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ABSTRACT 
 
 
 

DETECTING THE TEMPORAL STATUS OF BLOOD-BORNE PRIONS IN 

TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHY-INFECTED HOSTS  

 
 
 

 Transmissible spongiform encephalopathies (TSEs), or prion diseases, are infectious, 

fatal neurodegenerative diseases with a protracted subclinical disease state spanning months to 

years. Prion diseases develop when the normal cellular prion protein (PrPC) undergoes a 

conformational change into an aberrant, disease-causing, isoform (PrPSc/PrPres/PrPD), which 

aggregates into amyloid fibrils. Prions are unique from all other infectious diseases in that they 

lack nucleic acid. Prion diseases are known to naturally occur in cattle, sheep, mink, cervids, and 

humans; however, the exact mechanisms of transmission are unknown. Sufficient infectious 

prions to transmit and cause disease are known to be present in tissues and bodily fluids of all 

TSE-infected mammals during clinical and subclinical stages of disease. Extensive extraneural 

PrPSc-deposition has been observed in chronic wasting disease (CWD)-infected cervids and 

transmissible mink encephalopathy (TME)-infected hamsters and is very similar to what has 

been described for variant Creutzfeldt-Jacob disease (vCJD)-infected humans. Importantly, 

blood taken from humans and animals lacking overt clinical symptoms is capable of transmitting 

disease through transfusion. 

 In this thesis we set out to answer questions regarding hematogenous prions: 1) How long 

does it take for prions to enter the blood after initial TSE exposure? 2) Are hematogenous prions 

present in all animals infected with CWD and TME? and 3) Does the route of prion entry affect 

the temporal status of hematogenous prions.  
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To answer these questions, we analyzed longitudinally-collected whole blood samples 

from TSE-exposed animals by a modified version of the highly sensitive in vitro amyloid-

amplification assay “real-time quaking-induced conversion” (RT-QuIC) we termed whole blood 

(wb) RT-QuIC. Longitudinal whole blood samples (15 minutes post exposure-terminal disease) 

were collected from experimental CWD-exposed (oral, aerosol, and intravenous inoculation) 

white-tailed and Reeves’ muntjac deer and TME-exposed (extranasal inoculation) Syrian 

hamsters.  

We detected PrP conversion-competent amyloid in the blood of 100% of infected animals 

as early as 15 minutes post inoculation throughout terminal clinical TSE disease. These results 

were observed for all inoculation routes. Furthermore, we observed the presence of prions in the 

blood in two phases––a primary and secondary prionemia. 

The results of this work suggest that: 1) inoculated prions traverse mucosal barriers and 

enter the blood within 15 minutes of exposure; 2) the route of inoculation has little effect on the 

temporal status of prions in the blood; 3) there are two distinct phases of prionemia representing 

the initial inoculum (primary prionemia) and de novo host-generated prions (secondary 

prionemia); and 4) the observed characteristics of prionemia can be recapitulated in various TSE-

host combinations and may recapitulated the extraneural pathogenesis of human TSEs.
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INTRODUCTION 
 
 
 

Protein misfolding and amyloid formation: 

The proper folding of proteins is essential in all life; so much so that there are conserved 

mechanisms spanning from the simplest bacteria to complex mammals to ensure proper protein 

folding. While these mechanisms function accurately the majority of the time, protein misfolding 

does occur. Intricate cellular responses are usually sufficient in correcting the misfolding, or 

targeting the protein for degradation [1]. However, aggregation of misfolded proteins into well-

ordered, insoluble, fibrils––known as amyloids––is also possible and can have beneficial effects 

or, more commonly, be deleterious to the host. An example of beneficial amyloids are the prion-

like amyloids formed in yeast, such as URE3 and PSI, which aid fungal growth in nutrient poor 

environments and help regulate the translation of specific genes, respectively [2; 3]. The 

generation of beneficial aggregates is not limited to simple eukaryotes though; an example in 

more complex eukaryotic cells is the aggregation of the mitochondrial protein MAVS, which 

function to activate the innate immune response to viral infection [4]. Despite the existence of 

beneficial amyloids, many amyloids have been implicated in a large number of disorders, 

including many neurodegenerative diseases (Table I.1).  

When certain proteins misfold, their tertiary structures adopt uncharacteristic 

conformations that are abundant in beta-sheets (Fig. I.1), which results in self-aggregation and 

amyloid formation. Amyloid polymerization occurs as the beta-strands of each misfolded protein 

monomer align to create the cross-beta sheet quaternary structure of the amyloid fibril. It is this 

cross-beta sheet structure that allows the detection of many amyloids through the use of dyes 

(e.g. Thioflavin T and Congo Red), Fourier transform infrared spectroscopy (FTIR), and 
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transmission electron microscopy (TEM) [5; 6]. A common hallmark of amyloids, despite the 

different originating proteins, is the resistance to protease digestion resulting from the dense 

packing of the cross-beta sheet structure [7-9]. The inability to degrade insoluble amyloids 

results in their continued accumulation, eventually leading to the development of disease; 

however, the exact mechanisms of amyloid-induced pathology are unknown. 

 

Table I.1. Diseases involving amyloids 
Disease Normally 

folded 
protein 

Aberrant 
folded 
protein 

Tissue(s) of 
aggregation 

Protein 
aggregates 
detected 

Cause 

Prion 
diseases 

PrPC PrPSc Systemic, but 
primarily central 
nervous tissue 

PrPSc 
deposits 

Sporadic 
Genetic 

Acquired 

Huntington’s 
Disease 
 (HD) 

Huntingtin 
protein (Htt) 

Mutant Htt 
(mHtt) 

aggregates 

Central nervous 
tissue 

mHtt 
inclusion 

bodies 

Genetic 

Alzheimer’s  
Disease 

(AD) 

Amyloid 
precursor 
protein 
(APP) 

Amyloid 
beta 

peptides 
(Aβ) 

Central nervous 
tissue 

Aβ plaques Sporadic 
Genetic 

Parkinson’s 
Disease 

(PD) 

α-Synuclein α-Synuclein 
aggregates 

Central nervous 
tissue 

Lewy 
bodies 

Sporadic 
Genetic 

Amyotrophic 
lateral 

sclerosis 
(ALS) 

Superoxide 
dismutase 
(SOD1) 

Mutant 
SOD1 

Central nervous 
tissue 

Mutant 
SOD1 

aggregates 

Sporadic 
Genetic 

Tauopathies Tau Tau 
aggregates 

Central nervous 
tissue 

Neurofibril
lary tangles 

(NFTs) 

Sporadic 
Genetic 

Amyloid A 
(AA) 

amyloidosis 

Serum 
amyloid A 

(SAA) 

N-terminal 
fragment of 
SAA (AA) 

Systemic due to 
chronic inflammation 
such as rheumatoid 

arthritis 

AA 
deposits 

Sporadic  

Type II 
diabetes 
mellitus 

Islet 
amyloid 

polypeptide 
(IAPP) 

proIAPP 
and IAPP 

Pancreas IAPP 
amyloids 

Sporadic 
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There are many hypotheses to explain the development of amyloidogenic diseases. Some 

amyloidoses, such as amyloid-associated kidney disease and type II diabetes mellitus (DM), have 

been observed to cause disease through the disruption of tissue architecture in various organs 

[10; 11]; however, it is suspected that many amyloidogenic disorders (e.g. Alzheimer’s disease 

(AD), Parkinson’s disease (PD), rheumatoid arthritis, and prion diseases) cause disease through 

calcium dysregulation and mitochondrial dysfunction leading to the release of reactive oxygen 

species [12; 13]. For amyloidoses involved in neurodegenerative diseases, protein aggregates 

have been observed as both intra- and extracellular fibrillar aggregates indicating a possible toxic 

extracellular effect. Additionally, a new hypothesis has emerged implicating prefibrillar 

intermediates as the culpable agents of neurotoxicity in various neurodegenerative amyloidoses 

[14-16]. 

 

 

Figure I.1. Conformational change from PrPC to PrPSc 
http://curtis.wawiki.wikispaces.net/Bradley+Waddell 
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 In addition to the various ways amyloidoses cause disease, the origin of amyloid 

formation can differ between diseases. Amyloid generation can be initiated through genetic 

inheritance (PD, AD, Huntington’s disease (HD), Amyotrophic lateral sclerosis (ALS), Fatal 

Familial Insomnia (FFI)), spontaneous means (sporadic Creutzfeldt-Jacob disease (sCJD)), 

iatrogenic measures (CJD), and infection (vCJD, scrapie, bovine spongiform encephalopathy 

(BSE) and chronic wasting disease (CWD)) (Table I.1). The transmissible spongiform 

encephalopathies (TSEs), or prion diseases, are the “poster child” for amyloidogenic diseases 

that can be transmitted through infectious means and are the primary subject of discussion in this 

thesis. 

 

The “protein-only” hypothesis and transmissible spongiform encephalopathies: 

Prion diseases, or TSEs, are a family of protein misfolding diseases that are responsible 

for a number of fatal neurodegenerative diseases in several mammalian species, including 

humans. While most protein misfolding diseases are not infectious, the agents responsible for 

prion diseases are capable of being transmitted from infected hosts to naïve susceptible hosts 

[17]. The infectious nature of prion diseases differs from that of all other infectious diseases in 

that the agent associated with infection lacks nucleic acid, being comprised of only protein. This 

is known as the protein-only, or “prion” (protein only infectious particle), hypothesis [17]. The 

central theory of the prion hypothesis focuses on the post-translational conversion from the 

normal cellular prion protein (PrPC) to the aberrant misfolded disease associated conformer 

(PrPSc) (Fig. I.1).  

Initial evidence for the protein-only infectious nature of TSE agents came from studies 

showing that bacterial and viral inactivation treatments, such as UV radiation, did not prevent the 
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transmission of scrapie, a once thought viral infection that later became known as the archetype 

TSE [18]. These studies were later confirmed by the purification and separation of the scrapie 

agent from diseased brain, resulting in the identification of the first known infectious agent to be 

comprised of only protein [17]. While the exact role the prion protein plays in disease 

pathogenesis has not been determined, the prion protein is essential in the development of TSE 

disease [19; 20]—as it has been found that mice devoid of the PRNP gene (encoding the prion 

protein) do not develop TSE disease [21-24].  

Prions diseases are known to occur in various mammalian species including: scrapie in 

sheep [25], bovine spongiform encephalopathy (BSE) in cattle [26], transmissible mink 

encephalopathy (TME) in hamsters [27; 28], chronic wasting disease (CWD) in cervids (deer, 

elk, and moose) [29; 30], as well as Fatal Familial Insomnia (FFI), Gerstmann–Sträussler–

Scheinker syndrome (GSS), Kuru, and CJD in humans [31-33]. In addition to affecting various 

species, TSEs can be transmitted to new hosts through numerous routes of exposure––such as 

intracranial [34; 35], intraperitoneal [36], oral [37-41], intravenous [42-44], aerosol [45; 46], and 

inadvertent medical [47] exposures––to PrPSc located in tissues [40; 48-50] and bodily fluids [25; 

28; 39; 51-59]. Furthermore, it has been demonstrated that prions can be transmitted in 

association with contaminated soils/fomites without the need for direct animal-to-animal contact 

[60-62]. While prion diseases are the only naturally infectious amyloidogenic diseases, other 

human neurodegenerative diseases, such as AD and PD, have demonstrated prion-like 

propagation and transmission in experimental settings [33; 63]. 
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PrPC and PrPSc distribution:  

PrPC is expressed in tissues throughout the body with the highest expression within 

neurons and glial cells of the central nervous system (CNS) [22; 64; 65]; however, cells within 

the lymphoreticular system (LRS) also express high levels of PrPC [22; 66-70]. PrPC expression 

within LRS tissues is of particular importance as studies have revealed the LRS as the earliest 

site of PrPSc deposition and replication following peripheral (e.g. IP, oral, or aerosol) inoculation 

[36; 41; 71-76]. Furthermore, prions are thought to enter the LRS after first crossing the 

intestinal or nasal epithelial barriers following oral or aerosol inoculation, respectively. In 

addition to PrPSc infection of LRS tissues, infectivity has been detected in other non-nervous 

tissues including skeletal muscle [77-80], cardiac muscle [30; 81], adrenal gland [82], pancreas 

[82], kidney [83], and liver [72]. 

While most prion diseases demonstrate systemic involvement, the level of LRS 

association varies between TSEs. BSE is known to infect numerous tissues outside the central 

nervous system, including the gastrointestinal (GI) tract, but has been found to have minimal 

LRS association [84]. Sporadic CJD, while similar to BSE in demonstrating little involvement in 

extraneural tissues, has been detected in both skeletal muscle and spleen from infected 

individuals [79; 85]. In contrast to sCJD, the variant strain of CJD (vCJD)––thought to have 

entered the human population from the consumption of BSE-contaminated beef––has prominent 

extraneural involvement and a marked tropism for lymphoid organs and tissues [31; 79; 86]. 

Similar to vCJD, both scrapie and TME have high extraneural involvement––particularly in the 

LRS––but, CWD stands out for its extensive PrPSc deposition outside of the CNS [27; 29; 71; 87; 

88]. Together scrapie, CWD, TME, and vCJD are known to have the most systemic involvement 

of all the natural (non-experimental) TSEs. 
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Chronic wasting disease and transmissible mink encephalopathy:  

Chronic wasting disease (CWD) is the only known TSE to occur in a free-ranging 

wildlife population, naturally infecting elk, moose, and various deer species [89]. First 

recognized in 1967 in captive mule deer at Colorado State University (Fort Collins, Colorado), 

the geographical distribution of CWD has expanded across North America, now detected in 23 

U.S. states, 2 Canadian provinces, and in South Korea (as of the time of this writing) [90]. The 

origin of CWD is unknown, as well as how it has efficiently spread throughout North America 

(some regions have reported a prevalence of 20-30%) [91] and to Korea by importation of CWD-

infected elk from North America [92]. CWD has efficient transmission dynamics, likely 

contributing to its infection of free-ranging and captive cervid populations. Contributing factors 

to the efficient transmission of CWD may be from direct contact with bodily fluids (blood, 

saliva, urine, and feces) [39; 61; 93; 94] or through contact with contaminated soils and fomites 

in the environment [58; 60-62; 91].  

Natural transmissible mink encephalopathy (TME) is a TSE of farmed mink and has been 

detected in Finland, Germany, Canada, the U.S., and the former Soviet Union [95; 96]. Though 

the origin of TME remains unknown, it is suspected that initial infections were due to ingestion 

of mink feed scrapie- or BSE-contaminated material [96]. Two distinct strains of TME (Hyper 

“HY” or Drowsy “DY”) are used in hamster animal models to study the TSE pathogenesis and 

prion strain interference [96]. 

CWD and TME recapitulate characteristics of many other TSEs, including human vCJD 

[29; 96], and therefore provide invaluable insight into the mechanisms of disease transmission 

and pathogenesis. 
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CWD and TME pathogenesis: 

 Previous bioassay studies have established the presence of a protracted subclinical phase 

of disease for all prion diseases with clinical disease developing months to years after initial TSE 

exposure, depending on the disease [31; 96]. Cervids infected with CWD develop clinical 

disease between 15 and 48 months after initial exposure, progressing to terminal clinical disease 

2 weeks to 8 months after the initial onset of clinical signs (progressive emaciation, ataxia, 

polydipsia accompanied by excessive salivation, polyuria, and behavioral changes) [91; 96]. The 

incubation period for TME-infected mink ranges from 6 to 12 months post exposure, with 

affected hosts succumbing to terminal disease between 2 to 8 weeks post clinical onset 

(behavioral changes and ataxia, with the addition tremors, declined coordination, and 

convulsions) [96].  

 

The evolving field of prion detection: 

Conventional prion detection has relied upon immunohistochemistry (IHC), western blot 

analysis, and bioassay. All three methodologies have proven to provide challenges in the 

detection of blood-borne prions. Western blot analysis of blood or tissues with large volumes of 

blood has proven difficult due to the presence of compounds that inhibit western blot detection. 

IHC is ineffective for blood analysis as it is tissue based. While bioassay in native host and 

rodent models possesses the sensitivity necessary to detect hematogenous prions, they are 

unrealistic diagnostic tools due to their cost and time requirements. 

The development of highly sensitive in vitro PrP conversion or amplification assays has 

enhanced our ability to detect prions in tissues and bodily fluids, and has significantly reduced 

detection time and expense compared to bioassay. Serial protein misfolding cyclic amplification 
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(sPMCA), one of the initial amyloid amplification assays, provided the first in vitro detection of 

hematogenous prions [97-99]. Similar to the polymerase chain reaction, sPMCA functions 

through continuous cycles of fragmentation and elongation. Prion-infected tissue or blood 

(containing PrPSc) is combined with brain homogenate expressing PrPC from uninfected animals. 

During the elongation steps the PrPC in the brain homogenate provides the necessary substrate 

for amplification of PrPSc. The samples then undergo sonication to fragment the PrPSc fibrils into 

multiple smaller pieces upon which further amyloid formation can occur. 

While able to detect blood-borne prions halfway through infection and after, sPMCA has 

insufficient sensitivity to detect the very small quantities of prions present early in infection. This 

is thought to be due to inhibitory compounds present in whole blood and its reliance upon 

protease digestion prior to western blot immunoassay analysis. To overcome these limits sPMCA 

studies have focused on the use of buffy coat fractions of whole blood instead of pure whole 

blood, with limited success [97; 98]. Given that infectious prions have been detected in the red 

blood cell fraction of whole blood, analyzing only part of the whole blood may contribute to 

decreased assay sensitivity. However, the low concentration of prions in blood and the presence 

of assay inhibitors in whole blood may still pose a problem when trying to detect prions in whole 

blood samples. Thus, methods to remove these inhibitors and/or concentrate PrPSc from other 

proteins present in whole blood are warranted. 

The next generation of PrPC-converting assay, real-time quaking-induced conversion 

(RT-QuIC) [100-102], has provided many advances. Similar to sPMCA, RT-QuIC relies upon 

the seeded conversion of a PrPC rich substrate into the misfolded isoform. Where sPMCA uses 

normal brain homogenate expressing PrPC for this conversion, RT-QuIC employs the use of 

recombinant prion protein (rPrP) as the templating substrate. PrPSc in the seeding material 
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initiates the rPrP to undergo a conformational change into an amyloid isoform. This growing 

amyloid fibril is detected by the intercalation of a fluorescence marker, thioflavin T (ThT), 

within the structured β-sheets of the amyloid [103]. Both sPMCA and RT-QuIC offer the 

potential for enhanced ante-mortem hematogenous prion detection. RT-QuIC provides the added 

benefit of a non-mouse source substrate incorporating real-time fluorescence readout. As with all 

in vitro assays, RT-QuIC has its own limitations, including the generation of the rPrP substrate. 

Studies published as part of this thesis describe the optimization of the RT-QuIC assay for use 

with whole blood, the first in vitro temporal status of conversion-competent blood borne-prions 

from minutes post TSE exposure through terminal TSE disease, and the first demonstration of a 

primary and secondary prionemia (Elder et al., 2015 Submitted for publication)[104].  

 

A history of hematogenous prions: 

 Infectious prions are associated with various tissues and bodily fluids harvested from 

TSE-infected hosts. An understanding of the true infectious nature of bodily fluids has been 

shown by bioassay of blood [25; 43; 44; 51; 52; 54; 94; 105; 106], saliva [51; 107], urine [39; 

107], and feces [39; 58]. Further conformation that these fluids contain aggregated misfolded 

prions has been supported by various in vitro detection methodologies [53; 93; 97; 98; 104; 108]. 

Hematogenous prions have been detected in mammalian hosts infected with BSE [109], scrapie 

[25; 54], TME [104], CWD [51; 94], sCJD and vCJD [105; 109; 110]. 

 The study of blood-borne prion transmission has been ongoing since the 1960’s, making 

it one of the longest projects in the field of prion research. The first evidence that blood from 

TSE-infected animals harbor infectious material came from early bioassays in the 1960’s and 

70’s when it was demonstrated that blood collected from scrapie-infected sheep could infect 
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goats and a mouse model [111-113]. Despite incomplete attack rates, detection of scrapie in LRS 

tissues harvested from these studies indicated that infectious prions were carried with blood from 

scrapie–infected sheep. More recent studies conducted by Hunter and Houston found that 

sufficient infectious prions are present in a transfusion of 500 ml of whole blood or buffy coat 

(500ml equivalent in cells) from scrapie-infected sheep to transmit disease [25; 54]. 

Additionally, Mathiason et al. demonstrated CWD transmissibility to cervids via intravenous 

inoculation of 250 ml whole blood harvested from subclinical CWD-infected cervid [51]. 

 Transfusion transmission of infectious prions has occurred in humans. In 1996 a variant 

strain of CJD (vCJD) was described for the first time. Variant CJD has since been linked––via 

biochemical and strain typing analysis––to the transmission of BSE to humans through the 

consumption of BSE-contaminated meat. To date, there have been 229 confirmed cases of vCJD 

worldwide, of which, 4 have acquired the disease through contaminated blood transfusion [44; 

114-117]. In these occasions, donated blood had been transfused to CJD naïve individuals from 

donors who were unknowingly infected with vCJD at the time of donation, but later developed 

clinical disease. Following these incidences of transmission via blood from subclinical donors 

the UK has employed mandatory leukocyte-reduction of donated blood products in an attempt to 

reduce the risk of transmission. Unfortunately, the methods of reduction have been shown to be 

incapable of removing 100% of infectious prions from blood [118-120]. Additionally, based on a 

recent retrospective analysis of appendix and tonsil tissues from deceased patients, it is currently 

thought that vCJD may be present in the subclinical disease state in as many as 1/1,250 persons 

in the United Kingdom [86; 121; 122]. Thus, concern exists that vCJD may still be present in the 

human population with the capability of transmitting covertly through blood transfusion or 

iatrogenic transmission.  
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Aside from transfusion studies aiming to determine if blood harbors infectious prions, 

hematogenous prion research has also focused on: finding the minimum infectious dose, 

determining what blood components carry infectivity, developing a blood-based diagnostic tool 

for prion detection, and determining if prionemia onset begins in the subclinical phase of disease. 

While a true minimum infectious dose has yet to be found, recent studies have 

demonstrated that transfusion of 200 µl of scrapie-infected whole blood was sufficient to 

transmit infection to naïve sheep [52]. These results indicate that blood may contain more 

infectivity than previously thought. Other studies have focused on establishing prion association 

in blood—cellular, acellular, or both. B cells have long been implicated in prion infection and 

LRS involvement, and are known to harbor infectious prions capable of transmitting disease [36; 

85; 94; 123-126]. Other immune cells, including follicular dendritic cells (FDCs) and 

monocytes/macrophages, have been associated with PrPSc deposition [36; 74; 123]. Virtually all 

components of blood have been associated with infectious prions including white blood cells 

[52; 127], plasma [105; 128], platelets [94; 127; 129], and erythrocytes [105]. The discovery that 

whole blood carries prion infectivity has led to precautionary leukodepletion [119]. However, the 

presence of infectivity in erythrocytes may render the practice of leukodepletion unsatisfactory in 

eliminating the concern for hematogenous TSE dissemination. It has been established for several 

TSEs (scrapie, CWD, TME, sCJD, and vCJD) that infectious prions are present during the long 

asymptomatic, or subclinical, phase of disease lasting several months to years [98; 104; 109; 

130]. Determining the biological role of blood in TSE disease pathogenesis may contribute 

significantly to our overall understanding of TSEs and other protein misfolding diseases 

impacting all mammals, including humans. 
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Significance of hematogenous prions in TSE pathogenesis: 

 Prion-infected individuals can persist in a subclinical carrier state for months or years 

prior to the development of clinical disease [31; 96]. Infectious prions are known to be present in 

the blood during this subclinical stage of disease [43; 116]. During this carrier state, blood-borne 

prions are most certainly trafficked throughout the body and are involved in the infection of 

extraneural tissues, and possibly the CNS itself. 

The mechanism(s) by which prions infiltrate the CNS during natural infection are still 

unknown. It is suspected that prions enter through the peripheral nervous system (PNS), blood, 

or both. In the PNS scenario, infectious prions enter the body and are transported directly to 

regional lymphoid tissue (tonsils, GALT, NALT, etc.…) followed by drainage into regional 

lymph nodes (e.g. retropharyngeal or mesenteric lymph nodes). From regional lymph nodes 

infectious prions are trafficked in the blood and lymph to non-GALT lymphoid tissues, such as 

the spleen. Subsequent neuroinvasion may then occur by retrograde transport using the 

sympathetic and parasympathetic neurons innervating these tissues [73; 74]. 

A second hypothesis, that neuroinvasion occurs via blood-borne prions, supports prion 

entry via the circumventricular organs (CVOs), breaching the blood brain barrier [41; 73]. In this 

scenario, neuroinvasion occurs after infectious prions enter the blood and are trafficked to tissues 

throughout the body, including lymphoid tissues and the brain [41; 73]. This hypothesis is 

reinforced by recent findings [131], which revealed that hamsters inoculated intraperitonealy had 

detectable prions in the brain as early as 2 days post inoculation. Further support comes from 

observations that PrPSc accumulation in CVOs occurs irrespective of inoculation route and that 

deposition occurs first at the CVOs with subsequent invasion of the corresponding parenchymal 

regions, rather than a random distribution throughout the brain [41; 73; 132].  
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Studies published as part of this thesis demonstrate that prions can quickly translocate 

across mucosal barriers and gain entry into the circulatory system where they are detectable 

throughout the entire course of disease. These results make it plausible that neuroinvasion via 

hematogenous prions may occur earlier in the disease course than previously considered for all 

TSEs. The rapid infection of extraneural tissues may result in peripheral amplification 

throughout the course of disease of prions in these tissues with spillover of prions back into the 

blood. This process may be vital in the shedding of prions throughout the entirety of disease. 

 

Thesis research: 

 The overall objective of this work was to determine the temporal status of blood-borne 

prions in animals infected via various routes of inoculation. The tools developed and used in this 

thesis research include a sensitive and efficient in vitro method to detect amyloid formation (i.e. 

prions) and longitudinally collected blood samples from TSE-infected animals. We used blood 

collected throughout the entire course of disease in CWD- and TME-infected animals, as 

longitudinal blood samples from vCJD-infected hosts are not available. We hypothesized that 

prions are trafficked in the vascular system of infected individuals early in the subclinical stage 

of disease, and that they could be detected by highly sensitive conversion assays (RT-QuIC) in 

whole blood (wbRT-QuIC). We developed optimal detection conditions and treatments for the 

detection of the small quantities of PrPSc present in the whole blood of CWD- and TME-infected 

hosts. 

 The use of RT-QuIC on whole blood samples provides a highly sensitive (94%) and 

specific (100%) means of detecting the presence of amplification-competent prions. We 

hypothesized that prions enter the blood during subclinical infection, regardless of inoculation 
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route, and that the use of wbRT-QuIC would demonstrate the earliest establishment of 

prionemia. Analysis by wbRT-QuIC uncovered the temporal status and exposure dynamics of 

hematogenous prions.  We describe for the first time: 1) in vitro detection of hematogenous 

prions present in whole blood collected from longitudinal TSE-exposed cervids and hamsters; 2) 

prions were able to transverse mucosal barriers to enter the blood as early as 15 minutes post 

TSE exposure (oral, aerosol, intravenous, and extranasal), and were present throughout the 

development of terminal TSE disease; and 3) a distinct primary and secondary prionemia—likely 

representing the inoculum (primary prionemia), a host clearance mechanism, and the generation 

of de novo prions (secondary prionemia) in TSE-infected hosts.  

 

The primary goal of this thesis was to determine the in vitro temporal status of hematogenous 

prions for TSE-exposed hosts with the motivation that our discoveries would provide critical 

information about the pathogenesis of TSEs and possibly other amyloidogenic diseases. 
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CHAPTER 11 
 
 
 

In Vitro Detection of Prionemia in TSE-infected Cervids and Hamsters 
 
 
 

OVERVIEW 
 
 
 

Blood-borne transmission of infectious prions during the symptomatic and asymptomatic 

stages of disease occurs for both human and animal transmissible spongiform encephalopathies 

(TSEs).  The geographical distribution of the cervid TSE, chronic wasting disease (CWD), 

continues to spread across North America and the prospective number of individuals harboring 

an asymptomatic infection of human variant Creutzfeldt-Jakob Disease (vCJD) in the United 

Kingdom has been projected to be ~1 in 3000 residents. Thus, it is important to monitor cervid 

and human blood products to ensure herd health and human safety. Current methods for 

detecting blood-associated prions rely primarily upon bioassay in laboratory animals. While 

bioassay provides high sensitivity and specificity, it requires many months, animals, and it is 

costly. Here we report modification of the real time quaking-induced conversion (RT-QuIC) 

assay to detect blood-borne prions in whole blood from prion-infected preclinical white-tailed 

deer, muntjac deer, and Syrian hamsters, attaining sensitivity of >90% while maintaining 100% 

specificity. Our results indicate that RT-QuIC methodology as modified can provide consistent 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1	  Previously published as: Elder AM, Henderson DM, Nalls AV, Wilham JM, Caughey BW, Hoover EA, 

Kincaid AE, Bartz JC, and Mathiason CK. (2013) In vitro detection of prionemia in TSE-infected cervids and 

hamsters. PLoS ONE 8(11): e80203. 
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and reliable detection of blood-borne prions in preclinical and symptomatic stages of two animal 

TSEs, offering promise for prionemia detection in other species, including humans. 

 
 
 

INTRODUCTION 
 
 
 

The hematogenous spread of prions in transmissible spongiform encephalopathy (TSE)-

infected animals has long been hypothesized [1-3], but evidence for the presence of prions in 

non-nervous/lymphoid tissues and blood was not available for several decades [4-8]. Later 

studies have provided unequivocal proof of efficient TSE blood-borne infectivity [9-14]. The 

knowledge that prions traffic throughout the body in blood has important implications for both 

human and animal health. 

Variant Creutzfeldt-Jakob disease (vCJD) emerged following the bovine spongiform 

encephalopathy (BSE) epidemic in the United Kingdom in the 1980s and 90s. Biochemical and 

strain typing analysis have provided evidence indicating that vCJD originated from human 

exposure to BSE contaminated material. To date, 227 cases of vCJD have been diagnosed 

worldwide [15], four of which have been transmitted by non-leukodepleted blood transfusion 

[16-20]. While leukocyte reduction has been implemented to filter prions and prion carrying cells 

from blood products, these filtration methods are unable to remove 100% of TSE infectivity [8; 

21; 22]. In addition, recent reports have revealed that 1/1,250 to 1/3,500 persons in the United 

Kingdom may be asymptomatic carriers of vCJD as a result of the BSE epidemic [23]. Thus, 

concern exists that a secondary outbreak of vCJD may ensue involving blood-borne prion 

transmission originating from individuals unknowingly carrying a subclinical prion infection. 
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Here we address the need for an in vitro assay with the ability to detect the prion disease-

associated isoform of prion protein (PrPD) present in whole blood. 

Several animal TSEs, including chronic wasting disease (CWD) of deer and elk [13; 24] 

and hamster-adapted transmissible mink encephalopathy (TME) [25; 26] exhibit a hematogenous 

phase of infection, thus providing excellent TSE models for the development of an ante-mortem 

blood-borne PrPD detection assay. 

While traditional assays, such as Western blot and immunohistochemistry (IHC), are 

effective for detecting large quantities of prions present in nervous and lymphoid tissues, they do 

not have the ability to detect the minute quantities of prions thought to be present in bodily fluids 

or peripheral tissues early in infection. Rodent bioassays have the necessary sensitivity and 

specificity to detect hematogenous prions, but they are not realistic as rapid and cost-effective 

diagnostic tools. In vitro prion detection was advanced with the advent of serial protein 

misfolding cyclic amplification (sPMCA) [25; 27]. sPMCA has been optimized for the detection 

of prions in blood [26] and requires less time than bioassay, but its use has been hampered by a 

lack of consistent sensitivity and a dependence on protease digestion prior to immunoassay 

readout. In contrast, the real-time quaking-induced conversion (RT-QuIC) assay [28-30] relies 

upon the seeded conversion of recombinant prion protein (rPrP) to PrPD and subsequent binding 

of the fluorescence marker, thioflavin T (ThT), to the resulting amyloid isoforms [31]. This 

process offers enhanced ante-mortem prion detection and real-time fluorescence readout [30]. 

We undertook this project to determine if adaptations applied to RT-QuIC could provide 

a fast, sensitive and consistent assay for the detection of blood-borne prions. 
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MATERIALS AND METHODS 
 
 
 

Ethics Statement: 

All animals were handled in strict accordance with guidelines for animal care and use 

provided by the United States Department of Agriculture (USDA), National Institutes of Health 

(NIH) and the Association for Assessment and Accreditation of Laboratory Animal Care 

International (AAALAC), and all animal work was approved by Colorado State University 

Institutional Animal Care and Use Committee (IACUC)	  Institutional Animal Care and Use 

Committee (IACUC) (approval numbers 02-151A, 08-175A and 11-2615A). All procedures 

involving hamsters were preapproved by the Creighton University Institutional Animal Care and 

Use Committee and were in compliance with the Guide for the Care and Use of Laboratory 

Animals. 

 

Cervid inoculations: 

Cervid whole blood was procured from historical and contemporary white-tailed and 

muntjac deer studies conducted at CSU (Table 1). Prior to inoculation, cervids were anesthetized 

with a mixture of ketamine and medetomidine. In brief, naïve 1-2 year old white-tailed deer 

(Odocoileus virginianus) were inoculated with CWD-positive material as follows: 1) 1.0 g of 

brain in a 10% brain homogenate (10 ml) administered intracranialy [13]; 2) 250 ml fresh/frozen 

whole blood administered intravenously/intraperitonealy, respectively [13]; 3) 1.0 g of brain in a 

10% brain homogenate administered orally; or 4) 2 ml of a 5% (wt/vol) brain homogenate 

aerosol-administered  [32]. Negative control white-tailed deer were exposed to sham inoculum as 

described above. Naïve 1-2 year old muntjac deer (Muntiacus reevesi) were inoculated with 1.0 g 
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total brain in a 10% brain homogenate administered orally/subcutaneously [33]. Negative control 

muntjac deer received sham inoculum as described above. 

 

Table 1.1 Cervid blood donor inoculations, clinical status, and assay results 
Animal 

# 
Inoculum Route of 

Inoculation 
Sample 

collection 
date 

Disease 
Status 

Western 
Blot 

Status 
(Obex) 

IHC 
Status 

Positive 
QuIC 

Replicate
s 

1 
(WTD) 

2 ml 5% 
CWD+ 
brain 

homogenate 

Aerosol 23 MPI 
 

Clinical + +B 8/8 

2 
(WTD) 

2 ml 5% 
CWD+ 
brain 

homogenate 

Aerosol 22 MPI 
 
 

Clinical + +B 8/8 

3 
(WTD) 

2 ml 5% 
CWD+ 
brain 

homogenate 

Aerosol 22 MPI 
 

Clinical + +B 7/8 

4 
(WTD) 

2 ml 5% 
CWD+ 
brain 

homogenate 

Aerosol 23 MPI Clinical + +B 8/8 

5 
(WTD) 

2 ml 5% 
CWD+ 
brain 

homogenate 

Aerosol 19 MPI 
Termination 

Pre-
clinical 

+ +B 8/8 

6 
(WTD) 

2 ml 5% 
CWD+ 
brain 

homogenate 

Aerosol 16.5 MPI 
Termination 

Clinical + +B 8/8 

7 
(WTD) 

1.0 g 10% 
CWD+ 
brain 

homogenate 

PO 24.5 MPI Pre-
clinical 

NA +B 7/8 

8 
(WTD) 

1.0 g 10% 
CWD+ 
brain 

homogenate 

PO 22 MPI 
Termination 

Pre-
clinical 

+ +B 8/8 

9 
(WTD) 

1.0 g 10% 
CWD+ 
brain 

PO 22 MPI Pre-
clinical 

- -B 7/8 
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homogenate 
10 

(WTD) 
1.0 g 10% 

CWD+ 
brain 

homogenate 

PO 22 MPI 
Termination 

Clinical + +B 8/8 

11 
(WTD) 

1.0 g 10% 
CWD+ 
brain 

homogenate 

PO 16 MPI 
Termination 

Pre-
clinical 

+ +B 8/8 

12 
(WTD) 

1.0 g 10% 
CWD+ 
brain 

homogenate 

PO 18 MPI 
Termination 

Clinical + +B 7/8 

13 
(WTD) 

1.0 g 10% 
CWD+ 
brain 

homogenate 

PO 22 MPI 
Termination 

Clinical + +B 8/8 

14 
(WTD) 

1.0 g 10% 
CWD+ 
brain 

homogenate 

PO 16 MPI 
Termination 

Pre-
clinical 

+ +B 7/8 

15 
(WTD) 

2.0 g 10% 
CWD+ 
brain 

homogenate 

IC 12 MPI 
Termination 

Clinical + +B,O 7/8 

16 
(WTD) 

250 ml 
CWD+ 

whole blood 

IV 12 MPI Clinical + +B,O 8/8 

17 (MJ) 1.0 g 10% 
CWD+ 
brain 

homogenate 

PO/SQ 6.5 MPI 
Termination 

Pre-
clinical

* 

- +O 8/8 

18 (MJ) 1.0 g 10% 
CWD+ 
brain 

homogenate 

PO/SQ 6.5 MPI 
Termination 

Pre-
clinical

* 

- +O 6/8 

19 (MJ) 1.0 g 10% 
CWD+ 
brain 

homogenate 

PO/SQ 26 MPI 
Termination 

Clinical + +B,O 8/8 

20 (MJ) 1.0 g 10% 
CWD+ 
brain 

homogenate 

PO/SQ 23 MPI 
Termination 

Clinical + +B,O 8/8 

21 (MJ) 1.0 g 10% PO/SQ 22 MPI Clinical + +B,O 8/8 
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CWD+ 
brain 

homogenate 

Termination 

22 (MJ) 1.0 g 10% 
CWD+ 
brain 

homogenate 

PO/SQ 24 MPI 
Termination 

Clinical + +B,O 4/8 

23 
(WTD) 

2 ml sham 
homogenate 

Aerosol 19 MPI NA - -B 0/8 

24 
(WTD) 

2 ml sham 
homogenate 

Aerosol 23 MPI NA - -B 0/8 

25 
(WTD) 

2 ml sham 
homogenate 

Aerosol 22 MPI NA - -B 0/8 

26 
(WTD) 

Uninfected 
urine/feces 

PO 20 MPI NA - -B,O 0/8 

27 
(WTD) 

Uninfected 
urine/feces 

PO 20 MPI NA - -B,O 0/8 

28 (MJ) 1.0 g sham 
homogenate 

PO/SQ 13 MPI NA - -O 0/8 

29 (MJ) 1.0 g sham 
homogenate  

PO/SQ 23 MPI NA - -O 0/8 

30 (MJ) Uninoculate
d 

NA NA NA - -O 0/8 

31 (MJ) Uninoculate
d 
 

NA NA NA - -O 0/8 

32 (MJ) Uninoculate
d 
 

NA NA NA - -O 0/8 

33 (MJ) Uninoculate
d 
 

NA NA NA - -O 0/8 

WTD = White-tailed deer; MJ = Muntjac deer; NA = Not available; - = PrPD was not detected in 
the sample; + = PrPD was detected in the sample; MPI= Months post inoculation; B = Biopsy of 
tonsil and recto-anal mucosa associated lymphoid tissue; O = Obex; *= Less than halfway to 
clinical disease 
 

Hamster inoculation: 

Male 10-11 week old Syrian hamsters (Harlan Sprague Dawley, Indianapolis, IN) were 

used in these studies. Extranasal (e.n.) inoculations using a 10% w/v brain homogenate 

containing 106.8 intracerebral 50% lethal doses per ml of the HY TME agent or a sham 
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homogenate were performed as previously described [34]. Hamsters receiving e.n. inoculations 

were briefly anesthetized with isoflurane (Webster Veterinary), placed in a supine position and 5 

µl of brain homogenate was placed just inferior to each nostril (10 µl total volume). Brain 

homogenate was immediately inhaled into the nasal cavity, as hamsters are obligate nose 

breathers. 

 

Blood and tissue collection from cervids: 

Whole blood (10 ml/cervid/anticoagulant) was collected from n=22 CWD-inoculated 

cervids following anesthetization with ketamine and medetomidine — six in various stages of 

disease presentation and 16 at termination— and from 11 negative control sham-inoculated 

cervids (Table 1). All blood samples were preserved in one of three anticoagulants: 1) 14% 

anticoagulant citrate phosphate dextrose adenine (CPDA), 2) 15% ethylenediaminetetraacetic 

acid (EDTA), or 3) 200 units/ml heparin, before being placed in 1 ml aliquots and frozen at -

80°C. At termination cervids were euthanized with beuthanasia-D solution. Brain (medulla 

oblongata) collected from each terminal white-tailed deer and muntjac deer was frozen at -80°C 

or fixed in 10% neutral buffered formalin or paraformaldehyde-lysine-periodate (PLP) and 

stored in 60% ethanol prior to processing. 

 

Blood and tissue collection from hamsters: 

At selected time points post-infection, three infected and one mock-infected hamster were 

anesthetized with isoflurane and blood was collected via cardiac puncture into heparin blood 

tubes for preservation at -80°C (Table 2). The animals were then transcardially perfused with 50 

ml of 0.01 M Dulbecco’s phosphate buffered saline followed by 75 ml of McLean’s PLP 
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fixative. Brain and brainstem were immediately removed and placed in PLP for 5-7 hours at 

room temperature prior to paraffin processing and embedding. 

 

Table 1.2 Hamster blood donor inoculations, clinical status, and assay results 
Animal 

# 
Inoculum 

 
Route of 

inoculation 
Disease 
Status 

Sample 
collection 

date 

IHC Status Positive 
QuIC 

Replicates  
34 
 

10 µl 10% 
HY TME 

brain 
homogenate 

Extranasal Pre-
clinical* 

8 WPI ND 8/8 

35 
 

10 µl 10% 
HY TME 

brain 
homogenate 

Extranasal Pre-
clinical* 

8 WPI ND 8/8 

36 
 

10 µl 10% 
HY TME 

brain 
homogenate 

Extranasal Pre-
clinical* 

8 WPI ND 5/8 

37 
 

10 µl 10% 
HY TME 

brain 
homogenate 

Extranasal Pre-
clinical* 

10 WPI ND 8/8 

38 
 

10 µl 10% 
HY TME 

brain 
homogenate 

Extranasal Pre-
clinical* 

10 WPI ND 5/8 

39 
 

10 µl 10% 
HY TME 

brain 
homogenate 

Extranasal Pre-
clinical* 

10 WPI ND 8/8 

40 
 

10 µl 10% 
HY TME 

brain 
homogenate 

Extranasal Pre-clinical 12 WPI - 8/8 

41 
 

10 µl 10% 
HY TME 

brain 
homogenate 

Extranasal Pre-clinical 12 WPI - 8/8 

42 
 

10 µl 10% 
HY TME 

brain 
homogenate 

Extranasal Pre-clinical 12 WPI - 8/8 
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43 
 

10 µl 10% 
HY TME 

brain 
homogenate 

Extranasal Pre-clinical 14 WPI - 8/8 

44 
 

10 µl 10% 
HY TME 

brain 
homogenate 

Extranasal Pre-clinical 14 WPI + 8/8 

45 
 

10 µl 10% 
HY TME 

brain 
homogenate 

Extranasal Pre-clinical 14 WPI + 8/8 

46 
 

10 µl 10% 
HY TME 

brain 
homogenate 

Extranasal Pre-clinical 16 WPI + 8/8 

47 
 

10 µl 10% 
HY TME 

brain 
homogenate 

Extranasal Pre-clinical 16 WPI + 7/8 

48 
 

10 µl 10% 
HY TME 

brain 
homogenate 

Extranasal Pre-clinical 16 WPI + 8/8 

49 
 

10 µl 10% 
HY TME 

brain 
homogenate 

Extranasal Pre-clinical 18 WPI ND 8/8 

50 
 

10 µl 10% 
HY TME 

brain 
homogenate 

Extranasal Pre-clinical 18 WPI ND 7/8 

51 
 

10 µl 10% 
HY TME 

brain 
homogenate 

Extranasal Pre-clinical 18 WPI ND 8/8 

52 
 

10 µl 10% 
HY TME 

brain 
homogenate 

Extranasal Clinical 20 WPI ND 8/8 

53 
 

10 µl 10% 
HY TME 

brain 
homogenate 

Extranasal Clinical 20 WPI ND 7/8 

54 
 

10 µl 10% 
HY TME 

Extranasal Clinical 20 WPI ND 8/8 



	  
35 

brain 
homogenate 

55 
 

10 µl 10% 
sham 

homogenate 

Extranasal NA 8 WPI - 0/8 

56 
 

10 µl 10% 
sham 

homogenate 

Extranasal NA 10 WPI - 0/8 

57 
 

10 µl 10% 
sham 

homogenate 

Extranasal NA 12 WPI - 0/8 

58 
 

10 µl 10% 
sham 

homogenate 

Extranasal NA 14 WPI - 0/8 

59 
 

10 µl 10% 
sham 

homogenate 

Extranasal NA 16 WPI - 0/8 

60 
 

10 µl 10% 
sham 

homogenate 

Extranasal NA 18 WPI - 0/8 

61 
 

10 µl 10% 
sham 

homogenate 

Extranasal NA 20 WPI - 0/8 

WPI = weeks post inoculation; NA = Not available; ND = Not done; - = PrPD was not detected; 
+ = PrPD was detected in the sample; *= Less than/equal to the halfway point to clinical disease 
 

Brain tissue homogenization: 

Ten percent (10%) brain tissue homogenates were prepared from the obex region of the 

medulla oblongata by homogenizing 0.05 g brain tissue in 0.5 ml homogenate buffer (1X PBS + 

0.1% Triton-X 100 [Sigma-Aldrich]). Samples were homogenized using 0.5 mm diameter 

zirconium oxide beads and a Bullet Blender (Next Advance) for 5 minutes at a speed setting of 

10. Homogenates were stored at -80°C in 20 µl aliquots. 

 

Whole blood freeze-thaw and homogenization process: 

One milliliter (1 ml) aliquots of whole blood were frozen at -80°C for 30 minutes and 

subsequently thawed at 22°C for 60 minutes. This process was repeated four times. Samples 
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were then homogenized using 0.5 mm diameter zirconium oxide beads and a Bullet Blender 

(Next Advance) for 5 minutes at top speed.  

 

Sodium phosphotungstic acid (NaPTA) precipitation: 

Sodium phosphotungstic acid (NaPTA) precipitation of prions, as first described by 

Wadsworth et al. [35], was used to concentrate proteins (including PrP) present in whole blood 

samples. Frozen whole blood homogenates were thawed and centrifuged at 2000 rpm for one 

minute to remove cellular debris. Five hundred microliters (500 µl) of supernatant were mixed 

with an equal volume of 4% sarkosyl in 1X phosphate buffered saline (PBS) and incubated for 

30 minutes at 37°C with constant agitation. Samples were then adjusted to contain a final 

concentration of 50 U/ml of benzonase (Sigma-Aldrich) and incubated at 37°C for another 30 

minutes with constant agitation. A solution of 4% (w/v) phosphotungstic acid (Sigma-Aldrich) 

and 170 mM magnesium chloride, adjusted to pH 7.4 with NaOH, was added to the sample for a 

final concentration of 0.3% (w/v) NaPTA and agitated at 37°C for 30 minutes. Samples were 

then centrifuged for 30 minutes at 14,000 rpm and the pellet was resuspended in 50 µl 0.1% (v/v) 

sarkosyl. 

 

Recombinant protein preparation: 

Recombinant protein was expressed and purified as previously described [36; 37]. 

Truncated recombinant Syrian hamster PrP (SHrPrP 90-231; received from the Caughey 

laboratory) expressed by Rosetta strain Escherichia coli was inoculated into 1 liter of LB 

containing Auto InductionTM supplements (EMD Biosciences). Cultures were allowed to grow 

overnight until harvest when an OD (600nm) of ~3 was reached. Cells were lysed using Bug 



	  
37 

BusterTM and LysonaseTM (EMD Biosciences). Inclusion bodies (IB) were isolated by 

centrifugation at 15,000xg and were solubilized in 8 M guanidine hydrochloride in Tris-‐

phosphate	  buffer (100 mM NaPO4 and 10 mM Tris pH 8.0). The protein solution obtained was 

bound to Super Flow Ni-NTA resin (Qiagen) pre-equilibrated with denaturing buffer (6.0 M 

GuHCl Tris-phosphate) at room temperature with agitation for 45 minutes and added to a XK 

FPLC column (GE). SHrPrP was refolded on the column with refolding Tris-phosphate buffer at 

0.75 ml/min for 340 ml, then eluted with 0.5 M imidazole Tris-phosphate pH 5.5 at 2.0 ml/min 

for a total of 100 ml. Eluted fractions were collected and dialyzed in two changes of 4.0 liters 

dialysis buffer (20 mM NaPO4 pH 5.5). Following dialysis, purified protein was adjusted to 0.6 

mg/ml, flash frozen in 1 ml aliquots, and stored at -80°C. 

 

Real-time quaking induced conversion (RT-QuIC) assay: 

Real-time quaking induced conversion (RT-QuIC), first described by Atarashi et al. [28], 

Wilham et al. [30], and Orru et al. [29], was used for the conversion of small quantities of prions 

present in the blood of TSE-infected animals. Positive assay controls and samples consisted of 

serial dilutions of a 10% homogenate of CWD or TME-infected brain (10-3-10-9) and NaPTA 

precipitated blood from infected animals (100-10-6), respectively. Negative assay controls and 

samples were comprised of serial dilutions of a 10% homogenate of uninfected brain (10-3-10-9) 

and NaPTA precipitated blood from uninfected animals (100-10-6), respectively. RT-QuIC 

reactions were set up in 96-well clear bottom optic plates (Nalgene Nunc) and consisted of 98 µl 

RT-QuIC Buffer (final concentrations of 1X PBS, 1 mM EDTA, 10 µM Thioflavin T (ThT), 

100-200 mM NaCl buffer, and 0.1 mg/ml recombinant Syrian hamster PrPC substrate) and 2 µl 

sample. Blood samples that were placed into the whole blood optimized RT-QuIC (WBO RT-
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QuIC) assay were 2 µl of serial dilutions made from concentrated material of 500 µl. Once 

reactions were set up in each well, plates were placed in a BMG Fluostar fluorescence plate 

reader with settings of 42°C for 60 hours with cycles consisting of 1 minute shake, 1 minute rest 

and ThT fluorescence measurements were taken every 15 minutes. Data were processed using 

Microsoft Excel (Microsoft Inc.) prior to graph production with Prism 6 (GraphPad Prism). 

 

Cervid immunohistochemistry: 

Samples were processed and analyzed as previously described by Nalls et al. [33]. In 

brief, fixed tissues were treated with formic acid, embedded in paraffin, cut, and placed on 

positively charged slides.  Deparaffinized, rehydrated and PK digested (20 mg/ml) tissues 

underwent epitope retrieval and were probed with primary antibody BAR224 (Cayman 

Chemical) and secondary anti-mouse HRP labeled polymer (Dako) prior to counterstain and 

reading by light microscopy 

 

Hamster immunohistochemistry: 

Immunohistochemistry was performed to detect PrPD as previously described [34]. In 

brief, deparaffinized, formic acid treated tissue sections were processed for antigen retrieval. 

Endogenous peroxidase and non-specific staining were blocked in H2O2 in methanol and normal 

horse serum. The sections were probed with monoclonal anti-PrP antibody 3F4 followed by 

secondary biotinylated horse anti-mouse immunoglobulin G conjugate prior to detection with 

ABC solution (Elite kit; Vector Laboratories). The sections were counterstained with 

hematoxylin and read by light microscopy   
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Western blotting: 

Western blotting performed as previously described [38] with the following 

modifications: tissue homogenates were mixed with proteinase K (PK) (Invitrogen) to a final 

concentration of 50 µg/ml and incubated at 37°C for 30 minutes, followed by incubation at 45°C 

for 10 minutes with constant agitation. Samples were size fractionated on a NuPAGE 10% Bis-

Tris gel (Novex) in 1X MOPS buffer at 100 volts for 2.5 hours, transferred to a polyvinylidene 

fluoride (PVDF) membrane for 7 minutes using the Trans-blot Turbo transfer system (Biorad). 

Post-transfer, the PVDF membrane was loaded onto a wetted SNAP i.d. holder (Millipore) and 

placed in the SNAP i.d. vacuum filtration system (Millipore). The PVDF membrane was blocked 

for 10 minutes with Blocking Buffer (Blocker casein in TBS [Thermo Scientific] with 0.1% 

Tween 20), and incubated for 10 minutes with 0.2 µg/ml primary antibody BAR224 (Cayman 

Chemical) -HRP conjugated antibody. The membrane was washed with TBST and developed 

using ECL Plus enhanced chemiluminescence Western blotting detection reagents (Invitrogen) 

and imaged on a Luminescence image analyzer LAS 3000 (Fujifilm). 

 

Mouse titration bioassay: 

All animals were handled in strict accordance with guidelines for animal care and use 

provided by the United States Department of Agriculture (USDA), National Institutes of Health 

(NIH) and the Association for Assessment and Accreditation of Laboratory Animal Care 

International (AAALAC), and all animal work was approved by Colorado State University 

Institutional Animal Care and Use Committee (IACUC). Seven cohorts of TgCerPrP mice (n=9) 

were inoculated with 30 µl of a CWD-infected cervid brain homogenate intracranialy. Each 

cohort received a different concentration of inoculum ranging from 10% (w/v) to 0.00001% 
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(w/v). Negative control mice were inoculated with sham material. Mice were subsequently 

observed and terminated upon onset of clinical disease. All mice were analyzed for the presence 

of PrPD by Western blot and immunohistochemistry. 

 

Calculations: 

RT-QuIC assay sensitivity was determined by analyzing the number of replicates 

demonstrating positivity compared to the total number of replicates run (# of positive 

replicates/total replicates analyzed). Separate calculations were performed for animals with 

clinical disease status and animals with subclinical disease status. 

PrPD concentration in blood was determined by comparison of the time to positivity for 

whole blood and brain samples. 2 µl of a 1/100 dilution (blood seed=2x10-2 µl) of NaPTA 

treated whole blood was compared against a dilutional series of brain samples. A 10 % brain 

homogenate was used and serially diluted by 10-fold dilutions to 10-8. 2 µl of 10-5-10-8 dilutions 

were seeded into the RT-QuIC assay. Calculations for 10-6 dilution of brain in RT-QuIC are used 

as an example:0.1 g/ml diluted 10-6=(10-10 g/µl)(2 µl)=2x10-10 g=0.2 ng. 

LD50 and SD50 were calculated using the Reed-Muench method [39]. 

 
 
 

RESULTS 
 
 
 

 RT-QuIC analysis of whole blood collected in various anticoagulants: 

To determine the influence of common blood preservation reagents in in vitro PrPD 

detection assays, we compared the ability of RT-QuIC to amplify CWD prions in fresh cervid 

whole blood preserved in CPDA (citrate phosphate dextrose adenine), EDTA 
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(ethylenediaminetetraacetic acid), or heparin. Samples were run in serial dilutions (100-10-6) in 

the RT-QuIC assay to determine the optimal dilution for PrPD detection. While RT-QuIC PrPC-

converting activity was observed in heparin-preserved blood from CWD-infected deer (1/2 

replicates in one dilution; 10-5), PrPC-converting activity was not detected in CPDA or EDTA 

preserved blood from the same animal or any blood collected from sham-inoculated deer (Figure 

1). This experiment was repeated six times with fresh whole blood with similar results witnessed 

each time. All subsequent RT-QuIC analyses were conducted on whole blood harvested in 

heparin.  

 

RT-QuIC analysis of fresh versus frozen whole blood: 

To determine if historical blood samples were adequately preserved to initiate PrPC-

converting activity in RT-QuIC, whole blood was collected from contemporary naïve and CWD-

infected white-tailed deer and compared as fresh versus frozen samples. Samples were processed 

in various dilutions ranging from undiluted to 10-6 to determine the optimal dilution for PrPD 

detection using frozen whole blood in the RT-QuIC assay. While PrPC-converting activity was 

detected in fresh whole blood, blood that had been processed through the freeze-thaw procedure 

yielded higher and more consistent detection of PrPC-converting activity (2/2 replicates in the 10-

3, 10-4 and 10-6 dilutions; 1/2 replicates in the 10-5 dilution) (Figure 2). PrPC-converting activity 

was not observed in wells containing only substrate or naïve cervid blood. To determine if the 

results observed in the anticoagulant study were due solely to the use of fresh blood, the 

experiments were repeated on frozen blood collected in all three anticoagulants. Results revealed 

identical outcomes for both CPDA and EDTA blood while showing an increased sensitivity in 
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heparin, as described above (data not shown). All subsequent RT-QuIC analyses included 

heparin-preserved whole blood that had undergone four freeze-thaw cycles. 

 

 
Figure 1.1 RT-QuIC analysis of whole blood collected in various anticoagulants. 
Blood was collected from a CWD-infected and CWD-naïve white-tailed deer and preserved in 
one of three anticoagulants:  CPDA, EDTA, or heparin. Serial blood sample dilutions (neat to 10-

6) were assayed by RT-QuIC for 60 hours and ThT fluorescence level above threshold 
determined positivity.  Detection of PrPC-converting activity for each replicate is shown for 
blood collected in CPDA (A), EDTA (B), and heparin (C).   
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Figure 1.2 RT-QuIC analysis of fresh versus frozen whole blood. 
Blood was collected from a CWD-infected and CWD-naïve white-tailed deer and aliquots were 
analyzed immediately (fresh) or frozen (-80C). Serial blood sample dilutions (neat to 10-6) were 
assayed by RT-QuIC in duplicate for 60 hours and ThT fluorescence level above threshold 
determined positivity. Detection of PrPC-converting activity for each replicate is shown for blood 
analyzed fresh (A) and frozen (B). 
 

Effects of sodium phosphotungstic acid precipitation (NaPTA) on RT-QuIC PrPD detection:  

While blood that had been freeze-thawed revealed more PrPC-converting activity than 

fresh blood, the results demonstrated an inconsistency in regards to the time required for a 

sample to become positive and dilutions that were positive. In addition to these inconsistencies, 

false-positive results were also witnessed. NaPTA precipitation was applied to heparin preserved 

whole blood that had undergone freeze-thaw cell lysis in an attempt to increase consistency of 
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positive samples, as well as the sensitivity and specificity of the RT-QuIC assay. With the 

improved sensitivity and specificity provided by NaPTA pretreatment, we were able to 

demonstrate reliable RT-QuIC results at a 10-2 dilution of CWD-infected whole blood, while 

NaPTA treated whole blood from a naïve individual remained conversion free (Figure 3). 

Samples were serially diluted, with the dilutional series for each animal being run in triplicate for 

60 hours.  

All of the remaining RT-QuIC analyses of TSE prion converting activity in historical and 

contemporary samples were conducted with heparin-preserved and freeze-thawed NaPTA-

treated whole blood.  

 

RT-QuIC comparison of CWD-positive brain versus NaPTA concentrated whole blood: 

To evaluate the levels of PrPD present in NaPTA concentrated whole blood samples, 

PrPC-converting activity was compared to that detected in serial dilutions of CWD-positive 

white-tailed deer brain (Figure 4). NaPTA treated whole blood (500 µl starting volume of whole 

blood concentrated to 50 µl) diluted to 10-2 demonstrated PrPD levels approximately equivalent 

to that measured in 10-6-10-7 dilution of CWD-positive brain. Equivalence was determined by 

comparison of the time to positivity for whole blood and brain samples. 
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Figure 1.3 RT-QuIC analysis of samples before and after treatment with NAPTA. 
Samples were untreated or concentrated using NAPTA, serially diluted (neat to 10-6), and 
assayed by RT-QuIC in triplicate for 60 hours. ThT fluorescence level above threshold 
determined positivity, each replicate is present. (A and C) Limited detection is seen in untreated 
blood samples. (B and D) Improved detection of PrPC-converting activity is seen in blood 
samples precipitated with NAPTA from CWD-infected white-tailed deer. (E) Note increased 
false-positives in untreated samples from a CWD-naïve white-tailed deer. (F) No PrPC-
converting activity was seen in samples precipitated with NAPTA from a CWD-naïve white-
tailed deer. 
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Figure 1.4 RT-QuIC comparison of brain and blood samples. 
Ten percent (10%) brain homogenates were serially diluted (10-5 to 10-8) and assayed by RT-
QuIC for 60 hours. Blood samples were diluted to 10-2 and run in triplicate for 60 hours with 
ThT fluorescence level above threshold determining positivity. CWD-infected blood diluted 10-2 
is seen to have similar levels of PrPC converting activity as CWD-positive brain diluted 10-6 and 
10-7. UN= Uninfected; INF= Infected. 
 

Detection of PrPC-converting activity in CWD-infected cervid whole blood:  

Twenty-two of 22 clinical and preclinical CWD-infected cervids (16 white-tailed deer 

and 6 muntjac deer) and 0/11 naive cervids (5 white-tailed deer and 6 muntjac deer) exhibited 

RT-QuIC PrPC-converting activity in 7/8 or 8/8 replicates within 60 hours (Figure 5, Table 1). 

Samples were run two separate times to determine consistency of the RT-QuIC assay. Sample 

replicates were averaged on each plate and a positive threshold was set at five times the standard 

deviation of the negative control average. 
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Figure 1.5 RT-QuIC analysis of cervid whole blood samples.  
Blood samples were diluted to 10-2 and 8 replicates were analyzed over 2 runs of 60 hours, and 
positivity was determined by ThT fluorescence level above threshold. PrPC-converting activity is 
demonstrated in 22 CWD-infected cervid blood samples, and is absent in all CWD-naïve 
samples (A-F). Each line is the average of four replicates for a specific animal. UN= Uninfected; 
INF= Infected. 
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Detection of PrPC-converting activity in TME-infected hamster whole blood: 

The hyper strain of transmissible mink encephalopathy (HY TME) was chosen for the 

RT-QuIC assay to determine the assays ability for PrPD detection in various species and strains 

of TSEs. All HY TME-infected hamsters (n=21), ranging from 8 to 20 weeks post infection, 

exhibited RT-QuIC PrPC-converting activity in 5/8 – 8/8 replicates within 60 hours, while all 

(n=7) of the age matched controls failed to seed RT-QuIC (Figure 6, Table 2). As above, each 

sample was run two separate times to determine consistency of the RT-QuIC assay. Sample 

replicates were averaged on each plate and a positive threshold was set at five times the standard 

deviation of the negative control average.  

 

Immunohistochemistry confirmation of RT-QuIC results: 

Immunohistochemistry was applied as a confirmation for the presence of PrPD deposition 

in the brains of animals where PrPC-converting activity was detected in blood. IHC was 

performed on both cervid and hamster TME-inoculated and mock-inoculated brains for detection 

of the disease associated isoform of the prion protein, PrPD. PrPD deposition was observed in 

TSE-infected animals, but not in mock-inoculated animals (Figure 7; Tables 1, 2). 
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Figure 1.6 RT-QuIC analysis of hamster whole blood samples.  
Blood samples were diluted to 10-2 and 8 replicates were analyzed over 2 experiments of 60 
hours, and positivity was determined by ThT fluorescence level above threshold. PrPC-
converting activity is demonstrated in 21 TME-infected blood samples, and is absent in all TME-
naïve samples (A-D). Each line is the average of four replicates for a specific animal. UN= 
Uninfected; INF= Infected. 
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Figure 1.7  PrPD detection in hamster, white-tailed deer and muntjac by IHC.  
PrPD immunoreactivity in a spinal cord tissue section from a hamster 16 weeks after extranasal 
inoculation with HY-TME (A) detected with antibody 3F4 and ABC solution. PrPD 

immunoreactivity in the brainstem of CWD-infected white-tailed deer (C) and muntjac (E) 
detected with antibody BAR224 and AEC (3-amino-9-ethylcarbazole) substrate. No 
immunoreactivity was seen in the corresponding tissues of mock-inoculated controls (B, D and 
F). The boxed areas are enlarged 10x in the insets. Scale bar = 200µm. 
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Mouse and hamster bioassay sensitivity vs. RT-QuIC sensitivity: 

To determine the brain equivalent sensitivity of RT-QuIC for TME and CWD samples, 

RT-QuIC analysis of serial dilutions of TSE-positive brain homogenates were compared to lethal 

dose bioassay titrations in HY TME-infected hamsters and CWD-infected mice. 

Using bioassay in cervidized transgenic mice and the Reed-Muench method, the LD50 

titer for 1 ml of 10% CWD-positive brain homogenate was determined to be 104.664, or 4.62x104 

units/ml (calculated from values in Table 3). End point dilution analysis revealed a failure to 

cause disease in dilutions greater than 10-5. Serial dilutions of 10% homogenate CWD-positive 

brain homogenates in RT-QuIC demonstrated consistent positivity to a dilution of 10-6, with 50% 

converting activity detected in the 10-7 dilution (Figure 8A). SD50 titer for the RT-QuIC assay 

was calculated for 1 ml of CWD-positive brain and was determined to be 109.544, or 3.5x109 

units/ml. These results indicate that the sensitivity of RT-QuIC for CWD detection is greater 

than animal bioassay. 

The LD50 for hamsters intracranialy inoculated with HY TME was determined to be 109.3, 

as demonstrated previously by Kincaid, et al. [40]. Endpoint dilution analysis resulted in failure 

to cause disease in dilutions greater than 10-9. RT-QuIC analysis of the same HY TME brain 

homogenates revealed PrPC-converting activity to 10-10 (Figure 8B). SD50 titer for the RT-QuIC 

assay was calculated for 1 ml of HY TME-positive brain and was determined to be 1013.033, or 

1.08x1013 units/ml. This indicates that the sensitivity of RT-QuIC for HY TME detection is 

greater than animal bioassay.   
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Table 1.3 Bioassay of CWD-positive cervid brain in TgCerPrP mice 
Dose (% brain homogenate) # Clinical/total n Days post inoculation 

(DPI) to clinical disease 
10 7/9A 137 ± 63 DPI 
1 9/9 200 ± 29 DPI  

0.1 8/9B 220 ± 70 DPI 
0.01 8/9B 250 ± 68 DPI 
0.001 7/9 397 ± 152 DPI 
0.0001 1/9 335 DPI 
0.00001 0/9 NA 

DPI = Days post inoculation; A = 2/9 mice died for reasons unrelated to CWD infection; B = 1/9 
mice died for reasons unrelated to CWD infection; NA = Not applicable 
 

 
Figure 1.8 RT-QuIC analysis of serially diluted cervid and hamster brain samples.  
Brain samples were serially diluted 10-3 to 10-6 or 10-3 to 10-10 for cervids (A) and hamsters (B), 
respectively, and analyzed in RT-QuIC for 60 hours. A ThT fluorescence level above threshold 
determined positivity. Both cervid and hamster brains from positively inoculated animals 
demonstrated positivity in all dilutions, while all brain dilutions from naïve animals remained 
negative. 
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DISCUSSION 
 
 
 

RT-QuIC analysis of whole blood collected in various anticoagulants: 

Precedence for hematogenous spread of prions via transfusion has been well established 

with various TSEs, including: scrapie [11], CWD [13; 41], BSE in sheep [10] and vCJD [14; 16-

19]. To date, few in vitro assays are capable of detecting prions present in the blood of infected 

individuals, and those that do can suffer from decreased sensitivity, possibly due to the presence 

of assay inhibitors [26; 42-44]. 

To assess whether anticoagulants affect PrPD detection, we analyzed whole blood 

collected in CPDA, EDTA, and heparin. It has been demonstrated in previous work [45] that 

anticoagulant storage can affect the presentation of cellular PrP. Here, we have shown that whole 

blood collected in heparin, but not in CPDA or EDTA, elicited efficient in vitro RT-QuIC prion 

conversion. In addition to the conversion observed in heparin-preserved whole blood, it should 

be noted that only more dilute samples (10-5 dilution in particular) demonstrated PrPC-converting 

activity. We suspect that this is due to the presence of inhibitory products in whole blood and 

that further diluting samples decreases the inhibition of these products. 

It has been shown that polyanions enhance the amplification of prions in in vitro 

conversion assays, suggesting that they may contribute to conversion efficiency [46; 47]. 

Heparin, a polyanion, has previously been shown to enhance in vitro detection of PrPD [48] and 

is thought to serve as a potential cofactor in prion propagation in vivo by acting as a scaffolding 

molecule or catalyst due to its highly negatively charged-glycosaminoglycan nature [49]. EDTA 

and CPDA owe their anticoagulant property to their ability to chelate calcium in blood. 

Chelating agents are widely used for scavenging metal ions [50] which may contribute to the 
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absence of PrPC-conversion observed in blood collected in the two anticoagulants. However, it 

should be noted that detection of prions in CPDA blood has been observed following 

immunoaffinity capture and substrate replacement [29]. Further research is needed to determine 

the role anticoagulants play in inhibiting/facilitating RT-QuIC. We have demonstrated that 

preserving whole blood samples in heparin may facilitate in vitro prion detection without 

increasing false positives from uninfected samples. 

 

RT-QuIC analysis of fresh versus frozen whole blood: 

To assess the feasibility of using historical frozen samples for future analysis of blood-

borne prions, we evaluated the effects of freezing blood prior to RT-QuIC. We have 

demonstrated that the freeze-thaw cycle enhances RT-QuIC blood-borne prion detection 

sensitivity, facilitating in vitro prion detection at earlier time points with a more robust 

amplification than samples that did not undergo the freeze-thaw process. There is compelling 

evidence for the accumulation of aggregated misfolded prion isoforms in the cytoplasm of 

infected cells [51; 52] and it is hypothesized that these aggregates are released from the cell as 

lysis occurs. Thermal shock on whole blood samples damages the cell membrane and initiates 

hemolysis [53; 54], which is thought to release intracellular components. Cell lysis of blood 

collected from TSE-infected animals, associated with repeated freeze-thaw cycles, may liberate 

sufficient prions to enhance in vitro nucleation and thus the detection of PrPC-converting activity.  

 

Effects of sodium phosphotungstic acid precipitation on RT-QuIC PrPD detection:  

It has been suggested that there are components present in bodily fluids that interfere with 

or inhibit prion conversion and thus in vitro detection of the aberrant form of the prion protein 
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[55; 56]. Various groups have attempted to solve this problem using different concentration 

methods. Using immunoprecipitation coupled with RT-QuIC, Orrú et al. [29] were able to 

establish in vitro detection of PrPC-converting activity in plasma and serum samples from 

scrapie-infected hamsters. Morales et al. [57] demonstrated that the use of varying concentrations 

of sarkosyl could concentrate PrPD present in tissue and fluid samples. Wadsworth and 

colleagues [35; 58] have shown that sarkosyl, coupled with the use of sodium phosphotungstic 

acid, enhances the isolation of both PrPC and PrPD from bodily fluids. Some groups have 

reported an inhibitory effect on amyloid formation when using NaPTA precipitation [59]; 

however, this was not our experience (Figure 3).  

Using NaPTA precipitation we were able to concentrate hematogenous prions to a more 

detectable level and/or remove assay inhibitors, augmenting our ability to directly detect prions 

in whole blood. Samples not receiving NaPTA treatment took longer to convert PrPC, and did so 

only in more dilute samples (Figure 3A). Samples that received treatment with NaPTA 

precipitation revealed PrPC-converting activity earlier, and exhibited positivity in more 

concentrated samples (Figure 3B). We conclude that NaPTA precipitation may remove potential 

assay inhibitors that are present in blood, allowing detection of converting activity at more 

concentrated dilutions thus decreasing false negatives (Figure 3C, D). In addition to these 

observations, we attempted sonication of the NaPTA product prior to serial dilution to determine 

if this aided in the observation of a dose-response. While this method slightly increased the 

number of later dilutions expressing PrPC-converting activity and aided in the consistency of 

when they crossed the positivity threshold (data not shown), the effect witnessed was not great 

enough to alter our decision to use the 10-2 dilution for all subsequent experiments. 
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With the application of an anticoagulant that facilitates prion conversion in vitro, the 

freeze-thaw cell lysis and NaPTA precipitation, we have optimized the RT-QuIC assay for 

efficient detection of PrPD in whole blood samples, thus we are calling our new protocol whole 

blood optimized (WBO) RT-QuIC. NaPTA precipitation increased consistency, the number of 

positive replicates and decreased the assay time required to initiate PrPC conversion/detection in 

whole blood harvested from TSE-infected animals while limiting false positive PrPC-converting 

activity in samples from uninfected animals (Figure 3).  

 

RT-QuIC comparison of CWD-positive brain and NaPTA concentrated whole blood: 

Many groups have developed quantitative in vitro methods to analyze the levels of PrPD 

present in various tissues and bodily fluid samples. Murayama et al. [60] used PMCA to 

establish a direct comparison of PrPD levels in buffy coat and plasma to PrPD levels seen in serial 

dilutions of TSE-infected brain by analyzing which round of PMCA samples began 

demonstrating positivity. Other laboratories [26; 56; 61] have reported quantitative and semi-

quantitative methods of PMCA to determine the levels of PrPD in blood and urine by comparing 

to the amount of amplifiable PrPD present in TSE-infected brain. Castilla et al. [26] were able to 

demonstrate that PMCA amplifiable prions in buffy coat collected from 1 ml of scrapie-adapted 

hamster blood contained roughly 0.1-1 pg of PrPD molecules. Our RT-QuIC results indicate that 

2 µl of a 10-2 dilution (0.5 ml of whole blood NaPTA concentrated 10-fold, further diluted to   

10-2) contained PrPD levels equivalent to those seen in 0.02 ng - 0.2 ng of CWD-positive brain 

(Figure 4).  
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Detection of PrPC-converting activity in CWD-infected cervid whole blood:   

Wilham et al. [30] demonstrated that the RT-QuIC assay has the ability to detect prions in 

tissue samples with similar sensitivity as bioassay (~ 1 lethal dose), rendering it appropriate for 

the detection of PrPD in bodily fluids such as blood and saliva. RT-QuIC assay efficacy for 

CWD-infected whole blood was evaluated following pretreatment to augment the release of 

prions from carrier cells and minimize inhibitory factors (freeze-thaw/NaPTA). We have 

demonstrated that our optimized RT-QuIC assay is sufficiently sensitive to detect PrPC-

converting activity in whole blood harvested from preclinical and clinical IHC/Western blot-

confirmed CWD-infected animals. Furthermore, our optimized RT-QuIC assay has demonstrated 

the ability to detect PrPC-converting activity in CWD-inoculated animals prior to the mid point 

between inoculation and clinical disease. 

Using PMCA for the detection of PrPD in the blood of scrapie-infected hamsters, Saa et 

al. [25] reported sensitivity levels of 80% for clinical animals, and up to 60% for preclinical 

animals. Orrú et al. demonstrated even greater sensitivity for PrPD in blood plasma of scrapie-

infected hamsters using immunoprecipitation coupled with RT-QuIC [29]. Utilizing our 

optimized RT-QuIC assay for cervid whole blood, we have shown that our assay exhibited 

sensitivity levels of 93.8% for clinical animals and 92.2% for preclinical animals while 

maintaining 100% specificity. These results reveal the potential of RT-QuIC as a reliable in vitro 

assay for blood-borne prion detection. 

 

Detection of PrPC-converting activity in TME-infected hamster whole blood: 

Utilization of hamster models for the propagation and detection of hematogenous PrPD 

have been used extensively [25; 26; 29; 51; 60; 62], primarily with scrapie infections. Previous 
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to this study, RT-QuIC had not been used to probe for PrPC-converting activity in whole blood of 

TME-infected hamsters. To ensure that the detection of RT-QuIC blood-borne PrPD detection 

was not exclusive to CWD, we analyzed whole blood harvested from IHC-confirmed TME-

infected and mock-infected hamsters. We have demonstrated PrPC-converting activity in 

preclinical TME-infected hamsters with 94.4% sensitivity and 100% specificity. We have also 

shown that the WBO RT-QuIC assay possesses the ability to detect PrPD in the blood of TME-

infected hamsters prior to the midpoint between inoculation and clinical disease. 

These observations reveal that RT-QuIC is consistently more sensitive in detection of 

hematogenous PrPD in preclinical animals than previously reported for PMCA [25]. Thus, the 

WBO RT-QuIC assay may be applicable for the detection of prionemia in multiple species 

(animals/humans). 

 

Implications for in vitro detection of blood-borne prion disease:  

The development of a reliable in vitro blood-borne TSE-detection assay would have 

significant advantages for both human and animal populations and may provide a stepping-stone 

for the development of diagnostic assays for other protein misfolding diseases. To date, various 

in vitro assays have been developed with the goal of detecting prions present in blood [63]. Of 

particular note are sPMCA [25; 26], a ligand based assay developed to detect hematogenous 

prions [42], and immunoprecipitation enhanced RT-QuIC [29]. However, demonstrating 

satisfactory sensitivity and specificity with these assays has been a challenge. 

We have demonstrated in vitro detection of prionemia in CWD and TME-infected hosts 

during both pre-clinical and clinical phases of disease, establishing the merits of RT-QuIC as an 

effective antemortem diagnostic tool. Early detection and screening applications will provide a 
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means to detect asymptomatic carriers of TSE disease in the human donor blood and tissue-

pools, thus indicating which samples should be eliminated. The ability to detect infected blood 

will aid in establishing monitoring parameters for TSE intervention/therapeutic strategies and 

provide domestic and wildlife herd management professionals with a live test for TSE 

surveillance. 
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CHAPTER 2 
 
 
 

Temporal parameters of prionemia in hamsters and deer following oral, nasal, or blood 

inoculations: from minutes to terminal disease 

 
 
 

OVERVIEW 
 
 
 

Infectious prions have been shown to traverse epithelial barriers to gain access to the 

circulatory system, yet the details of prion entry and persistence in the blood remains unknown. 

Conversion-competent blood-borne prions have been demonstrated in deer and hamsters infected 

with a transmissible spongiform encephalopathy (TSE) using whole blood real time-quaking 

induced conversion (wbRT-QuIC). Here we employ wbRT-QuIC to analyze whole blood 

collected from mucosal or intravenous TSE-inoculated deer and hamsters, beginning within 

minutes of inoculation and extending to the onset of clinical symptoms. Our results demonstrate 

the presence of conversion-competent prions in the blood of all TSE-inoculated hosts as early as 

15 minutes post inoculation (pi) following peripheral inoculation. The presence of conversion-

competent prions changed between 24-72 hrs pi with conversion-competent prions being 

detected in 22.92% - 6.25% replicates, respectively, likely representing the point source 

inoculum. While an eclipse phase was not identified, the clearance of prions was followed by a 

subsequent increase in detectable levels of hematogenous conversion-competent prions as 

disease progressed. These results indicate the occurrence of a primary and a secondary prionemia 

following different routes of exposure. This is the first report of the detection of blood-borne 
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prions throughout the complete incubation period of TSE disease, yielding evidence for the 

establishment of an asymptomatic carrier state within minutes of TSE exposure. 

 
 
 

INTRODUCTION 
 
 
 

Transmissible spongiform encephalopathies (TSEs), or prion diseases, are infectious and 

inevitably fatal neurodegenerative diseases that affect animals, including humans. TSEs are 

characterized by the conversion of the normal cellular prion protein (PrPC) into the aberrant 

misfolded disease associated conformer (PrPSc) and are transmitted by various routes of exposure 

to PrPSc present in tissues[1-8] or bodily fluids[9-20]. Prion diseases are also transmitted by 

contaminated soils/fomites[21-23], inadvertent medical exposure[24], and by blood 

transfusion[25-27]. A long asymptomatic phase where infectious prions are present in tissues and 

fluids of infected hosts has been identified for several TSEs including: chronic wasting disease 

(CWD) in cervids[17; 18], scrapie in sheep[28], bovine spongiform encephalopathy (BSE) in 

cattle[29], transmissible mink encephalopathy (TME) in hamsters[19; 30], and Kuru and variant 

Creutzfeldt-Jakob disease (vCJD) in humans[31; 32]. 

Prion trafficking within the central nervous system (CNS) and peripheral organs has been 

explored[33-40]. Due to limitations in assay sensitivity and lack of longitudinal blood sample 

archives spanning the entirety of TSE disease, the role hematogenous prions play in prion 

pathogenesis is poorly understood. Prions cross the intestinal epithelium following oral 

inoculation and infect the lymphoreticular system (LRS), the earliest site of PrPSc deposition and 

replication[40-46], yet it is unknown how PrPSc infiltrates autonomic nerves. Blood transmission 

dynamics and disease progression are remarkably similar for many prion diseases; however, the 
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fate of prions in the circulatory system immediately after initial exposure and during the 

asymptomatic disease course is unknown. 

Infectious hematogenous prions have been demonstrated in CWD-infected cervids[22] 

and hamsters infected with the hyper (HY) strain of hamster-adapted TME[47], which is similar 

to what is described for vCJD-infected humans. CWD, the only TSE found in native wildlife 

populations, is efficiently transmitted among free-ranging and captive cervid populations, and is 

found in 23 U.S. states, 2 Canadian provinces, and in South Korea[48]. While it is unknown how 

CWD has spread throughout North America, numerous studies have characterized intra-host 

CWD trafficking with strong emphasis on the LRS, as well as potential shedding through urine, 

feces, and saliva[22; 41; 49; 50], all of which may gain infectivity from the blood. Studies 

conducted with TSE-infected hamsters have provided valuable insights into prion infiltration 

across mucosal surfaces, trafficking to the LRS, and subsequent neuroinvasion[30; 51-54]. These 

LRS-associated prion diseases (CWD and HY-TME) are helpful for studies exploring the 

biological significance of hematogenous prions. 

To better understand the pathogenesis of prion diseases, we determined the temporal 

distribution of prions in blood collected from TSE-infected animals throughout the entirety of 

disease (0-100% of the disease state). By analyzing whole blood for the presence of PrPC-

converting activity collected minutes post inoculation to terminal disease, we sought to gain 

insight into how prions are trafficked throughout the body, when and how they are shed, and the 

role that blood-borne prions play in neuroinvasion. 

 

 
 
 

 



	  
68 

MATERIALS AND METHODS 
 
 
 

Ethics statement: 

Guidelines for animal care and use, issued by the United States Department of 

Agriculture (USDA), National Institutes of Health (NIH), and the Association for Assessment 

and Accreditation of Laboratory Animal Care International (AAALAC), were adhered to for all 

animal work. Colorado State University (CSU) Institutional Animal Care and Use Committee 

(IACUC) (approval numbers 02-151A, 08-175A, 10-2189A, 11-2615A, 11-2622A, 13-4444A, 

and 14-4890A) approved all animal protocols. All hamster procedures were approved by the 

Creighton University IACUC and were in compliance with the NIH Guide for the Care and Use 

of Laboratory Animals. 

 

White-tailed deer, muntjac deer and Syrian hamster source: 

 All animals were housed in BSL2+ indoor facilities where strict husbandry and quality 

assurance were maintained to assure assessment of point source inoculums. Protective clothing, 

sample instruments, and waste disposal were specific to each animal room to exclude any 

possibility of cross contamination caused by fomites or contact. 

White-tailed deer: White-tailed deer (Odocoileus virginianus) were provided through 

collaboration with the Warnell School of Forestry and Natural Resources at the University of 

Georgia (Athens, GA) where CWD has not been detected. All animals were adapted to humans 

and indoor facilities prior to transport to CSU. Upon arrival, deer were immediately isolated in 

indoor research facilities never contacting the Colorado environment. 
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Reeves’ muntjac deer: Reeves’ muntjac deer (Muntiacus reevesi) (also called muntjac 

deer) were sourced from Cervid Solutions Inc. (Tellico, TN) in a region where CWD has not 

been detected. All animals were transported to CSU and placed into an isolated indoor facility 

without contacting Colorado soil. 

Syrian hamsters: Male 10-11 week old Syrian hamsters (Mesocricetus auratus) were 

obtained from Harlan Sprague Dawley (Indianapolis, IN) and group-housed in separate cages. 

All animals were housed in sterile TSE-free cages before inoculation. 

 

Cervid inoculations and tissue collections: 

To maximize animal use, samples were collected from previous and contemporary studies were 

analyzed to study the full course of disease, from point of TSE-exposure through terminal TSE 

disease. 

White-tailed deer inoculations: Cervids were anesthetized prior to CWD inoculation 

and sample collection as previously described[55]. CWD-naïve, white-tailed deer (total n=34) 

received the following CWD-positive inocula (Table 1): 1) n=6, 2 ml of a 5% (w/v) brain 

homogenate aerosol-administered[6]; 2) n=19, 1.0 g of a 10% (w/v) brain homogenate orally 

(PO); 3) n=4, 0.55 g of a 10% (w/v) brain homogenate intravenously (IV); 4) n=1, 225 ml of 

CWD-positive whole blood IV[9]; or 5) n=4, 0.55g of a 10% (w/v) brain homogenate PO (0.5 g) 

and intranasal (IN, 0.05 g). Negative control white-tailed deer (total n=6) were inoculated with 

sham material (CWD-negative brain homogenate) by the same routes described above. 

Muntjac deer inoculations: Prior to inoculation and sample collection, muntjac deer 

were anesthetized as previously described[20; 55]. CWD-naive muntjac deer (total n=10) were 
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inoculated with CWD-positive material via the following routes: 1) n=6,1.0 g of a 10% (w/v) 

brain homogenate administered PO/SQ[20]; 2) n=2, 20 ml fresh whole blood (collected in citrate 

phosphate dextrose-adenine (CPDA)) administered IV; or 3) n=2, 0.55 g of a 10% (w/v) brain 

homogenate PO (0.5 g) and IN (0.05 g). Negative control muntjac deer (total n=8) received sham 

material (CWD-negative brain homogenate) via PO/IN inoculation (n=2), PO inoculation (n=2), 

or were uninoculated (n=4). 

Cervid blood and tissue collections: All data for this report were generated from new 

1ml aliquots of whole blood. Ten (10) ml of whole heparinized (1 ml; 200 units heparin/ml) and 

CPDA (1 ml; 14% CPDA blood tubes) blood was collected from each cervid at various time 

points: 15, 30, and 60 minutes post inoculation (pi); 24, 48, and 72 hours pi (0.001%-0.3% of 

disease course); and 1-34 months pi and at terminal clinical disease (~4%-100% of disease 

course). Whole blood samples—taken at time points from above—were collected from negative 

control cervids. All samples were preserved in heparin or CPDA were frozen and stored in 1 ml 

aliquots at -80°C. 

At study termination all cervids were humanely euthanized in accordance to CSU IACUC 

protocols. The obex at the medulla oblongata and multiple additional lymphoid and non-

lymphoid tissues were collected from each cervid. Each tissue was divided in half to allow one 

half to be frozen at -80°C and the other to be fixed in 10% neutral buffered formalin or 

paraformaldehyde-lysine-periodate for later processing.  
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Table 2.1 Cervid and hamster inoculation data and TSE disease progression 
Animal 
Type 

Sample 
Size 

Inoculation 
Route 

Inoculum Inoculum 
Amount 

Onset of 
Symptomatic 

Disease 
Reeves’ 
muntjac 

deer 
(Muntjac 

deer) 

n=18 IV CWD+ blood 
n=2 

20 ml CWD+ 
whole blood  

N/A 

PO/SQ CWD+ brain 
homogenate 

n=6 

1.0 g of a 10% 
homogenate 

20-25 mo-pi 

Sham material 
n=2 

N/A 

PO/IN CWD brain 
homogenate 

n=2 

0.55 g of a 10% 
homogenate 

N/A 

Sham material 
n=2 

N/A 

Uninoculated N/A 
n=4 

N/A N/A 

White-tailed 
deer 

n=39 IV CWD+ brain 
homogenate 

n=4 

0.55 g of a 10% 
CWD+ brain 
homogenate 

N/A 

PO CWD+ brain 
homogenate 

n=19 

1.0 g of a 10% 
homogenate 

13-23 mo-pi 

Sham material 
n=2 

N/A 

PO/IN CWD+ brain 
homogenate 

n=4 

.55 g of 10% 
CWD+ brain 
homogenate 

N/A 

IV/PO/IN Sham material 
n=1 

1.1 g of a 10% 
sham 

homogenate 

N/A 

Aerosol CWD+ brain 
homogenate 

n=6 

2 ml of a 5% 
homogenate 

17-18 mo-pi 

Sham material 
n=3 

N/A 

Golden 
Syrian 

hamster 

n=90 EN HY-TME brain 
homogenate 

n=54 

10 µl of a 10% 
homogenate––5 
µl/nostril 

20 wpi 

Sham material 
n=36 

N/A 

EN=Extranasal; PO=Oral; SQ=Subcutaneous; IN=Intranasal; IV=Intravenous; HY-TME=Hyper 
strain of transmissible mink encephalopathy; N/A=Not applicable; wpi=Weeks post inoculation; 
mo-pi=Months post inoculation 
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Hamster inoculations and tissue collections: 

Hamster inoculations: As hamsters are obligate nose breathers, Syrian hamsters were 

anesthetized and inoculated extranasally (EN) as previously described[30]. Hamsters (n =54) 

were inoculated with either 10 µl HY-TME—5 µl to each nostril—with a 10% (w/v) brain 

homogenate containing an LD50 of 106.8, or sham inoculum (n=36) as previously described[51].  

Hamster blood and tissue collections: Blood was collected from hamsters—3 HY-

TME-inoculated and 2 sham-inoculated—at selected time points: 15, 30, and 60 minutes pi; 24 

and 72 hours pi; 5, 7, and 10 days pi (5%-10% of disease course); and at 2 week intervals from 2 

to 20 weeks pi (14%-100% of disease course)(results for 8-20 week pi hamsters previously 

reported by Elder et al.[55]). After anesthetization, blood was collected via cardiac puncture and 

stored in heparin blood tubes (200 units/ml) for preservation at -80°C.  

 

Cervid and hamster brain tissue homogenization: 

Ten percent (10%) TSE-positive and negative brain tissue homogenates were prepared 

from the obex region of each brain. Brain tissue (0.05 g) in 0.5 ml homogenate buffer (1X PBS + 

0.1% Triton-X 100 [Sigma-Aldrich]) were added to 1.5 ml tubes containing 0.5 mm diameter 

ZrO2 beads and homogenized by Bullet BlenderTM (Next Advance) for 5 minutes at a setting of 

10. Homogenates were stored in 20 µl aliquots at -80°C. 

 

Recombinant protein preparation: 

Recombinant protein was expressed and purified as previously described[49; 56]. In 

brief, a truncated recombinant Syrian hamster PrP (SHrPrP 90-231; from Byron Caughey at 

Rocky Mountain Laboratories in Hamilton, MT) was expressed via auto induction (EMD 
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Biosciences) in Rosetta strain Escherichia coli. The recombinant protein was isolated from 

inclusion bodies, purified and refolded over a Ni column. Final purified and dialyzed protein was 

adjusted to a final concentration between 0.3 and 0.7 mg/ml and refrigerated in 1 ml aliquots. 

 

Whole-blood-optimized real-time quaking-induced conversion (wbRT-QuIC): 

RT-QuIC was optimized for use with whole blood samples as previously described[55]. 

Aliquots of whole blood (1 ml) were subjected to four freeze/thaw cycles of freezing at -80°C for 

30 minutes and thawing at 22°C for 60 minutes—prior to bead homogenization (described 

above). Following freeze/thaw cell lysis, a modified version[55] of the sodium phosphotungstic 

acid (NaPTA) precipitation protocol, described by Wadsworth et al.[57], was used to concentrate 

PrPC and PrPres. 500 µl of blood was treated with 4% sarkosyl (Sigma-Aldrich), benzonase (298 

U/ml), and 4% (w/v) sodium phosphotungstate. Samples were centrifuged, supernatants 

removed, and the resulting pellets resuspended in 50 µl 0.1% sarkosyl (v/v) before being 

analyzed by wbRT-QuIC. 

wbRT-QuIC[55] was performed to detect prions in processed blood samples. Positive 

assay controls consisted of serial dilutions of 10% brain homogenates (10-4-10-7) and processed 

blood (10-2) from TSE-infected animals. Negative assay controls consisted of identical serial 

dilutions of brain homogenates and processed blood from uninfected or mock-infected animals. 

In brief, RT-QuIC reactions (brain controls in triplicate and blood samples 8 replicates/sample) 

were set up in 96-well plate clear bottom optic plates (Nalgene Nunc) and placed in a BMG 

Fluostar fluorescence plate reader for 62.5 hours at 42°C (250 cycles). Cycles consisted of 1 

minute of shaking and 1 minute of rest for 15 minutes with a ThT fluorescence measurement 
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taken at the end of each cycle. Data were processed using Microsoft Excel (Microsoft Inc.) prior 

to graph production with Prism 6 (GraphPad Prism). 

 

Rate analysis of wbRT-QuIC data: 

 Data for all replicates of each sample were analyzed to determine the time when they 

became positive. Samples were deemed positive for PrPC-converting activity if their fluorescence 

output crossed the set threshold (average of the negative control fluorescence plus 5 times the 

standard deviation). The rate of conversion to PrPSc was calculated for each replicate as:  𝑅𝑎𝑡𝑒 =

!
!"#$  !"  !!!"#!!"#

. Replicates for each sample were averaged together and graphed using Prism 6. 

 

Calculations: 

The rate at which conversion-competent blood-borne prions were generated in RT-QuIC 

was compared to those generated from brain tissue harvested from terminal clinical PO- and 

aerosol-inoculated cervids (10-6-10-8)[58], or EN-inoculated hamsters (10-5-10-10). Ten percent 

(10%) brain homogenates were serially diluted 10-fold and 2 µl of each dilution was seeded into 

the RT-QuIC assay. Each dilution of brain homogenate was equated to a ng quantity as 

previously described[55]; e.g. 0.1 g brain tissue/ml diluted to10-5=(10-9 g/µl)(2 µl)=2x10-9 g brain 

tissue = 2 ng brain tissue equivalents. The rate at which conversion-competent prions were 

formed in brain tissue from CWD orally-inoculated cervids was generated by averaging 72 

replicates (8 replicates per animal; 9 animals); CWD aerosol-inoculated animals (48 replicates; 8 

replicates per animal; 6 animals); HY-TME extranasal-inoculated animals (32 replicates; 16 

replicates per animal; 2 animals). 
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We calculated the amount of blood spiked into one wbRT-QuIC reaction (2 µl of spike) 

to be the equivalent of 0.02 µl of whole blood: 1) 500 µl of whole blood was concentrated to 50 

µl using NaPTA; 2) 5 µl of NaPTA product was serially diluted 1/100; 3) 2 µl of the 10-2 dilution 

was seeded into 98 µl of substrate. The rate of amyloid formation for blood was also compared to 

reaction rate for 1 LD50 of brain homogenate, as previously described[58], to estimate the LD50 

of blood at that time point. The rate of amyloid formation for blood at a given time point was 

converted to the mass equivalent of brain using the following reaction rate equation: 

y=mlog(x)+b. The LD50 for 0.02 µl of blood was then calculated as !"##  !"#$%&'!()  !"  !"#$%
!"##  !"  !"#$%  !"#$%&'  !"!"

. 

 
 
 

RESULTS 
 
 
 

To better understand the biological significance of prionemia in prion diseases, we 

analyzed blood collected from TSE-infected animals throughout the incubation period. The 

results for each time point are reported as the percentages of the total replicates displaying 

positivity from that route of exposure, or as the rate of PrPSc conversion in relation to CWD or 

HY-TME positive brain homogenate. 

 

CWD prionemia: 

Mucosal exposure: As identical results were observed in muntjac deer and white-tailed 

deer, results for the two species were combined. To examine trans-mucosal entry of CWD, we 

examined whole blood for hematogenous prions post oral or aerosol mucosal exposure (PO/SQ 

animals were pooled with PO animals due to the limited exposure via SQ). In PO-inoculated 

animals PrPC-converting activity was observed in the blood at 15 min-pi (28.24% of replicates 
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from 17/17 cervids), with greater detectable converting activity (90.07%) observed at 30 min-pi–

–0.002% of the disease course (Table 2; Fig.1A). Between 0.09 -0.3% disease course (24-72 

hrs), detectable converting activity changed from 22.92% of replicates (6/6 deer) to 6.25% of 

replicates (4/4 deer) (p-value<0.0001) (Table 2; Fig.1A). PrPC-converting activity did not fall 

below assay detection levels during this time. Blood from all animals receiving mock inoculum 

remained free of PrPC-converting activity (Fig.1A).  

We further analyzed whole blood collected from cervids throughout the course of 

infection. In middle-stage infection samples we observed replication competent prions (12.5% of 

replicates) as early as 5% of the disease course (1 mo-pi) followed by a steady increase in the 

detection of nascent PrPC-converting activity in blood harvested from CWD orally-exposed 

cervids through the onset of clinical disease (15-22 mo-pi; 77.78-84.38%) (Table 2; Fig.1B; 

2A,C). PrPC-converting activity was detected in blood harvested from aerosol-exposed cervids as 

early as 3 mo-pi and reached 100% of replicates of 100% of animals around 60% of the disease 

course (15 mo-pi) and was sustained throughout the study (deer terminated at 17.5-34 mo-pi) 

(Table 2; Fig.1B). The ability to detect hematogenous prions was similar in animals receiving 

inoculum by either oral or aerosol routes of administration. 

Intravenous exposure: To ascertain prionemia post-transfusion, blood harvested 

following IV-inoculation was assessed for conversion competent prions by wbRT-QuIC. CWD-

IV-inoculated animals displayed high levels of conversion competent hematogenous prions at 15 

min-pi (100%), which remained present through 24 hpi. Subsequent to this initial detection, 

detection of PrPC-converting activity between 0.09% and 0.3% of the disease course changed 

from 93.75% to 33.33% (Table 2; Fig.1A), mimicking the initial trajectory observed in mucosal-

exposed cervids. Upon analysis of longitudinal samples collected from IV-inoculated animals, 
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nascent amplification-competent hematogenous prions were noted (12.5% of replicates), at 16% 

of the disease course (2 mo-pi), continuing through terminal disease (100% of replicates from 

50-100% of the diseases course) (Table 2; Fig.1B).  

 

Table 2.2 Complete cervid prionemia detection data 
 Inoculation Route 
 IV PO Aerosol 

Ave. 
positive 

replicates 
(8 per 

animal) 

SD n Ave. 
positive 

replicates 
(8 per 

animal) 

SD n Ave. 
positive 

replicates 
(8 per 

animal) 

SD n 

 

0 min 
pi 

0.0 0.0 6 0.0 0.0 17 ND ND ND 

15 
min 
pi 

8.0 0.0 5 2.26 1.09 17 ND ND ND 

30 
min 
pi 

7.8 0.4
5 

5 7.21 1.66 17 ND ND ND 

60 
min 
pi 

7.75 0.5 4 4.72 0.84 9 ND ND ND 

24 
hpi 

7.5 0.7
1 

2 1.83 1.5 6 ND ND ND 

48 
hpi 

5.25 0.9
6 

4 1.17 0.5 6 ND ND ND 

72 
hpi 

2.66 1.1
5 

3 0.5 0.71 4 ND ND ND 

L
on

gi
tu

di
na

l C
ol

le
ct

io
ns

 

1 mo 
pi 

ND ND ND 1.0 0.5 3 ND ND ND 

2 mo 
pi 

1.0 0.0 1 ND ND ND ND ND ND 

3 mo 
pi 

2.0 0.0 1 1.18 0.61 11 2.83 0.98 6 

6 mo 
pi 

8.0 0.0 1 2.09 0.83 11 5.67 1.03 6 

9 mo 
pi 

ND ND ND 3.18 1.27 11 7.33 0.52 6 

10 
mo pi 

ND ND ND 5.43 1.51 7 ND ND ND 

Im
m

ed
ia

te
 

C
ol

le
ct

io
ns
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12 
mo pi 

8.0 0.0 1 6.09 1.14 11 7.66 0.52 6 

15 
mo pi 

ND ND ND 6.22 1.5 9 7.33 0.82 6 

16 
mo pi 

ND ND ND 7.5 0.71 2 7.83 0.41 6 

17 
mo pi 

ND ND ND ND ND ND 8.0 0.0 6 

18 
mo pi 

ND ND ND ND ND ND 7.83 0.41 6 

19 
mo pi 

ND ND ND ND ND ND 8.0 0.0 6 

20 
mo pi 

ND ND ND ND ND ND 8.0 0.0 6 

21 
mo pi 

ND ND ND ND ND ND 8.0 0.0 6 

22 
mo pi 

ND ND ND 6.75 1.13 8 8.0 0.0 6 

23 
mo pi 

ND ND ND ND ND ND 8.0 0.0 6 

25 
mo pi 

ND ND ND 6.6 0.55 5 8.0 0.0 6 

28 
mo pi 

ND ND ND 7.6 0.5 5 ND ND ND 

30 
mo pi 

ND ND ND 7.5 0.55 4 ND ND ND 

31 
mo pi 

ND ND ND 7.5 0.71 2 ND ND ND 

34 
mo pi 

ND ND ND 8.0 0.0 1 ND ND ND 

SD=Standard Deviation; n=Number of animals sampled; IV=Intravenous inoculation; PO=Oral 
inoculation; min-pi=Minutes post inoculation; hpi=Hours post inoculation; mo-pi=Months post 
inoculation; ND=No Data, no sample available. 
 

 
 
 
 
 
 
 
 
 
 



	  
79 

 
Figure 2.1 Immediate and longitudinal cervid and hamster prionemias. 
Blood was collected from TSE-infected and TSE-naïve white-tailed deer, muntjac deer, and 
Syrian golden hamsters immediately following inoculation and throughout the course of disease 
until termination. All samples were run in 8 replicates via wbRT-QuIC and replicates within 
each inoculation route (i.e. IV, PO, aerosol, EN) were averaged together. Blood from cervids and 
hamsters was collected at 15, 30, and 60 min-pi as well as 24, 48, and 72 hpi (A). Longitudinal 
blood from IV-, aerosol- and PO-inoculated cervids was collected between 3 and 34 mo-pi (B). 
Longitudinal blood from hamsters was collected at 5, 7, and 10 dpi and 2-20 wpi (C). Early and 
middle stages of disease represent average asymptomatic disease prior to neurologic symptoms. 
Late stage represents the average occurrence of neuroinvasion. *: Average onset of symptomatic 
disease. 
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Figure 2.2 Complete cervid and hamster prionemias. 
Data obtained from all blood collection time points––analyzed via wbRT-QuIC––were combined 
to visualize the complete course of prionemia throughout prion disease. Complete prionemia 
from orally-inoculated cervids (A) and complete hamster prionemia (B) are overlaid (C) to show 
consistency of prionemias throughout the course of disease. Early and middle stages of disease 
represent average asymptomatic disease prior to neurologic symptoms. Late stage represents the 
average occurrence of neuroinvasion. *: Average onset of symptomatic disease. 
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HY-TME prionemia: 

Mucosal exposure: To assess prionemia in a second prion disease we investigated the 

longitudinal profile of HY-TME in hamsters. Blood harvested from HY-TME-infected hamsters, 

inoculated EN, at 15 min-pi had PrPC-converting activity (33.33%), which was more consistently 

detected at 30 min-pi (100%) (Table 3; Fig.1A). Similar to CWD-exposed cervids, by 2% the 

disease course (72hpi) detectable converting activity had changed from 100% to 8.33% of 

replicates (p-value<0.0001), yet never dropped below assay detection levels (Table 3; Fig.1A). 

Nascent detectable PrPC-converting activity was seen as early as 4% of the disease course 

(33.33% of replicates) and increased through 50% of disease (100% of replicates) where it 

remained through the course of disease (Table 3; Fig.1C; 2B, C) (data for hamsters 8 wpi-20 wpi 

previously shown in Elder, et al.[55]). PrPC-converting activity was not detected in mock-

infected hamsters. 

These results demonstrate the ability of CWD and HY-TME prions to efficiently 

translocate across mucosal surfaces, enter the bloodstream, and replicate therein throughout the 

disease course.  

 

Table 2.3 Complete hamster prionemia detection data 
 Inoculation Route 
 Extranasal 

Average positive 
replicates (8 per animal) 

SD n 

Immediate 
Collections 

0 min-pi 0.0 0.0 2 
15 min-pi 2.67 0.577 3 
30 min-pi 8.0 0.0 3 
60 min-pi 3.33 0.577 3 

24 hpi 1.67 0.577 3 
72 hpi 0.67 0.577 3 

Longitudinal 
Collections 

5 dpi 2.67 0.577 3 
7 dpi 4.33 0.577 3 
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10 dpi 4.67 0.577 3 
2 wpi 6.0 1.0 3 
4 wpi 4.0 0.0 3 
6 wpi 6.67 0.577 3 
8 wpi 7.33 1.15 3 
10 wpi 7.67 0.577 3 
12 wpi 8.0 0.0 3 
14 wpi 8.0 0.0 3 
16 wpi 7.67 0.577 3 
18 wpi 7.67 0.577 3 
20 wpi 8.0 0.0 3 

SD=Standard Deviation; n=Number of animals sampled; min-pi=Minutes post inoculation; 
hpi=Hours post inoculation; dpi=Days post inoculation; wpi=Weeks post inoculation; N/A=Not 
applicable 

 

PrPSc-conversion rates: 

To determine if prion levels in the blood of infected animals truly plateaued, we analyzed 

the rate of PrPSc amyloid formation for each time point. We found that the reaction rate in whole 

blood samples emulated the percent of positive wbRT-QuIC replicates for all cohorts, 

demonstrating a plateau in the formation of blood-borne prion amyloid vs. assay detection 

limitations. For PO- and IV-inoculated cervids and EN-inoculated hamsters, the rate of amyloid 

formation declined substantially by 72 hpi (Fig.3). A subsequent increase in reaction rate was 

observed as early as 1 to 2 mo-pi in blood harvested from PO- and IV-inoculated cervids, 

respectively (Fig.3A). For all cervid inoculation groups, the rate of amyloid formation continued 

to increase until 12-14 mo-pi when the reaction rate reached a steady state (Fig.3A).  
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Figure 2.3 Rate of amyloid formation throughout CWD and TME prionemias. 
The time to threshold (average of negative controls + 5 times the standard deviation) was 
calculated for data collected from all blood collection time points to determine the rate of 
amyloid formation. Amyloid formation rates for IV-, PO-, and aerosol-inoculated cervids (A) 
and EN-inoculated hamsters (B) were plotted over the entire course of infection. These were also 
compared to the rates of amyloid formation for various amounts of CWD- or TME-positive 
brain. Early and middle stages of disease represent average asymptomatic disease prior to 
neurologic symptoms. Late stage represents the average occurrence of neuroinvasion. 
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A similar initial spike and decline in the rate of amyloid formation was observed in whole 

blood collected from EN-inoculated hamsters as in cervid whole blood. This was followed by an 

increase in the amyloid formation rate as early as 5 dpi and continued to increase through 8 wpi 

when a steady state was reached (Fig.3B). While conversion rates fluctuated throughout the early 

and middle stages of disease (Fig.3), by late stage TSE disease all inoculation cohorts possessed 

rates equivalent to 0.2-0.02 ng of CWD-positive brain (Fig.3A) or HY-TME-positive brain 

(Fig.3B).  

To quantitate PrPSc concentrations present in whole blood and to obtain a whole blood 

LD50 we compared the reaction rate in whole blood collected from CWD- or HY-TME-infected 

animals to the amyloid conversion rate in CWD or HY-TME-infected brain as previously 

reported by Henderson et al.[58]. Our calculations suggest that 10 µl of whole blood collected 

from CWD-orally inoculated blood at 1 mo-pi contains 1.44 LD50, while later in infection, 2 µl 

of whole blood contains 1.19 LD50. 

 
 
 

DISCUSSION 
 
 
 

CWD and TME prionemia: 

We set out to determine the temporal parameters of the hematogenous spread of prions, 

CWD in cervids and HY-TME in hamsters[55], using wbRT-QuIC in vitro analysis. Whole 

blood samples were longitudinally harvested from aerosol-, oral- and intravenous-infected 

cervids and extranasal-exposed hamsters. To date, three distinct phases have been identified after 

prion exposure: an infection phase, a replication phase, and a plateau phase[59; 60]. Our work 

reinforces the presence of these three phases, and further supports prion clearance shortly after 
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host TSE exposure[42; 59; 61]. In this study conversion-competent prions were rapidly detected 

in the blood of all prion-infected hosts regardless of inoculation route (Fig.1A, 2). Subsequent to 

this initial detection, which we believe to be point source inoculum, a near zero phase was 

observed (Fig.2). While we did not observe a total clearance of the inoculum, our results 

demonstrate the speed with which exogenous prions traverse mucosal linings and enter the 

circulatory system. From here, they are trafficked throughout the body, and subsequently appear 

to be mitigated by host immune clearance mechanisms. Eventually, there is a de novo 

development of amplification-competent prions that are spread in the blood of infected hosts and 

a subsequent plateau phase[59]. Our results provide evidence for this plateau phase; in late stage 

infection the rate of amyloid formation ceases to continue increasing and maintains a steady rate 

(Fig.3). 

The early presence of amplification-competent prions in blood post transfusion infection 

is consistent with earlier work detecting radiolabeled PrPSc within minutes of IV-inoculation that 

persisted for several hours[42]. More interesting was the speed with which exogenous prions 

crossed mucosal surfaces and entered the circulatory system. These findings are consistent with 

previous results demonstrating the rapid transepithelial prion transport across nasal mucosa 

following inhalation[51]. Oral mucosa has been demonstrated to contain numerous permeable 

capillaries and a higher blood flow rate than many other tissues[62; 63], creating a permissive 

environment for prion entry into lymph and blood. Thus, prions introduced to mucosal surfaces 

(e.g. oral/nasal cavity) appear to gain immediate access to the blood, which precedes 

translocation to LRS tissues[45; 51]. The results of this work indicate that the mucosa that lines 

the nasal cavity and the gut is not an effective barrier to prion entry. 

In this study, we noted a rapid, yet incomplete abatement of amplification-competent 
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blood-borne prions. While this may represent trafficking of the point source inoculum to 

peripheral tissues, it may also be the result of host-mediated clearance. Previous studies have 

demonstrated early PrPSc clearance[59], and macrophages, monocytes, and FDCs have been 

implicated[41; 59; 61]. Beringue and colleagues depleted splenic macrophage populations and 

reported a more rapid and diffuse PrPSc accumulation in macrophage-depleted animals than in 

animals with intact macrophage populations. The role of antigen presenting cells (APCs) in TSE 

dissemination or clearance was not addressed here, but earlier studies[41; 64] have noted the 

association of PrPSc with the fore-mentioned APC populations. A previous white-tailed deer 

bioassay study demonstrated that monocytes/macrophages are not associated with the transport 

of infectious prions[50]. It is plausible that these cell populations are involved in the host-

mediated clearance of the prion agent within hours of gaining access to the circulatory system.   

A nascent population of replication/amplification-competent prions was noted within 

days of inoculum abatement. It is possible that the initial inoculum was trafficked to lymphoid 

PrPSc amplification sites, or was amplified in cells within the circulatory system. The 

reemergence of detectable amplification-competent prions culminated in sustained higher levels 

of blood-borne prions over much of the disease course. A plateau phase consisting of high levels 

of PrPSc deposition and the presence of infectious prions has been documented for all prion 

diseases[18; 24; 29; 32; 55; 59; 65].   

Rapid infiltration across mucosal surfaces to the blood has been previously identified in 

viral infections such as HIV, poliomyelitis, and measles[62; 66]. Once in the blood, a primary 

viremia is established followed by tissue-specific replication and viral overspill back into the 

blood[66]. This pattern is remarkably similar to that observed in these TSE blood samples. 

Despite the differences in TSEs and the infected-host species, both CWD and HY-TME 
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prionemias progress in similar timeframes (Fig.2C), indicating possible conserved TSE 

pathogenesis following mucosal exposure.   

 

Implications of prions spread by blood: 

While the exact mechanisms of how prions traffic to the brain following TSE exposure is 

unknown, there are two plausible routes whereby blood borne prions gain access to the central 

nervous system. In the first scenario, prions enter the body and are directly trafficked to 

lymphoid tissue and neuroinvasion occurs via the autonomic innervation of these tissues[44; 45]. 

Alternatively, prions gain entry to the brain through circumventricular organs (CVOs), or by 

breaching the blood-brain barrier[43; 44]. This possibility is supported by findings revealing that 

prions inoculated intraperitonealy into hamsters reached the brain within 2 days post 

inoculation[67] and the demonstration of PrPSc accumulation in CVOs regardless of inoculation 

route[43; 44; 68]. Our results demonstrate that prions quickly cross the mucosa into the 

circulatory system, making it plausible that prions are transported to the blood-brain barrier far 

earlier than previously suspected. 

 Knowing that conversion-competent prions are present in the blood within minutes of 

TSE exposure raises the possibility that peripheral tissues and organs may be exposed to prions 

much earlier than previously suspected. As blood circulates, it is highly probable that 

hematogenous prions are deposited in tissues early in infection. By extension, early infection and 

amplification of peripheral prions may play an important role in shedding of prions throughout 

the course of disease. 

The results of this study also raise questions regarding the clearance of misfolded prions 

in infected animals. It is possible that an initial macrophage associated clearance accounts for the 
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sharp drop in PrPC-converting activity observed. It is also feasible that a similar continued low-

level clearance mechanism may help explain why, if prionemia is established early in infection, 

the disease course is so long. Clearly, additional studies are needed to address these questions. 

 The findings presented in this study provide the first temporal analysis of prionemia. The 

fact that prions efficiently traverse mucosal surfaces and are present in the blood throughout the 

entirety of infection—regardless of inoculation route—helps explain the wide-spread distribution 

of PrPSc, and provides insight for an alternate pathway of prion dissemination at the blood-brain 

barrier and shedding dynamics. Equally as interesting is the identification of a rapid 

hematogenous prion clearance. Unraveling the mechanisms associated with the abatement of 

amplification-competent prions from the blood will provide a better understanding of the 

pathogenesis and mitigation of prion diseases, and, by extension, of all protein misfolding 

diseases.
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CONCLUSION 
 
 
 

While infectious prions are known to be present in many extraneural tissues, the 

lymphoreticular system (LRS) tissues have been identified to harbor the most prominent, and 

earliest, deposition. Variant Creutzfeldt-Jacob disease (vCJD) is known to have extensive LRS 

involvement and has also been detected in the blood of infected individuals. Certain animal prion 

diseases, specifically chronic wasting disease (CWD) and transmissible spongiform 

encephalopathy (TME), recapitulate human TSE pathogenesis, primarily in the LRS and blood. 

Importantly, infectious prions are present in the blood during both clinical and subclinical stages 

of disease and are transmitted efficiently through transfusion of incredibly small volumes of 

blood in the absence of overt clinical symptoms. 

Previous to this work it was unknown if hematogenous prions are present in all infected 

hosts, if inoculation route affects the capability for prions to enter the blood, and when prions are 

present in blood. We have demonstrated that not only are blood-borne prions present in all 

animals infected with CWD or TME, but they are present in the blood throughout the entire 

course of disease, regardless of inoculation route. Here we demonstrate, for the first time, that 

prions cross mucosal surfaces and can be detected by in vitro methodology in blood within 15 

minutes of TSE-exposure regardless of exposure route. 

Early in vitro detection of TSEs in easily accessed fluids has long been considered a holy 

grail of prion research. An in vitro assay detecting blood-borne prions would provide: 1) blood 

and organ/tissue screening to prevent the further spread of human TSEs; 2) surveillance for wild 

and captive cervids to halt the spread of CWD to unaffected regions; 3) identification of potential 

reservoir species for natural TSEs; 4) better screening for cattle entering into food production 
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(currently only 1:40,000 are tested for BSE); 5) identification of possible compounds capable of 

prion inhibition that may aid in the development of vaccine and treatment options for TSEs; and 

6) an entry point to aid the development of more efficient detection methods for other protein 

misfolding diseases (e.g. Alzheimer’s disease, Parkinson’s disease, and diabetes mellitus type II). 

Early evidence for the dissemination of prions via hematogenous means is supported by 

studies demonstrating efficient transfusion transmission of contaminated blood products [1-9]. 

Previous attempts to analyze blood-borne prions have been fraught with difficulties due to 

inadequate in vitro detection specificity and sensitivity. The work of this thesis utilized 

longitudinally-collected blood samples from TSE-infected hosts and modifications made to the 

RT-QuIC assay (whole blood (wb) RT-QuIC) to assess amplification competent prions. We 

detected, for the first time, in vitro amplification competent hematogenous prions. 

The works presented in this thesis demonstrate that: 1) prions can be consistently 

detected in blood from CWD-infected cervids and TME-infected hamsters; 2) prions cross 

mucosal surfaces quickly after TSE exposure and gain entrance to the circulatory system as early 

as 15 minutes post inoculation; and 3) the establishment of a de novo host-generated prionemia is 

observed soon after (CWD-infected cervids = 4 weeks; TME-infected hamsters = 5 days) post 

the detection of the initial inoculum. 

The identification of prions in the blood of infected hosts throughout the entirety of 

disease poses interesting questions regarding the hematogenous transmission of TSEs from one 

susceptible host to the next. These findings support the association/involvement of blood-borne 

prions with prion shedding into the environment and the transmission of TSE infection via 

human blood transfusion or organ donation transmission. As infectious blood circulates 

throughout the host, it seems reasonable that PrPSc is deposited within peripheral tissues early in 
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infection, including those involved in fluid or excreta production (i.e. salivary glands, 

gastrointestinal (GI) tissues, and renal tissues). Infection of these tissues has been observed, as 

has the shedding of infectious prions in the fluids/excreta produced [2; 10; 11]. 

Human to human transmission has been previously observed, both through infected blood 

transfusion and organ transplant [12]. The four documented cases were the result of subclinical 

blood donors who later died of vCJD [5; 6; 13-15]. These occurrences have raised concern for a 

secondary outbreak of vCJD involving the transmission of blood-borne prions (as many as 

1:2000 residents in the United Kingdom may be subclinical carriers of vCJD [16]). The fact that 

TSE-infected individuals may be subclinical for decades––or potentially never develop clinical 

disease––increase the probability of covert transmission to new susceptible hosts. 

Our results suggest the presence of a primary prionemia––we propose consisting of the 

inoculated prions––and secondary prionemia (de novo host-synthesized prions).  The presence of 

multiple blood phases has not been described for prions but has been observed in other 

pathogens, including viruses. In viral infections, the primary viremia occurs as the virus crosses 

mucosal barriers and enters the blood stream, while a secondary viremia is established following 

replication within tissues and newly synthesized virus entering the blood. The concept of 

multiple phases of prion infection is not novel with previous studies confirming 3 phases: 

infection, replication, and plateau [17; 18]. Our results suggest that within minutes of exposure 

the inoculum enters the circulatory system and is trafficked throughout the body. Upon 

replication within infected tissues the host-generated prions are likely shed back into the 

circulatory system and trafficked throughout the body. 

The diminished detection of prions in the blood between the primary and secondary 

prionemia also indicates the possibility of a clearance mechanism for prions. Previous studies 
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have demonstrated that splenic macrophages are capable of clearing PrPSc, but not in its entirety, 

early in the infection stage of disease[17; 19]. A proposed clearance mechanism may explain our 

results indicating a drop in the detection of amplification competent hematogenous prions prior 

to de novo generation.  

Blood-borne prions may be responsible for trafficking prions to various peripheral 

tissues, and may play a role in neuroinvasion as well. It has been hypothesized that prions first 

infect lymphoid tissues and are subsequently trafficked to the central nervous system (CNS) via 

autonomic nerves innervating these lymphoid tissues. However, a second hypothesis exists, one 

focusing on the use of blood with neuroinvasion occurring through the circumventricular organs 

(CVOs). In combination with the results reported in this thesis (i.e. the in vitro detection of 

amplification competent prions in blood within 15 minutes of PO-, EN, or IV-exposure), it is 

possible that neuroinvasion occurs via hematogenous infiltration at the CVOs as opposed to 

tissue deposition and transport via peripheral nerves.  

 

We have shown that peripherally inoculated prions enter the blood early and persist throughout 

TSE disease establishing both a primary (inoculum) and secondary (de novo generation) 

prionemia. This work provides the first longitudinal in vitro temporal status of hematogenous 

prions providing a basis for continued investigations of the biological significance of blood-

borne prions in TSE disease pathogenesis.  
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ABBREVIATIONS 
 
 

 
AAALAC: Association for Assessment and Accreditation of Laboratory Animal Care 

AD: Alzheimer’s disease 

ALS: Amyotrophic lateral sclerosis 

APC: Antigen presenting cell 

BSE: Bovine spongiform encephalopathy 

CJD (s,v,i): Creutzfeldt-Jacob disease (sporadic, variant, iatrogenic) 

CNS: Central nervous system 

CPDA: Citrate phosphate dextrose adenine 

CVO: Circumventricular organ 

CWD: Chronic wasting disease 

Dpi: Days post inoculation 

EDTA: Ethylenediaminetetraacetic acid 

EN: Extranasal inoculation 

FDC: Follicular dendritic cells 

FFI: Fatal familial insomnia 

GALT: Gut-associated lymphoid tissue 

GI: Gastrointestinal tract 

GSS: Gerstmann–Sträussler–Scheinker syndrome 

HD: Huntington’s disease 

HRP: Horseradish peroxidase  

IACUC: Institutional Animal Care and Use Committee 
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IB: Inclusion bodies 

IC: Intracranial inoculation 

IHC: Immunohistochemistry  

IN: Intranasal inoculation 

INF: Infected animal 

IV: Intravenous inoculation 

LB: Lysing buffer 

LD50: Median lethal dose 

LRS: Lymphoreticular system 

Min pi: Minutes post inoculation 

MJ: Reeves’ muntjac deer 

Mo pi: Months post inoculation 

NA: Not applicable 

NaCl: Sodium chloride 

NALT: Nasal-associated lymphoid tissue 

NaPTA: Sodium phosphotungstic acid precipitation 

ND: No data/not done 

NIH: National Institutes of Health 

PBS: Phosphate buffered saline 

PD: Parkinson’s disease 

PK: Proteinase K 

PLP: Paraformaldehyde-lysine-periodate 

 (s)PMCA: (serial) Protein misfolding cyclic amplification 
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PNS: Peripheral nervous system 

PO: Oral inoculation 

PrPC: Cellular prion protein 

PrPres/PrPSc/PrPD: Abnormal, misfolded, prion protein 

PVDF: Polyvinylidene fluoride 

rPrP: Recombinant prion protein 

RT-QuIC: Real-time quaking-induced conversion 

SD: Standard deviation 

SD50: Median seeding dose 

SQ: Subcutaneous 

TgCerPrP: Transgenic mouse expressing cervid prion protein 

ThT: Thioflavin T 

TME (HY or DY): Transmissible mink encephalopathy (Hyper or Drowsy strain) 

TSE: Transmissible spongiform encephalopathy 

UN: Uninfected animal 

USDA: United States Department of Agriculture 

Wb(o)RT-QuIC: Whole-blood (optimized) real-time quaking-induced conversion 

Wpi: Weeks post inoculation 

WTD: White-tailed deer 

 


