number of non-doctor office visits.   

In terms of the standard errors of our target EPs, Table 10 shows that the standard 

errors of the AIEs from the joint estimation are 0.504 and 0.478 for physician and non-

physician visits respectively, while the standard errors of the policy effects under 

equation-by-equation estimation much larger at 0.734 and 1.590 for physician and non-

physician visits respectively. Thus, we again see that joint estimation is more efficient 

than equation-by-equation estimation.  

6.3.2: CMP Case Empirical Results  

As we can see from the data descriptive, the outcome variables are over-

dispersed, i.e., the conditional mean is smaller than the conditional variance, for instance, 

the mean of our second outcome Y2 - number of non-doctor office visits is 1.62, while 

the variance of Y2 is 28.27, the conditional mean of our first outcome Y1 - number of 

doctor office visits is 5.77, while the conditional variance of Y1 is 45.56. This also argues 

against the appropriateness of the Linear SUR case. This indicates that we need a model 

that is able to account for flexible dispersions, which traditional Poisson model cannot 

account for (due to its single parameter restriction that forces mean = variance).  
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In terms of deep parameter estimation, Table 8 shows the MLE deep parameter 

estimations of the two correlated count outcomes under our count-outcome SUR model – 

Conway Maxwell Poisson case. The comparison of single equation Conway Maxwell 

Poisson model with bivariate Conway Maxwell Poisson model are put side by side, so we 

can easily observe the potential efficiency gains in some deep parameters. We can also 

refer to Table 7 to compare our CMP model’s deep parameter estimation results with 

Poisson model’s deep parameter estimation results. Note that the additional parameters 

under CMP case are the dispersion parameters omega1 and omega2. 

In terms of EP estimations, Table 11 shows the effect parameter estimation results 

(AIE) under our count-outcome SUR model – Conway Maxwell Poisson case. As we can 

see, the AIE(Y1) of our first outcome under Count-Outcome SUR Model - Conway-

Maxwell-Poisson case is 2.564, with standard error of AIE(Y1) equal to 0.763. The 

AIE(Y2) of our second outcome under Count-Outcome SUR Model - Conway-Maxwell-

Poisson case is 22.358, with standard error of AIE(Y2) equal to 7.611. The single 

equation Conway-Maxwell-Poisson model estimated AIE(Y1) is equal to 2.644, with 

standard error 0.8597, and the single equation Conway-Maxwell-Poisson model 

estimated AIE(Y2) is equal to 21.652, with standard error 7.251. The effect parameter 

point estimates are similar between single equation CMP and bivariate CMP model, and 

the standard errors results are mixed, there seems to be an improvement in efficiency for 

the AIE of first outcome (0.8597 > 0.7630), while in the case of our second outcome, the 

standard error of the bivariate CMP model is slightly larger: 7.2507 < 7.6115. 
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6.4: Comparison between Count-Outcome CMP SUR and Count-Outcome Poisson 

SUR 

In this section, we compare the empirical results of the effect parameters (AIEs) 

between Dispersion Flexible Count-Outcome SUR (Conway-Maxwell-Poisson) and 

Count-Outcome Poisson SUR model. The main objective for such comparison is to 

answer the question: how much does accounting for dispersion flexibility matter in policy 

effect estimation?  

Table 8 Columns 2 and 4, and Table 7 Columns 2 and 4 shows the MLE deep 

parameter estimations of the two correlated count outcomes under our count-outcome 

SUR model – Conway Maxwell Poisson case and our count-outcome SUR model – 

Poisson case. 

In terms of EP estimations, Table 12 shows the effect parameter estimation results 

(averaged incremental effects -- AIEs) comparison between the count-outcome SUR 

model – Conway Maxwell Poisson case and the count-outcome SUR model – Poisson 

case. As we can see, the AIE (Y1) under Count-Outcome SUR Model - Conway-

Maxwell-Poisson case is 2.564, with standard error of AIE(Y1) equal to 0.763. The 

AIE(Y2) under Count-Outcome SUR Model - Conway-Maxwell-Poisson case is 22.358, 

with standard error of AIE(Y2) equal to 7.611. The count-outcome SUR model – Poisson 

case estimated AIE(Y2) is equal to 1.883, with standard error 0.504, and the count-

outcome SUR model – Poisson case estimated AIE(Y2) is equal to 4.009, with standard 

error 0.478.  

We observe that, for this over-dispersed health care utilization data, the Poisson 

SUR model tend to underestimate the EPs, since it is not able to model the dispersion 
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level of the data generating process. The standard errors of the AIE under Poisson SUR 

model is smaller for both outcomes (0.763 > 0.503; and 7.612 > 0.478).  
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Chapter 7: Summary, Discussion and Conclusions 

In this section, we: i) discuss the significance of this dissertation; ii) list the 

limitation of the study; iii) conclude by pointing out a few avenues for future work. 

7.1: Summary 

This dissertation focuses on bivariate, count-value outcomes. Using an Aitchison 

and Ho (1989) type mixture approach in the context of the policy evaluation (and thus 

potential outcomes – e.g., Terza, 2019a), we examine whether joint estimation or 

equation-by-equation estimation provides greater efficiency for the deep parameters and 

estimated treatment effects.  Based on simulation studies and applications to healthcare 

utilization data, we find strong evidence that joint estimation is typically more efficient.  

The contribution of this dissertation is two folds. First, to the best of our 

knowledge, we are the first test and verify the classic assumptions in the count-outcomes 

literature that equation-by-equation estimation is less efficient than joint estimation for 

both deep parameters.  Second, the model allows for omni-dispersion and thus relaxes 

classical dispersion-related restrictions present in prior works – e.g., Aitchison and Ho 

(1989) who use a Poisson-based approach.  Third, most papers in the count-outcomes 

literature do not address treatment effects like Average Incremental Effects – e.g., 

Aitchison and Ho (1989), Chua and Tsiaplias (2019), and Kim et al. (2015) only focus on 

deep parameter estimation.  This dissertation shows how to incorporate treatment effects 

into a flexible count-outcome framework and then demonstrates that joint estimation of 

the parameters improves the efficiency of treatment effects estimation; thereby providing 

an important new tool for policy analysis. 
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7.2: Discussion 

Here are a few limitations of this study which might deserve further investigation: 

(1) The efficiency gains we observed might come from simulator’s aspects; (2) It would 

be a plus to also provide theoretical proofs of such efficiency gain that we observed in 

our simulation studies; (3) We did not account for possible endogeneity issues, which 

will be a natural extension of this dissertation.   

7.3: Conclusion 

This dissertation represents the first step in an important line of research and 

much remains to be done.  Presently, I am in the process of exploring additional marginal 

distributions and building out our two-dimensional quadrature program for general use.  I 

also plan to extend the present framework to account for endogenous variables (via 

analogues of two-stage residual inclusion). 
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Table 1 

 

Validation of Gauss-Legendre Quadrature Software's Accuracy: Comparison of 

GLQ-Based Marginal CDFs Versus Empirical Marginal CDFs From Simulated 

Bivariate Poisson Data 

 

 

Support Y1 Y2 

 

GLQ-Based 

Marginal CDF 

Empiric

al 

Margina

l CDF 

GLQ-Based 

Marginal CDF 

Empirical 

Marginal CDF 

0 0.823859309 0.824746 0.823859244 0.82493 

1 0.965752483 0.966086 0.965752361 0.965966 

2 0.99158493 0.991692 0.991584771 0.991814 

3 0.997423585 0.997406 0.997423404 0.99741 

4 0.999057349 0.99898 0.999057154 0.999038 

5 0.999603662 0.999544 0.999603459 0.999578 

6 0.999814232 0.999752 0.999814023 0.999808 

7 0.999905068 0.999872 0.999904855 0.999892 

8 0.999947951 0.999934 0.999947737 0.999942 

9 0.999969734 0.99996 0.999969518 0.999972 

10 0.99998148 0.999976 0.999981263 0.999984 

11 0.999988136 0.99998 0.999987918 0.999994 

12 0.999992073 0.99998 0.999991854 0.999998 

13 0.999994492 0.999984 0.999994273 0.999998 

14 0.999996029 0.99999 0.99999581 0.999998 

15 0.999997031 0.999992 0.999996812 0.999998 

16 0.999997698 0.999994 0.999997478 0.999998 

17 0.999998149 0.999998 0.999997929 0.999998 

18 0.999998461 1 0.999998241 0.999998 

19   0.999998461 1 

N=500,000 
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Figure 1 

 

Gauss-Legendre Quadrature Approximated Joint PMF Versus Joint PMF of 

Simulated Bivariate Poisson Data 
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Table 2 

 

Validation of Gauss-Legendre Quadrature Software's Accuracy: Comparison of 

GLQ-Based Marginal CDFs Versus Empirical Marginal CDFs From Simulated 

Bivariate Conway-Maxwell-Poisson Data 

 

 

Support Y1 Y2 

 

GLQ-Based 

Marginal CDF 

Empirical 

Marginal CDF 

GLQ-Based 

Marginal CDF 

Empirical 

Marginal CDF 

0 0.3278748 0.328492 0.3278748 0.32888 

1 0.7092633 0.709816 0.7092635 0.710044 

2 0.8984288 0.89853 0.8984293 0.898684 

3 0.9673462 0.967728 0.9673469 0.967364 

4 0.9896771 0.989954 0.9896781 0.989898 

5 0.9966822 0.996734 0.9966834 0.996738 

6 0.9988979 0.998882 0.9988991 0.998926 

7 0.9996185 0.999556 0.9996198 0.999622 

8 0.9998617 0.999824 0.999863 0.999864 

9 0.9999472 0.99994 0.9999485 0.99995 

10 0.9999784 0.999974 0.9999798 0.999984 

11 0.9999904 0.99998 0.9999917 0.999992 

12 0.9999951 0.999992 0.9999964 0.999998 

13 0.999997 0.999996 0.9999984 1 

14 0.9999978 0.999998   

15 0.9999982 0.999998   
16 0.9999984 1   

 omega1= omega2 = 0.75, rho = 0.5, N=500,000 
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Table 3 

 

MLE of Deep Parameters of Bivariate Poisson Model and True Parameters 

 

Two Outcomes Y1 Y2 Y1 Y2 

 

Bivariate Poisson (Joint 

Estimation) TRUE 

beta1 
-.977 

(0.0217) 

-.9845 

(0.022) 

-1 -1 

beta2 
-1.020 

(.0218) 

-1.025 

(.0221) 

-1 -1 

constant 
.0045 

(.0295) 

-.0172 

(.0298) 

0 0 

sigma squared 
1.0102 

(.0134) 

1.0179 

(.0135) 

1 1 

rho12 
.8697 

(.0137) 

0.9 

N = 50,000, standard errors in parentheses 

 

 

 

Table 4 

 

Average Incremental Effect (AIE) Estimates using Bivariate Poisson Model 

Versus Single Equation Poisson Model: AIE, AAPB 

  

 Based on 100 replication of size n = 10,000 

 

True 

Model Single Equation Model Bivariate Poisson Model 

  Avg AIE AAPB Avg AIE AAPB 

rho12 = 0.9 -0.1801 -0.1869 6.76% -0.1778 3.51% 

rho12 = 

0.75 -0.1801 -0.1930 9.61% 0.1749 2.81% 

rho12 = 0.5 -0.1801 -0.1822 5.83% -0.1703 3.48% 

rho12 = 

0.25 -0.1801 -0.1910 8.67% -0.1750 3.10% 
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Table 5 

 

Summary Statistics of 1987 National Australian Medical Expenditure Survey 

(NMES) Data  

 

Variable Types Variable Names Mean Std. Dev. Min Max 

Policy Variable Private Insurance 0.77644 

0.416676

9 0 1 

Correlated 

Count Outcome 

Variables 

Count of Physician 

Office Visits 5.7744 6.7592 0 89 

Count of Non-

Physician Office 

Visits 1.61802 5.3170 0 104 

Count of Physician 

Outpatient Visits 0.75079 3.6527 0 141 

Count of Non-

Physician Outpatient 

Visits 0.53609 3.8795 0 155 

Count of Emergency 

Room Visits 0.2635 0.70365 0 12 

Count of 

Hospitalizations 0.29596 0.74639 0 8 

Patient 

Characteristics 

Excellent Health 0.07785 0.26796 0 1 

Poor Health 0.12574 0.33159 0 1 

Number of Chronic 

Diseases 1.54199 1.3496 0 8 

Daily Activity 

Difficulty Index 0.20404 0.40304 0 1 

North East 0.18997 0.39232 0 1 

Midwest 0.2626 0.44009 0 1 

West 0.18112 0.38515 0 1 

Age 7.40241 0.63340 6.6 10.9 

Black 0.11711 0.32159 0 1 

Male 0.40354 0.49066 0 1 

Married 0.54607 0.49792 0 1 

Schooling Level 10.2903 3.73873 0 18 

Family Income 

(Normalized) 2.52713 2.92464 -1.012 

54.8

3 

Employed 0.10327 0.30434 0 1 

Australian Medicaid 0.09124 

0.287981

7 0 1 

Obs: 4406      
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Figure 2 

 

Histograms of Highly Skewed Distributed Count Outcomes (Dependent Variables) 

of 1987 National Australian Medical Expenditure Survey Data  

 

 
Number of Doctor Office Visits              Number of Non-Doctor Office Visits 

 
Number of Doctor Outpatient Visits         Number of Non-Doctor Outpatient Visits 

 
Number of ER Visits                                     Number of Hospitalization 
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Figure 3 

 

Histograms of Simulated Bivariate Over dispersed CMP Data (Rho=0.25) 

 

 
Outcome Variable Y1                                 Outcome Variable Y1 

 
Policy Variable X                                   Dependent Variable X01 

 

Rho=0.25 
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Table 6 

 

MLE of Deep Parameters of Zellner Linear SUR Model Using National Medical 

Expenditure Survey (NMES) Data  

 

 Outcome Variables 

Variables # of Physician Office Visits 
# of Non-Physician Office 

Visits 

 
OLS 

(single 

equation) 

Zellner 

Linear SUR 

OLS 

(single 

equation) 

Zellner 

Linear SUR 

Private Insurance  
1.6302 

(0.27) 

1.6302 

(0.27) 

0.5959 

(0.229) 

0.5958 

(0.229) 

Excellent Health 
-1.514 

(-4.10) 

-1.514 

(-4.10) 

-0.0458 

(-0.15) 

-0.0458 

(-0.1) 

Poor Health 
2.152 

(6.62) 

2.152 

(6.63) 

-0.2747 

(-1.03) 

-0.2747 

(-1.03) 

Number of Chronic 

Diseases 

1.073 

(13.79) 

1.0737 

(13.81) 

0.1780 

(2.78) 

0.1780 

(2.79) 

Daily Activity 

Difficulty Index 

.6036 

(2.20) 

0.6036 

(2.20) 

0.4189 

(1.85) 

0.4189 

(1.86) 

Midwest 
-0.0194 

(-0.08) 

-0.0194 

(-0.08) 

0.8277 

(4.01) 

0.8277 

(4.01) 

West 
0.7415 

(2.60) 

0.7415 

(2.60) 

1.140 

(4.86) 

1.140 

(4.87) 

Age 
-0.3514 

(-2.10) 

-0.3514 

(-2.11) 

-0.4113 

(-3.00) 

-0.4113 

(-3.00) 

Black 
-0.337 

(-1.03) 

-0.337 

(-1.03) 

-0.3107 

(-1.16) 

-0.3107 

(-1.16) 

Male 
-0.375 

(-1.74) 

-0.375 

(-1.74) 

-0.249 

(-1.40) 

-0.249 

(-1.40) 

Married 
-0.2459 

(-1.08) 

-0.2459 

(-1.0) 

0.0142 

(0.08) 

0.0142 

(0.08) 

Schooling Level 
0.1410 

(4.82) 

0.1410 

(4.83) 

0.0873 

(3.63) 

0.0873 

(3.64) 

North East 
0.6368 

(2.31) 

0.6368 

(2.31) 

0.5608 

(2.47) 

0.5608 

(2.48) 

Family Income 
-0.0197 

(-0.55) 

-0.0197 

(-0.56) 

-0.0276 

(-0.94) 

-0.0276 

(-0.95) 

Employed 
0.27421 

(0.83) 

0.27421 

(0.8) 

-0.345 

(-1.27) 

-0.345 

(-1.27) 

Australian 

Medicaid 

1.5039 

(3.79) 

1.5039 

(3.80) 

0.289 

(0.89) 

0.289 

(0.89) 

Constant 
3.6866 

(2.77) 

3.6866 

(2.77) 

2.657 

(2.43) 

2.657 

(2.43) 

T-Statistics in Parenthesis, same in Table 7 and Table 8   
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Table 7 

 

MLE of Deep Parameters of Bivariate Poisson Model Using National Medical 

Expenditure Survey (NMES) Data 

 

 Outcome Variables 

Variables # of Physician Office Visits # of Non-Phys. Office Visits 
 Single Equation  Bivariate  Single Equation  Bivariate  

Private Insurance  
0.411 

(9.233) 

0.424 

(9.529) 

0.908 

(8.636) 

0.888 

(8.981) 

Excellent Health 
-0.355 

(6.661) 

-0.393 

(6.672) 

-0.297 

(10.334) 

-0.399 

(12.991) 

Poor Health 
0.307 

(8.757) 

0.286 

(8.981) 

-0.384 

(10.135) 

-0.372 

(12.818) 

Number of 

Chronic Diseases 

0.242 

(34.024) 

0.226 

(35.28) 

0.130 

(37.832) 

0.173 

(41.789) 

Daily Activity 

Difficulty Index 

0.027 

(9.703) 

0.041 

(10.482) 

0.157 

(14.269) 

0.270 

(17.442) 

Midwest 
0.098 

(9.789) 

0.071 

(9.672) 

0.572 

(8.484) 

0.253 

(13.928) 

West 
-0.013 

(10.168) 

-0.001 

(10.723) 

0.737 

(8.386) 

0.520 

(13.964) 

Age 
0.143 

(9.347) 

0.136 

(9.575) 

1.175 

(7.820) 

0.916 

(13.381) 

Black 
-0.006 

(14.877) 

0.007 

(15.598) 

-0.052 

(18.418) 

-0.060 

(20.951) 

Male 
-0.147 

(7.517) 

-0.119 

(8.189) 

-0.239 

(7.864) 

-0.205 

(8.839) 

Married 
-0.142 

(12.339) 

-0.151 

(11.914) 

-0.678 

(15.325) 

-0.611 

(17.710) 

Schooling Level 
0.004 

(11.338) 

0.010 

(11.584) 

0.224 

(15.3180 

0.129 

(17.911) 

North East 
0.028 

(91.933) 

0.022 

(87.991) 

0.042 

(114.784) 

0.037 

(129.874) 

Family Income 
-0.003 

(68.406) 

0.003 

(71.126) 

0.011 

(113.060) 

0.020 

(118.028) 

Employed 
0.034 

(8.497) 

0.016 

(9.116) 

0.229 

(9.698) 

0.182 

(12.320) 

Australian 

Medicaid 

0.387 

(6.692) 

0.344 

(6.870) 

-0.059 

(7.375) 

-0.341 

(7.352) 

Constant 
0.339 

(1.893) 

0.292 

(1.941) 

-3.096 

(2.325) 

-2.678 

(2.538) 

sigma 
0.956 

(55.151) 

0.900 

(33.93) 

1.453 

(56.08) 

1.874 

(39.74) 

rho N/A 
0.312 

(14.436) 
N/A 

0.312 

(14.436) 
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Table 8 

 

MLE of Deep Parameters of Bivariate Conway-Maxwell-Poisson Model Using 

National Medical Expenditure Survey (NMES) Data  

 

 Outcome Variables 

Variables # of Physician Office Visits 
# of Non-Physician Office 

Visits 

 Single 

Equation 
Bivariate  

Single 

Equation  
Bivariate  

Private Insurance  
0.4535 

(8.31) 

0.471 

(8.85) 

0.472 

(10.11) 

0.424 

(9.08) 

Excellent Health 
-0.368 

(-5.15) 

-0.378 

(-5.31) 

-0.180 

(-3.24) 

-0.152 

(-2.00) 

Poor Health 
0.443 

(8.21) 

0.503 

(8.99) 

0.230 

(3.17) 

0.235 

(4.63) 

Number of Chronic 

Diseases 
0.225 

(15.20) 

0.222 

(15.00) 

0.060 

(5.14) 

0.054 

(4.98) 

Daily Activity 

Difficulty Index 
0.0758 

(1.52) 

0.085 

(1.70) 

0.169 

(4.42) 

0.142 

(3.93) 

Midwest 
0.048 

(1.05) 

0.057 

(1.26) 

0.446 

(11.42) 

0.405 

(10.57) 

West 
0.128 

(2.51) 

0.079 

(1.58) 

0.338 

(8.27) 

0.3032 

(7.62) 

Age 
-0.028 

(-0.92) 

-0.051 

(-1.66) 

-.176 

(-5.76) 

-0.161 

(-5.53) 

Black 
-0.125 

(-2.05) 

-.13473 

(-2.27) 

-.3069 

(-5.92) 

-0.286 

(-5.41) 

Male 
-0.0787 

(-2.03) 

-0.04916 

(-1.25) 

-0.075 

(-2.05) 

-0.071 

(-2.08) 

Married 
-0.142 

(0.0187) 

0.0038 

(0.09) 

.0194 

(0.60) 

0.034 

(0.98) 

Schooling Level 
0.036 

(7.02) 

0.038 

(7.48) 

.06130 

(12.66) 

0.059 

(10.91) 

North East 
0.129 

(2.57) 

.0504 

(2.91) 

0.468 

(10.79) 

0.417 

(9.48) 

Family Income 
-0.008 

(-1.36) 

-0.009 

(-1.65) 

-0.018 

(-3.95) 

-0.019 

(-3.88) 

Employed 
0.1127 

(1.7) 

0.11269 

(1.70) 

-0.0386 

(-0.63) 

-0.025 

(-0.51) 

Australian Medicaid 
0.380 

(4.76) 

0.441 

(5.79) 

0.373 

(5.09) 

0.3551 

(4.70) 

Constant 
0.355 

(1.43) 

0.4756 

(1.94) 

-1.3460 

(-5.45) 

-1.362 

(-5.55) 

omega 
0.0148 

(0.91) 

0.0109 

(0.66) 

-1.408 

(-33.06) 

-1.5001 

(-32.53) 

rho N/A 
0.396163 

(16.50) 
N/A 

0.396163 

(16.50) 
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Table 9 

 

Comparison 1 (Zellner’s SUR versus CMP SUR): Average Incremental Effect (AIE) 

Estimates using National Medical Expenditure Survey (NMES) Data  

 

Average Incremental Effects: 

Private Insurance Status on Two Correlated Health Care Utilization Counts 

 

Zellner’s Linear Seemingly 

Unrelated Regression (SUR) 

Model 

Count-Outcome SUR Model 

(Conway-Maxwell-Poisson case) 

 AIE S.E. T-Stat 

P-

Value AIE S.E. T-Stat 

P-

Value 

Count of 

Physician 

Office 

Visits (𝐘𝟏) 1.6302 0.2784 5.8536 0.0000 2.5637 0.7630 1.0604 0.2889 

Count of 

Non-

Physician 

Office 

Visits (𝐘𝟐) 0.5958 0.2288 2.6034 0.0092 22.358 7.6115 2.9374 0.0033 

Standard errors are asymptotic standard errors as given in Terza (2017a); T-Statistics and 

P-Values are derived from these asymptotic standard errors. 
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Table 10 

 

Comparison 2-A (Single-Equation Poisson versus Poisson SUR): Average 

Incremental Effect (AIE) Estimates using National Medical Expenditure Survey 

(NMES) Data  

 

Average Incremental Effects: 

Private Insurance Status on Two Correlated Health Care Utilization Counts 

 

Single-Equation Estimation 

(Poisson case) 

Count-Outcome SUR Model 

(Poisson case) 

 AIE S.E. T-Stat 

P-

Value AIE S.E. T-Stat 

P-

Value 

Count of 

Physician 

Office 

Visits (𝐘𝟏) 2.5290 0.7340 3.4400 0.0006 1.8830 0.5036 3.7400 0.0002 

Count of 

Non-

Physician 

Office 

Visits (𝐘𝟐) 2.9808 1.5900 1.8740 0.0600 4.0088 0.4783 3.7470 0.0002 

Standard errors are asymptotic standard errors as given in Terza (2017a); T-Statistics and 

P-Values are derived from these asymptotic standard errors. 
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Table 11 

 

Comparison 2-B (Single-Equation CMP versus CMP SUR): Average Incremental 

Effect (AIE) Estimates using National Medical Expenditure Survey (NMES) Data  

 

Average Incremental Effects: 

Private Insurance Status on Two Correlated Health Care Utilization Counts 

 

Single-Equation Estimation 

(Conway-Maxwell-Poisson case) 

Count-Outcome SUR Model 

(Conway-Maxwell-Poisson case) 

 AIE S.E. T-Stat 

P-

Value AIE S.E. T-Stat 

P-

Valu

e 

Count of 

Physician 

Office 

Visits (𝐘𝟏) 2.6444 0.8597 3.0759 0.0020 2.5637 0.7630 1.0604 0.288 

Count of 

Non-

Physician 

Office 

Visits (𝐘𝟐) 21.652 7.2507 2.9862 0.0028 22.358 7.6115 2.9374 0.003 

Standard errors are asymptotic standard errors as given in Terza (2017a); T-Statistics and 

P-Values are derived from these asymptotic standard errors. 
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Table 12 

 

Comparison 3 (CMP SUR versus Poisson SUR): Average Incremental Effect (AIE) 

Estimates using National Medical Expenditure Survey (NMES) Data  

 

Average Incremental Effects: 

Private Insurance Status on Two Correlated Health Care Utilization Counts 

 

Count-Outcome SUR Model 

(Conway-Maxwell-Poisson case) 

Count-Outcome SUR Model 

(Poisson case) 

 AIE S.E. T-Stat 

P-

Value AIE S.E. T-Stat 

P-

Value 

Count of 

Physician 

Office 

Visits (𝐘𝟏) 2.5637 0.7630 1.0604 0.2889 1.8830 0.5036 3.7400 0.0002 

Count of 

Non-

Physician 

Office 

Visits (𝐘𝟐) 22.3582 7.6115 2.9374 0.0033 4.0088 0.4783 3.7470 0.0002 

Standard errors are asymptotic standard errors as given in Terza (2017a); T-Statistics and 

P-Values are derived from these asymptotic standard errors. 
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Table 13 

 

MLE of Deep Parameters of Zellner’s Linear Seemingly Unrelated Regression 

(SUR) Model with Simulated Over-Dispersed Data  

 

Two 

Outcomes Y1 Y2 Y1 Y2 

 

Zellner’s Linear Seemingly 

Unrelated Regression (SUR) Model TRUE 

beta1 
2.192 

(0.0700) 

2.224 

(0.0707) 

1 1 

beta2 
-2.239 

(0.0706) 

-2.268 

(0.0713) 

-1 -1 

constant 
2.658 

(0.6953) 

2.649 

(0.7027) 

0 0 

rho12 N.A. 0.75 

omega N.A. N.A. -0.1 -0.1 

N = 50,000, standard errors in parentheses 
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Table 14 

 

MLE of Deep Parameters of Bivariate Conway-Maxwell Poisson Model with 

Simulated Over-Dispersed Data 

 

Two 

Outcomes Y1 Y2 Y1 Y2 

 

Count-Outcome SUR Model 

(Conway-Maxwell-Poisson case) 

Single-Equation Estimation 

(Conway-Maxwell-Poisson 

case) 

beta1 
0.9963 

(0.0125) 

1.00225 

(0.0127) 

0.9963 

(0.0126) 

1.0015 

(0.0129) 

beta2 
-1.00173 

(0.0126) 

-0.9929 

(0.0127) 

-1.0019 

(0.0126) 

-0.9986 

(0.0129) 

constant 
.01298 

(0.0193) 

.00372 

(0.0192) 

0.0111 

(0.01941) 

0.0088 

(0.0194) 

rho12 
0.743392 

(.00492) 

N.A. 

omega 
-0.08856 

(0.00674) 

-0.0872 

(0.0066) 

-0.0935 

(0.0068) 

-0.0896 

(0.0068) 

N = 50,000, standard errors in parentheses 
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Table 15 

 

MLE of Deep Parameters of Zellner’s SUR Versus Poisson SUR Versus CMP SUR 

using Simulated Over-Dispersed Data 

 

Two 

Outcomes Y1 Y2 Y1 Y2 Y1 Y2 

 

Zellner’s Linear 

SUR Model 

Count-Outcome SUR 

(Poisson case) 

Count-Outcome SUR 

(Conway-Maxwell-

Poisson case) 

beta1 
2.192 

(0.0700) 

2.224 

(0.0707) 

1.051 

(0.0288) 

1.0115 

(.02985) 

0.9963 

(0.0125) 

1.00225 

(0.0127) 

beta2 
-2.239 

(0.0706) 

-2.268 

(0.0713) 

-1.0375 

(.02907) 

-1.0565 

(.02988) 

-1.00173 

(0.01264) 

-0.9929 

(0.0127) 

constant 
2.658 

(0.6953) 

2.649 

(0.7027) 

.04875 

(.0430) 

.1077 

(.0437) 

.01298 

(0.0193) 

.00372 

(0.01917) 

rho12 
 

N.A. 
0.477 

0.743392 

(.00492) 

sigma 

squared 
N.A. N.A. 

1.039 

(0.0138) 

1.055 

(0.0147) 
N.A. N.A. 

sigma12 
 0.5002 

(0.0146) 

 

N.A. 

omega N.A. N.A. N.A. N.A. 
-0.08856 

(0.00674) 

-0.0872 

(0.0066) 

N = 50,000, standard errors in parentheses 
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Table 16 

 

Comparison 1 (Zellner’s SUR versus CMP SUR): Average Incremental Effect (AIE) 

Estimates Using Simulated Over-Dispersed Data 

 

   
Count-Outcome SUR 

(Conway-Maxwell-

Poisson case) 

Zellner’s Linear SUR 

Design rho12 
True 

AIE 

Average 

AIE() 

AAPB 

AIE() 

Average 

AIE() 

AAPB 

AIE() 

1 

(Over-

Dispersed 

Correlated 

Counts) 

Omega = 

−𝟎. 𝟏 

0.75 4.765 4.502 10.48% 2.185 53.06% 

0.5 4.767 4.865 25.48% 2.191 52.89% 

0.25 4.767 4.502 19.00% 2.213 52.57% 

0 4.767 4.7079 26.87% 2.209 52.64% 

100 replications with 10,000 observations for each replication 
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Table 17 

 

Comparison 2 (CMP SUR versus Single-Equation CMP): Average Incremental 

Effect (AIE) Estimates Using Simulated Over-Dispersed Data 

 

   
Count-Outcome SUR 

(Conway-Maxwell-

Poisson case) 

Single-Equation Model 

(Conway-Maxwell-

Poisson case) 

Design rho12 
True 

AIE 

Average 

AIE() 

AAPB 

AIE() 

Average 

AIE() 

AAPB 

AIE() 

1 

(Over-

Dispersed 

Correlated 

Counts) 

Omega = 

−𝟎. 𝟏 

0.75 4.765 4.502 10.48% 4.583 11.31% 

0.5 4.767 4.865 25.48% 4.845 24.61% 

0.25 4.767 4.502 19.00% 4.419 21.40% 

0 4.767 4.708 26.87% 4.710 26.46% 

100 replications with 10,000 observations for each replication 
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Table 18 

 

Comparison 3 (CMP SUR versus Poisson SUR): Average Incremental Effect (AIE) 

Estimates Using Simulated Over-Dispersed Data 

 

   
Count-Outcome SUR 

(Conway-Maxwell-

Poisson case) 

Bivariate Poisson 

Design rho12 
True 

AIE 

Average 

AIE() 

AAPB 

AIE() 

Average 

AIE() 

AAPB 

AIE() 

1 

(Over-

Dispersed 

Correlated 

Counts) 

Omega = 

−𝟎. 𝟏 

0.75 4.765 4.502 10.48% 4.035 34.19% 

0.5 4.767 4.865 25.48% 4.265 36.93% 

0.25 4.767 4.502 19.00% 4.147 35.53% 

0 4.767 4.7079 26.87% 4.216 36.24% 

100 replications with 10,000 observations for each replication 
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Table 19 

 

Simulation Parameter Designs for Bivariate Poisson Models  

 

Simulation Variables/Parameters Value 

X and X01 Uniform [0.13, 1.87] 

X02 Equal to 1 

β
1
= β

2
 Equal to 1 

 β
01

=  β
02

 Equal to (−1,0)′ 

 σ1= σ2 Equal to 1 

𝜌12 Element of  ∈ {0.25, 0.5, 0.75, 0.9}. 

 

 

 

 

Table 20 

 

Simulation Parameter Designs for Bivariate Over-Dispersed CMP Models 

 

 Over-Disperse Data 

Simulation Variables/Parameters Values 

X and X01 Uniform [0.13, 1.87] 

X02 Equal to 1 

β
1
= β

2
 Equal to 1 

 β
01

=  β
02

 Equal to (−1,0)′ 

 σ1= σ2 Equal to 1 

 ω1= ω2 Equal to −1 

𝜌12 Element of  {0, 0.25, 0.5, 0.75}. 
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Table 21 

 

Summary Statistics of Simulated Bivariate Over-Dispersed CMP Data  

 

Variable Mean Std. Dev. Min Max 

Y1 2.36714 3.931251 0 25 

Y2 2.32628 3.869724 0 25 

X 1.00061 0.5002346 0.134089 1.866013 

X01 1.00059 0.4996162 0.1339784 1.866003 

 

Based on 50,000 observations (the summary statistics are similar for other sample size 

simulations such as 10,000, 500,000 observations); Rho=0.25. 
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