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ABSTRACT 

 

ESSAYS ON METHODS OF DEMAND AND PRODUCTION FUNCTION ESTIMATION 

Ruizhi Ma 

Aviv Nevo 

Estimating consumer demand is fundamental to analyzing pricing decisions, welfare gains from new 

products, and changes in market structure. The first two chapters of this dissertation analyze econometric 

methods that allow researchers to estimate richer distributions of heterogeneity, and therefore more flexible 

demand models. 

The first chapter compares several newly developed methods for estimating individual heterogeneity by 

Monte Carlo simulations. I use them to estimate a simplified mixed logit model without price endogeneity. I 

find the method from Malone et al. (2019) achieves good performances with a significantly lower 

computational cost, and the method from Cheng et al. (2019) is well-suited for scenarios with sparse type 

interactions. I provide some recommendations on how an empirical researcher could use these methods in 

practice. 

The second chapter extends the first chapter by adapting the fixed-grid likelihood method (from Malone et 

al. 2019, henceforth FG) and a clustering method (from Cheng et al. 2019, henceforth CSS) to the full mixed 

logit model with price endogeneity and unobserved consumer demographics. I compare FG, CSS, and a 

conventional parametric MLE procedure using real panel data. I compare their predictions on welfare 

estimates in three hypothetical scenarios: a new product, a merger, and a divestiture. I find that the parametric 

approach distorts the welfare predictions.  

The third chapter estimates how weather affects Chinese manufacturers' productivity during 1998-2007 and 

predicts how climate change would affect their productivity by 2040-2042. We use Abito (2020)’s production 

function estimation method, allowing firm-specific fixed effects in productivity. We find most industries in 
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our sample exhibit persistent differences in firm-level productivity, and that weather significantly affects a 

firm’s productivity. We use the estimated effects to predict the mean productivity level in 2040-2042 for each 

firm. Comparing to the firms’ historical mean productivity levels, we find the productivity will be lowered 

by about -4% by 2040-2042 on average across firms. We also find several industries where Ackerberg et al. 

(2015)’s productivity estimates induce significantly biased climate predictions. These industries amount to a 

large portion of the real value-added output, and are where the productivity heterogeneity is the largest and 

most persistent.  
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CHAPTER 1  

1,  COMPARING RECENT METHODS TO MODEL INDIVIDUAL 

HETEROGENEITY 

 

BY RUIZHI MA 

1.1 Introduction 
 

Uncovering latent individual heterogeneity is relevant to various policy- and business-oriented problems. 

Prominent examples include estimating substitution patterns among differentiated products, evaluating 

welfare after a change in market structure, predicting the profit of a new product, and simply classifying 

agents (consumers/firms/workers) into different groups. However, estimating such heterogeneity is often 

challenging for empirical researchers in real-world settings. Sometimes researchers don’t have many 

observations for each individual. This is the case for some firm production data used in the production 

function estimation literature (see the empirical application in Cheng et al. 2019 and Abito 2020, and also 

the data in the third chapter of this dissertation). Besides, there could be multiple dimensions of heterogeneity, 

making it harder to estimate the distribution of heterogeneity flexibly and identify each individual's type 

accurately (see Cheng et al. 2019 for discussions on the case of sparse-type interactions). 

The recent developments in the economic literature provide various estimators aimed at estimating 

multidimensional heterogeneity with short panel data (Malone et al. 2019, Cheng et al. 2019, Bonhomme et 

al. 2019, Bonhomme and Manresa 2015, Fox et al. 2016, Ackerberg 2009). No one estimator can be the one-

size-fits-all solution for all empirical scenarios. Researchers might be interested in different aspects of the 

heterogeneity (e.g., overall distribution versus types of certain individuals) or might estimate the 

heterogeneity for different purposes (e.g., to better estimate a common parameter or make better welfare 

evaluations). A method might be better suited for certain purposes but not for others. Also, these methods 



 
 

2 

model heterogeneity differently and have different tuning parameters, like the number of latent types or the 

support of the distribution of the heterogeneity. However, it might not be clear how to choose these tuning 

parameters, as the heterogeneity is unobserved. Utilizing multiple methods could help choose the tuning 

parameters properly. 

Therefore, this chapter aims to compare some of these methods in Monte Carlo experiments and offer some 

recommendations on how empirical researchers could use these methods in practice. I compare 5 methods: 

the fixed-grid likelihood (henceforth FG) estimator in Malone et al. (2019), the k-mean pre-clustering method 

in Bonhomme et al. (2019), the multi-dimensional clustering method from Cheng et al. (2019) (henceforth 

CSS), the “structural” k-means from Bonhomme and Manresa (2015) (the name of the method will become 

clearer in the method description section below), and the Heckman-Singer from Heckman and Singer (1984) 

and Train (2008) (henceforth HS). 

I conduct 5 sets of Monte Carlo experiments to compare these methods in settings where individual 

consumers repeatedly choose from horizontally differentiated products. The performance measures will be 

(1) welfare gains from introducing a new product and (2) distance between the true and the estimated types 

of each individual. The 5 experiments differ in their true distributions of unobserved heterogeneity. The first 

3 experiments are designed to compare the performances in relatively ideal settings where their assumptions 

are met, and tuning parameters are correctly specified. The last 2 experiments have more 

realistic/complicated taste distributions.  

I find that no one method clearly dominates all other methods in the Monte Carlo experiments. Focusing on 

the last experiment, where the unobserved heterogeneity follows a mixture of normal distributions, I find that 

FG is speedy and has the lowest MSE in welfare gains. FG's median run time is 3 minutes with a decently 

dense grid, which is 4 times faster than the second-fastest method, and 24 times faster than the slowest method 

(HS). On the other hand, CSS produces the smallest MSE in welfare gains among the clustering methods 

(i.e., CSS, k-means pre-clustering, and the “structural” k-means). Overall, CSS is usually at least as good as 

other clustering methods. I also find the “structural” k-means is really good at estimating the common 

parameter, but not as good at estimating the heterogeneous parameters and the welfare gains. 
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The rest of this chapter is organized as follows. Section 1.2 describes the model and the estimation methods. 

Section 1.3 describes the simulation designs and reports the results. Section 1.4 provides some discussions 

on how an empirical researcher could use these methods in practice. Section 1.5 concludes. 

 

1.2 Model and methods 
 
The setting is a short balanced panel of 𝐼 consumers, where each consumer is observed 𝑇 periods (or in 𝑇 

markets), with 𝑇 ≪ 𝐼. Each period the consumer makes a purchase from a range of horizontally differentiated 

products. Product attributes vary exogenously over time. Consumers have the same form of (logit) utility 

function, but differ in their taste 𝛽 over the attributes of the product 𝑗 at time 𝑡, 𝑥!" . The utility of consumer 

𝑖	consuming product 𝑗 in period	𝑡 is 

𝑢#!" = 𝑥!"$ β# − 𝛼𝑝!" + ϵ#!" 

where ϵ#!" is an i.i.d. (across 𝑖, 𝑗, 𝑡) type-1 extreme-value random variable. Price vector in time 𝑡, 𝒑𝒕, is the 

equilibrium outcome of a static Bertrand-Nash price-setting game. Each firm has one product in each market. 

At the beginning of time 𝑡, firms set their prices according to the expected market share of its product, and 

equilibrium prices are computed. Then each consumer randomly chooses a product given her choice 

probabilities. 

This model is different from the “standard” random coefficient logit model in three ways. First, the price 

sensitivity coefficient (𝛼) usually varies across individual consumers in the “standard” model. It is assumed 

to be common here because some of the methods to be discussed (the clustering methods) are designed to 

tackle situations with both common and heterogeneous parameters. Second, β# is not a function of consumer 

demographic variables in this model. In the second chapter, I will allow β# to be a function of both observed 

and unobserved demographics. Third, there is no unobserved product attribute in this model, so the error term 

is not correlated with price or features. In the “standard” random coefficient logit model there is an 

unobserved product feature (usually denoted “𝜉!"”). Since by sellers’ price-setting behavior the price is 

correlated with the unobserved product feature, the price is correlated with the error term. Here the price is 

exogenous because the focus of this chapter is to estimate heterogeneity, which is a somewhat orthogonal 
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issue to price endogeneity. The next chapter will estimate a more realistic random coefficient logit model 

where the price is endogenous.  

 
1.2.1 Method descriptions 
 
1.2.1.1 Bonhomme et al. (2019): k-means pre-clustering 
 
Bonhomme et al. (2019) utilize informative moments of the underlying heterogeneity to cluster individuals 

into different groups with a k-means algorithm. In the context of consumer choice, the k-means algorithm 

assumes that there are K groups among the consumers. There is preference heterogeneity across groups, but 

consumer preference is the same within each group. The k-means pre-clustering approach first estimates the 

group memberships of each consumer (i.e., classifying consumers) with only the choice data. It then treats 

the estimated memberships as given and uses them to estimate group-specific preference parameters. 

Let 𝑐#" be the observed product choice of consumer 𝑖 in market 𝑡, and let 𝒄𝒊 = (𝑐#', 𝑐#(, … , 𝑐#)). The objective 

function of the k-means clustering here is 

min
*('),…,*(/),0!,…,0"

>?𝒄𝒊 −𝐻*(#)A
(

/

#1'

 

where 𝑘(𝑖)	is the group membership of firm 𝑖, 𝑎𝑛𝑑	𝐻* (a vector of length 𝑇) is cluster center of the cluster 

𝑘. The simple k-means algorithm looks like this: 

0, Initialize with a guess of group memberships and group centers. 

At iteration n, 

1, (assignment) Given initial values {𝑘(𝑖)(23')}#1'/ 	𝑎𝑛𝑑		{𝐻*
(23')}*1'4 , assign each individual 𝑖 to the group 

𝑘 where ?𝒄𝒊 −𝐻*
(23')A

(
 is the smallest.  

2, (update) Given {𝑘(𝑖)(2)}#1'/ , compute the new group centers for each group j: 𝐻!
(2) = ∑ 	𝒄##	6.".		*(#)1! /𝑛!, 

where 𝑛! is the number of consumers currently in group j.  

3, If  𝑘(𝑖)(2) = 𝑘(𝑖)(23') for all 𝑖, stop; else repeat 1-3.  

I use the R canned command kmeans in my estimations. It carries out the estimation using a modified version 

of the above algorithm, which is the algorithm of Hartigan and Wong (1979). 
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I petition individuals into groups using k-means, and treat individuals within a group as having the same 

preference parameters. Suppose now I make correct structural assumptions on the utility function and the 

error term. By doing so, I get individual 𝑖's log-likelihood function given data and parameters 𝛼, β#: 

𝑙𝑜𝑔 M𝐿?{𝑐#"}"1',…,)O{𝑥" , 𝒑𝒕}"1',…,) , 𝛼, β#AP (1)  

where 𝑐#" is the observed choice of consumer 𝑖 in market 𝑡, and 𝑥" are product features.  I can also compute 

the overall total log-likelihood: 

>𝑙𝑜𝑔 M𝐿?{𝑐#"}"1',…,)O{𝑥" , 𝒑𝒕}"1',…,) , 𝛼, β*(#)AP
/

#1'

(2) 

and the likelihood for each group j: 

> 𝑙𝑜𝑔 M𝐿?{𝑐#"}"1',…,)O{𝑥" , 𝒑𝒕}"1',…,) , 𝛼, β*(#)AP
#	6.".		*(#)1!

(3) 

 

Given these notations, the algorithm I use to estimate the model with k-means pre-clustering is as follows: 

0, (pre-clustering) Determine group memberships using k-means with the choice data, as described in the 

algorithm above. In the following the memberships are treated as given. 

1, Initialize with a guess of the common parameter 𝛼. 

At iteration n: 

2, Given the guess of 𝛼(23'), estimate group-specific 𝛽(2) separately in each group by maximizing the 

equation (3).  

3, Given 𝛽(2) , find 𝛼(2) by maximizing equation (2).  

4, Evaluate convergence: stop if |𝛼(2) − 𝛼(23')| < ϵ for a sufficiently small 𝜖. 

 

The advantage of such a procedure is that it only requires one run of the classification algorithm, is really 

fast, and does not rely on structural assumptions in the classification step. However it is less efficient than 

methods that make use of structural assumptions. For example, here market 1 and market 2 have different 
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product assortments, but the k-means procedure completely ignores such useful variation in classifying 

consumers into groups.  

 

1.2.1.2 Bonhomme and Manresa (2015): “structural” k-means 
 
The estimation method from Bonhomme and Manresa (2015) also models the heterogeneity in the form of 

“grouped fixed effects”. Again the heterogeneous parameter β# vary across groups, but are assumed to be the 

same within each group of individuals. This approach's advantage is similar to that of simple k-mean in that 

it pools together observationally similar individuals. Therefore, it can estimate heterogeneity even with a 

short panel. The “structural” k-means from Bonhomme and Manresa (2015)  differs from the k-means pre-

clustering algorithm in how to measure the distance between two individuals. In the k-means pre-clustering 

method above, the two individuals are in the same group if their observed choices are close in a simple 

Euclidean sense. For “structural” k-means, an individual will be classified into one group if that group’s taste 

parameter values give this individual the highest likelihood value. By using structural assumptions on the 

utility function and the decision-making process, this method is more efficient than the k-means pre-

clustering at classifying individuals into different groups. One cost of this advantage is that, instead of 

running the classification only once, the assignment of group memberships needs to be done many times in 

the estimation, each time with a updated value of the common parameter.  

Let 𝐾 be the number of groups. Again denote 𝑘# as the group membership of individual 𝑖, β* as the group-

specific parameters of group 𝑘. The objective of the “structural” k-means from Bonhomme and Manresa 

(2015) is: 

max
*('),…,*(/),8!,…,8#,9

>𝑙𝑜𝑔 M𝐿?{𝑐#"}"1',…,)O{𝑥"}"1',…,) , 𝛼, β*(#)AP
/

#1'

 

Therefore, this method thus estimates the group-membership and group-specific tastes recursively based on 

likelihood functions. For related theoretical results and examples, please see Bonhomme and Manresa 

(2015)1.  

 
1 Bonhomme and Manresa (2015) provides consistency and asymptotic results for linear model with time-varying 
heterogeneous intercept. 
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The estimation algorithm of this method is as follows: 

0, Initialize with a guess of group memberships and parameters. 

At iteration n:  

1, Assignment: given a guess of 𝛼(23'), for each 𝑖, compute Equation (1) with each β* , and assign 𝑖 to the 

group that gives highest log-likelihood. 

2, Update β*: given 𝛼(23') and updated group memberships, for each group 𝑘, choose β* that maximize 

equation (3). 

3, Update α: given the updated β* and updated memberships, find 𝛼(2) by maximizing equation (2). 

4,  Repeat above until convergence. 

 

 

1.2.1.3 Cheng et al. (2019): “structural” k-means with a plus  
 
Cheng et al. (2019) refine the “structural” k-means above in multi-dimensional settings by giving multiple 

group memberships to an individual, one for each dimension of the heterogeneity. For example, if the 

consumers have different tastes over two features of a product, then CSS estimates two different memberships 

for a single individual, one for each feature preference. In contrast, the Bonhomme and Manresa (2015) 

method would allow each individual only to have one group membership, and the two group-specific 

parameters within that group are jointly updated using only individuals in that group. 

By design, CSS has the advantage of using data from more individuals to update group-specific parameters 

in each dimension. Thus the corresponding estimates are more precise than those produced by the “structural” 

k-means in Bonhomme and Manresa (2015). This advantage is more evident when feature tastes have sparse 

interactions. The cost is that CSS is more computationally intense than Bonhomme and Manresa (2015). 

 

Suppose β* ≡ (β*', β*(). Individual 𝑖 has two memberships: 𝑘1(𝑖) and 𝑘2(𝑖). The estimation algorithm of 

this method is as follows: 
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0, Initialize with a guess of group memberships and parameters. 

At iteration n, 

1, Given 𝛼(23') and {𝑘1(𝑖)(23'), 𝑘2(𝑖)(23')	}#1'/ , update (β*', β*()*1'4  jointly using equation (2). 

2, Update 𝛼: given the updated β* and updated memberships, find a new 𝛼 that maximizes equation (2). 

3, Update 𝑘1(𝑖):	for each 𝑖, compute equation (1) with each β*', and assign 𝑖 to the group with highest log-

likelihood, to get {𝑘1(𝑖)(2)	}#1'/  

4, Repeat step 2-3 to update again (β*', β*()*1'4 	and 𝛼, to find ?β*'
(2), β*(

(2)A
*1'

4
 and 𝛼(2). 

5, Update 𝑘2(𝑖): for each 𝑖, compute equation (1) with each β*(, and assign 𝑖	to the group with highest log-

likelihood, to get {𝑘2(𝑖)(2)	}#1'/  

6, Compute objective value and assess convergence. 

 

 

1.2.1.4 Malone et al. (2019): Fixed-grid Likelihood (FG)  
 
The fixed-grid likelihood estimator (FG) from Malone et al. (2019) estimates multi-dimensional 

sprobabilities of belonging to each type. By design, it does not need to estimate group-specific parameters 

(i.e., type values). Therefore, it is crucial for this method to properly specify the type grids: the grids need to 

be wide enough to cover the whole support of the unobserved heterogeneity and dense enough within the 

support. 

The method starts by creating grids in each dimension of the heterogeneity, followed by simulating each type 

of consumer's behaviors on the grid. It then computes the likelihoods of observing each consumer’s actual 

behaviors under each type and uses these likelihoods to compute posterior type probabilities for each 

consumer, with a uniform prior. 

As mentioned above, the best practice for using FG is to “saturate” the parameter space by making the grid 

for type values cover enough range and making the grid fine enough along each dimension of heterogeneity. 

When there is no homogeneous parameters, FG is most advantageous since the evaluation only needs to be 

done once for each type in the estimation. Unfortunately, this is not the case here. In my estimation algorithm, 
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the posterior type probabilities are computed for each iteration of the homogeneous parameters in the 

optimization problem. However even in this case, FG still shows a considerable computational advantage 

over other methods in terms of estimation time. 

 

To be specific, let 𝑣', . . . , 𝑣: be the fixed grid for unobserved heterogeneity parameter β#. Again let 

𝐿?{𝑐#"}"1',…,)O{𝑥" , 𝒑𝒕}"1',…,) , 𝛼, v;A be the likelihood of observing individual i's outcome 𝒄𝒊 (choices), given 

the observed features and prices of all available products, a guess of the common parameter, and the 

individual's type 𝑣; for the unobserved demographics. Assuming a uniform prior {π;};1':  common to all 

individuals, the probabilities of the individual	𝑖	belonging to type 𝑣; is given by the Bayes rule: 

𝑃<?𝑣;O{𝑐#" , 𝑥" , 𝒑𝒕}"1',…,); 𝛼, 𝑣', . . . , 𝑣:A =
𝐿?{𝑐#"}"1',…,)O{𝑥" , 𝒑𝒕}"1',…,) , 𝛼, v;Aπ;

𝑃({𝑐#" , 𝑥" , 𝒑𝒕}"1',…,)|𝛼)
 

																																																													= =>{𝑐#"}"1',…,)?{𝑥" , 𝒑𝒕}"1',…,) , 𝛼, v;@A$
∑ =>{𝑐#"}"1',…,)?{𝑥" , 𝒑𝒕}"1',…,) , 𝛼, v;@A$%
$&!

(4)  

Let 𝑦#!" be an indicator variable for consumer 𝑖 choosing product 𝑗 in market 𝑡. The objective of FG is thus 

𝛼 = 𝑎𝑟𝑔𝑚𝑎𝑥>𝑦#!"
#,!,"

logh>
𝑒C'(),$

∑ 𝑒C'"),$*∈E)

:

;1'

𝑃<?𝑣;O{𝑐#" , 𝑥" , 𝒑𝒕}"1',…,); 𝛼, 𝒗Ak (5) 

where  

𝑈#!",; = 𝑥!"$ v; − 𝛼𝑝!" 

 

The algorithm of FG is as follows: 

0, Fix 𝑣', . . . , 𝑣:. Initialize with a guess of parameters α(F). 

At iteration n, 

1, Given the current values α(23'), for each consumer 𝑖, compute the posterior type probabilities using (4). 

2, Find α(2) by equation (5), using the computed posterior type probabilities. 

3, Evaluate convergence. If convergence is not achieved, repeat 1-3. 
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1.2.1.5 Heckman-Singer  
 
Heckman-Singer assumes the unobserved heterogeneity has a discrete distribution. The version of Heckman-

Singer used here is from Train (2008), which aims at estimating both the type weights (i.e., shares of 

population that are of each type) and type values (i.e., the values of the discrete points as the support of the 

distribution). To be specific, let there be 𝑀 discrete points for the distribution of the unobserved 

heterogeneity: 𝑣', . . . , 𝑣:. Let 𝑠; be the share of type 𝑚 in the population. Given these notations, HS solves 

the following problem: 

(𝛼, 𝑣', … , 𝑣: , 𝑠',… , 𝑠:) = 𝑎𝑟𝑔𝑚𝑎𝑥>logh>pq
𝑒C'(),$

∑ 𝑒C'"),$*∈E)
r
G'()

!"

:

;1'

𝑠;k
#

(6) 

where 	

𝑈#!",; = 𝑥!"$ v; − 𝛼𝑝!" 

Given a guess of 𝛼, I use the expectation-maximization (EM) algorithm described in Train (2008) to carry 

out the estimation. Given 𝛼, the EM recursion solves 

(𝑣', . . . , 𝑣: , 𝑠',. . . , 𝑠:) = 𝑎𝑟𝑔𝑚𝑎𝑥>> 𝑃#;	
:

;1'

loghpq
𝑒C'(),$

∑ 𝑒C'"),$*∈E)
r
G'()

!"

𝑠;k
#

 

where 𝑃#; is posterior probability of consumer 𝑖 belonging to type 𝑚: 

𝑃#; = 𝑃<?𝑣;O{𝑐#" , 𝑥" , 𝒑𝒕}"1',…,); 𝛼, 𝑣', . . . , 𝑣: , 𝑠',. . . , 𝑠:A =
𝐿?{𝑐#"}"1',…,)O{𝑥" , 𝒑𝒕}"1',…,) , 𝛼, v;A𝑠;

∑ 𝐿?{𝑐#"}"1',…,)O{𝑥" , 𝒑𝒕}"1',…,) , 𝛼, v;A𝑠;:
;1'

					(7) 

Note that the prior here is the estimated population shares, 𝑠', . . . , 𝑠:, instead of a uniform prior as in FG. 

 

The EM algorithm is as follows2: 

0, Choose initial values ?𝑣'
(F), … , 𝑣:

(F),  𝑠'
(F), … ,  𝑠:

(F)A. 

At iteration n, 

1, Compute posterior probabilities for each consumer 𝑖, 𝑃#;
(2), using equation 7.  

 
2 See page 46-47 of Train (2008). 
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2, Update the type shares for each type m: 𝑠;
(2) =

∑ H'$
(,)

'

∑ ∑ H'$.
(,)

'$.
. 

3, Update type values for each type m: 𝑣;
(2) is computed by estimating a simple logit using the full sample, 

but with each individual’s likelihood weighted by the individual’s probability of belonging to type m, 𝑃#;
(2). 

4, Evaluate convergence. If not, repeat 1-4.  

 

In my case here, there is also a common parameter 𝛼. I estimate the parameter 𝛼 in an outer loop by 

maximizing (6). In the inner loop, given a value of 𝛼, I estimate the heterogeneous parameters using the EM 

algorithm I just described. In practice, I run a simple grid-search (the grid consists of 11 points tightly around 

the true value) for the common parameter in the outer loop, instead of a full maximization. The reason for 

this is simply that it would be too time-consuming to do a full maximization for the common parameter for 

Heckman-Singer. This choice of estimation procedure makes HS performs better than it would be in a more 

realistic setting where the true value of the homogeneous parameter is unknown.  

 

Heckman-Singer quickly becomes infeasible when there are more dimensions (even a small number), as there 

will be too many types and thus too many parameters to estimate. Other methods above are more feasible 

than Heckman-Singer in higher-dimensions. 

1.3 Monte Carlo Simulation 
 

I present 5 Monte Carlo experiments. In the first 3 experiments, the true distribution of heterogeneous 

parameters is discrete, in the 4th one, the true distribution is a Gaussian distribution, and in the last one, the 

distribution is a mixture of three Gaussian distributions. In particular, experiment 1 sets the baseline (best 

possible) performance of these 5 methods when all tuning parameters (number of clusters and/or grid points) 

of each method are set correctly; experiment 2 shows that CSS is better than k-means methods if there are 

groups with only a few members (i.e., if there is sparse type intersection); experiment 3 shows that FG may 

perform better than CSS when its total number of groups (i.e. the number of groups in each dimension 
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multiplied by the number of dimensions) is comparable with the number of individuals. The last 2 

experiments compare the performances of these methods in more realistic settings. 

 
1.3.1 Simulation design 
 

As a quick reminder, the model is a short balanced panel of 𝐼 consumers in a market, where each consumer 

is observed 𝑇 periods (𝑇 ≪ 𝐼). Each period the consumer makes a purchase from a range of horizontally 

differentiated products. Product attributes vary exogenously over time. Consumers have the same form of 

(logit) utility function, but differ in their taste β over the attributes of the product 𝑗 at time 𝑡, 𝑥!" . The utility 

of consumer 𝑖	consuming product 𝑗 in period	𝑡 is 

𝑢#!" = 𝑥!"$ β# − α𝑝!" + ϵ#!" 

where ϵ#!" is an i.i.d. (across 𝑖, 𝑗, 𝑡) type-1 extreme-value random variable. There is no unobserved product 

features, and prices and features are not correlated with the error term.  

 

Let the dimension of non-price attributes be 𝐾. I choose 𝐾 = 2, 𝐼 = 1000 and 𝑇 = 50. Also, the number of 

product in the market 𝐽 = 5. In terms of individual heterogeneity, all consumers have the same price 

coefficient α = 2. β will have several different distributions in different experiments, the details of which 

will be provided in the follow subsections for each specific experiments. 

 

On the supply side, the two product attributes are drawn from two correlated standard normal distribution, 

with a covariance of 0.5. Marginal cost is the sum of deterministic cost 𝑥!"$ 𝑐 plus a disturbance 𝑤, which is 

drawn i.i.d from a standard normal distribution. The parameter 𝑐 = (0.5,0.5)’. Price vector in time 𝑡, 𝑝" , is 

the equilibrium outcome of a static Bertrand-Nash price-setting game. Each firm has one product in each 

market. At the beginning of time 𝑡, firms set their prices according to the expected market share of its product, 

and equilibrium prices are computed. Then each consumer randomly chooses a product given her choice 

probabilities. 

 



 
 

13 

I compare these methods by their (1) price coefficient estimates, (2) estimates of the first non-price 

coefficient, and (3) estimates of the welfare gains of the new product with attributes 𝒙{𝒋𝒕 = (−0.5,1)$. In each 

of the experiments, 100 runs are conducted for each method. The welfare statistics are based on the middle 

90% (i.e., 5% to 95%) of the simulation results because welfare estimates tend to have extreme outliers. 

 

1.3.2 Experiment 1: baseline (best) performances 
 

Consumers have heterogeneous preferences over the two non-price features of the product. There are four 

distinctive types of β ≡ (β', β(): (2,0), (2, -2), (0, 0), (0, -2), and their values and fractions in the population 

is given in Table 1.1 below. All methods have the correct tuning parameters (i.e., grid points and/or the 

number of groups). 

Table 1.1: Experiment 1 type distribution 
  β' 
  2 0 
β( 0 0.2 0.3 

-2 0.4 0.1 
 

In this experiment, I expect to see slightly better performance FG than the other 3 methods because the latter 

3 have to estimate the grid points, which is taken as given correctly for the former 2 methods in this 

experiment. Besides, among the latter 3 (clustering-based) methods, I expect to see CSS to be at least as good 

as OB-based k-means, as the former is designed to be a refinement of the latter. 

Table 1.2 reports the experiment results. The first thing to notice is that FG indeed has the best performance 

across all three performance measures in MSE. It is especially noticeable that it gets the heterogeneous 

parameters exactly right, which is not surprising given that it has the correct grid choices. The second best 

estimator here is CSS, which out-performs the structural” k-means, as expected. Also, the “structural” k-

means out-performs k-means pre-clustering in measuring both the first non-price coefficient and the welfare 

gains, which is not surprising given that the structural assumptions of the “structural” k-means are in fact 
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correct here, giving it higher efficiency compared to the k-means pre-clustering. In sum, this experiment 

confirms the basic theoretical predictions regarding the performances of these methods. 

Table 1.2: Experiment 1 results 

Price coefficient 

 Mean Bias Median Bias S. D. MSE 
Heckman-Singer -0.0020 0.0000 0.0100 0.0001 
FG -0.0001 -0.0015 0.0083 0.0001 
“Structural” k-means 0.0245 0.0136 0.0365 0.0019 
K-means pre-clustering 0.0130 0.0038 0.0286 0.0009 
CSS 0.0015 0.0011 0.0100 0.0001 

First Non-price coefficient 

 Mean Bias Median Bias S. D. MSE 
Heckman-Singer 0.0038 0.0012 0.0039 0.0015 
FG 0.0000 0.0000 0.0000 0.0000 
“Structural” k-means -0.0165 -0.0153 0.0833 0.0072 
K-means pre-clustering 0.0035 -0.0004 0.0908 0.0082 
CSS 0.0017 0.0025 0.0164 0.0003 

Welfare gain 

 Mean Bias Median Bias S. D. MSE 
Heckman-Singer -0.0210 -0.0110 0.0914 0.0088 
FG -0.0007 -0.0007 0.0033 0.0000 
“Structural” k-means 0.0094 0.0104 0.0387 0.0016 
K-means pre-clustering -0.0163 -0.0051 0.0493 0.0027 
CSS -0.0028 -0.0010 0.0143 0.0002 

 

 
 
 
1.3.3 Experiment 2: sparse type intersections 
 

In the second experiment, there are again four distinctive types of β ≡ (β', β(): (2,0), (2, −2), (0,0), (0, −2), 

and their values and fractions in the population is given in the Table 1.3 below. 
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Table 1.3: Experiment 2 type distribution 
  𝛽' 
  2 0 
𝛽( 0 0.2 0.31 

-2 0.48 0.01 
 

In particular, note that only 1% of the population is of the last type (-2, 0). This will give the “structural” k-

means and k-means pre-clustering a hard time estimating that type, and as a consequence, will affect the 

estimation of price coefficient. However, CSS will still fair well by design. On the other hand, FG is still 

expected to be at least as good as CSS, as they are given the correct values for grid points, which are to be 

estimated for the HS, k-means, and CSS methods. 

 

Table 1.4: Experiment 2 results 

Price coefficient 

 Mean Bias Median Bias S. D. MSE 
Heckman-Singer -0.0039 0.0000 0.0119 0.0002 
FG -0.0027 -0.0032 0.0084 0.0001 
“Structural” k-means 0.0116 0.0107 0.0158 0.0004 
K-means pre-clustering 0.0163 0.0122 0.0270 0.0010 
CSS -0.0004 -0.0001 0.0104 0.0001 

First Non-price coefficient 

 Mean Bias Median Bias S. D. MSE 
Heckman-Singer 0.0015 0.0016 0.049 0.0024 
FG 0.0000 0.0000 0.0000 0.0000 
“Structural” k-means -0.0114 -0.0242 0.2092 0.0439 
K-means pre-clustering -0.0019 -0.0117 0.2777 0.0771 
CSS 0.0027 0.0002 0.0168 0.0003 

Welfare gain 

 Mean Bias Median Bias S. D. MSE 
Heckman-Singer 0.0025 0.0000 0.0429 0.0018 
FG -0.0016 -0.0015 0.0035 0.0000 
“Structural” k-means 0.0010 0.0046 0.0293 0.0009 
K-means pre-clustering -0.0061 -0.0071 0.0230 0.0006 
CSS 0.0007 0.0032 0.0159 0.0003 
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Table 1.4 reports the experiment results. FG still has the best performance across all three performance 

measures in terms of MSE. However, CSS seems to have less biased estimates for both the price coefficient 

and the welfare predictions. The second best estimator in terms of MSE here is again CSS. The CSS 

significantly out-performs the structural” k-means in all measures of performance, which is exactly as 

expected. Comparing Table 1.4 and Table 1.2, I find that the two k-means methods' performance significantly 

deteriorated due to the sparse type interactions. On the other hand, the “structural” k-means out-performs k-

means pre-clustering in the MSE of measuring the coefficients, but not the MSE of welfare gains. The latter 

is actually because “structural” k-means give a slightly larger standard deviation. However, “structural” k-

means produces a much smaller mean bias compared to the simple k-means. 

 

1.3.4 Experiment 3: more types 
 

This experiment is designed to compare FG and CSS further when there are more types (so more estimation 

burden for CSS). In this sub-experiment, there are 10 types in each dimension of preference for non-price 

attributes, thus 100 types. The de-meaned values of these taste parameters are uniformly distributed on [−5, 

5] in each dimension. In this experiment, FG has the correct grid choices, and CSS has the correct number of 

groups. 

Table 1.5 reports the experiment 3 results. The FG method out-performs CSS in almost all measures, except 

for the standard deviation of the price coefficient, which is very close across the two methods. Interestingly, 

although the mean biases of the coefficients are relatively close for the two methods, FG actually performs 

much better for the bias of the welfare gains. On the other hand, although there are 100 types for the 1000 

consumers, which in the first glance seems challenging for the CSS to estimate group-specific values, it is 

actually not. This is because CSS assigns different group memberships for an individual in different 

dimensions of heterogeneity. This effectively increases the number of individuals within each group from a 

magnitude of 10 to 100. 

 



 
 

17 

Table 1.5: Experiment 3 results 

Price coefficient 

 Mean Bias Median Bias S. D. MSE 
Heckman-Singer -0.0023 0.0000 0.0185 0.0003 
FG 0.0552 0.0444 0.0198 0.0034 
“Structural” k-means -0.0114 -0.0102 0.0168 0.0004 
K-means pre-clustering 0.0674 0.0677 0.017 0.0048 
CSS -0.0614 -0.0615 0.0177 0.0041 

First Non-price coefficient 

 Mean Bias Median Bias S. D. MSE 
Heckman-Singer 0.0842 0.1258 0.6676 0.4528 
FG -0.0741 0.1111 0.6415 0.4170 
“Structural” k-means 0.0385 -0.015 0.8216 0.6765 
K-means pre-clustering 0.1013 0.0474 0.9387 0.8914 
CSS 0.0870 0.1928 0.7000 0.4976 

Welfare gain 

 Mean Bias Median Bias S. D. MSE 
Heckman-Singer -0.0438 -0.0628 1.3241 1.7552 
FG -0.0989 -0.2959 1.3691 1.8842 
“Structural” k-means -0.0078 -0.0718 1.8938 3.5865 
K-means pre-clustering -0.5508 -0.3648 1.5545 2.7199 
CSS -0.1989 -0.3271 1.4416 2.1178 

 

 

1.3.5 Experiment 4: Gaussian distributed tastes 
 

While the first 3 experiments compare these methods in relatively ideal settings (i.e., when their assumptions 

are satisfied), experiment 4 and experiment 5 are designed to mimic more realistic settings. In these settings, 

for any of these methods, getting good performance hinges on either a dense grid (HS and FG) or a proper 

number of groups (k-means methods and CSS). However, for all methods here except FG, it quickly becomes 

very computationally costly to do so. Therefore, in section 1.3.7, I compare the median estimation time of 

these methods in experiments 4 and 5. 

 



 
 

18 

 In experiment 4, β follows a bivariate Normal distribution 𝑁(µ, Σ), with µ = (1,−1)$, and Σ =

(0.5,0.2; 0.2,0.5). The FG has 225 types (15 in each dimension), and the CSS has 15 groups in each 

dimension. I experimented on increasing FG’s grid to 1225 types (35 in each dimension), and the results are 

essentially identical. 

Table 1.6 reports the experiment results. It should be noted that the good performance of Heckman-Singer 

here is partially a result of my choice on its estimation procedure: the price coefficient is estimated with a 

simple grid search over 11 values tightly around the true value. HS should perform worse and take much 

more time to estimate in a real application where a full optimization routine is used for estimating the price 

coefficient. Even in this simplified procedure, the median run time for this experiment for HS is still about 

45 minutes, which is quite long and longest among all methods (see Table 1.8). Based on the fact that 11 

evaluations in the outer loop (where the price coefficient is estimated) takes 45 minutes, on average, one 

evaluation takes about 4 minutes. It would not be surprising in a real application that convergence would 

require much more evaluations than that. 

In Table 1.6, among the rest 4 methods, not one method is uniformly best across the different performance 

measures. FG seems to produce the least biased estimates if focusing on the welfare gains, while CSS has 

the smallest MSE; FG would not have such large MSE only if its standard deviations were smaller. On the 

other hand, if one also cares about the non-price coefficient, FG actually has the smallest MSE among the 

methods excluding HS. In fact, FG has both the smallest mean bias and standard deviation in this case. 

Interestingly, the structural” k-means seems to perform very well in terms of both bias and variance 

(especially the bias) for the price coefficient.-based k-means seems to perform very well in terms of both bias 

and variance (especially the bias).  
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Table 1.6: Experiment 4 results 

Price coefficient 

 Mean Bias Median Bias S. D. MSE 
Heckman-Singer 0.0023 0.0000 0.0185 0.0003 
FG -0.0873 -0.0874 0.0126 0.0078 
“Structural” k-means -0.0001 0.0012 0.0116 0.0001 
K-means pre-clustering 0.0488 0.0477 0.0131 0.0026 
CSS -0.0216 -0.0209 0.0116 0.0006 

First Non-price coefficient 

 Mean Bias Median Bias S. D. MSE 
Heckman-Singer -0.0411 -0.0031 0.279 0.0795 
FG -0.0205 -0.0219 0.3696 0.1370 
“Structural” k-means -0.0434 -0.0564 0.4200 0.1783 
K-means pre-clustering -0.0493 -0.0473 0.4143 0.1741 
CSS -0.0754 -0.0687 0.3764 0.1474 

Welfare gain 

 Mean Bias Median Bias S. D. MSE 
Heckman-Singer -0.0294 -0.0076 0.1014 0.0111 
FG -0.0142 0.0028 0.2509 0.0632 
“Structural” k-means 0.0129 0.0303 0.1348 0.0183 
K-means pre-clustering -0.0275 0.0189 0.1977 0.0398 
CSS 0.0840 0.0675 0.0898 0.0151 

 

 

 

1.3.6 Experiment 5: Irregularly distributed tastes 
 

In this section, β follows a bivariate distribution that is a mixture of three bivariate Normal distributions plus 

a location shifter (i.e. mean) of (1,-1)'. To be specific, let β# be the random vector for taste of consumer 𝑖. 

Then β# has equal probability of drawing from the following three distributions: 

1, 𝑁(µ', Σ'), 𝑤𝑖𝑡ℎ	µ' = (−2,1)$, 𝑎𝑛𝑑	Σ' = (0.5,0.2; 0.2,0.5). 

2, 𝑁(µ(, Σ(), 𝑤𝑖𝑡ℎ µ( = (3,−1)$, 𝑎𝑛𝑑 Σ( = (2,0.8; 0.8,1). 

3,  𝑁(µJ, ΣJ), 𝑤𝑖𝑡ℎ µJ = (−1,0)$, 𝑎𝑛𝑑 ΣJ = (1,0.1; 0.1,2). 
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Table 1.7: Experiment 5 results 

Price coefficient 

 Mean Bias Median Bias S. D. MSE 
Heckman-Singer 0.0147 0.0200 0.0229 0.0007 
FG (225 types) -0.1024 -0.1101 0.0303 0.0114 
FG (1225 types) -0.0951 -0.1028 0.0278 0.0098 
“Structural” k-means 0.0135 0.0120 0.0118 0.0003 
K-means pre-clustering 0.0828 0.0828 0.0133 0.0070 
CSS -0.0321 -0.0336 0.0119 0.0012 

First Non-price coefficient 

 Mean Bias Median Bias S. D. MSE 
Heckman-Singer -0.0645 -0.0633 0.6667 0.4486 
FG (225 types) 0.0869 0.0974 0.6793 0.4690 
FG (1225 types) 0.0936 0.1050 0.5375 0.2977 
“Structural” k-means 0.0562 0.0777 0.6857 0.4733 
K-means pre-clustering -0.0768 -0.0117 0.8865 0.7918 
CSS 0.0626 0.0923 0.6056 0.3707 

Welfare gain 

 Mean Bias Median Bias S. D. MSE 
Heckman-Singer -0.2293 -0.0235 0.6926 0.5323 
FG (225 types) -0.0919 -0.0174 0.5561 0.3177 
FG (1225 types) -0.0906 -0.0281 0.5613 0.3233 
“Structural” k-means -0.0019 -0.0068 0.7944 0.6311 
K-means pre-clustering -0.1827 -0.0287 0.5796 0.3693 
CSS -0.0464 -0.0047 0.6600 0.4378 

 

In this experiment, the FG has two sets of runs, one having 225 types (15 in each dimension), and the other 

having 1225 types (35 in each dimension). The CSS has 15 groups in each dimension. It is not clear changing 

from a regular normal distribution to a mixture of normal distributions would favor which estimation method. 

None of these methods relies on parametric assumptions.  

Table 1.7 reports the results. Focusing on the welfare gains estimates. FG has the second-best performance 

in bias and the best standard deviation and MSE. Interestingly, the k-means pre-clustering method has the 

second smallest MSE, which is actually largely because of its relatively small standard deviation. In fact, 

looking at the median bias alone, the CSS has the best performance, and the k-means pre-clustering has the 

worst. On the other hand, even with grid search over a tight grid, HS takes a lot of time to estimate and does 
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not perform well. “Structural” k-means performs quite well in terms of bias, though it has a relatively large 

standard deviation. 

Increasing the grid from 225 points to 1225 points does not change the FG’s performance in its welfare gain 

estimates. However, it does significantly improve its performance in the coefficient estimates. Both bias and 

variance are smaller for the price coefficient estimates, and the variance is smaller in its first non-price 

coefficient. 

 

1.3.7 Run time 
 

An important consideration in choosing an estimation method in real settings is the computational (time) 

cost. Table 1.8 reports the median run time of the estimation methods in the previous two experiments. Even 

in the experimental setting here, some of these estimation methods could be quite costly. The most time-

consuming method is the Heckman-Singer, and the least time-consuming one is the FG with a moderate 

number of grid points. The k-means methods are fast in simple settings but quickly become much more time-

consuming in slightly complicated situations: from normal to mixture distribution, the median run time for 

the “structural” k-means increases by more than 3 times, and the median run time for the k-means pre-

clustering increases by about 2 times. Such an increase is about 60% for Heckman-Singer and CSS. However, 

FG does not seem to suffer from increased complexity in the heterogeneity here. 

Table 1.8: Median run time (in mins) 

 Normal Mixture 

Heckman-Singer 45.435 73.620 

FG (225 types) 2.695 2.975 

FG (1225 types) 23.320 23.185 

“Structural” k-means 5.400 17.825 

K-means pre-clustering 6.245 12.940 

CSS 40.800 66.165 
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FG needs to have dense enough grid points to have a good performance. Looking at Table 1.8, it seems that 

by increasing the grid points by about 5.4 folds, the run time for FG increases by about 7.6 folds. However, 

1225 types seem more than enough in the last two experiments. In fact, it seems that 225 points are already 

quite enough in getting a good welfare gains measure, and further gains by increasing the number of points 

seem marginal. I thus conclude that FG has a large computational advantage over other methods, and its 

performance is among the best in many cases above. Some of the other methods have better performance 

than FG in certain cases, and the trade-off is in computational time and additional gains in either bias or 

standard deviation. 

Note that the comparisons here are all constrained to two dimensions of heterogeneity. With higher 

dimensions, some of these methods will quickly become computationally infeasible (e.g., Heckman-Singer) 

or data demanding (“structural” k-means). FG and CSS suffer less from such shortcomings, and they will 

show a further advantage in such settings. 

1.4 Recommendations to empirical researchers 
 

In practice, all the methods being studied in this chapter require some prior knowledge on the distribution of 

unobserved heterogeneity: FG requires the choice of the fixed grid, the clustering methods and the HS method 

require the number of clusters/types. However, for an empirical researcher, it might be difficult to start using 

the FG and the clustering methods from Cheng et al. (2019), Bonhomme et al. (2019), and Bonhomme and 

Manresa (2015),  precisely because of the lack of such prior knowledge. A simple way to get a rough idea of 

the unobserved heterogeneity is to start with the k-means pre-clustering method. One should run the k-means 

multiple times with different tuning parameters (i.e., number of clusters) to determine a proper number of 

clusters. In this way, one can quickly get an idea of the support of the unobserved heterogeneity in each 

dimension and whether some areas of the support are more densely populated than the others. 

Given the preliminary knowledge of the unobserved heterogeneity, the researcher can pick some reasonable 

tuning parameters and experiment with one of the other 4 methods. Again there is no one-size-fits-all 

solution. With multi-dimensional models, if the researcher is time-constrained, FG is a good choice due to 
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its computational advantage. The best practice for using FG is to “saturate” the parameter space by making 

the grid for type values cover enough range and making the grid fine enough along each dimension of 

heterogeneity. Sometimes it might happen to be the case that there exist “gaps” in the support of the 

heterogeneous parameters. For example, the k-means pre-clustering might indicate the taste coefficient lies 

between [0, 9], and there seems to be no consumer in the [3, 6] region. In this case, the researcher would 

want to reduce the number of points covering [3, 6] and increase the number of points in [0, 3] and [6, 9]. 

This could be especially helpful in saving computation time in multi-dimensional cases, as the wasted points 

in [3, 6] interact with points from all other dimensions. On the other hand, another situation where FG is 

clearly desirable is when the model only has heterogeneous parameters in a multi-dimensional setting (as is 

the case in Malone et al. 2019). In this case, the model only has to be solved once, instead of many times 

with other methods. 

If there is only one dimension of heterogeneity, the “structural” k-means and the CSS are the same. If the 

researcher finds it tricky to fine-tuning the grid for FG, in this case, it might be easier to use the “structural” 

k-means/CSS. Cheng et al. (2019) provide guidance on how to pick the number of clusters with an 

information criterion properly. 

Besides the issues discussed above, empiricists might want to know which methods are better suited for their 

research demands. For example, if the researcher cares about accurately estimating the common parameter, 

based on the Monte Carlo results here, it seems the “structural” k-means from Bonhomme and Manresa 

(2015) is a good choice. If the researcher really wants to know about all possible types of individuals out 

there and is having trouble fine-tuning the grid for FG in a multi-dimensional case with irregular distributions, 

it is worth going for CSS. 

Finally, it might be worth trying to combine some of these methods in certain applications to achieve higher 

accuracy without adding much computational cost. For example, in my last Monte Carlo experiment, the 

“structural” k-means gives the best estimate for the common parameter. Using this estimate as a fixed input 

for the FG method will improve the FG’s performance and make FG much faster, since now it is the case for 

FG that there is no longer a common parameter, and the model only needs to be solved once to get the 

distribution of unobserved heterogeneity.   
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1.5 Conclusions 
 
This chapter compares 5 recently-developed methods in estimating multi-dimensional heterogeneity with a 

short panel of repeated choices by a set of consumers. I compare their performances in estimating the common 

parameter, the heterogeneous parameter, and welfare gains of a new product in 5 sets of Monte Carlo 

experiments. I find that no one method clearly dominates all others. FG achieves good performance in terms 

of both bias and variance in many performance measures with significantly lower computational costs than 

other methods. I also confirm CSS performs better than the other clustering methods when there are sparse 

type interactions. Both FG and CSS should show further advantages with larger dimensions of heterogeneity, 

as they are less constrained by computational cost and data requirements than other methods. On the other 

hand, I find that the “structural” k-means method accurately estimates the common parameters in my Monte 

Carlo experiments. 

Based on my analysis, I provide a list of recommendations to empirical researchers who would like to apply 

these methods with real data. No one method would fit all the different empirical scenarios. It is 

recommended that the researchers start with k-means pre-clustering to get a rough idea of the underlying 

heterogeneity before choosing the tuning parameters. Researchers must pick the proper tuning parameters 

for these methods. Cheng et al. (2019) provide guidance on choosing the number of clusters with an 

information criterion. FG needs to have a wide and fine enough grid to provide adequate coverage of the 

support of the unobserved distribution. Finally, I provide some examples of how the researcher could use 

some of these methods if the researcher cares about different aspects or implications of the heterogeneity. 
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CHAPTER 2 

2,  ESTIMATING FLEXIBLE DISTRIBUTIONS FOR THE RANDOM 

COEFFICIENT LOGIT MODEL WITH FIXED-GRID LIKELIHOOD 

AND CLUSTERING METHODS 

 

BY RUIZHI MA 
 

2.1 Introduction 
 
Consumer demand estimation is a key component in many policy- and business-relevant analyses. Prominent 

examples include merger simulations, evaluating potential damages of certain anti-competitive conducts, and 

predicting market outcomes of new products. Several demand estimation methods in the market of 

differentiated products have been proposed in the past 20 years. In particular, the random coefficient logit 

model, one of the most widely utilized models of consumer demand, has had several estimation approaches 

proposed for it since Berry et al. (1995). In practice, however, the estimation of the model often relies on 

strong restrictions on the distribution of the unobserved component of consumer demographics, which could 

produce potentially seriously biased results. 

This chapter provides two approaches to flexibly estimate the random coefficient logit model of demand 

when there is microdata in addition to data on market shares. The new approaches allow for a fully flexible 

distribution of the unobserved consumer demographics for each consumer (up to tuning parameters related 

to the distribution). The first approach adapts the “fixed-grid likelihood” (FG) method utilized in Malone et 

al. (2019), and the second approach adapts the clustering method from Cheng et al. (2019) (CSS). Both 

approaches assume the unobserved heterogeneity takes values from a finite number of types. For each 

individual, given a type, these methods produce a likelihood of observing the individual’s outcomes under 
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the type. FG uses these likelihoods across types to update each individual's type distribution using Bayes 

rule, while CSS assigns the type that gives the highest likelihood to the individual.  

Estimating mixed logit with both approaches requires market shares and some forms of data on the individual 

level. An ideal example of such data is a panel of repeated purchases by a representative sample of consumers, 

with some variables on their demographics. This chapter utilizes such a dataset from Nielsen panel in a U.S. 

city’s cat wet food market in a recent year. However, the panel data utilized here contain many repeated 

purchases for each consumer, which is more than enough for the two approaches. Since FG incorporates a 

Bayesian approach to estimate the individual type distribution, in principle, a cross-section of individual 

purchase records, or a cross-section of certain kinds of survey responses (for example, the one in Berry et al. 

2004), in addition to market shares, would suffice for FG to produce some information on unobserved 

demographics. More information at the individual level, for example, a more extended panel, will help to 

make type distribution more precise for each individual. As the panel data here are very long, the estimated 

type distributions by FG are mostly degenerate to one type for each individual. On the other hand, CSS does 

require panel data, but when the dimension of unobserved heterogeneity is low, a short panel will suffice. 

Asking data to determine the grid values for latent types (CSS) or integrating over types  (FG) can be time-

consuming. Thus one trade-off in the choice between the two methods is estimation time in different 

scenarios. To provide some reference, I report estimation time for these methods in my application.   

  

This chapter contributes to the empirical Industrial Organization literature on demand estimation by allowing 

correlations between observed and unobserved demographics in the widely used random coefficient logit 

model of demand. The random coefficient logit model of demand can be estimated using market-level data, 

as is demonstrated in Berry et al. (1995), Nevo (2001), Petrin (2002), among others. Berry et al. 

(2004) demonstrate how to use data on second choices, in addition to market shares, to estimate the model 

with both micro- and macro-moments in a minimum-distance approach. In these studies, the unobserved 

demographics are assumed to be independent of the observed demographics. 

This chapter also contributes to how to utilize both macro (market-level) data and micro (for example, 

purchase records, survey responses) data in a unified way to estimated demand. Perhaps most 
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related, Goolsbee and Petrin (2004) uses microdata on almost 30000 households in 317 markets to estimate 

a demand system of satellite, various cable, and antenna services. This paper is similar to Goolsbee and Petrin 

(2004) in how the estimation of product-market fixed effects is nested in a maximum likelihood estimation 

procedure. Goolsbee and Petrin (2004) allow different individuals’ utilities to correlate differently across 

choices by (1) interacting features with observed demographics and (2) specifying a multivariate Normal 

distribution for the individual error term that is fully flexible in its product-level covariance matrix. However, 

this flexibility cannot capture correlations between observed demographics and the error term, as the error 

term is by assumption still independent of the observed variables. The approaches in this chapter allow for 

such correlations between observed demographics and unobserved demographics in the error term. This 

chapter also follows the insights from both Berry et al. (2004) and Goolsbee and Petrin (2004) in that: (1) the 

macro data are useful to uncover product-market fixed effects (so-called “mean utilities”), and (2) the 

microdata are useful to identify how tastes change with observed demographics. Another advantage of the 

chapter’s methods is that they are inherently nonparametric, thus more flexible than conventional approaches 

that impose parametric distributional assumptions on unobserved heterogeneity. 

  

One major focus in estimating the mixed logit demand model is achieving causal inference via quasi-

experimental methods like instrumental variables. This is, however, an orthogonal topic to the estimation of 

latent heterogeneity, which in some sense is to provide adequate control variables to estimate the parameter 

of interest. Therefore in this chapter, I follow the conventional ways (as is presented in Berry et al. 2004) to 

model the price endogeneity. There are some recent developments on constructing better instruments using 

market-level data, for example, Gandhi and Houde (2019) and Petrin and Seo (2019). On the other hand, 

microdata’s availability opens the question of whether individual level price endogeneity is empirically 

important. However, in that case, allowing for both flexible heterogeneity and more flexible endogeneity is 

a challenging task, especially in structured models with certain functional assumptions on agent behaviors, 

which could make the endogeneity problem non-separable.  
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The rest of the chapter is structured as follows. The second section is the model, estimation, and inference 

procedures of the mixed logit demand model with the proposed approaches. The third section is a simple 

example comparing FG and conventional parametric approaches without price endogeneity. The fourth 

section is an application to the cat wet food market data in a U.S. city in a recent year. The fifth section 

concludes. 

 

2.2 Model and Estimation  
 
2.2.1 Overview 
 
Assume the utility of consumer 𝑖 from consuming product	𝑗 in market 𝑡 with product features 𝒙𝒋𝒕  (including 

price) is 

𝑢#!" = 𝒙𝒋𝒕$ 𝜷𝒊 + 𝜉!" + 𝜖#!" (1)    

where 𝜉!" is the so-called ̀ `structural error term'' that captures the effect of unobserved quality of the product, 

𝜖#!" is the i.i.d. logit error term, and 𝜷𝒊 are functions of observable demographics 𝑫𝒊 and unobserved 

demographics of consumer 𝑖: 

𝛽#,* = 𝑫𝒊
$𝜽𝒌 + 𝛾* + 𝑣#,* ,    𝑘 = 1,2, … , 𝐾 (2) 

Here, 𝛾* is the mean of the effect of the unobserved demographics on coefficient 𝑘, and 𝑣#,* measures how 

the effect of individual i's unobserved demographics deviates from the mean effect on the coefficient 𝛽#,* . In 

a parametric approach, the 𝑣#,* can be assumed to follow the same mean-zero distribution, for example, 

𝑁(0, 𝜎*(), for all 𝑖. However, FG can estimate a different posterior distribution of 𝒗𝒊 for each consumer. These 

posterior distributions are not necessarily mean-zero. CSS treats 𝒗𝒊 as a fixed value for each individual 𝑖, and 

backs out that value based on data on 𝑖. 

Substituting Equation (2) into Equation (1), the utility can be written as 

𝑢#!" =>𝛾*

4

*1'

𝑥!",* +>>𝜃*,L𝑥!",*𝐷#,L

=

L1'

4

*1'

+>𝑥!",*𝑣#,*

4

*1'

+ 𝜉!" + 𝜖#!" 

where L is number of observed demographic variables. The coefficients in this equation are thus 𝜸, 𝜽 and 𝒗. 

One of the most critical aspects of the random coefficient logit model is its ability to estimate 𝜸 consistently, 
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in the presence of price endogeneity arising from the unobserved product quality term 𝜉!" . This is done by 

utilizing the moment conditions 𝐸?𝛿!" − 𝒙𝒋𝒕$ 𝜸A𝑍!" = 0, where 𝑍!" is a set of instruments, and 𝛿!" = 𝒙𝒋𝒕$ 𝜸 +

𝜉!". 𝛿!" is the so-called mean utility, or the product-market fixed effects. 

To utilize these moment conditions, one has first to estimate 𝛿!" . Substituting 𝛿!" = 𝒙𝒋𝒕$ 𝜸 + 𝜉!" into the utility 

expression, I get 

  

𝑢#!" = ∑ ∑ 𝜃*,L𝑥!",*𝐷#,L=
L1'

4
*1' +∑ 𝑥!",*𝑣#,*4

*1' + 𝛿!" + 𝜖#!" (3) 

where now the coefficients are 𝒗, 𝜽	𝑎𝑛𝑑	𝜹, and there is no further endogeneity issue (assuming exogeneity 

of both product features and demographics).  

Therefore, all the methods utilized in this paper follow a two-step estimation procedure, where in the first 

step, I estimate 𝒗, 𝜽 and 𝜹, and in the second step, I regress estimated 𝜹 on product features using two-stage-

least-squares (2SLS). 

 

The Outside Option I assume each consumer may choose to not purchase any product in the market at the 

time. The utility of choosing this outside option is normalized to 0 plus an i.i.d. logit error term for each 

consumer: 

𝑢#F" = 0 + 𝜖#F" 

 

Market Definition and Choice Set I treat each week as a market. I assume the choice set of a consumer in 

a week is just the set of all products ever purchased by any consumer in that week, plus the outside option. 

This assumption on choice set is necessary for the estimation of nontrivial values for product-market fixed 

effects. Otherwise, those products that do not have a single purchase record in a market will have a product-

market fixed effect of negative infinity. 

 

Household Choice Problem As is standard in applications with discrete choice models, I treat a single record 

of the multiple-unit purchase in the raw data as repeated choices, where within each choice scenario, the 
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household chooses 1 unit of product from the choice set in that week. Since the outside option is defined as 

not buying a wet food product, I assume the household makes the same number of choices each week, which 

is equal to the maximum number of cans the household ever purchased in a week.3  

 
2.2.2 Two-step Estimation Procedure 
 
2.2.2.1 First Step Estimation Algorithms 
 

In the first step estimation, if we have a long panel of individual consumer's purchase records, a straight-

forward way to estimate (θ, 𝑣, δ) is by MLE: 

(θ, v, δ) = argmax>𝑦#!" log q
𝑒C'()

∑ 𝑒C'")*∈E)
r

M,N,O

  

where, 

𝑈#!" =>>θ*,L𝑥!",*𝐷#,L

=

L1'

4

*1'

+>𝑥!",*𝑣#,*

4

*1'

+ δ!" 

However, I do not take this approach to directly estimate the parameters, for 2 reasons. First, there are too 

many parameters in δ and 𝑣 for an optimizer to handle appropriately. For example, in my application, there 

are about 10000 parameters in δ, because there are 52 markets (weeks), and in each market, there are around 

200 products, resulting in about 10000 product-market fixed effects. Second, unless a long panel data of 

individual purchases is available (which is rare), there are not enough observations to separately estimate 

{𝑣#,*}*1'4  for each individual 𝑖. 

To address the issue that there are many parameters in δ, I incorporate the contraction mapping algorithm 

from Berry et al. (1995). To address the second issue and that there are also many parameters in 𝑣, I adapt 

FG and CSS, which classify individuals into discretized types. This makes it feasible to identify the 

 
3 While this assumption would have an impact on the estimation result, such impact should be more or less 
the same to all these estimation methods here (as they are estimating the same model). The focus is to 
compare these methods using the same data, rather than discussing the validity of such assumptions. 
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distribution of 𝒗	even without a long panel. Both methods will work with only a short panel on individual 

purchases. Technically, FG only requires a cross-section of individual purchase records. 

 

To further illustrate the first step estimation procedure, I start by describing a simple parametric MLE 

approach that nests the contraction mapping algorithm. This “conventional” approach will be used as a 

benchmark for comparison with FG- and CSS- incorporated approaches. Both FG- and CSS- modified MLE 

can be viewed as direct relaxations of this “conventional” approach. As an example of such a parametric 

MLE approach, let me start by assuming the unobserved demographics 𝒗 follows a Gaussian distribution 

𝑁(0, Σ). The 𝒗 will be integrated out. In practice, the integration can be carried out numerically by 

discretizing the space of 𝒗. This can be done by first fixing M draws from the Standard Gaussian distribution, 

{𝑣�;};1': , and then expressing 𝒗 as a linear transformation of the Standard Gaussian random vector 𝑣�. Let 

𝑣 = Γ𝑣�, then Σ = ΓΓ$, and the optimization problem is the following: 

(𝜽, Γ) = 𝑎𝑟𝑔𝑚𝑎𝑥>𝑦#!"
#,!,"

log �
1
𝑀 >

𝑒C'(),$
∑ 𝑒C'"),$*∈E)

:

;1'

� (4) 

where, 

𝑈#!",; =>>θ*,L𝑥!",*𝐷#,L

=

L1'

4

*1'

+ 𝑥!"$ Γ𝑣� + δP"�(θ, Γ) 

                                              δ�(θ, Γ) = 𝑆3'� (𝑠|θ, Γ) 

The last equation signifies that, given a value of θ and Γ, the δ can be obtained by inverting the 1-to-1 

mapping 𝑆� from δ to observed market shares, s. Berry et al. (1995) took advantage of the fact that the market 

shares are monotonic in δ to construct a contraction mapping that can quickly convert observed market shares 

to δ. Here the contraction mapping for solving δ is thus nested within an algorithm to solve for θ and Γ. 

Formally, Algorithm 1 below described how the estimation is carried out, with an optimizer: 
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Algorithm 1 (Parametric MLE) 

Start with stopping criterion ϵQand initial guess ?θ(F), Γ(F)A. 

1, At iteration n, given the current values ?θ(2), Γ(2)A, compute δ(2) with contraction mapping. 

2, Compute the objective value with θ(2), Γ(2), δ(2), and evaluate convergence. If convergence is not 

achieved, obtain θ(2R'), Γ(2R') using the method provided by the optimizer, and repeat 1-2. 

 

Implicit in the above approach is the assumption that each individual has the same de-meaned distribution of 

unobserved demographics 𝐹(𝑣), regardless of the individual's observed demographics. The FG-incorporated 

MLE approach relaxes this assumption in the above ``conventional'' approach by letting each individual have 

a different discretized distribution over a grid of 𝑣, 𝑣', … , 𝑣: . 𝑃<(𝑣;), the probabilities of an individual 

belonging to type 𝑣;,is implied by the individual's own likelihoods with each type. 

To be specific, let 𝐿(𝑌# , 𝐷# , 𝑋|𝑣;; θ) be the likelihood of observing individual i's outcome 𝑌# (choices), given  

the observed demographics 𝐷# , features of all available products 𝑋, a value of θ, and the individual's type 𝑣; 

for the unobserved demographics. Assuming a uniform prior {π;};1':  common to all individuals, the 

probabilities of an individual belonging to type 𝑣; is given by the Bayes rule: 

𝑃<(𝑣;|𝐷# , 𝑌# , 𝑋; θ) =
𝐿(𝑌# , 𝐷# , 𝑋|𝑣;; θ)π;

𝑃(𝑋# , 𝑌#|θ)
 

																																															=
𝐿(𝒀𝒊, 𝑫𝒊, 𝑿|𝒗𝒎; 𝜽)𝜋;

∑ 𝐿(𝒀𝒊, 𝑫𝒊, 𝑿|𝒗𝒎; 𝜽)𝜋;:
;1'

 

Therefore, the FG-incorporated MLE solves the following problem: 

θ = 𝑎𝑟𝑔𝑚𝑎𝑥>𝑦#!"
#,!,"

logh>
𝑒C'(),$

∑ 𝑒C'"),$*∈E)

:

;1'

𝑃<(𝑣;|𝑋# , 𝑌# , 𝑋; θ)k (5) 

where, 

𝑈#!",; =>>θ*,L𝑥!",*𝐷#,L

=

L1'

4

*1'

+>𝑥!",*𝑣;,*

4

*1'

+ δP"�(θ) 

 δ�(θ) = 𝑆3'� (𝑠|θ) 

 𝑃<(𝑣;|𝐷# , 𝑌# , 𝑋; θ) =
=>𝑌# , 𝐷# , 𝑋?𝑣;; θ@T$

∑ =>𝑌# , 𝐷# , 𝑋?𝑣;; θ@T$%
$&!
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The second to last equation above again is solved by a nested contraction mapping. Note that computing 

market shares predicted by the model requires the posterior probabilities for each individual, which in turn 

changes with δ. Thus for FG, the Bayes updating (last equation above) is also embedded in the contraction 

mapping: for each θ, the data implies a posterior type distribution for each individual. Given these posteriors, 

the predicted market shares can be computed, and 𝑆�converted to obtain δ�(θ). 

 

Formally, Algorithm 1 below described how the estimation is carried out, with an optimizer: 

 

Algorithm 2 (FG) 

Start with stopping criterion ϵQ and initial guess θ(F). 

1, At iteration n, given the current values θ(2),compute δ(2) with contraction mapping. As the posterior type 

distributions change with δ, the Bayes updating is nested in the contraction mapping algorithm. 

2, Compute the posterior type distributions implied by θ(2), δ(2). 

3, Compute the objective value with θ(2), δ(2) and the implied posterior type distributions. 

4, Evaluate convergence. If convergence is not achieved, obtain θ(2R') using the method provided by the 

optimizer, and repeat 1-3. 

 

Similar to the parametric and FG approach, CSS-incorporated MLE also discretizes the value space for the 

unobserved demographics. Unlike FG, which allows a distribution over fixed types for each individual, CSS 

assigns a deterministic type to each individual and also estimates the type value for each group of individuals 

who are of the same type. CSS thus aims to estimate both grid values of the types {𝑣*}*1'4 , and the group 

memberships of each individual {𝐵#}#1'/ , in addition to the homogeneous parameters θ. 4   

Assume there are 𝐾U dimensions of unobserved heterogeneity.5 For simplicity, assume the number of types 

in each dimension is the same, M. Then for each k, 𝑣* = (𝑣'* , … , 𝑣:*). The key advantage of CSS over other 

 
4 These parameters are called “homogeneous” simply because they are common to all individuals. 
5 If the unobserved demographics interact with all product features, then 𝐾U = 𝐾, where K is the number of 
product features. 
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clustering methods is that, instead of assigning a single group membership to each individual, CSS assigns a 

membership for the individual in each dimension. Thus each individuals will have 𝐾U memberships, denoted 

as 𝐵# = ?𝐵#', … , 𝐵#4/A. 

With these notations in hand, the CSS-incorporated MLE solves the following problem: 

 

(θ, {𝑣*}*1'4 , {𝐵#}#1'/ ) = 𝑎𝑟𝑔𝑚𝑎𝑥>𝑦#!"
#,!,"

log q
𝑒C'()

∑ 𝑒C'")*∈E)
r 

where, 

𝑈#!" =>>θ*,L𝑥!",*𝐷#,L

=

L1'

4

*1'

+>𝑥!",*𝑣V'",*

4

*1'

+ δP"�(θ, {𝑣*}*1'4 , {𝐵#}#1'/ ) 

δ�(θ, {𝑣*}*1'4 , {𝐵#}#1'/ ) = 𝑆3'� (𝑠|θ, {𝑣*}*1'4 , {𝐵#}#1'/ ) 

Unlike the previous two problems, for CSS I do not carry out the estimation by asking an optimizer to directly 

search for the parameters, (θ, {𝑣*}*1'4 , {𝐵#}#1'/ ). This is simply because the group memberships {𝐵#}#1'/  take 

discrete values. Instead, the CSS is carried out by a modified version of an expectation-maximization 

algorithm, where in each iteration, the classification is carried out first to update the distribution of types 

(expectation step, updating  {𝑩𝒊}#1'/ ), the homogeneous parameters (θ	𝑎𝑛𝑑	δ) are then updated with MLE 

with nested contraction mapping (maximization step), and finally the grid for the discrete types ({𝑣*}*1'4 ) 

are updated. Denote 

Λ(θ, {𝑣*}*1'4 , {𝐵#}#1'/ ) =>𝑦#!"
#,!,"

log q
𝑒C'()

∑ 𝑒C'")*∈E)
r 

The algorithm to carry out CSS-incorporated MLE is the following: 
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Algorithm 3 (CSS) 

Iteration 0: Set convergence tolerance ϵQ . Start with initial guess θ(F), {𝑣*
(F)}*1'4 , {𝐵#

(F)}#1'/ , and the implied 

δ(F). Compute Λ with the initial guess, denoted Λ(F). 

At iteration 𝑛:  

1, Given θ(23'), {𝑣*
(23')}*1'4 , {𝐵#

(23')}#1'/ , δ(23'), find {𝐵#
(2)}#1'/ : for each 𝑖, choose 𝐵#* that maximizes the 

individual likelihood of	𝑖 for 𝑘 = 1,… , 𝐾U: 

𝐵#*
(2) = 𝑎𝑟𝑔𝑚𝑎𝑥V'"∈{',…,:}𝐿?𝑋# , 𝑌#O𝐵#* , {𝐵#Y

(23')}YZ* , θ(23'), {𝑣*
(23')}*1'4 A 

2, Given {𝑣*
(23')}*1'4 , {𝐵#

(2)}#1'/ , find θ(2) and δ(2) by first solving 

θ(2) = 𝑎𝑟𝑔𝑚𝑎𝑥>𝑦#!"
#,!,"

log q
𝑒C'()

∑ 𝑒C'")*∈E)
r 

  where, 

𝑈#!" =>>θ*,L𝑥!",*𝐷#,L

=

L1'

4

*1'

+>𝑥!",*𝑣V'"(,),*
(23')

4

*1'

+ δP"�?θ, {𝑣*
(23')}*1'4 , {𝐵#

(2)}#1'/ A 

δ�?θ, {𝑣*
(23')}*1'4 , {𝐵#

(2)}#1'/ A = 𝑆3'� ?𝑠Oθ, {𝑣*
(23')}*1'4 , {𝐵#

(2)}#1'/ A 

The δ(2) is then the δ implied by θ(2), {𝑣*
(23')}*1'4 , {𝐵#

(2)}#1'/ . 

3, Given 𝜽(𝒏), 𝜹(𝒏), {𝑩𝒊
(𝒏)}#1'/ , find  {𝒗𝒌

(𝒏)}*1'4  by solving 

𝑣(2) = 𝑎𝑟𝑔𝑚𝑎𝑥>𝑦#!"
#,!,"

log q
𝑒C'()

∑ 𝑒C'")*∈E)
r 

  where, 

  

𝑈#!" =>>θ*,L
(2)𝑥!",*𝐷#,L

=

L1'

4

*1'

+>𝑥!",*𝑣V'"(,),*

4

*1'

+ δP"
(2)�  

 4, Compute Λ(2). If OΛ(2) − Λ(23')O < ϵQ , stop and report convergence; otherwise, repeat steps 1-3. 

 

It should be emphasized that in the above algorithm, {𝒗𝒌
(𝒏)}*1'4  should be jointly estimated. This is crucial in 

obtaining the efficiency gains of CSS in cases of multidimensional heterogeneity.  
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2.2.2.2 Second step estimation 
 
In the second step, I regress estimated δ on own-product features in a 2SLS. Therefore I am estimating the 

following equation with 2SLS: 

δ!" = 𝑥!"$ γ + ξ!" 

In addition to own-product features, I use two sets of instruments for price: first, the average price of the 

same product in other geographic markets at the same time (the so-called “Hausman-type IV”), and, second, 

the (distribution of) features of other products available in the same geographic market at the same time.6 I 

use both sets of IVs in my application, and the use of these IVs drives the estimated price coefficient more 

negative, which is the usually expected direction if unobserved demand shocks (that are observable and are 

responded upon by sellers) are indeed the source of price endogeneity. 

 

The modeling of endogeneity  In this model, a product's prices are assumed to be the same for all consumers 

in the same market. This is the same assumption made in Berry et al. (2004) and makes the price endogeneity 

problems here practically the same as one in models for market-level data. To be specific, here the price 

endogeneity problem arises as price (one of the 𝒙𝒋𝒕$ ) and the residual ξ!" in the equation δ!" = 𝑥!"$ 𝛾 + ξ!" are 

potentially correlated, due to both unobserved product features and/or unobserved product-market specific 

demand shocks (for example, temporary promotions). Whereas in market-level data, it is natural to use a 

single price for a product, in microdata with individual purchase records, there could be considerable 

variations across individuals in the same product's prices in the same market (defined as a single area in a 

specific time). For example, in my application, such variations are comparable to both cross-product price 

variation and the same product's cross-time price variation. Such variation thus is a potential additional useful 

source of identification for price coefficients. On the other hand, to instrument for price coefficient in that 

setting is also more challenging, as there could be unobserved individual-specific, individual-product-

 
6 In my application, I focus on only one geographic market in different weeks, thus the description of the 
IVs here cater specifically to my setting. 
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specific, individual-market specific, and even individual-product-market-specific factors that are potentially 

correlated to price faced by an individual. The model and estimation procedure also need to be modified to 

accommodate such a setting, and it might be the case that the endogeneity becomes non-separable, and certain 

control function approaches are more feasible than IV approach. Though exciting and potentially important 

in empirical applications with microdata, this issue is not the focus of this paper. Thus, I follow the previous 

micro BLP papers in assuming a single price of a product in a market. 

 

2.2.3 Statistical Inference 
 

For the parametric MLE approach, asymptotic standard errors of estimated 𝜽 and 𝚪 can be obtained by 

inverting the Fisher Information matrix. Since 𝜹 is a function of 𝜽 and 𝚪 that does not have analytical 

expression, the derivative of 𝜹 with respect to 𝜽 and 𝚪 can be obtained with the help of Implicit Function 

Theorem. For the FG approach, asymptotic standard error of 𝜽 can be obtained in the same way as that in the 

parametric MLE approach, except that the derivative of 𝜹 with respect to 𝜽 is more complicated, as the Bayes 

updating is nested in the contraction mapping. For the CSS approach, I fix the estimated group memberships 

as given, and compute standard errors by treating CSS as if it was solving for (𝜽, 𝒗) using MLE. For a detailed 

explanation of the standard error formula, please see the Appendix. 

 

 

2.3 A simple example 
 

In this section, I illustrate how conventional parametric approach could yield biased results via a simple 

example. I start by estimating the following simplified version of the mixed logit model using my data: 

 

𝑢#!" = 𝛾'𝑃𝑟𝑖𝑐𝑒!" + 𝛾(𝑆𝑖𝑧𝑒!" + 𝛾J𝐶ℎ𝑖𝑐𝑘𝑒𝑛!" + 𝛾\𝑇𝑢𝑛𝑎!" + 𝜃𝑇𝑢𝑛𝑎!" × 𝐹𝑎𝑚𝑖𝑙𝑦	𝑠𝑖𝑧𝑒# + 𝑣#𝑇𝑢𝑛𝑎!" + 𝜖#!" 
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where a cat food product 𝑗 in week 𝑡 is characterized by its price, size of can, whether it is made of chicken, 

and whether it is made of tuna. The family size of household 𝑖 is simply the number of people living in the 

household, which is the observed demographics variable. The structural error term is assumed away for ease 

of exposition. The price endogeneity from the structural error term will be treated in the full model. 

I estimate this simplified model with the help of the fixed-grid likelihood (FG) method. The data is on 

purchasing records of canned cat wet food by 50 randomly selected households. Figure 2.1 plots the estimated 

unobserved demographics 𝑣 against family size, where each dot is a household. There is a strong correlation 

between family size and estimated unobserved demographics. Moreover, the correlation is positive in this 

case. This correlation cannot be captured by conventional parametric approach, since it assumes 

independence between observed and unobserved demographics.  

As the conventional mixed logit estimation assumes independence of 𝑣 from family size, I expect it to 

overestimate 𝜃 following the logic of omitted variable bias. This is indeed the case, as shown in Table 2.1. 

Table 2.1 presents estimation results of two models. The results from the mixed logit model with FG are in 

column (2). In column (1), I present the results from a conventional maximum likelihood estimation of the 

model, where I assume 𝑣 follows a Gaussian distribution independent of other variables. The “Standard 

Deviation” in Table 1 refers to the standard deviation of the distribution of 𝑣. The estimated 𝜃 from FG in 

column (2) is −2.09, which is much smaller and of opposite sign compared to 0.28, the estimated 𝜃 from 

column (1).2 The FG also achieves lower objective value (negative log-likelihood) at optimum, which is also 

expected, since FG is otherwise the same as the conventional MLE, except that it allows the weights on the 

discretized types of 𝑣 to be more flexibly determined by data. 
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Figure 2.1: Correlation between observed and unobserved demographics 
 

 

Table 2.1: Estimates of conventional MLE and FG in simplified model 

  (1) (2) 
Imposing Independence Yes No 
Tuna * Household Size 0.2799 -2.0920 

 (0.0216) (0.0097) 
Price -9.5910 -9.3354 

 (0.0220) (0.0011) 
Size -0.5350 -0.5612 

 (0.0026) (0.0098) 
Chicken  -0.5617 -0.5616 

 (0.0129) (0.0482) 
Tuna -4.5621 3.6235 

 (0.4829) (0.0211) 
Standard Deviation 2.1670 2.3224 

 (0.3436) (0.0035) 

Value of objective 122.7843 122.0429 
                                   Note: Standard errors in parentheses. 
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Figure 2.2: Estimated distribution of random coefficient on tuna in simplified model 
 

The correlation between unobserved and observed demographics further propagates into the estimated taste 

distribution for tuna, and elasticity estimates related to tuna products. Figure 2.2 compares the estimated taste 

distributions for the random coefficient on tuna by conventional MLE and FG. The random coefficient here, 

β#,\, is simply defined as β#,\ = γ\ + θ × Family	size + 𝑣# , which is meant to capture the taste towards tuna 

for household 𝑖. FG estimates a much narrower variation in such taste across households. This is not 

surprising: FG uncovers a strong positive correlation between unobserved and observed demographics, and 

the estimated coefficient θ for the observed demographic variable is negative (-2). Therefore, in determining 

the random coefficient of tuna, 𝑣 and 𝐷 cancel out each other's variations to some extent. 

Finally, a narrower taste variation makes FG predict a substitution pattern where the difference between the 

cross-price elasticities from a tuna product towards tuna- and non-tuna- products is not as drastic as what the 

conventional method will predict. This is the case in Table 2.2. Table 2.2 shows elasticities of 4 products 

from a week of the year, with respect to the price increase of product 1, which is a tuna product. These four 

products have the same size and very similar prices. Both methods predict the price increase of product 1 
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will benefit more of the other tuna product (product 2) rather than the chicken (product 3) or non-tuna-non-

chicken product (product 4). But, as the conventional method suggests that people have more diverse tuna 

taste compared to FG, the extent to which existing tuna buyers love tuna more than non-buyers is larger under 

the conventional method than that under FG. Therefore, the conventional method overestimates the cross-

price elasticities for product 2 (by about 75%). Moreover, it underestimates the cross-price elasticities for 

products 3 and 4. The cross-price elasticities for products 3 and 4 are virtually identical within a column, 

because the coefficient in front of the chicken dummy variable is assumed to be not random in this simplified 

model. 

Table 2.2: Elasticities with respect to price change of product 1 

Product Chicken Tuna EM FG 
1 0 1 -4.21840 -4.10661 
2 0 1 0.00166 0.00095 
3 1 0 0.00031 0.00037 
4 0 0 0.00031 0.00037 

 

 

To summarize, through the example above, I show that the conventional parametric approach produces bias 

in the coefficients related to observed demographic variables. The bias further distorts estimated taste 

distribution and elasticity estimates. 

2.4 Application 
 

In this section, I apply the three methods to a dataset from the Nielsen Homescan database. In this application, 

there are 50 randomly selected households from the full sample, with two observed demographic variables 

(𝐿 = 2, household income, and household size), choosing from more than 200 differentiated products in each 

of the 52 weeks. For each product, four features are observed (𝐾 = 4): price, size, chicken flavor dummy, 

and tuna flavor dummy). For ease of exposition and consistency with the simple example in the previous 

section, I interact all features with observed demographics, but only allow tuna to have unobserved individual 

fixed effects. Therefore the model in this section is one with only one dimension of unobserved heterogeneity: 
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𝑢#!" =>γ*

\

*1'

𝑥!",* +>>θ*,L𝑥!",*𝐷#,L

(

L1'

\

*1'

+ 𝑥!",\𝑣#,\ + ξ!" + ϵ#!" 

where 𝑢#!"is consumer 𝑖's utility from product 𝑗 in market	𝑡, 𝑥!",* is the kth feature of product 𝑗 in market 𝑡, 

𝐷#,L is the 𝑙th observed demographic variable of consumer 𝑖, 𝑣#,* is the 𝑘th unobserved demographic variable 

of consumer 𝑖	(a feature-individual fixed effect), 𝜉!" is the so-called “structural error” term that is assumed 

to be potentially correlated with price, and 𝜖#!" is the logit error term (that is often assumed to follow i.i.d. 

type-1 extreme value distribution). This leads to 8 parameters in 𝜽, 50 “unknowns” in 𝒗 (the same number 

as number of households), and about 10000 parameters in 𝜹. The algorithms here however can be used 

directly to estimate a model with multi-dimensional unobserved heterogeneity. 

 

2.4.1 Data 
 

The data is the purchase records on wet cat food from Nielsen Panel households living in a U.S. city in a 

recent year.7 The data consists of three parts: household demographic information, household purchase 

records (date and choice), and information on all available products. The last part contains more products 

than what is purchased by households in the panel. As described in the model section, I focus on only those 

products ever purchased by households in my sample. Also, I keep only those records that are from 

households that have at least 10 purchase records on wet cat food. The above two restrictions cater to the FG- 

and CSS- MLE approach: products with no purchase records will lead to a product-market fixed effect of 

negative infinity from the MLE (so I drop them), and the preference of a household with too few purchase 

records cannot be identified. These two data selection constraints are not restrictive at all, as households 

 
7 I thank the Kilts Center for Marketing at the University of Chicago Booth School of Business for providing access to 
the data. The following disclaimers apply: “Researcher(s) own analyses calculated (or derived) based in part on data 
from Nielsen Consumer LLC and marketing databases provided through the NielsenIQ Datasets at the Kilts Center for 
Marketing Data Center at The University of Chicago Booth School of Business. The conclusions drawn from the 
NielsenIQ data are those of the researcher(s) and do not reflect the views of Nielsen. Nielsen is not responsible for, had 
no role in, and was not involved in analyzing and preparing the results reported herein.” 
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dropped only contribute to a tiny amount of purchases, and products not picked up by households in the 

sample most likely only have a minimal market presence. 

On average, each consumer has about 70 purchase records in a year, and the median number of purchases is 

about 40. Though small, this is enough to identify the grouped random-effects or grouped fixed effects of 

consumer preferences as each product only has 4 features in my application. For product features, I have the 

price (dollars per ounce), size of can, and two dummies for chicken and tuna flavors. For demographics, I 

have two variables: income and size of household. On the other hand, there are a few hundred different 

products (200-300) purchased in the data in each week. In sum, there are about 10000 unique product-market 

interactions. 

When it comes to constructing the two sets of IVs, for the Hausman-type IV, I compute the average price of 

a product in a week in areas other than the city in my sample as an instrument of its price in the city in my 

sample. For the features of other products in the market, since there are always many products in a given 

week, in practice, I use quantiles of the feature distribution in that week as instruments. 

 

2.4.2 Assumptions on unobserved demographics 
 

For the parametric approach, I assume the unobserved demographics 𝑣 follow a standard Gaussian 

distribution 𝑁(0, 𝜎(). This distribution is independent of the observed demographics. For FG, I assume 𝑣 

takes one of the 21 values evenly distributed between [-5,5]. For CSS, I assume there could be up to 21 

different groups in terms of the unobserved demographics. 

 

2.4.3 Estimation results 
 
2.4.3.1 Convergence time and convergence evaluations 
 

I begin by comparing the estimation time of FG, CSS, and the parametric approach: 2.43 hours, 2.47 hours, 

and 12 minutes. Compared to FG, CSS has this additional step to update grid point values within each 
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iteration. Compared to CSS, FG has to integrate over types for each individual in the contraction mapping 

algorithm. Therefore it is not necessarily the case that one will be faster than the other.8 

These time records’ absolute levels are also subject to the hardware, software, coding practices, and 

convergence criteria. All the estimations here are done on a cloud server with a Unix system on top of a high-

performance computing cluster. A typical node I work on has 24 Intel Xeon CPUs (with specifications E5-

2643 v2 @ 3.50GHz). I use the open-source software R to implement the estimation. I use the optimizers in 

R package nloptr. For the BLP contraction mapping, I use R's implementation of  SQUAREM to speed it up. 

SQUAREM initially proposed by Varadhan and Roland (2008) to speed up any EM algorithm, and is then 

used and recommended by Conlon and Gortmaker (2020) to speed up the BLP contraction mapping. 

When it comes to tolerance levels, there is also a choice for the tolerance level for the convergence of the 

BLP fixed-point algorithm inside the optimization step of the common parameters. As is discussed 

extensively in Dubé et al. (2012), a low tolerance level (e.g., 103\) for the contraction mapping may lead to 

results far away from the actual optimum. I set it to be 103], as further tightening the tolerance (up to 103'() 

seems to make little difference besides increasing time in my case. 

For the convergence criterion of the outer loops: for parametric and FG approach, I set it to stop when the 

objective value changes less than 103^ in relative terms; for the CSS approach, I set it to stop when the 

objective value changes less than 103] in absolute terms (about 103'F in relative terms). It took FG about 

2.4 hours to converge, which, given the complexity of the algorithm, I think, is rather fast. CSS converged 

after about 2.4 hours.  

 

 

 

 
8 Note that the results reported here are from the estimation where I directly estimate the coefficients of 
interactions between features and demographic variables. If instead, the random coefficients are regressed on 
the demographic variables post-estimation, the common parameters would only include the product-market 
fixed effects, and estimation time could be much less. However, in that case, more burden would be on the 
correct choice of the grid points for the random coefficients, and the coefficients in front of the demographic 
variables might be less accurate due to the discreteness of the random coefficients that act as dependent 
variables. 
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2.4.3.2 Estimates of random coefficients 
 
Figure 2.3 below shows the correlations between the FG-estimated unobserved demographics and observed 

household income and household size variables. In Figure 2.3 each point is a household. Note that FG 

generates a distribution of unobserved demographics for each household. The value of the estimated 

unobserved demographics for a household in the Figure is just the corresponding distribution's mean value. 

In my case, since there are many observations on each household, the estimated type distributions are 

degenerate on one point for about 80% of the households. The correlations are both negative in this case 

(CSS yields similar results). 

Since household income and household size interact with all four features, these correlations will potentially 

bias all the estimated coefficients for these interaction terms in the parametric approach, where I assume 

these correlations are zero. Such bias could be especially evident for the parameters related to taste for tuna. 

However, unlike the simple example in the previous section, it is not straightforward to predict the direction 

of bias in this case. This is because by using contraction mapping, 𝜹 is now a function of the coefficients of 

the feature-demographics interaction terms, which makes the utility a non-linear function of these 

coefficients. 

 

Figure 2.3: Correlation between Household Size and unobserved demographics 
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Table 2.3 below reports the estimation results of the random coefficients for all three methods. The price unit 

is dollars per can. The household’s annual income is measured in tiers of 5,000 dollar increments (so, for 

example, 10 means at least 50,000 dollars and less than 55,000 dollars). The household size is simply the 

number of people in the household. 

 

As is predicted above, the estimated coefficients of the tuna-demographics interactions are quite different 

between the parametric approach and the other two approaches. For example, FG and CSS suggest that 

households with more people like tuna more (with estimated coefficients around 0.08-0.24) but the 

parametric approach suggests the opposite (with estimated coefficient at about -0.02). The parametric 

approach also overestimates the effect of income on tuna taste, compared to FG and CSS. The results again 

suggest the conventional parametric approach underestimates the mean price coefficients for tuna, consistent 

with the findings in the simple example in the Introduction. For the estimated coefficients of the other 

interaction terms (for chicken, price, and size), in most cases, FG and CSS also produce very different 

estimates to those by the parametric approach. 

Besides these anticipated differences between the conventional approach and the new approaches, it is worth 

noting that FG and CSS produce somewhat different estimates. For example, FG suggests higher-income 

households like chicken less, while CSS suggests the opposite; FG suggests larger households are less price-

sensitive, while CSS predicts the opposite. These differences are the result of different estimates for the 

unobserved demographics for the tuna taste. The reason for this could be twofold. First, FG assumes random-

effect at individual level, while CSS assumes fixed effect. Second, CSS allows more flexible grid choice, but 

could also introduce classification error in assigning households into different groups. 

On the other hand, qualitatively, these methods mostly yield similar reasonable indications. For example, 

mean coefficients of price are negative; price sensitivity decreases with household income; larger families 

prefer a larger size of can. Specifically, except for Tuna, the means of these random coefficients are 

essentially the same across different estimation methods. This is again consistent with the findings in my 

earlier simple example. (It seems that in my case, the tuna-demographic interaction correlates little with the 
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feature variables Price, Size and Chicken, see Table 2.6 in the Appendix A). An interesting but somewhat 

less relevant observation from Table 2.3 is that the coefficients of household income and household size are 

negatively correlated: whenever one increases, the other decreases. This is simply because household income 

and household size are positively correlated, as is shown in Figure 2.7 in the Appendix B. 

 

Table 2.3: Random coefficient estimates 

  Mean Interaction with Demographic Variables 
   Income Household Size 

Variable     
Tuna Parametric -3.2409 0.1267 -0.0157 
  (0.0007) (3.36e-05) (4.13e-06) 
 FG -1.4760 0.0885 0.0834 
  (0.0003) (1.42e-05) (1.34e-06) 
 CSS -1.4105 0.0647 0.2449 
  (0.0001) (1.19e-05) (1.22e-04) 
     
Chicken Parametric -1.0459 -0.0018 -0.3534 
  (0.0002) (7.62e-06) (9.88e-07) 
 FG -1.0878 -0.0231 -0.0109 
  (0.0002) (8.38e-06) (7.95e-07) 
 CSS -1.2034 0.0758 -0.9164 
  (0.0001) (2.20e-06) (2.61e-05) 
     
Price Parametric -5.502 0.3160 -0.0331 
  (0.0011) (5.98e-06) (1.29e-06) 
 FG -5.127 0.2176 0.0649 
  (0.0013) (2.26e-06) (5.80e-07) 
 CSS -5.464 0.3536 -0.3440 
  (0.0006) (1.73e-05) (2.21e-04) 
     
Size of can Parametric -0.5464 -0.0239 0.0443 
  (0.0024) (5.79e-06) (5.39e-05) 
 FG -0.5794 -0.0148 0.0271 
  (0.0029) (7.34e-07) (9.83e-07) 
 CSS -0.5759 -0.0330 0.1044 
  (0.0012) (2.36e-06) (1.43e-05) 
     

Note: standard errors in parentheses. Please see Appendix on how the standard errors are computed. 
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Figure 2.4: Estimated random coefficient distributions of tuna 
 

To give a full picture of random coefficient estimates, I report the estimated standard deviation of the 

unobserved demographics for tuna: 1.7713 for the parametric approach, 0.7085 for the FG approach, and 

0.6644 for the CSS approach. Moreover, Figure 2.4 shows the smoothed distributions of the random 

coefficients for tuna. Figure 2.8 in the Appendix B shows the smoothed distributions of the random 

coefficients for chicken, price and size of can.  

Focusing on tuna. In Figure 2.4, both FG and CSS produce much narrower taste distribution for tuna. Three 

factors mainly drive this. First, as is mentioned above, FG and CSS indicate a smaller variation in the 

unobserved demographics, compared to the parametric approach. Second, as is shown in Figure 2.3, both 

household size and household income are negatively correlated with unobserved demographics. Third, as is 

shown in Table 2.3, FG and CSS both produce positive estimates for the two tuna-demographics interaction 

0.00

0.25

0.50

0.75

1.00

−8 −4 0
Taste parameter for tuna

D
en

si
ty

CSS FG Parametric MLE



 
 

50 

terms. The second and third factors together dictate the variations of observed and unobserved demographics 

will cancel out each other to some extent in determining the variation of the random coefficient for tuna. 

 

One of the noticeable results from my estimation here is that the unobserved demographics plays a very 

important role in deciding the taste distribution. Focusing on tuna again, Figure 2.9 in the Appendix presents 

the (de-meaned)  estimated distribution of the unobserved demographics for tuna for all three methods. This 

distribution closely resembles the overall tuna taste distribution in Figure 2.4. One way to measure the 

contribution of unobserved demographics to the taste dispersion is to compare the variance of the unobserved 

demographics to the variance of the taste distribution. For the parametric approach, it is 1.7713 versus 1.9489: 

a ratio of 0.91, which is consistent with the finding in previous works with micro data that the unobserved 

demographics plays a substantial part. For the FG approach, it is 0.7085 versus 0.6372, and for the CSS 

approach, it is 0.6644 versus 0.6284. The finding that the variance of the unobserved demographics is actually 

larger than the variance of the overall taste distribution is new in the literature. This is only possible because 

my approaches here allows for correlations between observed and unobserved demographics. It turns out in 

my case that the correlation is negative, explaining this finding. Previous estimation methods, even 

nonparametric ones, cannot allow such findings. This again highlights the importance of having the flexibility 

of my approach compared to previous methods.  

 

2.4.3.3 Elasticities 
 

Table 2.4 reports a sample of price elasticities estimated by the three methods. The products reported here 

are 5 products in a certain week. These products are of similar size and price, so I omit price and size of can 

in the feature columns. The number at the intersection of row 𝑗	and column 𝑘 is the elasticity of product 𝑗 

with respect to the price of product 𝑘. 
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Table 2.4: Elasticity estimates 

  Features 1 2 3 4 5 

 Product Number Chicken Tuna      
Parametric 1 1 0 -2.4601 0.0100 0.0045 0.0014 0.0051 

 2 1 0 0.0126 -2.4626 0.0045 0.0014 0.0051 
 3 0 1 0.0087 0.0070 -1.9224 0.0070 0.0037 
 4 0 1 0.0087 0.0070 0.0231 -1.9385 0.0037 
 5 0 0 0.0116 0.0092 0.0044 0.0013 -2.3732 
         

FG 1 1 0 -2.2487 0.0089 0.0057 0.0017 0.0048 
 2 1 0 0.0112 -2.2510 0.0057 0.0017 0.0048 
 3 0 1 0.0110 0.0088 -2.2116 0.0028 0.0048 
 4 0 1 0.0110 0.0088 0.0091 -2.2179 0.0048 
 5 0 0 0.0110 0.0088 0.0056 0.0017 -2.2058 
         

CSS 1 1 0 -2.3466 0.0102 0.0049 0.0015 0.0045 
 2 1 0 0.0127 -2.3492 0.0049 0.0015 0.0045 
 3 0 1 0.0095 0.0075 -2.4672 0.0037 0.0066 
 4 0 1 0.0095 0.0075 0.0121 -2.4757 0.0066 
 5 0 0 0.0102 0.0081 0.0078 0.0024 -2.4353 

 

 

The substitution patterns observed in Table 2.4 are highly consistent with the estimated taste distributions in 

Figure 2.4 and Figure 2.8. First, when random coefficients are of variance zero (as in a simple logit model), 

cross-elasticities within the same column should be the same. This is essentially the case here for chicken 

products under FG (first two columns in the middle), which is expected as the FG-estimated chicken taste 

distribution is almost a point mass in Figure 2.8. Second, for products with features that have non-degenerate 

taste distributions, these products are expected to substitute more with alternatives closer to themselves in 

the product space. This is the case for all other cross-price elasticity estimates in Table 2.4 other than the FG 

estimates in the first two columns. For example, looking at the third column of the FG results, since product 

3 and 4 have the same features (they are both tuna products) that distinguish them from the other products, 

the cross-product elasticity from product 4 to the price of product 3 is much larger than other products to the 

price of product 3. In addition, since the FG and CSS approaches estimate narrower tuna taste distributions, 
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I expect the cross-price elasticities to vary less within a column for tuna products, compared to the results of 

the parametric approach. This is the case in column 3 and 4. 

 

As is pointed out by Nevo (2004), how far away the cross-elasticities are from identical within a column 

can be used to check if the model has overcome the logit restrictions for specific products. If applying this 

test to results in Table 2.4, it seems that allowing for unobserved demographics is vital for flexible 

substitution patterns: the differences among cross-price elasticities for tuna products (columns 4 and 5) are 

significantly larger than those for chicken products (columns 1 and 2). In column 3, the ratio of the largest 

cross-price elasticity to the smallest one within a column is around 5, while the same ratio in column 1 is 

only around 1.5. 

 

To further understand substitution patterns towards different alternatives, Figure 2.5 and Figure 2.6 show 

joint taste distributions for tuna and chicken by these three methods. For example, in Figure 2.5 it seems that 

tuna lovers generally also like chicken more than a random consumer, while most chicken lovers are those 

who fall on the left of tuna taste distribution. This explains why in Table 2.4 the parametric approach predicts 

higher cross-price elasticities towards the non-tuna-non-chicken product (product 5) than towards the tuna 

products in the first two columns, and why it predicts higher cross-price elasticities towards the chicken 

products (product 1 and 2) than towards the non-tuna-non-chicken product in columns 3 and 4. 

Now compare Figure 2.5 and the right figure in Figure 2.6. A significant difference between the joint chicken-

tuna taste distributions estimated by the parametric and CSS approaches is that the CSS approach suggests 

that tuna lovers do not seem to love chicken significantly more than a random consumer. This could help 

explain why for the tuna products (columns 3 and 4), CSS indicates the substitutions are more towards the 

non-tuna-non-chicken products, rather than the chicken products. 
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Figure 2.5: Parametric approach: joint taste distribution of tuna and chicken flavor 
 

Figure 
2.6: Grouped-effect approach: joint taste distribution of tuna and chicken flavor (left: FG, right: CSS) 

 
 
2.4.3.4 Welfare estimates 
 
To further compare these methods, I conduct separate welfare evaluations in three hypothetical scenarios: a 

new product, a merger, and a divestiture. I simulate prices and compute welfare changes in two hypothetical 

scenarios in a week of the year with the following alternative market structures: (1) a merger of 4 firms, and 

(2) a divestiture of a firm into two separate firms, where the two firms split the (pre-divestiture) market share 
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of the original firm by an approximate 5:2 ratio. For the “new product” scenario, I consider a new chicken 

flavor product of a brand A, with a marginal cost equal to the mean of all existing chicken flavor wet food. 

Table 2.5: Welfare estimates 

  Parametric FG CSS 
New Product Δ Profit (%) +0.3175 +0.2617 +0.2341 
 Δ Consumer Surplus (%) +0.3031 +0.2432 +0.2273 
     
Merger Δ Profit (%) +0.0562 +0.0610 +0.0642 
 Δ Consumer Surplus (%) -0.2743 -0.3022 -0.2692 
     
Divestiture Δ Profit (%) -0.5287 -0.5718 -0.6665 
 Δ Consumer Surplus (%) +3.9513 +4.6306 +4.139 
     

 
Table 2.5 reports the welfare evaluations of these hypothetical scenarios. First, for the introduction of the 

new product, change in welfare is tiny, as the market is already filled with a large number of similar products. 

All three methods predict an increase in consumer surplus and an increase in overall profit by all firms. To 

understand why this is the case: holding the prices of existing products unchanged, the immediate effect of 

the new product tends to (mechanically) increase the consumer surplus, as now consumers simply have more 

choices. However, the prices will adjust. On the one hand, overall, the prices tend to decrease. On the other 

hand, as the new product belongs to brand A, brand A products tend to have slightly higher prices, since 

brand A has more market power in this market with the addition of the product. The total effect, in this case, 

is a net increase in the consumer surplus, as the benefit of more choices seems to slightly overweight the 

effect of increasing brand A's market power. Despite qualitatively similar predictions, FG and CSS predict a 

relatively smaller increase in consumer surplus and profit. 

Second, for the merger and divestiture, all three methods are making the qualitatively correct predictions. 

However, the quantities are again slightly different. For example, in the merger case, the parametric approach 

predicts a 0.0562% increase in profit, while both FG and CSS predict a larger increase of around 0.0610% to 

0.0642%. These differences are not only the result of level differences in their mean price sensitivity but also 

are affected by differences in random coefficient distributions. For example, FG-estimated taste distributions 

are narrower than those estimated by the parametric approach. Thus the market is more competitive under 
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FG than the parametric approach. Gains from merger (and losses from divestiture) for the firms tend to be 

larger in a more competitive market. This potentially explains why compared to the parametric approach, the 

FG has larger numbers (in absolute values) for the merger and divestiture. 

2.5 Conclusion 
 

This chapter shows how to flexibly estimate a random coefficient logit model of demand using microdata. I 

provide estimation strategies of two approaches, the first adapting the fixed-grid likelihood method from 

Malone et al. (2019), and the other adapting a multi-dimensional clustering method from Cheng et al. (2019). 

By utilizing the microdata at the individual level, one can avoid making independent or parametric 

assumptions on the unobserved type distributions. With real microdata from the Nielsen Homescan database, 

I show that the conventional approach with such assumptions produces biased estimates on preferences, 

elasticities, and welfare measures. In particular, in my application to the cat wet food market, I show that the 

more flexible approaches uncover negative correlations between observed and unobserved demographics. 

Such correlations decrease the variations of the corresponding random coefficient distributions. The more 

flexible estimation methods also yield different predictions on changes in profit and consumer surplus in the 

hypothetical scenarios of a new product, a merger, and a divestiture. In particular, the conventional parametric 

approach over-estimates a new product's welfare gains by 20% - 38%. In the hypothetical merger/divestiture 

cases, the conventional parametric approach underestimates the magnitudes of profit gains and consumer 

welfare gains by around 10% - 20%.  

The estimated models in this paper allow for unobserved demographics in tuna-specific taste. However, the 

algorithms in this paper can be directly used for multi-dimensional unobserved demographics, if needed. For 

example, allowing unobserved taste types for the price could have changed the estimated average price 

sensitivity of the consumers, which, in turn, could have even larger impacts on elasticity and welfare 

estimates. 

One potentially interesting extension in estimating random coefficient models with microdata is to allow for 

more flexible forms of price endogeneity, as the variations of the price of the same product across individuals 
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within a market could be considerable. It would be interesting to examine how to modify the current 

estimation procedures in such scenarios. 
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Appendix 
 
Appendix A Further analysis for the simple example without endogeneity 
 

This section presents an ad-hoc regression analysis for the effect of “omitting” the correct unobserved 

demographics variable in the simple example presented in the Introduction section.   It is ad-hoc because of 

two reasons: first, the  estimation  conducted  in  the  example  is  not linear regression; second, technically 

in the conventional parametric approach, the unobserved demographics is not missing, but assumed to be 

independent of all other regressors. Nevertheless, I compute the interaction of tuna dummy and FG-estimated 

unobserved demographics, and regress this interaction term on the  rest  of  the  regressors:  interaction  of 

tuna and household size (observed demographics), price, size of can, chicken dummy, and tuna dummy. 

Table 2.6 reports the regression results. The coefficients on the interaction term are 2.35, which predicts the 

conventional method should be overestimating 𝜃 by around 2.35, which is the case. The coefficients on the 

interaction term are 2.35, and the coefficients on the tuna variable is −5.86. If this is technically indeed a 

classic omitted variable bias case, this predicts the conventional method should overestimate 𝜃 by around 

2.35 and it should underestimate γ\	by around 5.86, which is the case. The correlations between the “omitted 

variable” and other three regressors seem to be tiny, which is consistent with the fact that estimated γ' to γJ	

essentially do not change across estimation methods in Table 2.1. 

Table 2.6: “Omitted variable” analysis 
 Dependent variable: 
 Tuna × Unobserved demographics 
Tuna x Household Size 2.350*** 
 (0.002) 
Price 0.031*** 
 (0.002) 
Size of can - 0.003*** 
 (0.0002) 
Chicken - 0.013*** 
 (0.001) 
Tuna - 5.864*** 
 (0.004) 

                                Note: *p<0.1; **p<0.05; ***p<0.01. Standard errors in parentheses. 
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Appendix B Additional results for the elasticity estimates of the full model 
 

 
Figure 2.7: Correlation between Household Size and Income 
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Figure 2.8: Estimated random coefficient distributions of chicken flavor, price and size of can 

 

Looking at the chicken taste distribution, the CSS-produced distribution is the one that spread out most, 

followed by the parametric approach. The distribution by FG is so narrow that it is not far away from a 

degenerated mass around -1. Unlike the case for tuna, the distribution for chicken is solely determined by 

the observed demographics, thus the differences across results by different methods can be understood by 
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For example, looking at the coefficients of chicken-demographics interactions, CSS estimates (0.076, -

0.916) are way much larger than those estimated by FG (-0.023, -0.011) in terms of absolute values, 

which explains the discrepancies in their estimated distributions. Across all three methods, FG always 

produces the most narrow distribution for each of these four features. CSS estimates an essentially identical 

distribution for the price, wider distributions for chicken and size of can, and narrower distribution for tuna 

compared to the parametric approach. Therefore, among all three hypothetical worlds described by these 

methods, the one narrated by FG is the most competitive, where household tastes are least diverse. 

 

 

Figure 2.9: Distribution of unobserved demographics for tuna taste 
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Figure 2.10: Parametric approach: joint taste distribution of price and chicken flavor 

 

Figure 2.11: Grouped-effect approach: joint taste distribution of price and chicken flavor  
 

Note: FG on the left, and CSS on the right 
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Figure 2.12: Parametric approach: joint taste distribution of price and tuna flavor 

 

Figure 2.13: Grouped-effect approach: joint taste distribution of price and tuna  
 

Note: FG on the left, and CSS on the right 
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Appendix C details on statistical inference 
 
C.1 Parametric approach 
 

The parametric approach solves the following problem: 

(𝜽, Γ) = 𝑎𝑟𝑔𝑚𝑎𝑥>𝑦#!"
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Let 𝑁 be the number of observations (this should be the total number of decisions of all consumers in all 

markets). The asymptotic variance-covariance matrix of (𝜽, Γ) is given by 

𝑉 =
𝐼3'

𝑁  

where 𝐼 is the Fisher Information matrix. The element at 𝑎-th row and 𝑏-th column of 𝐼 is  
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Thus the goal is to derive a
ab0

𝑙#!" for all the parameters in η. The first parameter in η, θ'' is the  coefficient 

in front of the first feature-observed demographics interaction term. Let M be the number of types for the 

unobserved demographics, 𝑠#!"; be the choice probability of individual I choosing product j in market t if 

the individual is of type m, 𝑠#!" be the expected choice probability of individual i choosing product j in market 

t (expectation taking over M types):  

∂lMNO
∂θ''

= yMNO
1
M> h

∂UMNOc
∂θ''

−>sMdOc

eR'

d1'

 
∂UMdOc
∂θ''

 k sMNOc

f

c1'

/sMNO 
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∂UMNOc
∂θ''

= xNO,'DM,'  +  
∂δgO� 
∂θ''

(6) 

The derivative for Γ	can be derived similarly, with: 

∂𝑈#!";
∂Γ = 𝑥!",\𝑣;  +  

∂δP"� 
∂Γ

(7) 

Now I compute ah1)
i  

ak!!
 and ah1)

i  
al

. Let 𝑠!" be the market share of product j in market t, and 𝛿" be the vector of 

product-market fixed effects in market t. By Implicit Function theorem,  

∂δ!#  
∂θ""

=

⎣
⎢
⎢
⎢
⎢
⎡
∂𝑠"!
∂δ"!

⋯
∂𝑠"!
∂δ#!

⋮ ⋱ ⋮
∂𝑠#!
∂δ"!

⋯
∂𝑠#!
∂δ#!⎦

⎥
⎥
⎥
⎥
⎤
$"

⎣
⎢
⎢
⎢
⎡
∂𝑠"!
∂θ""
⋮

∂𝑠#!
∂θ""⎦

⎥
⎥
⎥
⎤

 

where  

𝜕𝑠!"
𝜕𝛿*"

=

⎩
⎪
⎨

⎪
⎧𝑠!" −>

1
𝑀>𝑠#!";𝑠#!";

;#

	𝑖𝑓	𝑘 = 𝑗

0 −>
1
𝑀>𝑠#!";𝑠#*";

;#

	𝑖𝑓	𝑘	 ≠ 	𝑗
 

∂𝑠!"
∂θ''

=>
1
𝑀>𝑠#!"; �

𝜕𝑈#!";(𝜽, Γ, 𝛿)
𝜕𝜃''

−>𝑠#*";
𝜕𝑈#*";(𝜽, Γ, 𝛿)

𝜕𝜃''*

�
;#

 

Note that here the partial derivatives of 𝑈#!"; is assuming it is a function of (𝜽, Γ) and δ, so that there won’t 

be ah2)
i  

ak!!
 term in these partial derivatives. ah1)

i  
al

 can be derived in a similar fashion.  

C.2 FG approach 
 

The FG approach solves the following problem: 

𝜽 = 𝑎𝑟𝑔𝑚𝑎𝑥>𝑦#!"
#,!,"

logh>
𝑒C'(),$

∑ 𝑒C'"),$*∈E)

:

;1'

𝑃<(𝒗𝒎|𝑿𝒊, 𝒀𝒊, 𝑿; 𝜽)k (5) 

where, 
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𝑈#!",; =>>𝜃*,L𝑥!",*𝐷#,L

=

L1'

4

*1'

+>𝑥!",*𝑣;,*

4

*1'

+ 𝛿P"�(𝜽) 

 𝜹¼(𝜽) = 𝑆3'� (𝒔|𝜽) 

 𝑃<(𝒗𝒎|𝑫𝒊, 𝒀𝒊, 𝑿; 𝜽) =
=>𝒀𝒊, 𝑫𝒊, 𝑿?𝒗𝒎; 𝜽@A$

∑ =>𝒀𝒊, 𝑫𝒊, 𝑿?𝒗𝒎; 𝜽@A$%
$&!

 

 

Denote 

𝑙#!" = log�
1
𝑀 >

𝑒C'(),$
∑ 𝑒C'"),$*∈E)

:

;1'

� 

𝑃#; = 𝑃<(𝒗𝒎|𝑫𝒊, 𝒀𝒊, 𝑿; 𝜽) 

then 	

𝜕𝑙#!"
𝜕𝜃''

= 𝑦#!" >h
𝜕𝑈#!";
𝜕𝜃''

−>𝑠#*";

mR'

*1'

 
𝜕𝑈#*";
𝜕𝜃''

 k 𝑠#!";𝑃#;

:

;1'

/𝑠#!" + 𝑦#!" > 𝑠#!";
∂𝑃#;
∂θ''

:

;1'

/𝑠#!" 

where  

𝜕𝑃#;
𝜕𝜃''

= 𝑃#; �𝐴#; −>𝐴#;.

;.

𝑃#;.� (8) 

𝐴#; =>𝑦#!"
∂𝑠#!";
∂θ''

1
𝑠#!";!"

(9) 

𝜕𝑠#!";
𝜕𝜃''

= h
𝜕𝑈#!";
𝜕𝜃''

−>𝑠#*";

mR'

*1'

 
𝜕𝑈#*";
𝜕𝜃''

 k 𝑠#!"; (10) 

The terms 
aC'()$
ak!!

 are given in Equations (6), where ah2)
i  

ak!!
 we now derive, again using the Implicit Function 

theorem.  

𝜕𝑠!"
𝜕𝛿*"

=

⎩
⎪
⎨

⎪
⎧𝑠!" −>

1
𝑀>𝑠#!";𝑠#!";

;#

+>𝑠#!";
∂𝑃#;(𝜽, 𝛿)
∂δ*"#;

		𝑖𝑓	𝑘 = 𝑗

0 −>
1
𝑀>𝑠#!";𝑠#*";

;#

+>𝑠#!";
∂𝑃#;(𝜽, 𝛿)
∂δ*"#;

	𝑖𝑓	𝑘 ≠ 𝑗
 

𝜕𝑃#;(𝜽, 𝛿)
𝜕𝛿*"

= 𝑃#; �𝐵#;*" −>𝐵#;.*"
;.

𝑃#;.� 
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𝐵#;*" = 𝑦#*" −>𝑦#!"
!"

𝑠#*"; 

Now, for the terms 
a6()
ak!!

, 

𝜕𝑠!"
𝜕𝜃''

=>>�
𝜕𝑠#!";(𝜽, 𝛿)

𝜕𝜃''
+>𝑠#!";

𝜕𝑃#;(𝜽, 𝛿)
𝜕𝜃''*

�
;#

 

 

Note here that 𝑃#; is again a function of 𝜽 and 𝛿, so that when using Equations (6) and (8) – (10) in the 

above expression, one should omit the terms ah2)
i  

ak!!
.  

C.3 CSS approach 
 

The CSS approach solves the following problem: 

(𝜽, {𝒗𝒌}*1'4 , {𝑩𝒊}#1'/ ) = 𝑎𝑟𝑔𝑚𝑎𝑥>𝑦#!"
#,!,"

logq
𝑒C'()

∑ 𝑒C'")*∈E)
r 

where, 

𝑈#!" =>>𝜃*,L𝑥!",*𝐷#,L

=

L1'

4

*1'

+>𝑥!",*𝑣V'",*

4

*1'

+ 𝛿P"�(𝜽, {𝒗𝒌}*1'4 , {𝑩𝒊}#1'/ ) 

𝜹¼(𝜽, {𝒗𝒌}*1'4 , {𝑩𝒊}#1'/ ) = 𝑆3'� (𝒔|𝜽, {𝒗𝒌}*1'4 , {𝑩𝒊}#1'/ ) 

Denote 

𝑙#!" = log�
1
𝑀 >

𝑒C'(),$
∑ 𝑒C'"),$*∈E)

:

;1'

� 

I compute the standard errors of (𝜽, {𝒗𝒌}*1'4 ), taking the group memberships {𝑩𝒊}#1'/  as given. The CSS 

approach assign a single type for each individual, which makes the derivations easier, compared with the 

previous two approaches. I have 

𝜕𝑙%&!
𝜕𝜃""

= 𝑦%&! 5
𝜕𝑈%&!
𝜕𝜃""

−8𝑠%'!

#("

')"

 
𝜕𝑈%'!
𝜕𝜃""

 9 

where  
aC'()
ak!!

 is again given by Equation (6). For the group-specific parameters {𝒗𝒌}*1'4 , I have 
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∂𝑈#!"
∂𝑣*;

=

⎩
⎪
⎨

⎪
⎧𝑥!",* +

𝜕𝛿P"� 
𝜕𝑣*;

					𝑖𝑓𝐵#* = 𝑚

𝜕𝛿P"� 
𝜕𝑣*;

																		𝑖𝑓𝐵#* ≠ 𝑚
(11) 

To calculate ah2)
i  

ak!!
	𝑎𝑛𝑑	 ah1)

i  
a<"$

 with the Implicit Function theorem, I have 

𝜕𝑠!"
𝜕𝛿*"

=

⎩
⎪
⎨

⎪
⎧𝑠!" −>𝑠#!"𝑠#!"

#

	𝑖𝑓	𝑘 = 𝑗

0 −>𝑠#!"𝑠#*"
#

	𝑖𝑓	𝑘	 ≠ 	𝑗
 

𝜕𝑠!"
𝜕𝜃''

=>𝑠#!" �
𝜕𝑈#!"(𝜽, {𝒗𝒌}*1'4 , 𝛿)

𝜕𝜃''
−>𝑠#*"

𝜕𝑈#*"(𝜽, {𝒗𝒌}*1'4 , 𝛿)
𝜕𝜃''*

�
#

 

𝜕𝑠!"
𝜕𝑣*;

=>𝑠#!" �
𝜕𝑈#!"(𝜽, {𝒗𝒌}*1'4 , 𝛿)

𝜕𝑣*;
−>𝑠#*"

𝜕𝑈#*"(𝜽, {𝒗𝒌}*1'4 , 𝛿)
𝜕𝑣*;*

�
#

 

 

Note here that 𝑈#!" is again a function of 𝜽, {𝒗𝒌}*1'4 , 𝛿, so that when using Equations (6) and (11) in the above 

expression, one should omit the terms ah2)
i  

ak!!
 and ah1)

i  
a<"$

. 

C.4 Implied estimates 
 

Some of the estimates (e.g. mean of a random coefficient) are functions of both first and second step 

estimates.  To correctly compute their standard errors using the delta method, one needs to take into account 

the fact that the dependent variable in the second step, δ, is itself estimated in the first step. Since I have 

obtained the derivatives of δ and 𝑃 (in the case of FG) with respect to the first step parameters, I use them 

directly together with the delta method to compute the standard errors for these calculated estimates. 

As an example, here I describe how to compute the standard errors of the mean price coefficients for the 

three approaches (the standard errors are reported in Table 2.3). For the parametric approach, the mean price 

coefficient, βnÀÀÀ, is calculated by   

𝛽nÀÀÀ  =  𝛾nÁ   +  𝜃''�𝐼𝑛𝑐𝑜𝑚𝑒ÀÀÀÀÀÀÀÀÀÀ   +  𝜃'(�𝐻𝑆ÀÀÀÀ  
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where 𝛾nÁ  is estimated price coefficient from the second step IV regression, 𝜃''�  is estimated coefficient for 

the price-income interaction and 𝜃'(�  is estimated coefficient for the price-household size interaction. The 

latter two coefficients are estimated in the first step estimation.  𝐼𝑛𝑐𝑜𝑚𝑒ÀÀÀÀÀÀÀÀÀÀ stands for mean income in the 

sample, and 𝐻𝑆ÀÀÀÀ stands for mean household size. By the Delta method, the variance of  𝛽nÀÀÀ, is given by the 

first diagonal element of the following matrix 𝑉o3pppp: 

V84pppp  =  ∇Ω∇$ 

where  Ω is the variance-covariance matrix of η = (𝜽, Γ), and  

∇= Pqr
∂δ
∂η + 𝐸 

𝑃st = (𝑍$𝑊(𝑊$𝑊)3'𝑊$𝑍)3'𝑍$𝑊(𝑊$𝑊)3'𝑊$ 

𝜕𝜹
𝜕𝜂 = È

𝜕𝜹
𝜕θ''

, . . . ,
𝜕𝜹
𝜕𝜃\(

,
𝜕𝜹
𝜕ΓÉ 

𝑊 is the second step instrument matrix, 𝑍 is the second step regressor matrix, and E is given by 

𝐸 =	

⎝

⎛
𝐼𝑛𝑐𝑜𝑚𝑒ÀÀÀÀÀÀÀÀÀÀ , 𝐻𝑆ÀÀÀÀ, 0,0,0,0,0,0,0
0,0, 𝐼𝑛𝑐𝑜𝑚𝑒ÀÀÀÀÀÀÀÀÀÀ , 𝐻𝑆ÀÀÀÀ, 0,0,0,0,0
0,0,0,0, 𝐼𝑛𝑐𝑜𝑚𝑒ÀÀÀÀÀÀÀÀÀÀ , 𝐻𝑆ÀÀÀÀ, 0,0,0
0,0,0,0,0,0, 𝐼𝑛𝑐𝑜𝑚𝑒ÀÀÀÀÀÀÀÀÀÀ , 𝐻𝑆ÀÀÀÀ, 0⎠

⎞ 

 

 

For FG, the mean price coefficient is9  

𝛽nÀÀÀ  =  𝛾nÁ   +  𝜃''�𝐼𝑛𝑐𝑜𝑚𝑒ÀÀÀÀÀÀÀÀÀÀ   +  𝜃'(�𝐻𝑆ÀÀÀÀ  +
1
𝐼𝑀>𝑣;,'

#,;

𝑃#; 

Let 𝑣; = ?𝑣;,', … , 𝑣;,\A
$
. I have  

∇= 𝑃st
𝜕𝜹
𝜕𝜽 + 𝐸 +

1
𝐼𝑀>𝑣;

#,;

⊗	
∂𝑃#;
∂θ  

𝜕𝜹
𝜕𝜂 = È

𝜕𝜹
𝜕𝜃''

, . . . ,
𝜕𝜹
𝜕𝜃\(

É 

 
9 In my application, I don’t allow for unobserved demographics in price taste, in which case there is no last 
term in the equation. This applies to both FG and CSS. 
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𝜕𝑃#;
𝜕𝜽 = È

𝜕𝑃#;
𝜕𝜃''

, . . . ,
𝜕𝑃#;
𝜕𝜃\(

É 

 

For CSS, the mean price coefficient is  

𝛽nÀÀÀ  =  𝛾nÁ   +  𝜃''�𝐼𝑛𝑐𝑜𝑚𝑒ÀÀÀÀÀÀÀÀÀÀ   +  𝜃'(�𝐻𝑆ÀÀÀÀ  +
1
𝐼>𝑣V'!,'

#

 

where 𝐵#' is the membership of individual 𝑖	in the first dimension (price taste). Let η = 	 (𝜽, {𝒗𝒌}*1'4 ),	I have  

∇= 𝑃st
𝜕𝜹
𝜕𝛈 + 𝐸 +

1
𝐼>

𝜕𝑣V'
𝜕𝜼

#

 

𝜕𝜹
𝜕𝜼 = È

𝜕𝜹
𝜕𝜃''

, . . . ,
𝜕𝜹
𝜕𝜃\(

,
𝜕𝜹
𝜕𝑣''

, . . . ,
𝜕𝜹
𝜕𝑣4:

	É 

𝜕𝑣V'!
𝜕𝜼 = q

𝜕𝑣V'!,'
𝜕𝜼 ,

𝜕𝑣V'5,(
𝜕𝜼 ,

𝜕𝑣V'6,J
𝜕𝜼 ,

𝜕𝑣V'7,\
𝜕𝜼 r 

𝜕𝑣V'!,'
𝜕𝜼 = �0,… ,0ÑÒÓ

8
, κMd, 0, … ,0ÑÒÓ

(K-1)M
� 

∂𝑣V'5,(
∂𝛈 = �0,… ,0ÑÒÓ

8+M
, κMd, 0, … ,0ÑÒÓ

(K-2)M
� 

∂𝑣V'6,J
∂𝛈 = �0,… ,0ÑÒÓ

8+2M
, κMd, 0, … ,0ÑÒÓ

(K-3)M
� 

∂𝑣V'7,\
∂𝛈 = q0,… ,0ÑÒÓ

8+3M
, κMdr 

Here, 𝐾 is the number of dimensions (where unobserved demographics are allowed, assumed to be 4 in the 

equations above), 𝑀 is the number of groups in each dimension (assuming all dimensions have the same 

number), and 𝜿𝒊𝒌 is a 𝑀-by-1 matrix, where the 𝑚th element equals 1 if 𝐵#* = 𝑚, and 0 otherwise. 
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CHAPTER 3  

3, REVISITING THE EFFECT OF CLIMATE ON PRODUCTIVITY OF 

CHINESE MANUFACTURING FIRMS  

 
BY JOSE MIGUEL ABITO and RUIZHI MA 

 

3.1 Introduction 
 
Climate change is predicted to permanently alter the current temperature level, potentially impacting many 

economic activities in the future. Zhang et al. (2018) quantify the effect of changing temperature on the 

productivity of Chinese manufacturing firms in the 2040-2059 horizon, using the production function 

estimation method from Olley and Pakes (1996) (henceforth OP). However, OP assumes the unobserved 

productivity follows a Markov process, and does not allow for firm-level fixed effects in productivity. Abito 

(2020) proposes a new production function estimation method allowing for a firm fixed effect component in 

unobserved productivity. Abito (2020) shows the new method works better than existing ones in scenarios 

where the simple Markov assumption fails. 

Allowing for a permanent component in productivity in production function seems to be important in the 

case of Chinese manufacturing firms. For example, during the sample period of Zhang et al. (2018), many 

Chinese firms are owned by the state, while many others are privately-owned, and such ownership difference 

could be associated with a significant performance gap.  

This chapter aims to estimate the production functions of Chinese firms with the same sample in Zhang et al. 

(2018), but with the method from Abito (2020), and predict the effect of temperature on the newly estimated 

productivity. We also compare our production function estimates and climate change predictions with those 

produced by OP and Ackerberg et al. (2015) (henceforth ACF). We choose OP because it is the method used 

in Zhang et al. (2018). We choose ACF because its assumptions are identical to that of Abito (2020), except 
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that the latter allows for firm fixed effects in productivity. Therefore, the comparison between ACF and Abito 

(2020) will highlight the potential bias from ignoring firm fixed effects in production function estimations. 

 

With Abito (2020)’s productivity, we first show that most of the 36 industries in our sample have persistent 

differences in firm-specific productivity. The heterogeneity in unobserved productivity varies a lot across 

industries. We also find in 24 of the 36 industries, ACF and Abito (2020) produce statistically different input 

elasticity estimates, and in many of the 24 industries, the differences are also economically considerable. In 

industries where the firm-specific productivity differences are largest and persistent, the differences between 

ACF and Abito (2020)’s elasticity estimates are the largest. 

We then examine the effect of weather on productivity, and use the estimates to predict the mean level of 

productivity in 2040-2042 for each firm in our sample. Comparing to the firms’ historical mean levels of 

productivity during 1998-2007, we find the productivity will be lowered by about -4.07% in the future on 

average across firms, with the 95% confidence interval [-7.01, -1.13]. With ACF’s productivity, the 

prediction is a 4.65% decrease, with the 95% confidence interval [-7.20, -2.10]. Looking at individual 

industries, we find 3 industries (communication equipment, general machinery, and special machinery) 

where Abito (2020) and ACF produce significantly different predictions on the effect of climate change on 

productivity. These industries amount to about 17% of the real value-added output in our sample and are 

those with the largest and persistent difference in firm-specific productivity. Therefore we conclude that it is 

crucial to allow firm fixed effects in production function estimation to get credible predictions in our analysis. 

 

The rest of the chapter is organized as follows. Section 3.2 described the model used in our analysis. Section 

3.3 explains our data sources. Section 3.4 illustrates summary statistics of the cleaned and merged dataset. 

Section 3.5 presents reduced-form evidence of the productivity dynamics, and relates them to elasticity 

estimates. Section 3.6 is the results of our analysis. Section 3.7 concludes, followed by an appendix for details 

on data cleaning and quality checks. 
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3.2 Model and estimation  
 
Let 𝑦#" , 𝑙#" , 𝑘#" be the logarithm of output, labor input and capital of firm 𝑖 in period 𝑡. The production function 

to be estimated is 

𝑦#" = 𝛽L𝑙#" + 𝛽*𝑘#" +𝑤#" + 𝜖#" 

where 𝑤#" is observed by firm at period 𝑡, but unobserved by the econometrician, and 𝜖#" is the output shock 

unexpected to the firm. The sum of the two parts,  𝑤#" + 𝜖#", is what usually been called total factor 

productivity (TFP). The term 𝑤#" is potentially correlated with inputs, causing endogeneity problem. To 

address this, the standard approach is to assume another variable, like investment (OP) or 

intermediate/material input (LP and ACF), is strictly increasing in 𝑤#", thus can be used to control for 𝑤#" . 

This other variable is called a proxy. Specifically, consider the case of material input, which is the choice of 

proxy in our analysis. Following ACF, the logarithm of material input, 𝑚#", is assumed to be a strictly 

increasing function of 𝑤#" , given 𝑘#" and 𝑙#": 

𝑚#" = 𝑓(𝑤#" , 𝑘#" , 𝑙#") 

Due to strict monotonicity, this relationship can be inverted to express 𝑤#" as a function of 𝑚#", 𝑙#" and 𝑘#": 

𝑤#" = 𝑓3'(𝑚#" , 𝑘#" , 𝑙#") 

Plugging this proxy equation back into production function, one can estimate 𝑦}"Ö = 𝛽L𝑙#" + 𝛽*𝑘#" +𝑤#", as a 

polynomial function of 𝑚#", 𝑙#" and 𝑘#":   

𝑦}"Ö = 𝛽L𝑙#" + 𝛽*𝑘#" +𝑤#" = 𝛽L𝑙#" + 𝛽*𝑘#" + 𝑓3'(𝑚#" , 𝑘#" , 𝑙#") = 𝑦(𝑚#" , 𝑘#" , 𝑙#") (1)  

In LP, labor input is assumed to be a static decision, and 𝑙#" does not enter the proxy equation. Therefore in 

LP, 𝛽L is already identified at this stage, but not 𝛽*. In ACF, neither can be identified at this stage, as they 

are not separated from the correlations between the inputs and 𝑤#" via the proxy equation.  

To further identify 𝛽L and 𝛽* , ACF assumes that 𝑤#" follows a Markov process. This is where Abito (2020) 

is different from previous methods. Here we follow Abito (2020) to assume 𝑤#" has a firm fixed effect 

component: 

𝑤#" = 𝑟#" + 𝑎# 
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where 𝑟#" is assumed to follow a Markov process:  

r#" = 𝐸[r#"|ℐ𝒾𝓉3'] + ξ#" = 𝑔(r#"3') + ξ#" 

where ℐ𝒾𝓉3' is the information set of firm 𝑖	up to time 𝑡 − 1. Plugging the above two equations into 𝑦}"Ö =

𝛽L𝑙#" + 𝛽*𝑘#" +𝑤#", we get  

𝑦}"Ö = 𝛽L𝑙#" + 𝛽*𝑘#" +𝑤#" = 𝛽L𝑙#" + 𝛽*𝑘#" + 𝑔(r#"3') + 𝜉#" + 𝑎# 

Assuming 𝑔(r#"3') = γF + γ'r#"3' + γ(	𝑟#"3'( +⋯+ γ2𝑟#"3'2 , we have  

𝑦}"Ö = 𝛽L𝑙#" + 𝛽*𝑘#" + 𝛾F + 𝛾'r#"3' + 𝛾(	𝑟#"3'( +⋯+ 𝛾2𝑟#"3'2 + 𝜉#" + 𝑎# (2) 

Here we have two issues. First, 𝑙#" and 𝑘#" are potentially correlated with 𝑎#. Second, we do not observe 𝑟#". 

Instead, given a guess of 𝛽L and 𝛽* , we can get an estimate of 𝑤#" by subtracting 𝛽L𝑙#" + 𝛽*𝑘#" from 𝑦}"Ö . 

However, using 𝑤#" in place for 𝑟#" creates endogeneity problem for the γs due to measurement error of the 

variable 𝑟#", with the measurement error being the 𝑎# term.  

Abito (2020) proposes a set of instruments to be used in a procedure similar to the two-stage-least-squares 

that can solve both issues together. Specifically, Abito (2020) proposes using changes in unobserved 

productivity 

Δw#"3! = Δℎ?𝑥#"3!A = ℎ?𝑥#"3!A 	− ℎ?𝑥#"3!3'A	 

for j	≥1 as instruments in a two-stage estimation procedure, where  

ℎ?𝑥#"3!A 	= 	𝑦}3PÖ 	−	𝛽L𝑙#3! − 𝛽*𝑘#3! = w#"3! . 

and 𝑥#" stands for the collection of variables 𝑙#" , 𝑘#" , 𝑚#" .	Two additional assumptions are necessary for the 

instruments to work:  

𝐸Þξ#"O𝑘#"3! , 𝑙#"3'3!ß = 0	for	all	j	≥0 

𝐸[𝑎#|ξ#"] = 0	for	all	t 

The first assumption is conventional in the production function estimation literature and comes from the 

timing of input decisions: 𝑘#"3! , 𝑙#"3'3! for all	j	≥0 are decided before the innovation 𝜉#" is realized. 

Specifically, ACF also makes this assumption. In cases where there is no firm fixed effect component in 

productivity, this assumption enables one to use past inputs as instruments to identify the input elasticities.  
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Denote the set of instruments as 𝑧. Crucially, by the Markov assumption and the assumption that 𝐸[𝑎#|ξ#"] =

0	for	all	t, 𝐸[𝑎#|𝑧] = 0, thus 

𝐸(𝑟#"3'|𝑧) = 𝐸(𝑤#"3' − 𝑎#|𝑧) = 𝐸(𝑤#"3'|𝑧) 

In the first stage of the estimation, we regress 𝑙#", 𝑘#", and r#"3'	on polynomials of z:  

𝑙#" = 𝐸(𝑙#"|𝑧) + ηL = 𝑙}"¼ + ηL#"	

𝑘#" = 𝐸(𝑘#"|𝑧) + η* = 𝑘}"� + η*#"	

𝑟#"3' = 𝐸(𝑟#"3'|𝑧) + 𝑣#"3' = 𝐸(𝑤#"3'|𝑧) + 𝑣#"3' = 𝐸(ℎ(𝑥#"3')|𝑧) + 𝑣#" = 𝑟}"3'â+𝑣#"3' 

Note that although the last regression is infeasible due to 𝑟#"3' being unobserved, we can still regress 𝑤#"3' 

on z to get 𝑟}"3'â, which is used in the second stage of the estimation. Substituting the above three equations 

into (2), we have the second stage equation: 

𝑦}"Ö = βL𝑙}"¼ + β*𝑘}"� +>α!r}"3'
Pã

2

!1F

+ 𝑒#" 

where  

α! ≡ ä>È
𝑞
𝑗É

2

�1!

γ�𝐸?𝑣#"3'
�3! Aæ 

𝑒#" ≡>𝑟}"3'
Pãh>È

𝑞
𝑗É

2

�1!

γ�Þ𝑣#"3'
�3! − 𝐸?𝑣#"3'

�3! Aßk
2

!1F

+ (βLηL#" + β*η*#" + ξ#" + 𝑎#) 

As long as the instrument vector z satisfies 𝐸[𝑒#"|𝑧] = 0, then  

𝐸Þ𝑒#"O𝑙}"¼ , 𝑘}"�, 𝑟}"3'âß= 0 

and we can estimate βL , β* and α!$𝑠 using ordinary least squares. The exogeneity requirement 𝐸[𝑒#"|𝑧] = 0 is 

satisfied under the assumptions made above, plus a strong instrument assumption requiring the instruments 

z to be independent of 𝑣#"3'. To verify this, first note that 𝐸Þη#!"O𝑧ß = 𝐸[η#*"|𝑧] = 0 are satisfied by 

construction, 𝐸[𝑎#|𝑧] = 0 is satisfied due to Markov assumption and the assumption that 𝐸[𝑎#|ξ#"] =

0	for	all	t, and 𝐸[ξ#"|𝑧] = 0 is satisfied by the Markov assumption (or the assumption on timing of input 

decisions). At last, 𝐸?𝑣#"3'
� |𝑧A = 𝐸?𝑣#"3'

� A for all 1	 ≤ 𝑞	 ≤ 𝑛 would require more than mean independence 

between z and 𝑣#"3' for any 𝑛 > 1. A sufficient condition is z independent of 𝑣#"3'. Such an instrument is 
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called a Berkson-type instrument (Chen, Hong and Nekipelov 2011, Schennach 2007) in the context of the 

nonlinear error-in-variable model.  

Therefore, we use the following algorithm to estimate the production function: 

 

Algorithm (Abito 2020) 

0, regress 𝑦#" on a polynomial of 𝑙#" , 𝑘#" , 𝑚#" , and store the predicted values 𝑦}"Ö, 

1, in iteration n, given an initial guess of βL
(23') and β*

(23'), compute ℎ?𝑥#"3!A = 𝑦}"3Pâ−βL
(23')𝑙#"3! −

β*
(23')𝑘#"3! , and then the instruments Δℎ?𝑥#"3!A (at least 3 lags of Δℎ?𝑥#"3!A for exact identification).  

2, estimate conditional expectations, 𝑙}"¼ = 𝐸(𝑙#"|𝑧), 𝑘}"� = 𝐸(𝑘#"|𝑧), and 𝑟}"3'â=𝐸(ℎ(𝑥#"3')|𝑧) 

 3, OLS regression of 𝑦}"Ö  on 𝑙}"¼ , 𝑘}"�  and powers of 𝑟}"3'â (we set n=3). This gives βL
(2) and β*

(2). Evaluate 

convergence and repeat until βL
(2) = βL

(23') and β*
(2) = β*

(23'). 

 

After we estimate the production function, we examine the effect of temperature on productivity with the 

following empirical specification for firm 𝑖 in postal code 𝑐 at time 𝑡: 

𝑇𝐹𝑃#Q" =>𝛽;𝑇Q";
;

+ 𝜹$𝑾𝒄𝒕 + 𝜽$𝒁𝒊𝒄𝒕 + 𝜖#Q" 

where 𝑇𝐹𝑃#Q" is total factor productivity (i.e., 𝑇𝐹𝑃#Q" = 𝑤#Q" + 𝜖#Q"), 𝑇Q"; is the number of days the daily 

temperature falls into the 𝑚th bin for temperature (which will be clear in the next section), 𝑾𝒄𝒕 are weather 

controls including variables related to precipitation, relative humidity, wind speed, and visibility, and 𝒁𝒊𝒄𝒕 is 

a set of semi-parametric controls, including firm fixed effects, year-county fixed effects and year-sector fixed 

effects. 

3.3 Data 
 
Firm data on annual manufacturing outputs and inputs come from the annual surveys conducted by the 

National Bureau of Statistics (NBS) in China. The data cover all state-owned industrial firms and non-state 

firms with annual sales over nominal CNY 5 million (USD 0.66 million) from 1998 to 2007. Industries 

include mining, manufacturing, and public utilities, of which manufacturing represents about 94% of the total 
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observations. Several well-known data issues can be dealt with following instructions in Brandt et al. (2012). 

Our main analysis uses the deflators from Yang (2015) to compute real value-added output and real input. In 

our robustness checks, we use alternative deflators from Brandt et al. (2012). 

Weather data come from the National Climatic Data Center (NCDC) at the National Oceanic and 

Atmospheric Administration (NOAA). Zhang et al. (2018) utilize data from this source. Figure 3.9 in the 

appendix shows the weather stations in China where our weather data are observed. The weather data contain 

temperature, precipitation, dew point temperature, visibility, and wind speed. Relative humidity can be 

constructed using a standard meteorological formula with temperature and dew point temperature. Also, 

following Zhang et al. (2018), we obtain predictions for future weather conditions from the HadCM3 model 

data. In our main analysis, we assume firms stay in their first observed postal code in the future. In our 

robustness checks, we assume a firm could be at one of the multiple locations, with the possibility of at one 

location the fraction of time it was observed staying in that location during years 1998-2007. 

The final step in data preparation is to combine firm and weather data. Weather data are daily from individual 

weather stations, while firm production data are on an annual basis. For each firm, the weather in the postal 

code the firm resides in will be used. Therefore, we first interpolate each postal code's daily weather using 

the data observed in nearby weather stations. After this is done for each postal code, we will transform daily 

weather data into annual variables. For temperature, this is done by counting the number of days a weather 

variable falls into a certain bin within a year. A simple annual mean is computed for other weather variables, 

except for precipitation, for which an annual sum is computed (these go into the controls 𝑾𝒄𝒕 in the TFP 

regression). For a detailed description of our data quality check and cleaning process, please check the 

Appendix. 

3.4 Summary Statistics 
 
Table 3.1 reports the summary statistics for the final cleaned dataset, with total factor productivity computed 

using OP, ACF, and Abito (2020). This is a set of unbalanced firm panel data, with annual observations for 

509,671 firms. The data contain 38 2-digit industries. We can see that, on average, a firm in our sample is 

relatively large, with about 212 employees. The three production function estimation methods produce quite 
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different mean levels of productivity (total factor productivity, TFP) estimates. OP yields the highest value 

for mean TFP, while Abito (2020) yields the lowest. For the weather variables, it is clear that temperature 

will be higher in the future. Interestingly, precipitation will also be significantly higher in the future on 

average according to the HadCM3 model, while average relative humidity and average wind speed stay 

relatively the same. 

Table 3.1 is directly comparable to the summary statistics table in Zhang et al. (2018). Our table has two 

major discrepancies compared to theirs. The first one is the values for OP-estimated productivity. We think 

this might be due to different data construction choices for the firm production variables, for example, which 

variable(s) in the raw data used for constructing value-added output and choice of deflators. The second one 

is the average temperature. We provide a straightforward explanation on why we think our temperature 

measures are valid in the Appendix. 

To get a clearer idea on shifts in temperature, Figure 3.1 reports the temperature distribution within a year 

during 1998-2007 and during 2040-2042. There are more days in the hottest two temperature bins in 2040-

2042, and less days in the mild temperature bins. This is the climate change we focus on. 
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Table 3.1 Summary Statistics of Cleaned Data 
Variable # of Obs Mean Std. Dev. Min Max 

Labor (person) 1,807,577 211.93 303.09 11 2786 
Capital stock (thousand USD) 1,807,577 2221.97 5188.83 8.62 66491.95 
Investment (thousand USD) 1,523,362 385.17 3305.93 0.00 1615473.00 

Log TFP (OP) 1,807,577 4.02 1.35 -4.56 10.05 
Log TFP (ACF) 1,807,577 1.87 1.32 -7.42 7.90 

Log TFP (Abito 2020) 1,807,577 -1.25 2.57 -18.76 8.68 
Mean daily temperature, 1998-2007 (F) 1,807,577 61.79 7.23 24.28 80.45 
Mean daily temperature, 2040-2042 (F) 1,807,577 62.89 9.10 24.90 85.42 

Mean annual precipitation, 1998-2007 (inch) 1,807,577 33.94 26.04 0.00 119.91 
Mean annual precipitation, 2040-2042 (inch) 1,807,577 47.31 19.34 3.81 94.27 
Mean daily relative humidity, 1998-2007 (%) 1,807,577 69.41 7.39 24.46 85.24 
Mean daily relative humidity, 2040-2042 (%) 1,807,577 69.18 6.74 30.48 81.03 
Mean daily wind speed, 1998-2007 (mile/h) 1,807,577 5.23 1.30 0.59 13.29 
Mean daily wind speed, 2040-2042 (mile/h) 1,807,577 5.44 1.67 0.91 12.73 

Mean daily visibility, 1998-2007 (mile) 1,807,577 7.75 1.90 2.90 18.60 
Note: All monetary values  are in 2007 USD. This is an unbalanced panel for 509,671 firms  with their 
production and weather information from 1998 to 2007. An observation is a firm-year. Future daily weather 
predictions in 2040-2042 are first aggregated to a single average for each variable  and each postal code, and 
then merged with historical data by  postal code. Firms are assumed to remain in their first observed historical 
location in the future. The raw data for firm production, which originate from the annual survey by the 
Chinese National Bureau of Statistics, cover all industrial firms that are identified as “either state-owned, or 
are non-state firms with sales above 5 million RMB”. The industries covered include mining, manufacturing 
and public utilities. The raw data for historical weather come from National Centers for Environmental 
Information Global Surface Summary of Day data, which is aggregated from hourly raw observations by the 
National Centers for Environmental Information (NCEI) at the National Oceanic and Atmospheric 
Administration (NOAA). The raw data for future (2040-2042) daily weather come from the Centre for 
Environmental Data Analysis in UK (HadCM3 A1FI run, stored as part of Met Office data from the Climate 
Impacts Link Project). The industry-level input and output deflators for  monetary  values come from Yang 
(2015). All weather data are linked to firm data at postal code level. Postal codes are geocoded using Google 
geocoding API. HadCM3 data do not provide predictions  for visibility.  Historical values for relative 
humidity are computed using formula in Zhang     et al. (2018). Investment is only observable from 1998-
2006. Of the 1,523,362 investment observations, 468,250, or 30.74% are zero, which will become missing 
once logged in using OP for production function estimation. 
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Figure 3.1: Temperature distributions 

 
Note: Temperature distribution within a year experienced by an average firm in the sample, 1998-
2007 v. s. 2040-2042. Firms are assumed to remain in their first observed historical location in the 
future. 
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3.5 Productivity dynamics 
 
The ACF and Abito (2020) production function estimation methods differ on assumptions of productivity 

dynamics. ACF assumes the unobserved productivity follows a Markov process. In contrast, Abito (2020) 

assumes firm-specific fixed effects in the productivity process, and the remaining part of productivity again 

follows a Markov process. 

To learn about the size of productivity heterogeneity and examine whether there are persistent differences in 

productivity, in this section we first analyze productivity dynamics by using only the balanced sub-panel of 

firms (i.e., firms with 10 years of observations). We start by grouping them by their productivity ranking in 

1998 (first year in the sample). This is done separately for each industry, using production function estimates 

by Abito (2020). The four groups are simply the top 25%, 50-75%, 25-50%, and the bottom 25%. We 

compute the median TFP of each group for each year. If TFP differences are persistent for all firms, we 

expect the medians to stay parallel over the years. If not, the medians will converge. 

 

 

Figure 3.2: Examples of industries with persistent productivity differences 

 
Note: Left: industry 35 (general machinery), right: industry 34 (metal). Industry numbers are their 2-digit 
code in the raw data according to post-2003 China industry indexing standard (see Table 3.9 for details). 
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Figure 3.3: Industries with different productivity persistency  

 
Note: left: industry 35 (general machinery), right: industry 46 (water). Industry numbers are their 2-digit 
code in the raw data according to post-2003 China industry indexing standard (see Table 3.9 for details). 
 

We find persistent productivity differences across firms in about 24 of the 36 industries in the balanced 

subsample. Across these industries, the size of productivity heterogeneity differs significantly. Figure 3.2 

gives two examples of industries where there are persistent productivity differences. On the left of Figure 3.2 

is the industry with the largest productivity heterogeneity (general machinery); on the right of Figure 3.2 is 

an industry with smaller yet still persistent productivity heterogeneity (metal). Among the 24 industries, 4 

industries have the largest persistent productivity heterogeneity similar to that of the general machinery 

industry (i.e., the initial distance between the median TFPs of the top versus the bottom 25% is about 4-6), 

and about 20 industries have more moderate yet persistent heterogeneity like the metal industry. On the other 

hand, there are about 5 industries where the productivity differences are clearly not persistent. The right panel 

of Figure 3.3 shows such an industry (water supply). The initial productivity differences in the first year are 

also relatively small in these industries.  

 

Is the difference between Abito (2020) and ACF's elasticity estimates larger in industries with more persistent 

and/or larger productivity differences? Table 3.2 reports the elasticity estimates of ACF and Abito (2020) for 

each industry in our full sample (i.e., not the balanced subsample), together with the distances between their 

productivity estimates. The distance is defined as the sum of the squared difference between the labor input  
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Table 3.2: Production Function Elasticity Estimates 

Industry ACF Abito (2020) Difference 
  Labor S.D. Capital S.D. Labor S.D. Capital S.D. Distance S.D. 
35 0.87 (0.04) 0.17 (0.02) 0.65 (0.04) 1.52 (0.04) 1.85 (0.05) 
36 0.36 (0.04) 0.34 (0.02) 0.59 (0.06) 1.61 (0.07) 1.67 (0.09) 
10 0.48 (0.07) 0.30 (0.04) 0.24 (0.10) 1.47 (0.14) 1.42 (0.18) 
40 0.56 (0.04) 0.28 (0.02) 0.04 (0.06) 1.25 (0.06) 1.21 (0.05) 
33 0.92 (0.06) 0.06 (0.04) 0.17 (0.08) 0.79 (0.07) 1.09 (0.09) 
26 0.43 (0.02) 0.40 (0.02) 0.00 (0.04) 1.25 (0.04) 0.91 (0.04) 
30 0.77 (0.04) 0.23 (0.02) 0.10 (0.04) 0.89 (0.05) 0.90 (0.05) 
27 0.60 (0.04) 0.38 (0.03) 0.00 (0.08) 1.06 (0.09) 0.83 (0.07) 
37 0.49 (0.05) 0.34 (0.03) 0.00 (0.06) 1.08 (0.06) 0.78 (0.06) 
20 0.98 (0.07) 0.08 (0.03) 0.42 (0.06) 0.74 (0.07) 0.75 (0.12) 
13 0.88 (0.04) 0.09 (0.02) 0.26 (0.04) 0.69 (0.03) 0.75 (0.04) 
6 0.48 (0.05) 0.31 (0.03) 0.16 (0.05) 1.05 (0.07) 0.65 (0.07) 
44 0.73 (0.05) 0.49 (0.03) 0.01 (0.08) 0.83 (0.12) 0.64 (0.12) 
31 0.56 (0.03) 0.30 (0.02) 0.37 (0.04) 1.05 (0.04) 0.60 (0.04) 
22 0.50 (0.05) 0.36 (0.03) 0.07 (0.05) 1.00 (0.07) 0.59 (0.07) 
34 0.49 (0.03) 0.33 (0.02) 0.09 (0.05) 0.97 (0.05) 0.56 (0.06) 
41 0.51 (0.06) 0.29 (0.04) 0.17 (0.10) 0.91 (0.11) 0.50 (0.15) 
19 0.70 (0.05) 0.23 (0.03) 0.32 (0.07) 0.78 (0.07) 0.44 (0.07) 
32 0.50 (0.06) 0.38 (0.04) 0.16 (0.07) 0.87 (0.07) 0.36 (0.06) 
23 0.40 (0.07) 0.43 (0.04) 0.33 (0.09) 1.01 (0.11) 0.34 (0.19) 
15 0.46 (0.05) 0.35 (0.04) 0.20 (0.10) 0.88 (0.08) 0.34 (0.12) 
14 0.24 (0.08) 0.34 (0.03) 0.78 (0.07) 0.49 (0.08) 0.32 (0.10) 
45 0.79 (0.24) 0.39 (0.11) 0.32 (0.24) 0.09 (0.28) 0.31 (0.24) 
18 0.95 (0.05) 0.08 (0.02) 0.66 (0.05) 0.53 (0.05) 0.28 (0.08) 
39 0.46 (0.03) 0.39 (0.02) 0.25 (0.04) 0.87 (0.05) 0.27 (0.04) 
25 0.12 (0.12) 0.22 (0.08) 0.39 (0.25) 0.63 (0.34) 0.25 (0.30) 
29 0.49 (0.07) 0.35 (0.05) 0.52 (0.11) 0.81 (0.11) 0.22 (0.14) 
21 0.49 (0.10) 0.11 (0.04) 0.71 (0.08) 0.52 (0.09) 0.21 (0.11) 
16 -0.16 (0.48) 0.63 (0.17) 0.28 (0.32) 0.59 (0.32) 0.20 (0.53) 
17 0.42 (0.02) 0.34 (0.02) 0.31 (0.04) 0.76 (0.04) 0.18 (0.03) 
42 0.32 (0.06) 0.32 (0.03) 0.41 (0.06) 0.72 (0.07) 0.17 (0.06) 
24 0.60 (0.07) 0.16 (0.04) 0.67 (0.10) 0.54 (0.10) 0.15 (0.09) 
9 0.46 (0.10) 0.29 (0.06) 0.53 (0.14) 0.61 (0.13) 0.10 (0.14) 
8 0.35 (0.11) 0.45 (0.07) 0.40 (0.13) 0.62 (0.10) 0.03 (0.13) 
28 0.35 (0.10) 0.46 (0.09) 0.50 (0.15) 0.55 (0.15) 0.03 (0.15) 
46 0.50 (0.05) 0.55 (0.02) 0.60 (0.09) 0.62 (0.10) 0.01 (0.06) 

Note: Industries are ordered by distance in elasticity estimates between ACF and Abito (2020), from largest 
to smallest. The distance is defined as the sum of the squared difference between labor input elasticities and 
the squared difference between capital input elasticities. Bootstrap standard errors reported in parentheses. 
For meanings of industry code, please refer to Table 3.9 (industry codes post-2003). There are not enough 
observations for industries 7 and 43 (not reported here). 
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elasticities and the squared difference between capital input elasticities. Industries are ordered by distance in 

elasticity estimates between ACF and Abito (2020), from largest to smallest. Estimations are carried out by 

an R program, with bootstrapped standard errors.10  

Among the 36 industries reported in Table 3.2 (there are two industries not having enough observations, 

which are not reported in this table), The difference between Abito (2020) and ACF’s elasticity estimates is 

statistically different in 24 industries (at 99.7% confidence level). The differences are especially large in the 

first four industries reported in Table 3.2, and they are indeed the four industries with the largest persistent 

productivity differences as illustrated in the left panel of Figure 3.2. These four industries are general 

machinery (number 35), special machinery (number 36), nonmetal mining (number 10) and communication 

equipment (number 40). Industries 35, 36 and 40 are among the largest manufacturing sectors and their 

combined production amounts to about 17.27% of the total real value-added output in our sample. Also, 

given the nature of these 4 industries, it is not surprising to find large capital input elasticity estimates. On 

the other hand, the industries with the smallest differences between ACF and Abito (2020)’s elasticity 

estimates coincide with those without persistent productivity differences or those with smallest productivity 

differences. To be specific, industries 46, 28, 8, 16, and 25 have productivity dynamics illustrated in the right 

panel of Figure 3.3; in industries 9, 24, 42, 17, and 21, productivity differences do not shrink over time as 

much as that shown in the right panel of Figure 3.3, but the difference is small and quickly becomes smaller  

(the initial differences between the median TFPs of top and bottom 25% are usually about 2 in these 

industries). At last, industries in the middle of Table 3.2 are those with moderate and persistent productivity 

differences, as illustrated on the right panel of Figure 3.2.  

To sum, in this section, we find that the difference between Abito (2020) and ACF's elasticity estimates is 

larger in industries with more persistent and larger productivity differences. This is consistent with our 

expectations, as the main difference between Abito (2020) and ACF is that Abito (2020) allows for firm-

specific fixed effects. Thus one would expect ACF to produce biased elasticity estimates in cases where the 

size of such fixed effects varies significantly across firms. In our sample, most of the industries have 

 
10 For elasticity estimates using OP, please check Table 3.10  in the appendix.  
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persistent productivity differences, and in some of the largest industries, such differences are large, leading 

to significantly biased elasticity estimates by ACF. The evidence supports our decision to use Abito (2020) 

as our production function estimation method. 

 

3.6 Results 
 

As a reminder, we examine the effect of temperature on productivity with the following empirical 

specification for firm 𝑖 in postal code 𝑐 at time 𝑡: 

𝑇𝐹𝑃#Q" =>𝛽;𝑇Q";
;

+ 𝜹$𝑾𝒄𝒕 + 𝜽$𝒁𝒊𝒄𝒕 + 𝜖#Q" 

where 𝑇𝐹𝑃#Q" is the total factor productivity (i.e., 𝑇𝐹𝑃#Q" = 𝑤#Q" + ϵ#Q"), 𝑇Q"; is the number of days the daily 

temperature falls into the 𝑚th bin for temperature, 𝑾𝒄𝒕 are weather controls including variables related to 

precipitation, relative humidity, wind speed, and visibility, and 𝒁𝒊𝒄𝒕 is a set of semi-parametric controls, 

including firm fixed effects, year-county fixed effects and year-sector fixed effects.  

 

3.6.1 Main results 
 

We first run the above regression with our full sample using Abito (2020)’s TFP.11 Figure 3.4 shows the 

estimated coefficients of the temperature bin variables, with the bin 10-C16C as the reference group. We find 

that having more days with hot or cold temperatures generally has adverse effects on a firm’s TFP, compared 

to having more days in the milder temperature range. However, the effect of the hottest days is not statistically 

significant and not significantly larger than the effect of the number of days in the 27C-32C bin. This is 

different from what is found in Zhang et al. (2018), where the number of hottest days in a year has a much 

larger adverse effect on a firm’s TFP. 

 
11 Industry 7 and 43 do not have enough observations for production function estimations. We use industry 6 and 
industry 44’s elasticity estimates for these two industries. 
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We then use our regression results to predict the effect of climate change on an average firm’s TFP in our 

sample by 2040-2042. We also repeat the analysis using ACF’s TFP. With Abito (2020)’s TFP, it is predicted 

that the climate change would lead to a 4.07% decrease in productivity on average across firms, with 95% 

confidence interval [-7.01, -1.13]. With ACF’s TFP, the prediction is a 4.65% decrease in productivity on 

average, with 95% confidence interval [-7.20, -2.10]. 

 

Figure 3.4: Effect of temperature on TFP 
 
Note: X-axis: temperature bins. Y-axis: coefficient in front of the variable for a temperature bin. 
Data constructed with Yang (2015) deflators. Bins are 95% confidence intervals. Standard errors 
are clustered by firm and year-county.  
 

 

We compute the predictions for each industry with Abito (2020)’s TFP, reported in Figure 3.5. We run 

separate regressions for each industry and use these results to make predictions. Among the 33 industries 

reported here (these are the ones reported in Zhang et al. 2018), the average firm’s TFP in 9 industries is 

predicted to be significantly affected by climate change. We repeat the industry-specific analysis with ACF’s 

TFP and compare the predictions with those in Figure 3.5. We find that the predictions with Abito (2020) are 

significantly different (i.e. the point predictions are outside or on the edge of ACF’s 95% CI) in 3 industries, 

including communication equipment, general machinery and special machinery. For example, in the special  
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Figure 3.5: Predicted effect of climate change on TFP by industry 

 
Note: X-axis: industries. Y-axis: predicted impact of climate change in percentage. Data constructed 
with Yang (2015) deflators.  Bins are 95% confidence intervals. The numbers in parentheses are the shares 
in real value-added output. 
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machinery industry, Abito (2020) predicts a productivity decrease of about +9%, while ACF predicts zero 

effect. These are the 3 of the 4 industries with the largest differences in elasticity estimates in Table 3.2, and 

are the industries having the largest persistent productivity differences. In addition, a number of industries 

have somewhat different (but small compared to CI) predictions between ACF and Abito (2020), including 

printing, nonmetal mining, nonmetallic minerals, raw chemicals, measuring instruments, manufacturing of 

artwork, rubber, timber, and furniture.  

We expect the differences in climate change prediction to be larger in industries with larger differences 

between ACF and Abito (2020)’s elasticity estimates. This is the case, as shown in Figure 3.6. In Figure 3.6, 

the horizontal axis is the squared distance between elasticities (the same distances in Table 3.2). The vertical 

axis is the absolute difference between ACF and Abito (2020)’s predictions in percentage points. In Figure 

3.6, the 4 industries on the top right are the 4 industries with the largest differences in elasticity estimates: 

general machinery (number 35), special machinery (number 36), nonmetal mining (number 10) and 

communication equipment (number 40). For the industries with the smallest differences in elasticities, the 

differences in predictions are also the smallest. This suggests that biases in elasticity estimates will translate 

into biases in making predictions on the effect of climate change on TFP. Given that the industries having 

the most biased predictions (general machinery, special machinery, communication equipment, etc.) have 

large shares in the output, it is important to allow for persistent differences in firm-specific productivity in 

the production function estimation.  
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Figure 3.6: Difference in elasticity estimates versus difference in prediction 
 
Note: each point is an industry. The horizontal axis is the squared distance between elasticities (the same 
distances in Table 3.2, defined as the the sum of the squared difference between labor input elasticities 
and the squared difference between capital input elasticities), and the vertical axis is the absolute 
difference between ACF and Abito (2020)’s predictions in percentage points.  
 

 
3.6.2 Robustness checks 
 
3.6.2.1 Alternative deflators 
 

In this section, we conduct production function estimation, regressions and predictions using the data 

constructed with industry-level input and output deflators from Brandt et al. (2012). We think the Yang 

(2015) deflators are better than Brandt et al. (2012) deflators (see Appendix for details) and use the former 

in our main analysis above. Since Zhang et al. (2018) seem to be using the Brandt et al. (2012) deflators, it 
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is worth checking if the findings on the effect of climate change in our main analysis would change under 

these deflators.  

Figure 3.7 shows the estimated regression coefficients for temperature variables with Abito (2020)-estimated 

productivity. The estimated coefficients are very close to those reported in Figure 3.4. Abito (2020) predicted 

that climate change would lead to a 3.65% decrease in productivity on average, with 95% confidence interval 

[−6.31,−0.99]. These results show that overall the effect of climate change on TFP is negative, consistent 

with the conclusion in our main analysis. 

 

 

 

Figure 3.7: Effect of temperature on TFP: robustness check 

 
Note: X-axis: temperature bins. Y-axis: coefficient in front of the variable for a temperature bin. 
constructed with Brandt et al. (2012) deflators. Bins are 95% confidence intervals. 
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We again compute the predictions for each industry using Abito (2020)’s TFP, reported in Figure 3.8. Here 

we find 12 industries where the adverse effects of climate change on TFP are statistically significant at the 

95% level. The point predictions are mostly very close to those in Figure 3.5 (i.e., differences are minimal 

compared to the standard errors), except for 2 industries, electronic machinery (+6% with Brandt et al. 2012 

deflators, but 0% with Yang 2015 deflators) and special machinery (+1% with Brandt et al. 2012 deflators, 

but +9% with Yang 2015 deflators). These two industries happen to be large in terms of their shares in real 

value-added output. Thus the researchers do need to be careful in choosing the proper deflators. 

 

3.6.2.2 Alternative assumption on future firm locations 
 

In our main analysis, firms are assumed to remain in their first observed historical location in the future. Now 

we assume a firm could be at one of the multiple locations, with the possibility of at one location the fraction 

of time it was observed staying in that location during years 1998-2007. With this alternative assumption, 

under Yang (2015) deflators and Abito (2020) productivity, we find the overall negative effect of climate 

change at −2.73%, with 95% CI [−5.26%, -0.20%]. This is much smaller than the previous value −4.07%. 

This indicates firms are, on average, moving to regions that have preferable climate conditions to their 

productivity. 
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Figure 3.8: Predicted effect of climate change on TFP by industry: robustness check 

 
Note: X-axis: industries. Y-axis: predicted impact of climate change in percentage. Data 
constructed with Brandt et al. (2012) deflators. Bins are 95% confidence intervals. The numbers in 
parentheses are the shares in real value-added output. 
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3.7 Conclusions 
 

This paper estimates how weather affects the productivity of Chinese manufacturing firms surveyed by the 

National Bureau of Statistics during 1998-2007 and predicts how climate change would affect their 

productivity by 2040-2042. A notable previous study on this topic, Zhang et al. (2018), assumes no firm fixed 

effects in productivity when estimating the production functions. This is because traditional production 

function estimation methods do not allow for such fixed effects. We show that many industries in our sample 

exhibit considerable and persistent differences in firm-specific productivity. In industries with larger 

productivity heterogeneity, ACF and Abito (2020)’s elasticity estimates deviate more from each other.   

With Abito (2020)’s TFP estimates, we predict the TFP will  be lowered by  about  −4% for an average firm 

in our sample by 2040-2042, compared to 1998-2007. Predictions using productivity estimates by Olley and 

Pakes (1996) (OP) or Ackerberg et al. (2015) (ACF) put the effect at around −4.9% or −4.7%. An earlier 

version of Zhang et al. (2018), which studies the same question with OP but focuses on the 2020-2040 

horizon, puts the effect at −5.7%. Thus using OP- and ACF-estimated productivity overstated the average 

adverse effect of climate change on productivity in our sample. We also examine the effects by industry and 

find a number of cases where using ACF-estimated TFP induces significantly biased elasticity estimates and 

predictions on the effects of climate change. In particular, the industries with the most biased predictions are 

those with the largest and persistent differences in firm-specific productivity. The prediction bias generally 

increases with the bias in elasticity estimates. We thus conclude that to get accurate predictions, it is important 

to allow for firm-specific productivity fixed effects in production function estimations.   
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Appendix  
 
Appendix A: Details on data cleaning 
 
A.1 Firm data quality check 
 
Our firm panel data are the underlying dataset used for China’s official annual statistics report. Therefore our 

summary statistics are directly comparable to those in the China Statistics Yearbook (Chinese pinyin 

“Zhongguo Tongji Nianjian”). Table 3.5 reports summary statistics of the raw data, which covers all state-

owned firms and firms with annual sales larger than 5 million RMB. The numbers are almost always either 

identical or extremely close to those reported in Table A.1 of Brandt et al. (2012), which used a slight variant 

of the same dataset. For a few cases where our numbers are not so close to theirs, our numbers are at times 

much closer to those reported in China Statistics Yearbook. One can check this by examining the tables 

following Table A.1 in the Appendix of Brandt et al. (2012).  

Table 3.3: Raw firm data summary statistics 
Year # of firms Value added Sales Output Labor Export Net value of fixed assets 
        (Original value) 
1998 165,118 1.94 6.54 6.77 56.44 1.08 4.41 (6.48) 
1999 162,033 2.16 7.06 7.27 58.05 1.15 4.73 (7.18) 
2000 162,883 2.54 8.37 8.57 53.68 1.46 5.18 (7.86) 
2001 171,240 2.83 9.32 9.54 54.41 1.62 5.52 (8.60) 
2002 181,557 3.30 10.86 11.08 55.21 2.01 5.95 (9.39) 
2003 196,222 4.20 13.95 14.23 57.49 2.69 6.61 (10.55) 
2004 274,763 5.68 19.70 20.09 66.56 4.04 7.92 (12.49) 
2005 271,835 7.21 24.69 25.16 69.31 4.77 8.95 (14.31) 
2006 301,961 9.10 31.08 31.66 73.49 6.05 10.58 (16.88) 
2007 336,768 11.69 39.76 40.51 79.26 7.34 12.34 (19.87) 
Note: Table replicating Table A.1, panel (a) in Brandt et al. (2012). All monetary values are nominal, in 
trillion RMB. Labor is in billions. Values are simple sums of all firms in each year. We also produce 2-
digit industry-level summary statistics for value added output and total output (or the ratio of the two) 
for each year, which we find are either identical or very close to those reported in China Statistics 
Yearbooks published by the Chinese National Bureau of Statistics. 
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To further check the quality of our data, we produce industry-by-year summary statistics for the number of 

firms, nominal gross output, nominal value-added output, and the ratio of the former two, in Tables 3.4, 3.5, 

3.6, and 3.7. We compare the numbers in these tables with those reported in the China Statistics Yearbooks 

and again find that they are almost always identical or extremely close. Therefore we are confident our raw 

dataset is of very high quality. 

A.2 Firm data cleaning 
 
We closely follow, word-by-word, both Brandt et al. (2012) and Zhang et al. (2018) in cleaning the firm data 

whenever possible.  Zhang et al. (2018) does not clearly indicate their choice of investment deflators or 

industry-level input and output deflators. Nor did they document their exact way of construct the real value-

added output, real investment, and real capital stock. We outline our choices and procedures for these matters 

below. 

We first manually interpolate the 6-digit county code of 122 observations with missing or non-numeric 

county code, based on their postal code. We also drop observations that violate any of the following 

accounting rules: liquid asset larger than total asset; fixed asset larger than total asset; net value of fixed asset 

larger than total asset; original value of fixed asset larger than total asset; intangible asset larger than total 

asset; liquid debts or long-term debts larger than total debts; current depreciation larger than cumulative 

depreciation. 

Then, for each year, we rename the variables according to those used in Brandt et al. (2012)’s Stata program 

for matching firms over time. For a detailed variable name crosswalk and variables for identifying invalid 

observations, please refer to Table 3.8. At this point, we produce 10 data files, one for each year, which are 

used as input in Brandt et al. (2012)’s Stata program for matching firms over time. 
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Table 3.4: Number of firms in each industry each year in raw data 
Industry 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 
6 3202 2795 2666 2602 2812 3139 5065 5787 6797 7537 
7 76 75 82 90 84 112 183 174 175 184 
8 576 578 598 646 696 913 1650 2087 2495 2899 
9 1416 1428 1439 1309 1291 1276 1364 1529 1862 2183 
10 1851 1817 1770 1748 1711 1827 2168 2242 2601 3004 
11 25 19 20 20 17 13 12 14 16 24 
12 634 564 498 431 383      
13 11907 11231 10676 10380 10413 11192 14023 14575 16356 18140 
14 5373 4963 4691 4563 4615 4636 5498 5553 6056 6644 
15 3809 3579 3409 3307 3287 3194 3441 3519 3914 4422 
16 351 352 343 320 287 255 205 190 179 150 
17 11287 10981 10968 12065 13248 14863 24152 22569 25345 27914 
18 6772 6611 7064 8037 9061 9717 12025 11865 13072 14770 
19 3313 3192 3164 3538 3932 4518 6386 6227 6859 7452 
20 2481 2420 2552 2808 3033 3501 4926 5397 6374 7852 
21 1470 1473 1498 1625 1767 2046 3016 3074 3603 4110 
22 4766 4657 4672 5027 5285 5570 7443 7461 7892 8376 
23 3862 3824 3701 3691 3806 4084 5114 4826 5029 5083 
24 1786 1807 1879 2024 2327 2516 3379 3378 3633 4087 
25 1052 988 993 1027 1144 1323 2011 1990 2160 2149 
26 11303 11337 11430 12031 12637 13803 18651 18716 20715 22981 
27 3280 3272 3301 3487 3681 4063 4681 4971 5368 5748 
28 803 803 834 885 909 937 1534 1306 1402 1556 
29 1785 1805 1783 1777 1822 2016 3159 3034 3353 3695 
30 6016 6047 6230 6883 7665 8382 12249 12041 13504 15376 
31 14496 14366 14540 14706 15305 16245 19780 20111 21936 24278 
32 3260 3042 2997 3175 3333 4119 6953 6649 6999 7161 
33 2406 2426 2538 2823 2942 3367 5169 5163 5863 6701 
34 8135 8176 8376 9273 10039 9746 14100 13802 15573 18008 
35 9289 9160 9338 10027 10767 12546 20519 19981 22905 26757 
36 6644 6470 6406 6390 6546 7129 10889 10260 11615 13409 
37 6782 6701 6850 7111 7470 8281 11791 11315 12586 14091 
39 136 134 127 123 114 10400 16123 15366 16905 19322 
40 7550 7624 7845 8675 9385 5856 9150 8868 9709 11220 
41 4175 4289 4459 4824 5320 2515 3913 3723 4084 4526 
42 1821 1817 1860 2018 2146 4259 5119 5131 5764 6416 
43 3583 3569 3753 4185 4582 107 385 438 529 652 
44 4992 4941 4825 4871 4946 4998 5392 5527 5731 5565 
45 291 295 300 320 329 352 496 484 526 591 
46 2362 2405 2408 2398 2420 2406 2649 2492 2476 1735 

Note: Industry code is year-specific. To cross-validate with China Statistics Yearbook, refer to Table 
13-2 in 2008, Table 14-2 in 2007, Table 14-4 in 2006. Previous years don’t report this statistic. For 
industry code meanings, see Table 3.9 (post-2003 codes).  



 
 

99 

Table 3.5: Nominal total output in each industry each year in raw data 
Industry 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 
6 130 124 128 152 198 246 403 572 721 920 
7 180 208 313 278 276 348 460 628 772 829 
8 15 15 17 19 23 35 72 99 139 213 
9 34 36 41 42 46 57 78 114 167 229 
10 33 34 36 37 42 49 59 76 103 137 
11 0.44 0.28 0.36 0.36 0.20 0.75 0.58 0.86 0.52 1.10 
12 16 14 12 11 11      
13 352 352 372 410 478 615 833 1,060 1,300 1,750 
14 121 126 144 163 197 229 289 378 471 607 
15 157 166 175 182 200 223 243 309 390 508 
16 137 139 145 169 204 224 255 284 321 378 
17 438 453 515 562 637 773 1,030 1,270 1,530 1,870 
18 202 204 229 260 291 343 400 497 616 760 
19 119 120 135 157 180 227 276 346 415 515 
20 49 56 66 74 83 99 137 183 243 352 
21 30 32 37 44 52 72 115 143 188 242 
22 124 133 159 180 208 253 335 416 503 633 
23 54 58 62 73 83 103 120 144 171 212 
24 55 56 62 68 78 97 122 148 176 210 
25 233 271 443 459 478 624 892 1,200 1,510 1,790 
26 463 492 575 630 722 924 1,290 1,640 2,040 2,680 
27 137 150 178 204 238 289 323 425 502 636 
28 83 98 124 102 112 145 195 261 321 412 
29 77 78 81 89 106 131 182 220 273 346 
30 150 162 190 214 249 306 419 507 638 812 
31 320 339 369 403 456 565 742 920 1,170 1,560 
32 388 410 473 571 649 1,000 1,670 2,150 2,540 3,370 
33 163 179 218 237 260 356 591 794 1,290 1,800 
34 215 222 254 285 329 386 515 656 853 1,140 
35 259 269 305 351 425 571 852 1,060 1,370 1,840 
36 192 198 219 235 282 383 506 609 795 1,060 
37 421 466 536 647 836 1,120 1,380 1,570 2,040 2,710 
39 23 26 22 23 26 792 1,120 1,390 1,820 2,400 
40 363 402 483 548 614 1,580 2,230 2,700 3,310 3,920 
41 489 583 755 899 1,130 164 219 278 354 431 
42 69 71 87 94 109 131 164 204 253 339 
43 82 86 96 109 122 5 20 29 42 68 
44 362 400 461 509 589 686 1,450 1,780 2,150 2,650 
45 10 13 17 19 23 27 42 52 73 99 
46 27 32 33 34 38 43 51 58 72 80 

 
Note: Industry code is year-specific. Unit is billions RMB. To cross-validate with China Statistics 
Yearbook, refer to Table 13-2 in 2008, Table 14-2 in 2007, Table 14-4 in 2006. Previous years don’t 
report this statistic. For industry code meanings, see Table 3.9 (post-2003 codes). 
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Table 3.6: Nominal value-added total output in each industry each year in raw data 
Industry 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 
6 60 57 58 70 92 115 198 289 359 470 
7 119 144 221 202 194 239 350 481 599 644 
8 5 5 6 7 9 15 33 43 59 93 
9 11 13 14 14 15 18 27 43 68 97 
10 11 12 12 13 14 16 21 28 38 52 
11 0.17 0.08 0.11 0.10 0.05 0.24 0.19 0.27 0.18 0.33 
12 8.24 6.65 6.15 5.54 5.57      
13 68 76 84 94 111 146 195 274 349 463 
14 33 34 42 45 55 67 87 117 147 186 
15 54 59 62 64 71 80 91 116 144 188 
16 88 89 94 109 136 157 185 206 238 292 
17 102 112 127 139 157 191 253 324 396 491 
18 48 51 59 69 75 92 112 142 183 226 
19 27 28 32 39 46 59 72 94 117 148 
20 11 13 16 19 21 27 37 51 69 103 
21 8 8 9 12 14 18 29 38 50 64 
22 32 36 41 48 57 68 87 115 139 174 
23 18 20 20 24 28 33 40 46 56 69 
24 14 14 16 18 20 25 30 38 46 55 
25 53 59 79 88 100 129 170 198 231 310 
26 110 122 142 160 186 246 357 439 540 734 
27 43 52 63 72 83 102 117 153 181 229 
28 19 25 30 22 25 30 36 49 60 81 
29 20 20 22 25 29 37 49 60 72 96 
30 35 39 46 54 65 76 101 127 167 214 
31 91 100 113 121 137 175 228 281 366 485 
32 98 108 130 153 180 282 460 578 700 900 
33 33 41 51 59 63 90 139 193 320 447 
34 50 54 61 71 84 97 131 169 222 300 
35 70 74 84 97 115 159 231 296 380 510 
36 49 52 58 64 78 101 139 168 229 306 
37 108 119 132 163 218 289 341 382 492 695 
39 3.58 4.91 4.58 4.31 5.55 202 279 357 461 604 
40 88 100 123 138 158 347 447 571 706 787 
41 112 135 182 203 251 44 57 73 97 116 
42 17 18 21 24 27 35 44 57 71 92 
43 22 23 26 30 33 1.07 3.78 5.99 9.47 16.20 
44 188 216 233 270 317 361 471 572 691 883 
45 1.41 3.66 3.47 4.61 5.31 7.53 11.90 13.40 19.10 30.60 
46 12 15 15 16 17 19 24 26 32 37 

 
Note: Industry code is year-specific. Unit is billions RMB. To cross-validate with China Statistics 
Yearbook, refer to Table 13-2 in 2008, Table 14-2 in 2007, Table 14-4 in 2006. Previous years don’t 
report this statistic. For industry code meanings, see Table 3.9 (post-2003 codes). 
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Table 3.7: Nominal value-added output as percentage points of total output in each industry 
each year in raw data 

Industry 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 
6 46.29 45.71 45.67 45.61 46.37 46.84 49.13 50.47 49.77 51.04 
7 66.05 68.99 70.57 72.62 70.27 68.65 76.16 76.56 77.55 77.69 
8 35.89 36.05 37.79 37.83 38.26 41.65 45.18 43.10 42.36 43.59 
9 32.79 34.87 34.48 33.80 32.50 30.99 34.46 37.49 40.53 42.52 
10 33.74 34.64 34.36 33.54 33.99 33.44 35.30 37.08 36.73 37.88 
11 38.97 27.51 29.71 29.25 26.22 31.59 33.46 31.46 34.85 29.78 
12 51.07 48.80 50.77 49.42 49.91      
13 19.37 21.64 22.43 23.04 23.26 23.77 23.45 25.80 26.86 26.48 
14 26.76 27.29 28.82 27.75 28.10 29.12 30.09 30.90 31.09 30.65 
15 34.32 35.31 35.30 35.21 35.54 35.63 37.23 37.68 36.88 37.04 
16 64.04 64.12 64.48 64.50 66.73 70.38 72.71 72.52 74.04 77.29 
17 23.23 24.65 24.70 24.64 24.61 24.66 24.48 25.55 25.85 26.21 
18 23.90 24.81 25.83 26.47 25.58 26.72 28.06 28.51 29.73 29.77 
19 22.92 23.66 24.05 24.88 25.40 25.97 25.98 27.25 28.23 28.71 
20 22.84 23.70 23.98 26.00 25.82 26.73 26.79 27.91 28.21 29.26 
21 26.00 24.48 25.62 27.01 26.53 25.29 25.31 26.87 26.47 26.56 
22 25.59 26.77 25.94 26.31 27.42 26.97 26.08 27.54 27.52 27.55 
23 33.57 34.20 32.65 33.57 33.85 32.55 32.94 32.08 32.66 32.67 
24 25.54 25.22 25.12 26.36 26.13 25.82 24.89 25.54 26.37 26.34 
25 22.69 21.82 17.79 19.25 20.98 20.65 19.01 16.51 15.27 17.34 
26 23.84 24.70 24.62 25.39 25.79 26.65 27.61 26.83 26.38 27.38 
27 31.53 34.38 35.58 35.39 35.08 35.45 36.15 35.98 36.01 35.93 
28 22.34 25.89 23.79 21.71 22.18 20.38 18.44 18.60 18.84 19.64 
29 26.53 25.96 26.94 27.78 27.48 28.16 26.72 27.08 26.16 27.68 
30 23.64 23.88 24.44 25.34 25.98 24.88 24.13 25.07 26.12 26.30 
31 28.33 29.59 30.51 30.09 29.95 30.93 30.73 30.53 31.18 31.16 
32 25.30 26.38 27.45 26.81 27.71 28.21 27.48 26.90 27.57 26.70 
33 20.39 22.58 23.51 24.94 24.07 25.28 23.46 24.28 24.70 24.82 
34 23.43 24.40 23.98 24.98 25.51 25.15 25.38 25.80 26.06 26.24 
35 27.01 27.59 27.58 27.71 27.13 27.82 27.12 27.93 27.64 27.68 
36 25.21 26.02 26.49 27.04 27.72 26.29 27.44 27.60 28.85 28.92 
37 25.62 25.59 24.65 25.21 26.02 25.81 24.81 24.34 24.16 25.61 
39 15.48 18.95 20.63 19.04 21.66 25.53 24.85 25.69 25.40 25.16 
40 24.24 24.92 25.47 25.13 25.78 21.90 20.08 21.14 21.35 20.08 
41 22.90 23.08 24.13 22.55 22.27 27.15 26.14 26.33 27.32 26.93 
42 24.30 25.57 24.69 25.34 24.60 26.57 26.88 28.01 27.82 27.07 
43 26.37 26.43 26.88 27.16 27.33 21.37 18.63 20.45 22.55 23.80 
44 51.99 54.08 50.50 52.99 53.75 52.57 32.44 32.15 32.08 33.39 
45 13.68 27.91 20.38 24.95 23.64 27.63 28.33 26.08 26.14 30.95 
46 45.93 46.46 46.35 47.01 45.28 44.24 46.03 45.19 44.09 45.91 

Note: Industry code is year-specific. To cross-validate with China Statistics Yearbook, refer to Table 
14-4 in 2004, Table 13-6 in 2003, 2002 and 2001, Table 13-7 in 2000, and Table 13-9 in 1999.  This 
statistic is not reported in Yearbooks since 2005.  For  industry code meanings, see Table 3.9 (post-2003 
codes). 
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In matching firms, we directly use the aforementioned program as it is, except that we deleted the variables 

“street”, “town” and “village” whenever they appear in the original program. This is simply because our data 

don’t have these variables. This is a minor issue. The matching program first attempt to match by the ID of 

the firm’s legal person, the to match the unmatched firms by firm name, then by legal person name, then by 

phone number plus county code, then by founding year plus county code plus industry code plus the name of 

the main product. The firm’s legal person ID already links the vast majority of firms in the first step. 

We feed the matched dataset into another Stata program provided by Brandt et al. (2012) to compute real 

capital stock for each firm in 1998-2007. Our only major modification to the original program is to add the 

year 2007, which the original program does not include. The variable picked up as the nominal capital stock 

is called “fa_original” (see Table 3.8). The main idea of the program is to first back-out the nominal capital 

stock at the first year of operation for each firm and then compute forward real capital stock year-by-year 

using Brandt-Rawski investment deflator (provided inside the program). It is assumed that the yearly 

depreciation rate is 0.09. 

We then compute real value-added output by subtracting real input from the real output. This is the way it is 

constructed in Brandt et al. (2012).  Real input and real output are computed by separately deflating raw input 

and raw output using industry-level (2-digit code industries) deflators. For our choice of raw input and output, 

please see Table 3.8.  Our main analysis uses the industry-level deflators constructed by Yang  (2015), which 

comes together with our dataset. Since Yang (2015) is published in Chinese, we translate his description of 

how these deflators are constructed below:  

“This paper differs notably from Brandt et al. (2012) in how (annual 2-digit industry level) output and input 
deflators are constructed. First, the year-on-year by-industry output price indices come from China City Price 
Yearbook 2011. In Brandt et al. (2012), such price indices during 1998-2003 are computed as weighted 
averages based on real output and nominal output in the given data. Second,  when computing input deflators,  
Brandt et al. (2012) only utilize the Input-Output table from one period, which does not consider structural 
changes over the years. This paper handles this issue more properly by using the 1997 124-industry Input-
Output table for weights in years 1998-2000, using the 2002 122-industry Input-Output table for weights in 
years 2001-2005, and using the 2007 135-industry Input-Output table for weights in years 2006-2009.” 
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Table 3.8: Variable name crosswalk: from raw data to Brandt et al. (2012) programs 
Interim variable 

name 
Name in raw data Meaning 

Key variables 
output gyzczxjxgd Nominal value of production (post value-added tax) 
input zjtrhj Sum of intermediate inputs 
employment cyrs Number of employees 
fa_original gdzcyjhj Fixed assets at original value 
cic hylb 4-digit industry code 
zip yzbm 6-digit postal code 
dq dqdm 6-digit county code 

Variables used in data quality check 
fa_net gdzcjznpjye Net value of fixed asset 
sales gyxsczxjxgd Sales 
export ckjhz Value of export products 
va_tax 
va 

bnyjzzs Value-added tax 
Nominal value-added output Variables used only for matching firms over time 

 
 

Variables used only for matching firms over time 

id frdm ID of legal person 
legal_person frdbxm Name of legal person 
name qymc Name of the firm 
phone dhhm Phone number 
product1_ cp1 Product 1 
bdat kysjn Start year 

Variables used only for identifying invalid observations 
 zczj Sum of all assets 
 ldzchj Sum of liquid assets 
 gdzchj Sum of fixed assets 
 wxzc intangible assets 
 fzhj Sum of all debts 
 ldfzhj Sum of liquid debts 
 cqfzhj Sum of long-term debts 

 c_dep ljzj Cumulative depreciation 
a_dep bnzj Current depreciation 
Note: The variable “va” is computed using the formula va=output−input+va_tax. The names in raw 
data are abbreviations of the variable names in Chinese pinyin. The interim names are those used 
in Brandt et al. (2012) programs (available on their websites). 
 

In our robustness checks, we use the deflators constructed by Brandt et al. (2012) (available on their website). 

They do not provide deflators for mining and utility industries, for which we use the Yang (2015) deflators. 

The industry codes changed in 2003 (see Table 3.9). We make the codes consistent over time by using the 

crosswalk provided by Brandt et al. (2012). It is essentially coding industry using post-2003 codes. The 
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county code also went through extensive revisions over the years. This is relevant for our analysis because 

we will be clustering standard errors along the county dimension in some of the regressions. We thus created 

a county code crosswalk table, where each county has a time-invariant code. 

In the final steps of firm data cleaning, we drop observations with employment less than 10 or missing, with 

missing or non-positive real value-added or real capital stock, or with values outside the 0.5 to 99.5 percentile 

range for real value-added, employment, and real capital stock. We then translate the real values (now in 

1998 RMB) into 1998 USD using the 1998 International Monetary Fund annual average middle exchange 

rate for US dollar to Chinese yuan (8.2790). Finally, we translate them into 2007 USD using U.S. Bureau of 

Economic Analysis, Gross Domestic Product: Implicit Price Deflator [GDPDEF] (retrieved from FRED, 

Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/GDPDEF, October 8, 2020. deflator 

values are q1/1998 and q1/2007: 74.933, 91.708). 

For a more detailed description of the matching algorithm and the way the real capital stock and deflators are 

constructed, please refer to the Appendix of Brandt et al. (2012). 

 
A.3 Historical weather data quality 
 
The raw data for historical weather come from National Centers for Environmental Information Global 

Surface Summary of Day data, which is aggregated from hourly raw observations by the National Centers 

for Environmental Information (NCEI) at the National Oceanic and Atmospheric Administration (NOAA). 

Zhang et al. (2018) start with the raw hourly observations data and aggregate to daily by themselves. We 

instead choose to directly use the version that is already aggregated by NCEI to the daily level, for three 

reasons. First, it saves us time and energy. Second, it is apparent from the documentation of hourly data that 

different observations are of different levels of reliability. Third, it is hard for us to properly aggregate the 

observations on precipitation in the hourly dataset because, although the observations are once every three 

hours, the precipitation could be reported as cumulative value of the previous 3, 6, 12, or 24 hours, and the 

report of precipitation does not occur evenly across time. Moreover, precipitation reports with overlapping 

time intervals happen all over the place. According to its documentation, the daily dataset that NCEI creates 

seems to have dealt with the above second and third issues. 
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Table 3.9: Industry codes 
Industry code post-2003 Industry code pre-2002 Name 
6 6 Coal mining 
7 7 Oil and natural gas mining 
8 8 Ferrous metal mining 
9 9 Non-ferrous metal mining 
10 10 Nonmetal mining 
11 11 Other mining 
 12 Logging 
13 13 Processing of foods 
14 14 Manufacture of foods 
15 15 Beverages 
16 16 Tobacco 
17 17 Textiles 
18 18 Apparel 
19 19 Leather 
20 20 Timber 
21 21 Furniture 
22 22 Paper 
23 23 Printing 
24 24 Articles for cultures and sports 
25 25 Petroleum 
26 26 Raw chemicals 
27 27 Medicines 
28 28 Chemical fiber 
29 29 Rubber 
30 30 Plastics 
31 31 Non-metallic minerals 
32 32 Smelting of ferrous metals 
33 33 Smelting of non-ferrous metals 
34 34 Metal 
35 35 General machinery 
36 36 Special machinery 
37 37 Transport equipment 
39 40 Electrical machinery 
40 41 Communication equipment 
41 42 Measuring instruments 
42 43 Manufacture of artwork 
43 6290 Recycling 
44 44 Electricity and heat 
45 45 Gas production 
46 46 Water 
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Comparing our summary statistics in Table 3.1 with Table 1 in Zhang et al. (2018), we find our weather 

numbers are overall close to each other, except for the numbers for precipitation. Our number is 33.94 inches 

(per year), while theirs is 73.17 inches (per year). A simple cross-check with any precipitation map of China 

available would reveal that the value 73.17 is way too high. A possible reason for this is that Zhang et al. 

(2018) might sum up the precipitation observations in the raw hourly dataset without realizing that the 

observation intervals overlap. 

 
A.4 Historical weather data cleaning 
 
We start by taking out observations from weather stations in Mainland China and Taiwan from the Global 

Surface Summary of Day data. We keep those stations that are present in all years 1998-2007. At this point, 

we have 377 stations, close to the number reported in Zhang et al. (2018). We properly identify missing 

values based on their respective codes in the raw data, for temperature, precipitation, wind speed, visibility, 

and dew point temperature. We compute the relative humidity according to the formula provided in Zhang 

et al. (2018). We then keep weather stations with valid temperature data for at least 364 days in any year 

during 1998-2007. By doing so, 136 stations are dropped. We then drop 2 stations that have 2 days missing 

in 2000. We then interpolate the missing day with previous and subsequent days for the remaining 239 

stations. The geographic distribution of the 239 stations is shown in Figure 3.9. 

We use the data from these 239 stations to construct daily weather for all postal codes ever-present in the 

firm dataset. We first find the geographic coordinates for each postal code using the Google Geocoding API 

service. (An address with postal code as its only component is fed into the API in the process) For each postal 

code, we then follow Zhang et al. (2018) to compute daily values for temperature, precipitation, wind speed, 

visibility, and relative humidity, as a weighted average of the values from stations within 200 KM radius, 

with the weight as the simple reciprocal of the distance between them. The distance is computed using the 

Haversine formula. The daily data are then collapsed into yearly data in the same way as in Zhang et al. 

(2018). The yearly historical weather data are then merged with the cleaned firm panel by year and postal 

code. The merged dataset is the one underlying the summary statistics in Table 3.1. 
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Figure 3.9: Map of weather stations used for historical weather observations 
 

A.5 Future weather data 
 
The raw data for future (2040-2042) daily weather come from the Centre for Environmental Data Analysis 

in the UK (HadCM3 A1FI run, stored as part of Met Office data from the Climate Impacts Link Project). We 

thank the Centre for Environmental Data Analysis for granting us access. The data is stored in PP binary 

files, which is an uncommon format. Citing CEDA: “PP-format is a record-based binary format used in a 

number of datasets archived in the CEDA archives. It is a Met Office proprietary format mainly associated 

with Met Office products, though not exclusively.” Each day and each variable is stored in a separate pp file. 

We downloaded the data for the years 1998-2007 (for cross-validation purposes) and the years 2040-2042. 

We could only see data for part of 2045, and none of 2044 or 2046-2049 is available. 

We start by processing and combining the PP files into files with Python module IRIS. (Please check CEDA 

documentations) We then keep those coordinates that are between latitude 8 − 54 and longitude 73 − 135. 

This covers all of China. We then construct postal code level daily temperature, precipitation, wind speed, 
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and relative humidity the same way we construct them with the historical weather from NOAA, except that 

the inclusion radius is now 300 KM. 

The final step for cleaning HadCM3 weather data is cross-validating with historical actual weather. Following 

Zhang et al. (2018), we compute the average difference between HadCM3 predictions and actual observations 

across years for each day, each postal code, and each variable in 1998-2007. These average differences are 

then added to HadCM3 future daily predictions as corrections. A notable feature of HadCM3 data is that in 

their world, a month always has 30 days. Thus a year always has 360 days. Thus, the above cross-validation 

is done for those 358-359 days that actually exist, and the final cleaned daily future weather data for each 

postal code thus have only 358-359 days in a year for the years 2040-2042. Finally, these daily data are 

aggregated into yearly observations for each postal code in the same way as in Zhang et al. (2018). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

109 

Appendix B: Results with OP 
 

Table 3.10 reports elasticity estimates using OP, with investment as the proxy variable.  

Table 3.10: Production Function Elasticity Estimates with OP 
Industry Labor S.D. Capital S.D. 
6 0.22 (0.01) 0.14 (0.02) 
7 -0.07 (0.12) 0.66 (0.35) 
8 0.57 (0.03) 0.31 (0.07) 
9 0.30 (0.03) 0.27 (0.08) 
10 0.30 (0.02) 0.07 (0.15) 
13 0.37 (0.01) 0.12 (0.02) 
14 0.36 (0.01) 0.09 (0.08) 
15 0.33 (0.02) 0.47 (0.20) 
16 0.54 (0.08) 0.23 (0.17) 
17 0.37 (0.01) 0.12 (0.01) 
18 0.45 (0.01) 0.12 (0.01) 
19 0.41 (0.01) 0.12 (0.01) 
20 0.39 (0.01) 0.35 (0.14) 
21 0.53 (0.02) 0.09 (0.04) 
22 0.34 (0.01) 0.12 (0.01) 
23 0.25 (0.02) 0.60 (0.09) 
24 0.41 (0.01) 0.09 (0.02) 
25 0.21 (0.03) 0.38 (0.14) 
26 0.25 (0.01) 0.14 (0.12) 
27 0.31 (0.01) 0.13 (0.18) 
28 0.39 (0.02) 0.17 (0.15) 
29 0.34 (0.01) 0.13 (0.07) 
30 0.39 (0.01) 0.12 (0.01) 
31 0.24 (0.01) 0.11 (0.01) 
32 0.37 (0.01) 0.17 (0.02) 
33 0.31 (0.02) 0.13 (0.03) 
34 0.33 (0.01) 0.13 (0.01) 
35 0.30 (0.01) 0.13 (0.01) 
36 0.22 (0.01) 0.07 (0.11) 
37 0.38 (0.01) 0.11 (0.17) 
39 0.34 (0.01) 0.12 (0.01) 
40 0.39 (0.01) 0.11 (0.01) 
41 0.27 (0.02) 0.03 (0.13) 
42 0.39 (0.01) 0.12 (0.01) 
43 -0.16 (0.17) 0.33 (0.59) 
44 0.35 (0.02) 0.09 (0.02) 
45 -0.07 (0.06) 0.14 (0.17) 
46 0.28 (0.02) 0.07 (0.05) 

Note: We use Stata canned command 𝑙𝑒𝑣𝑝𝑒𝑡 for OP estimation. Standard errors in parentheses. Yang 
(2015) deflators are used for the construction of data that is used here. 
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We compare predictions on the effect of climate change on TFP between OP and Abito (2020). We find that 

OP has significant prediction bias (i.e., the point predictions are outside or on the edge of each other’s 95% 

CI) in about 7 industries, including communication equipment, non-metallic minerals, transportation 

equipment, general machinery, special machinery, metal, and non-metal mining. The two have somewhat 

different (small compared to CIs) predictions in about 9 industries like raw chemicals, paper, leather, 

electricity and heating, printing, manufacture of artwork, rubber, furniture, and smelting of non-ferrous metal. 

Overall, with OP-estimated productivity, the effect of climate change on productivity is -4.90% on average, 

with 95% CI [-7.25%, -2.55%]. The numbers are −4.07%  and [−7.01%, −1.13%] respectively for Abito 

(2020)-estimated productivity. Using OP-estimated productivity would overestimate the magnitude of the 

overall adverse impact of climate change on TFP by about 20%.  
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