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III. ABSTRACT      ABSTRACT 

Background:  

Apoptosis plays a critical role in the host immune response and resolution of 

inflammation.  A hyperactive or primed neutrophil phenotype has been associated 

with diabetes and chronic periodontitis.  Delayed cell death prolongs chronic 

inflammation creating increased tissue damage.  We tested the hypothesis that 

peripheral blood neutrophil spontaneous apoptosis is delayed in type 2 Diabetes 

Mellitus (T2DM), and co-expression with chronic periodontitis exacerbates the 

delayed spontaneous neutrophil apoptosis. 

Materials and Methods:  

73 individuals, including those with type 2 diabetes (DM) (n=16), chronic 

periodontitis (CP) (n=15), diabetics with chronic periodontitis (DM+CP) (n=21) and 

healthy volunteers (H) (n=21) were enrolled.  Heparinized venous blood was 
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obtained and neutrophils isolated by density gradient centrifugation.  Cells were 

maintained in RPMI-1640 supplemented with bovine fetal serum for 2-24 hours.  

Neutrophil apoptosis was determined by flow cytometry using TUNEL and Annexin 

V assays.  Caspase 3, 8 and 9 activity was measured by colorimetric assay. 

Neutrophil surface death receptor quantification were stained with fluorescence 

conjugated anti-CD120a (TNFR1) and anti- CD95 (FasR) antibody. All samples were 

analyzed using a flow cytometer. Inflammatory Biomarker Analysis from serum 

samples were analyzed by multiplexed sandwich immunoassay using flowmetric 

Luminex™ xMAP technology. Statistical analysis was performed using Student’s T-

test and ANOVA with an LSD post-hoc test.   

Results:  

In H, T2DM and T2DM+CP subjects, spontaneous neutrophil apoptosis 

reached 50% in 7.4, 8.5 and 9.4 hours, respectively. In 12 hours neutrophil 

apoptosis was 85.3% ± 3.1, 67.3% ± 3.9 and 62.5% ± 5.4, respectively. Neutrophils 

from the T2DM and T2DM+CP groups showed a significant delay of apoptosis 

compared to the H group at 12 hours (p<0.031 and p=0.003, respectively). Caspase-

3 activity in the H group showed significantly higher activity compared to the T2DM 

(p= 0.018) and T2DM+CP groups (p= 0.031). Upstream caspase-8 (extrinisic 

pathway) activity from the T2DM+CP group was significantly decreased compared 

to the H group (p= 0.046). The lack of caspase activity was possibly regulated by the 

reduction of cell surface Fas receptor in neutrophil from the T2DM (p=0.01) and 

T2DM+CP groups(p=0.016), the TNF receptor from the T2DM group(p=0.005) and 
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the level of serum Fas ligand (p= 0.035) compared to the H group. To further 

investigate the mechanism, we mimicked T2DM+CP delayed neutrophil apoptosis in 

healthy donors. Our results showed that a high glucose condition alone did not 

affect neutrophil apoptosis. When hyperglycemia was combined with S100b (ligand 

for receptor for advance glycation end production ligand; 50 μg/ml) and P.gingivalis, 

neutrophil apoptosis was delayed (p=0.002). 

Conclusion:  

We showed that spontaneous apoptosis of the peripheral blood neutrophil 

was impaired in subjects with type 2 diabetes and chronic periodontitis. The 

mechanism underlying this finding were due to a lack of sFas ligand and its receptor 

expression on neutrophil cell surface. Furthermore, in T2DM patients, RAGE over 

activation is suggested to play a crucial role in delaying spontaneous neutrophil 

apoptosis. 
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VII. INTRODUCTION 

1. Diabetes Mellitus 

 

1.1 Definition of Diabetes  

Diabetes mellitus (DM) is a group of diseases characterized by chronic 

hyperglycemia and other metabolic abnormalities. Chronic hyperglycemia is a 

hallmark of DM regardless of its pathophysiology. Diabetes occurs when the 

pancreas does not produce enough insulin, or when the body cannot effectively use 

the insulin it produces. There are two main types of diabetes based on the primary 

cause of hyperglycemia. Type 1 diabetes results from autoimmune mediated 

destruction of the beta cells of the pancreas. Type 2 diabetes is characterized by 

resistance to the action of insulin and disorder of insulin secretion, either of which 

may be the predominant feature (1). According to the 2012 guidelines of the 

American Diabetes Association (ADA) and the International Expert Committee 

report of 2009, there are four criteria to diagnose diabetes (Table 1). First, it can be 

diagnosed by symptoms such as polyuria (excessive urination), polydipsia 

(excessive thirst), polyphagia (excessive hunger), hyperglycemic crisis with severe 

hyperglycemia (>600 mg/dl), hyperosmolarity, small ketones and casual plasma 

glucose concentration of more than 200mg/dl (11.1 mmol/l) (any time of day 

without regard to the time since the last meal). Second, a fasting plasma glucose 

level (FPG) more than 126 mg/dl (7 mmol/l) (no calorie intake for at least 8 hours) 
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suggests a diagnosis of diabetes. A third diagnostic characteristic is a 2-hour post 

load glucose more than 200 mg/dl (11.1 mmol/l) during an oral glucose tolerance 

test (OGTT).  The last is a Hemoglobin A1c (HbA1c) level >6.5 % (normal values 4-

6%) performed using a certified laboratory method. The ADA has adopted this 

criterion since 2010 (2). HbA1c is also a reliable monitoring test for long-term 

control of blood glucose over 2-3 months. It should be measured every 3-4 months 

in patients with ongoing diabetes, with an HbA1c value <7% indicating well 

controlled diabetes (3, 4). With only a single test, diagnosis cannot be confirmed. To 

diagnose diabetes, the laboratory value should be confirmed on a different day (5). 

The confirmation of chronic hyperglycemia is a prerequisite for diagnosis, and DM 

can be diagnosed when hyperglycemia meets the criteria for diabetic types 

confirmed on 2 or more occasions on separate days. 
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Table 1. The criteria for the diagnosis of diabetes 

 

 

 

 

 

 

 

 

In a patient with classic symptoms of hyperglycemia or hyperglycemic crisis, a 

random plasma glucose ≥ 200 mg/dl (11.1 mmol/l). 

OR 

FPG ≥ 126 mg/dl (7.0 mmol/l). Fasting is defined as no caloric intake for at least 8 

h. 

OR 

2-h plasma glucose ≥ 200mg/dl (11.1mmol/l) during an oral glucose tolerance 

test (OGTT). The test should be performed as described by the World Health 

Organization, using a glucose load containing the equivalent of 75 g anhydrous 

glucose dissolved in water. 

OR 

A1C ≥ 6.5% performed in a laboratory using a method that is NGSP certified and 

standardized to the DCCT assay. 
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1.2 Epidemiologic Considerations in Diabetes 

During the last twenty years, the prevalence of diabetes has increased 

dramatically in many parts of the world such that the disease has become a 

worldwide public health problem. The total number of people with diabetes is 

projected to rise from 171 million in 2000 to 366 million in 2030 unless urgent 

action is taken (1, 2, 6). It is suspected that a major factor contributing to the 

increase in the prevalence of diabetes is lifestyle, including obesity and lack of 

physical activity.  Nearly 3 million deaths per year are attributed to diabetes 

accounting for 5% of deaths globally.  This number is expected to double by 2030. 

According to the American Diabetic Association approximately 8.3% of the total 

population of the US has diabetes. 26 million children and adults in the US have 

diabetes and 7 million among them are undiagnosed. With a rate of 1.9 million 

Americans ages 20 years and older being diagnosed each year. Furthermore, 

statistics have shown that the incidence of individuals being diagnosed with 

diabetes has nearly tripled from 1990 to 2010. The highest percentage of 

individuals with diagnosed and estimated undiagnosed diabetes by age group is 

senior citizens with around 26.9% of individuals considered to have diabetes. Each 

year, diabetes is listed as a primary cause of death for 71,382 American. The risk for 

death in a person with diabetes is twice of that compared to a person of similar age 

who does not have diabetes. Racial statistics within the United States for total 

estimated diagnosed and undiagnosed persons with diabetes show Non-Hispanic 
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whites have the lowest rate of diabetes with a prevalence of 10.2% versus 18.7% of 

Non-Hispanic blacks and 16.1% of American Indian and Alaskan Natives (7). 

 

1.3 Types of Diabetes Mellitus 

There are two main types of diabetes. Type 1, previously called "insulin 

dependent diabetes", accounts for less than 20% of diabetes cases.  In this type, 90% 

of cases are immune-mediated and characterized by destruction of pancreatic islet 

cells resulting in primary hypoinsulinemia and hyperglycemia. In less than 10% of 

type 1 diabetes cases there is no evidence of autoimmunity against ß-cells to explain 

hypoinsulinemia and thus falls into the idiopathic cause. The onset of the disease is 

often abrupt, and patients with this type of diabetes are more prone to ketoacidosis 

and wide fluctuation in plasma glucose levels. Patients with type 1 diabetes need 

insulin therapy for survival. If untreated, these patients are likely to manifest the 

classic signs and symptoms of diabetes. These include polyuria, polydipsia and 

polyphagia, as well as pruritis, weakness and fatigue. Type 1 Diabetes  usually 

presents itself  in youth or late childhood (8) and has the highest incidence in 

northern European countries and US states populated with persons of Scandinavian 

descent such as Minnesota. In Scandinavia, the incidence in children aged 14 years 

or younger is 37 per 100,000/year. The US overall annual incidence is 15 per 

100,000/year. Interestingly, ethnic genetic heterogeneity seems to play a key role in 

development of this type of diabetes (2, 9). 
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In contrast, Type 2 diabetes, previously called "non-insulin dependent 

diabetes", is responsible for more than 90% of the cases of diabetes worldwide. It is 

characterized by insulin resistance with relative insulin deficiency in one extreme to 

a predominantly secretory defect accompanied by insulin resistance in the other. In 

type 2 diabetic patients, the onset is generally more gradual than type 1 and it is 

quite rare to see ketoacidosis because insulin is produced. Insulin resistance 

stimulates insulin production at the early state of the disease, but as the condition 

progresses pancreatic insulin production is depleted. Although type 2 diabetes 

patients usually do not need exogenous insulin to survive, it might be taken as a part 

of treatment (10). Type 2 diabetic patients usually show obesity or have higher 

percentage of fat distribution in the abdominal region. Adipose tissue is a key factor 

to developing insulin resistance. Free fatty acid from adipose tissue contributes to 

insulin resistance by inhibiting glucose uptake, glycogen synthesis, and glycolysis 

and by increasing hepatic glucose production (11). In addition, the risk of type 2 

diabetes increases with age and lack of physical activity, and this form of diabetes is 

more prevalent among people with hypertension or dyslipidemia and has a strong 

genetic component. 

Besides these two main types of diabetes, another type is gestational 

diabetes which has its onset in the third trimester of pregnancy. Etiologically, many 

patients of this type of diabetes probably share common genetic susceptibilities 

with type l or type 2 diabetes, and the deterioration of glucose tolerance is 
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precipitated by the metabolic effect of pregnancy. Glucose intolerance during 

pregnancy is often normalized after delivery (5). 

 

1.4 Complications of Diabetes Mellitus  

Complications of diabetes can be categorized into 2 types: acute 

complications and chronic complications, based on the onset of symptoms.  

The three most common acute complications of diabetes include 

hypoglycemic coma, ketoacidosis and hyperosmolar coma. Hypoglycemic coma is 

common in insulin-treated diabetic patients and also occurs occasionally in patients 

treated with the oral hypoglycemic sulfonylurea agents. Hypoglycemia may range 

from very mild lowering of glycemia with minimal or no symptoms, to severe 

hypoglycemia with very low levels of glucose and neurologic impairment. Diabetic 

ketoacidosis is one of the major acute diabetic complications. It usually occurs in the 

context of total insulin deficiency. Ketoacidosis is clinically defined by absolute 

insulin deficiency with hyperglycemia (glucose levels usually >250 mg/dl), 

increased ketone production, hyperketonemia, and acidosis (arterial pH<7.3). 

Precipitating factors for ketoacidosis in those with established diabetes include 

infection, other acute illnesses, lack of diabetes education and training, 

noncompliance, poor self-care, inadequate glucose monitoring, psychological 

problems. In individual who suffered from diabetic ketoacidosis, glucose levels are 

increased. Some of the excess circulating glucose are filtered into the urine and 

generate osmotic diuresis, which results in symptoms including, nausea, vomiting, 
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dehydration, pronounced thirst, excessive urine production and abdominal pain, 

confusion and occasionally coma. In severe case, breathing becomes labored and of 

a deep, gasping character which leads to hyperventilation. This is a state referred to 

as Kussmaul respiration pattern. Non-ketonic hyperosmolar coma is usually 

presented in type 2 diabetes with hyperglycemia (>600 mg/dl), dehydration, and 

stupor, progressing to coma if uncorrected, without the presence of ketosis or 

acidosis. These patients have sufficient circulating insulin to prevent lipolysis and 

ketosis. They respond well to hydration and small doses of insulin to correct 

hyperglycemia. Morbidity of Non-ketonic hyperosmolar coma consists of coma and 

impaired neurologic function with a predisposition to vascular occlusive disease 

from dehydration or poor perfusion. (1, 12). 

The chronic complications of diabetes are related to long-term elevation of 

blood glucose concentrations or hyperglycemia. Hyperglycemia results in the 

formation of advanced glycation end products (AGEs), which have been linked to 

diabetic complications. Long-term complications may occur in both type 1 and type 

2 diabetes. The classic complications of DM include: microvascular complications 

including retinopathy, nephropathy and neuropathy; macrovascular complications 

include coronary artery disease, cerebrovascular disease and peripheral vascular 

disease, inhibited wound healing, and periodontitis (13, 14). The pathogenesis of 

type-1 and type-2 diabetes is different, but both can lead to microvascular 

complications, if left untreated. According to the Diabetes Control and Complications 

Trial and the United Kingdom Prospective Diabetes Study, if hyperglycemia is well 
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controlled, the occurrence of retinopathy, neuropathy, and nephropathy is reduced, 

regardless of type. This suggests that diabetic hyperglycemia is responsible for 

diabetic microvascular complications(15). Diabetic retinopathy occurs in 75% of 

people with diabetes who have suffered for more than 15 years(16). One of the 

changes in the retina caused by hyperglycemia is the death of pericytes, 

predisposing to endothelial cell proliferation and the development of microvascular 

aneurysm(17). Almost 50% of people with diabetes have a certain degree of diabetic 

neuropathy. The most common form of diabetic neuropathy is polyneuropathy 

which produces a loss of peripheral sensation. Polyneuropathy can be combined 

with microvascular and macrovascular impairment leading to non-healing ulcers. 

Clinically, polyneuropathy manifests in paresthesia, dysthesia, pain, impaired 

reflexes and decreased vibratory sensation (18). Diabetic nephropathy is 

characterized by glomerular hyperfiltration leading to glomerular damage. People 

with diabetic nephropathy, as it progresses, show pronounced proteinuria, 

decreased glomerular filtration rate and end-stage renal failure. Classically, people 

with diabetic nephropathy show the expansion of extracellular matrix in the 

mesangial area, with the increase of type I and type IV collagen and decrease of 

proteoglycans. This is associated with decreased glomerular filtration and 

glomerular surface area for filtration (14). Besides those complications, diabetic 

patients are 2 to 4-fold more prone to developing cardiovascular disease than non-

diabetic patients. It is even more severe in poorly controlled diabetic patients. 

Several other factors, including hypertension, life style, and high cholesterol, 
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contribute to the development of this complication. Diabetic patients show a 3 to 4 

fold higher tendency towards developing peripheral arterial disease when 

compared to non-diabetic patients. The abnormal metabolism of diabetic patients 

results in changes in the arterial state of function and structure which are prone to 

developing peripheral arterial disease (19). 

 

1.5 Mechanisms of Diabetic Complications 

In both types of DM, the risk of micro- and macro-vascular complications are 

markedly increased. Microvascular complications, which originate from a 

dysfunction in the capillary vessels in tissues, include the retinopathy, nephropathy, 

and neuropathy. These complications eventually affect nearly all patients with 

diabetes. Macrovascular complications are due to atherosclerosis and remain the 

leading cause of death in diabetic patients. Four major pathogenic mechanisms have 

been proposed to be responsible for the development of long-term complications of 

DM. These include 1) increased polyol pathway flux, 2) increased advanced 

glycation end products (AGEs), 3) activation of protein kinase C (PKC), and 4) 

increased hexosamine pathway flux. All the pathways generally act intracellularly to 

modify cellular function, except for AGE. AGE binds to specific receptors called 

RAGE, which alter regular cell functions. In diabetic rats, it has been shown that 

accumulation of AGE and enhanced expression of RAGE lead to tissue destruction 

(20). RAGE is a multi-ligand member of the immunoglobulin family expressed on a 

wide range of cells including endothelial cells, fibroblasts, monocytes, neutrophils 
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and podocytes (21, 22). AGE/RAGE interaction initiates a cascade of signaling 

transduction events involving the production of reactive oxygen species (ROS) 

through at least in part the activation of NADPH oxidase (23). This, in turn activates 

the transcription factor NF-kappa B (24). Blockage of RAGE was shown to prevent 

the development of diabetic nephropathy and hyperglycemia-induced 

macrovascular complications supporting the role for AGE-RAGE axis in diabetes (25, 

26). Recent evidence also showed that hyperglycemia-induced overproduction of 

reactive oxygen species (ROS) by the mitochondria's electron-transport chain is a 

critical mechanism. Hyperglycemia-induced overproduction of mitochondrial 

superoxide is responsible for an important reversible decrease in glyceraldehyde 

phosphate dehydrogenase (GAPDH) activity. Superoxide induces this effect either 

direct or indirect, via poly (ADP-ribose) polymerase (PARP) activation by oxidative 

lesions of mitochondria's DNA. Despite the modulation, superoxide GADPH 

inhibition induces the above mentioned mechanisms (27-30).  
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2. Periodontal Disease  

 

2.1 The Periodontium 

The gingival tissue overlies the alveolar bone and forms a close collar around 

the teeth. The mucosal surface is keratinized and exhibits prominent rete ridges, 

and the epithelium includes scattered Langerhans cells, which act as antigen 

presenting cells. The connective tissue contains nerves, blood vessels, lymphatic 

vessels and fibroblasts. Healthy gingiva is clinically coral-pink in color and does not 

bleed on periodontal probing. Normally, a few lymphocytes are present and in 

healthy gingival tissue no large accumulations of plasma cells are observed. The 

gingival surface around the teeth forms a sulcus, which is less than three millimeters 

deep in healthy people. The sulcular epithelium is thin and non-keratinized, with no 

rete ridges. Junctional epithelium attaches to the cementum of the root at the base of 

the sulcus by means of hemidesmosomes. The connective tissue contains sets of 

specifically-oriented collagen fiber bundles called gingival fibers that attach to the 

cementum by means of Sharpey’s fibers. Beneath this, the cementum is attached to 

the cortical bone of the socket by means of sets of specific collagen fibers called 

periodontal fibers. These fibers transverse a periodontal ligament space that also 

contains blood vessels, lymphatic vessels and nerve fibers for pain reception and 

proprioception (31). 
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2.2 Periodontal Disease 

Periodontal disease is a significant cause of tooth loss among adults. It is 

defined as a polymicrobial infection that stimulates an inflammatory response of the 

periodontal tissues resulting in a loss of supporting structures of the affected teeth 

(32, 33). This process is characterized by a dysregulated local inflammatory reaction 

and progressive destruction of periodontal supporting tissues as a result of breaking 

the gingival seal that protects against local invasion by periodontal pathogenic 

bacteria (32, 34, 35). Gingivitis is an initial stage to periodontitis, which is the 

presence of gingival inflammation without the loss of connective tissue attachment 

to the tooth, this process can be reverse and heal completely (36). Periodontal 

disease results from a failure of the immune system against infectious agents and an 

impaired restoration of homeostasis (37, 38).  

 

2.3 Epidemiologic Considerations in Periodontitis 

According to the National Health and Nutrition Examination Surveys 

(NHANES III), loss of periodontal attachment is measured clinically by periodontal 

probing depth (PPD) defined as the distance from the gingival margin to the base of 

the crevice or pocket, and clinical attachment loss (CAL) defined as the distance 

from the cemento-enamel junction (CEJ) to the base of the crevice or pocket. 

Periodontitis is defined as a person who had at least 3 periodontal sites with 4 

millimeters or more of attachment loss and 2 sites with 3 millimeters or more of 

pocket depth. In an analysis of the NHANES data collected between 1999 and 2004, 
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periodontal diseases were found to be more prevalent among African Americans 

than Caucasians or Hispanics in the United States. The prevalence of periodontitis 

was also found to increase with age, regardless of ethnicity. About 1.3% of African 

Americans and 0.7% of Caucasians aged 18 to 34 years met the definition of 

periodontitis. Among 35 to 59 year olds, the prevalence of periodontitis increased to 

10.7% among African Americans and 3.6% among Caucasians. The prevalence of 

periodontitis further increased to 15.3% of African Americans aged 60 to 85 years, 

and 5.6% among Caucasians. When compared by sex, the prevalence of periodontal 

diseases is higher in men compared to women. It has been speculated that the 

differences in the prevalence of periodontal diseases between men and women may 

be due to higher levels of inflammation in response to infection or injury in men 

compared to women (39-41). 

 

2.4 Classification of Periodontal Disease 

Classification of periodontal disease has changed, as we have learned more 

about the etiology of periodontal diseases. The most recent and widely accepted 

definition of periodontal diseases was developed at the 1999 International 

Workshop for a Classification of Periodontal Diseases and Conditions. Gingival 

diseases are classified into two main types: dental plaque-induced gingival diseases 

and non-plaque induced gingival lesions. Undisturbed dental plaque not only leads 

to the reversible condition known as gingivitis, but can ultimately lead to 

irreversible damage to the periodontal tissues known as periodontitis. Periodontitis 
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can be further classified into seven different categories, based on the etiology of the 

disease. Aggressive periodontitis (formerly Early Onset Periodontitis, EOP) is 

characterized by rapid loss of periodontal support. Aggressive periodontitis can also 

manifest as a part of systemic diseases such as acquired neutropenia, leukemias, and 

other genetic disorders including Papillon-Lefèvre syndrome and Chédiak-Higashi 

syndrome. Chronic periodontitis (formerly Adult Periodontitis) can develop as a 

result of inflammation of the gingival tissues due to dental plaque. Additionally, 

there are genetic and nongenetic factors that can influence the pathogenesis of 

chronic periodontitis. Chronic periodontitis can further be classified by the extent of 

the disease, depending on how many sites in the mouth are affected. Localized 

periodontitis refers to periodontitis affecting 30% or fewer of sites in the mouth, 

while generalized periodontitis is used to describe periodontitis affecting more than 

30% of the sites in the mouth. Other causes of periodontitis that are independent of 

plaque accumulation include necrotizing periodontal diseases which may be linked 

to stress, poor diet, cigarette smoking, or HIV infection, as well as periodontitis 

resulting from developmental or acquired deformities of the teeth and gums (42).  

 

2.5 Pathogenesis of Periodontal Disease 

The pathogenesis of periodontal diseases is the result of a complex 

interaction between plaque microorganisms and the host response to the presence 

of those microorganisms on tooth and gingival tissues. The gingival sulcus contains 

an inflammatory exudate that helps protect the junctional epithelium from plaque 
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bacteria byproducts and other irritants. Microbial plaque is considered to be the 

initiator of the disease process because it serves as a challenge to the host and host 

tissues (periodontal tissues). How the host responds to the plaque challenge 

determines the severity and extent of the tissue damage associated with that 

response. Below is a list of periodontal conditions and progression of the disease 

(31, 32, 34, 43-45). 

1. Healthy periodontium: There is insufficient plaque challenge to elicit an 

inflammatory response that is clinically visible as a change in color, contour, or 

consistency of the gingival tissues. When clinically healthy periodontal tissues are 

viewed by histology there is usually some degree of gingival inflammation present. 

Perfect periodontal health is nearly impossible to achieve due to our inability to 

completely remove plaque from tooth and gingival surfaces. The lack of plaque 

challenge can be due to: 

a. Minimal amounts of plaque present because of excellent oral hygiene. 

b. A plaque that is made up primarily of gram-positive bacteria that do not 

promote a discernible host response. 

c. A combination of both characteristics. 

2. Gingivitis: Caused by the changes in the composition of dental plaque and 

usually happens in 21-28 days. The pathological changes observed in gingivitis are 

characterized by changes in color, contour, and consistency of the gingival tissues 

that are frequently associated with increased redness, swelling, and bleeding on 

probing. These clinical and histological changes are due to the presence of an 
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increased inflammatory response that extends into and destroys cells and matrices 

of the gingival tissues but does not result in destruction of periodontal ligament and 

bone.  By elimination of irritants, tissue health will restore gingival homeostasis 

back to healthy stage. 

3. Periodontitis: The pathological changes in periodontitis are the same as 

those that occur in gingivitis except that the inflammation and tissue destruction 

extend from the gingival tissues into the periodontal ligament and alveolar bone, 

resulting in an irreversible destruction of periodontal tissues. The extent and 

severity of periodontal destruction reflects the extent and severity of the 

inflammatory process. The extent and severity of the inflammatory response can be 

influenced by: 

a. The failure to remove plaque from tooth and gingival surfaces, resulting in 

a chronic challenge to the host. 

b. Environmental and/or genetic factors that may enhance the host response 

to the plaque challenge, resulting in an increase in the extent and severity of 

periodontal tissue damage. 

c. A combination of factors 1 and 2. 

 

2.6 Characteristics of the Host Response in Periodontal Disease 

1. Cells of the host response: Neutrophils, monocytes/macrophages, mast 

cells, and dendritic cells are considered to be cells of the innate immune response 

that protects us from birth. Lymphocytes are considered part of the specific immune 
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response, and these cells develop antigen-specific responses throughout life. T cells, 

B cells, and plasma cells are the major cells of the specific response. 

a. Neutrophils (polymorphonuclear leukocytes; PMN): These migrate from 

the blood vessels of the subepithelial vascular plexus into the periodontal pocket 

where they interact with plaque microorganisms. The primary role of neutrophil is 

to protect the body from infection. However, they are also considered to be an 

important cell in the destruction of the periodontal tissues. Neutrophil move from 

blood vessels toward sites of infection by a process of directed locomotion 

(chemotaxis) along a gradient of powerful chemotaxins such as C5a, IL-8, LTB4, and 

the bacterial protein N-fMLP. Neutrophil are capable of internalizing 

microorganisms by a process of phagocytosis and, once internalized, they can kill 

and digest the microorganisms using a powerful mixture of oxygen radicals (H202, 

02-) and granule enzymes (myeloperoxidase) that form the biological equivalent of 

commercial bleach. Abnormalities in neutrophil function (neutropenia, 

agranulocytosis, Chediak-Higashi syndrome, Papillon-Lefevre syndrome, leukocyte 

adhesion deficiency) make the host more susceptible to infection. 

b. Monocytes/macrophages: Monocytes are also part of the leukocyte family 

but live much longer in the tissues than neutrophils. They are responsible for 

ingesting antigens (such as bacteria) and presenting them to the cells of the specific 

immune response. They are also very important in regulating the immune response 

through the release of chemical signals called cytokines. 
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c. Mast cells: are important in immediate inflammation and are responsible 

for creating vascular permeability and dilation. They are important cells in 

anaphylaxis and allergic responses. 

d. Dendritic cells: are distributed throughout the tissues and are important in 

antigen processing and presentation to cells of the specific immune response. 

e. Lymphocytes: The predominant lymphocytes are B cells and T cells. B cells 

differentiate into plasma cells and are responsible for the production of antibodies. 

T cells (derived from the thymus) fall into two major groups: T-helper cells (CD4 

cells), which help in the production of antigen specific antibodies by B cells and 

plasma cells, and T-cytotoxic cells (CD8 cells), which are important in controlling 

intracellular antigens such as bacteria, fungi, and viruses. Natural killer (NK) cells 

are T cells that can recognize and kill tumor and virally infected cells. 

2. Controlling the bacterial challenge: Neutrophils are the most important 

cells involved in controlling the bacterial challenge. They migrate from blood vessels 

under the gingival epithelium (subepithelial vascular plexus), into the periodontal 

pocket, where they form a barrier to protect the body from periodontal bacteria. 

They phagocytose and kill bacteria and also release large quantities of oxygen 

radicals and enzymes (myeloperoxidase, lysozyme and collagenase) into the 

extracellular environment.  

3. Tissue destruction in periodontal disease: Periodontal cells and tissues are 

destroyed by cells and proteins of the immune response. Matrix metalloproteinases 

(MMPs) are considered the most important proteinases involved in the destruction 



 
 

20 
 

of periodontal tissues. They are produced by most cells of the periodontal tissues, 

but neutrophil produce large quantities of MMP-8 (collagenase) that is responsible 

for destroying collagen of the periodontal connective tissues and periodontal 

ligament. Oxygen radicals (superoxide and hydrogen peroxide) produced by 

inflammatory cells (neutrophil and macrophages) are also toxic to cells of the 

periodontium having a direct effect on cell functions and DNA. 

4. Cytokines are important signaling molecules released from cells: The 

cytokine IL-1 is important in bone resorption; IL-8 is important in attracting 

inflammatory cells (chemotactic); and tumor necrosis factor (TNF) is important in 

activating macrophages. 

5. Prostaglandins are produced from arachidonic acid of cells membranes in 

response to cyclooxygenases (COX-1 and COX-2). They have widespread 

proinflammatory effects but can be inhibited by non-steroidal anti-inflammatory 

drugs (aspirin and other NSAIDs) (45). 

 

2.7 Porphyromonas gingivalis 

By utilizing cluster analysis, community ordination and checkerboard DNA-

DNA hybridization, Socransky et al. have grouped the microorganisms that colonize 

the subgingival plaque into 5 color-coded complexes based on similarities between 

pairs, associations and clustering of species including, red complex (Bacteroides 

forsythus, Porphyromonas gingivalis and Treponema denticola), orange complex 

(Fusobacterium nucleatum/periodonticum subspecies, Prevotella intermedia, 
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Prevotella nigrescens and Peptostreptococcus micros), yellow complex (Streptococcus 

sanguis, S. oxalis, S. mitis, S. gordonii and S. intermedius), green complex 

(Capnocytophaga species, Campylobacter concisus, Eikenella corrodens and 

Actinobacillus actinomycetemcomitans serotype) and purple complex (Veillonella 

parvula and Actinomyces odontolyticus). Porphyromonas gingivalis (P. gingivalis) is 

most closely associated with chronic periodontitis and is a member of the red 

complex of bacteria.  It is a nonmotile, gram negative pleomorphic rod. It grows 

anaerobically and becomes darkly pigmented on blood agar plates. It also can 

invade epithelial and endothelial cells. P. gingivalis has routinely been reported as a 

major member of the pathogenic microbiota in various periodontal diseases 

characterized by loss of periodontal attachment and crestal alveolar bone (46-49). 

In vitro, growth of P. gingivalis and analysis of its various components (i.e. 

lipopolysaccharide, outer membrane proteins (proteases), fimbriae and end-

products of metabolism) reveals it to produce a substantial array of putative 

virulence factors (50, 51). P. gingivalis is frequently isolated from individuals with 

chronic periodontitis, diabetes-associated periodontitis, and periodontal breakdown 

around endosseous implants (33, 48, 52) (48, 53). 

Specific virulence factors include: 

1. Fimbriae and adherence. 

2. Presence of a capsule. 

3. Proteases that cleave immunoglobulins and complement components. 

4. Proteases that cleave other tissue-associated host proteins. 
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5. Collagenase. 

6. Alpha hemolysin. 

 

2.8 Periodontal Disease as a Diabetic Complication 

Several complications are caused by chronic hyperglycemia in diabetes, such 

as heart disease, high blood pressure, blindness, kidney disease, nervous system 

disease, foot ulcers leading to amputation, and periodontal disease. One third of 

patients with diabetes suffer from severe periodontal disease (54). Periodontal 

disease has been closely associated with diabetes. In fact it has been reported as the 

sixth major complication of diabetes along with neuropathy, nephropathy, 

retinopathy, and micro and macrovascular diseases (55, 56). Numerous studies have 

found a higher prevalence of periodontal disease among diabetic patients than 

among healthy individuals (57-66). In a large cross-sectional study, Grossi and 

others showed that diabetic patients were twice as likely as nondiabetic subjects to 

have attachment loss. Periodontal attachment loss was defined as the distance from 

the cemento-enamel junction (CEJ) to the bottom of the pocket/sulcus around the 

examined tooth and was calculated as the sum of the probing depth and gingival 

recession measurements. Gingival recession was defined as the distance from the 

cemento-enamel junction (CEJ) to the free gingival margin (67). Firatli monitored 

type 1 diabetic patients and healthy controls for 5 years. People with diabetes had 

significantly more clinical attachment loss than controls (62). In another cross-

sectional study, Bridges and others found that diabetes significantly affected all 
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periodontal parameters including bleeding scores, probing depths, and loss of 

attachment and missing teeth (68). In fact, one study has shown that diabetic 

patients are 5 times more likely to be partially edentulous than nondiabetic subjects 

(69). Glycated hemoglobin (HbA1c) is frequently used to monitor overall glycemic 

control level in people with diabetes, as it is a good marker providing blood glucose 

level over time (6). Glycemic control as measured by HbA1c affects the progression 

of periodontal disease in terms of bleeding on probing and pocket depth. Poorly 

controlled diabetic patients show increased bleeding on probing and pocket depth 

(70). Other studies have revealed that there is a positive correlation between HbA1c 

and severity of periodontal disease (68, 71).Treatment of periodontal disease with 

systemic antibiotic administration for a month reduced HbA1c level 3 months later, 

but after the cessation of antibiotics, the level of HbA1c got worse, suggesting that 

controlling bacterial infections, including periodontal disease, has a positive effect 

on metabolic control of type 2 diabetes (72). In a large epidemiologic study in the 

United States, adults with poorly controlled type II diabetes had a 2.9-fold increased 

risk of having periodontitis as compared to non-diabetic adult subjects; conversely, 

well-controlled diabetic subjects had no significant increase in the risk of 

periodontitis (73). In a longitudinal Pima Indian study, poor glycemic control of type 

2 diabetes was associated with an 11 fold increased risk of progressive bone loss 

compared to non-diabetic controls, whereas well controlled diabetic subjects had no 

significant increase in risk (74). Thus, people with type 1 and type 2 diabetes appear 

equally susceptible to periodontal disease and tooth loss. Recent investigations have 
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attempted to determine if the presence of periodontal disease influences the control 

of diabetes. Data from 4343 persons aged 45-90 years from NHANEs III, with type 2 

DM and with glycosylated hemoglobin > 9% or poorly controlled diabetes, revealed 

a significantly higher prevalence of severe periodontitis than those without diabetes 

[odds ratio=2.90], In contrast, in better-controlled diabetes, there was a less 

tendency for prevalence of severe periodontitis [odds ratio=1.56] (73). In another 

study that followed diabetic patients and non-diabetic controls for 3 years, the level 

of periodontal health in diabetic patients with good or moderate control of their 

condition was similar to that in the non-diabetic controls (75). Those with poor 

control had more attachment loss and were most likely to exhibit recurrent disease. 

Several researchers proposed that a two-way relationship between the mechanism 

of periodontal disease and diabetes is feasible and is based on a dysregulated 

inflammatory response manifested both locally and systemically in a diabetic 

individual with periodontal disease (76-81). Numerous mechanisms by which 

diabetes associated with deterioration of periodontitis have been suggested include 

impaired immune function, microvascular alterations and changes in structural and 

biochemical support of the surrounding cells (77). In a poorly controlled diabetic 

individual with a healthy periodontium, gingival levels of inflammatory cytokines 

were found to be elevated compared to the well-controlled and non-diabetic groups 

(82-84). Several recent studies have also found a positive correlation between 

periodontal disease and polymorphisms in IL-1 gene cluster in healthy and diabetic 

patients (85-87). One of the important host factors involved in periodontal diseases 
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is the family of matrix metalloproteinases (MMPs). MMPs are responsible for 

collagen and extracellular matrix degradation of the periodontal tissues. A recent 

study has reported a significant increase in MMP-8 and 9 in diabetic patients 

compared to the healthy control (84). In Streptozotocin (STZ)-induced diabetes in 

mice the level of gingival tissue albumin-AGE was increased, which led to the 

suggestion  that AGE might play  a role in pathogenesis of periodontal disease in 

individuals with diabetes (88).  In support of this observation, a cross-sectional 

study including 97 type 2 diabetes patients with and without periodontitis has 

shown a significant association between serum AGE and severity of periodontal 

disease (89). In addition, Grossi and Genco (90) proposed a dual pathway model, 

whereby periodontal disease increases the severity of diabetes through 

upregulation of cytokine synthesis by periodontal microorganisms and thereby 

exacerbates the intensity of AGE mediated cytokine upregulation in diabetes. TNF- 

is a cytokine secreted in acute inflammation and highly expressed in type 2 diabetic 

patients with obesity, releasing free fatty acids from adipose tissues and impairing 

insulin signaling leading to insulin resistance. The level of TNF- in periodontal 

disease is increased, which in turn exacerbates insulin resistance already existing in 

obese people. Treatment of periodontal disease with antibiotics significantly 

decreases the level of circulating TNF- and of HbA1c, thereby improving metabolic 

control for type 2 diabetes. This indicates that circulating TNF- plays an important 

role in mediating the two-way relationship between diabetes and periodontal 

disease (91, 92).  
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3. Neutrophils 

 

3.1 General Concept 

Neutrophils are the first line of host defense of the innate immune system. 

When there is infection or injury, they can be easily mobilized to the invading or 

injurious site where they localize invading microorganisms and clear dead host cells 

and debris (93). These cells are the most abundant (90%) of the leukocytes found in 

the peripheral human blood although not in the murine blood where lymphocytes 

dominate. The neutrophils are small cells, about 9-19 um in diameter and possess a 

multilobulated nucleus (2-5 lobes). This feature contributes to the elasticity of the 

cell and its ability to squeeze through the tight junctions between the endothelial 

cells.   

There is considerable evidence to suggest that neutrophils and monocytes 

share a common progenitor cell in the bone marrow (94). This is called the 

granulocyte-macrophage colony forming unit, (CFU-GM) because of its ability to give 

rise to colonies of neutrophils and monocytes in semi-solid marrow cultures. The 

neutrophil begins its 2 weeks lifespan in the bone marrow, with the commitment of 

a hematopoietic stem cell to myeloblastic differentiation (95, 96). 

The structure of the neutrophil is uniquely adapted to perform the cells’ 

numerous functions (97). Perhaps the most important structural components of the 

cells are the cytoplasmic granules. These granules are distinct and adapted to 

perform specific functions. They have been broadly classified into three categories 
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based on their ultrastructural and cytochemical characteristics: primary or 

azurophil granules, secondary or specific granules, and tertiary or secretory 

granules. Granule secretions are used as markers for neutrophil activity. The 

azurophil granules are characterized by their content of myeloperoxidase, beta-

glucuronidase enzymes and alpha-defensins (98). Markers for secondary granule 

activity include lactoferrin and vitamin B12 binding protein. The granules are 

released into the extracellular environment during cell movement or in response to 

specific stimuli, and they form the secretory component of the neutrophil. Tertiary 

granules are the most readily and rapidly secreted. These granules contain alkaline 

phosphatase and cytochrome b and are believed to play an important role in cell 

adhesion. Their function is the replenishment of cell surface receptors. Secretory 

granules contain the enzyme gelatinase, and it has been reported that the release of 

this enzyme may be related to increased expression of the adhesion-promoting 

glycoprotein Mo1 that functions as the receptor for complement component C3bi 

and mediates neutrophil binding (107). 

 

3.2 General functions 

In spite of its short life span, neutrophil has numerous antimicrobial effector 

mechanisms. Neutrophils are recruited from the circulation to the infection sites by 

macrophages and mast cells by producing cytokines and chemokines that have 

encountered pathogens. Neutrophils are accumulated at the infection site and start 

phagocytic activity and neutralizing pathogens. Upon arriving at the inflammation 
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site, receptors on neutrophils recognize microorganisms and engulf them by a 

process called phagocytosis. The innate immune system recognizes microorganisms 

by identifying specific chemotactic formylated peptides expressed on prokaryotic 

cells. Neutrophils detect chemotactic stimuli gradients across their surface and 

migrate towards these stimuli in a concentration dependent movement (99). On 

initiation of an inflammatory process, the neutrophil responds to the stimulus by a 

series of well-coordinated functional responses. The neutrophil response to 

microbial invasion can be categorized as follows (93, 95, 96): 

 

1. Adherence and diapedesis 

Neutrophils are recruited and activated to resolve infections, via 

phagocytosis and the release of antimicrobial molecules to the inflammation site. 

Neutrophil can be recruited from the vasculature by mast cells and macrophages 

that reside in the tissue. Pro-inflammatory signals such as interferon- and 

interleukin-1 from these cells lead to the expression of adhesion molecules such as 

selectins and integrins on the surface of endothelial cells near the wound. TNF- 

signaling also leads to an increase in capillary permeability and slow flow of blood 

as well as the recruitment of neutrophils to endothelial cells. This process involves 

margination and attachment of the neutrophil to vascular endothelium via specific 

molecules present on the surface of the neutrophil and the endothelial cell (97). 

Then the neutrophils roll along the endothelial wall, an interaction mainly mediated 

by p-selectin on the leukocyte surface and p-selectin glycoprotein ligand-1 (PSGL-1) 
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on the endothelial surface. Neutrophil rolling leads to a more firm neutrophil 

attachment to the endothelium, mediated by integrins such as Lymphocyte function-

associated antigen 1 (LFA-1) and macrophage adhesion ligand 1 (Mac-1) on 

leukocytes and intercellular adhesion molecule-1 (ICAM-1) on the endothelial 

surface. Transmigration through endothelial cells into the infected tissue (also 

called diapedesis or extravasation) is mediated by platelet endothelial cell adhesion 

molecule (PECAM).  

 

2. Chemotaxis 

The neutrophils travel to the site of microbial injury in response to specific 

chemical agents (chemoattractants) (97). The term chemotaxis is used to describe 

the directed movement of cells against a concentration gradient in response to a 

chemoattractant. Numerous chemoattractants have been identified for neutrophils. 

These include complement fragment C5a, fMLP (a synthetic bacterial peptide), 

Platelet-activating factor (PAF), Interleukin-8 (IL-8) and the arachidonic acid 

metabolite LTB4. Each chemoattractant has a specific receptor that couples to a G- 

protein (guanyl nucleotide binding protein), which interdigitates and binds with 

hetero trimeric G-proteins. Occupancy of receptors with a ligand induces binding to 

G-proteins, exchange of bound GDP for free GTP, dissociation of heterotrimer, and 

release of activated subunits. Released alpha subunit of G protein activates 

phospholipase C, which in turn cleaves phosphatidyl inositol-bis-phosphate (PIP2) 

to produce inositol triphosphate IP3 and diacylglycerol (DAG). IP3 binds IP3 



 
 

30 
 

receptors on SER (smooth endoplasmic reticulum) such as calcisomes to release 

intracellular Ca++. Elevated intracellular Ca++ and DAG bind protein kinase C which 

phosphorylates many membrane and cytosolic proteins in an ATP dependent 

manner (e.g. a kinase) (100). Upon chemoattractant signaling, actin monomers are 

polymerized to form F-actin with corresponding changes in the cytoskeleton and 

cellular shape, thus enabling cell mobility during neutrophil chemotaxis (101-103). 

In the extracellular matrix, the area of the cell that first contacts the chemotactic 

factor is the area that polarizes in the shape of protrusion. When neutrophil starts 

moving by a chemotactic factor, a protrusion is formed in the forward direction and 

adheres to the surface. The neutrophil will move forward, using the protrusion as an 

anchor. Finally, the neutrophil moves forward in the direction of chemotactic 

substrate by the action of actomyosin network (104-106). These directed 

movements occurring through adhesion and de-adhesion series are controlled by 

signaling systems that are mediated by adhesion molecules such as integrins. 

Maintaining the direction of the cell and the formed protrusion towards the 

chemoattractant chemical is regulated by the feedback loop between the adhesions 

and surface of the cell (107). 

 

3. Phagocytosis 

The invading organism is coated with molecules (such as IgG and C3b) called 

opsonins that are plasma proteins. This process of recognition and coating is 

referred to as opsonization. Opsonization enhances adhesion and renders the 
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organism more susceptible to phagocytosis. Phagocytosis is a receptor-mediated 

process between opsonin ligands IgG, C3 (complement component and fragments) 

and the receptor (FcR, C3R), internalizing a target particle or organ. The plasma 

membrane of a cell extends toward its target and initiates a process, eventually 

creating a phagosome, a membrane bound vacuole (108). Phagocytosis is the 

engulfment of a particle, which requires cytoskeletal rearrangement and membrane 

trafficking during active actin polymerization and the formation of a membrane-

bound structure  known as  the "phagosome" or "phagocytic vesicle" (109). 

Neutrophils carry an array of receptors that enable them to recognize, bind and 

engulf pathogens. Thus, phagocytosis receptors, and receptor-ligand interactions 

must occur over the entire surface of the target particle. It also involves 

intraphagolysosomal secretion and isolation of the target organism within an 

extremely stringent environment. The next step is the fusion of lysosomes with the 

phagosome. The result is a phagolysosome. Lysosomes are derived from the Golgi 

apparatus, much like secretion vesicles, but their contents are focused on destroying 

microorganisms (110-112).  

 

4. Bacterial killing 

Neutrophils use an oxidative burst involving degranulation of secretory 

vesicles and subset of granules to kill microorganisms (108). The mechanism of 

bacterial killing and periodontal tissue destruction can be broadly classified into 

oxidative and non-oxidative killing(97). Non-oxidative killing involves secretion of 
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cytoplasmic granules into the phagosome by fusion of the phagosome with 

lysosome, forming the phagolysosomal complex. Granular contents can also be 

released extracellularly, in which the case the process is termed extracellular killing. 

The known chemicals which are secreted from the granules include lysosomal 

enzymes, peptides, and proteins including lysozyme; and permeability-inducing 

proteins such as defensins, and lactoferrin (113, 114). Oxidative killing involves the 

production of the potentially toxic reactive oxygen species (ROS) including 

superoxide anion (02-), hydrogen peroxide (H202), hydroxyl radical (OH-), and 

hypochlorous acid (HOCl). Oxidative radicals have been shown to destroy proteins, 

lipids, carbohydrates and nucleic acids (115). Superoxide-mediated tissue damage 

can include cytotoxicity for host cells, induction of neutrophil apoptosis (116), 

induction of fibroblasts apoptosis (117), and connective tissue degradation. The 

basic mechanism is outlined below. This oxidative killing mechanism uses the ROS 

in an oxidative burst to kill the engulfed pathogen (118, 119). Superoxide 

production begins when nicotinamide adenine dinucleotide phosphate (NADPH) 

oxidase reduces oxygen to yield two oxygen anions, a proton, and oxidized NADP+. 

When superoxide is released, it causes a signal transduction followed by a cellular 

response (119) and results in the formation of hydrogen peroxide when superoxide 

dismutase (SOD) metabolizes the two oxygen anions and proton. Peroxide and an 

oxygen anion are then converted to two hydroxide anions and oxygen. 

Myeloperoxidase (MPO) then metabolizes peroxide and chloride anion to generate 

HOCl and water. Both hypochlorous acid and nitric oxide are produced by MPO and 
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nitric oxide synthase in leukocytes (120). It is also important to note that 

malfunctions in this pathway are associated with disease. 

 

Superoxide production mechanism 

 

NADPH Oxidase 

STEP 1: 202 + NADPH -> 202- + (NADP+) + H+ 

SOD 

STEP 2: 202- + H+ -> 02 + H202 (Peroxide) 

STEP 3: 02- + H202 -> OH- + OH- + 02 

MPO 

STEP 4: Peroxide + Cl- -> HOCl + H2O 

 

5. Elimination of neutrophils 

If there are no specific anti-apoptotic signals generated by cytokines, 

neutrophils undergo apoptosis which mediates clearance of dying neutrophils from 

the inflammatory site, followed by subsequent ingestion by macrophages to clear 

neutrophils and promote resolution of inflammation (121). It has been proposed 

that  circulating apoptotic neutrophils are cleared from circulation by macrophages 

located in the liver (∼29%), spleen (∼31%) and the bone marrow (∼32%), 

suggesting that these three tissues contribute equally to neutrophil clearance from 

the circulation (122, 123). Tissue neutrophils, which migrate to tissues during 
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infection, are removed by local macrophages that secrete anti-inflammatory 

cytokines TGF-β and IL-10 upon phagocytosis of neutrophils (124). For normal 

homeostasis to take place and in order to keep normal counts of neutrophils in the 

circulation (2.5-7.5 ×109/l), neutrophil turnover must be tightly balanced between 

granulopoiesis and neutrophil apoptosis/clearance. Neutrophil turnover is 

estimated to be ∼1011 cells per day in the average adult human aged over 21. 

Delayed neutrophil apoptosis has been associated with several acute and chronic 

inflammatory diseases (125, 126). 

 

3.3 Abnormal neutrophil Functions in Diabetes (DM) 

Functional abnormalities of neutrophil have been observed in several 

systemic disorders and might be associated not only with altered response against 

the microbial invasion, but also play a role in neutrophil-mediated tissue injury 

(127). In DM, neutrophil dysfunction has been noted in assays of neutrophil 

chemotaxis, adherence, and phagocytosis (128) and this dysfunction could lead to 

impaired host resistance to infection. A significantly lower chemotaxis has been 

found in neutrophil of diabetic patients (type 1 and type 2) than in those of controls 

(101, 129, 130). Conflicting data have been reported about the in vitro adherence of 

diabetic neutrophil without stimulation (131-133) as well as increased adhesion 

(134). In contrast, no differences in adherence have been found between diabetic 

and control neutrophils after stimulation (128). Neutrophils of diabetic patients 

have shown a lower phagocytic capacity compared to neutrophils of controls (135). 
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Bactericidal activity of diabetic neutrophils in general is lower than that of control 

neutrophils (136). Patients also have increased superoxide production (137) and 

reduced receptor expression (138). Finally, leukocytes in patients with diabetes also 

have impaired LTB4 and signal transduction abnormalities (139). 

Although the effects of hyperglycemia on ROS production in neutrophils from 

diabetic patients or normal controls in vitro have been studied by many authors, the 

results are still equivocal. ROS production in neutrophils seems to be impaired by 

hyperglycemia when the cells are activated by fMLP (140-142) whereas activation 

by PMA (141-145) particulate stimuli (80, 146-148) does not seem to be affected by 

elevated glucose concentrations in human neutrophils. Hyperosmolarity (149) and 

protein glycosylation (140) were also suggested to impair neutrophil ROS 

production. The exact mechanisms by which hyperglycemia affects ROS production 

in human neutrophils, and the intracellular signaling pathways sensitive to glucose, 

are still unclear and further investigation is needed. 

 

3.4 Abnormal neutrophil Functions in Periodontitis 

Neutrophils are key actors in acute inflammatory reactions to pathogens. 

Arrival and accumulation of neutrophils in the tissue is part of the inflammatory 

process. Disorders that affect the neutrophil number or function strongly 

predispose individuals to infection. Neutrophil disorders can be divided into 

quantitative defects in neutrophils i.e., those that affect neutrophil numbers, and 

qualitative disorders i.e., neutrophil physiological functions. Individuals with 
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diminished neutrophil counts are usually involved with systemic diseases including 

agranulocytosis in which neutrophil count is less than 500/mm3 of blood (150-153), 

neutropenia where the neutrophil count is less than 1500/mm3 of blood, cyclic 

neutropenia (154-159), chronic benign neutropenia (160), chronic idiopathic 

neutropenia (161, 162), and familial benign chronic neutropenia (163-166), which 

are all associated with aggravation of periodontal disease. 

Those with normal neutrophil counts (4000-8000/mm3 of blood) but who 

exhibit functional neutrophil impairments are also predisposed to periodontitis. 

One example is disorders of the recruitment process of circulating neutrophils 

called leucocyte adhesion deficiency syndrome (LAD) (167) which exhibits 

abnormalities of adherence-dependent leucocyte function. Clinical features of LAD 

patients include rapidly progressive attachment and bone loss in the primary and 

permanent dentitions leading to premature tooth loss (168-171). Another inherited 

form of periodontitis is found in the dipeptidyl peptidase I deficiency or Papillon–

Lefevre syndrome; caused by a mutations in the cathepsin C gene which produced a 

lysosomal protease called Cathepsin C, which is an important activator of 

neutrophil-derived serine proteases and an essential element in the pathway of 

normal physiological defense in periodontitis (172, 173). Other diseases of 

abnormal neutrophil function involving periodontitis are A1AT-deficiency: (114–

116), Granulomatous disease (defective NADPH oxidase system) (107, 121–122), 

NA2 polymorphism in Fc RIIIb (a neutrophil-specific antibody receptor) (123–124) 

and Multiple single nucleotide fMLP-R polymorphisms (3, 125–129).  
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On the other hand, hyperreactivity of neutrophils was also suggested to 

contribute to disease pathogenesis. Some studies have found elevated neutrophil 

chemotactic responses in aggressive periodontitis patients (174).  In vitro functional 

studies indicate a hyperreactivity of the neutrophil in response to A. 

actinomycetemcomitans, which may be one of several pathways leading to more 

severe periodontal breakdown (175).  Nicu et al. (176) showed that hyperreactive 

neutrophils in patients with periodontitis that are homozygous for FcRIIa 131 H/H 

genotype have more severe bone loss than those with the H/R or R/R genotype. 

Periodontal attachment loss and tissue damage in the periodontium is due to a 

hyper-responsiveness of the neutrophil (139). There is also evidence that peripheral 

blood neutrophils of periodontitis patients are already in a hyperfunctional or 

primed state (177, 178), so their potential to cause host tissue damage by secretion 

of reactive oxygen species is enhanced. Apoptosis of these activated neutrophils is 

therefore a crucial step in the resolution of inflammation and the prevention of 

further damage caused by necrotic cell lysis and the release of cytotoxic granule 

proteins (179-181).  
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4. Apoptosis 

 

4.1 Definition of apoptosis 

Apoptosis, also termed programmed cell death, is a specific type of cell death 

that is crucial for maintaining an appropriate number of cells as well as the 

organization of tissue. The term 'apoptosis' was proposed in 1972 by Kerr and 

colleagues to differentiate naturally-occurring developmental cell death from the 

necrosis that results from acute tissue injury. They adopted the Greek word for the 

process of leaves falling from trees or petals falling from flowers (182). 

Cells usually die resultant of two primary processes: necrosis or apoptosis. 

Cell death resulting from necrosis usually follows major pathological perturbations 

such as hypoxia, hyperthermia, and viral invasion, exposure to various exogenous 

toxins, or attack by complement. Necrosis is characterized by early mitochondrial 

swelling and rupture of the cell membrane with release of cell contents including 

proteases and lysozymes into the surrounding tissue. This in turn induces an 

inflammatory response with cytokine release by the surrounding macrophages 

(183). 

Alternatively, cells undergoing apoptosis are individually destroyed while 

the integrity and architecture of surrounding tissue is preserved. It is characterized 

by well-defined morphologic changes. The early stage of apoptosis is characterized 

by compaction and margination of nuclear chromatin, condensation of cytoplasm 

and degrading DNA into small fragments of oligonucleosomes (184-186). This 
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results in disruption of the cytoskeleton, cell shrinkage, and membrane blebbing to 

form apoptotic bodies. Alterations of the plasma membrane include flipping of the 

anionic phospholipid phosphatidylserine from inside to the outside which signals 

neighboring phagocytic cells to recognize and engulf them. Apoptotic bodies are 

finally degraded within lysosomes of neighboring cells which prevents injury of 

surrounding tissues from the discharge of deleterious cytoplasmic contents (187-

189). 

 

4.2 Apoptotic Process 

Apoptosis can be triggered by specific signals. One of the mechanisms of 

inducing apoptosis is through activation of receptors with "death domains" that 

belong to the TNF receptor family. They are activated through Fas and TNF receptor 

ligands binding, which leads to the activation of caspases. Apoptotic caspases exist 

in normal cells as inactive zymogens, analogous to the zymogens involved in the 

regulation of blood clotting with a prodomain of variable length followed by a large 

subunit (p20) and a small subunit (p10). When cells undergo apoptosis, these 

caspases become activated through one or two sequential proteolytic events (190-

193). Caspases involved in the process of apoptosis have been divided into two sub-

groups based on their function: 

1. Upstream or initiator caspases are those that are responsible for initiating 

the caspase cascade by becoming aggregated upon receipt of a pro-apoptotic 

stimulus and start of proteolytic activity (caspase-2, -8, -9 and -10). They tend to 
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have long N-terminal regions (prodomains) with caspase recruitment domain 

motifs (CARDs), and death effecter domains (DEDs) that are also present in 

molecules such as FADD and apoptotic protease activating factor-1 (Apaf-1) which 

promote their aggregation (192, 194-197). 

2. Downstream, or effector, caspases (caspase-3, -6, and -7) are thought to be 

responsible for the actual destruction of the cell and have a propensity to have short 

or absent prodomains. Active effector caspases promote apoptosis in several ways: 

by activating other destructive enzymes such as DNases by promoting 

mitochondrial cytochrome c release via Bcl-2 family proteins like BID and by 

degrading key structural and regulatory proteins within the cell (190, 196, 198, 

199). 

 

4.3 Apoptosis Signaling Pathways in Neutrophils 

In general, apoptotic pathways can be sub-divided into two categories: 

extrinsic apoptotic signals initiated by ligand engagement of cell surface receptors, 

and intrinsic pathways activated by signals emanating from cellular damage sensors 

or developmental cues. The pathways activated by extrinsic and intrinsic signals can 

overlap to some extent. Nonetheless, recent studies have shown non-caspase 

pathways also exist (200).  

1. Intrinsic pathway 

Mitochondria play an important role in the intrinsic pathway of apoptosis. 

Intrinsic signals can be induced by a variety of stimuli including DNA damaging 
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agents, kinase inhibitors, and activation of the cell surface death receptor (201, 

202). These signals usually operate by triggering the release of three key 

mitochondrial proteins from the intramembrane space of the mitochondria to the 

cytosol: cytochrome c (cyt c), Smac/DIABLO, and apoptosis inducing factor (AIF) 

(203). Most notable among these is cytochrome c (204).  Once released from the 

mitochondria, cytochrome c works together with the other two cytosolic protein 

factors, Apaf-1 and procaspase-9, to form the apoptosome and activate caspase-3. At 

the same time, Smac/DIABLO neutralizes IAPs and allows caspase activation to 

proceed. Biochemical analysis reveals a multistep reaction leading to caspase-3 

activation. First, Apaf-1 binds ATP/dATP and hydrolyzes it to ADP and dADP. 

Second, the formation of a multimeric Apaf-1/cytochrome c complex is fully 

functional in recruiting and activating procaspase-9 (205, 206). Then, caspase-9 

subsequently activates effector caspases such as 3, 6 and 7 (207) (Fig. 1). This 

process is regulated by various proteins and molecules. Mcl-1 is a key Bcl-2 family 

protein in constitutive apoptosis. As neutrophils undergo apoptosis, levels of Mcl-1 

fall rapidly suggesting a pro-survival role of this protein. Another antiapoptotic 

protein in neutrophils is the Bcl-2-A1 (Bfl1) gene product, which is largely 

cytoplasmic. Some data indicates that Bcl-2-A1 may function alongside Mcl-1 in 

neutrophils to control cell function (126). Neutrophils possess very few 

mitochondria as well as expressing low amounts of cyt c and Smac/DIABLO. 

Nevertheless, these amounts are sufficient to induce apoptosis. The tendency of 
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neutrophils towards spontaneous apoptosis is inversely correlated with Bcl-2 

expression (208). 

 

2. Extrinsic pathway 

Caspase Activation by Cell Surface Death Receptors: extracellular signals can 

be triggered by engagement of cell surface death receptor (DR) with their specific 

death ligands which play a central role in apoptosis. Cell surface death receptors are 

a family of transmembrane proteins that belong to the TNF receptor superfamily. 

Mammalian death receptors include Fas (also called CD95) and TNFR1 (209, 210). 

Additional death receptors such as DR3 (death receptor 3), DR4 and DR5 are also 

structurally related to the TNF receptor superfamily (211). These receptors share a 

conserved cysteine-rich repeat at their extracellular domains. Although the regions 

of greatest sequence homology between superfamily members are extracellular, Fas 

and TNFR1 share a region of homology at the cytoplasmic face termed the death 

domain. This domain is required for apoptotic signaling by both Fas and TNFR1. The 

activating ligands for these DR are structurally related molecules that belong to the 

TNF gene superfamily (195). For example, Fas/CD95 ligand (FasL) binds to Fas, TNF 

binds to TNFR1, Apo3 ligand (Apo3L) binds to DR3, and Apo2 ligand (Apo2L, or 

TRAIL) binds to DR4 and DR5 (211). Previous studies also showed that neutrophil 

cell surfaces express both Fas and FasL which may contribute to an increased 

spontaneous apoptosis compared to other leukocytes (126, 212). When the Fas 

receptor binds its ligand, this recognition event is translated into intracellular 
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signals that eventually lead to caspase activation. In particular, there are three 

distinct steps: ligand-induced receptor trimerization, the recruitment of 

intracellular receptor-associated proteins, and the initiation of caspase activation. 

After binding of FasL to Fas receptors and trimerization, the cytoplasmic region of 

Fas, which contains a death domain (DD), recruits a death domain-containing 

adaptor molecule designated FADD. FADD also contains a death domain at its C 

terminus and binds to Fas via interactions between the deaths domains. Several 

other novel proteins that contain homologous death domains have subsequently 

been identified which include TRADD (TNF receptor associated death domain) and 

RIP (receptor interacting protein) (213). Whereas the death domain of FADD is 

necessary for physical association with the ligand bound-death receptors complex 

(the death-inducing signaling complex, or DISC), the N terminus of FADD, which is 

termed the death effector domain (DED), is critical for recruiting the upstream 

procaspases such as procaspase-8 and/or procaspase-10. Procaspase-8 contains 

two DED domains at the N-terminal region through which it binds FADD. Caspase-8 

is then dimerized by FADD and proteolytically processed to the active forms that 

consist of large and small catalytic subunits. Once activated, caspase-8 can process 

and activate other 'effecter' members of the caspase family, leading to cellular 

destruction (193, 214-216) (Fig. 1). 

As mentioned above, the extrinsic and intrinsic (cytosolic and mitochondria) 

pathways are not entirely distinct. Indeed, caspase 8 activation by FADD promotes 

cleavage and activation of a mitochondrial cytochrome c-releasing factor (Bid) 
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leading to engagement of the Apaf-1 /caspase 9 pathway. This pathway is regulated 

by members of the Bcl-2 family, which may be either pro- or anti-apoptotic or act on 

the mitochondria to regulate apoptosis. The cleavage of Bid, a Bcl-2 family member 

by caspase-8, serves as a link between the death receptor (cytosolic pathway) and 

mitochondrial death pathway (203, 217). 
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Figure 1. Caspase dependent pathway of apoptosis 
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Figure 1. Caspases are present as inactive pro-enzymes that are activated by 

proteolytic cleavage. Caspases 8, 9 and 3 are situated at pivotal junctions in 

apoptosis pathways. Caspase 8 initiates disassembly in response to extracellular 

apoptosis-inducing ligands and is activated in a complex associated with the 

cytoplasmic death domain of many cell surface receptors for the ligands. Caspase 9 

activates disassembly in response to agents or insults that trigger the release of 

cytochrome c from mitochondria and is activated when complexed with apoptotic 

protease activating factor 1 (APAF-1) and extra-mitochondrial cytochrome c. 

Caspase 3 appears to amplify caspase 8 and caspase 9 initiation signals into full-

fledged commitment to disassembly. Caspase 8 and caspase 9 activate caspase 3 by 

proteolytic cleavage and caspase 3 then cleaves vital cellular proteins or other 

caspases. 
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3. Caspase-independent pathway 

Apoptosis-inducing factor (AIF) is a mitochondrion-localized flavoprotein. It 

is normally located in the intermembrane space which translocate from 

mitochondria to the cytosol and nucleus when apoptosis is induced. Caspase 

inhibitors cannot block the DNA fragmentation and chromatin condensation 

mediated by AIF, thus considered a caspase-independent pathway. Until now, the 

study on mechanism of caspase independent apoptosis in neutrophils is still lacking. 

AIF does not leave the mitochondria so it does not contribute to cell death in 

neutrophils (126). 

 

4.4 Substrate Specificity and Synthetic Peptide Inhibitors of Caspases 

Caspases are specific cysteine proteases that cleave their respective 

substrates at highly specific sites (218). For example, caspase-3 recognizes Asp-Glu-

Val-Asp (DEVD) and cleaves poly (ADP-ribose) polymerase at this site. Because of 

the highly specific nature of the substrate site it is possible to design peptide-based 

reporter systems to monitor caspase-activity. Peptide-based caspase inhibitors are 

ideal for studying the apoptotic pathway because they are highly specific and 

nontoxic. In addition, they can be modified in order to bind irreversibly (219). 

Peptide inhibitors have been successfully used to examine apoptotic pathways 

under a variety of conditions in vivo and in vitro. A pan-caspase inhibitor usually is 

the initial blocker of choice because it enables one to dissect the pathways of the cell 
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death under certain conditions and investigate if it is dependent upon caspase-

activity or not (220-227). 

 

4.5 Apoptosis and Diabetes 

Diabetes-induced cell death has been observed in multiple organs in vivo 

(228-230) and in cells in vitro (231-233). Insulin itself is anti-apoptotic (234). Many 

studies of diabetes-associated apoptosis have concentrated on the death of beta 

cells in the pancreas. However, a body of evidence has emerged that apoptosis plays 

an important role in several diabetic complications. For instance, the incidence of 

apoptosis increases in the heart of patients with diabetes and STZ-induced diabetic 

animals (235, 236). Apoptosis of neuronal cells occurs in diabetic neuropathy (237) 

and apoptosis of mesangial cells occurs in diabetic nephropathy (238, 239). 

Notwithstanding, the mechanism of diabetes-enhanced apoptosis is not well-

understood. One factor might be a prolonged inflammatory response (240). A 

persistent infiltration of inflammatory cells coupled with advanced glycation end 

product (RAGE) axis caused by indirect effects of hyperglycemia could lead to 

sustained production of cytokines such as IL-1, IL-6 and TNF (241). Increased TNF 

can amplify apoptosis by caspase-3 activation. Another mechanism of diabetes 

increasing apoptosis is by the production of reactive oxygen species (ROS). 

Persistent inflammation and hyperglycemia could cause the cellular accumulation of 

ROS. Oxidative stress has been shown to induce apoptosis in various types of cells 

including fibroblasts (242, 243) especially for cells in areas of active proliferation 
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(244). ROS have been shown to cause mitochondrial cytochrome c release and 

activation of caspase-3 (245). Although relatively little is known about the specific 

caspases that are responsible for the increased apoptosis associated with diabetes 

in vivo, it has been reported that caspase-3 inhibitors block high glucose enhanced 

apoptosis in vitro (229, 231, 246). Mohr and colleagues (247) reported that the 

onset of diabetes is associated with the induction of several caspases (caspases-1, -2, 

-6, -8 and -9) and as diabetes progresses, the activities of the executioner caspases 

(caspase-3, -6) become more prominent. 

 

4.6 Apoptosis in Periodontal Disease 

Periodontal disease is characterized by the loss of connective tissue and bone 

resorption leading to loss of tooth support and, if untreated, tooth loss (248). In 

subjects with gingivitis or periodontitis, cell death was found to be significant in the 

most apical part of the gingival sulcus (249). Periodontal pathogens cause tissue 

destruction by a number of mechanisms including production of cell death-inducing 

factors such as leukotoxins, lipoproteins, and lipopolysaccharides (LPS)  as well as 

by induction of inflammatory cells to secrete tissue destructive cytokines and 

lysosomal enzymes (250-258). 

It is noteworthy that the loss of fibroblasts is one of the most distinctive 

cellular changes that occur in progressing periodontal disease (259). One 

mechanism by which fibroblasts may be lost is through stimulation of apoptosis. 

Interestingly, it has been reported that fibroblastic cells in patients with 
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periodontitis have the highest rate of apoptosis of the various cells in the gingival 

tissue (260). In addition, these apoptotic fibroblasts are observed predominantly in 

areas where inflammatory cells have been recruited (260, 261). Although bacterial 

products have been shown to induce apoptosis in fibroblast or osteoblast cell lines 

(205, 262-264), most studies of apoptosis in the periodontium were focused on 

apoptosis of leukocytes rather than matrix-producing cells (260, 265-268). 

Additionally, very little is known about how higher levels of apoptosis of matrix 

producing cells could limit tissue repair or regeneration. 

 

4.7 Abnormal resolution of inflammation in Diabetes and Periodontitis 

Resolution of inflammation is a tightly regulated active process that follows 

successful removal of foreign material. It consists of switching off proinflammatory 

pathways and clearing local tissue debris, ultimately leading to complete restoration 

of homeostasis. Essential signals from front line neutrophils are needed to initiate 

the resolution processes. Once it has accomplished its mission, the neutrophil 

triggers self-destruction mechanisms in a non-phlogistic manner by initiating 

apoptosis (269-271). Aberrant and prolonged activation of neutrophils can lead to 

tissue destruction with ineffective clearance of bacteria leading to chronic infection, 

inflammation, scarring and possibly even systemic complications (272, 273).  

To date, research on neutrophil apoptosis, which plays a crucial role in 

resolution of inflammation in patients suffering with diabetes, still presents 

controversial results. A group from Japan found a decrease in caspase 3 enzyme in 
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diabetes subjects when compared to a healthy group. This was reinforced by 

another study which found an increase in amounts of anti-apoptosis cytokines 

produced from neutrophil in diabetes patients (274, 275). Studies in mice and rats 

suggest that there was no significant difference between spontaneous neutrophil 

apoptosis in diabetic and non-diabetic groups. Yet, in the presence of infection by 

Staphylococcus aureus, significantly fewer apoptotic cells were found among 

neutrophils from diabetic as opposed to nondiabetic mice (276). Similarly, a study 

in humans demonstrated that diabetic neutrophils undergo normal spontaneous 

apoptosis. But after co-incubation with Escherichia coli LPS, these neutrophils did 

not demonstrate an inhibition in apoptosis as compared to the non-diabetic 

neutrophil, and apoptosis was relatively increased (277, 278). Many studies have 

concluded that there is a decrease in neutrophil apoptosis in subjects with 

periodontal disease through a variety of approaches. The methods used include 

measurement of anti-apoptotic signaling molecules in the periodontal biopsy and 

gingival crevicular fluid, neutrophil extraction and ex vivo culture from infected 

periodontal biopsy or in vitro co-culture of HL60-derived neutrophils with  

Porphyromonas gingivalis; a well-known periodontal pathogen (255, 268, 279, 280).  

Although a considerable amount of research has been dedicated to 

investigate the alteration in neutrophil apoptosis and resolution of inflammation in 

subjects with diabetes and chronic periodontal disease, it remains unclear whether 

peripheral blood neutrophils from these patients demonstrate defects in apoptosis. 

As a consequence, we hypothesized that in type 2 diabetes circulating neutrophil 
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exhibit delay in apoptosis, which may contribute to the persistent inflammation and 

compromised wound healing associated with diabetes. The delay in type 2 diabetes 

neutrophil apoptosis phenotype can be exaggerated by the presence of periodontal 

disease, which would further prolong inflammation and host tissue destruction by 

neutrophils. 
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VIII. HYPOTHESIS 

Based on the available data in the literature, we hypothesized that peripheral 

blood neutrophil spontaneous apoptosis is delayed in T2DM and that co-expression 

with chronic periodontitis exacerbates this delayed spontaneous neutrophil 

apoptosis. 

 

IX. OBJECTIVE 

To explore the impact of type II diabetes and periodontal disease on 

peripheral blood spontaneous neutrophil apoptosis. 

 

X. SPECIFIC AIMS 

1. To investigate and compare the nature of neutrophil apoptosis between 

people with type 2 diabetes and/or chronic periodontitis and healthy 

individuals. 

2. To investigate and compare the mechanism of neutrophil apoptosis 

between people with type 2 diabetes and/or chronic periodontitis and 

healthy individuals. 

3. To mimic type 2 diabetes with chronic periodontitis neutrophil apoptosis 

in healthy donors in vitro.  
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XI. MATERIALS AND METHODS 

1. Reagents  

S100B was purchased from EMD-Biosciences (San Diego, Cam, USA). Roswell 

Park Memorial Institute (RPMI) 1640 medium and fetal bovine serum (FBS) were 

obtained from American Type Cell Culture (Manassas, VA, USA). All other materials 

were obtained from Sigma Chemical Co. (St. Louis, MO, USA). 

 

2. Subject recruitment  

In total, 73 individuals including those with type 2 diabetes (T2DM) (n= 37), 

moderate to severe chronic periodontitis (CP) (n= 15), and healthy volunteers (H) 

(n= 21) were recruited at the Clinical Research Center of Forsyth Institute. Healthy 

control subjects were normoglycemic individuals with no systemic or local 

infections (e.g., periodontitis). All subjects signed an informed consent documents 

and the study was approved by the Forsyth Institutional Review Board. Patients 

with T2DM were selected according to the criteria of the American Diabetes 

Association(2) with no diabetic complications, and patients with CP were selected 

according to the criteria of the American Academy of Periodontology(35). 

Demographic data for all patient groups including diabetes status, age, gender, race, 

smoking status, and BMI were recorded (Table 2).  
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Table 2. Demographic characteristics of the study population.  

Sample size (n) H (21) CP (15) T2DM (16) T2DM+CP (21) 

Age (mean in y ± S.D; median) 38 ± 11 (37) 47 ± 9 (48) 57 ± 7 (59) 57 ± 11 (59) 

Gender 

 

Male 11 9 7 15 

Female 10 6 9 6 

Ethnicity 

 

 

 

African-American 5 6 5 13 

Caucasian 14 8 9 5 

Asian 2 - 1 3 

Hispanic - 1 1 - 

BMI (mean ± S.D; median) 
27.0 ± 4.7 

(27.7) 

27.3± 4.5 

(27.4) 

32.5± 5.9 

(32.2) 

32.8± 6.9 

(31.5) 

Smoking 

status 

Non-Smoker 20 7 12 11 

Former smoker 1 4 4 7 

Smoker - 4 - 3 

 

Control of 

DM 

 

Good (<7.5%) 10 11 

Moderate (7.5-8.5%) 3 5 

Poor (>8.5%) 3 5 

HbA1c (mean in % ± S.D; median) 7.3 ± 1.4(6.8) 7.4 ± 1.2(7.15) 

FBG (Mean in mg/dl ± S.D; median) 204.1 ± 93.6 

(189.5) 

178.0 ± 53.4 

(160) 

Duration of T2DM (mean in y ± S.D; median) 9.1 ± 5.9(8) 7.3 ± 4.4(7) 

  



 
 

56 
 

3. Neutrophil isolation  

In order to prepare the neutrophils to be used for the experiments, 

neutrophils were isolated and purified from the whole blood by “density gradient 

centrifugation”. This is a technique that allows the separation of particles on the 

basis of their size, shape, and density. A density gradient is typically created by 

layering media of increasing density in a centrifuge tube. When a sample is layered 

on top of a density gradient and centrifuged, the various particles move through the 

gradient at different rates. The particles appear as bands or zones in the gradient 

with the denser and larger particles migrating furthest. Peripheral venous blood 

was collected into vacutainer tubes containing 10 U/ml heparin. Neutrophils were 

isolated using a discontinuous gradient system as previously reported (281). Briefly, 

3 ml MonoPoly™ 1119 and 2 ml Histopaque™ 1077 were layered in 15 ml 

polystyrene culture tubes. Peripheral blood (4.5 ml) was layered on the separating 

medium, and the tubes were centrifuged at 1,000 g for 15 min. The neutrophil-

enriched layers were collected, and contaminating erythrocytes were lysed with a 

hypotonic NH4Cl buffer (155 mM NH4Cl, 10 mM KHCO3, 120 mM EDTA, pH 7.4). The 

isolated cells were washed twice with PBS. Cell preparations were routinely 99% 

neutrophil with ≥95% viability, as determined by trypan blue exclusion. 
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4. Quantitative TUNEL assay  

In order to quantify the amount of neutrophil apoptosis in this study, the 

TUNEL assay originally developed by Gavrieli et al. was used. (282) The biochemical 

hallmark of apoptosis is degradation of DNA by endonucleases, which produce 

double-stranded oligonucleosomal DNA fragments. These DNA fragments are 180-

200 bp in size and can be separated into a ladder-like pattern on agarose gel 

electrophoresis. Terminal deoxynucleotidyl transferase (TdT) dUTP Nick-End 

Labeling (TUNEL) assay has been designed to detect apoptotic cells that undergo 

extensive DNA degradation during the late stages of apoptosis. This method relies 

on the template-independent identification of blunt ends of double-stranded DNA 

breaks by TdT. The enzyme catalyzes the addition of labeled dUTPs to a 3' hydroxyl 

termini of DNA ends. In order to analyze the DNA fragmentation of apoptotic death 

in neutrophil, a TUNEL assay was performed. Briefly, neutrophils (1×106) were fixed 

with 1% (w/v) paraformaldehyde for 1 hour on ice, washed in PBS, pH 7.4 and post 

fixed in 70% (v/v) ethanol for 30 minutes on ice. Cell apoptosis was assessed by 

terminal deoxynucleotidyl-mediated dUTP nick-end labeling (TUNEL) assay. TUNEL 

staining of cells was performed with the APO-DIRECT Flow Cytometry Kit for 

Apoptosis (CHEMICON INTERNATIONAL, Cat.No: APT110,). Cells were re-

suspended with 1.0 ml of wash buffer, and the process repeated 1 more time. Cells 

were then centrifuged and supernatants were aspirated. Cells were then incubated 

in the DNA Labeling Solution for 60 min at 37°C. After incubation, 1.0 ml of Rinse 

Buffer was added to each tube and centrifuged to wash the cells. In the end, the cell 
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pellet was re-suspended in 0.3 ml of the PI/RNase Staining Buffer and were 

incubated in the dark for 30 min at room temperature, followed by flow cytometric 

analysis to quantify the percentage of cells undergoing apoptosis. Cells were 

analyzed by flow cytometer (FACSCAN™, BECKTON-DICKINSON), using the 

CELLQUEST™ software (BECKTON-DICKINSON, Franklin Lakes, NJ, USA).  

 

5. Annexin V Expression on neutrophil  

In order to quantify the amount of neutrophil apoptosis in this study, a 

special protein called “Annexin V” one of a family of calcium-dependent 

phospholipid-binding proteins, binds to phosphatidylserine (PS) to identify 

apoptotic cells. In healthy cells, PS is predominantly located along the cytosolic side 

of the plasma membrane. Upon initiation of apoptosis, PS loses its asymmetric 

distribution in the phospholipid bilayer and translocates to the extracellular 

membrane, which is detectable with fluorescently labeled Annexin V. In early stages 

of apoptosis, the plasma membrane excludes viability dyes such as propidium iodide 

(PI) and 7-AAD; therefore cells which display only Annexin V staining (PI/7-AAD 

negative) are in the early stages of apoptosis. During late-stage apoptosis, loss of cell 

membrane integrity allows Annexin V binding to cytosolic PS, as well as cell uptake 

of PI and 7-AAD. An Annexin V-fluorescein isothiocyanate (FITC)/PI apoptosis assay 

kit (Pharmingen, BDSciences) and flow cytometry were used to measure the 

Annexin V expression of neutrophil. The experiment was performed by following 

the manufacturer's instructions, with minor changes. Briefly, after isolation or 
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incubation with cell culture media, neutrophils (1×106) were washed twice with ice-

cold PBS and then resuspended in binding buffer. Annexin V-FITC and PI were 

added into the culture tube and incubated for 15 minutes in the dark. Neutrophils 

were analyzed by flow cytometry within 1 hour of Annexin V-PI labeling. Viable 

neutrophils were defined as those found to be negative for Annexin V-FITC and PI 

staining; apoptotic neutrophil were defined as those positive for Annexin V-FITC 

staining but negative for PI staining. Cells positive for both Annexin V and PI 

staining were considered necrotic cells. Cell survival/apoptosis was expressed as a 

percentage of neutrophils relative to the total number of counted neutrophils. 

 

6. Caspase activity in neutrophil  

In order to investigate the mechanism of neutrophil apoptosis, internal 

neutrophil apoptosis executing enzymes were first inspected. Pro-apoptotic signals 

activate the enzymatic cascade resulting in the cleavage of protein substrates, 

leading to the disassembly of the cell. Caspases (cysteine proteases) are categorized 

in two groups: the initiators (caspases 8 and 9) and the effector caspases (caspases 

3). The initiator caspases 8 are involved with the extrinsic apoptosis pathway that 

originates upon activation of cell surface death receptors. Caspases 8 are monomers 

that bind to death receptor proteins through their death effector domain (DED) 

structure. Initiator caspase 9 is involved in the intrinsic apoptosis pathway that 

results from the mitochondrial release of cytochrome c. The caspase 9 monomer 

binds other proteins through their caspase activation and recruitment domain 
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(CARD). These initiator caspase-protein interactions result in dimerization of the 

initiator caspases that leads to their activation. The activated initiator caspases 8 

and 9 then cleave effector pro-caspases at specific aspartic acid residues to yield 

large (20 kDa) and small (10 kDa) subunits that then assemble into the 

heterotetrameric, catalytically active forms of the caspase effector enzymes. Caspase 

3, 8, and 9 protease activity was measured using the ApoTarget™ caspase3, 8, and 9 

protease assay kit (BioSource International Inc., Camarillo, CA), according to the 

manufacturer’s instructions. The kit allows detection of caspase proteolytic activity 

in lysates of mammalian cells. The caspase enzyme activities recognize the amino 

acid sequences DEVD (caspase-3), IETD (caspase-8), and LEHD (caspase-9). The 

individual substrates provided for measuring the activity of these caspases are 

synthetic peptides labeled at their C-termini with para-nitroaniline (pNA). Upon 

cleavage of the substrates by caspases, absorption of light by free pNA can be 

quantified using a spectrophotometer. In brief, neutrophils (1 × 106) were collected, 

washed in PBS, and suspended in 50 μl of lysis buffer. Lysates were then centrifuged 

for 1 min at 10,000 g. The supernatant was incubated with subtrate-pNA and 

reaction buffer for 2 h at 37°C. Levels of the chromophore pNA released by caspase 

activity were spectrophotometrically quantified at 405 nm using a microplate 

reader (Spectra MAX 340, Molecular Devices Co, and Sunnyvale, CA, USA). The data 

were normalized for protein concentration by using the bicinchoninic acid (BCA) 

protein assay kit (Pierce, Rockford, IL, USA).  
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7. Neutrophil surface death receptor quantification  

In the extrinsic pathway of apoptosis, signal molecules such as Fas ligand 

(FasL) and Tumor necrosis factor alpha (TNF-), which are released by other cells, 

bind to transmembrane death receptors on the neutrophil to induce apoptosis. The 

binding of the FasL to Fas receptors or TNF- to TNF receptors (a death receptor) 

on the neutrophil cell will trigger multiple receptors to aggregate together on the 

surface of the target cell. The aggregation of these receptors recruits an adaptor 

protein known as Fas-associated death domain protein (FADD) on the cytoplasmic 

side of the receptors. FADD, in turn, recruits caspase-8, an initiator protein, to form 

the death-inducing signal complex (DISC). Through the recruitment of caspase-8 to 

DISC, caspase-8 is activated and is able to directly activate caspase-3 to initiate 

degradation of the cell (200). In order to analyze the expression of neutrophil 

surface death receptor, neutrophils (1 × 106) were fixed with 1% paraformaldehyde 

at 4°C until the cells are used. Cells were incubated for 30 min at 4°C with 1% BSA in 

PBS to reduce non-specific binding of antibodies and fluorochrome reagents. The 

cells were then stained with FITC conjugated mouse anti-human CD120a (TNFR1) 

antibody (Pierce, Rockford, IL, USA) and APC conjugated mouse anti-human CD95 

(FasR) antibody (Biolegend, San Diego, CA, USA) for 30 minutes in the dark as 

recommended by the manufacturer.  All samples were analyzed using a flow 

cytometer (FACSCAN™, BECKTON-DICKINSON), using CELLQUEST™ software 

(BECKTON-DICKINSON, Franklin Lakes, NJ, USA).  



 
 

62 
 

 

8. Multiplex Cytokine and Inflammatory Biomarker Analysis  

In order to further investigate the mechanism of the extrinsic pathway of 

apoptosis inhibition in neutrophils signal molecules, including Fas ligand (FasL) and 

TNF-, which are released by other cells and bind to transmembrane death 

receptors on the neutrophil to induce apoptosis, have to be measured. Multiplex 

arrays have been recently developed from traditional Enzyme-Linked 

ImmunoSorbent Assay (ELISA) with the purpose of measuring multiple cytokines in 

the same sample at the same time. They are available in several different formats 

based on the utilization of flow cytometry, chemiluminescence, or 

electrochemiluminescence technology. Flow cytometric multiplex arrays, also 

known as bead-based multiplex assays, represent probably the most commonly 

used format at the present time. The Luminex multi-analyte profiling (xMAP) 

technology from Luminex employs proprietary bead sets which are distinguishable 

under flow cytometry. Each bead set is coated with a specific capture antibody, and 

fluorescence or streptavidin-labeled detection antibodies bind to the specific 

cytokine-capture antibody complex on the bead set. Multiple cytokines in a 

biological liquid sample can thus be recognized and measured by the differences in 

both bead sets, with chromogenic or fluorogenic emissions detected using flow 

cytometric analysis(283).  

The binding of the FasL to Fas receptors or TNF- to TNF receptors (a death 

receptor) on the neutrophil cell will trigger multiple receptors to aggregate together 
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on the surface of the target cell. The aggregate of receptors recruits an adaptor 

protein known as Fas-associated death domain protein (FADD) on the cytoplasmic 

side of the receptors. FADD, in turn, recruits caspase-8, an initiator protein, to form 

the death-inducing signal complex (DISC). Through the recruitment of caspase-8 to 

DISC, caspase-8 will be activated and it is now able to directly activate caspase-3 to 

initiate degradation of the cell (200). In order to measure amount of serum FasL and 

TNF-, 10 ml of whole blood was collected for serum separation in a non-

heparinized tube. The sample was centrifuged at 1,500 g for 15 min at 4C and the 

serum layer was aliquoted and frozen at -80 C. Multiplexed sandwich 

immunoassays, based on flowmetric Luminex™ xMAP technology, were conducted 

at The Forsyth Institute (Cambridge, MA). Assays were carried out on a Bio-Plex 

100™ platform. Immediately prior to the initiation of study measurements, the Bio-

Plex platform underwent a complete on-site maintenance cycle and operational 

qualification by Forsyth Institute technicians. Assay kits were purchased from EMD 

Millipore Corp (Darmstadt, Germany). 

 

9.  Mimicking type 2 diabetes with chronic periodontitis delayed 

neutrophil apoptosis in healthy donors  

To further investigate the mechanism of neutrophil apoptosis, we used a 

model mimicking diabetes modified from Omori et al. (284) by culturing healthy 

subject neutrophil in diabetic conditions consisting of high glucose with or without 

S100B, a ligand for Receptor for Advanced Glycation Endproducts (RAGE). 
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Neutrophil (1×106/ml) were cultured for 8 hrs in RPMI supplemented with 5.5 mM 

glucose (normoglycemic, NG) or 25 mM glucose (hyperglycemic, HG), with or 

without RAGE ligand, S100B.  

In order to induce an inflammatory response similar to T2DM+CP, P. 

gingivalis (MOI 20) was co-incubated with the neutrophils (1×106/ml) for 8 hrs in 

RPMI supplemented with 25 mM glucose (hyperglycemic, HG) and RAGE ligand, 

S100B 50 ug/ml.  

P. gingivalis A7436 or W50 were grown on anaerobic blood agar plates 

(Becton Dickinson Microbiology System, Cockeysville, MD) in an anaerobic chamber 

with 85% N2, 5% H2, and 10% CO2. After incubation at 37°C for 2-3 days, the 

bacterial cells were inoculated into Blood Heart Infusion broth supplemented with 

0.5 M Hemin, 0.1 M Menadione, and 0.75 M L-Cysteine, and grown for 1-2 days. 

Sterility of the bacterial cells was confirmed by gram staining. The bacterial cells 

were harvested by centrifugation at 8,500 × g (15 minutes at 4°C) and the pellet was 

washed 3 times with sterile PBS (pH 7.2). After washing, cells were opsonized with 

normal human serum for 30 minutes before being suspended in fresh PBS. Cultures 

were adjusted to an A660 of 1.0 as read on a spectrophotometer (Beckman DU 

7500, Canada). An OD reading of 1.0 nm corresponded to approximately 109 

CFU/ml(285). Heat-killed P. gingivalis was generated by heating the bacteria 

suspension in a water bath (Precision Waterbath 184) at 60°C for 20 minutes. 

Viability of the bacteria was checked before and after heat-killing the bacteria. The 

purity of the cultures and the number of P. gingivalis were ascertained by plating. 
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10. Statistical analysis  

All data presented are representative of the average of at least three 

experiments with their standard error of mean except for demographic data, which 

used standard deviation. For isolated values, Student’s t test was applied for 

significance, and ANOVA was used with LSD post-hoc analysis for multiple condition 

experiments. 
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XII. RESULTS 

Specific aim 1: To investigate and compare the nature of neutrophil 

apoptosis between people with type 2 diabetes and/or chronic periodontitis and 

healthy individuals. 

 

1. Spontaneous neutrophil apoptosis is delayed in type 2 diabetes subjects. 

To compare spontaneous neutrophil apoptosis between type 2 diabetes 

(T2DM) and healthy subjects (H), individuals with of type 2 diabetes (T2DM) (n= 

16) and healthy volunteers (H) (n= 21) were recruited at the Clinical Research 

Center at the Forsyth Institute. Neutrophils were isolated from whole blood using a 

discontinuous gradient system as previously reported (281).  Neutrophils (1×10
6
 

cells/mL) were resuspended and cultured in RPMI-1640 supplemented with bovine 

fetal serum at 37°C in a 5% CO2 atmosphere and were collected at time points 0, 2, 4, 

6, 12, and 24 hrs. The collected neutrophils were analyzed by TUNEL assay. 

Spontaneous neutrophil apoptosis profiles were established for both groups. In 

healthy subjects, spontaneous neutrophil apoptosis reached 50% in 7.4 hrs and 

85.3% (± 3.1) in 12 hrs.  In T2DM, spontaneous neutrophil apoptosis reached 50% 

in 8.5 hrs; and 67.3% (± 3.9) in 12 hrs. In comparison to neutrophils from healthy 

volunteers, circulating neutrophils from the T2DM group showed a significant delay 

of apoptosis in in vitro culture after 12 hrs (p= 0.031) (Fig. 2). This result was 

confirmed by Annexin V assay (data not shown). 
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Correlations between neutrophil apoptosis and T2DM characteristics, such 

as glycemic control, duration of diabetes, and obesity control were evaluated. 

Spontaneous neutrophil apoptosis in T2DM groups based on glycemic control, 

where HbA1c levels ≤7.5% represent good control and >7.5% represent poor 

control, (286) showed a significant delay in neutrophil apoptosis in the poor 

glycemic control group compared to the good control group after 12 hrs (p=0.041) 

(Fig. 3A). Grouping by duration of diabetes, (≤5 yrs, 6-9 yrs, and ≥10 yrs) suggested 

a delay caused by increased disease duration which was not significant (Fig. 3B). 

When subjects were grouped by BMI as a measure of obesity, where a BMI ≤30 is 

ideal-overweight and >30 is obese, (287) a significant delay in spontaneous 

neutrophil apoptosis was seen in the obese group compared to the ideal - 

overweight group at 12 hrs (p=0.006) (Fig. 3C). The effect of smoking on neutrophil 

apoptosis was also analyzed, but no significant result was found (data not shown).  
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Figure 2. Comparison of spontaneous neutrophil apoptosis between H and T2DM 

subjects. 
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Figure 2. Spontaneous neutrophil apoptosis of healthy and T2DM subjects. 

Neutrophil (1×10
6
 cells/mL) were resuspended and cultured in RPMI-1640 

supplemented with bovine fetal serum at 37°C in a 5% CO2 atmosphere and were 

collected at time points 0, 2, 4, 6, 12, and 24 hrs. The collected neutrophils were 

analyzed by TUNEL assay. A significant delay was seen in the T2DM group 

compared to the heathy group at the 12 hour time point. *indicates p < 0.05 vs 

healthy neutrophil at 12 hrs time point by Student’s t test. 
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Figure 3. Correlations between neutrophil apoptosis and T2DM characteristics. 
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Figure 3. Neutrophils from T2DM groups (1×10
6
 cells/mL) were resuspended and 

cultured in RPMI-1640 supplemented with bovine fetal serum at 37°C in a 5% CO2 

atmosphere and were collected at time points 0, 2, 4, 6, 12, and 24 hrs. The collected 

neutrophil were analyzed by TUNEL assay. (3A) Spontaneous neutrophil apoptosis 

based on glycemic control. A significant delay was seen in the group with HbA1c 

>7.5 compared to ≤7.5 group at the 12 hour time point. (3B) The effect of duration 

of diabetes on the spontaneous neutrophil apoptosis. Trends suggested a delay 

caused by increased disease duration, but the change was not statistically 

significant. (3C) Effect of body mass index (BMI) on spontaneous neutrophil 

apoptosis. A significant delay was seen in the group with BMI >30 compared to ≤30 

group at the 12 hour time point. 

 *indicates p < 0.05 at 12 hrs time point by Student’s t test.  
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2. Spontaneous neutrophil apoptosis is delayed in type 2 diabetes subjects 

with chronic periodontitis  

Several studies have reported delayed neutrophil apoptosis in chronic 

periodontal disease (CP) (255, 280). Based on the delay in spontaneous apoptosis of 

neutrophil in T2DM, we investigated further to see if local infection and 

inflammation would play a role in changing the neutrophil apoptosis profile in the 

presence of both T2DM and CP.  

In total, 73 individuals consisting of T2DM (n= 16), CP (n= 15), (T2DM+CP) 

(n= 21) and H (n= 21) were recruited. Neutrophils were isolated from whole blood 

using a discontinuous gradient system as previously reported (281). Neutrophils 

(1×106 cells/mL) were resuspended and cultured in RPMI-1640 supplemented with 

bovine fetal serum at 37°C in a 5% CO2 atmosphere and were collected at time 

points 0, 2, 4, 6, 12, and 24 hrs. The collected neutrophils were analyzed with 

TUNEL assay. We established the spontaneous neutrophil apoptosis profile for each 

group, measured by TUNEL assay (Fig. 4). Spontaneous neutrophil apoptosis from 

CP and T2DM+CP reached 50% in 9.4 hrs, compared to 7.4 hrs in a healthy group. In 

12 hrs, neutrophils from the CP and T2DM+CP groups showed a significant delay in 

spontaneous apoptosis by apoptosis rates of 62.9% ± 3.5 and 62.5% ± 5.4, 

respectively, compared to an apoptosis rate of 85.3% ± 3.1 (p= 0.003) in the healthy 

neutrophil.  
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Figure 4. Comparison of spontaneous neutrophil apoptosis between H, T2DM, and 

T2DM+CP subjects. 
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Figure 4. Neutrophil (1×106 cells/mL) were resuspended and cultured in RPMI-

1640 supplemented with bovine fetal serum at 37°C in a 5% CO2 atmosphere and 

were collected at time points 0, 2, 4, 6, 12, and 24 hrs. The collected neutrophils 

were analyzed with TUNEL assay. A significant delay in apoptosis is seen in the 

T2DM+CP group as compared to the healthy group at 12 hours. Healthy neutrophils 

demonstrated 85.3% ± 3.1 apoptosis after 12 hours. Meanwhile, T2DM+CP 

neutrophils reached only 62.5% ± 5.4 apoptosis after 12 hours.  

* indicates p < 0.05 vs healthy neutrophil by one-way ANOVA. 
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Specific aim 2: To investigate and compare the mechanism of neutrophil 

apoptosis between people with type 2 diabetes and/or chronic periodontitis and 

healthy individuals. 

 

3. Decreased caspase activity in type 2 diabetes with chronic periodontitis 

subjects 

 Our results have shown that spontaneous neutrophil apoptosis was delayed 

in patients with type 2 diabetes and chronic periodontitis. To further explore the 

mechanism of apoptosis, we measured the caspase activity, an essential 

downstream enzyme in regulating the apoptosis cascade, by using a caspase 

colorimetric assay. Neutrophils (1×10
6
 cells/mL) were resuspended and cultured in 

RPMI-1640 supplemented with bovine fetal serum at 37°C in a 5% CO2 atmosphere 

and were analyzed with caspase protease assay kit. Caspase 3 activity was measured 

after 2, 4, 6, 12 and 24 hrs of incubation (n=12).  The healthy group showed a 

significantly higher activity at 12 hrs as compared to the T2DM (p= 0.018) and 

T2DM+CP groups (p= 0.031) (Fig.5).  

As there was a significant decrease in diseased subjects’ caspase-3 activity 

compared to the healthy group, we investigated whether the inhibition of caspase-3 

activation was due to upstream decreases in either caspase-9 activity, which is the 

initiator caspase enzyme representing the intrinsic (mitochondrial) pathway; 

caspase-8 activity, representing the extrinsic (death receptor) pathway; or both. 
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Neutrophils (1×10
6
 cells/mL) were resuspended and cultured in RPMI-1640 

supplemented with bovine fetal serum at 37°C in a 5% CO2 atmosphere for 6 hrs and 

were analyzed with caspase protease assay kit (n=5). In figure 6A, neutrophil 

caspase-8 enzyme activity from T2DM+CP was significantly decreased as compared 

to healthy subjects (p= 0.046). A decrease in caspase-8 activity was also observed in 

the T2DM and CP groups; however, the result was not significant (p=0.059, p=0.055 

respectively). Neutrophils from neither the T2DM nor T2DM+CP groups showed a 

significant change in caspase-9 activity compared to healthy group (Fig. 6B).   
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Figure 5. Comparison of caspase 3 activities between H, T2DM, and T2DM+CP 

subjects. 
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Figure 5. Neutrophil (1×106 cells/mL) were resuspended and cultured in RPMI-

1640 supplemented with bovine fetal serum at 37°C in a 5% CO2 atmosphere and 

were analyzed with caspase protease assay kit. Comparison of caspase-3 activity 

between groups after 12 hrs incubation (n=12) showed significantly higher levels of 

caspase-3 activity in healthy neutrophils than in both the T2DM and T2DM+CP 

groups (12 hrs). No significant differences between diseased groups.  

* indicates p < 0.05 vs healthy neutrophil by One-way ANOVA. 
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Figure 6. Comparison of caspase 8, and 9 activities between H, T2DM, and T2DM+CP 

subjects. 
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Figure 6. Neutrophils (1×10
6
 cells/mL) were resuspended and cultured in RPMI-

1640 supplemented with bovine fetal serum at 37°C in a 5% CO2 atmosphere and 

were analyzed with caspase protease assay kit. (6A) Caspase-8 activity between 

healthy and diseased groups after 6 hours (n=5) shows a significant decrease in 

caspase-8 activity in the T2DM+CP group as compared to the H group. A decrease 

was also observed in the T2DM group; however, the difference was not significant. 

(6B) Comparison of caspase-9 activity between groups after 6 hrs incubation (n=5) 

shows no significant differences between the healthy and diseased groups.  

* indicates p < 0.05 vs healthy neutrophil by one-way ANOVA. 
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4. Diminished cell surface death receptor expression and their ligands are 

found in neutrophil from subjects with type 2 diabetes and chronic 

periodontitis  

In the extrinsic pathway of apoptosis, signaling molecules such as FasL and 

TNF-, which are released by other cells, bind to transmembrane death receptors on 

the neutrophil to induce apoptosis. The binding of the FasL to Fas receptors or TNF-

 to TNF receptors (a death receptor) on the neutrophil cell surface triggers caspase 

8 activation. Our results have shown a decrease in caspase 8 activation in neutrophil 

from T2DM and CP patients. 

In order to further characterize the decrease in caspase 8 in subjects with 

type 2 diabetes and chronic periodontitis, the expression of cell surface death 

receptors including FAS receptor (CD95) and TNF receptor 1 (CD120a) which 

activated the caspase 8 enzyme through cooperation with their adaptor proteins  

was measured. Paraformaldehyde-fixed neutrophils (1 × 106) were incubated with 

FITC conjugated mouse anti-human CD120a antibody and APC conjugated mouse 

anti-human CD95 antibody (n=6). All samples were analyzed using a flow 

cytometer. The results have shown a drastic reduction of cell surface Fas receptor in 

neutrophils from T2DM (p=0.001) and T2DM+CP (p=0.016) subjects compared to 

healthy control (Fig. 7A). Cell surface TNF receptor results from T2DM also showed 

a significant decrease compared to healthy subjects (p=0.005). No significant 

decreases were observed in CP group or T2DM+CP group compared to healthy 

control (Fig. 7B). 
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In order to further characterize the decrease in caspase-8 in subjects with 

type 2 diabetes and chronic periodontitis, we measured the levels of FasL and TNF-α 

in serum. Ten ml of whole blood was collected for serum separation in a non-

heparinized tube. Multiplexed sandwich immunoassays, based on flowmetric 

Luminex™ xMAP technology, were used to measure the amount of both cytokines in 

soluble in the serum (n=10). Results showed a decrease in FasL in all diseased 

subjects compared to healthy subjects, especially in T2DM+CP which presented a 

significantly lower level than in the healthy group (p= 0.035) (Fig. 8A). However, no 

significant differences in TNF-α levels were observed compared to healthy subjects 

(Fig. 8B).  
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Figure 7. Cell surface death receptor expression in T2DM and CP. 
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Figure 7. Neutrophils(1 × 106 cells) were fixed with 1% paraformaldehyde at 4°C. 

Cells were incubated with PBS with 1% BSA and then stained with FITC conjugated 

anti-human CD120a (TNFR1) antibody and APC conjugated anti-human CD95 

(FasR). All samples were analyzed using a flow cytometer. (7A) Cell surface Fas 

receptor expression in H, T2DM, and T2DM+CP was then examined, and a significant 

decrease in serum Fas receptor expression was observed in the T2DM and 

T2DM+CP groups as compared to healthy subjects (n=6). (7B) Cell surface TNF 

receptor expression was similarly evaluated in the H, T2DM, and T2DM+CP groups. 

A significant decrease in serum Fas receptor expression was observed in the T2DM 

group as compared to healthy subjects (n=6). 

* indicates p < 0.05 vs healthy control by One-way ANOVA. 
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Figure 8. Death receptor ligand expression in T2DM and CP. 
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Figure 8. Whole blood was collected for serum separation and multiplexed 

sandwich immunoassays were conducted. (8A) Serum levels of sFasL in H, T2DM, 

and T2DM+CP was then examined, and a significant decrease in serum sFasL levels 

was seen in  the T2DM+CP groups as compared to healthy serum. (n=10). (8B) 

Serum levels of sFasL in H, T2DM, and T2DM+CP was then examined, and no 

significant difference was seen between groups (n=10). 

* indicates p < 0.05 vs healthy control by One-way ANOVA. 
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Specific aim 3: To mimic type 2 diabetes + chronic periodontitis neutrophil 

apoptosis in healthy donors in vitro.  

 

5. Mimicking chronic periodontitis delayed neutrophil apoptosis in healthy 

donors  

To further investigate the mechanism of neutrophil apoptosis in chronic 

periodontal disease as a factor that modulates diabetic neutrophil response, we 

investigated the action of P. gingivalis on neutrophil apoptosis. P. gingivalis is a 

nonmotile, gram negative pleomorphic rod. It is most closely associated with 

chronic periodontitis and is a member of the red complex of bacteria. P. gingivalis is 

a major member of the pathogenic microbiota in severe periodontal diseases. 

Neutrophils (1×10
6
 cells/mL) (n=4) were resuspended and cultured in RPMI-

1640 supplemented with bovine fetal serum at 37°C in a 5% CO2 environment. The 

collected neutrophils were analyzed with Annexin V-FITC staining. Our results  

showed that neutrophils co-cultured with P. gingivalis resulted in delayed 

neutrophil apoptosis. Time course studies using a P. gingivalis A7436 multiplicity of 

infection (MOI) of 20 and neutrophil co-incubation for 6, 8, 12 and 24 hrs were 

performed. Significant differences were found at all-time points, except baseline 

(p<0.001) (Fig. 9). Figure 10 demonstrates that this effect was dose dependent. P. 

gingivalis A7436 MOI of 5, 10, and 20 resulted in significant delays in neutrophil 

apoptosis after 8 hrs of co-incubation (p=0.004, p=0.003 and p=0.001, respectively). 

Interestingly, at an MOI of 50, the effect was slightly reversed but still significantly 
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different compared to PBS control (p=0.009). We evaluated the ability of P. 

gingivalis to inhibit neutrophil apoptosis from 2 strains, A7436 and W50, both used 

at an MOI of 20. Figure 11 shows similar results after 8 hrs of co-incubation 

between the 2 strains, both of which demonstrate significant decrease in neutrophil 

apoptosis as compared to the controls (p<0.001 and p=0.001, respectively). To 

evaluate which component or factor from P. gingivalis plays a role in delaying 

apoptosis; live, heat killed (HK) P. gingivalis A7436 (MOI 20) and P. gingivalis A7436 

LPS at 200 ng/ml (which corresponds to 2 x 107 bacteria per ml) were co-incubated 

with neutrophils for 8 hrs. All groups exhibited a reduction in neutrophil apoptosis. 

Live, heat-killed and P. gingivalis LPS significantly delayed neutrophil apoptosis 

compared to PBS control (p=0.001 p=0.002 and p=0.011 respectively) (Fig. 12). E. 

coli was used as a positive control which has previously shown an increase in 

neutrophil apoptosis as reported by Watson et al (288).  

Our results showed that neutrophil apoptosis was delayed by co-culture of 

neutrophils with P. gingivalis. To confirm these results, we measured the caspase 

activity, which is an essential downstream enzyme in regulating the apoptosis 

cascade, by using a caspase colorimetric assay. The results demonstrated a 

significant decrease in caspase-3 activity compared to the control (p< 0.001) (Fig 

13A).  

As there was a significant decrease in caspase-3 activity compared to control, 

we then investigated whether the inhibition of caspase-3 activation was due to an 

upstream decrease in caspase-9 activity. Caspase-9 is the initiator caspase enzyme 



 
 

89 
 

representing the intrinsic pathway. We also examined the caspase-8 activity, which 

represents the extrinsic pathway. As shown in Figure 13B, no significant change in 

caspase-8 activity was observed; however, caspase-9 activity decreased significantly 

compared to control neutrophils (p=0.003) (Fig 13C). 
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Figure 9. P. gingivalis delays neutrophil apoptosis by time point 

 

 

 

 

 

 

0

20

40

60

80

100

0 2 4 6 8 10 12 14 16 18 20 22 24

%
ap

o
p

to
si

s

Time (Hrs)

Control P.g.

**

p<0.001

p<0.001

p<0.001

p<0.001



 
 

91 
 

 

Figure 9. Neutrophils (1×106 cells/mL) (n=4) were resuspended and cultured in 

RPMI-1640 supplemented with bovine fetal serum at 37°C in a 5% CO2 

environment. The collected neutrophils were analyzed with Annexin V-FITC 

staining. Comparison of spontaneous apoptosis of neutrophil-P. gingivalis A7436 

(MOI 20) co-incubation vs control at time points 0, 6, 8, 12 and 24 hrs showed a 

significant decrease in apoptosis of co-incubated neutrophils.  

** indicates p < 0.05 vs control by Student’s t test.  
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Figure 10. P. gingivalis delays neutrophil apoptosis by MOI 
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Figure 10. Percentage of neutrophil apoptosis seen at various concentrations of P. 

gingivalis A7436 after 8 hrs co-incubation. Neutrophils (1×106 cells/mL) (n=4) were 

resuspended and cultured in RPMI-1640 supplemented with bovine fetal serum at 

37°C in a 5% CO2 environment. The collected neutrophils were analyzed with 

Annexin V-FITC staining. The most significant decrease in apoptosis was at an MOI 

of 20.  

* indicates p < 0.05 vs control by one-way ANOVA. 
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Figure 11. P. gingivalis delays neutrophil apoptosis by strains 
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Figure 11. Comparison between P. gingivalis strains A7436 and W50, both at MOI 

20. Neutrophil (1×106 cells/mL) (n=4) were resuspended and cultured in RPMI-

1640 supplemented with bovine fetal serum at 37°C in a 5% CO2 environment. The 

collected neutrophils were analyzed with Annexin V-FITC staining. P. gingivalis 

strains A7436 and W50 both produced significant decreases in the amount of 

apoptosis after 8 hrs co-incubation.  

*indicates p < 0.05 vs control by one-way ANOVA. 
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Figure 12. P. gingivalis delays neutrophil apoptosis  
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Figure 12. Comparison between co-incubation for 8 hours with live and heat-killed 

P. gingivalis, as well as LPS of P.g. A7436 and E. coli as a positive control.  

Neutrophils (1×106 cells/mL) (n=4) were resuspended and cultured in RPMI-1640 

supplemented with bovine fetal serum at 37°C in a 5% CO2 environment. The 

collected neutrophils were analyzed with Annexin V-FITC staining. All three forms 

of P. gingivalis produced significant decreases in apoptosis. E. coli, as expected 

produced a substantial increase in apoptosis.  

* indicates p < 0.05 vs control by One-way ANOVA. 
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Figure 13.  Mechanism of delayed neutrophil apoptosis by P. gingivalis: 
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Figure 13. Neutrophils (1×106 cells/mL) (n=6) were resuspended and cultured in 

RPMI-1640 supplemented with bovine fetal serum at 37°C in a 5% CO2 atmosphere 

with or without P. gingivalis A7436 (MOI 20) and were analyzed with caspase 

protease assay kit. (2A) Caspase-3 activity after 12 hrs of co-incubation shows a 

significant decrease in activity compared to control (p < 0.001). (2B) Caspase-8 

activity after 6 hrs of co-incubation demonstrated no significant differences. (2C) 

After 6 hrs of co-incubation, caspase-9 activity demonstrated a significant reduction 

in caspase-9 activity compared to control (p < 0.05)  

* indicates p < 0.05 vs control by Student’s t test. 
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6. Mimicking type 2 diabetes with chronic periodontitis delayed neutrophil 

apoptosis in healthy donors  

To further investigate the mechanism of neutrophil apoptosis in T2DM, we 

used a model mimicking diabetes adapted from Omori et al. (284) by culturing 

healthy subject neutrophil in diabetic conditions consisting of high glucose, with or 

without S100B, a ligand for Receptor for Advanced Glycation Endproducts (RAGE). 

Neutrophils (1×106/ml) (n=3) were cultured for 8 hrs in RPMI supplemented with 

5.5 mM glucose (normoglycemic, NG) or 25 mM glucose (hyperglycemic, HG), with 

or without RAGE ligand, S100B. The results reveal that high glucose alone did not 

affect neutrophil apoptosis, but when incubated with high glucose and S100B, 

neutrophil apoptosis was delayed in a concentration dependent manner. Significant 

differences were found when the concentration of S100B increased to 50 μg/ml 

(p=0.007) (Fig. 14). 

To represent the T2DM+CP condition, P. gingivalis (MOI 20), a known 

pathogen in periodontal disease, was co-incubated with neutrophils (1×106/ml) 

(n=3) for 8 hrs in RPMI supplemented with 25 mM glucose (hyperglycemic, HG) and 

RAGE ligand, S100B (50 ug/ml) (Fig. 15). Results from Annexin V staining indicate a 

significant delay in apoptosis compared to normal glucose control (p=0.002). 

Our previous results have shown a decrease in cell surface Fas and TNF 

receptor in neutrophils from T2DM. In order to further characterize the impact of 

high glucose and S100B on the expression of cell surface death receptors, FAS 

receptor (CD95) and TNF receptor 1 (CD120a) which activated the caspase 8 
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enzyme through cooperation with their adaptor proteins were measured. 

Neutrophils from healthy donors (1×106) (n=3) were cultured for 8 hrs in RPMI 

supplemented with 5.5 mM glucose (normoglycemic, NG) or 25 mM glucose 

(hyperglycemic, HG), with or without RAGE ligand, S100B. Neutrophils were 

paraformaldehyde fixed and were incubated with FITC conjugated mouse anti-

human CD120a antibody and APC conjugated mouse anti-human CD95 antibody. All 

samples were analyzed using a flow cytometer. The results showed a significant 

reduction of cell surface Fas receptor in neutrophil incubated under HG with S100B 

compared to NG (p=0.004) and HG only  (p=0.04) controls (Fig. 16A). Cell surface 

TNF receptors in neutrophils incubated under NG, HG, and HG with S100B showed 

no significant difference (Fig. 16B). 
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Figure 14. Mimicking T2DM delays neutrophil apoptosis 
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Figure 14. Neutrophils (1 × 106/ml) from healthy subjects (n=3) were cultured for 

8 hrs in RPMI with 25 mM glucose (hyperglycemic, HG), with different 

concentrations of S100B. Neutrophil apoptosis was analyzed by Annexin V staining 

kit. A concentration of 50 µg/ml produced a significant decrease in the percentage of 

apoptosis.  

* indicates p < 0.05 vs control by One-way ANOVA. 
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Figure 15. Mimicking T2DM+CP delays neutrophil apoptosis  
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Figure 15. Neutrophils (1 × 106/ml) from healthy subjects (n=3) were cultured for 

8 hrs in RPMI with 5 mM glucose (normoglycemic, NG), 25 mM glucose 

(hyperglycemic, HG), with or without S100B (50 µg/ml), with or without P. 

gingivalis (MOI 20). Neutrophil apoptosis was analyzed by Annexin V staining kit. 

The combination of HG+S100B produced a significant decrease in spontaneous 

neutrophil apoptosis compared to the normal glucose (NG) control. Addition of P. 

gingivalis to the HG+S100B condition produced a more dramatic decrease in 

neutrophil apoptosis compared to NG control.  

* indicates p < 0.05 vs control by One-way ANOVA 
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Figure 16. Cell surface death receptor expression in neutrophil after incubated 
in HG and S100B 
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Figure 16. Neutrophils (1 × 106/ml) from healthy subjects (n=3) were cultured for 

8 hrs in RPMI with 5 mM glucose (normoglycemic, NG), 25 mM glucose 

(hyperglycemic, HG), with or without S100B (50 µg/ml), and fixed with 1% 

paraformaldehyde at 4°C. Cells were incubated with PBS with 1% BSA. The cells 

were then stained with FITC conjugated anti-human CD120a (TNFR1) antibody and 

APC conjugated anti-human CD95 (FasR). All samples were analyzed using a flow 

cytometer.  

(15A) Cell surface Fas receptor expression: The combination of HG+S100B 

produced a significant decrease in cell surface Fas receptor expression compared to 

NG and HG groups.  

(15B) Cell surface TNF receptor expression: No significant difference was seen 

between groups. * indicates p < 0.05 vs healthy control by One-way ANOVA. 
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XIII. DISCUSSION 

Our study objective was to explore the impact of T2DM and CP on peripheral 

blood spontaneous neutrophil apoptosis. Although considerable research has 

focused on neutrophil apoptosis and resolution of inflammation in subjects with 

T2DM and CP, it remained unclear whether peripheral blood neutrophil from these 

patients demonstrated any defects in apoptosis. Our results demonstrated that 

peripheral blood spontaneous neutrophil apoptosis was delayed in subjects with 

T2DM and T2DM+CP by using quantitative TUNEL assay. This was confirmed by 

diminished activity of essential extrinsic apoptosis pathway enzymes including 

caspase 3 and 8 in both subjects. The lack of caspase activity was possibly regulated 

by reduction of cell surface Fas receptor, TNF receptor, and serum Fas ligand which 

were found in T2DM and T2DM+CP subjects. To further investigate the mechanism, 

we mimicked T2DM+CP delayed neutrophil apoptosis in healthy donors. Our results 

showed that high glucose alone did not affect neutrophil apoptosis. When 

hyperglycemia was combined with S100b and P.gingivalis, neutrophil apoptosis was 

delayed.  

Diabetes mellitus is a group of diseases characterized by chronic 

hyperglycemia and other metabolic abnormalities. The effects of prolonged 

exposure to hyperglycemia are now recognized as the primary causal factor in the 

majority of diabetic complications including coronary artery disease, 

cerebrovascular disease and peripheral vascular disease, inhibited wound healing, 

and periodontitis (2, 13). In type 2 diabetes, neutrophil dysfunction was noted in 
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assays of neutrophil chemotaxis, adherence, and phagocytosis, (128) and this 

dysfunction could lead to impaired host resistance to infection. Functional 

abnormalities within the neutrophil apoptotic mechanisms would allow it to 

continue circulation at the site of infection, continuing their pro-inflammatory 

potential and host tissue destruction, ultimately delaying wound healing (289). To 

date, research on neutrophil apoptosis as a crucial role in resolution of 

inflammation in patients suffering with diabetes is still controversial. In this study, 

we evaluated the defects in spontaneous neutrophil apoptotic responses in type 2 

diabetes and found a significant delay in apoptosis compared to the healthy 

controls. The results agreed with Sudo et al. (274) who found delayed neutrophil 

apoptosis in diabetic subjects compared to healthy controls by using the active 

caspase-3 positive rate as the only measurement tool. This was reinforced by 

another study which indicated that higher amounts of anti-apoptosis cytokines were 

produced from neutrophils in diabetic patients (275). Studies in mice and rats, on 

the other hand, suggested that there was no significant difference between 

spontaneous neutrophil apoptosis in diabetic and non-diabetic groups (276-278) 

suggesting that murine models of diabetes may not be fully relevant to human 

neutrophil for studying the apoptosis. 

Many studies have concluded that neutrophil apoptosis is delayed in chronic 

periodontal disease. Gamonal et al. (280) demonstrated that granulocyte monocyte-

colony stimulating factor (GM-CSF) and TNF-α, responsible for inhibition of 

neutrophil apoptosis, were present within the gingival crevicular fluid collected 
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from chronic periodontitis patients. Similarly, other studies also observed a 

decrease in neutrophil apoptosis in subjects with periodontitis via a variety of 

methods used including in situ DNA breaks, electron microscopy, caspase-3 

measurement and in vitro co-culture of HL60-derived neutrophil with P. gingivalis, a 

well-known periodontal pathogen (255, 268, 279). Since chronic periodontitis 

increased the anti-apoptotic cytokine and delayed neutrophil apoptosis at a local 

tissue level, we wanted to further investigate the impact of chronic periodontitis on 

spontaneous neutrophil apoptosis at a systemic level, also complicated by chronic 

hyperglycemia. Our results demonstrated a significant delay in spontaneous 

neutrophil apoptosis in the T2DM+CP group compared to healthy subjects, where 

the effect was additive but not synergistic. This finding suggests that periodontal 

disease not only affected neutrophil apoptosis at the local site of periodontal 

infection but also systemically influenced the resolution of inflammation and 

neutrophil clearance, which may result in intensifying other systemic inflammatory 

conditions.  

There are two major signaling pathways that initiated the apoptosis, the 

death receptor pathway (extrinsic pathway) and the mitochondrial pathway 

(intrinsic pathway) (290). These signals activate cytoplasmic protease enzymes 

called caspases. Caspases are activated by precursor caspases in a protease cascade 

mechanism. Each precursor caspase is activated by cleavage of a peptide bond by an 

upstream caspase. Cleavage of the enzyme DNA fragmentation factor 45 (DFF45) to 

the active 40-kDa form by active caspase 3 causes endonucleolytic breakage of 
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chromatin and eventual chromatin condensation, one of the classic morphological 

features of cell apoptosis. Understanding the molecular events of apoptosis has 

allowed the development of methods to measure various markers of apoptosis, for 

example, the degree of caspase 3 activation, cell membrane asymmetry of 

phophatidylserine, shifts in mitochondrial membrane potential, or detection of 

intact and cleaved poly-ADP-ribose-polymerase that binds at DNA strand breaks. 

However, methods to assess apoptotic markers can have numerous limitations; 

examples include a qualitative or comparative ability to measure, a lack of 

sensitivity especially to measure changes at low levels, a requirement for live cells at 

the time of measurement, a restricted and non-linear dynamic range and low 

throughput. In order to overcome the limitation and weakness of each method, we 

utilized multiple techniques including detection of DNA strand breaks by TUNEL 

assay, cell membrane exposure of phophatidylserine by Annexin V and caspase 

enzyme activity, which each efficiently measured apoptosis inside the cell at a 

different time point and location. By utilizing most of the measurement with flow 

cytometer, we were able to obtain a more accurate data compared to traditional 

method of microscope counting.   

Our results demonstrated that spontaneous neutrophil apoptosis was 

delayed in patients with type 2 diabetes and chronic periodontitis. We confirmed 

these results by measuring the caspase-3 enzyme, which is a well-known and 

reliable method used to measure the amount of apoptosis (291). Caspase-3 is a 

member of the cysteine-aspartic acid protease family produced in the cascade 
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pathway which acts on protein substrates and plays a main role in the execution-

phase of cell death by apoptosis. This process occurs before DNA fragmentation, a 

characteristic of apoptosis that can be detected by the TUNEL assay as used in our 

experiments. As expected, our results have shown that healthy subjects exhibited 

the highest caspase-3 activity in comparison to other diseased subjects. This 

experiment revealed that delays in spontaneous neutrophil apoptosis in type 2 

diabetes and chronic periodontitis occurs by a caspase-dependent pathway. 

Since there was a significant decrease in neutrophil caspase-3 activity in 

diseased subjects’ as compared to a healthy group, we investigated whether the 

process of caspase-3 activation was due to an upstream increase in initiator 

caspase-9 activity, representing the intrinsic pathway; or caspase-8 activity, 

representing the extrinsic pathway; or both. Our results have shown a significant 

increase in caspase-8 activity in the healthy group compared to diseased groups. 

Caspase-9 activity similarly exhibited the same trend but was not statistically 

significant. This demonstrated that the delayed spontaneous neutrophil apoptosis in 

T2DM+CP was triggered by inhibition of the caspase-dependent pathway via down-

regulation of caspase activation by the death receptor pathway. The extracellular 

signals can be triggered by engagement of cell surface death receptor with their 

specific death ligands, which play a central role in apoptosis. Cell surface death 

receptors (DR) are a family of transmembrane proteins that belong to the TNF 

receptor superfamily. Mammalian death receptors include Fas (also called CD95) 

and TNFR1 (Tumor necrosis factor receptor 1 or CD120a) (292), (209). Additional 
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death receptors such as DR3 (death receptor 3), DR4, and DR5 are also structurally 

related to the TNF receptor superfamily (211). These receptors share a conserved 

cysteine-rich repeat at their extracellular domains. Although the regions of greatest 

sequence homology between superfamily members are extracellular, Fas and 

TNFR1 share a region of homology at the cytoplasmic face termed the ‘death 

domain’. This domain is required for apoptotic signaling by both Fas and TNFR1. 

The activating ligands for these DR are structurally related molecules that belong to 

the TNF gene superfamily (195, 293). For example, Fas/CD95 ligand (FasL) binds to 

Fas, TNF binds to TNFR1, Apo3 ligand (Apo3L) binds to DR3, and Apo2 ligand 

(Apo2L, or TRAIL) binds to DR4 and DR5 (211). In this study, we measured the cell 

surface death receptor expression. Results have concluded that both TNF receptor 

and Fas receptors are decreased in type 2 diabetes, but with the addition of chronic 

periodontitis, TNF receptor levels were restored. The levels of soluble Fas ligand 

and TNF-α in serum separated from the subjects’ whole blood were assessed. Our 

results have shown no significant difference in TNF-α level in all groups, agreeing 

with Makino et al. who found no significant difference in serum TNF-α levels 

between uncomplicated diabetic patients vs healthy normal participants (294). A 

significant decrease in sFas ligand was observed, specifically in T2DM+CP compared 

to the healthy controls. This result agreed with previous literature which concluded 

that sFas ligand levels are decreased or similar in type 2 diabetes subjects (295). On 

the other hand, Guillot et al. reported an increase in sFas ligand in diabetes patients 

especially in patients with diabetic neuropathy (295). 
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To further investigate the mechanism of neutrophil apoptosis, we used a 

model mimicking type 2 diabetes by culturing healthy subject neutrophil in diabetic 

conditions, modified from Omori et al. (284) who used human promyelocytic 

leukemia cells (HL-60). Our results demonstrated that high glucose did not affect 

the spontaneous neutrophil apoptosis, similar to the previous literature (296), 

signifying that hyperglycemia may not be the main cause of delayed spontaneous 

apoptosis of neutrophil in type 2 diabetes patients. However, our results also 

demonstrated a significant delay in spontaneous neutrophil apoptosis in poor 

glycemic control T2DM patients (HbA1c >7.5), in addition to the fact that poor 

glycemic control can increase RAGE activation (297). Therefore, we suspected that 

RAGE might play a role in delaying spontaneous neutrophil apoptosis in T2DM 

individuals. There is strong evidence of RAGE involvement in delayed apoptosis in 

monocytes, aggravating inflammation and altered neutrophil functions in diabetes 

patients (22, 298). Therefore, we assessed whether RAGE could be a potential factor 

in delaying neutrophil apoptosis by incubating healthy neutrophils with high 

glucose and S100B. These results showed a delay in spontaneous neutrophil 

apoptosis in a concentration-dependent manner. Our results also showed that by 

incubating healthy neutrophils with high glucose and S100B, cell surface Fas 

receptor expression was decreased as compared to normal glucose control. This 

outcome may explain our results which showed a decrease in Fas receptor on 

neutrophils from T2DM patients. Next, we wished to mimic type 2 diabetes with 

chronic periodontitis delayed neutrophil apoptosis in healthy donors. By combining 



 
 

115 
 

P. gingivalis and neutrophils with high glucose and S100B, apoptosis was 

significantly delayed as compared to control and its effect was similar to the result 

obtained from type 2 diabetes and chronic periodontitis patient.   

Progression of periodontal disease results from a failure of the immune 

system to clear infectious agents and to restore periodontal homeostasis. Socransky 

et al. (48)  grouped the microorganisms that colonize the subgingival plaque into 

five main color-coded complexes. Several associations were also characterized 

among species inside microbial complexes, among different complexes, and based 

on severity of periodontal disease. Specifically, the red complex (Bacteroides 

forsythus, P. gingivalis, and Treponema denticola) are associated with severe forms 

of periodontal disease. Several periodontal pathogens have been shown to be 

associated with cell death in leukocytes including Fusobacterium nucleatum, a gram-

negative oral bacterium which has the ability to induce apoptotic cell death in 

neutrophils (299), and Aggregatibacter actinomycetemcomitans can, which can lyse 

human neutrophil cytoplasts and cause necrosis by the pore-forming and 

membranolytic properties of its leukotoxin (300). In our study, we used P. gingivalis, 

a Gram-negative black-pigmented microorganism, which has been implicated as the 

major pathogen in the development of adult periodontitis.  The intimate interaction 

of this periodontal pathogen with the host has become a subject of intense 

investigation. Our results have shown that neutrophils and P. gingivalis (strain 

A7436) co-incubated significantly reduced neutrophil apoptosis. P. gingivalis 

inhibited apoptosis of neutrophil in a dose dependent manner and even when 
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different strain is used (W50), the inhibition persisted in a similar style. Heat killed 

P. gingivalis was also tested and a similar result was observed. This suggests that the 

mechanism of neutrophil survival may be due to direct inhibition of apoptosis by P. 

gingivalis virulence factors or components, or by indirect inhibition of neutrophil 

apoptosis by its own response. One of the components from P. gingivalis which is 

well known to inhibit neutrophil apoptosis is bacterial lipopolysaccharide (LPS). 

(255) Our results have confirmed that neutrophil apoptosis was delayed when 

incubated with LPS. In contrast, several publications report that E. coli, another 

gram negative anaerobic bacteria, significantly induced neutrophil apoptosis but its 

LPS intensely delayed neutrophil apoptosis. (288, 301)  

Our results have shown that caspase-3 activity after neutrophil-P. gingivalis 

co-incubation was dramatically decreased. Consequently, we investigated whether 

the process of caspase-3 activation was due to an upstream increase in initiator 

caspase-9 activity, representing the intrinsic pathway, or caspase-8 activity, 

representing the extrinsic pathway, or both. The extrinsic pathway involved in 

caspase-8 enzyme activation was not interrupted. However, active caspase-9 

enzyme, representing the end point of the intrinsic pathway, was greatly reduced, 

leading to a significant inhibition of caspase-3 enzyme activation and delayed 

neutrophil apoptosis. This result did not explain the mechanism of neutrophil 

apoptosis in chronic periodontitis patients who have shown a decrease in caspase 8 

activity. We suggested that the effects of P. gingivalis in delaying neutrophil 

apoptosis is due to its LPS which signaled through the Toll-like receptors (TLRs). 
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François et al. demonstrated that TLR2/4 agonists delayed apoptosis by activation 

of NF-κB and PI3K. Consequently, increased levels of Mcl-1 and A1, which are anti-

apoptotic members of the Bcl-2 family, involved in controlling the intrinsic pathway 

of apoptosis. (302) LPS from P. gingivalis was recently shown to bind to TLR2, not 

the common LPS receptor TLR4. (303, 304) LPS from P. gingivalis has also been 

reported as antagonistic for TLR4. (305) However, studies with fibroblasts have 

shown P. gingivalis LPS to signal through TLR4. (306, 307) This finding may indicate 

a difference in signaling in this particular cell type. Thus, in order to have a better 

understanding into the mechanism of P.gingivalis delayed neutrophil apoptosis, 

further study is needed to explore into P.gingivalis LPS-TLR activation in this cell. 

This study gave us a better understanding of how neutrophils play a role in 

causing persistent inflammation and compromised wound healing in type 2 diabetes 

and chronic periodontitis. However, more detailed research is necessary to fully 

comprehend the mechanism of delayed spontaneous neutrophil apoptosis in type 2 

diabetes and chronic periodontitis including determining which factors affect Fas 

and TNF receptors production and localization, the level of mitochondrial reactive 

oxygen species which involve in caspase-independent apoptosis pathway, and 

intracellular regulation of neutrophil survival protein molecules and  pathways. One 

limitation of this study that needs to be addressed is the use of an in vitro neutrophil 

model, which would yield less definitive results, due to the inability to fully imitate 

the environment in the inflamed host tissue. Thus, an in vivo model might be the 

solution to this problem. Another limitation is the sample size and demographic 
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distribution such as, gender, race, age, and BMI, which might play a role in 

controlling neutrophil apoptosis. Therefore, in the future study, increasing the 

sample size will definitely help to produce a more solid result by using this study to 

serve as a pilot. 

 

CONCLUSION 

We demonstrated that spontaneous neutrophil apoptosis in peripheral blood 

is impaired in subjects with type 2 diabetes and chronic periodontitis, giving us a 

better understanding of the systemically impeded resolution of inflammation in 

both of these chronic inflammatory conditions. Possible explanations for this 

occurrence stem from a lack of sFas ligand and its receptor expression on neutrophil 

cell surface, and in patients with type 2 diabetes, RAGE may also play a crucial role 

in diminishing spontaneous neutrophil apoptosis. 
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