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ABSTRACT OF THE DISSERTATION

Measuring and Correlating Blood and Brain Gene Expression Levels:
Assays, Inbred Mouse Strain Comparisons, and
Applications to Human Disease Assessment

by

Mary Elizabeth Winn
Doctor of Philosophy in Biomedical Sciences
University of California, San Diego, 2011
Professor Nicholas J Schork, Chair

Professor Gene Yeo, Co-Chair

Microarray-based gene expression profiling is a frequently utilized tool in the
search for disease-specific molecular patterns and the development of clinically
relevant panels of biomarkers. Although advances in high-throughput gene
expression technology make for more reliable and interpretable studies,
investigations of living humans are often limited by tissue accessibility. This is
especially true for neural-based illnesses, where studies rely heavily on post-mortem

brain tissue. As a result, medical researchers have focused on blood, a more easily

Xix



accessible and clinically obtainable tissue. In this work | explore: 1.) the technical
aspects associated with assessing peripheral whole blood gene expression via
microarray; and 2.) the biological significance of blood-based gene expression
patterns with respect to brain-based gene expression patterns and behavioral
phenotypes in mice and humans. | describe the effects of globin reduction on blood-
based gene expression in mice by comparing gene expression patterns before and
after globin reduction of mouse whole blood (Chapter 2). Globin reduction was found
to improve the ability to detect low abundance, biologically relevant genes. | also
evaluated globin reduction in the context of human blood and two lllumina gene
expression assays: (i) the IVT-based direct hybridization assay; and (ii) the WG-DASL
assay (Chapter 4). As in mice, | was able to recapitulate the known benefits of globin
reduction in both assays, while WG-DASL appeared to be more sensitive compared
to IVT. Lastly, | characterized the correlations between blood gene expression levels
and behavioral phenotypes and compared blood gene expression-trait correlations
with brain gene expression-trait correlations in respect to neuropsychiatric
phenotypes in mice (Chapter 3) and autism in humans (Chapter 5). In both mice and
humans, blood was only able to capture a small portion of the associations identified
in the brain on an individual gene level. At a pathway level, blood was able to capture
a larger portion of the associated brain pathways in humans as compared to mice. |
conclude blood gene expression, although it may capture a small portion of the
expression patterns associated with ‘primary’ neural insults, is more likely to capture
variation due to ‘secondary’ perturbations or other biological and environmental

insults.
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CHAPTER1

Introduction and Background



INTRODUCTION
Translational Genomics, Genome-wide Expression Analysis, and Biomarker
Discovery

Since the completion of the Human Genome Project in 2003 (International
Human Genome Sequence Consortium 2004), the Phase1 and Phase 2 HapMap
Projects in 2005 (International HapMap Consortium 2005) and 2007 (Frazer et al.
2007), and the pilot phase of the Encyclopedia of DNA Elements (ENCODE) project
in 2007 (Birney et al. 2007), there has been an explosion in the development of
resources and studies aimed at identifying the fundamental causes of complex
human disease (Topol et al. 2007). In order to determine the specific genetic factors
mediating disease susceptibility, researchers have utilized a variety of strategies
including direct DNA sequencing, single-nucleotide polymorphism (SNP) genotyping-
based genome-wide association studies, global gene expression, proteomic and
metabolomic studies, and in silico and computational model analysis of gene and
sequence function. Much of the focus of these research efforts has been to identify
genetic factors contributing to disease — either as stable markers of disease
susceptibility or as ‘biomarkers’ whose elevations and de-elevations are indicative of
disease pathogenesis — so that the resulting insights can be ‘translated’ into viable
medical practices and there by usher in an era of genetics-based “personalized
medicine” (Feero et al. 2008).

Biomarker discovery thus plays a key role in the process of translating
scientific breakthroughs to the bedside. As a characteristic that is objectively
measured and evaluated as an indicator of normal biological processes, pathogenic

processes, or pharmacologic responses to a therapeutic intervention, a biomarker



can be used to classify disease states, develop diagnostic and prognostic tools, or
illustrate drug efficacy and toxicity (Atkinson et al. 2001). Classic biomarkers have
included physiological measurements (blood pressure, cholesterol levels), imaging (x-
ray), and protein molecules (human chorionic gonadotropin (hCG), C-reactive protein
(CRP)). Advances in genomics and associated molecular biology and pathology
technologies have served to revolutionize the field, giving rise to hundreds (if not
thousands) of potential genetic and molecular markers of disease, such as SNP
genotypes and gene expression profiles. However, many of these candidate
biomarkers have failed to be effective when tested in clinical settings. As of August 1,
2011, the US Food and Drug Administration (FDA) had approved 81 genetic
biomarkers from the hundreds that have been implicated in pharmacogenetic studies
(Table 1-1) (http://www.fda.gov/Drugs/ScienceResearch/ResearchAreas/Pharmaco-
genetics/ucm083378.htm).

Gene expression is a highly regulated process by which genomic information
is converted to a functional gene product such as RNA or protein. Individual
differences in gene expression that arise from genetic, epigenetic, or environmental
variation are likely an underlying cause of complex human disease. Microarray-
based gene expression profiling has become a frequently employed tool in the search
for disease-specific molecular patterns (i.e., disease ‘fingerprints’) and the
development of clinically relevant panels of biomarkers. Since the advent of
microarray technology in the mid-1990s, over 30,000 articles have been published on
microarray gene expression with over fifty percent published in the last four years
(Figure 1-1). Investigations utilizing microarrays have yielded insights into disease

classifications (Golub et al. 1999, Alizadeh et al. 2000, Dyrskjot et al. 2003),



diagnostic and prognostic gene profiles (Mirnics et al. 2000, Welsh et al. 2001, van 't

Veer et al. 2002), and drug efficacy and toxicity profiles (Gunther et al. 2003).

Neuropsychiatric Diseases, Tissue Accessibility and Blood-based Gene
Expression

Although advances in gene expression technologies probably made studies of
gene expression more reliable and interpretable than they were 20 years ago, gene
expression studies on living humans are still limited by tissue accessibility. This is
especially true for neuropsychiatric illnesses, where it is nearly impossible to collect
brain samples from living individuals. As a result, the majority of studies of
neuropsychiatric diseases rely on post-mortem brain tissue. Alternatively, medical
researchers have begun to focus on peripheral blood (e.g., leukoyctes, lymphocytes,
lymphoblastoid cell lines (LCLs), peripheral blood mononuclear cells (PBMCs), whole
blood), a more easily accessible and clinically obtainable tissue.

Aside from accessibility, the physiological characteristics of blood cells
suggest peripheral blood is an ideal surrogate for primary tissue (Liew et al. 2006).
Importantly, the natural variation, heritability, and processing-induced variation of
blood-based gene expression have been examined (Table 1-2), while the advantages
and disadvantages of studying blood gene expression patterns have been carefully
reviewed (Fan et al. 2005, Mohr et al. 2007). Nonetheless, the biological relevance of
gene expression levels in the blood to human neuropsychiatric disease remains
relatively unknown, given that brain tissue and blood would be difficult to collect from
the same living individual (Sullivan et al. 2006). Given the significant amount of intra-

and inter- individual variation in blood gene expression, such an approach limits



interpretability and brings in to question a study’s ability to identify reliable and
replicable biomarkers for the diagnosis and treatment of human disease.

Blood-based gene expression correlations with neuropsychiatric conditions
and behaviors are quite likely to reflect ‘secondary’ if not ‘primary’ molecular
perturbations in the diseased brain, such as the presence of a tumor or an
immunological insult. As a result, the secondary patterns of, or changes in, gene
expression identified in the blood may be seen as biomarkers of a disease state
rather than potential targets for pharmacological intervention. On the other hand, in
certain neuropsychiatric states, there could be an actual over- or under- deposition of,
e.g., neurohormones, into the bloodstream that reflects the primary (or one of the
many primary) etiological defects contributing to these states. Thus, ultimately,
blood-based gene expression patterns associated with certain neuropsychiatric states

may indeed reflect a combination of primary and secondary effects.

Mouse Models of Human Disease

Unlike human subjects, blood and primary tissue samples can be easily
collected from the same living mouse under highly controlled conditions. Intra- and
inter-individual sources of variation introduced by gender, age, time of day, genetic
variation, and environment can be studied and accommodated (Whitney et al. 2003,
Radich et al. 2004, Cobb et al. 2005), while clinically acceptable and highly
standardized protocols for blood collection, RNA isolation, and globin reduction can
be employed to lessen technical-induced variation (Debey et al. 2004, Cobb et al.
2005, Debey et al. 2006). Mice have also been widely used to mimic and provide

insight into the genetic basis of human disease since the early 1900s (Rosenthal and



Brown 2007) with an assortment of valuable online resources now available (Table 1-
3)(Peters et al. 2007).

Studies of human disease have benefited from the vast pool of genetic
resources developed and utilized in mice, such as: 1. quantitative trait locus (QTL)
mapping to identify genomic locations harboring mutations that influence a relevant
phenotype’s expression; 2. the creation of chromosome substitution, recombinant-
inbred, and congenic mouse strains to explore the impact of specific chromosomes
and genetic locations on phenotype expression; 3. in silico mapping studies which
compare known polymorphic sites across different mouse strains to phenotypic
differences exhibited by those strains; 4. complex “genetical genomics” analyses
mixing mouse strain crosses, QTL mapping strategies, and gene expression studies
to uncover complex gene expression regulatory networks behind phenotype
expression; 5. mutagenesis strategies designed to correlate specific mutations with
specific phenotypes; and 6. knockout and transgenic studies which consider the
effects of specific genes on the expression of a particular phenotype (Peters et al.
2007). Putting such efforts and studies into context requires understanding the
genetic and phenotypic backgrounds of the strains used in these studies. In this light,
characterizing correlations between blood and brain gene expression levels and
gene-phenotype relationships across commonly used inbred mouse strains, although
not trivial, may contribute to our understanding of previous mouse-based studies,
yield compelling candidate genes for human neuropsychiatric diseases, and provide
insight into the potential of blood-based gene expression patterns as biomarkers of
neuropsychiatric conditions.

As noted, however, mouse models of human disease are not without their



drawbacks (i.e. genetic background) (Rivera et al. 2008). This is especially true for
models of neuropsychiatric disorders and behavioral phenotypes, which are
hampered not only by a variety of genetic and environmental factors but also by a
lack of clear disease and behavioral definitions for mice (Bucan and Abel 2002, Cryan
and Mombereau 2004). Furthermore, gene-phenotype studies in humans that are
based on gene expression studies in mice are complicated by a lack of insight as to
how the genes in question fit into larger species and tissue-specific regulatory
networks that influence phenotypic expression, with no firm understanding of the
issues and potential effects these forces may have had in shaping the function or
impact of a gene of interest and its associated regulatory network in the human
biochemical and physiologic milieu. Thus, it is important to fully characterize the
genetic, regulatory, biochemical, and phenotypic backgrounds of the mouse strains
used in studies of neuro-cognitive and behavioral phenotypes in an effort to not only

put previous studies into context, but also direct future studies.

Microarray Gene Expression Profiling and Globin Reduction

Since blood is high in alpha- and beta- globin, which tend to confound
detection of expression levels of non-globin genes, microarray-based gene
expression profiles of peripheral whole blood suffer from poor sensitivity and high
variability, hampering their utility as reliable and reproducible clinical biomarkers of
disease. A variety of globin reduction methods were developed to address the needs
associated with microarray-based evaluation of peripheral whole blood, including:
peptide nucleic acids (Debey et al. 2006) and magnetic beads (Whitley et al. 2005).

These globin reduction methods have been tested using a variety of microarray



platforms (Tian et al. 2009; Vartanian et al. 2009; Dumeaux et al. 2008; Debey et al.
2006) and often validate the importance of globin reduction in the assessment of
human peripheral whole blood. These studies also indicate globin reduction may not
always be beneficial or necessary. Globin reduction of human whole blood samples is
known to require a relatively large amount of input RNA (Vartanian et al. 2009), may
induce its own unique expression profile (Liu et al. 2006), or fail to improve
reproducibility (Vartanian et al. 2009; Dumeaux et al. 2008). It is therefore necessary
to continue to consider the effects of globin reduction as new microarray platforms
are developed and different organisms (i.e. Mus musculus or Rattus norvegicus) are
used as the source of whole blood.

Although globin reduction methods have been developed for mouse whole
blood (Whitley et al. 2007), little has been done to characterize the effects of globin
reduction of microarray gene expression profiling of mouse whole blood. Globin
reduction of human peripheral whole blood improves detection levels of genes in
various biological processes (Field et al. 2007) and genes relevant to disease
(Raghavachari et al. 2009). Mouse whole blood, on the other hand, has a higher ratio
of reticulocytes to lymphocytes (32:1) than human whole blood (9:1)(Fan et al. 2005).
Globin reduction of mouse whole blood may not be able to overcome the significantly
higher level of globin. If researchers are to use the mouse as a model of human
disease it will be important to understand the limits of whole blood gene expression
profiling in mice.

Researchers must also understand the need for globin reduction with various
microarray platforms. Globin reduction has been shown to be effective using

Affymetrix GeneChips (Vartanian et al. 2009) and the standard lllumina in vitro



transcription assay with (Tian et al. 2009) while globin reduction provided no benefit
when used in conjunction with the Applied Biosystems AB1700 microarray system
(Dumeaux et al. 2008). As microarray gene expression platforms continue to develop
and become more accurate, so will the need to assess effects of globin reduction on
whole blood gene expression profiling. For example, Tian et al. assessed globin
reduction in the context of in vitro transcription amplification hybridized to the lllumina
Sentrix HumanRef-6 BeadChip. The HumanRef-6 BeadChip has since been replaced
by the HumanRef-8, and more recently by the HumanRef-12. Each BeadChip
assesses a different number of probes with the potential to affect the background
noise due to high levels of globin in whole blood. Other technologies created for the
profiling of highly degraded samples, such as the lllumina Whole-Genome DASL
(cDNA-mediated Annealing, Selection, extension and Ligation) (April et al. 2009),
may also be potentially beneficial in the microarray gene expression profiling of

peripheral whole blood.

Finding an Accessible Surrogate Tissue for Neural Tissue

Linkage and genome-wide association studies focusing on the identification
of susceptibility genes for neural-based disorders have proven to be difficult (Gershon
et al. 2011; Altshuler et al. 2008; Hovatta and Barlow 2008), most likely due to the
heterogeneous and complex nature of neurodevelopmental, neuropsychiatric, and
neurodegenerative diseases. One approach to disentangling these complex diseases
has been the development of mouse models that mimic certain aspects of anxiety
(Belzung and Griebel 2001; Crawley and Goodwin 1980), depression (Pollack et al.

2010), schizophrenia (Braff and Geyer 1990; Geyer et al. 1990), Parkinson’s disease
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(Taylor et al. 2010), autism (Moy et al. 2007; Moy et al. 2004), and other neural-
based diseases. These models lend themselves well to the characterization of blood
gene expression, or any other tissue source, as a surrogate for brain gene
expression.

Taking advantage of the natural variation manifested by behavioral
phenotypes across well-characterized inbred mouse strains, previous studies
combining mouse strain analysis and behavioral testing with microarray gene
expression profiling have identified genes whose expression levels are associated
with behavior in mice (de Jong et al. 2010; Nadler et al. 2006; Hovatta et al. 2005). In
some cases, the associated genes have also been shown to be associated with
disease in human populations (Donner et al. 2008), highlighting the potential of
mouse models in the identification of genes relevant to human disease. By expanding
this approach to blood-based gene expression, it may be possible to discover disease
susceptibility genes in an easily accessible, clinically relevant tissue.

The use of mouse models enables researchers to overcome many of the
difficulties in analyzing whether or not blood is a viable surrogate for brain gene
expression in identifying disease susceptibility genes, particularly small sample sizes
and sample degradation, as well as the inability to collect blood and brain from the
same living individual. Analysis of mouse brain and spleen suggest blood gene
expression is capable of acting as a surrogate for brain tissue for a subset of genes
(Davies et al. 2009), while gene expression experiments in vervet monkeys also
exhibit the potential of blood gene expression to act as a surrogate for brain gene
expression (Jasinska et al. 2009). Nonetheless, conflicting results from the

assessment of human tissues display little overlap between human blood and brain
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gene expression (Cai et al. 2010). While Cai et al. took advantage of multiple large
data sets, their study suffers from several pitfalls: 1.) brain and blood samples used
were processed using different microarray platforms (Affymetrix and Illumina,
respectively); and 2.) brain and blood samples were collected from different
individuals. Thus, the results from mouse studies will need to be extended to human
studies in order to assess the true clinical validity of blood-based gene expression

biomarkers.

Genetic Background Effect Analysis

As researchers continue to study the behavior of inbred mouse strains, they
must be aware of strain differences that may affect the results of any study if not
accounted for properly. For example, when assessing physiological differences
between strains using an activity involving sight, variation across strains with respect
to visual acuity and blindness will affect behavioral test performance. In addition,
genetic variation between strains could influence phenotypic expression across the
strains or also contribute to assay failure. Thus, the genetic background of the strain
used to develop a knockout or gene transfer investigation can have enormous effects
on the study aims and hypotheses (Austin et al. 2004; Accili 2004), and traditional
introgression studies have showed varying effects of a target gene’s activity as a
function of genetic background (Letts et al. 1995). The same holds true for microarray
gene expression analyses. Sequence variation has been shown to affect
hybridization and lead to an increase in false associations (de Jong S et al. 2010;
Peirce et al. 2006, Radcliffe et al. 2006). Methods capable of correcting for strain-

based hybridization, such as GeSNP (Greenhall et al. 2007), should be considered.
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For example, the algorithm employed by GeSNP was used to identify sequence
differences between three rare strains of inbred mice (Carter et al. 2005), to improve
the reliability of gene expression data by masking probe pairs that cover regions with
sequence differences between humans and chimpanzees (Caceres et al. 2003), and
was also applied in the expression QTL (eQTL) study described above (Hovatta et al.
2007). The results demonstrate that the GeSNP algorithm can identify sequence

differences using array-based gene expression data.

SPECIFIC AIMS

The research pursued in this dissertation focuses on the comparison of blood
and brain microarray-based gene expression in mice and humans. Overall, the
research focuses on: 1. the effects of globin reduction on blood gene expression
levels and patterns; 2. the correlation of blood and brain gene expression to various
behavioral phenotypes; and 3. the utility of blood gene expression in the development
of genomic biomarkers for neural-based diseases using two existing data sets: (i) a
data consisting of five brain tissues collected from six mouse strains (Hovatta et al.
2005); and (ii) data on post-mortem brain samples from the San Diego Autism Center
of Excellence (Chow et al. 2011, Submitted). The specific aims are as follows:
1. The assessment of the effects of globin reduction on blood-based gene
expression in mice by comparing gene expression patterns before and after globin
reduction of mouse whole blood.
2. The characterization of the correlations between blood gene expression levels and

behavioral phenotypes and how blood gene expression-trait correlations compare
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with brain gene expression-trait correlations in order to assess the utility of blood
gene expression levels for identifying neuropsychiatric and behavioral phenotypes.

3. The evaluation of gene expression profiling of human whole blood samples with
two lllumina gene expression assays: (i) the in vitro transcription (IVT) assay; and (ii)
the whole-genome cDNA-mediated Annealing, Selection, Extension, and Ligation
(WG-DASL) assay.

4. The application of knowledge gained from specific aims I-1ll to the comparison of
gene expression from brain and lymphocytes collected from individuals diagnosed

with autism.

ENUMERATION OF CHAPTERS

Whole blood is widely recognized as an acceptable tissue source in clinically
applicable gene expression studies. Nonetheless, blood-based gene expression
profiling is not without challenges. Researchers must take in to account: 1. multiple
cell types in the blood with varying expression patterns and cell counts; 2. intra- and
inter-individual variation in cell composition of the blood; and 3. sample collection and
processing-induced variation and alterations in gene expression patterns (Fan and
Hegde 2005). One such challenge is the level of globin mRNA transcripts in whole
blood; it is this challenge Chapter 2 serves to address in the context of mouse whole
blood. Globin reduction in mouse whole blood is found to be important to improving
the ability to detect genes involved in various human diseases, particularly neural-
based diseases.

Chapter 3 focuses on mouse blood and mouse brain gene expression-

behavioral trait correlations with an underlying emphasis on the effects of cell type
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and strain-specific genetic background on blood- and brain- specific gene expression
using Multivariate Distance Matrix Regression (MDMR) (Zapala et al. 2006) and Bi-
variate Correlated Errors Analysis (Akritas and Bershady 1996). Strain effects on
blood-specific gene expression were assessed using six commonly utilized inbred
mouse strains (129S1/SvimJ, A/J, C3H/Hed, C57BL/6J, DBA/2J, and FVB/NJ); blood
cell count effects using data from the Mouse Phenome Database
(http://phenome.jax.org/pub-cgi/phenome/mpdcgi?rtn=docs/home); and brain tissue
effects using regions (bed of nucleus striatum, hippocampus, hypothalamus,
periaqueductal gray, and pituitary) known to play a role in neuropsychiatric
phenotypes: pre-pulse inhibition, fear potentiated startle, and other anxiety
phenotypes.

Chapters 4 and 5 present the results pertaining to human samples. The
challenges related to globin reduction and microarray platform using human
peripheral blood are addressed in Chapter 4. The fifth chapter extends the analyses
pursued in specific aim 2 and the microarray platforms studied in specific aim 3 to an
autism data set of lymphocyte gene expression. We find that human lymphocyte
gene expression reflects similar pathways as those identified in brain gene
expression. We also conclude that lymphocyte gene expression profiles are capable

of discriminating between autism cases and controls.
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TABLES
Table 1-1. 81 genetic biomarkers approved by the US Food and Drug Administration

(FDA) as of August 1, 2011.

Drug Therapeutic Area Biomarker Label Sections

Abacavir

Aripiprazole

Arsenic Trioxide

Atomoxetine

Atorvastatin

Azathioprine

Boceprevir
Busulfan

Capecitabine

Carbamazepine

Carvedilol

Celecoxib

Antivirals

Psychiatry

Oncology

Psychiatry

Metabolic and
Endocrinology

Rheumatology

Antivirals
Oncology

Oncology

Neurology

Cardiovascular

Analgesics

HLA-B*5701

CYP2D6

PML/RARa

CYP2D6

LDL receptor

TPMT

IL28B
Ph Chromosome

DPD

HLA-B*1502

CYP2D6

CYP2C9

Boxed Warning,
Contradindications,
Warnings and
Precautions, Patient
Counseling
Information

Clinical Pharmacology

Boxed Warning,
Clinical Pharmacology,
Indications and Usage,
Warnings

Dosage and
Administration,
Warnings and
Precautions, Drug
Interactions, Clinical
Pharmacology

Indications and
Usage, Dosage and
Administration,
Warnings and
Precautions, Clinical
Pharmacology, Clinical
Studies

Dosage and
Administration,
Warnings and
Precautions, Drug
Interactions, Adverse
Reactions, Clinical
Pharmacology

Clinical Pharmacology
Clinical Studies

Contraindications,
Precautions, Patient
Information

Boxed Warning,
Warnings and
Precautions

Drug Interactions,
Clinical Pharmacology

Dosage and
Administration, Drug
Interactions, Use in
Specific Populations,
Clinical Pharmacology




Table 1-1. Continued.

16

Drug

Therapeutic Area

Biomarker

Label Sections

Cetuximab (1)

Cetuximab (2)
Cevimeline

Chloroquine

Clopidogrel

Clozapine

Codeine

Dapsone

Dasatinib

Dexlansoprazole

Dextromethorphan
and Quinidine

Diazepam

Doxepin
Drospirenone and
Ethinyl Estradiol

Erlotinib

Esomeprazole

Oncology

Oncology

Dermatology and Dental
Antiinfectives

Cardiovascular

Psychiatry

Analgesics

Dermatology and Dental

Oncology

Gastroenterology

Neurology

Psychiatry
Psychiatry
Reproductive
Oncology

Gastroenterology

EGFR

KRAS

CYP2D6
G6PD

CYP2C19

CYP2D6

CYP2D6

G6PD

Ph Chromosome

CYP2C19

CYP2D6

CYP2C19
CYP2D6
CYP2C19
EGFR
CYP2C19

Indications and
Usage, Warnings and
Precautions,
Description, Clinical
Pharmacology, Clinical
Studies

Indications and

Usage, Clinical
Pharmacology, Clinical
Studies

Drug Interactions
Precautions

Boxed Warning,
Dosage and
Administration,
Warnings and
Precautions, Drug
Interactions, Clinical
Pharmacology

Drug Interactions,
Clinical Pharmacology

Warnings and
Precautions, Use in
Specific Populations,
Clinical Pharmacology

Indications and
Usage, Precautions,
Adverse Reactions,
Patient Counseling
Information

Indications and
Usage, Clinical
Studies, Patient
Counseling
Information

Clinical Pharmacology
Clinical
Pharmacology,
Warnings and
Precautions

Drug Interactions,
Clinical Pharmacology
Precautions
Precautions, Drug
Interactions

Clinical Pharmacology

Drug Interactions,
Clinical Pharmacology
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Drug

Therapeutic Area

Biomarker

Label Sections

Fluorouracil

Fluoxetine

Fluoxetine and
Olanzapine

Flurbiprofen

Fulvestrant

Gefitinib

Imatinib (1)

Imatinib (2)

Imatinib (3)

Imatinib (4)

Irinotecan

Isosorbide and
Hydralazine

Lapatinib

Lenalidomide

Dermatology and Dental

Psychiatry

Psychiatry

Rheumatology

Oncology

Oncology

Oncology

Oncology

Oncology

Oncology

Oncology

Cardiovascular

Oncology

Hematology

DPD

CYP2D6

CYP2D6

CYP2C9

ER receptor

EGFR

C-Kit

Ph Chromosome

PDGFR

FIP1L1-PDGFRa

UGT1A1

NAT1; NAT2

Her2/neu

59 Chromosome

Contraindications,
Warnings

Warnings,
Precautions, Clinical
Pharmacology

Drug Interactions,
Clinical Pharmacology

Clinical
Pharmacology,
Special Populations

Indications and
Usage, Patient
Counseling
Information

Clinical Pharmacology

Indications and
Usage, Dosage and
Administration Clinical
Pharmacology, Clinical
Studies

Indications and

Usage, Dosage and
Administration, Clinical
Pharmacology, Clinical
Studies

Indications and
Usage, Dosage and
Administration, Clincal
Studies

Indications and
Usage, Dosage and
Administration, Clinical
Studies

Dosage and
Administration,
Warnings, Clinical
Pharmacology

Clinical Pharmacology

Indications and
Usage, Clinical
Pharmacology, Patient
Counseling
Information

Boxed Warning,
Indications and Usage
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Drug

Therapeutic Area

Biomarker

Label Sections

Maraviroc

Mercaptopurine

Metoprolol

Nelfinavir

Nilotinib (1)

Nilotinib (2)

Panitumumab (1)

Panitumumab (2)

Peginterferon alfa-2b

Prasugrel

Propafenone
Propranolol
Protriptyline
Quinidine
Rabeprazole

Rasburicase

Antivirals

Oncology

Cardiovascular

Antivirals

Oncology

Oncology

Oncology

Oncology

Antivirals

Cardiovascular

Cardiovascular
Cardiovascular

Psychiatry

Antimalarials/Antiarrhythmic

S

Gastroenterology

Oncology

CCR5

TPMT

CYP2D6

CYP2C19

Ph Chromosome

UGT1A1

EGFR

KRAS

IL28B

CYP2C19

CYP2D6

CYP2D6

CYP2D6
CYP2D6

CYP2C19

G6PD

Indications and
Usage, Warnings and
Precautions, Clinical
Pharmacology, Clinical
Studies, Patient
Counseling
Information

Dosage and
Administration,
Contraindications,
Precautions, Adverse
Reactions, Clinical
Pharmacology

Precautions, Clinical
Pharmacology

Drug Interactions,
Clinical Pharmacology

Indications and
Usage, Patient
Counseling
Information

Warnings and
Precautions, Clinical
Pharmacology

Indications and

Usage, Warnings and
Precautions, Clinical
Pharmacology, Clinical
Studies

Indications and

Usage, Clinical
Pharmacology, Clinical
Studies

Clinical Pharmacology

Use in Specific
Populations, Clinical
Pharmacology, Clinical
Studies

Clinical Pharmacology

Precautions, Drug
Interactions, Clinical
Pharmacology

Precautions
Precautions

Drug Interactions,
Clinical Pharmacology

Boxed Warning,
Contraindications
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Drug Therapeutic Area Biomarker Label Sections
Rifampin, _Isoni_azid, Antiinfectives NAT1: NAT2 Aqvgrse Reactions,
and Pyrazinamide Clinical Pharmacology
. . . Drug Interactions,
Risperidone Psychiatry CYP2D6 Clinical Pharmacology
Sodium UCD (NAGS; CPS; Indications and
Phenylacetate and Gastroenterology ASS; OTC; ASL; Usage, Description,
Sodium Benzoate ARG) Clinical Pharmacology
Indications and
Sodium UCD (NAGS; CPS; Usage, Dosage and
Phenvibutvrate Gastroenterology ASS; OTC; ASL; Administration,
yiouly ARG) Nutritional
Management
Indications and
Tamoxifen Oncology ER receptor Usage, Precautions,
Medication Guide
Telaprevir Antivirals IL28B Clinical Pharmacology
Terbinafine Antifungals CYP2D6 Drug Interactions
Dosage and
. Administration,
Tetrabenazine Neurology CYP2D6 Warnings, Clinical
Pharmacology
Dosage and
Thioguanine Oncology TPMT Administration,
Precautions, Warnings
Precautions,
Thioridazine Psychiatry CYP2D6 Warnings,
Contraindications
Ticagrelor Cardiovascular CYP2C19 Clinical Studies
Timolol Opththalmology CYP2D6 Clinical Pharmacology
Tiotropium Pulmonary CYP2D6 Clinical Pharmacology
Clinical
Tolterodine Reproductive and Urologic CYP2D6 Pharmapology, D“.Jg
Interactions, Warnings
and Precautions
Indications and
Tositumomab Oncology CD20 antigen Usage, Clinical
Pharmacology
Tramadol and . -
Acetaminophen Analgesics CYP2D6 Clinical Pharmacology
Indications and
Trastuzumab Oncology Her2/neu Usage, Precautions,
Clinical Pharmacology
Boxed Warning,
Tretinoin Dermatology and Dental PML/RARa Dosage and

Administration,
Precautions
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Drug Therapeutic Area Biomarker Label Sections
UCD (NAGS; CPS; Contraindications,
Valproic Acid Psychiatry ASS; OTC; ASL; Precautions, Adverse
ARG) Reactions
Venlafaxine Psychiatry CYP2D6 Drug Interactions
Clinical
Voriconazole Antifungals CYP2C19 Pharmacology, Drug
Interactions
Dosage and
. Administration,
Warfarin (1) Hematology CYP2C9 Precautions, Clinical
Pharmacology
Dosage and
Warfarin (2) Hematology VKORCH AEMITEHEET,

Precautions, Clinical
Pharmacology
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Table 1-2. Example studies investigating natural variation, heritability, processing-

induced variation of blood-based gene expression.

Reference Cell Type Sample Size Technology Comments
Cheung et al. 2003 LCLs 90 subjects cDNA Heritability
Schadt et al. 2003 LCLs 56 subjects Affymetrix Heritability
; Whole Blood . o
Whitney et al. 2003 PBMCs 75 subjects cDNA Natural Variation
Debey et al. 2004 PBMCs 29 healthy Affymetrix Processing-
subjects induced
14 CEPH . Heritability
Morley et al. 2004 LCLs Families Affymetrix Natural Variation
Nicholson et al. 2004 PBMCs 12 subjects cDNA Natural Variation
Radich et al. 2004 Leukocytes 32 subjects cDNA Natural Variation
Natural,
Whole Blood 23 healthy . Heritability,
Cobb et al. 2005 Leukocytes 34 trauma/burn Affymetrix Processing-
induced
Eady et al. 2005 PBMCs 18 healthy cDNA Natural Variation
subjects
Palmer et al. 2006 Leukocytes 7 healthy cDNA Cell-type Specific
subjects Variation
Natural,
Kim et al. 2007 Whole Blood 42 subjects Affymetrix Processing-
induced
Karlovich et al. 2009 Whole Blood 20 healthy Affymetrix Longitudinal
subjects
Natural,
. . Heritability,
Meaburn et al. 2009 Whole Blood 10 subjects Affymetrix .
Processing-
induced
Dumeaux et al. 2010 Whole Blood 286 subjects Applied Natural Variation
Biosystems
Whole Blood Cell-type Specific,
Min et al. 2010 PBMCs 6 subjects lllumina Processing-
LCLs induced
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Mouse strain information and resources (inbred and mutant)

International Mouse Strain Resources
JAX Mice

Federation of International Mouse
Resources

Mouse Mutant Resource

Mouse Mutant Regional Resource
Centers

Riken Bioresource Center
The European Mouse Archive

Mouse Models of Human Cancer
Consortium

Canadian Mouse Mutant Repository

http://www.informatics.jax.org/imsr/index.jsp
http://jaxmice.jax.org/index.html

http://www.fimre.org
http://www.jax.org/mmr/index.html
http://www.mmrrc.org

http://www.brc.riken.jp/lab/animal/en
http://www.emmanet.org

http://http://mouse.ncifcrf.gov

http://www.cmmr.ca/index.html

Knockout and transgenic mice

International Gene Trap Consortium*

Mouse Genome Infomatics
Deltagen/Lexicon

Induced Mutant Resource, Jackson
Laboratory

Samuel Lunenfeld Research Institute}

Mouse Mutant Regional Resource
Centers

Micer

http://www.genetrap.org

http://www.informatics.jax.org

http://www.jax.org/imr/index.html
http://www.mshri.on.ca/nagy

http://www.mmrrc.org

http://www.sanger.ac.uk/PostGenomics/mousegenomics

Sequence/phenotype databases

Ensembl

Map Viewer at NCBI

Genome Browser, UCSC

Mouse Genome Informatics Database
Vertebrate Genome Annotation
Panther

Mouse Phenome Database
Eumorphia

Mouse Tumor Biology Database
German Mouse Clinic

http://www.ensembl.org/Mus_musculus/index.html

http://www.ncbi.nlm.nih.gov/mapview
http://genome.ucsc.edu/cgi-bin/hgGateway
http://www.informatics.jax.org
http://vega.sanger.ac.uk/index.html
http://pantherdb.org
http://www.jax.org/phenome
http://www.eumorphia.org
http://tumor.informatics.jax.org
http://www.gsf.de/ieg/gmc

Pathways analysis

Ingenuity
GenMAPP
KEGG Pathway Database

http://www.ingenuity.com
http://www.genmapp.org
http://www.genome.jp/kegg/pathway.html

SNP databases

Roche
GNF

http://mousesnp.roche.com
http://snp.gnf.org
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SNP databases (continued)

NCBI
Mouse Phenome Database

Mouse Genome Informatics Database
Perlegen

Wellcome Trust Centre for Human
Genetics

Broad Institute

http://www.ncbi.nIm.nih.gov/SNP
http://aretha.jax.org/pub-
cgi/phenome/mpdcgi?rtn=snps/door
http://www.informatics.jax.org/menus/strain_menu.shtml
http://mouse.perlegen.com/mouse

http://www.well.ox.ac.uk/mouse/INBREDS

http://www.broad.mit.edu/personal/claire/MouseHapMap/
Inbred.htm

Expression databases

GNF SymAtlas
Institute for Genomic Research
Gene Expression Omnibus

The Jackson Laboratory

Brain Atlas
GenSat

EMAGE

http://symatlas.gnf.org
http://pga.tigr.org
http://www.ncbi.nlm.nih.gov/geo

http://www.informatics.jax.org/menus/expression_menu.
shtml

http://www.brainatlas.org
http://www.gensat.org/index.html

http://genex.hgu.mrc.ac.uk/Emage/database/emagelntro.
html

Comparative genomics

VISTA
Mouse Genome Informatics Database

Rat Genome Database

http://genome.lbl.gov/vista/index.shtml

http://www.informatics.jax.org/menus/homology_menu.s
html

http://www.rgd.mcw.edu/VCMAP/mapview.shtml

Quantitative traits analysis

The Jackson Laboratory, Churchill
Laboratory

R/qtl

Web/QTL

The Jackson Laboratory PGA
The Complex Trait Consortium

http://www.jax.org/staff/churchill/labsite

http://www.biostat.jhsph.edu/~kbroman/qtl
http://www.genenetwork.org/home.html
http://pga.jax.org/resources/index.html
http:://www.complextrait.org

* Members are: BayGenomics (USA), Centre for Modelling Human Disease (Toronto, Canada),
Embryonic Stem Cell Database (University of Manitoba, Canada), Exchangeable Gene Trap Clones
(Kumamoto University, Japan), German Gene Trap Consortium (Germany), Sanger Institute Gene
Trap Resource (Cambridge, UK), Soriano Lab Gene Trap Database (Fred Hutchinson Cancer
Research Center, Seattle, USA), TIGEM-IRBM Gene Trap (Naples, Italy). £ Database of Cre-
expressing strains. GNF, Genomics Institute of the Novartis Research Foundation; NCBI, National
Center for Biotechnology information; UCSC, University of California at Santa Cruz.
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Figure 1-1. Number of microarray publications per year from 1995 to 2010 based on

the PubMed Search, “microarray AND gene AND expression”.
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ABSTRACT

The use of mouse blood as a model for human blood is often considered in
the development of clinically relevant, gene expression-based disease biomarkers.
However, the ability to derive biologically meaningful insights from microarray-based
gene expression patterns in mouse whole blood, as in human whole blood, is
hindered by high levels of globin mMRNA. In order to characterize the effects of globin
reduction on gene expression of peripheral mouse blood, we performed gene set
enrichment analysis on genes identified as expressed in blood via microarray-based
genome-wide transcriptome analysis. Depletion of globin mRNA enhanced the
quality of microarray data as shown by improved gene expression detection and
increased sensitivity. Compared to genes expressed in whole blood, genes detected
as expressed in blood following globin reduction were enriched for low abundance
transcripts implicated in many biological pathways, including development, g-protein
signaling, and immune response. Broadly, globin reduction resulted in improved
detection of expressed genes that serve as molecular binding proteins and enzymes
in cellular metabolism, intracellular transport/localization, transcription, and
translation, as well as genes that could potentially act as biomarkers for diseases
such as schizophrenia. These significantly enriched pathways overlap considerably
with those identified in globin reduced human blood suggesting that globin-reduced
mouse blood gene expression studies may be useful for identifying genes relevant to
human disease. Overall, the results of this investigation provide a better
understanding of the impact of reducing globin transcripts in mouse blood and
highlight the potential of microarray-based, globin-reduced, mouse blood gene

expression studies in biomarker development.
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INTRODUCTION

Microarray-based gene expression profiling is a frequently used and powerful
tool in the search for molecular ‘fingerprints’ of specific diseases and thus the
development of clinically relevant biomarkers for those diseases. For example,
seminal investigations have considered the use of large-scale gene expression
analyses to classify disease states (Alizadeh et al. 2000; Dyrskjot et al. 2003; Golub
et al. 1999), develop diagnostic and prognostic gene profiles (Mirnics et al. 2000; van
't Veer et al. 2002; Welsh et al. 2001), and characterize transcriptomic fingerprints of
drug efficacy and toxicity (Gunther et al. 2003). While many of these landmark
studies relied heavily on primary tissue samples, recent investigations have focused
on peripheral blood, a more accessible tissue (Chao et al. 2008; Coppola et al. 2008;
Glatt et al. 2005; Le-Niculescu et al. 2008; Miller et al. 2007; Wang et al. 2005).
Aside from being relatively easy to obtain, many of the physiological characteristics of
blood cells suggest that peripheral blood gene expression is a reasonable surrogate
for specific primary tissue gene expression and hence can be used in the
development of clinically meaningful expression-based biomarkers for diseases
whose molecular ‘lesions’ are associated with particular non-blood primary tissues
(Liew et al. 2006; Fan and Hegde 2005; Mohr and Liew 2007).

One limitation of current studies designed to correlate blood gene expression
patterns to primary tissue gene expression patterns is that blood and tissue samples
are often not collected from the same set of individuals (Glatt et al. 2005; Liew et al.
2006; Solmi et al. 2006; Sullivan et al. 2006). The use of independent sources of
blood and non-blood tissue gene expression information limits interpretability and

generalizability of relevant studies and calls into question any putative blood-based
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gene expression biomarker panel for the diagnosis and treatment of a disease whose
primary lesions are not in blood. Nonetheless, it is often too difficult or even
impossible to obtain blood and primary tissue samples from the same living
individuals. The mouse provides one possible solution to this dilemma.

Unlike human subjects, blood and primary tissue samples can be easily
collected from the same living mouse under highly controlled conditions. Intra- and
inter-individual variation introduced by gender, age, time of day, genetic variation, and
environment can be reduced in such studies (Leonardson et al. 2010; Cobb et al.
2005; Radich et al. 2004; Whitney et al. 2003), while clinically acceptable and highly
standardized protocols for blood collection, RNA isolation, and globin reduction can
be employed to lessen technical, assay-induced variation (Cobb et al. 2005; Debey et
al. 2004; Debey et al. 2006). In addition, the fact that many different isogenic strains
of mice exist suggests that, given the clone-like nature of the mice within such strains,
it is possible to sample expression patterns in different tissues from different
individuals within particular strains and test the expression patterns for consistencies
as though they were obtained from the same individuals.

It is known that high levels of globin transcripts in the blood can confound the
accurate assessment of the expression levels of genes in the blood (Wu et al. 2007),
as globin mRNA represents up to 70% of the total expressed transcripts and
consequently limits the ability to accurately detect genes expressed at low levels in
the blood. Thus, globin reduction is often considered a necessary step in the
evaluation of whole blood gene expression profiles via microarrays. GLOBINclear™,
a commercially available globin reduction protocol, has been shown to improve gene

expression detection sensitivity, remove upwards of 95% of alpha- and beta-globin
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mRNA, and diminish globin-specific expression patterns in human whole blood
samples (Field et al. 2007; Liu et al. 2006; Whitley et al. 2005; Wright et al. 2008).
GLOBINclear™ is also advantageous for mouse studies in that it has been
specifically developed for the mouse (Whitley et al. 2007).

In this paper we describe a study designed to: 1. evaluate and characterize
the effects of globin reduction on whole blood gene expression in different mouse
strains; 2. determine which pathways are enriched for genes that appear to be heavily
influenced by the confounding or masking effects of globin in the blood; and 3. assess
the utility of globin-reduced mouse whole blood in the identification of potential

biomarkers of human disease.

MATERIALS AND METHODS
Sample Collection

All animal procedures were performed according to protocols approved by the
University of California, San Diego Institutional Animal Care and Use Committee.
Seven-week-old male mice were purchased from The Jackson Laboratory (Bar
Harbor, ME, USA) (129S1/SvimJ, A/J, C57BL/6J, C3H/Hed, DBA/2J, and FVB/NJ)
and individually housed for 1 week prior to blood collection. All mice were
anesthetized using isoflurane in a fume hood and whole blood collected via cardiac
puncture. The blood was transferred to an EDTA tube and then Trizol LS reagent
immediately added (3:1 Trizol:blood) creating a solution in a 15 ml tube that was

stored at -80°C for no more than two weeks.

Processing and Globin Reduction
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The extraction of total RNA from the blood was performed using the TRIzol
reagent (Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s instructions.
Total RNA quantity and quality was assessed by spectrophotometer and the Agilent
nano RNA chip. Alpha and beta globin mRNA were reduced from a portion of the total
RNA samples using the GLOBINclear™ Mouse/Rat kit (Ambion, Austin, TX, USA)
according to the manufacturer’s instructions with the recommended start quantity of

10 pg of total RNA.

Sample Amplification and Microarray Analysis

Gene expression analysis was performed on all whole blood RNA and globin-
depleted samples using Mouse 430 2.0 arrays (Affymetrix, Santa Clara, CA, USA)
containing 45,101 probe sets. Sample labeling, hybridization, and scanning were
performed as previously described (Zapala et al. 2005). Three biological replicate
samples from independent mice were prepared for each strain for a total of 18 mice.
All raw data is available on the NCBI Gene Expression Omnibus

(http://www.ncbi.nlm.nih.gov/geo, GSE19282).

Data Analysis

Data processing and analysis was performed using R (http://www.R-
project.org) and Bioconductor (http://www.bioconductor.org) (Gentleman et al. 2004).
Array images were visually scanned for artifacts while quality control reports
(affyQCReport) (Parman and Halling 2008) were assessed and determined to be
acceptable under Affymetrix guidelines (Affymetrix). MASS5 detection calls were

obtained using the Bioconductor affy package (Gautier et al. 2004). MAS5 detection
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calls are used to determine whether a particular probe set is detected above
background. Only probe sets called present (detection p < 0.05) were utilized for
analysis. The associated false discovery rate (Benjamini and Hochberg 1995) for a
detection p-value of 0.05 was 28.9 + 11.3 percent over all arrays. To accommodate
for false discoveries, probe sets were filtered for those present across all whole blood
or globin-reduced samples prior to gene set enrichment analysis (McClintick and

Endenberg 2006).

Gene Set Enrichment Analysis

Probe sets that were present in all 18 samples were assigned to two
categories (whole blood RNA or globin-reduced RNA) (See Supplementary Materials
Table 2-S1 and 2-S2) and imported into MetaCore (http://www.genego.com) for
enrichment analysis in GeneGO Pathway Maps, GeneGO Diseases (by Biomarkers),
GO Processes, and GO Molecular Functions. GeneGO Pathway Maps represent a
set of genes participating in a consecutive set of metabolic signals, or metabolic
transformations, confirmed as a whole by experimental data or by inferred
relationships. GeneGO Diseases (by Biomarkers) are groups of genes implicated in
certain diseases based on classifications in Medical Subject Headings
(http://www.nlm.nih.gov/mesh/). The list of genes represented on the Affymetrix
Mouse 430 2.0 array was used as a base gene list when calculating p-values in the
MetaCore enrichment procedures. MetaCore uses a hypergeometric model to

determine the significance of enrichment (Falcon and Gentleman 2007).
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Comparison to Human Whole Blood Gene Expression and Tissue Gene
Expression

For mouse and human whole blood gene expression comparisons, raw
human whole blood gene expression data were downloaded from the Gene
Expression Omnibus (GSE2888, GSE 16728). MASS5 calls were obtained as outlined
above and filtered for orthologous probe sets present in = 80 percent of globin-
reduced samples for each study individually. Orthologous genes and their associated
Affymetrix probe sets were identified using Ensembl Biomart
(http://www.www.ensembl.org/biomart). Filtered probe set lists (See Supplementary
Materials Table 2-S3) were imported into MetaCore and tested for enrichment in
GeneGO Pathway Maps. The list of genes represented on the Affymetrix HG U133A
array was used as a base gene list when calculating p-values in the MetaCore

enrichment procedures for GSE2888 and GSE16728.

RESULTS
Probe Detection and Microarray Sensitivity Following Globin Reduction
Consistent with previously published study results, reduction of globin mRNA
in mouse whole blood resulted in a consistent increase in the number of probe sets
detected and improved microarray sensitivity, particularly for low abundance genes.
The average number of present calls in globin reduced samples was 12411 + 1904
compared to 5840 + 944 in untreated samples (Figure 2-1), while 5383 probe sets
were present across all samples following globin reduction in contrast to 1791 present
probe sets in whole blood RNA. Of the probe sets present across all arrays

(n=5400), 3609 probe sets were unique to globin-reduced RNA, 17 to whole blood
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RNA, and 1774 were common to both whole and globin-reduced RNA. Greater than
1/3 of all probe sets present only in globin-reduced RNA were ranked among the
bottom 25 percent of all detectable probe sets, while less than 4 percent were among
the top 25 percent (Table 2-1). In contrast, 2/3 of the probe sets detected in both
whole blood and globin-reduced blood RNA were among the highest 25 percent.
Again, this suggests globin reduction has a greater influence on the ability to detect
genes expressed at low levels in whole blood and supports the idea that high levels

of globin mRNA decrease detection sensitivity.

Gene Set Enrichment Analysis of Consistently Present Probe Sets in Whole and
Globin-Reduced RNA

In order to evaluate the potential of expression profiles generated from globin-
reduced mouse blood as compared to whole mouse blood, probe sets detected as
present across all samples in whole blood RNA (n=1791; See Supplementary
Materials Table 2-S1) and globin-reduced RNA (n=5383; See Supplementary
Materials Table 2-S2) were imported into MetaCore for gene set enrichment analysis.
Globin reduction increased the ability to detect genes in peripheral whole blood
involved in a variety of different biological pathways, most notably development, g-
protein signaling, and immune response (Figure 2-2). In total, the number of
significantly enriched (p < 0.001) GeneGO Pathway Maps increased from 43 in whole
blood samples to 107 in globin-reduced samples. Globin-reduced samples were
similarly enriched for GO biological processes and molecular functions (See
Supplementary Materials Figure 2-S1 and 2-S2) including processes and molecular

functions previously described as enriched in globin reduced human blood. This
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indicates that the globin expression signal significantly weakens the ability to detect
the expression levels of many genes interrogated on microarrays, not necessarily due
to some biological connection with globin’s involvement in particular biological
processes, but rather by virtue of their globin-relative signal strength detectable via
chip-based multi-probe hybridization. The genes that happen to be affected by this
phenomenon collectively participate in a number of biologically meaningful functions
and processes. Thus, studies that do not reduce globin yet investigate mouse blood
gene expression as a way of understanding disease processes are likely to fail to
implicate many important genes since their expression levels are masked by globin.
The ability to detect genes previously implicated in disease was also
significantly improved following globin reduction. In general, both whole blood and
globin-reduced blood RNA were significantly enriched for genes associated with
diseases involving all cell types found in peripheral blood including
thrombocytes/platelets (thrombocytopenia), erythrocytes (anemia), myelocytes
(myeloid leukemia), and lymphocytes (lymphoma) (Table 2-2, See Supplementary
Materials Table 2-S4 & 2-S5). Most importantly, the average potential to identify
expression levels of genes involved in a given disease or biological network more
than doubled following globin-reduction as seen by the proportion of disease
biomarkers or disease-associated genes identified as present. To test whether the
removal of globin transcripts has a statistically significant effect on the proportion of
genes identified, significantly enriched GeneGO Diseases (p < 0.05) in either whole
blood RNA or globin-reduced RNA were assessed by McNemar test. For the majority
of significantly enriched disease networks, the reduction of globin transcripts

significantly improved the ability to identify biomarkers of disease (data not shown),
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including a variety of non-hematologic based diseases including neuromuscular

diseases, neurodegenerative diseases and chromosome aberrations (Table 2-3).

Comparisons to Human Whole Blood

In order to evaluate the relevance of mouse blood gene expression to human
blood gene expression profiles, the results of our mouse expression study were
compared to two human studies by gene set enrichment analysis (Lu et al. 2009)
(GSE2888; GSE16728) (Table 2-4). Of the 325 statistically significantly enriched
GeneGO Pathway Maps (p < 0.001), 233 were significantly enriched in our mouse
study and the two human studies (Figure 2-3) and include 97 of the 107 pathways
found to be significant after globin reduction of mouse whole blood RNA, including the
development and immune response pathways. Although these results are not
completely definitive due to differences in protocols used across each study, including
different globin reduction methods, the number of samples, and microarray designs,
the overlap in significantly enriched pathway categories suggests genes expressed in

mouse peripheral blood reflect those expressed in human blood.

DISCUSSION

Our analysis of the effects of globin reduction on mouse whole blood-derived
total RNA confirms the previously observed increase in expression detection
sensitivity and overall detection rate in both humans and mice (Field et al. 2007;
Whitley et al. 2007; Whitley et al. 2005), and further emphasizes the importance of
globin reduction in evaluating biologically significant pathways and disease processes

in mouse models. Gene set enrichment analysis also indicates globin-reduced
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mouse blood RNA is a reasonable and practical model for the study of blood-based
gene expression correlates of human disease, as biological pathways significantly
enriched in globin-reduced mouse and human blood overlap considerably.

However, globin reduction may not always be beneficial or necessary in
certain disease contexts. Our results suggest that globin-reduction appears to have
little effect on the ability to detect certain classes of biological pathways (Figure 2-2),
while a small number of genes significantly decrease in expression or fall below the
limits of detection following globin reduction, as noted in previous studies (Field et al.
2007). A BLAST search did not identify significant homology between the 17 probe
sets whose expression level-based presence was unique to whole blood RNA
samples or the globin gene family, suggesting that these probe sets are not
specifically removed during globin reduction but rather decrease in expression due to
a slight decline in RNA quality (Vartanian et al. 2009) or other non-specific effects.
Nonetheless, these findings indicate that globin-reduced, peripheral blood-based
gene expression profiling of relevant mouse models may reveal unique patterns of
gene expression relevant to human disease and aid in the discovery of clinically

significant biomarkers.
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TABLES

Table 2-1. Distribution of probe sets detected in: 1.) globin-reduced samples only; 2.)
whole blood samples only; or 3.) both whole and globin-reduced samples across all
detectable probes (n = 5400). Detectable probes were ranked according to their

average, normalized expression intensities in both whole and globin-reduced RNA.

Globin Reduced Only Whole Blood Only Common
(Total = 3609) (Total = 17) (Total = 1774)
Globin Globin Globin
Whole Whole Whole
Reduced Reduced Reduced
Blood RNA RNA Blood RNA RNA Blood RNA RNA
<5% 264 256 3 9 3 5
5-25% 1063 1050 2 4 15 26
25 -50% 1269 1242 2 2 79 106
50 —75% 878 899 4 2 468 449
75— 95% 135 162 5 0 940 918
>95% 0 0 1 0 269 270
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Table 2-2. Top 25 statistically significant GeneGO diseases categories in globin-
reduced mouse blood RNA as compared to whole blood RNA. Network objects
represent the proportion of disease-associated genes (biomarkers) identified per
disease category with the denominator representing the number of objects assayed

by the Affymetrix Mouse 430 2.0 array.

Whole Blood RNA Globin Reduced RNA
. . Network " Network "

GeneGO Disease (by Biomarker) Objects p-value Objects p-value
Hemic and Lymphatic Diseases 251/1927 5.75x10™° 597/1927 1.02x10™"
Hematologic Diseases 195/1316 1.21x10™" 424/1316 1.04x107™"°
Neoplasms 626/5827 3.45x10™° 1571/5827 4.24x10™"°
Anemia 73/344 2.24x10™" 135/344 2.25x10
Bone Marrow Diseases 114/748 1.25x10""" 256/748 2.60x10™°
Spherocytosis, Hereditary 9/13 3.16x10"" 13/13 1.50x10%
Tay-Sachs Disease 8/11 8.45x10""" 11/11 2.40x10°"
Gangliosidoses 8/13 5.53x10™%° 12/13 5.99x10"
Anemia, Hemolytic, Congenital 40/153 1.81x10%° 66/153 6.44x10""
Myelodysplastic Syndromes 89/630 7.19x10%° 210/630 7.85x10""

*GeneGO hypergeometric model
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Table 2-3. Non-hematologic based diseases with a significantly improved proportion
of gene expression levels detected in globin-reduced mouse blood RNA as compared
to whole mouse blood RNA. All diseases are significantly enriched with a GeneGO
hypergeometric p-value < 0.05 in whole or globin-reduced blood RNA samples.
Network objects represent the proportion of disease-associated genes identified per
disease category with the denominator representing the number of objects assayed

by the Affymetrix Mouse 430 2.0 array.

Whole Blood Globin-reduced

GeneGO Disease (by Biomarkers) Network Objects Network Objects p-value*
Alzheimer Disease 87/721 194/721 <2.20x10°"®
Amyotrophic Lateral Sclerosis 19/167 54/167 9.08x10°
Cerebellar Ataxia 3/32 13/32 4.43x10°
Dementia 97/829 226/829 <2.20x10°"®
Down Syndrome 21/133 41/133 2.15x10°
Muscle Hypertonia 5/48 21/48 1.77x10™
Neurodegenerative Diseases 161/1289 354/1289 <2.20x107°
Ophthalmoplegia 1/34 12/34 2.57x10°
Parkinson Disease 38/283 64/283 9.44x107
Schizophrenia 106/752 208/752 <2.20x10°™"®

*McNemar Test comparing the proportion of network objects identified before and after globin-
reduction.
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Figure 2-1. Box plots of present calls in whole blood RNA and globin-reduced blood
RNA samples. The boxes represent the lower quartile through the upper quartile,
while the whiskers extend to 1.5 times the interquartile range. Open circles denote
outliers. A bold line denotes the median. WB — whole blood RNA. GR — globin-

reduced blood RNA.



52

Apoptosis and survival Whole Blood
Blood coagulation B GLOBINclear
Cell adhesion
Chemotaxis

Cytoskeleton remodeling

Development

G-protein signaling

Immune response

Inhibitory action of Lipoxins on neutrophil migration
Mechanisms of CFTR activation by S-nitrosoglutathione (normal and CF)
Muscle contraction

Neurophysiological process

NGF activation of NF-kB

Oxidative phosphorylation

Oxidative stress

Proteolysis

Regulation of CFTR activity (norm and CF)

Regulation of degradation of deltaF508 CFTR in CF

Regulation of degradation of wt-CFTR

Regulation of lipid metabolism

Signal transduction

Transcription

Translation

Transport

Ubiquinone metabolism

WtCFTR and delta508 traffic / Clathrin coated vesicles formation (norm and CF)
wtCFTR and delta508-CFTR traffic / Generic schema (norm and CF)

GeneGO Pathway Category

T lll"" P | ‘ ||| |

T T T 1
5 10 15 20 25

o —

Number of Significant GeneGO Pathways (p<0.001)

Figure 2-2. Number of significantly enriched GeneGO Pathways Maps at a threshold
of p £ 0.001 in mouse whole blood RNA (gray) and globin-reduced RNA (black). The
associated false discovery rate is less than 0.01 for a p-value threshold less than or

equal to 0.001.
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Figure 2-3. Venn diagram comparing significant GeneGO Pathway Maps (p < 0.001)
enriched in globin-reduced mouse RNA and globin-reduced human (GSE2888 and
GSE16728) RNA. The associated false discovery rate is approximately 0.01 for a p-

value threshold less than or equal to 0.001.
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INTRODUCTION

The development of genomic biomarkers for neural-based diseases is
hampered by the inability to collect neural tissue from living, human subjects. In order
to overcome this limitation, many microarray-based gene expression studies utilize
blood as the tissue source (Alter et al. 2011; Takahashi et al. 2010; Scherzer et al.
2007). Despite the increased use of blood (i.e. whole blood, lymphocytes, PBMCs,
leukocytes, lymphoblastoid cell lines), it is unknown to what extent the results from
these studies yield viable biomarker candidates for the diagnosis of neural-based
disease or whether what blood cell-type or types most accurately reflect neural-based
disease associated gene expression profiles. Whole blood has been touted as the
ideal tissue source because it requires less technical processing and is believed to
more directly reflect true gene expression levels at the time of sample collection (Fan
and Hegde 2005). Recent studies also suggest whole blood is more amenable to long
term RNA storage than other blood-derived cells such as PBMCs (Debey-Pascher et
al. 2011). On the other hand, whole blood is a very heterogeneous tissue composed
of a variety of cell types, which may or may not hinder the ability to reliably and/or
accurately measure gene expression levels using high throughput microarray
techniques. For example, the large number of reticulocytes found in whole blood
samples lead to high levels of globin gene expression. The relatively high level of
globin gene expression hampers microarray-based gene expression results thus
requiring the need for further processing via globin reduction prior to microarray
processing (Winn et al. 2010, Field et al. 2007). Furthermore, the cell types found in
whole blood may respond to or reflect primary molecular disturbance of disease

synergistically or in opposite directions thus mitigating true disturbance in disease-
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associated gene expression profiles. Blood gene expression is also highly susceptible
to time of day (Sukumaran et al. 2010; Whitney et al. 2003), diet (Leonardson et al.
2010), and other sources of intra- and inter-individual variability. Given the natural
and technically induced variation associated with microarray-based gene expression
profiling of peripheral whole blood along with its relative popularity in studying neural-
based disease, it is necessary that we have a better understanding of its ability to
accurately and reliably reflect primary perturbations in neural tissue.

There are few studies aimed at understanding the correlation of disease
associated gene expression candidates in blood and disease associated gene
expression candidates in brain (Cai et al. 2010; Davies et al. 2009; Jasinska et al.
2009). Davies et al. and Jasinska et al. highlight the potential of blood-based gene
expression using mouse and vervet monkey models, respectively, while Cai et al. are
less optimistic about the ability of blood to identify neural-based disease associated
genes in humans. In an attempt to further our understanding of the overlap between
blood and brain, we conducted gene expression studies on blood and 5 refined brain
regions from 6 widely used inbred mouse strains. Correlations between variation in
gene expression and variation in behavioral phenotypes were pursued and the results
from these gene expression studies used to assess the validity of blood as a
surrogate for brain tissue and possibly generate candidate genes for human studies.

The ultimate motivation for the choice of mouse strains analyzed in this study
is the frequency with which the strains are used and the availability of historical
phenotypic information on the strains. Strains were selected that represent
phenotypic extremes of the neuropsychiatric phenotypes of interest to our research

group (Table 3-1) as well as strains that are genealogically closely related but differ
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with regard to some key behaviors. These strains include the inbred strains
previously studied by us (129S6/SvimJ or 129SvEvTac, A/J, C57BL/6J, C3H/H3J,
DBA/2J, and FVB/NJ) and used by others to create the BxD RI strains utilized by
WebQTL (C57BL/6J and DBA/2J; Wang et al. 2003), consomic strains by Singer et
al. (A/\dJ and C57BL/6J), background strains for most knockout, transgenic, and
genetrap models as well as chemically induced mutants (several 129 strains,
C57BL/6J, DBA/2J, FVB/NJ, CBA/J), and most of the strains used by the eight-way
RI strains of the Collaborative Cross (C57BL/6J, A/J, 129S1/SvimJ, NOD/LtJ,
NZO/HILtj, CAST/EiJ, PWD/PhJ, WSB/EiJ) (Churchill et al. 2004).

The anatomical brain regions that regulate various neuropsychiatric traits are
fairly well understood, particularly fear and anxiety, even though the molecular
mechanisms remain to be determined. Correspondingly, previous studies in our lab
show that it is very important to dissect small enough anatomical structures for gene
expression analysis of brain-related phenotypes (Zapala et al. 2005, Hovatta et al.
2007, Hovatta et al. 2005). These previously employed brain regions for gene
expression profiling include bed nucleus of stria terminalis (BNST), hippocampus,
hypothalamus, periaqueductal gray (PAG), and pituitary gland. They were chosen for
their roles in several neuropsychiatric phenotypes: prepulse inhibition, fear-
potentiated startle, and anxiety.

Prepulse inhibition (PPI) is a measure of sensorimotor gating that is reduced
in patients with some neuropsychiatric disorders, such as schizophrenia and
obsessive-compulsive disorder (Braff et al. 2001). Neural circuits that regulate PPI
have been intensively studied in rats, and it has been shown that regions such as the

hippocampus, prefrontal cortex, basolateral amygdala, nucleus accumbens, striatum,
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ventral tegmental area, ventral pallidum, globus pallidus, substantia nigra, thalamus,
pedunculopontine nucleus, and the colliculi are implicated in the regulation of PPI
(reviewed in Swerdlow et al. 2001). In this study we concentrate the gene expression
profiling effort on the hippocampus as this brain region is amenable to hand
dissection under a dissection microscope and enough total RNA can be obtained for
gene expression profiling without the need for amplification.

Brain regions that regulate aspects of anxiety are also fairly well known.
Hippocampus was chosen because studies of the behavioral effects of anxiolytic
drugs used to treat human anxiety disorders including benzodiazepines, barbiturates,
and selective serotonin re-uptake inhibitors suggest that anxiety is related to the
septo-hippocampal system (Gray and McNaughton 2000). Using electrical stimulation
of the brain it is possible to elicit escape behavior or defensive aggression in animals
by stimulating the medial hypothalamus (Panksepp 1982), which controls the
autonomic aspects of anxiety as well. BNST has been shown to play a role in
anxiety-related processes (Somerville et al. 2010) and known to serve as a relay
between the limbic system and the hypothalamic—pituitary—adrenal axis, a key
regulator in response to stress (Choi et al. 2007). Fear-potentiated startle, a measure
of conditioned fear and a well-studied phenotype in the context of anxiety (Davis et al.
1993), has been shown to be blocked by chemical lesions of the PAG (Fendt et al.

1996).

METHODS
The data sets employed here were previously described (Winn et al. 2010,

Hovatta et al. 2007). 10 mice per strain were used for the assessment of the
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behavioral phenotypes: anxiety-like behavior (light-dark box and open field test), fear
potentiated startle, and prepulse inhibition; 3 mice per strain were used for the
assessment of blood gene expression profiles; 2 mice per strain were used for the
assessment of neural tissue gene expression profiles. As behavioral testing and brain
gene expression were collected earlier (Hovatta et al. 2007, Hovatta et al. 2005),
different animals were used for blood gene expression profiling (Winn et al. 2010).
This approach is appropriate for several reasons. First, behavioral testing of animals
is likely to change their brain gene expression levels. If we first measure the behavior
of an animal, the brain and blood gene expression pattern is altered and
consequently we cannot reliably measure the baseline gene expression levels. The
reciprocal is likely also true due to stress induced by blood collection procedures.
Second, a key component of our approach is based on the analysis of multiple inbred
strains. Because each animal within an inbred strain is genetically identical,
measurements from any individual of the same sex and age handled similarly is
meaningful (and could be considered a repeated measure), thus abrogating the need
to perform different types of analyses on a single animal and risking altering the

baseline gene expression patterns.

Blood Sample Collection

All animal procedures were performed according to protocols approved by the
University of California, San Diego Institutional Animal Care and Use Committee.
Seven-week-old male mice were purchased from The Jackson Laboratory (Bar
Harbor, ME, USA) (129S1/SvimJ, A/J, C57BL/6J, C3H/HedJ, DBA/2J, and FVB/NJ)

and individually housed for 1 week prior to blood collection. All mice were
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anesthetized using isoflurane in a fume hood and whole blood collected via cardiac
puncture. The blood was transferred to an EDTA tube and then Trizol LS reagent
immediately added (3:1 Trizol:blood) creating a solution in a 15 ml tube that was

stored at -80°C for no more than two weeks.

Blood Sample Processing and Globin Reduction

The extraction of total RNA from the blood was performed using the TRIzol
reagent (Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s instructions.
Total RNA quantity and quality was assessed by spectrophotometer and the Agilent
nano RNA chip. Alpha and beta globin mRNA were reduced from a portion of the total
RNA samples using the GLOBINclear™ Mouse/Rat kit (Ambion, Austin, TX, USA)
according to the manufacturer’s instructions with the recommended start quantity of

10 pg of total RNA.

Brain Sample Collection and RNA Processing

All animal procedures were performed according to protocols approved by the
Salk Institute for Biological Studies Institutional Animal Care and Use Committee.
Seven-week-old male inbred mice were received from the Jackson Laboratory (Bar
Harbor, ME, USA) (A/J, C3H/Hed, C57BL/6J, DBA/2J, and FVB/NJ) or from Taconic
Farms (Germantown, NY, USA) (129S6/SvEvTac) and individually housed for 1 week
before dissections were conducted. All brain dissections were done between 11:00
and 17:00 hours on a petri dish filled with ice using a dissection microscope. The
dissected brain regions for gene expression analysis included hypothalamus (Hypo),

hippocampus (Hippo), pituitary gland (Pit), periaqueductal gray (PAG), and bed
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nucleus of the stria terminalis (BNST). Hippocampus samples were directly frozen on
dry ice and stored at -80°C. The smaller brain structures were collected in RNA Later
buffer (Ambion, Austin, TX, USA) and samples from two to five animals were pooled
and stored at -80°C. At least two independent replicate samples for each strain and
brain region using independent animals were dissected. If samples were pooled, at
least two independent pools were collected. The extraction of total RNA from the
tissues was performed using the TRIzol reagent (Invitrogen, Carlsbad, CA, USA), in

accordance with the manufacturer's instructions.

Sample Amplification and Microarray Hybridization

Gene expression analysis was performed on all globin-depleted blood
samples and brain tissue samples using Mouse 430 2.0 arrays (Affymetrix, Santa
Clara, CA, USA) containing 45,101 probe sets. Sample labeling, hybridization, and
scanning were performed as previously described (Zapala et al. 2005). For blood
samples, three biological replicate samples from independent mice were prepared for
each strain for a total of 18 mice. For brain tissue samples, two replicate samples
from independent animals were prepared for each strain and each tissue (analysis of

BNST for C3H/HedJ was performed in triplicate).

Microarray Data Processing and Analysis

Data processing and analysis was performed using R (http://www.R-
project.org) and Bioconductor (http://www.bioconductor.org) (Gentleman et al. 2004).
Array images were visually scanned for artifacts while quality control reports

(affyQCReport) (Parman and Halling 2008) were assessed and determined to be
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acceptable under Affymetrix guidelines (Affymetrix). Raw expression values for each
set of tissue-specific microarrays were individually GCRMA normalized via the
Bioconductor gcrma package (Wu et al. 2004). MAS5 detection calls were obtained
using the Bioconductor affy package (Gautier et al. 2004). MASS5 detection calls are
used to determine whether a particular probe set is detected above background.
Only probe sets called present in 2 out 3 blood samples per strain or 2 out 2 brain
tissue samples per strain were utilized for analysis (Table 3-2).

In order to address hybridization artifacts due to strain-specific differences,
GeSNP (http://porifera.ucsd.edu/~cabney/cgi-bin/geSNP.cgi) was used to identify
possible sequence differences between strains (Greenhall et al. 2007). ldentified
probes were removed from the chip description file (cdf) prior to normalization and

MASS calling.

Statistical Data Analysis

Multivariate distance matrix regression (MDMR) was used to assess the
proportion of variance explained by strain, tissue source (brain) or cell counts (blood),
and individual mouse (http://polymorphism.scripps.edu/~cabney/cgi-bin/mmr.cgi)
(Zapala et al. 2006). MDMR correlation analyses compare phenotype data to gene
expression data in order to identify genes whose expression mirrors the phenotypic
differences across inbred strains. Blood cell counts were collected from the Mouse
Phenome Database (http://phenome.jax.org/) (Table 3-3). We used hierarchical
clustering, as performed in R, to assess: 1.) the relationship between microarray gene
expression profiles across the 6 strains in the 6 tissues, 2.) the relationship between

microarray gene expression profiles across genes displaying a strain-specific effect in
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blood, and 3.) the expression patterns of genes significantly associated with
behavioral phenotypes in brain and one or more of the neural tissues. Gene
expression profiles from each tissue were individually assessed by Bivariate
Correlated Errors Scatter Analysis (Akritas et al. 1996) to identify genes associated
with behavioral phenotypes. Bivariate Correlated Errors Scatter Analysis takes into
account error in the dependent and independent variable, in this case error
associated with the collection of the microarray gene expression profiles and the
behavioral phenotypes. Lastly, genes identified as significant by Bivariate Correlated
Errors Scatter Analysis were imported into MetaCore™ Gene Expression and

Pathway Analysis (version 5.0, St. Joseph, MI, USA) for gene network analysis.

Behavioral Tests

Each strain was assessed for anxiety and related phenotypes using the light-
dark box (LD), open field test (OF), fear potentiated startle (FPS), and prepulse
inhibition (PPI). Light-dark box variables studied included: time to emerge, latency to
emerge, time in dark, percent in dark, time in light, percent in light, and number of
transitions. The control phenotype, distance travelled in dark, was used as a
covariate for LD behavioral phenotypes. The control phenotype, distance travelled,
was used as a covariate for OF behavioral phenotypes. Covariates for FPS and PPI
included context, shock response, and startle. Locomotor activity served as a
negative control phenotype. Due to the high correlation between the behavioral
phenotypes (i.e. light-dark phenotypes and open field phenotypes) (Figure 3-1) and
no significant covariates as assessed by linear regression, statistical data analyses

were restricted to LD_% time in light, LD_% time in dark, FPS, and PPI.
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Open Field/Locomotor Activity

Each mouse was placed in the bottom, left hand corner of their respective
enclosure at the start of the test session. The movements of the mice were tracked
for 5-60 min, with data being stored in 5-min blocks, respectively (Polytrack digitizer
(San Diego Instruments). To analyze the locomotor data, an arbitrary maze was
created that consists of a center (20 x 20 cm; or 40 x 40 pixels), 4 corners (10 x 10
cm; or 20 x 20 pixels), and 4 rectangular areas along the walls (20 x 10 cm; or 40 x
20 pixels). Four dependent measures were calculated. To assess the overall amount
of locomotor activity, transitions between the 9 regions of the maze were counted.
The geometric patterns of locomotor activity was quantified by the spatial scaling
exponent, d, as described in detail elsewhere (Paulus and Geyer 1991). Briefly, the
spatial scaling exponent, d, quantifies the extent to which a sequence of movements
are along a straight line (d=1) or within a circumscribed area (d=2). The time spent in
the center (min) was also calculated as the primary variable used to quantify anxiety-
like responses. In addition, the mean duration per response was defined as the
average time (s) spent in the center during each entry into the center and was also
calculated to normalize for locomotor differences (for further details see Dulawa et al

1999; Ralph-Williams et al 2003; Ralph et al 2001).

Startle and Prepulse Inhibition Testing

Animals were always tested according to a pre-determined sequence that
counterbalances groups with respect to time of day and stabilimeter chamber.
Animals were brought to an adjacent room to the startle testing room 1 h before

testing, weighed, and placed in the stabilimeter at the appropriate time. A constant
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background noise of 65 dB was provided to avoid uncontrolled variations and to
enable comparable tests by other laboratories. For assessing PPl in mice, both
prepulse intensity (67 — 81 dB) and interstimulus interval (ISI) between (range from
20-1080 ms) prepulse to pulse onsets were varied (SR-LAB Startle System (SDI). A
short block of varied intensity startle stimuli (90, 105, 120 dB) were also included.
Prepulse stimuli were 20 ms in duration and startle stimuli were 40 ms in duration.
Unless otherwise specified, the ISI was 100 ms (onset-onset). All acoustic stimuli
were broadband, thereby avoiding complications due to standing waves associated
with sine wave tones of specific frequencies. A typical test session began with a 5-
min acclimation period, followed by 5 consecutive blocks of test trials. Blocks 1 and 5
consisted of 120 dB pulse alone trials (5 each). Block 2 consisted of 5 each of 90,
105, and 120 dB startle pulses in a pseudorandom order. Block 3 contained 5 each of
120 dB and 105 dB startle trials, 5 each of 120 dB startle pulse preceded 100 ms by
either a 69 or 73 dB prepulse, and 5 each of 105 dB startle pulse preceded 100 ms
by either a 69 or 73 dB prepulse. Block 4 contained 6 startle trials (120 dB pulse
alone) and 5 each of prepulse (73 dB preceding 120 dB pulse) trials with varied
prepulse- pulse onset intervals (ISI; 20, 50, 100, 200, 500 ms). “No stimulus” trials, in
which data are recorded without any stimuli were presented between each stimulus
trial. No prepulse-alone trials were required, because any potentially detectable
responses to the prepulse stimuli were recorded by the system during the ISI period.
The intertrial interval (ITl) between stimulus-containing trials ranged from 7-23 s with
an average of 15 s. Extensive details can be found elsewhere (Geyer and Dulawa

2003).
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Fear Potentiated Startle

Fear potentiated startle was assessed as described previously (Risbrough et
al 2009). Separated training and test sessions were used, with a training day
followed 24 hrs later by a testing day. All mice were exposed to 5 training and testing
days, with the 5" testing day providing the final assessment of FPS. During the
training session mice were exposed to 20 CS-US pairings (the CS was a combined
30 sec light and 80 dB 4 KHz tone ending with the 0.4 mA 0.5 s foot shock). During
the testing session mice were presented with 24 acoustic startle pulse trials (110 dB
startle pulse, 40 ms) with half of the pulses presented at the end of a CS presentation
(cue trials) and the other half presented with no CS (no cue trials). %Fear potentiated
startle was calculated as [(startle magnitude during Cue trial/Startle Magnitude during
No Cue Trial)*100]-100. Details can be found in Risbrough et al. 2009. Data used for

gene expression association was from the final test day after the 5th training session.

Home Cage Activity

The activity of the mice in their home cage was measured as a behavioral
control phenotype. Increased anxiety-like behavior is associated with lower activity in
the brightly lit open-field chamber. However, the activity of the animals in a home
cage is not associated with anxiety-like behavior. Different inbred strains differ with
regard to home cage activity (Carter et al. 2001), and the strain order for this
phenotype is different from the observed anxiety-related behavioral phenotype, and

the strain order for PPI (Willott et al. 2003).
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RESULTS
Influence of Strain, Cell Count, and Tissue Type on Gene Expression Profiles

To understand the effects of strain, blood cell counts, and tissue type on
natural variation in blood and neural tissues, we analyzed blood and brain gene
expression levels using MDMR. Each tissue type (blood and neural) was assessed
individually due to batch differences in the raw intensity levels unable to be
addressed by microarray pre-processing methods. Blood cell counts (Table 3-4) or
neural tissue (Table 3-5) explained the most significant portion of variance (HGB:
PVE = 0.317, p-value < 0.0001; PIT: PVE = 0.881, p-value < 0.0001). On average,
cell type explained the most variation in blood (0.1798) and neural tissue (0.2474)
followed by strain (0.1452, 0.0092) and individual (0.0588, 0.0167). The individuals
that explained the most variation in blood (S3, S7, and S17) were most often from the
strains that explained the most variation (S3 = 129Sv/ImJ; S7 = C57BL/6J; S17 =
FVB). In brain, individuals that explained the most variation were from the two tissues
that explained the most variation, pituitary and hippocampus. Overall, there was very
little difference between strains within each tissue type as demonstrated by
hierarchical clustering analyses (Figure 3-2) while the relationship between each
strain was not maintained across blood and/or neural tissue.

Next, we performed an analysis of variance (ANOVA) using blood gene
expression to identify strain-specific genes and to compare them to the previous brain
gene expression results reported by Hovatta et al. 478 probe sets (6.7% of the 7108
probe sets present in blood) displayed a significant (p < 0.01, q < 0.1) strain-specific
effect. To see if strain-specific effects in blood recapitulate known genetic

relationships between inbred mouse strains, we constructed a dendrogram of gene
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expression relatedness using the 478 strain-specific probe sets (Figure 3-3), which
was able to partially recapitulate strain relatedness as captured by Hovatta et al.
Specifically, a total of 36 strain-specific probe sets overlapped between blood and
brain (Table 3-6); 338 of the probe sets exhibiting strain-specific effects in blood
exhibited region-specific effects in brain. These data suggest that although genetic
differences between inbred mouse strains account for a portion of gene expression
differences in both blood and brain, blood-specific differences are more likely to
capture variation due to ‘secondary’ perturbations or other sources rather than the

primary neural insult.

Gene Expression-Behavioral Phenotype Correlations

We went on to evaluate the overlap between gene expression-behavioral
phenotype correlations in blood and brain employing Bivariate Correlated Errors
Scatter analysis to identify strain-specific expression patterns associated with anxiety.
Bivariate Correlated Error Scatter analysis takes into account the measurement error
associated with not only gene expression intensities but also behavioral phenotype
testing. As seen in Figure 3-4 and Figure 3-5, there was quite a bit of variance
associated with the collection of behavioral phenotypes. Nonetheless, significant
(p<0.05) anxiety-specific effects were identified in all 6 tissues (Table 3-7). None of
the probe sets were identified as significant across all 6 tissues. Only 1 probe set
(1425858 _at) was significant across blood and 3 neural tissues, while 30 other probe
sets were significant across blood and 1 or 2 neural tissues (Table 3-8). Closer

inspection of individual gene expression intensities (Figure 3-6) showed differences
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between the strains were often slight and not correlated in the same direction in blood
and brain.

Finally, pathway-level analyses were pursued to determine the extent to which
the genes associated with behavioral phenotypes in blood and brain are associated
with known biological pathways and diseases. First, GeneGo Pathway Maps enriched
among genes identified in blood were identified and evaluated in each neural tissue
(Table 3-9, Table 3-10, Table 3-11, and Table 3-12). Many pathways significantly
enriched in blood were significantly enriched in neural tissues (% Time in Dark = 6/18;
FPS = 13/16; % Time in Light = 12/24; PPI = 8/16). Those pathways identified in both
blood and brain included pathways involving apoptosis and survival, cell adhesion,
cell cycle, cytoskeleton remodeling, development, g-protein signaling, muscle
contraction, regulation of lipid metabolism, signal transduction, transcription, and
transport. Second, GeneGo Pathway Maps enriched among genes identified in neural
tissues were identified and evaluated in blood, specifically neurophysiological
pathways (Table 3-13). 19 neurophysiological pathways were significantly associated
with one or more behavioral phenotypes and significantly enriched in one or more
neural tissues. None of the pathways were significantly enriched in blood and only 5
of those 19 pathways contained 1 gene identified in blood (RHOA; 1437628_s_at).
Lastly, GeneGo Diseases (by Biomarker) enriched among genes identified in neural
tissues were identified and evaluated in blood (Table 3-14). In MetaCore, GeneGo
Diseases (by Biomarker) are organized into a hierarchical structure starting with
broad disease categories and moving down into specific diseases. The broad
category Psychiatry and Psychology and diseases falling under it were assessed

here. 25 diseases/disease categories were significantly identified in one or more
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behavioral phenotypes and one or more neural tissues. Although not significant, 18,
9, 10, and 11 Psychiatry and Pyschology genes were associated with % Time in
Dark, FPS, % Time in Light, and PPI, respectively, in blood. Only two diseases were
significantly associated with a behavioral phenotype in blood; Schizophrenia and
Schizophrenia and Disorders with Psychotic Features were associated with fear

potentiated startle (p = 0.0068 and 0.0069).

DISCUSSION

The relevance of blood-based gene expression biomarkers depends on the
strength of the correlation between gene expression levels in the blood and disease-
related phenotypes and/or gene expression levels in the primary tissue involved in
the pathogenesis of the disease. Here we assessed whole blood gene expression in
regards to anxiety-related phenotypes in mice and evaluated the ability of blood to
identify genes and pathways associated with anxiety-related phenotypes in neural
tissues. We demonstrate blood gene expression profiles only capture a very small
subset of genes associated with inbred mouse strains (1.6%) (Hovatta et al. 2007)
and behavioral phenotypes (0.6% on average) in neural tissue, while in regards to
neurophysiological pathways there was no overlap. This is likely due to a significant
difference in the number of probe sets detected as present between blood and neural
tissues (Table 3-2). Overall, 5153 genes were detected as present across all 6
tissues, while 11828 were present in all 5 neural tissues. Regardless of these
differences, looking at the results from the perspective of blood gene expression
profiles, 7.5% of genes associated with inbred mouse strains in blood (36/478)

overlapped with neural associated genes, while 33% (% Time in Dark), 81% (FPS),
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and 50% (% Time in Light and PPI) of pathways associated with behavioral
phenotypes in blood were also significantly identified in one or more neural tissue.
These results suggest blood gene expression profiles struggle to effectively capture
‘primary’ disease perturbations despite the fact many of the genes and pathways
identified in blood are relevant to the phenotypes and diseases of interest.

Biologically relevant genes identified in blood and brain include many genes
associated with the GABAergic neurotransmitter system such as pyridoxine 5'-
phosphate oxidase (Pnpo). Significantly associated with PPl in blood and PAG and
shown to be associated with schizophrenia in a Japanese population (Song et al.
2007), Pnpo is the rate limiting enzyme in vitamin B6 synthesis which in turn plays a
key role in serotonin, epinephrine, norepinephrine and gamma-aminobutyric acid
(GABA) biosynthesis. Vitamin B6 treatment has shown to upregulate the GABAergic
system in mice (Yoo et al. 2011). GABA(A) receptors, the primary target of the
psychoactive drug benzodiazepine, are known to be reduced in the hippocampus of
patients with panic disorders as well as a mouse models of anxiety (Crestani et al.
1999) while GABA(A) receptor agonists elimination fear potentiated startle in mice
(Risbrough et al . 2003). Gabarap, associated with % Time in Dark in blood and
pituitary, clusters neurotransmitter receptors by mediating interactin with the
cytoskeleton. Reduction of Vps13a (1440146_at), associated with % Time in Dark in
blood and hippocampus, leads to the upregulation of GABA(A) receptors in the
mouse hippocampus (Kurano et al. 2006), while Sept11, also associated with % Time
in Dark but in blood and PAG, is known to play a role in GABAergic synaptic

connectivity (Li et al. 2009).
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A closer look at the significantly enriched pathways and diseases validates the
utility of blood gene expression not directly highlighted by the lack of overlap between
blood and brain enriched pathways. For example, although only 7 of 932 network
objects in the Schizophrenia disease ontology in the MetaCore database are
associated with FPS in blood, these 932 network objects are associated with 52/55 of
the GeneGo Pathway Maps associated with behavioral phenotypes in blood.

Despite the potential, or lack there of, to identify biologically relevant, neural-
based disease genes and pathways using blood gene expression profiles, this study
is not without its limitations. One of the most significant limitations is the fact blood
and neural-tissues were not collected at the same time. This is more important from a
technical standpoint rather than a biological standpoint (Bryant et al. 2011), as
processing each tissue type in batches leads to the inability to correct for differences
in microarray intensity and may have led to the significant difference between the
number of genes detected as present in blood and the number of genes detected as
present in neural tissues. Another limitation is the number of mice and the strains of
mice utilized for gene expression profiling (3 per strain) and behavioral testing (10 per
strain). Increasing the number of mice screened should reduce variability thus
improving the ability to identify small differences in gene expression levels and
behavioral phenotypes in such highly related, inbred mouse strains while including
more genetically and phenotypically diverse strains enhance the differences between

strains.
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TABLES

Table 3-1. Mouse strains studied and their associated anxiety levels (Mozhui et al.

2010, Hovatta et al. 2005).

Strain Phenotype

12981/SvimJ  High Anxiety

AlJ High Anxiety

C3H/HeJ Intermediate Anxiety

C57BL/6J Low Anxiety, Low Pre-pulse Inhibition
DBA/2J High Anxiety, High Pre-pulse Inhibition
FVB/nJ Low Anxiety

78
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Table 3-2. Probe sets present across each tissue type. Probe sets were considered

present in blood if scored as P in 2 out of 3 replicates per strain. Probe sets were

considered present in each brain tissue if scored P in 2 out of 2 replicates per strain.

Blood BNST Hippo Hypo PAG Pit
Blood 7108
BNST 5726 16544
Hippo 5735 15256 16902
Hypo 5811 15482 15580 17321
PAG 5590 14673 14610 15060 15568
Pituitary 5739 13093 13193 13602 12653 15416
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Table 3-3. Blood hematology parameters from the Mouse Phenome Database

Graubert 1 dataset collected from 9-week-old male mice.

129S1/SvimJ Al C57BI/6J  C3H/HeJ DBA/2J FVB/NJ

Total WBC' 10.3 5.60 7.57 8.77 7.53 6.69
Neutrophils’ 3.41 1.07 243 2.91 1.58 0.945
Lymphocytes 6.51 4.33 4.89 5.03 5.44 5.54
% Neutrophils 31.4 19.4 33.0 34.2 20.0 13.5
% Lymphocytes 64.5 771 63.5 56.6 72.4 83.5
Platelets’ 492 929 687 702 590 795

Hemoglobin® 15.5 13.9 15.7 15.3 14.9 13.9

" units/vol x10°
¥ gldL
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Table 3-4. Results from Multivariate Distance Martix Regression (MDMR) analysis

using mouse whole blood samples. N: number of samples; NPERMS: number of

permutations; SS(TRACE): sum of squares; FSTAT: F-statistic; PVAL: p-value; PVE:

portion of variance explained. Predictors of variance included cell counts as collected

from the Mouse Phenome Database (purple), strain (blue), and individual mouse

(white).

S$17

S9
S1

S8
S5
S18
S$10
S2
S14
S4
S$16
S$13
S$15
S11
S$12

Strain N NPERMS SS(TRACE) FSTAT PVAL PVE
18 10000 0.003 7438 <1x10* 0.317
18 10000 0.003 5987 <1x10* 0.272
18 10000 0.002 5834 <1x10* 0.267
18 10000 0.002 5543 <1x10* 0.257
129 18 10000 0.002 4.621 0.006  0.224
18 10000 0.002 4490 <1x10* 0.219
18 10000 0.002 4216 <1x10* 0.209
18 10000 0.002 4142  0.0001 0.206
18 10000 0.002 4.061  0.0008 0.202
18 10000 0.002 3.986  0.0001 0.199
18 10000 0.002 3.735  0.0010 0.189
C57 18 10000 0.002 3.734  0.0620 0.189
18 10000 0.002 3.323  0.0044 0.172
18 10000 0.002 3.095 0.0059 0.162
18 10000 0.001 2.817  0.0190 0.150
18 10000 0.001 2.602  0.0349 0.140
18 10000 0.001 2420 0.0381 0.131
18 10000 0.001 2.318  0.0510 0.127
18 10000 0.001 2.055 0.0903 0.114
18 10000 0.001 1.940 0.1166 0.108
FVB 18 10000 0.001 1.908  0.1325 0.107
18 10000 0.001 1.802  0.1624 0.101
18 10000 0.001 1.732  0.1771  0.098
AJ 18 10000 0.001 1455  0.2092 0.083
C57 18 10000 0.001 1.304 02502 0.075
129 18 10000 0.001 1282 02572 0.074
18 10000 0.001 1.028  0.4802 0.060
18 10000 0.000 0.793  0.6065 0.047
C57 18 10000 0.000 0.743  0.4586 0.044
AJ 18 10000 0.000 0.664  0.4951  0.040
FVB 18 10000 0.000 0.556  0.5922 0.034
C3H 18 10000 0.000 0.516  0.6221  0.031
129 18 10000 0.000 0485 0.6612 0.029
DBA 18 10000 0.000 0457 0.6804 0.028
AJ 18 10000 0.000 0.336  0.7955 0.021
FVB 18 10000 0.000 0.299 0.8293 0.018
DBA 18 10000 0.000 0.264 0.8580 0.016
DBA 18 10000 0.000 0.261  0.8541 0.016
C3H 18 10000 0.000 0.259  0.8639 0.016
C3H 18 10000 0.000 0.205 0.8964 0.013




82

Table 3-5. Results from Multivariate Distance Martix Regression (MDMR) analysis
using mouse brain samples. N: number of samples; NPERMS: number of
permutations; SS(TRACE): sum of squares; FSTAT: F-statistic; PVAL: p-value; PVE:
portion of variance explained. Predictors of variance included brain tissue source

(purple), strain (blue), and individual mouse (white).

Tissue Strain NOBS NPERMS SS(TRACE) FSTAT PVAL PVE

61 10000 0.229 434953 <1x10* 0.881

61 10000 0.049 13640 <1x10* 0.188

61 10000 0.022 5425  0.0012 0.084

61 10000 0.017 4233 00081 0.067

S54 C57 Pit 61 10000 0.017 4016  0.0188 0.064
$55 Cc57 Pit 61 10000 0.016 3.945  0.0376 0.063
$60 FVB Pit 61 10000 0.016 3.866  0.0499  0.061
S61 FVB Pit 61 10000 0.016 3.828  0.0628 0.061
$52 AJ Pit 61 10000 0.016 3793 0.0693  0.060
$58 DBA Pit 61 10000 0.016 3776  0.0721  0.060
$56 C3H Pit 61 10000 0.016 3762  0.0763  0.060
$53 AJ Pit 61 10000 0.016 3749  0.0794  0.060
$59 DBA Pit 61 10000 0.015 3739  0.0812 0.060
$50 129 Pit 61 10000 0.015 3612 01228 0.058
$51 129 Pit 61 10000 0.015 3610  0.1176  0.058
$57 C3H Pit 61 10000 0.015 3589  0.1318  0.057
“HYPO 61 10000 0.004 1022 04912 0.017
s18 C57  Hippo 61 10000 0.004 0.840 02783 0.014
s24 FVB  Hippo 61 10000 0.004 0814 02933 0.014
$25 FVB  Hippo 61 10000 0.003 0783 02981 0.013
$20 C3H  Hippo 61 10000 0.003 0777 03055 0.013
s14 129 Hippo 61 10000 0.003 0771 03045 0.013
$17 AJ  Hippo 61 10000 0.003 0771 03124 0.013
s23 DBA  Hippo 61 10000 0.003 0760  0.3137 0.013
$19 C57  Hippo 61 10000 0.003 0758 03179 0.013
$16 AJ  Hippo 61 10000 0.003 0753  0.3223 0.013
s22 DBA  Hippo 61 10000 0.003 0742 03206 0.012
$15 129 Hippo 61 10000 0.003 0742 03136 0.012
s21 C3H  Hippo 61 10000 0.003 0739 03248 0.012
C57BL/6J 61 10000 0.003 0725 05855 0.012
129S6/SvEvTac 61 10000 0.003 0610 0612  0.010
Al 61 10000 0.002 0527 0643  0.009
DBA/2J 61 10000 0.002 0504  0.6538 0.008
FVB/nJ 61 10000 0.002 0497  0.6458 0.008
C3H/HeJ 61 10000 0.002 0489  0.6515 0.008
s43 Cc57 PAG 61 10000 0.002 0.383 05726 0.006
$39 129 PAG 61 10000 0.002 0383 05704 0.006
s42 Cc57 PAG 61 10000 0.002 0370 0582  0.006
$38 129 PAG 61 10000 0.002 0370  0.5908  0.006
$45 C3H PAG 61 10000 0.002 0.364  0.5881 0.006
$40 AJ PAG 61 10000 0.002 0355  0.5956  0.006
S49 FVB  PAG 61 10000 0.002 0354  0.5927  0.006
S41 AJ PAG 61 10000 0.002 0351  0.6099  0.006

S8 C3H BNST 61 10000 0.002 0.347 0.602 0.006




Table 3-5. Continued.

Tissue Strain NOBS NPERMS SS(TRACE) FSTAT PVAL PVE
S44 C3H PAG 61 10000 0.001 0.327 0.6259  0.006
S47 DBA PAG 61 10000 0.001 0.303 0.642 0.005
S46 DBA PAG 61 10000 0.001 0.300 0.6493  0.005
S2 129 BNST 61 10000 0.001 0.295 0.6582  0.005
S48 FvB PAG 61 10000 0.001 0.287 0.6584  0.005
S6 C57 BNST 61 10000 0.001 0.282 0.6748  0.005
S4 AJ BNST 61 10000 0.001 0.281 0.6737  0.005
S5 C57 BNST 61 10000 0.001 0.264 0.6897  0.004
S11 DBA BNST 61 10000 0.001 0.251 0.7003  0.004
S$10 DBA BNST 61 10000 0.001 0.249 0.7091  0.004
S7 C3H BNST 61 10000 0.001 0.237 0.7169  0.004
S9 C3H BNST 61 10000 0.001 0.228 0.718 0.004
S3 AJ BNST 61 10000 0.001 0.227 0.7264  0.004
S1 129 BNST 61 10000 0.001 0.215 0.7384  0.004
S13 FvB BNST 61 10000 0.001 0.206 0.7424  0.003
S12 FvB BNST 61 10000 0.001 0.198 0.7558  0.003
S30 C57 Hypo 61 10000 0.000 0.105 0.8357  0.002
S26 129 Hypo 61 10000 0.000 0.101 0.8369 0.002
S27 129 Hypo 61 10000 0.000 0.092 0.8443  0.002
S31 C57 Hypo 61 10000 0.000 0.089 0.8472  0.002
S37 FvB Hypo 61 10000 0.000 0.083 0.8542  0.001
S33 C3H Hypo 61 10000 0.000 0.078 0.8516  0.001
S32 C3H Hypo 61 10000 0.000 0.068 0.8603  0.001
S36 FvB Hypo 61 10000 0.000 0.067 0.8609  0.001
S35 DBA Hypo 61 10000 0.000 0.065 0.8659  0.001
S28 AJ Hypo 61 10000 0.000 0.062 0.8639  0.001
S29 AJ Hypo 61 10000 0.000 0.049 0.8758  0.001
S34 DBA Hypo 61 10000 0.000 0.048 0.8744  0.001
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Table 3-6. Strain-specific genes identified in blood and neural tissues.

Gene

Probe Set Symbol Gene Name
1427077_a_at AP2B1 adaptor-related protein complex 2, beta 1 subunit
1433860 _at C5orf22 chromosome 5 open reading frame 22
1415796_at DAZAP2 DAZ associated protein 2
1420862_at DCTN4 dynactin 4 (p62)
1424324 at ESCO1 establishment of cohesion 1 homolog 1 (S. cerevisiae)
1431020_a_at FGFR10P2 FGFR1 oncogene partner 2
1417714_x_at HBA1 hemoglobin, alpha 1
1417714 _x_at HBA2 hemoglobin, alpha 2
1419964 s at HDGF hepatoma-derived growth factor
1419041_at ITFG1 integrin alpha FG-GAP repeat containing 1
1455905_at KIAA0100 KIAA0100
1450740 _a_at MAPRE1 microtubule-associated protein, RP/EB family, member 1
1419909_at MPHOSPH9 M-phase phosphoprotein 9
1434396 _a at MYL6 myosin, light chain 6, alkali, smooth muscle and non-muscle
1435914 _at NCOR1 nuclear receptor corepressor 1
1432332 _a_at NUDT19 nudix (nucleoside diphosphate linked moiety X)-type motif 19
1441937_s_at PINK1 PTEN induced putative kinase 1
1428381 a_at PPDPF Einmcgﬁ)agtlzzzzggﬁgg;)r cell differentiation and proliferation factor
1442148_at PSIP1 PC4 and SFRS1 interacting protein 1
1438390 s at PTTG1 pituitary tumor-transforming 1
1438069_a_at RBM5 RNA binding motif protein 5
1434933 _at RC3H1 ring finger and CCCH-type domains 1
1460670_at RIOK3 RIO kinase 3 (yeast)
1416779 _at SDPR serum deprivation response
1452439 s at SRSF2 serine/arginine-rich splicing factor 2
1419741_at SUPT16H suppressor of Ty 16 homolog (S. cerevisiae)
1438963 _s_at TFPT TCF3 (E2A) fusion partner (in childhood Leukemia)
1452686 _s at TMEM222 transmembrane protein 222
1417912_at TMEM93 transmembrane protein 93
1419738_a_at TPM2 tropomyosin 2 (beta)
E%igij::: UBC ubiquitin C
1416156_at VCL vinculin
1433748_at ZDHHC18 zinc finger, DHHC-type containing 18
1449552_at ZFR zinc finger RNA binding protein
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Table 3-7. Number of significant genes (p<0.05) identified by Bivariate Correlated

Errors Scatter Analysis. Numbers in () represent the percentage of present probe

sets.

Tissue % Time in Dark % Time in Light ' o' gt";ft'l":'ated pre-Puise
Blood 113 (1.5) 56 (0.8) 35 (0.5) 52 (0.7)
BNST 479 (2.9) 255 (1.5) 281 (1.7) 491 (3.0)
Hippocampus 319 (1.9) 239 (1.4) 264 (1.6) 341 (2.0)
Hypothalamus 408 (2.4) 291 (1.7) 250 (1.4) 263 (1.5)
PAG 333 (2.1) 227 (1.5) 216 (1.4) 290 (1.9)
Pituitary 526 (3.4) 213 (1.4) 505 (3.3) 510 (3.3)
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Table 3-8. Genes shared between blood and at least 1 neural tissue (p<0.05)

Brain p-value p-value Gene
Tissue  °P€Set  (Biood)  (Brain)  Symbol Gene Name
% Time in Dark
BNST <0.01 . .
Hippo 1419112_at 0.0404 0.05 NIk nemo like kinase
BNST <0.01
Hypo 1425858 at 0.01 <0.01 Ube2m ubiquitin-conjugating enzyme E2M
Pit <0.01
BNST 1453207_at 0.02 0.03
integrin-linked kinase-associated
BNST 1453784 _at 0.02 0.02 llkap serine/threonine phosphatase 2C
Hippo 1428836_at 0.01 0.04
Hippo 1440146 _at <0.01 0.03 Vps13a vacuolar protein sorting 13A (yeast)
. pleckstrin homology domain
Hypo 1429004 _at 0.01 0.03 Phip interacting protein
Hypo 1447883 x at 0.03 0.04 Man1lc3a microtubule-associated protein 1
PAG X : <0.01 P light chain 3 alpha
REX2, RNA exonuclease 2
PAG 1451259 at 0.05 0.05 Rexo2 homolog (S. cerevisiae)
microtubule-associated protein 1
PAG 1451290_at <0.01 0.01 Map1lc3a light chain 3 alpha
PAG 1460626_at 0.02 0.03 Sept11 septin 11
Pit 1416937 at 0.02 0.05 Gabarap gamma-aminobutyric acid receptor
- ' ’ associated protein
Pit 1422807_at 0.04 0.03 Arf5 ADP-ribosylation factor 5
. CCRA4 carbon catabolite repression
Pit 1425837_a_at 0.01 0.04 Ccrn4l 4-like (S. cerevisiae)
sorting and assembly machinery
Pit 1428068 at 0.02 0.02 Samm50 component 50 homolog (S.
cerevisiae)
Pit 1442989 at 0.04 0.01
Pit 1449579_at 0.05 0.05 Shy3yl1 Sh3 domain YSC-like 1
% Time in Light
BNST 1419112_at 0.03 0.01 NIk nemo like kinase
BNST <0.01
Hypo 1425858 at 0.02 <0.01 Ube2m ubiquitin-conjugating enzyme E2M
Pit <0.01
e 1428181 at 0.05 0.04 Etfb electron transferring flavoprotein,
PP - ) ’ beta polypeptide
Hippo 1448020 _at 0.05 0.02 Rap1a RAS-related protein-1a
microtubule-associated protein 1
PAG 1447883 x_at 0.03 0.01 Map1lc3a light chain 3 alpha
microtubule-associated protein 1
PAG 1451290_at 0.02 0.02 Map1lc3a light chain 3 alpha
Pit 1424598 at  0.02 0.04 Ddx6 DIEAD o Cl B ) e
polypeptide 6
Pit 1453784 at 0.03 <0.01 llkap integrin-linked kinase-associated

serine/threonine phosphatase 2C




Table 3-8. Continued.
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P Poboset  Giols R o

Fear Potentiated Startle

Hypo 1423746_at 0.02 0.04 Txndch thioredoxin domain containing 5
Eﬁ‘G 1452077 at  0.03 8:82 Ddx3y DEQB;@;;’&S;“;*'?:@%’ | 20X
Pit 1416614 at  0.05 0.03 Eid1 S e e e
Pit 1428534 _at 0.05 0.05 Nr2c2ap ~ nuclear recer;tfortgig}assomated
Pre-pulse Inhibition

BNST <0.01

Hypo 1425858 at 0.03 <0.01 Ube2m ubiquitin-conjugating enzyme E2M
Pit <0.01

Hippo 1440880 _at <0.01 0.05 Mppe1 metallophosphoesterase 1
Hypo 1416034 _at 0.05 0.05 Cd24a nectadrin

PAG 1415793 _at 0.02 0.01 Pnpo pyridoxine 5'-phosphate oxidase
PAG 1415856_at <0.01 <0.01 Emb embigin

Pit 1427060 _at 0.05 0.01 Mapk3 mitogen-activated protein kinase 3
Pit 1437615_s_at 0.05 0.03 Vps37c vacuolar protein sorting 37C (yeast)
Pit 1448204 _at 0.03 0.05 Sav1 salvador homolog 1 (Drosophila)
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Table 3-9. GeneGO Pathway Maps significantly enriched (p<0.05) among genes

associated with % Time in Dark in blood.

Maps Tissue Rank pValue Ratio
Blood 1 <1x10° 4 105
BNST 145 NS 3 105
o _ Hippo 290 NS 1 105

Oxidative phosphorylation

Hypo 297 NS 1 105
PAG 232 NS 1 105
Pit 73 NS 4 105

Blood 2 0.002 2 23

Cytoskeleton remode;’ling_ReguIation of actin cytoskeleton BNST 185 NS y 23

y Rho GTPases

Pit 190 NS 1 23

Blood 3 0.004 2 30

Muscle contraction_S1P2 receptor-mediated smooth muscle ~ BNST 216 NS 1 30
contraction Hypo 141 NS 1 30

Pit 228 NS 1 30
Blood 4 0.004 3 111
BNST 8 0.001 7 111
Cytoskeleton remodeling TGF, WNT and cytoskeletal Hippo 45 0.044 3 1M1
remodeling Hypo 10 0.005 5 1M1
PAG 233 NS 1 111
Pit 1 <1x10® 11 111

Blood 5 0.006 2 37

Development._ MAG-dependent inhibition of neurite BNST 11 0.001 4 37
outgrowth Hypo 45 0.052 2 37

PAG 124 NS 1 37

Blood 6 0.008 2 45

Cell adhesion_Histamine H1 receptor signaling in the BNST 293 NS 1 45
interruption of cell barrier integrity Hypo 223 NS 1 45

Pit 121 NS 2 45

Blood 7 0.009 2 48

Cell adhesion_Integrin-mediated cell adhesion and BNST 309 NS 1 48
migration Hypo 240 NS 1 48

Pit 8 0.001 5 48

Blood 8 0.01 2 51

. BNST 316 NS 1 51

Pentose phosphate pathway/ Rodent version

PAG 185 NS 1 51

Pit 147 NS 2 51

Blood 9 0.011 2 52

BNST 321 NS 1 52

Pentose phosphate pathway
PAG 188 NS 1 52
Pit 153 NS 2 52
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Maps Tissue Rank pValue Ratio
Blood 10 0.011 2 53
Cell cycle_Influence of Ras and Rho proteins on G1/S BNST 53 0.03 3 38
Transition Hippo 55 NS 2 53
PAG 193 NS 1 53
Pit 22 0.009 4 53
Blood 11 0.011 2 53
BNST 144 NS 2 53
Development_WNT signaling pathway. Part 2 Hippo 225 NS 1 53
Hypo 81 NS 2 53
Pit 157 NS 2 53
Blood 12 0.011 2 53
BNST 324 NS 1 53
Apoptosis and survival_Endoplasmic reticulum stress Hippo 222 NS 1 583
response pathway Hypo 80 NS 2 53
PAG 18 0.015 3 53
Pit 155 NS 2 53
Blood 13 0.012 2 55
. o BNST 149 NS 2 55

Blood coagulation_GPVI-dependent platelet activation
Hypo 261 NS 1 55
PAG 199 NS 1 55
Blood 14 0.012 2 56
BNST 334 NS 1 56
Muscle contraction_ ACM regglation of smooth muscle Hippo 238 NS y 56

contraction
Hypo 263 NS 1 56
Pit 162 NS 2 56
Development_Role of IL-8 in angiogenesis Blood 15 0.013 2 58
BNST 9 0.001 5 58
Blood 16 0.019 2 70
Regulation of lipid metabolism_Alpha-1 adrenergic receptors  BNST 361 NS 1 70
signaling via arachidonic acid Hypo 278 NS 1 70
Pit 383 NS 1 70
Blood 17 0.019 2 71
. . ) BNST 78 NS 3 71
Blood coagulation_GPCRs in platelet aggregation -
Hippo 264 NS 1 71
Hypo 109 NS 2 7
Blood 18 0.021 2 74
BNST 86 NS 3 74
- , Hippo 270 NS 1 74
Ubiguinone metabolism

Hypo 284 NS 1 74
PAG 223 NS 1 74
Pit 94 NS 3 74
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Maps Tissue Rank pValue Ratio
Blood 19 0.023 2 77
BNST 367 NS 1 77
Immune response _CCR3 signaling in eosinophils Hippo 273 NS 1 77
PAG 68 NS 2 77
Pit 391 NS 1 77
Blood 20 0.024 2 80
HETE and HPETE biosynthesis and metabolism 0
Pit 392 NS 1 80
Blood 21 0.026 2 83
‘ ) ) BNST 370 NS 1 83
Muscle contraction_GPCRs in the regulation of smooth Hippo 12 0.021 3 83
muscle tone
Hypo 41 0.049 3 83
Pit 110 NS 3 83
Blood 22 0.027 2 85
. BNST 113 NS 3 85
Transport_Intracellular cholesterol transport in norm -
Hippo 276 NS 1 85
Hypo 289 NS 1 85
Blood 23 0.038 2 102
BNST 4 <1x10° 7 102
) . Hippo 99 NS 2 102
Cytoskeleton remodeling_Cytoskeleton remodeling
Hypo 68 NS 3 102
PAG 97 NS 2 102
Pit 4 <1x10° 8 102
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Table 3-10. GeneGO Pathway Maps significantly enriched (p<0.05) among genes

associated with FPS in blood.

Maps Tissue Rank pValue Ratio
Blood 1 <1x10° 3 54
. BNST 222 NS 1 54

Immune response_Role of DAP12 receptors in NK cells -
Hippo 256 NS 2 54
Pit 118 0.009 4 54
Blood 2 0.002 2 53
. . . ) Hippo 82 0.001 4 53
Apoptosis and survival_Endoplasmic reticulum stress Hypo 165 NS y 53
response pathway

PAG 176 NS 1 53
Pit 116 0.008 4 53

Blood 3 0.012 1 9

Cell adhesion_Role of CDK5 in cell adhesion o0
Hypo 5 0.002 2 9
Blood 4 0.02 1 16
IL-1 beta-dependent CFTR expression BNST 88 NS 1 16
Hippo 272 NS 1 16
Blood 5 0.028 1 22
Cytoskeleton remodeling_CDC42 in cellular processes -
Pit 293 NS 1 22
. ) _ Blood 6 0.029 1 23
Cytoskeleton remodeling_Regulation of actin cytoskeleton BNST 101 NS 1 23
by Rho GTPases
Pit 102 0.005 3 23
Blood 7 0.03 1 24
Cell adhesion_Endothelial cell contacts by non-junctional BNST 104 NS 1. 24
mechanisms Hypo 13 0012 2 24
Pit 299 NS 1 24
Blood 8 0.032 1 25
BNST 9 0.001 3 25
) . Hippo 301 NS 1 25
Cytoskeleton remodeling_Neurofilaments

Hypo 15 0.013 2 25
PAG 10 0.012 2 25
Pit 304 NS 1 25

BI . 1 2
Cell adhesion_Cadherin-mediated cell adhesion ood 9 0.033 6
Hypo 16 0.014 2 26
Blood 10 0.033 1 26
_ _ ) _ BNST 26 0.016 2 26
Cell adhesion_Endothelial C§|| contacts by junctional Hippo 306 NS y 26

mechanisms 3

Hypo 1 <1x10 4 26
Pit 310 NS 1 26
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Maps Tissue Rank pValue Ratio
Blood 11 0.035 1 28
BNST 28 0.019 2 28
Immune response_Antigen presentation by MHC class | Hippo 311 NS 1 28
Hypo 19 0.016 2 28
Pit 318 NS 1 28
Blood 12 0.038 1 30
Development_Osteopontin signaling in osteoclasts BNST 29 0.022 2 30
Hippo 317 NS 1 30
Blood 13 0.042 1 33
) ) BNST 32 0.026 2 33
Cell cycle_Spindle assembly and chromosome separation -
Hippo 332 NS 1 33
Pit 130 0.013 3 33
Blood 14 0.043 1 34
Cell adhesion_Alpha-4 integrins in cell migration and Hippo 201 003 2 34
adhesion Hypo 26 0023 2 34
Pit 132 0.015 3 34
Blood 15 0.043 1 34
BNST 137 NS 1 34
. Hippo 339 NS 1 34
Development_Role of CDK5 in neuronal development
Hypo 94 NS 1 34
PAG 97 NS 1 34
Pit 138 0.015 3 34
Blood 16 0.047 1 37
Cell adhesion_Role of tetraspanins in the integrin-mediated _ Hippo 350 NS 1 37
cell adhesion Hypo 103 NS 1 37
Pit 358 NS 1 37
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Table 3-11. GeneGO Pathway Maps significantly enriched (p<0.05) among genes

associated with % Time in Light in blood.

Maps Tissue Rank pValue Ratio

Cytoskeleton remodeling_Regulation of actin cytoskeleton Blood 1 0.001 2 23

by Rho GTPases Pit 45 NS 1 23

Blood 2 0.001 3 111

BNST 35 0.046 3 1M1

Cytoskeleton remodeling TGF, WNT and cytoskeletal Hippo 80 0.033 3 1M

remodeling Hypo 5 0.010 4 111

PAG 63 NS 2 1M1

Pit 2 <1x10° 6 111

Muscle contraction_S1P2 receptor-mediated smooth muscle _ Blood 3 0.002 2 30

contraction Pit 60 NS 1 30

Blood 4 0.002 2 37

Development MAG-dependent inhibition of neurite Hippo 180 NS 1 37
outgrowth

Hypo 103 NS 1 37

Cell adhesion_Histamine H1 receptor signaling in the Blood 5 0.003 2 45

interruption of cell barrier integrity Pit 25 0.030 2 45

Blood 6 0.004 2 48

Cell adhesion_lntegrinjmecjiated cell adhesion and Hypo 145 NS 1 48
migration

Pit 6 0.003 3 48

Blood 7 0.004 2 51

Pentose phosphate pathway/ Rodent version BNST 158 NS 1 51

PAG 154 NS 1 51

Blood 8 0.005 2 52

Pentose phosphate pathway BNST 160 NS 1 52

PAG 158 NS 1 52

Blood 9 0.005 2 53

Cell cycle_Influence of Ras and Rho proteins on G1/S BNST 164 NS 1 583

Transition Hippo 240 NS 1 53

Pit 27 0.041 2 53

Blood 10 0.005 2 53

BNST 42 0.056 2 53

Development_WNT signaling pathway. Part 2 Hippo 243 NS 1 53

Hypo 26 0.061 2 53

PAG 29 0.058 2 53

Blood 11 0.005 2 55

BNST 44 NS 2 55

Blood coagulation_GPVI-dependent platelet activation Hippo 249 NS 1 55

Hypo 168 NS 1 55

PAG 166 NS 1 55
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Maps Tissue Rank pValue Ratio
Muscle contraction_ACM regulation of smooth muscle Blood 12 0.006 2 56
contraction Pit 30 0.045 2 56
Blood 13 0.005 2 56
Regulation of lipid metabolism_Insulin regulation of Hippo 96 0048 2 56
glycogen metabolism PAG 167 NS 1 56
Pit 117 NS 1 56
Blood 14 0.009 2 7
. . , BNST 50 NS 2 71
Blood coagulation_GPCRs in platelet aggregation -
Hippo 40 0.010 3 7
Hypo 194 NS 1 7
Blood 15 0.010 2 77
. L ) . Hippo 286 NS 1 77
Immune response _CCR3 signaling in eosinophils
PAG 191 NS 1 77
Pit 139 NS 1 77
Blood 16 0.011 2 83
Muscle contraction_GPCRs in the regulation of smooth Hippo 18 0.002 4 83
muscle tone Hypo 203 NS 1 83
Pit 16 0.014 3 83
Blood 17 0.017 2 102
BNST 203 NS 1 102
) . Hippo 117 NS 2 102
Cytoskeleton remodeling_Cytoskeleton remodeling
Hypo 60 NS 2 102
PAG 52 NS 2 102
Pit 1 <1x10° 6 102
Cytoskeleton remodeling_Alpha-1A adrenergic receptor- Blood 18 0037 1 19
dependent inhibition of PI3K Pit 38 NS 1 19
Blood 19 0.039 1 20
Development_FGF2-dependent induction of EMT Hippo 112 NS 1 20
PAG 45 NS 1 20
Cytoskeleton remodeling_Role of Activin A in cytoskeleton _ Blood 20 0039 1 20
remodeling BNST 61 NS 1 20
) ) Blood 21 0.043 1 22
Cytoskeleton remode}mg_ESR1 ac.tlon on cytoskeleton Hippo 115 NS 1 22
remodeling and cell migration
Hypo 49 NS 1 22
Development_S1P4 receptor signaling pathway Blood 22 0.043 1 22
o ) ) Blood 23 0.045 1 23
G-protein signaling_Cross-talk between Ras-family BNST 66 NS 1 23
GTPases 3
Hippo 7 <1x10 3 23
. . N Blood 24 0.047 1 24
Cytoskeleton remodeling_Role of PDGFs in cell migration -
Hippo 123 NS 1 24
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Table 3-12. GeneGO Pathway Maps significantly enriched (p<0.05) among genes

associated with PPl in blood.

Maps Tissue Rank pValue Ratio

o ] Blood 1 0.001 37

Development MAG-dependent inhibition of neurite BNST 111 NS 37
outgrowth

Hippo 202 NS 37

Blood 2 0.002 56

BNST 166 NS 56

Regulation of lipid metabolism_Insulin regulation of

glycogen metabolism Hippo 311 NS 56
PAG 245 NS 56

Pit 277 NS 56

Blood 3 0.007 100

BNST 5 <1x10° 100

Hippo 167 NS 100

Cell adhesion_Chemokines and adhesion

Hypo 76 NS 100

PAG 60 0.039 100

Pit 40 0.004
Blood 4 0.013

100
10

Transport_Rab-9 regulation pathway BNST 24 0.010 10

PAG 90 NS 10

Cytoskeleton remodeling_CDC42 in cellular processes BNST 194 NS 22

Pit 132 0.043 22
Blood 6 0.029 23
BNST 67 0.049 23
Hippo 131 NS 23
Hypo 79 NS 23

Pit 312 NS 23
Blood 7 0.032 25
BNST 74 0.057 25
Hippo 30 0.026 25
Hypo 91 NS 25

Pit 49 0.006 25
Blood 8 0.033 26

Cytoskeleton remodeling_Regulation of actin cytoskeleton
by Rho GTPases

Transcription_Transcription regulation of aminoacid
metabolism

Development_S1P2 and S1P3 receptors in cell proliferation

and differentiation BNST 213 NS 26

Pit 152 NS 26

Blood 9 0.035 28

Development_Thrombospondin-1 signaling BNST 79 NS 28
Hippo 154 NS 28

Blood 10 0.038
Vitamin B6 metabolism Hypo 104 NS
PAG 136 NS

30
30
30

2
2
1
2
2
1
1
2
2
8
2
2
3
6
1
2
1
Blood 5 0.028 1 22
1
2
1
2
1
1
1
1
2
2
1
3
1
1
2
1
2
1
1
1
1
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Maps Tissue Rank pValue Ratio
Blood 11 0.038 1 30
Development_Slit-Robo signaling BNST 233 NS 1 30
Hippo 163 NS 1 30
Blood 12 0.039 1 31
BNST 85 NS 2 31
Cytoskeleton remodeling_Fibrqnectin-binding integrins in Hippo 168 NS 1 31
cell motility
Hypo 107 NS 1 31
Pit 67 0.011 3 31
Blood 13 0.043 1 34
BNST 251 NS 1 34
Cell adhesion_Alpha-4 integrins in cell migration and Hippo 181 NS 1 34
adhesion Hypo 119 NS 1 34
PAG 152 NS 1 34
Pit 370 NS 1 34
Blood 14 0.047 1 37
BNST 110 NS 2 37
Cell adhesion_Role of tetraspanir?s in the integrin-mediated Hippo 201 NS 1 37
cell adhesion
Hypo 17 0.020 2 37
Pit 389 NS 1 37
Blood 15 0.048 1 38
BNST 284 NS 1 38
Signal transduction_cAMP signaling Hippo 55 0.057 2 38
Hypo 18 0.021 2 38
Pit 395 NS 1 38
Blood coagulation_Blood coagulation Blood 1 0.049 L 39
BNST 291 NS 1 39
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Table 3-13. Neurophysiological Process GeneGo Pathway Maps significantly
enriched (p<0.05) in neural tissues. Neurophysiological GeneGO Pathway Maps

identified in blood are shown (gray), whether or not they were significant.

Maps Phenotype Tissue Rank pValue Ratio
Dark Blood 83 0.131 1 46
Hippo 27 <1x10° 5 46
FPS
N hvsiological ACM ot " PAG 27 0.037 2 46
europhysiological process_ regulation o
nerve impulse Light Blood 67 0.088 1 46
Pit 26 0.032 2 46
PRI Hippo 13 0.011 3 46
Hypo 36 0.029 2 46
Neurophysiological process_ACM regulation of PP Pit 8 <1x10° 6 46
nerve impulse
Dark Blood 68 0.115 1 40
Neurophysiological process_ACM1 and ACM2 FPS Hiobo 134 0.005 3 40
in neuronal membrane polarization PP -
Light Blood 56 0.077 1 40
Liaht BNST 34 0.045 2 47
i
Neurophysiological process_Circadian rhythm g PAG 25 0.047 2 47
PPI PAG 73 0.048 2 47
Dark Hippo 48 0.049 2 50
N hvsiological Corticoliberi FPS Hippo 75 0.001 4 50
europhysiological process_Corticoliberin ; - 3
signaling via CRHR1 Light Hippo 5  <Ix107 4 50
PRI Hypo 42 0.034 2 50
Pit 51 0.007 4 50
Hippo 177 0.021 2 26
FPS -
Pit 113 0.007 3 26
Neurophysiological process_Dopamine D2 Light BNST 13 0015 2 26
receptor transactivation of PDGFR in CNS BNST 1 <1x10° 6 26
PPI Hippo 32 0.028 2 26
Hypo 9 0.010 2 26
Neurophysiological process_EphB receptors in Light Hippo 52 0020 2 35
dendritic spine morphogenesis and PPI Hippo 52 0.049 2 35
synaptogenesis Hypo 15 0.018 2 35
Blood 37 0.079 1 27
Dark
Hypo 32 0.029 2 27
Neurophysiological process_GABA-A receptor FPS Hiobo 20 0.002 3 o7
life cycle PP -
Light Blood 27 0.052 1 27
PPI BNST 10 0.001 4 27
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Maps Phenotype Tissue Rank pValue Ratio
Dark Hypo 2 0.001 4 45
BNST 55 0.046 2 45
FPS -
Pit 52 0.001 5 45
Neurophysiological process_Glutamate BNST 7 0.004 3 45
regulation of Dopamine D1A receptor signaling Light -
PAG 20 0.043 2 45
PRI BNST 9 0.001 5 45
PAG 67 0.044 2 45
Neurophysiological process_ HTR1A receptor FPS BNST 49 0.040 2 42
signaling in neuronal cells Light Hippo 68 0.029 2 42
Neurophysiological process_Kappa-type opioid FPS Hippo 189 0.027 2 30
receptor in transmission of nerve impulses Light BNST 16 0.020 2 30
Neurophysiological process_Long-term FPS PAG 30 0.042 2 49
depression in cerebellum PPI Pit 124 0.037 3 49
Neurophysiological process_Melatonin FPS BNST 50 0.042 2 43
signaling Light Hippo 70 0.030 2 43
Neurophysiological process_Netrin-1 in .
regulation of axon guidance FPS Pit 156 0.024 3 41
BNST 34 0.019 4 80
Dark Hypo 39 0.045 3 80
PAG 30 0.044 3 80
Neurophysiological process_ NMDA-dependent FPS BNST 3 <1x10-3 S5 80
postsynaptic long-term potentiation in CA1 Hippo 135 0.005 4 80
hippocampal neurons FPS PAG 4 0.002 4 80
Light Hippo 16 0.002 4 80
PRI PAG 5 <1x10-3 5 80
Pit 115 0.032 4 80
Neurophysiological process_nNOS signaling in PP PAG 35 0.020 5 929
neuronal synapses )
N hvsiological PGE2-induced Dark Blood 74 0.123 1 43
europhysiological process_ -induce -
pain processing Hippo 32 0.037 2 43
Light Hippo 20 0.002 3 43
Blood 80 0.128 1 45
Dark -
Hippo 33 0.041 2 45
N hvsiological R diated EPS BNST 54 0.046 2 45
europhysiological process_Receptor-mediate
axon growth repulsion PAG 25 0.036 2 45
Light Blood 65 0.086 1 45
g Hippo 21 0.003 3 45
PPI Blood 20 0.056 1 45
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Maps Phenotype Tissue Rank pValue Ratio

Dark Blood 54 0.101 1 35

FPS Hippo 119 0.003 3 35

Neurophysiological process_Thyroliberin in cell Light Blood 42 0.067 1 35
hyperpolarization and excitability Hippo 49 0.049 2 35

PPI Hypo 14 0.018 2 35

Pit 31 0.002 4 35
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Table 3-14. GeneGO Diseases (by Biomarkers) significantly enriched (p<0.05) in
neural tissues. GeneGO Diseases (by Biomarkers) identified in blood are shown

(gray), whether or not they were significant.

Disease Phenotype Tissue Rank p-value Ratio

Hippo 2 <1x10-4 21 632

Dark Hypo 3 <1x10-4 29 632

PAG 90 0.0095 18 632

Blood 455 NS 1 632

EPS BNST 92 0.0075 17 632

Hippo 16 <1x10-4 24 632

Hypo 100 0.0162 13 632

. . . Hippo 8 <1x10-4 18 632
Affective Disorders, Psychotic Light Hypo ” 0.0002 20 632
PAG 104 0.0064 14 632

Blood 279 NS 1 632

BNST 212 0.0166 24 632

PPI Hippo 8 0.0014 20 632

Hypo 73 0.0095 15 632

PAG 71 0.0420 14 632

Pit 47 0.0004 30 632

Hippo 62 0.0061 2 10

Dark Hypo 89 00130 2 10

BNST 94 0.0082 2 10

EPS Hippo 129 0.0070 2 10

Hypo 47 0.0047 2 10

Agoraphobia Pit 15 0.0015 3 10
Pit 202 0.0235 2 10

PPI Hippo 54 0.0095 2 10

Hypo 55 0.0061 2 10

Light Hippo 62 0.0039 2 10

Hypo 88 0.0070 2 10
Blood 289 NS 1 174
Dark Hippo 30 0.0012 8 174
Hypo 161 0.0366 7 174
FPS BNST 206 0.0357 6 174
Blood 197 NS 1 174
Anxiety Disorders Light Hippo 78 0.0066 6 174
Hypo 92 0.0076 7 174
Blood 141 NS 1 174
PPI Hippo 83 0.0166 7 174
Hypo 95 0.0190 6 174
PAG 27 0.0086 7 174
Hippo 1 <1x10-4 21 630
Dark Hypo 7 <1x10-4 27 630
PAG 89 0.0092 18 630
Bipolar Disorder Blood 454 NS 1 630
EPS BNST 90 0.0072 17 630
Hippo 14 <1x10-4 24 630

Hypo 98 0.0158 13 630
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Disease Phenotype Tissue Rank p-value Ratio
Hippo 7 <1x10-4 18 630
Light Hypo 33 0.0014 18 630
PAG 103 0.0063 14 630
Blood 278 NS 1 630
Bipolar Disorder (continued) BNST 207 0.0160 24 630
PPl Hippo 7 0.0014 20 630
Hypo 70 0.0092 15 630
PAG 69 0.0410 14 630
Pit 46 0.0004 30 630
. I Dark Pit 110 0.0247 2 10
Borderline Personality Disorder FPS BNST 97 0.0082 5 10
FPS Hippo 274 0.0428 3 60
Depression Light Hypo 212 0.0428 3 60
PPI Hypo 136 0.0359 3 60
Depression, Postpartum FPS BNST 31 0.0006 2 3
Blood 433 NS 2 751
Dark Hippo 73 0.0092 17 751
Hypo 21 0.0009 26 751
BNST 46 0.0019 21 751
FPS Hippo 11 <1x10-4 27 751
Depressive Disorder H.ypo 87 0.0129 15 751
Light Hippo 73 0.0055 15 751
Hypo 15 0.0003 22 751
Blood 304 NS 1 751
PPI Hippo 90 0.0192 19 751
Hypo 96 0.0193 16 751
Pit 79 0.0015 32 751
Blood 432 NS 2 744
Dark Hippo 100 0.0178 16 744
Hypo 27 0.0017 25 744
BNST 43 0.0017 21 744
FPS Hippo 10 <1x10-4 27 744
. . . Hypo 84 0.0119 15 744
Depressive Disorder, Major o Hippo 107 0.0119 14 744
Hypo 23 0.0006 21 744
Blood 302 NS 1 744
PPI Hippo 84 0.0176 19 744
Hypo 93 0.0178 16 744
Pit 74 0.0013 32 744
Blood 116 NS 18 2945
BNST 12 0.0010 82 2945
. Hippo 35 0.0016 52 2945
Mental Disorders Dark Hypo 12 0.0002 76 2945
PAG 127 0.0245 58 2945
Pit 164 0.0450 87 2945
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Disease Phenotype Tissue Rank p-value Ratio
Blood 402 NS 9 2945
BNST 40 0.0014 59 2945
Hippo 42 0.0005 57 2945
FPS Hypo 151 0.0292 41 2945
PAG 39 0.0009 50 2945
Pit 83 0.0265 86 2945
Blood 211 NS 10 2945
Hippo 190 0.0408 37 2945
Mental Disorders (continued) Light Hypo 20 0.0005 57 2945
PAG 160 0.0162 42 2945
Pit 34 0.0199 38 2945
Blood 42 NS 11 2945
BNST 28 0.0001 98 2945
Hippo 53 0.0094 59 2945
PPI Hypo 97 0.0199 47 2945
PAG 15 0.0018 56 2945
Pit 25 00001 0 2045
Blood 469 NS 2 982
Dark Hippo 12 0.0003 25 982
Hypo 4 <1x10-4 38 982
PAG 152 0.0309 23 982
Blood 461 NS 1 982
EPS BNST 30 0.0005 27 982
Hippo 9 <1x10-4 32 982
. Hypo 93 0.0151 18 982
Mood Disorders Hippo 13 0.0001 22 982
Light Hypo 6 <1x10-4 29 982
PAG 205 0.0276 17 982
Blood 177 NS 3 982
BNST 223 00177 34 982
PPI Hippo 97 0.0237 23 982
Hypo 116 0.0276 19 982
Pit 82 0.0017 39 982
Neurotic Disorders PPI Pit 181 0.0174 4 41
, o Dark Hippo 33 0.0015 5 69
Obsessive-Compulsive Disorder FPS BNST 138 0.0159 7 69
Blood 186 NS 1 94
Dark Hippo 127 0.0271 4 94
PAG 98 0.0155 5 94
FPS BNST 50 0.0020 6 94
Blood 134 NS 1 94
o Light Hippo 37 0.0021 5 94
Panic Disorder Hypo 186  0.0338 4 94
Blood 83 NS 1 94
Hippo 20 0.0030 6 94
PPI Hypo 53 0.0056 5 94
PAG 6 0.0003 7 94
Pit 219 0.0274 6 94
Personality Disorders FPS BNST 57 0.0044 3 24
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Disease Phenotype Tissue Rank p-value Ratio

Blood 130 NS 18 2980
BNST 19 0.0014 82 2980
Dark Hippo 39 0.0020 52 2980
Hypo 18 0.0003 76 2980
PAG 140 0.0305 58 2980
Blood 404 NS 9 2980
BNST 47 0.0019 59 2980
EPS Hippo 46 0.0007 57 2980
Hypo 124 0.0223 42 2980
PAG 45 0.0012 50 2980
. Pit 101 0.0346 86 2980
Psychiatry and Psychology Blood 216 NS 10 2980
Hippo 215 0.0478 37 2980
Light Hypo 26 0.0007 57 2980
PAG 171 0.0196 42 2980
Pit 38 0.0238 38 2980
Blood 44 NS 11 2980
BNST 32 0.0002 98 2980
PPI Hippo 60 0.0121 59 2980
Hypo 110 0.0243 47 2980
PAG 13 0.0014 57 2980
Pit 23 0.0001 102 2980

Psychoses, Substance-Induced FPS BNST 145 0.0182 2 15
Blood 263 NS 5 932

Dark Hippo 20 0.0008 23 932

Hypo 1 <1x10-4 38 932

PAG 10 <1x10-4 32 932

Blood 288 0.0068 7 932

FPS Hippo 38 0.0004 25 932

PAG 22 0.0001 24 932

Blood 252 NS 3 932

Schizophrenia Light Hippo 119 0.0165 16 932
Hypo 7 <1x10-4 28 932

PAG 29 <1x10-4 24 932

Blood 81 NS 4 932

BNST 104 0.0028 36 932

PPl Hippo 47 0.0072 24 932

Hypo 46 0.0041 21 932

PAG 1 <1x10-4 29 932

Pit 286 0.0483 31 932

Blood 264 NS 5 936

Dark Hippo 21 0.0008 23 936

. . . . . Hypo 2 <1x10-4 38 936
Schizophrenia anlcig)alts&r;isers with Psychotic PAG 1 <Ax10-4 32 936
Blood 289 0.0069 7 936

FPS Hippo 39 0.0004 25 936

PAG 23 0.0001 24 936
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Disease Phenotype Tissue Rank p-value Ratio
Blood 254 NS 3 936
Light Hippo 123 0.0171 16 936
Hypo 8 <1x10-4 28 936
. . . . . PAG 30 <1x10-4 24 936
Schizophrenia and Dlsordgrs with Psychotic Blood 84 NS 2 936
Features (continued)
BNST 108 0.0030 36 936
PPI Hippo 49 0.0075 24 936
Hypo 47 0.0043 21 936
PAG 2 <1x10-4 29 936
. . . PAG 173 0.0452 2 22
Schizophrenia, Paranoid Dark Pit % 0.0169 3 2
BNST 158 0.0432 5 94
Dark Hippo 128 0.0271 4 94
Hypo 55 0.0067 6 94
PAG 99 0.0155 5 94
BNST 24 0.0003 7 94
Self-Injurious Behavior EPS Hippo 134 0.0075 5 94
PAG 107 0.0217 4 94
Pit 41 0.0077 7 94
. BNST 91 0.0150 4 94
Light -
Hippo 1 <1x10-4 8 94
PPI Pit 131 0.0081 7 94
. . Dark Pit 137 0.0296 2 11
Stress Disorders, Post-Traumatic FPS Pit a7 0.0277 2 r
. . Dark Pit 148 0.0350 2 12
Stress Disorders, Traumatic FPS Pit % 0.0328 > 12
Stress, Psychological Dark Pit 115 0.0251 1 1
Suicide, Attempted PPI Pit 12 <1x10-4 4 8
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Light/Dark (LD) and
Open Field (OF) Tests

LD & OF Covariates

FPS & PPI Covariates

Locomotor Activity

Figure 3-1. Correlations between the behavioral phenotypes. Light yellow represent

near perfect positive correlation while bright red represents near perfect negative

correlation.
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Figure 3-3. Unsupervised hierarchical clustering of strain-specific gene expression
profiles in blood (n=478 probe sets exhibiting significant strain-effects). Inset
dendrogram from Hovatta et al. 2007 highlighting the strain relationships between

inbred mouse strains.
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Figure 3-4. Light-dark box (LD) and open field (OF) behavioral phenotypes of inbred
mouse strains. Error bars = 95% Confidence Interval. Gold: 129S1/SvimJ(blood) or
129S6/SvEvTac (neural); Yellow: A/J; Green: C3H/HeJ; Light blue: C57BL/6J; Dark

blue: DBA/2J; Purple: FVB/nJ.
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Figure 3-5. Fear potentiated startle (FPS) and pre-pulse inhibition (PPI) behavioral
phenotypes of inbred mouse strains. Error bars = 95% Confidence Interval. Gold:
129S1/SvimJ(blood) or 129S6/SvEvTac (neural); Yellow: A/J; Green: C3H/HeJ; Light

blue: C57BL/6J; Dark blue: DBA/2J; Purple: FVB/nJ.
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Figure 3-6. Heat maps of probe sets significantly associated with four anxiety-related
phenotypes in blood and at least one neural tissue: A.) % time in dark, B.) % time in
light, C.) FPS, and D.) PPI. The heat maps are clustered according to the y-axis. The
y-axis shows the probe set identifiers. The x-axis is organized by strain and tissue.
Strains are organized by phenotype, as shown by scale. Blue represents low signal
intensity and pink represents high signal intensity; a more intense color means the

relatively higher or lower the signal intensity.
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Figure 3-6. Heat maps of probe sets significantly associated with four anxiety-related

phenotypes in blood and at least one neural tissue: A.) % time in dark, B.) % time in

light, C.) FPS, and D.) PPI. The heat maps are clustered according to the y-axis. The

y-axis shows the probe set identifiers. The x-axis is organized by strain and tissue.

Strains are organized by phenotype, as shown by scale. Blue represents low signal

intensity and pink represents high signal intensity; a more intense color means the

relatively higher or lower the signal intensity. Continued.
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ABSTRACT
Background

Microarray-based gene expression analysis of peripheral whole blood is a
common strategy in the development of clinically relevant biomarker panels for a
variety of human diseases. However, the results of such an analysis are often
plagued by decreased sensitivity and reliability due to the effects of relatively high
levels of globin mRNA in whole blood. Globin reduction assays have been shown to
overcome such effects, but they require large amounts of total RNA and may induce
distinct gene expression profiles. The lllumina whole genome DASL assay can detect
gene expression levels using partially degraded RNA samples and has the potential
to detect rare transcripts present in highly heterogeneous whole blood samples
without the need for globin reduction. We assessed the utility of the whole genome

DASL assay in an analysis of peripheral whole blood gene expression profiles.

Results

We find that gene expression detection is significantly increased with the use
of whole genome DASL compared to the standard IVT-based direct hybridization.
Additionally, globin-probe negative whole genome DASL did not exhibit significant
improvements over globin-probe positive whole genome DASL. Globin reduction
further increases the detection sensitivity and reliability of both whole genome DASL
and IVT-based direct hybridization with little effect on raw intensity correlations. Raw
intensity correlations between total RNA and globin reduced RNA were 0.955 for IVT-

based direct hybridization and 0.979 for whole genome DASL.
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Conclusions

Overall, the detection sensitivity of the whole genome DASL assay is higher
than the IVT-based direct hybridization assay, with or without globin reduction, and
should be considered in conjunction with globin reduction methods for future blood-

based gene expression studies.
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BACKGROUND

Peripheral whole blood is an attractive source of mRNA for the identification,
examination, and development of disease biomarkers via microarray-based gene
expression (Rockett et al. 2004). In fact, many studies have explored the utility of
gene expression patterns in whole blood for the purposes of classifying or predicting
clinical conditions (Hoang et al. 2010; Lin et al. 2009; Takahashi et al. 2010).
However, the sensitivity and specificity of microarray assays using peripheral whole
blood are reduced due to the relatively high proportion of globin mRNA present in
total RNA, which obscures the detection of transcripts expressed at low levels in
whole blood (Fan et al. 2004; Wright et al. 2008). While globin reduction assays have
been shown to overcome these effects when used in conjunction with Affymetrix
microarrays (Vartanian et al. 2009) and the standard lllumina direct hybridization
assay (Debey et al. 2006; Tian et al. 2009), globin reduction assays require large
amounts of total RNA (Vartanian et al. 2009), fail to completely eliminate globin
transcripts (Vartanian et al. 2009), and may induce distinct gene expression profiles
(Liu et al. 2006). Consequently, methods of developing blood-based gene expression
biomarker panels that do not involve globin reduction are needed. Developing a
microarray-based gene expression assay that does not rely on globin reduction or
other methods of sample fractionation, such as the isolation of PBMCs or other cell
types from the blood, should reduce sample variability introduced by sample handling
and preparation. This will result in a more accurate reflection of the transcriptome at
the time of blood draw, and will reduce time and cost.

There are ways to eliminate the need for globin reduction including 1.) the

removal of globin probes from the microarray; and 2.) the elimination of globin
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transcript amplification. Originally developed for the profiling of partially degraded and
fixed RNA samples, the highly sensitive and reproducible Illumina cDNA-mediated
annealing, selection, extension and ligation (DASL) assay (Fan et al. 2004; April et al.
2009) uses random priming and a modifiable oligo pool for cDNA synthesis. Random
priming in conjunction with PCR amplification may allow for the increased detection of
low abundance transcripts. In addition, removing globin-specific oligos from the DASL
Assay Oligo Pool (DAP) should decrease noise associated with the high abundance
of globin mRNA transcripts and potentially eliminate the necessity of globin reduction.
Currently, the DAP is available with and without globin-specific oligos. In order to
assess the need for globin reduction with the lllumina DASL assay, we compared
microarray gene expression profiles of peripheral blood total RNA and globin-reduced
RNA amplified via in vitro transcription (IVT)-based direct hybridization, DASL with

globin-specific oligos, and DASL without globin-specific oligos.

METHODS SUMMARY

Peripheral whole blood samples were collected from eight human donors in
PAXGene blood RNA tubes. RNA was isolated after freezing and storage and then
prepared for gene expression analysis using the lllumina Human-Ref8 v3.0 Beadchip.
Alpha and beta globin were reduced from a portion of the total RNA using the
GLOBINclear assay (Ambion, Austin, TX, USA). Two methods of microarray target
preparation were examined: lllumina IVT-based direct hybridization (IVT) and Illumina
Whole-Genome DASL (WG-DASL) (Figure 4-1). The differences between IVT and
WG-DASL are outlined in Table 4-1. Two DASL Assay Oligo pools (DAP) were

utilized for DASL target preparation: the DASL Assay Oligo Pool with globin probes
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(DAP +) and the DASL Asssay Oligo Pool without globin probes (DAP-).
Comparisons involving the number of genes whose expression levels were detected
and the actual levels of expression of the genes were made across the different
platforms. A more complete description of the methods is provided in the Methods

section.

RESULTS
Comparison between IVT and WG-DASL with and without globin reduction
Following target amplification as outlined in Figure 4-1, samples were
hybridized with the Illlumina Human-Ref8 v 3.0 following the manufacturer's
instructions. Each target preparation method was assessed for performance by the
number of probes detected as present (Detection p-value < 0.05) (Figure 4-2).
Probes are generally detected as present if the probe intensity is significantly
increased in comparison to the array background intensity. As noted, high levels of
background due to the presence of globin transcripts in whole blood are known to
decrease the number of significantly detected probes. The WG-DASL target
preparation method significantly improved detection sensitivity compared to IVT (p-
value = 2.13x10® from an analysis of variance (ANOVA)). Globin reduction decreased
probe detection variability with both IVT and WG-DASL target preparation methods.
The removal of globin probes from the DASL assay oligo pool (DAP-) resulted in a
moderate increase in the number of probes detected but had no significant affect on
detection variability (p-value = 0.680, ANOVA) as compared to the DAP+ target

preparation method. Overall, 8677 probes were detected across all samples by the
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five target preparation methods (Figure 4-3), but only 867 probes were detected by
IVT alone. 2604 probes were detected by WG-DASL alone.

NanoDrop Spectrophotometer 260/280 ratios were moderately decreased
following globin reduction with an average ratio equal to 2.06 prior and 1.97 post
globin reduction (Table 4-2). However, raw intensity correlations indicate that whole
and globin-reduced blood yield similar expression profiles with both IVT and DASL
DAP+ assays. Overall raw intensity values increased in globin reduced samples
(Figure 4-4: A, C-D) despite the failure of GLOBINclear to completely eliminate the
two most abundant globin transcripts, hemoglobin alpha (HBA2) and hemoglobin beta
(HBB). The removal of globin probes from the DASL Assay Oligo Pool (DAP-) (Figure
4-4: B) had little effect on gene expression profiles compared to DAP+ (R2 = 0.993)

despite the near complete elimination of HBA2 and HBB.

Expression patterns maintained across target preparation methods

IVT target amplification is approximately linear while WG-DASL is
approximately logarithmic, making it difficult to compare expression intensities
directly. Thus, it was important in our analyses that the sample-to-sample relations
are maintained among each target preparation method. Despite the differences in
target amplification, sample relations were preserved across the five target
preparation methods as shown by unsupervised hierarchical clustering (Figure 4-5).
For example, with both IVT and WG-DASL, expression profiles for Sample 3 and
Sample 7 exhibited the greatest differences from the other six samples, while for the

IVT or WG-DASL whole blood RNA clustered separately from globin reduced RNA.
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DISCUSSION

The analysis of whole blood, microarray-based gene expression profiles is
often hindered by low sensitivity and high variability due to high levels of globin
MRNA transcripts. These issues have been addressed by the development of globin-
reduction methods, which specifically target and remove globin transcripts prior to
array hybridization. However, studies have shown that globin reduction, like other
methods of sample fractionation, may alter expression profiles (Liu et al. 2006),
require large amounts of sample input, increase sample variability (Vartanian et al.
2009), and lead to increased costs. Thus, the ability to assay whole blood without
sample fractionation or globin reduction may result in improved gene expression
profile quality and decrease cost.

Here we describe the utility of a highly sensitive, whole-genome assay in the
assessment of whole blood gene expression. Our results suggest that gene
expression detection sensitivity is significantly increased with the whole-genome
cDNA-mediated annealing, selection, extension and ligation (WG-DASL) assay as
compared to IVT-based direct hybridization (IVT). The increased detection sensitivity
of WG-DASL may be due to, 1.) random priming allowing for cDNA synthesis along
the length of mMRNA transcripts, or 2.) the ability to produce larger amounts of cDNA
with PCR amplification. Regardless, attempts to further improve detection sensitivity
and decrease expression variability through the selective removal of globin probes
from the DASL assay oligo pool (DAP-) did not exhibit any large improvements over
globin-probe positive DASL (DAP+). Our study also confirms the positive effect of
globin reduction on microarray quality when used in conjunction with the lllumina

BeadChip and standard IVT-based hybridization (Tian et al. 2009), while showing that
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the positive effect of globin reduction extends to WG-DASL as well. However, as
shown by unsupervised hierarchical clustering analysis, globin reduction appears to
mildly influence gene expression profiles produced by both IVT and WG-DASL
assays. Whether this is due to the induction of a globin reduction-specific profile (Liu
et al. 2006), reduced RNA quality due to globin reduction, or the result of decreased
noise is unknown, and should be taken into consideration while planning blood-based

gene expression experiments.

CONCLUSIONS

Overall, our results suggest that the detection sensitivity of the WG-DASL
assay is higher than the IVT-based direct hybridization assay, with or without globin
reduction, and should be considered in conjunction with globin reduction methods for
future blood-based gene expression studies. However, further investigation into the
ability of the WG-DASL assay to distinguish between disease populations using

whole blood is needed, as our study was not designed to address such issues.

METHODS
Blood collection and RNA isolation

For each sample, 2.5 ml whole blood was collected in a PAXgene Blood RNA
collection tube (Qiagen, Valencia, CA, USA) and stored frozen at -80°C prior to RNA
isolation. RNA isolation was performed using the PAXGene Blood RNA Isolation
System (Qiagen, Valencia, CA, USA). RNA quantity and quality were assessed by
NanoDrop® Spectrophotometer (Thermo Scientific, Wilmington, DE, USA) before and

after globin reduction as well as before and after RNA amplification. For the 8
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samples isolated, the total RNA yield ranged from 5.8 — 13.8 ug (average 7.9 ug +/-
1.0 ug), while A260/A280 ratios revealed all samples appeared to be of sufficient
quality for microarray analysis (1.93 — 2.10) (Table 4-2), despite a moderate

decrease in quality following globin reduction.

Globin Reduction

Alpha and beta globin mRNA were reduced from a portion of the total RNA
samples using the GLOBINclear™ Human kit (Ambion, Austin, TX, USA) according to
the manufacturer’s instructions with the recommended start quantity of 2 pg of total
RNA. Each sample was processed twice then globin-reduced RNA pooled prior to

RNA amplification and hybridization.

RNA amplification and hybridization

Whole blood total RNA and globin-reduced samples were assayed at both
Scripps Genomic Medicine (La Jolla, CA, USA) and lllumina (San Diego, CA, USA)
for IVT and DASL-based labelling, hybridization, and scanning, respectively (Table 4-
1). Briefly, the WG-DASL method utilizes biotinylated random nonamer and oligo (dT)
primers to convert 10-200 ng input RNA to cDNA. The biotinylated cDNA is then
immobilized to a streptavidin-coated solid support and annealed to a pool of gene-
specific oligonucleotides (DAP) for extension and ligation followed by PCR
amplification with a biotinylated and a fluorophore-labeled universal primer. Finally,
the single-stranded PCR products are eluted and hybridized to an Illumina BeadChip.
For this study, 250 ng and 100 ng input RNA were utilized for IVT and DASL,

respectively.
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Gene expression analysis was performed on all whole blood RNA and globin-
reduced samples using Human-Ref8 v3.0 Beadchips (lllumina, San Diego, CA, USA)
containing 24,526 probes. All arrays were scanned with the lllumina BeadArray
Reader and read into lllumina GenomeStudio® software (version 1.1.1). Individual
samples were assayed once for all IVT analyses and twice for all DASL analyses.
Given the limited amount of mRNA, replicates were only performed for the DASL
assay due to its relative novelty as compared to the IVT assay. All replicates were
highly correlated (average R2 = .9925). All raw data is available on the NCBI Gene

Expression Omnibus (http://www.ncbi.nim.nih.gov/geo, [GSE 28064]).

Microarray data analysis

Raw intensities values were exported from GenomeStudio® software (version
1.1.1) for data processing and analysis in R (http://www.R-project.org) and
Bioconductor (http://www.bioconductor.org) (Gentleman et al. 2004). Data quality
and sample relations were assessed using the Bioconductor lumi package (Du et al.
2008). Probes with a Detection p-value less than 0.05 were considered present.
Analysis of Variance (ANOVA) was used to assess the consistency of present/absent
calls across the different sample preparation methods. Correlation coefficients were

calculated from the raw intensity levels to assess the similarity of expression profiles.

ABBREVIATIONS
cDNA: complementary deoxyribonucleic acid; DAP+: DASL Assay Oligo Pool
with globin probes; DAP-: DASL Assay Oligo Pool without globin probes; DASL:

cDNA-mediated annealing, selection, extension and ligation; GR: RNA following



128

globin reduction by GLOBINclear; HBA2: hemoglobin, alpha 2; HBB: hemoglobin,
beta; HBD: hemoglobin, delta; HBE1: hemoglobin, epsilon; HBG1: hemoglobin,
gamma A; HBG2: hemoglobin, gamma G ;HBM: hemoglobin, mu; HBQ: hemoglobin,
theta 1; HBZ: hemoglobin, zeta; IVT: in vitro-transcription; mRNA: messenger RNA;

WB: total RNA from peripheral whole blood; WG: whole genome.
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Table 4-1. Summary of IVT and WG-DASL Methods.

IVT WG-DASL

Target Preparation
Protocol Name

Total RNA Input
Amount

Priming Method

Ampilification

Hybridization

cDNA-mediated annealing,

) W S e selection, extension and ligation

50-100 ng 10-200 ng
Reverse Transcription off polyA Poly(T) and random priming
tail with biotinylated nonamers
In Vitro Transcription (Linear) PCR (Exponential)

lllumina BeadChip
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Table 4-2. RNA quality as assessed by 260/280 ratio. RNA quality was assessed
before and after globin reduction as well as before and after amplification. tRNA; total

RNA; GC RNA; GLOBINclear treated RNA or globin reduced RNA.

Before . 1st Globin 2nd Pooled 1y ted to
Sample ID  Amplificati  Amplified Reduction Globlln Globlln 20 nglul Average
on Reduction  Reduction
ggﬂ’:ﬁ 2.03 2.01 2.07 2.04
::é)gO;;A) 1.98 1.99 2.02 1.89 2.00 1.94 1.97
gg%o:; 2.06 2.01 2.06 2.04
::Gogo:;A) 1.98 2.01 2.02 1.95 1.94 1.89 1.97
ggw:? 2.04 2.12 1.89 2.02
?GO((:”I'\?I?IA) 1.96 1.95 1.88 1.90 2.02 1.84 1.93
gg‘m)g 2.04 1.99 s 208
?GoggﬂA) 1.95 1.98 1.90 2.01 2.01 2.02 1.98
gg‘ﬂf 2.03 195 214 204
?Gogzr;,’zA) 1.99 1.99 1.87 1.91 1.93 2.01 1.95
gg‘m)" 2.05 1.99 2.25 2.10
?Gog?’g;A) 1.98 2.00 1.89 2.1 1.91 1.96 1.98
gg‘m; 2.04 2.10 212 209
?Gog?’l;,lA) 2.02 2.00 2.04 1.93 1.97 2.01 2.00
gg?‘la:)z 2.01 2.07 2.21 2.10
00342 2.03 2.03 1.97 1.99 1.93 1.97 1.99

(GC RNA)
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FIGURES

Whole Blood
(WB IVT)

IVT-based
Direct Hybridization

Blood Collection
&
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Whole Blood DAP-
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Globin Reduced DAP+
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Figure 4-1. Flow diagram of study design. A PAXGene blood tube was collected from
8 individuals then frozen and stored for later processing. RNA was isolated and
microarray targets prepared by one of five different methods: IVT-based direct
hybridization with total RNA (WB IVT), IVT-based direct hybridization with globin-
reduced RNA (GR IVT), whole-genome DAP+ DASL with total RNA (WB DAP+),
whole-genome DAP- DASL with total RNA (WB DAP-), and whole-genome DAP+

DASL with globin-reduced RNA (GR DAP+).
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Figure 4-2. Box plots of present calls. The number of detected probes (detection p-
value < 0.05) per target preparation method are shown. The boxes represent the
lower quartile through the upper quartile, while the whiskers extend to 1.5 times the
interquartile range. A bold line denotes the median. WB IVT and GR IVT (n=8). WB

DASL+, WB DASL-, and GR DAP+ (n=16).
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Figure 4-3. Overlap of detected probes. Probes detected as present across all eight
samples per target preparation method are compared. WB IVT: IVT-based direct
hybridization with total RNA, GR IVT: IVT-based direct hybridization with globin-
reduced RNA, WB DAP+: whole-genome DAP+ DASL with total RNA, WB DAP-:
whole-genome DAP- DASL with total RNA, and GR DAP+: whole-genome DAP+

DASL with globin-reduced RNA.
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Figure 4-4. Raw intensity scatter plots. Raw intensities for all probes (n=24526) were
compared for (A) whole blood RNA and globin reduced RNA with IVT, (B) whole
blood RNA with DAP+ and whole blood RNA with DAP-, (C) whole blood RNA and
globin reduced RNA with DAP+, and (D) whole blood RNA with DAP- and globin
reduced RNA with DAP-. Correlations for sample 1 are depicted. Average correlations
for paired WB IVT versus GR IVT, WB DAP+ versus WB DAP-, WB DAP+ versus GR
DAP+, and WB DAP- versus GR DAP- samples are 0.955, 0.992, 0.976, and 0.979,
respectively. All 8 hemoglobin genes assayed on lllumina BeadChip Human-Ref v3.0
are labelled: HBA2, HBB, HBD, HBE1, HBG1, HBG2, HBM, HBQ, and HBZ.

GLOBINCclear specifically targets only HBA2 and HBB for reduction.
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ABSTRACT

There has been great interest in the identification of gene expression
differences in whole blood, or cell types extracted from blood, between diseased and
non-diseased individuals. Such differences might reflect underlying molecular
pathologies associated with a disease or act, either, as clinically accessible
biomarkers of disease susceptibility or surrogate endpoints for pathogenic processes.
It is therefore important to not only assess the strength of associations between gene
expression patterns and a disease, but also their potential biological relevance to the
disease. We assessed gene expression differences in lymphocytes obtained from
young autistic cases and controls to explore the potential blood-based cell type
analyses have in producing biologically relevant biomarkers and surrogate endpoints
for autism. We contrast our results with gene expression differences recently reported
in an expression study involving neural tissues in autism as well as the literature as a
whole. We find evidence for gene expression differences in pathways of relevance to
autism pathology, but these differences are not entirely consistent with those found in
the brain. In particular we find development, transcription, translation, and apoptosis
and survival pathways to be among the most enriched in lymphocytes and brain. Our
evaluation of the clinical utility of a lymphocyte-based classifier of autism suggests

that there is potential, but replication studies are in order.
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INTRODUCTION

There is growing interest in the identification of biomarkers of disease
susceptibility, clinical outcomes, and drug response that are relatively easy to
interrogate (Addona et al. 2011; Perlis 2011). Many diseases, such as autism and
related neurodevelopmental or neuropsychiatric diseases, have primary lesions in
tissues that are difficult to access (e.g., neural tissues), hence motivating researchers
to consider the utility of biomarkers in more accessible tissues such as blood (Noelker
et al. 2011; Le-Niculescu et al. 2009; Rockett et al. 2004). Assaying blood for
potential biomarkers with modern transcriptomic, proteomic, and epigenomic
technologies has, in fact, led to a number of recent notable successes (Feinberg et al.
2010; Rosenberg et al. 2010; Teschendorff et al. 2008). Despite these successes,
there are a number of issues surrounding the use of blood-based assays for
differentiating individuals with and without, e.g., autism or another clinical condition.

Blood is composed of a number of cell types known to manifest unique gene
and protein expression, as well as epigenomic, profiles (Miao et al. 2008; Jacobsen et
al. 2006; Palmer et al. 2006). These unique profiles are not only influenced by genetic
factors (Yang et al. 2010; Gdoring et al. 2007) but also environmental factors, such as
diet (Leonardson et al. 2010). Thus, not only is it the case that variation in the fraction
of blood that is composed of different cell types across individuals can impact, e.g.,
blood gene expression profiles (Palmer et al. 2006; Whitney et al. 2003), but the
degree to which different blood cell types express common genes amongst
themselves and with respect to different tissues raises questions about the biological
coherence or relevance of expression patterns in the blood with respect to expression

patterns in other tissues.
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One way to avoid issues associated with the heterogeneity of cell types in the
blood is to focus on one particular blood cell type or cell family. Peripheral blood
mononuclear cells (PBMCs) and lymphocytes have been studied widely in this regard
(Baine et al. 2011; Gupta et al 2011; Bowden et al. 2006; Vawter et al. 2004). Given
their role in immune system activity, the interrogation of perturbations or genomic
alterations in lymphocytes is seen as logical given that lymphocytes more or less act
as ‘sentinels’ of immune system dysregulation and other disturbances possibly
associated with a disease (Fan et al. 2005). In addition, since many genes are known
to be expressed in both lymphocytes and other tissues — and possibly ubiquitously
expressed across all cell types and tissues — it may be the case that pathogenic
molecular genetic disturbances that manifest in lymphocytes are also present in cell
types more directly relevant to the fundamental lesions associated with a disease
(Rollins et al. 2010). Such common disturbances may not necessarily occur at the
individual gene level, but possibly at higher levels of biological organization, such as
at the pathway or molecular physiologic process level (Subramanian et al. 2005).

Ultimately, however, even if a biologically-sound lymphocyte or whole blood-
based biomarker profile is found to differentiate individuals with and without a
particular condition such as autism or autism-related clinical phenotypes for
diagnostic, prognostic, or therapeutic purposes, a good question is whether or not
such differentiation can be achieved through other, possibly less invasive and less
costly, procedures (Rosenberg et al. 2010). This question, though not directly related
to the biological relevance of blood cell profiles, or processes in blood cells, to other
cell types, does bear on the clinical utility and motivation for blood-based biomarker

assays.
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We assessed lymphocyte gene expression patterns in young individuals with
and without autism. We compared the results of our study with those of a previous
report investigating brain gene expression patterns in autism (Chow et al. 2011,
submitted) as well as genes implicated in previous genome-wide association, copy
number variation, and gene expression studies. We considered not only individual
gene expression differences, but also pathway level differences. Finally, we
compared the classification accuracy of lymphocyte-based gene expression patterns

with the accuracy of classifiers based on brain gene expression.

RESULTS
Differential gene expression and gene set enrichment analysis between autism
cases and controls in lymphocytes

We analyzed lymphocyte gene expression profiles from 290 individuals (total
number of arrays = 347) collected by the Autism Center of Excellence (La Jolla, CA,
USA). This is a diverse data set containing both single or longitudinal time points as
well as single (child only), duo (mother- or father-child), or trio (mother, father, and
child) samples for young children (12-24 months of age) at risk for autism spectrum
disorder (ASD), developmental delay (DD), or language delay (LD). Given the
heterogeneous nature of the data set, this study focuses on 76 male, first time-point
samples (cases=45, controls=31; Table 5-1).

We identified 2321 genes as differentially expressed in autism cases relative
to controls (p-value < 0.05; FDR ~ 0.163)(See Supplementary Material Table 5-S1).
Among the top 20 up- and/or down-regulated genes were genes potentially involved

in autism pathogenesis, including genes involved in signal transduction (PGHD,
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MNK2, CSNK1G2, CHD8, GPR44, TRAT1, FCGR1B, IFIT3, OAS1), transport
(SORL1, ABCA7, VAMP2, KCNG1), and anti-apoptotic/pro-cell cycle genes (CABIN1,
CHDS8, UBA3, NAMPT, ARGH1, IFI127). Of the 2312 differentially expressed genes,
67% and 23% were known to be expressed in the brain and fetal brain, respectively
(eGenetics/SANBI EST database; http://biomart.org).

Differentially expressed genes were then subjected to enrichment analysis via
MetaCore™ (GeneGO Inc, St. Joseph, MI, USA). The most significant GeneGo
Pathway Maps (n = 68, p<0.001, FDR<0.005) (Table 5-2A) were heavily populated
by development pathways (26/68), while GeneGO Process Networks (n = 17, p

<0.001, FDR<0.01) (Table 5-2B) were most often related to cell cycle (4/17).

Comparing lymphocyte gene expression to brain gene expression via
differential expression and gene set enrichment analysis

To test whether these findings are comparable to those from brain gene
expression studies, we compared our results to those identified by Chow et al. (Chow
et al., submitted) in which they identified 2017 genes to be differentially expressed in
autism cases relative to controls. Comparing GeneGO Pathway Maps enrichment
between the two tissues (Table 5-3), the same development pathway, A2A receptor
signaling, was the most significant among differentially expressed brain and
lymphocyte genes. In general, 9 of the top 15 pathways enriched among differentially
expressed genes in lymphocytes were significantly enriched in the brain (Table 5-
3A), while 12 of the top 15 pathways enriched among differentially expressed genes

in brain were significantly enriched in lymphocytes (Table 5-3B).
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We next looked at the individual genes differentially expressed in the same
direction in both lymphocytes and brain (Figure 5-1); 20 genes were up-regulated
(Table 5-4) while 56 genes were down-regulated (Table 5-5). Genome-wide
association, copy-number variation, and/or gene expression analyses had previously
identified many of these genes (33%) to be dysregulated or altered in autism cases.
Among the genes up-regulated in both the brain and lymphocytes, apoptosis and
survival pathways were among the most significant (Table 5-6A), while the most
significant GeneGO Process Networks were heavily populated by immune response
and inflammation processes (Table 5-6B). Down-regulated genes were heavily
enriched for development pathways (Table 5-7A) and a variety of process networks,

including several cell cycle networks (Table 5-7B).

Diagnostic classification of autism using lymphocyte and brain gene
expression

Finally, we applied class prediction tools, as implemented in BRB-Array Tools,
to assess the ability of differentially expressed genes to separate autism cases from
controls using lymphocyte and brain gene expression (Figure 5-2). Using Receiver
Operator Curve (ROC) analysis to test the significance of each model, a 67-gene
model developed from lymphocyte gene expression yielded a cross-validated AUC
equal to 0.668 (p=0.007) (Figure 5-2A, blue)(See Supplementary Material Table 5-
S2). A 116-gene model developed from brain gene expression yielded a cross-
validated AUC equal to 0.704 (p=0.024) (Figure 5-2B, blue)(See Supplementary

Material Table 5-S3). These two models were not significantly different (p=0.757).
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Testing the lymphocyte and brain-based models on the opposite tissue, the
67-gene lymphocyte model tested on brain gene expression yielded an AUC equal to
0.574 (p=0.240) (Figure 5-2B, green). The 116-gene brain model tested on
lymphocyte gene expression yielded an AUC equal to 0.618 (p=0.042) (Figure 5-2A,
green). These two models were not significantly different (p=0.732). Neither model,
when tested on the opposite tissue, was significantly different compared to the
original, cross-validated model (p=0.58152, Figure 5-2A; p=0.27665, Figure 5-2B).

The genes included in each model were enriched for apoptosis and survival,

immune response, and development GeneGO Pathway Maps (Table 5-8).

DISCUSSION

Understanding the strength of associations between gene expression patterns
and a disease, but also their potential biological relevance to the disease, is important
to the development of blood-based gene expression diagnostics. In the present study,
we assessed differences in lymphocyte gene expression between young autistic
cases and controls and compared them to the results of a previous brain gene
expression study (Chow et al. 2011, submitted) and the current literature. Young
autistic lymphocyte gene expression was found to display dysregulation among
development, apoptosis and survival, cell cycle, and immune response pathways and
networks, among others. Many of these pathways and networks were shown to be
significantly dysregulated in the young autistic brain suggesting lymphocyte gene
expression is capable of capturing biologically relevant genetic dysregulation. For
instance, the top dysregulated pathway (A2A receptor signaling) in both lymphocytes

and brain is a potent biological mediator that affects several cell types including
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neuronal cells. In brain, A2AR in highly expressed in the dorso-ventral striatum and at
lower levels in the cortex, cortico-striatal terminals and hippocampus (Svenningsson
et al, 1997; Rebola et al., 2005) and is involved in neuronal excitability,
neurotransmitters release, neuronal synaptic plasticity, cognition and neuro-
protection/-inflammation (Wei et al., 2011). In vitro, stimulation of A2AR prevents
apoptosis via PKA-cat activation (Huang et al., 2001) that in turn, upon stimulation,
enhances PKC-zeta activity and cell survival (Qiu et al., 2000).

Similarly, GM-CSF signaling, ranked 2" in lymphocytes and 17" in brain, is
responsible for the proliferation, differentiation, survival and maturation of immune
and neuronal cells via the transcription factors STAT3 and STATS5, that in turn
activate proliferative proteins like cyclinD1/3, Pim-1 and anti-apoptotic proteins like
Mcl-1 and BCL-2/-x as well as mitogen-activated proteins like ERK1/2 via SHC
transforming protein 1 (Kolonics et al., 2001; Choi et al.,, 2007). A major pathway
involved in apoptosis and survival (BAD phosphorylation) was also highly ranked in
both lymphocytes and brain. BAD induces apoptosis by inhibiting anti-apoptotic BCL-
2-family members BCL-x, Bcl-2 (Bergmann et al., 2002). Overall, development and
apoptosis and survival pathways were significantly enriched in the analysis of the
commonly dysregulated brain/lymphocytes genes as well as the gene expression
classifiers, demonstrating the utility of lymphocyte gene expression in identifying
biologically relevant disease profiles at a pathway or network level.

Lymphocytes were less successful at identifying individual genes shown to be
significantly dysregulated in the autistic brain. Approximately 4% of the differentially
expressed genes in the brain were dysregulated in the same direction in

lymphocytes. Nonetheless, most of the genes are involved in developmental and
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apoptotic functions, while one third of these common genes were involved or
dysregulated in previous autism studies. DCUN1D1 is known to regulate cell growth,
viability, and development (Kim et al. 2008), is a risk factor for frontotemporal lobar
degeneration (Villa et al. 2009), and maps to an autism susceptibility locus (Mas et al.
2000). Other genes are involved in the dopamine and/or serotonin synthesis
pathways (GCH1, YWHAZ) (Wang et al. 2009). YWHAZ, which has been nominally
associated with autism (Anderson et al. 2009), has also been implicated in the
regulation of neurite outgrowth (Ramser et al. 2010) and more generally in cell cycle
regulation and cell growth and death (Mhawech et al. 2005). A previous study
(Philippe et al. 1999) identified a candidate genomic region containing TCP1, a gene
involved in cytoskeletal maintenance and neurotransmitter trafficking. VEZT is known
to play a role in the establishment of adherens junctions thus regulating dendritic
formation of hippocampal neurons (Sandra et al. 2010), a region of the brain enlarged
in autism (Groen et al. 2010). SLC30A5 is believed to transport zinc and was shown
to be down-regulated in both lymphocytes and brain (Chow et al. 2011, submitted,
Gregg et al. 2008) as well as deleted among sporadic autism cases (O’Roak et al.
2011). Although it is not clear how several of these genes may play into neural
development and the manifestation of autism, the converging evidence presented
here suggests further study on the subject is warranted. Regardless, these findings
demonstrate that peripheral blood, in particular lymphocytes, may be used to detect a
proportion of the genetic dysregulation occurring in the brain of autistic subjects.
While we demonstrate the ability of lymphocyte gene expression to capture
genes and pathways known to be dysregulated in neural tissue, it is necessary to

show these profiles are capable of classifying autism cases from controls in both a
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sensitive and specific manor. The evidence we provide suggests lymphocyte gene
expression profiles are able to meet this requirement at a similar level as brain gene
expression profiles, thus being a relevant RNA source for the development of gene
expression-based biomarkers of autism. Nonetheless, future clinical studies
specifically aimed at biomarker development will be needed to refine and test the
brain and lymphocyte-based models built here as our study was not specifically
designed to address the specific needs associated with development of a clinically
relevant classifier and suffers from overall sample size, particularly among the brain.
It also remains to be seen if gene expression will significantly add to the classification
of autism using widely accepted clinical factors and screening tools such as The One-
Year Well-Baby Check Up Approach (Pierce et al. 2011). Rather, gene expression
may be more useful in tracking the success or failure of clinical interventions as well
as differences in clinical progression or recession once a child is diagnosed with
autism. Further studies equating gene expression with QTL and CNV analysis as
well as clinical and imaging phenotypes will only enhance our ability to predict and

classify autism in infants.

MATERIALS AND METHODS
Subject Identification

All procedures were performed according to protocols approved by the
University of California, San Diego Institutional Review Board. All minor subjects
assented to the study procedures, and one or both parents or legal guardians of each

subject provided written informed consent for their child to participate.
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Participants were obtained by: 1.) community referral (e.g., website or outside
agency) or 2.) a general population-based screening method called the One-Year
Well-Baby Check-Up Approach (Pierce et al. 2011) performed by the participant’s
pediatrician. Using the latter approach, toddlers as young as 12-months who were at-
risk for an Autism Spectrum Disorder (ASD), Language Delay (LD), or Developmental
Delay (DD) were recruited and tracked every six months until at least their third
birthday, thus allowing for the prospective study of autism beginning at 12 months.
Typically developing (TD) and type-1 error (TIE) control subjects were obtained from
community referrals.

ASD subjects were diagnosed based on failure of the Autism Diagnostic
Observation Schedule (ADOS)(Lord et al. 2001) as well as the clinical judgment of a
PhD-level psychologist. While several ASD toddlers were only one year old at the
time of blood sampling, all but one have been tracked and diagnosed with an ASD
using the toddler module of the ADOS (Luyster et al. 2009) until at least age two,
when the diagnosis of autism can be made reliably. Final diagnoses of an ASD for
participants older than 30 months were confirmed with the Autism Diagnostic

Interview—Revised (Luyster et al. 2009).

Sample Collection and Processing

From each subject, 4ml of venous blood was collected into EDTA-coated
collection tubes and immediately transferred to an RNase-free laboratory, where all
subsequent procedures took place. Total mMRNA was extracted, stabilized, isolated,
and stored from each blood sample in a manner as previously described (Glatt et al.

2009, Glatt et al. 2005, Tsuang et al. 2005). Briefly, each blood sample was passed
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over a LeukoLOCK™ (Ambion, Austin, TX, USA) filter, which was flushed with PBS
and then fully saturated with RNAlater® (Ambion, Austin, TX, USA). Each
LeukoLOCK™ filter, containing bound, isolated, stabilized, and purified white blood
cells, was sealed and stored in a sterile box at -20°C. Once all samples were
collected, LeukoLOCK filters were processed by flushing the filter with TRI reagent®
(Ambion, Austin, TX, USA) to lyse the cells and isolate mMRNA. Eluted mRNA
samples were stored at -20°C until transferred to Scripps Genomic Medicine (La

Jolla, CA, USA) for quality assurance and microarray hybridization.

Sample Quantification and Quality Control

The concentration of MRNA in each sample was quantified by the absorption
of ultraviolet light at 260 nm. The quantity of mRNA in each sample exceeded the
minimally sufficient amount required for microarray hybridization. The purity of each
mRNA sample was estimated by the 260:280 nm absorbance ratio, with an
acceptable range designated a priori as 1.7-2.1. The quality of each mRNA sample
was quantified by the RNA Integrity Number (RIN) and, according to convention,
values of 6.0 or greater were deemed acceptable (Schroeder et al. 2006). A total of
339 samples selected for analysis in Wave | had acceptable levels of mMRNA quantity,

purity, and quality.

Labeling, Hybridization, and Scanning
Lymphocyte total RNA was assayed at Scripps Genomic Medicine (La Jolla,
CA, USA) for labelling, hybridization, and scanning using lllumina HumanWG-6 v3.0

expression BeadChips (lllumina, San Diego, CA, USA) per the manufacturer’s
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instruction. All arrays were scanned with the lllumina BeadArray Reader® and read
into lllumina GenomeStudio® software (version 1.1.1). Raw data was exported from

lllumina GenomeStudio® for data pre-processing and normalization.

Data Processing

Data processing was performed using the lumi package (Du et al. 2008) for R
(http://www.R-project.org) and Bioconductor (http://www.bioconductor.org)
(Gentleman et al. 2004). Of the 347 arrays processed, 27 were identified as low-
quality based on poor signal intensity (raw intensity box plots and average signal >2
standard deviations below the mean) and poor hierarchical clustering (Oldham et al.
2008) and were removed prior to log2 transformation and quantile normalization. The
remaining 320 high-quality arrays were filtered for first time point, male, proband

samples with a diagnosis of ASD, PDD-NOS, TD, or TIE (n=76).

Data Analysis and Gene Set Enrichment Analysis

For differential expression analysis, normalized expression values were
imported into BRB-Array Tools (http://linus.nci.nih.gov/BRBArrayTools.html). Gene
filtering was performed as previously described (Chow et al. 2011, submitted)
followed by differential expression analysis via Class comparison between groups of
arrays using a random variance model and 10,000 univariate permutation tests.
Differentially expressed genes (p<0.05) were then assessed for pathway enrichment
using the MetaCore software suite (www.genego.com/metacore.php) (GeneGO, Inc.,

St. Joseph, MI, USA).
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Genes imported into MetaCore were filtered for known expression specific to
the brain or the fetal brain followed by enrichment analysis of GeneGO Pathway
Maps and GeneGO Process Networks using the default background gene list.
GeneGO Pathway Maps are defined as sets of linear consecutive signals, or
metabolic transformations, that have been confirmed as a whole by inferred
relationships or experimental data. GeneGO Process Networks are network models
of main cellular processes that are created manually by GeneGO using information
from GO processes and GeneGO Pathway Maps.

Multigene models for classifying autistic and control samples were constructed
using BRB-Array Tools Class Prediction methods for both lymphocytes and brain
gene expression profiles (Radmacher et al. 2002). Class Prediction creates a
multivariate predictor for determining which of the two classes a given sample
belongs. Leave-one-out cross-validation was used to determine misclassification rate.
The Bayesian Compound Covariate Predictor results were exported from BRB-Array
Tools and the reliability of this classification assessed via receiver-operator
characteristic (ROC) curve analysis using the pROC package for R (Robin et al.
2011). ROC curve analysis was also used to compare different classification models
as implemented in the pROC package. Two models were built: one using lymphocyte
gene expression, the other using brain gene expression. Then both of these models

were used to classify autism cases and controls using the other tissue source.
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TABLES

Table 5-1. Sample characteristics for lymphocyte gene expression.

Cases (n=45) Controls (n=31)
All Cases ASD PDD-NOS All Controls TD T1E
Sample size (n) 45 31 14 31 11 20

Age (mean
months + s.d.)
Age (range in

months)

27.10+9.63 24.28+9.98 33.34+4.83 19.12+7.66  24.41+10.06 16.22+3.79

12.60-43.50 12.60-43.50  26.87-41.03 12.5-44.93 12.50-44.93  12.93-24.63




Table 5-2. Enriched GeneGo Pathway Maps and GeneGo Process Networks.

A. GeneGo Pathway Maps (FDR<0.01)

155

GeneGo Pathway Map p-value Ratio

Development_A2A receptor signaling 4.672E-07 13 43
Development_GM-CSF signaling 4.841E-07 14 50
Development_FIt3 signaling 6.289E-07 13 44
Development_PIP3 signaling in cardiac myocytes 1.454E-06 13 47
Translation_Insulin regulation of translation 2.539E-06 12 42
Apoptosis and survival_BAD phosphorylation 2.539E-06 12 42
Immune response_Function of MEF2 in T lymphocytes 3.128E-06 13 50
Development_Role of IL-8 in angiogenesis 3.422E-06 14 58
Transcription_CREB pathway 4.358E-06 12 44
Translation _Regulation of EIF4F activity 6.329E-06 13 53
G-protein signaling_Regulation of p38 and JNK signaling mediated by G-proteins 7.680E-06 11 39
Development_Role of HDAC.and calcium/calmodulin-dependent kinase (CaMK) in 7 906E-06 13 54
control of skeletal myogenesis

Chemotaxis_Leukocyte chemotaxis 1.818E-05 15 75
G-protein signaling_G-Protein alpha-12 signaling pathway 3.020E-05 10 37
Chemotaxis_ CCR4-induced leukocyte adhesion 3.037E-05 9 30
Development_Thrombopoietin-regulated cell processes 3.398E-05 11 45
Regulation of lipid metabolism_Insulin signaling:generic cascades 5.252E-05 11 47
DNA damage_ATM/ATR regulation of G1/S checkpoint 5.370E-05 9 32
Cell cycle_Role of APC in cell cycle regulation 5.370E-05 9 32
Cytoskeleton remodeling_Cytoskeleton remodeling 6.134E-05 17 102
DNA damage_ATM / ATR regulation of G2 / M checkpoint 6.926E-05 8 26
Development_S1P1 receptor signaling via beta-arrestin 7.013E-05 9 33
Cell cycle_Spindle assembly and chromosome separation 7.013E-05 9 68
Chemotaxis_ CXCR4 signaling pathway 9.060E-05 9 34
Regulation of degradation of deltaF508 CFTR in CF 9.354E-05 8 27
Development_EDNRB signaling 9.630E-05 11 50
Apoptosis and survival_HTR1A signaling 9.630E-05 11 50
Development_A2B receptor: action via G-protein alpha s 9.630E-05 11 50
Immune response _Immunological synapse formation 1.051E-04 12 B9
Development_EPO-induced Jak-STAT pathway 1.158E-04 9 35
Development_Growth hormone signaling via STATs and PLC/IP3 1.158E-04 9 35
Development_IGF-1 receptor signaling 1.165E-04 11 51
Development_ ACM2 and ACM4 activation of ERK 1.218E-04 10 43
Development_SSTR2 in regulation of cell proliferation 1.467E-04 9 36
Immune response_IL-5 signalling 1.496E-04 10 44
Cell cycle_Sister chromatid cohesion 1.575E-04 7 22
Cell adhesion_Chemokines and adhesion 1.651E-04 16 100
Development_FGFR signaling pathway 1.681E-04 11 53
Development_A1 receptor signaling 1.681E-04 11 53
Cell cycle_Influence of Ras and Rho proteins on G1/S Transition 1.681E-04 11 53
Development_Delta- and kappa-type opioid receptors signaling via beta-arrestin 2.153E-04 7 23
Signal transduction_PTEN pathway 2.217E-04 10 46
Cytoskeleton remodeling_Fibronectin-binding integrins in cell motility 2.712E-04 8 31
Apoptosis and survival_Role of IAP-proteins in apoptosis 2.712E-04 8 31
Immune response_|L-3 activation and signaling pathway 2.712E-04 8 31
Development_GDNF signaling 2.891E-04 7 24
Cytoskeleton remodeling_FAK signaling 3.303E-04 11 57
Apoptosis and survival_Granzyme B signaling 3.437E-04 8 32
Development_PDGF signaling via STATs and NF-kB 3.437E-04 8 32
Immune response_TCR and CD28 co-stimulation in activation of NF-kB 3.471E-04 9 40
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GeneGo Pathway Map p-value Ratio
Immune response_IL-22 signaling pathway 4.312E-04 8 88
G-protein signaling_Ras family GTPases in kinase cascades (scheme) 4.970E-04 7 26
Immune response_IL-10 signaling pathway 4.970E-04 7 26
Development_Growth hormone signaling via PI3BK/AKT and MAPK cascades 5.108E-04 9 42
Cell adhesion_Alpha-4 integrins in cell migration and adhesion 5.360E-04 8 34
Development_ NOTCH1-mediated pathway for NF-KB activity modulation 5.360E-04 8 34
Chemota?(ls_.lnhl.bltory action of lipoxins on IL-8- and Leukotriene B4-induced 5 366E-04 10 51
neutrophil migration
Development_Membrane-bound ESR1: interaction with growth factors signaling 6.138E-04 9 43
G-protein signaling_G-Protein alpha-i signaling cascades 6.382E-04 7 27
Development_Angiopoietin - Tie2 signaling 6.605E-04 8 35
Development_Ligand-independent activation of ESR1 and ESR2 7.332E-04 S 44
Immune response_Regulation of T cell function by CTLA-4 8.073E-04 8 36
Immune response_IL-12-induced IFN-gamma production 8.073E-04 8 36
Signal transduction_Calcium signaling 8.708E-04 9 45
Atheroscleros!s_RoIe of ZNF202 in regulation of expression of genes involved in 8.972E-04 6 21
Atherosclerosis
Development_Beta-adrenergic receptors transactivation of EGFR 9.792E-04 8 37
Apoptosis and survival_nAChR in apoptosis inhibition and cell cycle progression 1.015E-03 7 29
NGF activation of NF-kB 1.015E-03 7 29
Chemotaxis_Lipoxin inhibitory action on fMLP-induced neutrophil chemotaxis 1.029E-03 S 46
Immune response_MIF - the neuroendocrine-macrophage connector 1.029E-03 9 46
Apoptosis and survival_DNA-damage-induced apoptosis 1.133E-03 5 15
Development_S1P4 receptor signaling pathway 1.175E-03 6 22
T.rans.crlptlon_RoIe of heterochromatin protein 1 (HP1) family in transcriptional 1.175E-03 6 22
silencing
Cell cycle_Role of 14-3-3 proteins in cell cycle regulation 1.175E-03 6 22
Transcription_Sin3 and NuRD in transcription regulation 1.179E-03 8 38
Transport_Alpha-2 adrenergic receptor regulation of ion channels 1.209E-03 9 47
B. GeneGo Process Networks (FDR<0.01)
GeneGo Process Networks p-value Ratio
Cell cycle_G2-M 3.704E-08 46 205
Signal Transduction_Cholecystokinin signaling 2.000E-06 27 106
Proteolysis_Ubiquitin-proteasomal proteolysis 7.311E-06 35 166
Transcription_Chromatin modification 1.047E-05 29 128
Cell cycle_G1-S 1.259E-05 34 163
Cell cycle_S phase 3.194E-05 31 149
Inflammation_IL-10 anti-inflammatory response 6.473E-05 21 87
Development_Hemopoiesis, Erythropoietin pathway 8.098E-05 28 135
Immune response_TCR signaling 1.238E-04 33 174
Cytoskeleton_Regulation of cytoskeleton rearrangement 1.492E-04 34 183
Cytoskeleton_Cytoplasmic microtubules 2.333E-04 24 115
Development_Regulation of angiogenesis 3.947E-04 38 223
Cell cycle_Mitosis 4.751E-04 32 179
Apoptosis_Apoptotic nucleus 6.167E-04 29 159
Cell adhesion_Leucocyte chemotaxis 6.389E-04 35 205
Apoptosis_Anti-Apoptosis mediated by external signals via MAPK and JAK/STAT 1.006E-03 31 179
Translation_Regulation of initiation 1.064E-03 24 127




157

Table 5-3. Overlap of the top 15 significantly enriched GeneGO Pathway Maps
among differentially expressed genes in lymphocytes and brain.

A. Top 15 GeneGo Pathway Maps among differentially expressed genes in

lymphocytes
Lymphocytes  JI L Brain

GeneGO Pathway Map Rank | Ratio | p-value |Rank | Ratio| p-value
Development_A2A receptor signaling 1 13|43| 4.67E-07 1 11143| 1.92E-07
Development_GM-CSF signaling 2 [14|50| 4.84E-07 17 | 7 |50| 1.76E-03
Development_FIt3 signaling 3 |13|44| 6.29E-07 | 153 | 4 |44| 6.93E-02
Development_PIP3 signaling in cardiac myocytes 4 (13|47| 1.45E-06 6 8 (47| 2.13E-04
Translation_Insulin regulation of translation 5 |12]|42| 2.54E-06 73 | 5|42| 1.57E-02
Apoptosis and survival_BAD phosphorylation 6 |12]|42| 2.54E-06 25 | 6 |42| 3.37E-03
Immune response_Function of MEF2 in T lymphocytes 7 |(13]|50| 3.13E-06 | 183 | 4 |50| 1.00E-01
Development_Role of IL-8 in angiogenesis 8 |14|58| 3.42E-06 9 8 |58 | 9.27E-04
Transcription_CREB pathway 9 ([12]|44| 4.36E-06 4 8 |44| 1.32E-04
Translation _Regulation of EIF4F activity 10 |13|53| 6.33E-06 56 |6 (53| 1.07E-02
G-protein signaling_Regulation of p38 and JNK signalin
e bfe-prgt_e A ? el 11 |11]39| 7.68E-06 | 237 |3 39| 1.59E-01
Development_Role of HDAC and calcium/calmodulin-
dependrc)ant kinase (CaMK) in control of skeletal myogenesis 12 |13154] 7.91B-06 | 120 | 5 54| 4.15E-02
Chemotaxis_Leukocyte chemotaxis 13 |15|75| 1.82E-05 77 |7 |75| 1.66E-02
G-protein signaling_G-Protein alpha-12 signaling pathway 14 |10|37| 3.02E-05 | 219 | 3 |37| 1.42E-01
Chemotaxis_ CCR4-induced leukocyte adhesion 15 | 9 |30| 3.04E-05 | 314 | 2 |30| 2.88E-01

B. Top 15 GeneGO Pathway Maps among differentially expressed genes in brain

[ Brain ] Lymeh
GeneGO Pathway Map ymphocytes

Rank | Ratio | p-value |Rank | Ratio | p-value
Development_A2A receptor signaling 1 |11] 43| 1.92E-07 1 13|43 | 4.67E-07
Development_A2B receptor: action via G-protein alpha s 2 |10| 50 | 7.83E-06 | 28 |[11|50| 9.63E-05
Transcription_P53 signaling pathway 5 8|39 | 5.34E-05 | 431 | 3 |39 3.90E-01
Transcription_CREB pathway 4 8 | 44 | 1.32E-04 9 |12|44| 4.36E-06
Development_Thrombopoietin-regulated cell processes 5) 8 | 45| 1.55E-04 16 |[11|45| 3.40E-05
Development_PIP3 signaling in cardiac myocytes 6 8 | 47 | 2.13E-04 4 |13|47 | 1.45E-06
Cell adhesion_ECM remodeling 7 8|52 | 437E-04 | 504 | 2 (52| 8.08E-01
Cell cycle_Role of 14-3-3 proteins in cell cycle regulation 8 5|22 | 8.65E-04 | 74 |6 |22| 1.18E-03
Development_Role of IL-8 in angiogenesis 9 8 | 58 | 9.27E-04 8 |14|58| 3.42E-06
Cytoskeleton remodeling_Cytoskeleton remodeling 10 (11(102| 9.27E-04 | 20 |17|102| 6.13E-05
Reproduction_GnRH signaling 11 | 9|72 | 9.33E-04 | 109 |11|72| 2.49E-03
ICn;lTnlgr::?orresponse_MlF - the neuroendocrine-macrophage 12 17146 107803 | 70 |9 46| 1.03E-03
Signal transduction_PTEN pathway 13 |7 |46 | 1.07E-03 | 42 |10|46| 2.22E-04
Development_HGF signaling pathway 14 |7 |47 | 1.22E-03 | 218 | 7 |47 | 1.68E-02
Development_Melanocyte development and pigmentation 15 |7 |49 | 1.56E-03 | 358 | 5 |49 | 1.48E-01
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Gene Lymphocytes ~ Brain Reference
Symbol Chr. Fold p-value Fold p-value
Change Changes
C170rf65 17921.31 1.1 0.0183 1.29 0.0229
CYP2s1 19913.1 1.12 0.0267 1.28 0.0352
CYP4F12 19p13.1 1.23 0.0059 1.61 0.0493
DCLRE1C 10p13 1.12 0.0497 1.33 0.0482 Pinto et al. (2010)
IL5RA 3p26-p24 1.19 0.0395 1.62 0.0264 Pinto et al. (2010)
KIAA0664 17p13.3 1.18 0.0180 1.35 0.0493
LAT2 7911.23 1.18 0.0050 1.34 0.0063 Jacquemont et al. (2006)
LILRB1 19913.4 1.15 0.0126 1.86 0.0047
MYBPH 1932.1 1.22 0.0233 1.46 0.0297
1.56 0.0032
NFKB2 10924 1.13 0.0403 143 0.0420
P2RY8 Yp11.3 1.1 0.0475 1.40 0.0224 Marshall et al. (2008)
PIMA1 6p21.2 1.13 0.0201 1.40 0.0109
RAPGEF1 9q34.3 1.13 0.0120 1.68 0.0097
RUNX1 21922.3 1.15 0.0267 1.83 0.0004
SEPN1 1p36.13 1.19 0.0437 1.37 0.0229
SIGLEC7 19913.3 1.11 0.0136 1.60 0.0080
SLC44A4 6p21.3 1.14 0.0255 1.46 0.0379
SSHA1 6p24 1.13 0.0302 1.31 0.0252
TFAP2A 6p24 1.18 0.0258 2.13 0.0131
UNC13D 17925.1 1.21 0.0066 1.32 0.0377
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Table 5-5. Genes down-regulated in both lymphocytes and brain.

Gene Symbol . Reference

ACAT2 6qg25.3 -1.11 0.022 -1.49 0.005

AIFM1 Xq25-q26 -1.14 0.010 -1.36 0.008

-1.15 0.004
APIP 11p13 127 0.009 -1.29 0.036

ATG4C 1p31.3 -1.16 0.013 -1.31 0.016

C1lorf124 1942.12-943 -1.18 0.007 -1.30 0.017

CYSLTR1 Xq13.2-g21.1 -1.18 0.014 -1.42 0.016

DCUN1D1 3026.3 -1.20 0.007 -1.51 0.024 Villa et al. (2009)

-1.27 0.019
FAM18B 17p11.2 1.32 0.021 -1.35 0.031

Gee2 2q12.3 114 0.045 131 0.038

-1.26 0.039

-1.11 0.014

GTPBP8 3q13.2 112 0.045 -1.28 0.015
-1.14 0.019

HAT1 2g31.2-933.1 1.20 0022 -1.39 0.031

HIF1A 14921-q24 -1.23 0.039 -1.33 0.027

ISCA1P1 50121 -1.12 0.036 -1.56 0.000

1p31.3 0.018 -1.41 0.022

NDUFS4 5011.1 0.013 -1.32 0.021 Pinto et al. (2010)

OSGEPLA1 2qg32.2 0.019 -1.27 0.032

PIK3CA 3g26.3 0.042 -1.39 0.043

PRKACB 1p36.1 0.010 -1.47 0.005
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Lymphocytes
Gene Symbol Chr. Fold Fold Reference
Changs p-value Change p-value
-1.22 0.004
PSMD10 Xq22.3 -1.16 0.015 -1.33 0.005 Piton et al. (2011)
-1.28 0.024
RAD51AP1 12p13.2-p13.1 -1.18 0.000 -1.32 0.037
RANBP6 9p24.1 -1.15 0.028 -1.33 0.009
RBM41 Xq22.3 -1.11 0.007 -1.36 0.012
SC4MOL 4q32-q34 -1.23 0.011 -1.45 0.007 AGPC et al. (2007)
SEC22C 3p22.1 -1.14 0.020 -1.29 0.045
SFRS13A 1p36.11 -1.18 0.017 -1.56 0.030
-1.18 0.026
SLC25A40 7921.12 114 0027 -1.32 0.041
O'Roak et al. (2011)
SLC30A5 5q12.1 -1.16 0.016 -1.42 0.033 Gregg et al. (2008)
SYF2 1p36.11 -1.22 0.030 -1.23 0.048
TAF9 5011.2-q13.1 -1.16 0.025 -1.29 0.019
TCP1 6925.3-926 -1.33 0.011 -1.31 0.046 Philippe et al. (2009)
TMPO 12922 -1.23 0.004 1 ig 88?2 Gregg et al. (2008)
TPM4 19p13.1 -1.10 0.023 -1.21 0.041 Baron et al. (2006)
TRMT11 6q11.1-922.33 -1.20 0.007 -1.40 0.026 AGPC et al. (2007)
TWF1 12912 -1.14 0.006 -1.48 0.037 Wang et al. (2010)
USP16 21922.11 -1.16 0.008 -1.63 0.012
VEZT 12922 -1.11 0.017 -1.29 0.030
YWHAZ 8q23.1 -1.30 0.010 -1.45 0.003 Anderson et al. (2009)
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Table 5-6. GeneGO Pathway Maps and Process Networks enriched among genes
up-regulated in both lymphocytes and brain.

A. GeneGO Pathway Maps (FDR < 0.05)

GeneGO Pathway Map p-value Ratio
Apoptosis and survival_Anti-apoptotic TNFs/NF-kB/Bcl-2 pathway 4606E-05 3 41
Immune response_IL-27 signaling pathway 7.906E-04 2 24
Apoptosis and survival_APRIL and BAFF signaling 1.985E-03 2 38
Transcription_NF-kB signaling pathway 2.090E-03 2 39
Apoptosis and survival_Lymphotoxin-beta receptor signaling 2.308E-03 2 41

B. GeneGO Process Networks (FDR < 0.05)

GeneGO Process Network pValue Ratio
Inflammation_IL-10 anti-inflammatory response 2.595E-05 4 87
Immune response_BCR pathway 1.538E-04 4 137
Immune response_Phagocytosis 9.858E-04 4 223
Inflammation_IL-2 signaling 1.224E-03 3 104
Inflammation_Protein C signaling 1.365E-03 3 108
Inflammation_Inflammasome 1.516E-03 3 112
Inflammation_Amphoterin signaling 1.762E-03 3 118
Inflammation_IL-6 signaling 1.805E-03 3 119
Cell cycle_G1-S Interleukin regulation 2.225E-03 3 128
Development_Hemopoiesis, Erythropoietin pathway 2.590E-03 3 135
Inflammation_IgE signaling 2.758E-03 3 138
Inflammation_MIF signaling 2.873E-03 3 140
Immune response_|L-5 signalling 3.748E-03 2 44
Immune response_TCR signaling 5.304E-03 3 174
Inflammation_Innate inflammatory response 6.013E-03 3 182
Cell cycle_G1-S Growth factor regulation 7.282E-03 3 195
Immune response_Antigen presentation 7.491E-03 3 197
Reproduction_Feeding and Neurohormone signaling 8.933E-03 3 210
Inflammation_Histamine signaling 9.528E-03 3 215
Inflammation_Neutrophil activation 1.053E-02 3 223
Immune response_Phagosome in antigen presentation 1.420E-02 3 249
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Table 5-7. GeneGO Pathway Maps and Process Networks enriched among genes
down-regulated in both lymphocytes and brain.

A. GeneGO Pathway Maps (FDR < 0.065) *1*' three pathways significant with a FDR

<0.025

GeneGO Pathway Map p-value Ratio
Transc.rlp.tlon_R_oIe o_f heterochromatin protein 1 (HP1) family in 1.965E-05 3 22
transcriptional silencing
Apoptosis and survival_BAD phosphorylation 1.419E-04 3 42
DeveIopment_RoIe of HDAC and caIC|um/caImodulln-dependent kinase 3007E-04 3 54
(CaMK) in control of skeletal myogenesis
Apoptosis and survival_Beta-2 adrenergic receptor anti-apoptotic action 1437E-03 2 23
Cytoskeleton remodeling_Role of PDGFs in cell migration 1.565E-03 2 24
Cell adhesion_Alpha-4 integrins in cell migration and adhesion 3.133E-03 2 34
Inhibitory action of Lipoxin A4 on PDGF, EGF and LTD4 signaling 3.133E-03 2 34
Development_Regulation of telomere length and cellular immortalization 3.318E-03 2 35
Development_Lipoxin inhibitory action on PDGF, EGF and LTD4 signaling 3.318E-03 2 35
G-protein signaling_G-Protein alpha-12 signaling pathway 3.703E-03 2 37
Transcription_Receptor-mediated HIF regulation 4.108E-03 2 39
Translation _Regulation of EIF2 activity 4108E-03 2 39
Development_A2A receptor signaling 4.976E-03 2 43
Transcription_CREB pathway 5.206E-03 2 44
Development_Ligand-independent activation of ESR1 and ESR2 5.206E-03 2 44
Immung response_lnhlbltory action of Lipoxins on pro-inflammatory TNF- 5440E-03 2 45
alpha signaling
Development_Hedgehog signaling 5.678E-03 2 46
Regulation of lipid metabolism_Insulin signaling:generic cascades 5.922E-03 2 47
Development_Leptin signaling via PI3K-dependent pathway 5.922E-03 2 47
Development_PIP3 signaling in cardiac myocytes 5.922E-03 2 47
Regulation of metabolism_Triiodothyronine and Thyroxine signaling 6.170E-03 2 48
Development_Melanocyte development and pigmentation 6.423E-03 2 49
Development_GM-CSF signaling 6.681E-03 2 50
Immune response_Function of MEF2 in T lymphocytes 6.681E-03 2 50
Development_A2B receptor: action via G-protein alpha s 6.681E-03 2 50
Development_IGF-1 receptor signaling 6.943E-03 2 51
ENaC regulation in airways (normal and CF) 7.210E-03 2 52
PGE2 pathways in cancer 8.039E-03 2 55
Regulation of lipid metabolism_Insulin regulation of glycogen metabolism 8.324E-03 2 56

B. GeneGO Process Networks (FDR < 0.20) *No significant networks with a FDR <

0.05
GeneGO Process Network p-value Ratio
Inflammation_IL-6 signaling 2.363E-03 4 119
Development_Skeletal muscle development 4.698E-03 4 144

Inflammation_TREM1 signaling 4.815E-03 4 145
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GeneGO Process Network p-value Ratio
Apoptosis_Apoptotic mitochondria 5.771E-03 3 77
Cytoskeleton_Intermediate filaments 6.644E-03 3 81
Cell adhesion_Platelet aggregation 9.119E-03 4 174
Signal transduction_Leptin signaling 1.385E-02 3 106
Cell cycle_Meiosis 1.385E-02 3 106
Cell cycle_G2-M 1.591E-02 4 205
Reproduction_Feeding and Neurohormone signaling 1.724E-02 4 210
Muscle contraction_Nitric oxide signaling in the cardiovascular system 1.762E-02 3 116
Transcription_Chromatin modification 2.283E-02 3 128
Development_Melanocyte development and pigmentation 2.364E-02 2 50
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Table 5-8. GeneGO Pathway Maps enriched among genes included in the
lymphocyte-based class prediction model (n=67) and brain-based class prediction

model (n=116).

Lymph - Bran
GeneGO Pathway Map ymphocytes

p-value Ratio p-value Ratio

Apoptosis and survival_Anti-apoptotic TNFs/NF-kB/Bcl-2 6.05E-02 1 41 585E-05 4 41

pathway

Immune response_CXCR4 signaling via second 504E-02 1 34 7.24E-04 3 34
messenger

!mmune response_lnhlbltgry ac.:tlon of Lipoxins on pro- 203E-03 2 45 165E-03 3 45
inflammatory TNF-alpha signaling

Development_PEDF signaling 240E-03 2 49 228E-01 1 49
Apoptosis and survival_HTR1A signaling 250E-03 2 50 232E-01 1 50
Apoptosis and survival_Anti-apoptotic TNFs/NF-kB/IAP 403E-02 2 27 872E-03 1 27
pathway

Immune response_IL-4 - antiapoptotic action 446E-02 2 30 1.07E-02 1 30
Transcription_NF-kB signaling pathway 577E-02 2 39 1.77E-02 1 39
Imr.nun.e response_TCR and CD28 co-stimulation in 501E-02 2 40 186E-02 1 40
activation of NF-kB

Development_A2A receptor signaling 6.34E-02 2 43 213E-02 1 43
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FIGURES

Up-Regulated

Down-Regulated

. Lymphocytes

. Brain

Figure 5-1. Overlap between differentially expressed genes in lymphocytes and

brain. Green = lymphocytes (n=2321); Purple = brain (n=2017).
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Figure 5-2. Receiver Operating Characteristic (ROC) curves for classification of
autism cases and controls using A.) lymphocyte and B.) brain gene expression. A.)
Comparison of a classification model built and tested via cross validation with
lymphocyte gene expression (blue) (AUC: 0.668, 95% CI: 0.540-0.796) and a
classification model built with brain gene expression and tested with lymphocyte gene
expression (green) (AUC: 0.618, 95% CI: 0.746-0.489 B.) Comparison of a
classification model built and tested via cross validation with brain gene expression
(blue) (AUC: 0.704, 95% CI: 0.520-0.888) and a classification model built with
lymphocyte gene expression and tested with brain gene expression (green) (AUC:

0.574, 95% CI: 0.785-0.363).
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The aim of the studies described in this dissertation was to explore the
technical aspects and biological relevance of microarray gene expression profiling of
peripheral whole blood in regards to neural-based diseases. The studies were
motivated by the technical difficulties associated with assaying peripheral whole blood
via microarray, the difficulties associated with directly comparing blood and brain
gene expression profiles, and the general lack of understanding in regards to the
ability of blood-based gene expression profiling to capture biologically relevant
neural-based disease profiles. The study of blood gene expression profiles is likely to
be important to the development of expression-based biomarkers for
neuropsychiatric, neurodegenerative, and neurodevelopmental diseases given the
difficulties associated with collecting the large number of human brains necessary for
clinical validation of such biomarkers. The chapters in this dissertation tackle various
aspects associated with the processing and evaluation of microarray gene expression
profiles of peripheral whole blood in mouse and humans. Here | provide an overview

of the main findings as well as discuss limitations and future directions.

MAIN FINDINGS

The evaluation of a globin reduction method using microarray-based blood
gene expression profiling in mouse highlighted the need for and the importance of
removing or reducing globin transcripts in peripheral whole blood prior to microarray
analysis (Chapter 2). Comparing blood gene expression profiles from before and after
globin reduction, the removal of globin transcripts was found to improve detection
sensitivity of low abundance transcripts thus significantly improving the ability to

evaluate biological pathways and disease networks via whole blood. The need to
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reduce globin transcripts in the analysis of anxiety-related phenotypes in particular
was emphasized by the significant increase in the number of Schizophrenia network
objects identified following globin reduction.

Given the positive effect of globin reduction on microarray-based gene
expression profiling of mouse whole blood, globin reduced blood gene expression
profiles were utilized in conjunction with neural tissue gene expression profiles in the
evaluation of anxiety-related behavioral phenotypes in mice (Chapter 3). Several
recent studies have compared blood and brain gene expression profiles with
conflicting results as to the potential of blood as a surrogate tissue for blood (Cai et
al. 2010, Davies et al. 2009, Jasinska et al. 2009). However, these studies only
assess natural variation and heritability. Although naturally occurring variation and
patterns may fail to be well correlated between blood and brain such as seen by Cai
et al., it remains unclear whether genes and pathways associated with disease in
blood will reflect those genes and pathways associated with disease in brain. Here
we went beyond strain- and tissue-specific variation to evaluate genes and pathways
associated with anxiety-related phenotypes in mice. We concluded blood gene
expression profiles were able to capture only a small portion of the total trait-
associated genes and enriched pathways identified in brain. Despite this finding, the
genes and pathways associated with behavioral phenotypes in blood were highly
enriched for biologically relevant genes and pathways suggesting blood is a viable
surrogate tissue.

Next, blood gene expression profiles were assessed in the context of human
samples. Human, peripheral whole blood is known to benefit from the reduction of

globin transcripts similar to the effected reported here in the context of mice (Tian et
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al. 2009, Field et al. 2007). The evaluation of a microarray target preparation method
(WG-DASL) with the potential to eliminate the need for globin reduction confirmed the
benefits of reducing globin transcripts (Chapter 4) suggesting the elimination of
globin-specific probes from sample amplification is not sufficient to improve detection
sensitivity.

The correlation between human lymphocyte and brain gene expression
profiles associated with autism was assessed in a similar manner as behavioral traits
in mice (Chapter 5). Approximately 4% of the genes dysregulated in the brain were
dysregulated in lymphocytes and many of the same pathways dysregulated in brain
were also significantly enriched in lymphocytes. We also found many of these genes
(33%) were identified in previous genetic studies of autism. These results confirm the
ability to identify neurobiologically relevant genes using blood-derived cells.
Furthermore, lymphocyte gene expression profiles were able to classify disease state

at a level similar to brain gene expression.

CONCLUSIONS AND FUTURE DIRECTIONS

In this work, | assessed the potential of blood as a surrogate tissue for the
analysis of neural-based diseases. The correlation between blood and brain was
ultimately assessed comparing significantly associated behavioral trait/disease genes
and significantly enriched pathways and disease networks identified in blood and
brain. We conclude whole blood or blood-derived cells reflect biologically relevant
disease profiles despite capturing only a small fraction of the whole picture. However,
these studies are not without their limitations, particularly in regards to sample size

and microarray processing.
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Microarray studies are especially prone to batch effects (i.e. time of sample
collection, time of microarray processing, array manufacture date, etc.) and other
technically-induced variation (i.e. RNA processing, scanning intensity, location of the
probe on the array, etc.). This becomes exceptionally relevant when batch effects are
correlated with the phenotype of interest. In the mouse gene expression profiles
studied here, tissue type was highly correlated with the time of sample collection and
microarray processing. Due to this correlation, correcting for batch (Johnson et al.
2007) would remove variation associated with both time of microarray processing as
well as tissue type. The batch effects associated with tissue type may have also
played a part in the difference in the number of significantly associated genes in
blood as compared to brain (7%-35%) and hence the number of genes that overlap or
the number of pathways capable of being significantly enriched in blood. The small
biological differences associated with natural variations in inbred mouse strain
behavioral phenotypes may largely have been overshadowed by differences
associated with technical processing (Bryant et al. 2011).

Genome-wide transcriptional profiling of whole blood is also hampered by its
heterogeneous nature. The effects of this heterogeneity maybe reflected in the larger
overlap between blood and brain using lymphocytes as compared to globin-reduced
whole blood. While brain tissues can be finely dissected to ensure a rather
homogeneous cell population from the start, blood cells must first be collected and
immediately fractionated or stored and subjected to further downstream processing at
a later date or immortalized as cell lines. The effects of fractionation and storage on
gene expression profiles have been well studied (Debey-Pascher et al. 2011, Debey

et al. 2004). At the same time, various computational methods have been developed
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in an attempt to identify cell populations (Bolen et al. 2011, Grigoryev et al. 2010).
However, the most effective approach to dealing with different cell populations in
whole blood maybe running a Complete Blood Count (CBC) test for each sample
collected.

Sample size is also a problem given the variability associated with genome-
wide transcriptional profiling and behavioral phenotype testing. Increasing the number
of mice per tissue, behavioral phenotype, and strain should result in decreased
variability due to sampling differences and technical variation thus improving the
ability to detect smaller changes in gene expression and behavioral phenotypes
across the different mouse strains. Our analyses may also be improved by limiting the
study to mice on the extreme ends of the phenotype spectrum or by increasing the
number of strains thus expanding the range of the behavioral phenotypes studied.

In the end, genome-wide transcriptome analyses will benefit from the
development of more sensitive assays such as RNA sequencing (Ozsolak et al.
2011). RNA sequencing overcomes the limited dynamic range of microarray
platforms and hence the contributing factor to the need for reducing globin transcripts
in whole blood. As RNA sequencing continues to advance, whole blood gene
expression studies will benefit from the ability to assess not only mRNA levels but
also the ability to more accurately predict alternative splicing events. Alternative
splicing is widespread in the brain (Lin et al. 2011, Boutz et al. 2007) and may be one
of the reason blood gene expression profiles do not significantly overlap with brain

gene expression profiles.



181

REFERENCES

Bolen CR, Uduman M, Kleinstein SH (2011) Cell subset prediction for blood genomic
studies. BMC Bioinformatics 12, 258

Boutz PL, Stoilov P, Li Q, Lin CH, Chawla G, Ostrow K, Shiue L, Ares M, Jr., Black
DL (2007) A post-transcriptional regulatory switch in polypyrimidine tract-binding
proteins reprograms alternative splicing in developing neurons. Genes Dev 21, 1636-
1652

Bryant PA, Smyth GK, Robins-Browne R, Curtis N (2011) Technical variability is
greater than biological variability in a microarray experiment but both are outweighed
by changes induced by stimulation. PLoS ONE 6, €19556-e19556

Cai C, Langfelder P, Fuller T, Oldham M, Luo R, van den Berg L, Ophoff R, Horvath
S (2010) Is human blood a good surrogate for brain tissue in transcriptional studies?
BMC Genomics 11, 589-589

Davies MN, Lawn S, Whatley S, Fernandes C, Williams RW, Schalkwyk LC (2009) To
What Extent is Blood a Reasonable Surrogate for Brain in Gene Expression Studies:
Estimation from Mouse Hippocampus and Spleen. Front Neurosci 3

Debey S, Schoenbeck U, Hellmich M, Gathof BS, Pillai R, Zander T, Schultze JL
(2004) Comparison of different isolation techniques prior gene expression profiling of
blood derived cells: impact on physiological responses, on overall expression and the
role of different cell types. The Pharmacogenomics Journal 4, 193-207

Debey-Pascher S, Hofmann A, Kreusch F, Schuler G, Schuler-Thurner B, Schultze
JL, Staratschek-Jox A (2011) RNA-stabilized whole blood samples but not peripheral
blood mononuclear cells can be stored for prolonged time periods prior to
transcriptome analysis. The Journal of Molecular Diagnostics: JMD 13, 452-460

Field LA, Jordan RM, Hadix JA, Dunn MA, Shriver CD, Ellsworth RE, Ellsworth DL
(2007) Functional identity of genes detectable in expression profiling assays following
globin mRNA reduction of peripheral blood samples. Clinical Biochemistry 40, 499-
502

Grigoryev YA, Kurian SM, Avnur Z, Borie D, Deng J, Campbell D, Sung J, Nikolcheva
T, Quinn A, Schulman H, Peng SL, Schaffer R, Fisher J, Mondala T, Head S,
Flechner SM, Kantor AB, Marsh C, Salomon DR (2010) Deconvoluting post-
transplant immunity: cell subset-specific mapping reveals pathways for activation and
expansion of memory T, monocytes and B cells. PLoS ONE 5, e13358

Jasinska AJ, Service S, Choi O-w, DeYoung J, Grujic O, Kong S-y, Jorgensen MJ,
Bailey J, Breidenthal S, Fairbanks LA, Woods RP, Jentsch JD, Freimer NB (2009)
Identification of brain transcriptional variation reproduced in peripheral blood: an
approach for mapping brain expression traits. Human Molecular Genetics 18, 4415-



182

4427

Johnson WE, Li C, Rabinovic A (2007) Adjusting batch effects in microarray
expression data using empirical Bayes methods. Biostatistics 8, 118-127

Lin L, Shen S, Jiang P, Sato S, Davidson BL, Xing Y (2010) Evolution of alternative
splicing in primate brain transcriptomes. Hum Mol Genet 19, 2958-2973

Ozsolak F, Milos PM (2011) RNA sequencing: advances, challenges and
opportunities. Nat Rev Genet 12, 87-98

Tian Z, Palmer N, Schmid P, Yao H, Galdzicki M, Berger B, Wu E, Kohane IS (2009)
A Practical Platform for Blood Biomarker Study by Using Global Gene Expression
Profiling of Peripheral Whole Blood. PLoS ONE 4, e5157-e5157



