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ABSTRACT

Complete description of blood coagulation pathways with respect to patient-

specific characterization presents a major challenge. Characteristics of blood coagu-

lation vary drastically between patients. It is essential to characterize abnormalities

in blood coagulation to diagnose and treat cardiovascular diseases better.

Given the paucity of patient-specific data to characterize and model the system,

there is a greater need to regularize patient-specific models and methods effectively.

In this dissertation, we formulate actionable questions and describe our methodology

and results.

First, we explore a practical application for using models to classify acute coro-

nary syndrome and coronary artery disease. The classification models were built

based on a chemical kinetics model reported in the literature. In a diagnostic set-

ting, the classification models could be employed to screen thousands of patients

with greater certainty every year.

Second, we propose a simplified model for a key part of the blood coagulation

cascade that demonstrates robust predictive capabilities. The model predicts pro-

longed activity of thrombin, an important enzyme in the clotting process, in certain

plasma factor compositions. The activity sustains beyond the time which is con-

ventionally considered to be the end of clotting. This observation along with the

simplified model is a necessary step towards effectively studying clotting in realistic

geometries.

ii



DEDICATION

To my parents who taught me to put education before everything else.

iii



ACKNOWLEDGMENTS

I am deeply humbled by the privilege of graduate student life at Texas A&M

University. I am grateful for the encouragement, support, and friendship of a large

number of people who have helped me grow as a human being.

I am thankful to my dissertation advisor Dr. Arun Srinivasa for helping me grow

as a stronger researcher. I am also thankful to Dr. J. N. Reddy for guiding me

during my graduate studies. His monumental work is truly inspiring. I extend my

deep sense of gratitude for Dr. Krishna Narayanan whose bayesian perspective has

certainly affected my thinking. I would like to thank Dr. Alan Freed for making me

appreciate the boundaries of scientific methods better. His smile has always been

contagious. I also thank Dr. K. R. Rajagopal whose mere presence is enlightening.

His love for philosophy and continuum mechanics has certainly left a mark on me as

an engineer.

I am thankful to the very knowledgeable faculty members at TAMU. I particularly

thank Dr. N. Sivakumar (Mathematics), Dr. Shankar Bhattacharyya (Electrical

Engineering), and Dr. Satish Bukkapatnam. Dr. Satish Bukkapatnam has been a

tremendous source of inspiration as a teacher.

I thank the many current and past students who have made me feel incredibly

fortunate. Srikrishna, Pritha, Naveen, Nazanin, Wang, Ashish, Balaji Ganesan,

Shreyas, Shriram, Atul, Hoang, Zimo, Ashif, Afreen, Alagappan, Bharathwaj, and

Priya have helped me grow as a better engineer. I certainly appreciate the comic

relief that Giridhar provided. Thanks to Dan Kiniry for proofreading parts of this

dissertation. Mukundan, Kaarthik, Kabali, Sudarshan, Atul, and Mahesh have made

me feel part of a family and formed a second home here in the US. Kaarthik Sundar

iv



was my roommate for quite longer than I had anticipated. His influence on my coding

and his inspiring diligence will go a long way. Harsha has been a source of artistic

inspiration. Living is made more worthwhile by musicians such as him. Mukundan

and Sudarshan have taught me valuable life lessons. I am also grateful to have friends

such as Poornima, Vivek, Nirmal, and Hareesh.

I thank my family members who have stood behind my idiosyncrasies and nitty-

gritties: my brother Senthil, sister-in-law Geetha, nephew Gurubaran, and parents

Srikanthy and Arumugam. Life is a blessing with their unconditional love and sup-

port.

v



CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a dissertation committee consisting of Professor Arun

Srinivasa, Professor J.N. Reddy, and Professor Alan Freed of the Department of Me-

chanical Engineering and Professor Krishna Narayanan of Electrical and Computer

Engineering.

All work conducted for the dissertation was completed by the student indepen-

dently.

Funding Sources

Graduate study was supported by Graduate Teaching Academy awards from

Texas A&M University and a research assistantship from National Science Foun-

dation under grant no. 1028894.

vi



NOMENCLATURE

ACS Acute coronary syndrome

CAD Coronary artery disease

GMM Gaussian mixture model

MDGini Mean decrease in gini index

OOB Out-of-bag

factor I Fibrinogen

factor Ia Fibrin

factor II Prothrombin

IIa Thrombin

AT or ATIII Antithrombin

TFPI Tissue factor pathway inhibitor

Tf Tissue factor

APC Activated protein C
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1. INTRODUCTION*

“One is struck by the complexity of this figure that I am not even at-

tempting to draw.”

– Henri Poincare, New Methods of Celestial Mechanics

1.1 Chapter Outline

We motivate the problem by highlighting its socioeconomic burden. Then we

introduce the blood coagulation system, briefly review the corresponding literature,

and also elaborate the challenges faced while modeling and solving the chemical reac-

tion kinetics of blood coagulation. We describe the deficiencies in the area currently

and discuss alternative approaches that address these deficiencies. We also describe

the objective and scope.

1.2 Motivation

In the United States, heart diseases were the leading cause of death in the past

two centuries [1, 2]. Identifying patients at risk of acute coronary syndromes (ACS)

[3] and predicting progress of disease could help provide timely medical intervention;

understanding the physiology of the diseases in patient-specific terms could also help

design better drugs and monitor treatment more effectively.

ACS refer to a set of diseases1 that results in a sudden failure of proper functioning
1In this dissertation, we do not distinguish between different types of ACS. The reader could

find relevant information here [3].

*Part of this chapter is reprinted with permission from “Random Forests Are Able to Identify

Differences in Clotting Dynamics from Kinetic Models of Thrombin Generation” by Jayavel Aru-

mugam, Satish T. S. Bukkapatnam, Krishna R. Narayanan, and Arun R. Srinivasa. PloS one,

e0153776, Copyright [2016] by Arumugam et al.
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of the heart. It is caused due to decreased or blocked blood flow in the arteries of the

heart [4]. Infarction can be avoided if flow to the affected artery is restored within

30 minutes but there is no salvage after 6 hours [5]. Timely intervention is critical

in reducing costs and saving lives [6].

The cost of ACS is more compared to other health conditions. Annual direct

cost in ACS is ∼ $44,023 which is higher compared to ∼ $9,955 in hypertension or

∼ $13,858 in diabetes [7]. Advanced diagnostic modalities are expected to play a

major role in reducing unnecessary hospitalizations and hence the associated costs

[3]. In addition to diagnosing ACS properly, we would also like to monitor treatment

in patient-specific terms. For example, we would like to prognose the course of dis-

ease and predict mortality [8]. Treatment is known to cause excessive bleeding and

patients continue to be at risk of recurrence of heart diseases [9]. In certain ACS

patients, there is a strong association between bleeding and death [10]. Therefore

thorough bleeding assessments are recommended before administration of antithrom-

botic drugs [11].

However, bleeding is a complicated phenomenon and there is a drastic variation

in characteristics from one patient to another. Current methods to probe the co-

agulation system need improvement [12]. Better methods to model, evaluate and

characterize the system are sought.

1.3 Blood Coagulation Mechanism

Blood coagulation is a process which stops blood loss upon injury. Anand et al.

[13] comprehensively reviewed various mechanical and biochemical factors involved

in blood coagulation. In addition, models considering genetic, biochemical, and

mechanical factors in blood coagulation have been previously discussed [14, 15].

There are two ways to assess risk:
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1. Holistic approaches including considering the effect of factors like smoking, age,

air travel, lack of exercise, etc., on risk assessment.

2. Mechanism based approaches that study physiological changes in clotting and

associated biomechanical properties.

We will focus on mechanism based approaches where diagnosis and design of

cure happens. Different aspects of the physiology that are of interest towards disease

diagnosis, monitoring and treatment include:

• Mechanical properties of the artery [16].

• Non-newtonian fluid flow aspects of blood coagulation [17].

• Enzyme kinetics underlying coagulation [18, 19].

• Convection-reaction-diffusion models describing transport of platelets and the

protein factors that couple blood chemistry with fluid flow [13].

We will be concerned with the enzyme kinetics involved in blood coagulation

which act as a bottleneck for progress. Three major events occur during blood

coagulation: clot initiation, clot propagation, and clot disruption and dissolution.

Clot initiation is modeled using three pathways: i) the extrinsic pathway which is

initiated by tissue-factor, ii) the intrinsic pathway initiated by contact with a negative

surface like glass, and iii) initiation due to platelets.

Clotting dynamics is primarily studied based on the dynamics of a key enzyme

thrombin (IIa) [18, 20]. Once initiated, thrombin activates factor VIII and factor V.

This results in the formation of intrinsic tenase (IXa-VIIIa) and prothrombinase (Xa-

Va) complexes which further activate thrombin. Thrombin catalyses the formation

of Fibrin (Ia). Fibrin is stabilized into stable clot by activated XIIIa. Further aspects

3



of clotting include clot dissolution and disruption. Most of these chemical reactions

occur on the surface of activated platelets.

1.4 A Brief History of Blood Coagulation

An excellent historical context and understanding of blood coagulation and its

alterations in disorders could be found in [21] and [22]. We briefly introduce the

‘classical’ and the ‘modern’ theory of blood coagulation based on these two sources.

1.4.1 Classical Theory

Figure 1.1: Classical theory of clotting. Clotting was explained based on four factors
(figure from [22]).

• Blood coagulation was thought of as physical changes in blood [21]. Hip-

pocrates and Aristotle tried to explain coagulation based on cooling. This

ancient theory has been invoked many times in the 17th century. William

Hewson showed blood could be thawed and that it liquifies before coagulation.

This disproved the cooling theory. Another physical explanation was cessation

of natural flow of blood2. This notion has stood the test of time.
2although controversial, the significance of this has been recognized by many eminent hematol-

ogists such as Virchow [23, 24]
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• Paul Morawitz, and independently Fuld and Spiro, gave the classical theory

of blood coagulation (see Figure 1.1) based on 19th century experiments [22].

Three factors - prothrombin, calcium ions, fibrinogen were present in blood. A

fourth factor thromboplastin (Tissue Factor Tf) was postulated to be contained

within cells like platelets and leukocytes. Tf was postulated to be extruded dur-

ing injury from damaged tissue cells. Tf reacted with calcium and prothrombin

to form thrombin, which converted fibrinogen to fibrin strands of a blood clot

[22].

• In 1935, a test was developed based on the classical theory to study defects

in hemophilia patients [25]. This test entered clinical domain and goes by the

name prothrombin time [22]. This measures the time required to form enough

thrombin for clotting.

1.4.2 Modern Theory

• Two different models to initiate clotting were recognized. Clotting initiated

in the intrinsic pathway due to contact with external surface. Paul Owren

discovered discovered factor V [22]. This was followed by others and new

clotting factors were discovered. Thomas Addis found out adding globulin

fraction (factor VIII) improved delayed clotting time in hemophilia patients.

However, the experimental evidence was ignored since it was inconsistent with

existing theories [22]. Additional evidence surfaced due to the work of Patek

and Taylor [27]. They identified antihemophilic globulin, now referred to as

factor VIII.

• Paul Aggeler and others discovered Hemophilia B patients bled because of

factor IX deficiency [22]. Other biochemists discovered several factors involved

5



Figure 1.2: Modern theory of clotting. Detailed schematic of clotting reactions in
the intrinsic and the extrinsic pathway (figure from [26]). This pathway considers
initiation due to the extrinsic as well as the intrinsic pathway. Polymerized fibrin
is the clot and its conversion from fibrinogen is catalyzed by thrombin. Actual
coagulation is known to be more complicated and models considering hundreds of
protein factors have been proposed.

6



in the clotting phenomena. Inhibitors antithrombin and activated protein C

were discovered by studying thrombotic disorders such a venous thrombosis

[22].

• Multiple active forms of thrombin were discovered [28]. Factors like V were

isolated and characterized [29]. Kinetics of active complexes involved in clotting

were studied. Thrombin generation simulation models [30, 31, 32] and platelet

activation models were developed [33]. Faster and better experimental methods

to estimate thrombin generation were designed [34]. Spatiotemporal models for

dynamics of clotting were developed [35] followed by comprehensive models for

blood coagulation [13].

1.4.3 Confluence

• There have been tremendous advancements in diagnosis, treatment [36], and

modeling [15]. Panteleev and Hemker [12] indicate that the standard assays are

not sensitive and specific for many major hemostatic disorders. Biochemists

and hematologists acknowledge the need to consider aspects of geometry and

flow [37].

• Taylor and Humphrey [38] reviewed open problems in vascular biomechanics.

Patient-specific geometry modeling, simulations with more realistic boundary

conditions, multiscale models that combine molecular mechanisms with clinical

manifestation are some of the discussed problems. Work in the field of biome-

chanics borrows heavily from the results of biochemists and the models for

blood coagulation that are currently in use are complex. A detailed depiction

of clotting reactions is shown in Figure 1.2.

• Model simplification is considered a necessity from both the sides.

7



Figure 1.3: A schematic of process involved in patient risk assessment. Missing
links are highlighted in red. Data that are the most insightful and useful (diagnosis,
intervention, and cure primarily happens at this level) are shown in green.
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This is one of the best times to be involved in blood coagulation research. There

is a confluence of scientific fields. Tremendous improvements have been made in the

treatment of cardiovascular diseases but there is a still a long way to go (see Figure

1.3).

1.5 Abnormalities in the Blood Coagulation System

Typically, abnormality in coagulation could occur when:

1. one of the protein factors is missing or present when not needed.

Hemophilia or hypocoagulation has been extensively studied are usually due

to missing factors. The most important inactive factors and inhibitors are

shown in Table 1.1. Absolute deficiency in most these factors is either fatal or

leads to extreme disorders.

2. stoichiometry of certain factors are abnormal. Plasma factor composi-

tion affects the dynamics of reactions that happen during and after coagulation

[39, 40]. Adding a new dose of inactive plasma factors results in restoration of

thrombin generation without clot initiation triggers [41].

3. kinetics are abnormal. Rates are often a combined effect of all factors.

Moreover, the effect of rates is complicated due to complexity of chemical

kinetics. It could further create complications in other pathways, systems and

scales. For example, rates combined with diffusion could further determine the

size of the clot or with convection determine occurrence of clot downstream.

The absence of protein factors can be easily identified and dealt with. However,

abnormalities in stoichiometry or kinetics are harder to quantify. In most cases,

changes in stoichiometry have to quantified before changes in kinetics are observed.
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Table 1.1: Inactive plasma factors and associated diseases due to their deficiency.
Protein Associated disease due to deficiency
Factor VII Rare, hemophilia-like bleeding disorder
Factor X Rare, bleeding disorders
Factor IX Hemophilia B
Factor II Bleeding disorders
Factor VIII Hemophilia A
Factor V Rare, mild form of hemophilia
TFPI Thrombotic diseases
ATIII Thrombotic diseases

A simplified depiction of the extrinsic pathway of blood coagulation is shown in

Figure 1.4. Thrombin plays a central and a multifunctional role [18, 42]. Abnormal-

ities in the coagulation system are reflected in thrombin generation curves and offer

descriptive explanations. In the last two decades, sustained interest has been shown

in empirical and computational thrombin generation assays [43, 44, 45, 46] to study

the coagulation system under abnormal conditions and to use it for patient-specific

diagnosis and treatment. The aim is to quantify hypo- and hypercoagulable states

of blood using thrombin generation curves compared to those in healthy individuals

[47, 40, 48].

Simulations of thrombin generation during blood coagulation in the extrinsic

pathway is known to discriminate ACS and coronary artery disease (CAD) [49].

When the simulations results are compared for the thrombin generation parame-

ters, samples from the two groups differ in a statistically different way. Thrombin

generation is higher in ACS population suggesting hypercoagulation. Further, the

blood coagulation reactions in acute myocardial infarction patients is known to be

markedly modified compared to CAD patients [50].

Similarly, thrombin generation is higher in chronic obstructive pulmonary disease
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Figure 1.4: A schematic of the extrinsic pathway. We restrict our study to the class
of models that focus on the extrinsic pathway. There is clot initiation due to Tf.
Then the reactions proceed to the propagation phase where thrombin reaction rates
explode is in a positive feedback loop due to tenase and prothrombinase activation.
Thrombin catalyzes fibrin formation which is further stabilized into clot.

[51, 52], acute cerebrovascular disease [53], and rheumatoid arthritis [54]. Further,

clot properties are known to be affected in such hypercoagulative systems [55].

1.6 Challenges in Modeling the Coagulation System

Many challenges centered around the chemical kinetics aspect arise in modeling

and simulating the system:

• Need to identify sensitive risk factors: There is need for better phenotyp-

ing of coagulation system [56]. Available assays (referred to as the ‘coagulo-

gram’) fall short of effectively characterizing the status of blood chemistry [12].

Hypercoagulable diseases like venous thromboembolism do not have readily

identifiable and sensitive risk factors [57].

• Need to identify useful aspects and methods to validate: It is not clear
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Figure 1.5: Models and transparency (figure from [58]). Simulations are consid-
ered to be more transparent compared to experiments in real systems. However,
the opaqueness of real systems are often reflected as inadequacies in the simplified
models. There is drastic room for improvement by establishing consistency between
various systems. Simulations could be used to identify critical experiments. Itera-
tively, experiments could be used to correct our models and improve simulations.
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which aspect of the simulation data is useful to make risk assessments even

while using model results as a black-box. Obtaining insights is much harder

due to a lack of established procedures to extract relevant aspects of the results

for further analysis (see Figure 1.5).

There is uncertainty regarding the type of the blood used or viable for study

(Platelet-rich plasma PRP, Platelet-poor plasma PPP, in vivo, in vitro, syn-

thetic); our understanding of the various mechanisms involved, the function-

ality of different chemical species is still incomplete. The agreement between

empirical results and model simulations even for thrombin generation curves

is disputed (see Figure 1.6). For example, Hemker [59] mentions ‘mostly used’

models ([60, 61, 62] do not match experimental curves of thrombin generation.

Figure 1.6: Two different thrombin generation models in the extrinsic pathway. Iden-
tifying critical aspects in model simulations based on clearly defined context such as
disease classification would be a first step towards improving the models.

There is uncertainty in the measurement of various parameters like the rate

13



constants [63]. Some of the rate constants are not directly measurable. For

example, many rate constants in the extrinsic pathway model were indirectly

inferred [32, 60]. Further, there are at least two other versions even for the

extrinsic pathway model [64, 65, 66]. This could be attributed to the fact that

comparing model simulations with few experimental data does not suffice and

the critical aspects of model simulations need to be clearly established.

Figure 1.7: Concentration of different species during clotting in the extrinsic path-
way. The concentration of various species varies by orders of magnitude. The poses
stiffness issues in numerical schemes demanding small time steps and excessive con-
ditioning.

• Solving is hard and expensive: Concentrations of protein factors and rates

of reactions often vary by orders of magnitude (see Figure 1.7). The nonlinear

chemical kinetics problem is modeled using reaction rates that have quadratic

terms, the model is very stiff and solution trajectories are unstable in many
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directions [67] (see Figure 1.8). The rates involve negative feedback loop or

cycles in the reaction cascade [68].

Moreover, numerically solving stiff chemical kinetics is computationally expen-

sive. The solvers for chemical kinetics are time and memory consuming when

augmented with spatial and flow aspects. Coagulation is known to vary drasti-

cally in patients. A simplified model is desirable so that augmenting chemical

kinetics in fluid flow solvers in patient-specific terms become feasible.

Figure 1.8: Eigenvalues of reaction rates in thrombin generation simulation. At any
given point in time, the reaction trajectories are unstable in more than five directions
(figure from [67]). This poses stability issues in numerical solutions.

Recent studies have tried to augment thrombin generation with convection-reaction

systems [69, 70, 71]. In patient-specific studies of Papadopoulos et al. [71, 72], the

focus is primarily on the effect of geometry. They use a simplified thrombin genera-

tion model to study the effect of vessel geometry. However, in order to understand

the effect of reduced models, the abnormalities in coagulation system need to be
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identified and quantified systematically.

We would like to have the following towards realistic patient-specific simulations:

• We would like to find critical features that are useful for diagnosis and that are

possibly useful for understanding the complicated physiology behind coagula-

tion in simple terms.

• We need a simplified chemical kinetics model that could be augmented with

other models in order to perform useful patient-specific simulations.

The following question naturally arises: How do we simplify the model describing

chemical kinetics? The simplified model,

• should be practically useful for making decisions.

• should be easier for patient-specific simulation and to augment with the simu-

lations of other aspects like flow properties.

• should offer physiological insight.

We would like to understand and quantify the limitations of the reduced model.

Further, given that the search space is huge and the experiments costly, we would like

to identify potential candidates for further research. For example, based on a well

defined purpose such as classification of diseases, we would like to quantify model

performance.

We will make use of recent advances in machine learning algorithms and statistical

learning theory to study the thrombin generation system.

1.7 Machine Learning

The core idea of machine learning is to use information about certain training

samples to predict responses for new test samples (see Figure 1.9). The training and
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Figure 1.9: Schematic of the learning process. The core idea of machine learning is
to use certain training samples to predict responses for new test samples.

the test samples are assumed to drawn from the same population. Machine learning

tools are useful in systems where the involved physical laws are too complicated to

model but data-driven predictions could be applied efficiently. Offering non self-

evident solutions to ill-posed problems is the hallmark of learning theory [73, 74] and

machine learning algorithms [75]. Learning theory and algorithms have been applied

in a wide range of problems and fields such as bioinformatics, machine perception,

medical diagnosis, economics, and social network analysis.

Our hypothesis is that it is possible to systematically use machine learning tools

to obtain greater insight about the coagulation cascade. In particular, we will quan-

tify and characterize useful information in high-dimensional data from solutions of

equations involving nonlinear chemical kinetics model. We will do so by studying

classification of ACS from CAD. We will use information on thrombin generation

from a patient’s blood sample to classify if a given patient has ACS. Further, we

will use classification performance as a way to identify critical aspects of the model.

Such critical differences could help us come up with simplified models.

1.8 Objective and Scope

Main algorithms and ideas used in this thesis include:
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• Maximum entropy distributions for sampling patient data from population

data.

• Density estimation using expectation maximization of Gaussian mixture mod-

els (GMM): In order to classify ACS using thrombin generation parameters,

we need to model their densities. We model density of thrombin generation

attributes using GMM. Finding GMM parameters is a hard nonlinear problem.

Expectation maximization [76] offers a clever solution to the difficult nonlinear

problem. The design of the algorithm and the guarantees of its convergence

gives a flavor of ideas in machine learning. This is the starting point for many

sophisticated applications as well as generalizations.

We introduce the challenge of ill-posedness encountered in many learning prob-

lems via the example of parameter estimation in GMM. We briefly discuss how

solutions are regularized in such a scenario.

• Classification using Random Forests: We use Random Forests [77, 78] to clas-

sify ACS from CAD using attributes from the full model. Random Forests

exploits two key ideas to effectively deal with high-dimensional data: i) Use

of ensembles of base learners, ii) and use of random subset selection. Both

these aspects together avoid overfitting problems while dealing with sparse

data. Moreover, the underlying base learner is nonparametric, and invariant to

monotone transformations of data making it suitable to study chemical kinetics

data. Further, Random Forests offer strong feature selection as well as error

estimation tools.

We study blood coagulation using a model for the Tf-initiated extrinsic pathway

developed by Hockin et al. [60]. Specific problems addressed in this dissertation in-

clude: i) simulation of patient-specific thrombin generation, ii) likelihood estimation
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of thrombin generation parameters using expectation maximization, iii) classifica-

tion of high-dimensional feature space using Random Forests, and iv) identification

of critical aspects of the thrombin generation model.

Based on the insights gained from the results, we also propose a simplified

model for the dynamics of thrombin.

1.9 Structure of the Dissertation

The structure of the dissertation is as follows:

1. Introduction in this chapter

2. We introduce the thrombin generation system. We describe patient-specific

simulation and classification of thrombin generation.

3. We use expectation maximization algorithm and GMM to characterize and

classify ACS and CAD based on summary parameters used to describe dynam-

ics of thrombin [18, 45].

4. We extract features to characterize data from all the chemical factors in the

model and use Random Forests to classify ACS and CAD [79]. We also perform

feature selection in order to reduce the number of features used for classifica-

tion.

5. We propose a simplified model for the dynamics of thrombin.

6. We discuss future research directions.
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2. PATIENT-SPECIFIC SIMULATION OF THROMBIN GENERATION*

“These models are not a panacea nor are they a replacement for empir-

ical fishing, but they are a useful thinking tool.”

– Kenneth G. Mann, [58]

2.1 Chapter Outline

In this chapter, we describe the thrombin generation system in greater detail.

In addition to patient-specific variation of chemical factors in thrombin generation

systems, we describe how these variations are associated with ACS and CAD. We,

also, describe patient-specific simulations and sampling required data for simulations.

2.2 Thrombin Generation

A schematic of the major events involved in clotting is shown in Figure 2.1. Clot

initiation is modeled by three pathways:

1. Intrinsic pathway: Clotting in the intrinsic pathway is initiated when blood

comes into contact with an external surface like glass.

2. Extrinsic pathway: Clotting in the extrinsic pathway is initiated by Tf. Tf

proteins are embedded in the vessel walls and are hypothesized to be exposed

to flowing blood due to injury. This pathway is the major cause of in vivo

clotting. Tf activates factor VII to factor VIIa. This is followed by formation
*Part of this chapter is reprinted with permission from “Random Forests Are Able to Identify

Differences in Clotting Dynamics from Kinetic Models of Thrombin Generation” by Jayavel Aru-

mugam, Satish T. S. Bukkapatnam, Krishna R. Narayanan, and Arun R. Srinivasa. PloS one,

e0153776, Copyright [2016] by Arumugam et al.
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Figure 2.1: Major steps involved in blood clotting. We consider clot initiation in the
extrinsic pathway along with thrombin propagation and termination.

of extrinsic tenase complex (Tf-fVIIa). The complex activates factors IX and

X to form activated factors IXa and Xa.

3. Platelets: Clotting is also activated by platelets. In hypercoagulative blood,

spontaneous clotting could occur due to platelet aggregation.

Tissue Factor Pathway Inhibitor (TFPI) regulates clot initiation. Activated factor

Xa activates prothrombin to form thrombin. If thrombin concentration is above a

certain threshold, clotting propagates via a different set of reactions [80]. This control

mechanism likely functions to avoid excessive clot due to false triggers. Thrombin

activates inactive factors VIII and V. This results in the formation of intrinsic tenase

and prothrombinase complexes which further activate thrombin. Thrombin catalyses

formation of Ia. Ia is stabilized into stable clot by activated XIIIa. Thrombin and

other active factors are inhibited by ATIII and APC.

A schematic of the Tf-initiated extrinsic pathway model we used is shown in

Figure 2.2. The model does not account for the effect of the inhibitor APC. We
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Figure 2.2: Schematic of the extrinsic pathway model for thrombin dynamics used
in this work. This is the simplest nontrivial patient-specific model that has demon-
strated practical use.

also note that there are at least two other versions of this extrinsic pathway model

[64, 65, 66]. We use the simplest nontrivial version for this study [60]. There are 34

species undergoing 42 reactions in this model.

Thrombin generation upon tissue factor initiation is usually monitored using ac-

tivity of thrombin and thrombin-antithrombin (TAT) activity. The model accounts

for dynamics of two forms for thrombin (refer to Figure 2.3). One form is more active

compared to the other and net thrombin activity is appropriately defined.

2.3 Patient-Specific Simulation

Thrombin generation varies from one patient to the other. In addition, there is

often considerable variation within a patient. The source of the variation is modeled

as changes due to plasma factor composition, i.e., the change in concentration levels

of the inactive protein factors in the blood before clot initiation.
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Figure 2.3: Two forms of thrombin are modeled. Active thrombin is defined based
on activity of thrombin measurement (which is IIa + 1.2 mIIa). IIa is the alpha-
thrombin and mIIa is the meizo-thrombin. Thrombin is inhibited by antithrombin
ATIII. Thrombin-ATIII (TAT) complex is often measured to infer clotting proper-
ties. It is essential to account for the two forms in order to satisfy stoichiometry in
simplified models.
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Table 2.1: Physiological mean plasma factor composition. VIIa is set at 1 % of factor
VII. Data reported in [60, 66].

Protein Factor Mean Value Normal Range
(M) (Percentage)

TF 5.0E-12, Varied Controls trigger level
VII 1.0E-08 60 - 140
X 1.6E-07 60 - 140
IX 9.0E-08 69 - 151
II 1.4E-06 60 - 140
VIII 0.7E-09 64 - 232
V 2.0E-08 60 - 140
TFPI 2.5E-09 46 - 171
ATIII 3.4E-06 88 - 174

Mean physiological values of the eight initial inactive coagulation factors that

are considered in this model are shown in Table 2.1. There is considerable variation

of concentration of these factors in a given population. Thrombin generation has

been used to phenotype such variations. For example, deficiency of factor VIII alone

is not known to cause serious bleeding. Composite effect of all the protein factors

determines the propensity of blood to clot. This is reflected in thrombin generation

curves. Thrombin generation simulation curves in two Hemophilia A patients with

factor VIII deficiency in Figure 2.4. Further, treatment is usually known to affect

these results drastically.

We are concerned about thrombin generation in ACS and CAD patients. Simula-

tions of thrombin generation is known to discriminate ACS and CAD [49]. When the

simulations results are compared for the thrombin generation parameters, samples

from the two groups differ in a statistically significant way. Thrombin generation is

higher in ACS population suggesting hypercoagulation. Thrombin generation curves

for the mean plasma factor composition in the two populations are shown in Figure

2.5.
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Figure 2.4: Thrombin generation in two hemophilia patients. Hemophilia A patients
with factor VIII deficiency (set to 1 % of physiological mean in simulations). Though
both the patients had initial factor VIII percentage value to be 1% of the physiological
mean, the thrombin generation is significantly different due to other changes in the
other inactive factors. This information has potential utility to monitor hemophilia
treatment via recombinant factor VIII administration [81, 66].
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Figure 2.5: Thrombin in generation in ACS and CAD population mean. The net
effect of changes in initial reaction is comprehensively captured in thrombin gener-
ation rates. Further, thrombin generation is higher in ACS population compared
to CAD population. We will extract appropriate features to characterize the curves
and describe such differences.
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Most of the thrombin generation studies have been conducted to identify mark-

ers that differentiate groups in a statistically significant way. Given that, only the

mean and standard deviation data for the groups are usually reported in these stud-

ies. In this work, we are interested in patient-specific classification instead of group

comparison, i.e., we want to classify if a given patient likely belongs to one group

compared to the other(s). Such simulations need patient-specific plasma factor com-

position. Using appropriate tools, we numerically sample such patient-specific data

from reported population data. We describe our sampling procedure next.

2.4 Sampling Using Maximum Entropy Distributions

To get the initial condition data for the clotting model, we used reported mean

and standard deviation data of the procoagulant and anticoagulant factor percentages

in ACS and CAD populations [49]. To generate samples for these non-zero factors

from the mean and standard deviation data, we use the maximum entropy principle

[82]. The idea is to obtain a distribution that maximizes information entropy [83]

subject to known constraints. Information entropy of a probability distribution p(x)

of a random variable x is defined as,

H = −
∫
p(x)log(p(x)). (2.1)

The principle essentially restricts the class of probability distributions to those sat-

isfying the given constraints by looking for functions that maximize,

p̂(x) = argmin
p(x)

−
∫
p(x)log(p(x)), (2.2)

s.t. fi(p(x)) = 0, i = 1, . . . , N. (2.3)
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where fi(p(x)) are the known constraints.

When the constraints are moments of the probability distribution function, i.e.,

fi(p(x)) = E[gi(x)] where gi(x) is an arbitrary function and E[.] is the expectation,

the solution could be expressed as,

p̂(x) = 1
Z

exp[
∑

λigi(x)], (2.4)

Z =
∫

exp[
∑

λigi(x)], (2.5)

where Z is the partition function and λi are Lagrange multipliers which are found

based on the given constraints.

Figure 2.6: Sampled factor VIII values in hemophilia patients. Significance of using
lognormal distribution of sampling initial factors.

By the maximum entropy principle, the probability distribution that best repre-

sents a positive random variable given mean and standard deviation is the log-normal
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distribution [84]. Essentially mean, standard deviation, and nonnegativity are the

three prior constraints we imposed based on the data available for plasma factor com-

position. The samples for each initial factor level were generated from log-normal

distributions.

Using log-normal ensures that the sampled values are positive, for example, initial

factor percentages sampled for hemophilia patients are shown in Figure 2.6. Also,

unlike the symmetric Gaussian distribution, the lognormal distribution is skewed

toward zero.

Figure 2.7: Plasma factor composition in ACS and CAD patients. Variation of
sampled initial factor levels in ACS and CAD (data obtained from [49]).

We sampled 200 sets of percentage values for the initial coagulation factors in

each class (ACS and CAD). Box plots for sampled data for ACS-CAD population

are shown in Figure 2.7. Compared to CAD data prothrombin (FII), factor VIII, and
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TFPI are higher and ATIII is lower in ACS data (see Figure 2.8 for scatter plots).

These percentage values were scaled using the physiological mean values [60] and we

obtained thrombin generation parameters by solving the chemical kinetics problem

for each sample.

Figure 2.8: Sampled data of plasma factor composition in ACS and CAD. Only those
factors that significantly differ in the two groups are shown. Note that the data are
almost isotropic because our sampling assumes that the factors are independent of
each other.
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2.5 Piecewise Polynomial Representation of Simulation Profiles

Simulations were carried out using MATLAB1. Thrombin generation simulations

were initiated with 5 pM trigger TF. Solution profiles for all chemical species were

obtained for 3600 seconds using ‘ode15s’ stiff solver available in the standard library.

The method finds solutions to the differential equations y′ = F (t, y) by approximat-

ing it using a numerical differentiation formula of the following form [85],

(1− κ)γk
(
yn+1 − y(0)

n+1

)
+

k∑
m=1

γm∇myn − hF (tn+1, yn+1) = 0. (2.6)

The implicit approximation is solved using a simplified Newton method [85]. The

absolute tolerance for the method was set as 1e-15 M for all variables in the model

and numerical convergence was corroborated (see Figure 2.9).

We normalized the simulation profiles by their respective physiological mean peak

values and fit them with piecewise cubic hermite interpolating polynomials (PCHIP)

[86] using ‘pchip’ function. Data in each profile was divided into pieces (time inter-

vals), and a cubic polynomial was fit in each piece while ensuring smoothness across

pieces. PCHIP technique ensured the resulting interpolation changed monotonically

in each interval, thereby avoiding spurious oscillations inherent in a regular spline

interpolation.

Approximation using 14 pieces and using regular spline interpolation are shown in

Figure 2.10. Even in the context of interpolation, we can notice one of the models is

too complex and starts overfitting. By ensuring monotone changes between knots or

the approximation points, PCHIP essentially looks for a restricted class of solutions

compared to cubic spline approximation. This problem is more difficult in case of
1MATLAB 8.5.0, The MathWorks, Inc., Natick, Massachusetts, United States.

31



Figure 2.9: Convergence check for the numerical solution. Solution profiles for ac-
tive thrombin obtained using different values of absolute tolerance in the numerical
solution scheme. We used an absolute error tolerance of 1e-15 M for the simulations.
Differences and oscillations below the error tolerance were neglected.
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Figure 2.10: Piecewise polynomial representation of simulation data. By ensuring
monotone changes between knots or the approximation points, PCHIP essentially
looks for a restricted class of solutions compared to cubic spline approximation.
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regression where we will have to account for data noise. One has to restrict the

solutions by compromising between the available sparse and noisy data and model

complexity.

We used 139 pieces - each of length approximately 26 seconds. This captured fast

changes, such as the time it takes for Tf-fVIIa to reach its first peak since addition

of the trigger, reasonably well. PCHIP representation serves two purposes: i) it

efficiently stores large amounts of simulation data; and ii) since the polynomials

represent data well, the coefficients of the polynomials could act as features for

classification.

2.6 Conclusion

We have addressed the problem of patient-specific sampling using maximum en-

tropy distributions. We assumed that the data were independent of each other.

Interdependence of factors in thrombin generation has often been overlooked in the

literature. If not posed and solved properly, this is a hard problem. While introduc-

ing patient-specific classification in the next chapter, we also address the problem of

describing and inferring such dependence without the independence assumption.
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3. DENSITY ESTIMATION USING EXPECTATION MAXIMIZATION

“I have had my results for a long time: but I do not yet know how I am

to arrive at them.”

– Johann Carl Friedrich Gauss1

3.1 Chapter Outline

We use expectation maximization of GMM to characterize thrombin generation

parameters. We use it to classify ACS and CAD. We also discuss alternative ap-

proaches to solve these problems using non-self evident restrictions.

3.2 Simulation of Thrombin Generation Summary Parameters

Brummel-Ziedens et al. [49] studied alterations in thrombin dynamics between

ACS and CAD. Features of thrombin profile like maximum value, area under the

curve, and maximum rate were higher in ACS than CAD, suggesting hyper-coagulability.

The question we address is the following: using simulation results of the thrombin

generation curves, can we find the probability that a new curve is from an individ-

ual having ACS instead of CAD? Effective answer to this question could be used to

screen patients for better monitoring.

We extracted the following features that characterize active thrombin [49] (see

Figure 3.1):

1. time to reach 2 nM

2. area under the curve

3. maximum level reached
1quoted by A. Arber in ‘The Mind and the Eye’ 1954
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4. maximum rate of generation

5. time to reach maximum value

6. time to reach maximum rate.

Time to reach 2 nM of thrombin in the extrinsic pathway is related to prothrom-

bin time; area under the curve is related to the thrombin generation potential [87].

Further, thrombin generation measurements could be used to obtain the other fea-

tures.

Figure 3.1: Thrombin generation summary parameters. Figure from [66]. Time
2 nM of thrombin and area under the curve are related to prothrombin time and
endogenous thrombin potential respectively.

To better explain the issues with density estimation and to introduce more ad-

vanced algorithms, we consider just two of the summary parameters namely ‘T2nM’

(time to reach 2 nM from the start of the simulation) and ‘Maximum Rate’ (maxi-

mum rate of activation in active thrombin). The data was nondimensionalized using
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the maximum values from the ACS population. Nondimensionalized thrombin gen-

eration summary parameters are shown in Figure 3.2. We proceed with building a

classifier to distinguish data points with regards to different disease conditions.

Figure 3.2: Maximum rate and time to 2 nM in thrombin generation. Summary
parameters of thrombin generation for ACS and CAD population. Time to reach 2
nM of thrombin is faster in ACS population compared to CAD population. Similarly,
maximum rate of thrombin generation is higher in ACS population. This suggests
tendency of blood to clot more in ACS population.

3.3 Gaussian Mixture Models

To answer the above question, we classify given data from thrombin generation

simulation into ACS or CAD group using Gaussian Mixture Model (GMM). Let

x = [T2nM,MaxRate]T (3.1)
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denote the vector representing thrombin generation parameters. We consider soft

classification where each data point has probability of belonging to either class.

Given two classes G1 and G2 which are mutually exclusive, the posterior probability

density of a group is,

P (Gi|x) = P (Gi)P (x|Gi)
P (G1)P (x|G1) + P (G2)P (x|G2) , i = 1, 2. (3.2)

where P (Gi|x) is the posterior class probabilities for a given data point, p(Gi) is the

prior probability of the classes, and P (x|Gi) is the likelihood of the data conditional

on the class.

If we can estimate P (G1|x), we can find the posterior using a suitable prior. What

we know is only samples of data from the two classes. We construct a GMM for each

class using the known samples of data. The likelihood function for a group P (x|G)

is approximated using a multivariate GMM,

p(x|ACS) =
K∑
i=1

αACS
i N (µACS

i ,ΣACS
i ) (3.3)

p(x|CAD) =
K∑
i=1

αCAD
i N (µCAD

i ,ΣCAD
i ) (3.4)

where K is the number of components in the GMM and N (µi,Σi) is multivariate

normal distribution with mean µi, covariance Σi, and αi is the probability of each

component. An example is shown in Figure 3.3.

3.4 Expectation Maximization

The problem of approximating the likelihood function reduces to finding the pa-

rameters θ = {αi, µi,Σi} of the GMM that explain the data the best. A standard way
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Figure 3.3: An example of a 2 component GMM.
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to pick the parameters is by maximizing the likelihood function (or equivalently the

log of it) called the maximum likelihood estimate (MLE). This is a simple problem if

we know how each data point is generated, i.e., information pertaining to component

identity. However, both this information as well as the parameters of GMM are not

available. This makes the resulting likelihood function non-convex and a closed form

MLE for this function is not known. In such a scenario, an efficient way to find the

parameters is by using the expectation maximization algorithm [88] and [76].

Expectation Maximization (EM) algorithm finds the solution iteratively by ap-

proximating the likelihood function by a convex function which is a tight lower bound

and then maximizing it. Let y be the incomplete data which denotes component

identity for each data point. The algorithm iterates between two steps:

1. Expectation step: Find expectation of the log-likelihood Q(θ, θi−1) using the

parameters θi−1 from the previous step,

Q(θ, θi−1) = E[log(p(x, y|θ))|y, θi−1] (3.5)

2. Maximization step: Find new value θi for the mixture parameters by maxi-

mizing the above likelihood.

θi = argmax
θ

Q(θ, θi−1) (3.6)

3.5 Classification Results

The results for likelihood estimation are shown in Figure 3.4 for ACS and CAD

respectively. We use non-informative priors for class probabilities, i.e., the prior

probability of each class is the same (p(G1) = p(G2) = 0.5). We consider the
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posterior probabilities of the 400 samples used to train the GMM. The samples are

ordered such that the first 200 are from the ACS class and the last 200 belong to the

CAD class.

Figure 3.4: Contours of likelihoods for the thrombin generation parameters. GMM
contours of the likelihood function for the thrombin generation parameters estimated
using the EM algorithm.

The predicted probabilities that a sample belongs to the ACS class and CAD

class is shown in Figure 3.5. The predicted probabilities that the sample belongs

to ACS are high for the first 200 points and low for the last 200 points. The test

accuracy was calculated on 40 randomly sampled data from each class that was not
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used for training. The mean classification accuracy was 77 %. Due to the use of

sampled data for the plasma factor composition, we do not further distinguish errors

in each class separately.

Figure 3.5: Predicted ACS/CAD probabilities. For each sample the predicted prob-
ability that it belongs to ACS (blue) or CAD (red) group is shown. The first 200
samples are from ACS. Samples 201 to 400 are from the CAD group. The first 200
samples are predicted to have a high probability of belonging to class ACS and CAD.
The mean test accuracy was close to 77 %.

3.6 Paradigm Shift

Expectation maximization is a powerful algorithm. In mechanics, it is useful in

the context of deformable surface tracking [89, 90] and discrete optimization formu-

lations of certain hard mechanics problems such as buckling of beams constrained to

a tube [91, 92].

GMMs face the curse of dimensionality if used to model features of all protein

42



factors using sparse data. For a full GMM, the number of parameters grow as

(K − 1) + Kp + Kp(p + 1)/2 where K is the number of components and p is the

dimension of the feature space [93]. This results in ill-conditioning of the parameter

estimation problem. The problem is worse in case of nonparametric extensions such

as Dirichlet process mixture models [94] which does not restrict the number the

mixture components. Notice that this is not a problem with the EM algorithm but

with the M-Step of the EM algorithm where the parameters are estimated.

Density estimation is not a necessary step in order to make classification. Statis-

tical learning has made tremendous advancements using this idea (see Figure 3.6).

Parameter estimation in high-dimensional problems is often ill-conditioned. This

demands better algorithms and approaches. Non self-evident restrictions and solu-

tions to such ill-posed problems is the hallmark of machine learning and statistical

learning theory. Some of the approaches include using ensembles [77, 95], exploiting

sparsity of data [96], efficient use of sampling [97], inference [98], subsets and sparse

data [99, 77], better and efficient models for the covariance structures [100].

“If you possess a restricted amount of information for solving some prob-

lem, try to solve the problem directly and never solve a more general

problem as an intermediate step. It is possible that the available infor-

mation is sufficient for a direct solution but is insufficient for solving a

more general intermediate problem.”

– Vladimir N. Vapnik, Statistical Learning Theory [73].

3.7 Conclusion

We used GMM to estimate densities of thrombin generation summary parameters.

The approach described in this chapter can be used to systematically classify coagu-
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Figure 3.6: Different classifiers, mean test accuracies, and their decision boundaries.
Most of these methods demand lots of parameter tuning. Further issues include
model selection and significant feature selection.
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lation disorders using data from thrombin generation parameters [45], plasma factor

composition [49], and thromboelastography [101]. Estimation of densities of plasma

factor composition could be one the most important applications of the methods

used in this chapter.

We, also, discussed how classification in higher dimensions demands better strat-

egy and regularization is one of them. We choose Random Forests to proceed further

with the high-dimensional classification problem.

45



4. HIGH-DIMENSIONAL CLASSIFICATION PROBLEM*

“The limits of my language mean the limits of my world.”

– Ludwig Wittgenstein, Tractatus Logico-Philosophicus (1922)

4.1 Chapter Outline

Random Forests is a nonparametric classification method that stands up to its

name. Perhaps, a lot more. Unlike GMMs, Random Forests are effective in dealing

with high dimensional data. Further, we use Random Forests to classify and to find

significant aspects in the thrombin reaction network. In particular, we find significant

chemical species and their location in time during clotting that could be useful for

classification.

4.2 Introduction

Current efforts towards patient-specific characterization include differentiating

systemic changes to blood coagulation in ACS from CAD populations [50]. Blood

is observed in a hyper-coagulable state after ACS [102]. Brummel-Ziedens et al.

[49] studied alterations in thrombin dynamics between ACS and CAD. Features of

thrombin profile like maximum value, area under the curve, and maximum rate were

higher in ACS than CAD, suggesting hypercoagulability.

The nature or extent of the hypercoagulability1, as well as its relation to and its

presence before the acute condition are not well understood. This could be attributed
1A recently published review article on this [103].

*Part of this chapter is reprinted with permission from “Random Forests Are Able to Identify

Differences in Clotting Dynamics from Kinetic Models of Thrombin Generation” by Jayavel Aru-

mugam, Satish T. S. Bukkapatnam, Krishna R. Narayanan, and Arun R. Srinivasa. PloS one,

e0153776, Copyright [2016] by Arumugam et al.
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to at least two reasons: i) lack of assays to efficiently and effectively determine the

status of blood chemistry [12]; and ii) lack of adequate statistical and mathematical

tools to understand blood coagulation system involving large numbers of variables.

Recently there have been attempts to study changes in factor Xa (fXa), in another

hyper-coagulable condition - deep vein thrombosis, using computational models [104].

Features similar to those used for thrombin were used to describe fXa. We have good

prior knowledge about thrombin and fXa, which are both active chemical species that

play significant roles in clotting. Naturally, the following questions arise:

1. Do the dynamics of any other chemical species change significantly?

2. Are there better features to characterize changes in the system?

3. Can we efficiently assay the entire system without losing much information

pertaining to classification?

We study blood coagulation using a model for the Tissue factor(Tf)-initiated

extrinsic pathway developed by Hockin et al. [60]. The model uses a system of

ordinary nonlinear differential equations to describe dynamics of thrombin evolution.

The model has copious empirical validation and has been previously used for risk

analyses between ACS/CAD [49]. The number of chemical species involved is large

(34 in this case), and their responses are varied, typically requiring large numbers of

features to represent the time profiles.

We use a non-parametric statistical learning algorithm - Random Forests [77] to

classify ACS and CAD populations. Random Forests can be used to capture highly

nonlinear class boundaries, and is robust to outliers in data and to lots of noisy

features. Random Forests technique allows us to filter significant species and find

their critical aspects. Moreover, unlike the current use of isolated features for group
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comparisons prevalent in thrombin generation literature [45], use of Random Forests

here exploits the role that interactions of features play in order to classify data into

various groups.

4.3 Feature Extraction from Simulation Profiles

The central idea of the scheme is to consider the data points (simulation profiles)

as a “noisy-image” in a very high-dimensional space from which we try to extract

features with semantic attributes like “concentration is high”, “concentration pro-

file is sharply curved”, etc. This was implemented by extracting different kinds of

features and using them in the classification study to characterize the system.

In order to capture the dynamics of each species at different times during the

simulation, we use the PCHIP coefficients as features. Since there is a lack of classi-

fication study to compare this work with, we used classification results of the plasma

factor composition (initial conditions data used for the simulation), and the features

that are conventionally studied to compare with the performance of PCHIP fea-

tures considered here. Moreover, we study a fourth set of features which have the

possibility of direct experimental observation.

The list of features we extracted and used for classification include the following

four sets:

1. PCHIP features to characterize dynamics - this set includes 18904 PCHIP

coefficients obtained during data representation. This set uses two datasets

[49, 60] as described at the beginning of the section Methods. We used 139

pieces - each of length approximately 26 seconds (the representation is shown

in Figure 4.1). For a given species, there are 4 coefficients in each time interval.

The coefficients are such that the fit polynomial in an interval starting at ti

has the form Ci3(t − ti)3 + Ci2(t − ti)2 + Ci1(t − ti) + Ci0. These coefficients
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have information pertaining to function values and derivatives up to 3 orders

at time ti. Information in second and third derivatives is expected to be weak

as PCHIP enforces monotonicity. Variables corresponding to the two forms of

thrombin, IIa (alpha-thrombin) and mIIa (meizothrombin), were interpolated

separately.

Figure 4.1: Spline representation of simulation data. The number of approximation
knots were chosen to be 140 based on the response of one of the fastest reacting
variables Tf-fVIIa-Xa.

2. Plasma factor composition - this set consists of 8 non-zero initial condition

percentage values of procoagulant and anticoagulant factors used for model

simulations [49]
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3. Conventional features - this set consists of 11 features used to character-

ize active thrombin [49] and fXa profiles [104]. This includes time to reach 2

nM (for active thrombin), area under the curve for active thrombin and fXa,

maximum level reached by active thrombin and fXa, maximum rate in ac-

tive thrombin and fXa profiles, time to reach those maximum levels for active

thrombin and fXa, and time to reach maximum rates for active thrombin and

fXa. Data from two datasets [49, 60] are used in this set.

4. Moving averages of concentration values - this set consists of 200-second

moving average (200s-MA) features extracted at uniform time intervals. For

each chemical species, we extracted these 18 time-averaged function values of

simulation profiles (1/200
∫ t+200
t x(t)dt, where x(t) is concentration of a given

species) at every 200 seconds starting at 100 seconds. 612 such features were

extracted from all species (18 each for 34 species). This set makes use of

two datasets [49, 60]. These features localize significance of each species in a

time frame of about 3 minutes. Moreover, averaging over time gives a more

robust feature with respect to time lags and noise imposed by model and model

parameters.

These features are used as inputs in the Random Forests classification algorithm,

which outputs group identity (ACS/CAD).

4.4 ACS/CAD Classification using Random Forests

The core objective of any classification method is to label a collection of data/mea-

surements using certain features [105]. Here we use Random Forests [77] which is

formed by aggregating an ensemble of decision trees [106].
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4.5 Decision Tree

A decision tree [107, 108, 106] divides the feature space into a number of non-

overlapping regions. The regions have an equivalent tree representation in which

each node is a decision rule regarding class identity. Such trees are nonparameteric

and assume no particular form of the data. The task of the tree algorithm is to frame

decision rules that suit the data. Such decision rules are invariant to all monotone

transformations in the data [106]. Once a tree is formed, data points with unknown

classes are assigned a class based on these decision rules. Decision trees have been

used in the study of thrombin generation systems [109].

However, a simple tree structure is sensitive to perturbations in the data [110]

which could propagate down the tree and lead to very different class labels. The

random forest technique [111, 77], which uses an ensemble of trees and aggregates

the results, offers a solution to this problem.

4.6 Random Forests

In Random Forests, the learning process of each tree involves two types of random

subset selection. First, each tree in the ensemble is built with a random subset of

the training data. The other subset which is kept ‘out’ is called as the out-of-bag

(OOB) samples. These OOB samples are used for finding internal estimates such as

error rates. Second, each decision rule in a tree is made only using a random subset

of all features. This avoids the classification results being unduly biased by a few

sensitive features most of the time. Such classification results aggregated from many

trees can capture complex and highly nonlinear class boundaries. It is well known

[112] that the method avoids overfitting of the training data, a feature which is vital

when there is limited or scarce data.

Random Forests methods are known to perform well in a variety of fields such
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as in gene selection in microarray data [113], and in functional studies of chemical

compounds [114]. In empirical studies, Random Forests compares well with other

classification algorithms [115, 116], and performs consistently well in high-dimensions

[117]. Use of Random Forests in clinical studies include study of blood proteins in

Alzeimer’s disease [118, 119].

A key feature of the Random Forests approach is their ability to provide reliable

internal estimates to monitor error rates, and it has sharp measures to rank signifi-

cance of features. In particular, we made use of OOB error rate and mean decrease

in Gini index (MDGini) (see below). Since this error rate does not involve data used

in training a given tree, using this error rate provides inherent cross validation [120].

• OOB Error Rate: OOB samples are used to find error rates for each tree in

the ensemble, and all such error rates are averaged to get the OOB error rate.

Empirical studies suggest OOB error rates are good estimates for generalization

error [120, 77]. We used OOB error rates to assess the accuracy of the classifiers

which are reported as percentages of (1.0−OOB error rate).

• Feature Significance Measure - MDGini: Feature significance was inter-

preted using a Random Forest importance measure known as ‘Mean Decrease

in Gini index’ [78]. Typically, the decision rules in the trees are not pure in

the sense that the corresponding region in feature space is heterogeneous; i.e.,

there is a mix of data points from all classes (in our case 2). Gini index (or

Gini impurity) [110] for a decision rule is a measure of this mix; it is zero only

when the decision rule is perfect (the region is homogenous). It is maximum

when the mix is the highest (half-and-half mix from both the classes).

MDGini involves randomly permuting OOB sample data corresponding to the

decision rule in a tree, and estimating the change (decrease) in Gini index. If
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the decrease is high while perturbing a feature, it suggests that the classification

is highly dependent on that particular feature. This provides an information-

theoretic feature significance measure. It inherits the invariance property of

the decision rules, i.e., absolute values of the features do not matter. This is a

very sharp feature significance measure (see Figures 1, 2 and 6 in [121]). We

use MDGini here to find even minute differences that are significant between

ACS/CAD.

We used the ‘randomForest’ package in R [122] for our analysis. For each Ran-

dom Forest classifier, 501 trees are used in the ensemble. To account for statistical

variation between runs, we report mean and standard deviation (SD) of classification

accuracies based on 50 runs.

4.7 Classification Performance of the Entire System

Classification using initial factors has a mean accuracy of 88.13% (Table 4.1).

Conventional features of fXa and active thrombin classify with lower mean accuracies,

82.58% and 81.04%, respectively. Using all PCHIP coefficients and all 200s-MA

values result in classification accuracies of 88.59% and 88.78% respectively, which

are slightly better than using 8 initial factors. At this point, one might wonder

if combinations of initial conditions suffice to characterize the system. However,

we note that the same set of initial conditions could give different dynamics if the

reaction network is perturbed (say, rate constants are changed due to a drug or a

mutated form of a coagulation factor). Hence, studying initial conditions might not

suffice to characterize the dynamics of the system. Moreover, studying the dynamics

of chemical species gives more physiological insight about the underlying process.

Classification accuracies quantify the information in various features with respect

to ACS/CAD classification. Although, minimum and maximum accuracies in Ta-
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Table 4.1: Classification accuracies (%), mean (SD), of different sets of features.
PCHIP and moving average features classify better than conventional parameters,
and slightly better than all nonzero initial conditions. Every year ∼ 660,000 Ameri-
cans have a coronary event [2]. A 7% improvement in classification accuracy suggests
∼ 46000 patients could be screened better every year in US.

Random Forest Classifier Mean (SD)
PCHIP Features

All PCHIP Coefficients 88.59 (0.36)
Plasma Factor Composition

8 Initial Conditions 88.13 (0.49)
Conventional Features

fXa 82.58 (0.53)
Active Thrombin 81.04 (0.46)

Moving Averages
All 200s-MA 88.78 (0.32)

fXa - factor Xa; PCHIP - piecewise cubic hermite interpolating polynomials;
200s-MA - 200-second moving average.

ble 4.1 vary over a small range (∼ 81%-89%), they offer a potent way to compare

features and quantify relevant differences. Loss of 11% accuracy in the initial con-

ditions classifier is due to the overlap in the initial condition data used (though the

means were significantly different for prothrombin, factor VIII, tissue factor pathway

inhibitor, and antithrombin [49], the samples from lognormal distributions used for

this study overlapped). Also, the best possible accuracy is restricted by the choice

of features.

4.8 Selection of a List of Significant Species

We robustly selected a list of species that behave differently in ACS/CAD. We

based our selection heuristics on three criteria and selected five species:

1. fXa and IIa were selected due to their known significance.

2. Tf-fVIIa-fXa, Tf-fVII-fX - these species had high averages for MDGini values
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in the classifier built with all PCHIP coefficients. MDGini values for each

species were sorted and the highest ∼10% of the values were used for selection

criterion. Use of just one of the highest MDGini value for each species would be

too biased and prone to noise; use of all MDGini values caused huge variation

in the values, blurring out differences between species.

3. fIXa-fVIIIa-fX - this species had the highest significance during the last 600

seconds of the simulation in the classifier built with all PCHIP coefficients.

Similar to selection criteria 2, selection was based on averages of highest ∼10%

MDGini values. This criterion was used since the fate of such a chemical species

is highly uncertain after the end time of simulation and calls for better scrutiny.

For criteria 2 and 3, MDGini values were obtained from the classifier built using

all PCHIP coefficients as it had information pertaining to both function values as

well as information about derivatives at a fine time scale. See Figures 4.2 and 4.3

for Box plots for these MDGini values.

The five filtered species were further studied by resolving their significance over

time. MDGini for these species obtained using the classifier built with all 200s-

MA values is shown in Figure 4.4. Tf-fVIIa-fXa and Tf-fVIIa-fX are most significant

around 1200 seconds after clot initiation. Classification accuracies of these individual

species using 200s-MA values are tabulated in Table 4.2. 200s-MA values of Tf-fVIIa-

fXa, Tf-fVIIa-fX, IIa, and fIXa-fVIIIa-fX classify better than conventional features

(Table 4.1).

A single feature from Tf-fVIIa-fXa classifies with accuracy 78.86%, which sug-

gests that significance of Tf-fVIIa-fXa is best localized in time. This can be seen in

Figure 4.4 as well as in Figure 4.5. Around 1200 seconds in Figure 4.5, the mean of

the CAD group is outside the 90% quantile of the ACS group. Tf-fVIIa-fX visually
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Figure 4.2: Feature significance during the entire simulation. Box plots of MDGini
values for the PCHIP coefficients for each species. Tf-fVIIa-Xa and Tf-fVIIa-X stand
out from the rest of the variables. MDGini values were obtained from the classifier
built with all PCHIP coefficients so that their relative importance could be compared
for filtering.
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Figure 4.3: Feature significance at the end of simulation. Box plots of MDGini
values for the PCHIP coefficients taken from the last ten minutes of the simulation.
Unlike 4.2, many species appear significant based on 5 MDGini values. Average of
25 MDGini values makes fIXa-fVIIIa-fX stand out.
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Figure 4.4: MDGini variation (in the classifier built with 200s-MA features) with
time for the five selected chemical species. Tf-fVIIa-fXa and Tf-fVIIa-fX are most
significant during 1000-1600 seconds, and IIa during 1400-2500 seconds from the
addition of the trigger. Significance of fIXa-fVIIIa-fX increases monotonically and
remains most significant at 3600 seconds suggesting that it is a long-lived species.
200s-MA - 200-second moving average; MDGini - Mean Decrease in Gini index;
Tf-fVIIa-fXa - Tissue factor-factor VIIa-factor Xa; Tf-fVIIa-fX - Tissue factor-factor
VIIa-factor X; fIXa-fVIIIa-fX - factor IXa-factor VIIIa-factor X; IIa - activated alpha-
thrombin.

Table 4.2: Classification accuracies (%), mean (SD), for 200s-MA values of selected
species. Classification using all 18 200s-MA features of Tf-fVIIa-fXa, Tf-fVIIa-fX,
fIXa-fVIIIa-fX, and IIa result in similar accuracies. Classification accuracies of the
best 3 and the best feature from each species indicate significance is most localized
in Tf-fVIIa-fXa.

Species All 18 Best 3 Best 1
Tf-fVIIa-fXa 83.96 (0.36) 83.18 (0.47) 78.76 (0.08)
Tf-fVIIa-fX 84.23 (0.40) 82.57 (0.38) 77.32 (0.11)
fIXa-fVIIIa-fX 83.80 (0.47) 78.78 (0.56) 75.26 (0.04)
IIa 84.44 (0.59) 75.86 (0.53) 74.26 (0.04)
fXa 82.07 (0.67) 71.36 (0.81) 53.26 (0.08)

MDGini values from the classifier built with all 200s-MA values were used to
choose the subset of best features for each species. Tf-fVIIa-fXa - Tissue
factor-factor VIIa-factor Xa; Tf-fVIIa-fX - Tissue factor-factor VIIa-factor X;
fIXa-fVIIIa-fX - factor IXa-factor VIIIa-factor X; IIa - activated alpha-thrombin;
MDGini - Mean Decrease in Gini index.
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behaves in a similar way. This behavior contrasts with a species like fXa (Figure 4.5).

Figure 4.5: Means and 90% quantiles for Tf-fVIIa-fXa and fXa simulation profiles
in ACS and CAD populations. A: Tf-fVIIa-fXa concentration profiles from the two
groups split significantly from about 1000 to 1500 seconds. B: In fXa concentration
profiles, there is a huge variation in both ACS and CAD populations. However, the
profiles from the two groups overlap and make the features of this species weak for
classification. Tf-fVIIa-fXa - Tissue factor-factor VIIa-factor Xa; fXa - factor Xa.

Among the five species in Table 4.2, fXa has the lowest accuracy of 82.07%.

The best feature of fXa classifies with an accuracy of 53.26% which is marginally

better than random guessing (50%). This indicates that all the features of fXa

are weak. This is due to a huge overlap between the function values in the two

groups (Figure 4.5). For fXa, conventional features and 200s-MA values classify with

an accuracy of about 82% due to the ways in which these weak features interact.

Moreover, conventional features of fXa classify marginally better compared to its

200s-MA values due to lack of time information (time to maximum level, rate, etc.,)

in 200s-MA values. This suggests that classification accuracies of every species could

be further intensified by considering more features based on time information, in

particular, time delay.

Concentration profiles for fIXa-VIIIa-fX in the ACS group appear to live longer
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(Figure 4.6). Recent studies suggest existence of active circulating particles in blood

(long-lived active species) to be a primary mechanism leading to spontaneous clotting

in hyper-coagulable blood [123]. As in the case of fIXa-fVIIIa-fX, the computational

approach taken here could be tuned to help identify such long-lived differences under

various perturbed conditions of the reaction network. Next, we further this discussion

using IIa.

Figure 4.6: Means and 90% quantiles for fIXa-fVIIIa-fX and IIa simulation profiles
in ACS and CAD populations. A: fIXa-fVIIIa-fX profiles show that this species
is more long-lived in ACS than CAD cases. B: Though IIa concentration profiles
appear to reach zero by 2000 seconds, MDGini suggests that the dynamics between
the two groups is most significant during that time. fIXa-fVIIIa-fX - factor IXa-
factor VIIIa-factor X; IIa - activated alpha-thrombin; MDGini - Mean Decrease in
Gini index.

200s-MA values of IIa classify better compared to conventional parameters of

active thrombin. It is most significant starting at about 1500 seconds by which time

its values are in the order of pM. Changes in this region are usually not considered

in conventional features. IIa concentration profiles appear to have reached zero

by 2000 seconds (Figure 4.6). However, given the information-theoretic nature of

MDGini, it is able to differentiate IIa at regions beyond what is considered as the
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termination phase of clotting. Given that biological systems are complicated enough

where pico moles of certain chemical species could initiate clotting, and perhaps

subsequently determine life or death, we do not overlook such a difference here.

Regarding precision, we encountered negative concentration values in IIa in the order

of 1E-19 (M). The precisions of the numerical solution and PCHIP approximation

are possibly inadequate at this scale.

4.9 Classification Performance of a Few Combinations of Species

Our objective is to find a small combination of features (localized regions in the

state space of the model, and labelled in time) which discriminate ACS and CAD

well. Classification performance of a few combinations of the selected species is

shown in Table 4.3. Average values of Tf-fVIIa-Xa, IIa, and fIXa-fVIIIa-fX at specific

times classify with about 87% accuracy. This is better than conventional features

or measuring any single species, and is close to using all features considered. For

illustration, Figure 4.7 shows a single decision tree built with just two of the best

features from fIXa-fVIIIa-fX and Tf-fVIIa-fXa. Typical of chemical kinetics, the

region spanned by the data is localized, suggesting dynamics in a low dimensional

manifold. The localized separation of the two groups in 2 dimensions of 200s-MA

values is seen in the figure.

As our study indicates, we are now in a position to answer the two questions at

the beginning of the chapter as follows:

1. There exists chemical species that can be used to classify ACS/CAD better

than what can be achieved using thrombin and fXa. Our primary list includes

Tf-fVIIa-fXa, Tf-fVIIa-X, fIXa-fVIIIa-fX, and IIa. Tf-fVIIa-fXa is the most

important species in our list.

2. Conventional features from active thrombin and fXa can be used to classify
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Figure 4.7: Illustrative decision tree. A single decision tree built with just two of
the best 200s-MA features, one each from fIXa-fVIIIa-fX and Tf-VIIa-Xa, is shown.
ACS and CAD populations separate well in just those two features. fIXa-fVIIIa-fX
- factor IXa-factor VIIIa-factor X; Tf-VIIa-Xa - Tissue factor-factor VIIa-factor Xa;
200s-MA - 200-second moving average.

Table 4.3: Classification accuracies (%), mean (SD), for classifiers built using com-
binations of best 200s-MA features. An efficient way to assay the entire system is by
measuring three species at three specific time intervals of 200 seconds. Tf-fVIIa-fXa,
IIa and fIXa-fVIIIa-fX make the best combination.

Combination Mean (SD)
Tf-fVIIa-fXa, IIa, and fIXa-fVIIIa-fX 87.16 (0.39)
Tf-fVIIa-fX, IIa, and fIXa-fVIIIa-fX 87.03 (0.40)
Tf-fVIIa-fXa, Tf-fVIIa-fX, and fIXa-fVIIIa-fX 85.58 (0.39)
Tf-fVIIa-fXa, Tf-fVIIa-fX, and IIa 84.90 (0.50)

Tf-fVIIa-fXa at 1400-1600 sec; Tf-fVIIa-fX at 1400-1600 sec; IIa at 1800-2000 sec;
fIXa-fVIIIa-fX at 3400-3600 sec; Tf-fVIIa-fXa - Tissue factor-factor VIIa-factor Xa;
Tf-fVIIa-fX - Tissue factor-factor VIIa-factor X; IIa - activated alpha-thrombin;
fIXa-fVIIIa-fX - factor IXa-factor VIIIa-factor X.
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with an accuracy of 81% and 82.6%. There are better features to characterize

the system compared to conventional summary parameters, such as initial con-

ditions (plasma factor composition), which result in a classification accuracy of

88.1%. However, plasma factor composition might not capture many attributes

of the reaction network. The entire system, when represented using PCHIP

coefficients and 200s-MA values, can be used to classify with accuracies of

88.6% and 88.8%. There could be a lot more going on in the system other than

changes in thrombin and fXa. For example, activity of IIa (activated alpha-

thrombin) was significantly different beyond the termination phase. Long-term

activity of such active species warrants better scrutiny.

3. The entire system could be efficiently assayed by measuring a few combinations

of species at well-specified times. For example, concentrations of 3 chemical

species, namely IIa, Tf-fVIIa-fXa, and fIXa-fVIIIa-fX, averaged over specific

time windows (see Table 4.3) chosen relative to the time of trigger (Tf), could

be used to classify ACS/CAD to an accuracy of about 87.2%. This is a 7.6%

improvement in classification accuracy over using the conventional summary

parameters of thrombin.

4.10 Conclusion

We found high-dimensional feature representations for computational solution

profiles and studied how combinations of these features could be used to classify

ACS/CAD. We modified and tuned the tools offered by Random Forest to fit our

purpose. The species we studied are limited by the species considered in the extrinsic

pathway model. To the best of our knowledge, this is the first study in the literature

to find such localized regions labelled in time and in very low dimensions of the state

space that could be associated with ACS. Further validation of the classification
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scheme is contingent upon the availability of more detailed data on these two cases.

Such localized and effective combinations, which are also easily measurable, could

make good global assays for the thrombin generation system.

While the random forest technique is a well accepted method for classification in

the statistical learning field and has been used in clinical studies, this is the first study

in the literature to apply it to classify ACS/CAD using numerical simulations of the

thrombin generation system. The approach shows promise in characterizing hyper-

coagulability and predicting ACS. Our results open up a way to globally phenotype

the thrombin generation system and include specific suggestions for experimental as-

says to classify ACS/CAD. Currently, measuring some of the recommended chemical

species, especially at such low concentration values, may not be practical. However,

using models to study combinations of triggers through this approach can reveal

measurable chemical species. Moreover, current studies of ACS/CAD classification

are restricted to reporting only mean and standard deviation data of plasma factor

composition. Wide availability of more raw data would help researchers from di-

verse fields to study the thrombin generation system and the coagulation cascade.

In the next chapter, we focus on modeling dynamics of protein factors that are easily

measurable.
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5. SIMPLIFIED THROMBIN GENERATION MODEL

“Everything should be made as simple as possible, but not simpler.”

– Albert Einstein, (A longer version is attributed to)

5.1 Chapter Outline

We introduce the extrinsic thrombin generation model; we describe the proposed

simplification; we describe the parameter estimation and prediction process; and

then we study the performance of the model. In the process, we highlight a feature

that of thrombin dynamics that is crucial for studying blood transport in realistic

geometries.

5.2 Need for Model Simplification of Chemical Kinetics

We would like to study, understand, and model the different physiological as-

pects that cause abnormalities in coagulation. Patient-specific geometry modeling,

simulations with more realistic boundary conditions, multiscale models that combine

molecular mechanisms with clinical manifestation are some of the open problems dis-

cussed in vascular biomechanics [38].

Concentration of species involved in coagulation and rates of reactions vary by

orders of magnitude. This requires stochastic methods [124] to account for low con-

centrations of species properly [125, 126]. The nonlinear chemical kinetics problem

is modeled using reaction rates that has quadratic terms, the model is very stiff and

solution trajectories are unstable in many directions [67]. The rates involve negative

feedback loop or cycles in the reaction cascade [68]. This poses challenges in coupling

chemical reactions with flow simulations.

Moreover, there is uncertainty in the parameters of the chemical kinetics model.
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The plasma factor composition varies drastically in and within patients. Many of

the rate constants are inferred indirectly rather than being directly measured. This

demands multiple simulations typically in a bayesian framework. Models used to

simulate clot in small two dimensional regions (∼100 µm) consider the dynamics of

many reactants [127]. These are inappropriate for simulations in realistic 3 dimen-

sional flow conditions in arteries, say, in order to study atheroscelerosis or thrombosis

[127]. Further, there are strong gradients near the boundaries where mass transport

happens. This requires extremely fine grids near the boundaries [70] accounting for

complex chemical kinetics models have made realistic patient-specific simulations an

open problem. Reduced dimensional simplified chemical kinetics models will help to

perform patient-specific simulations.

5.3 Background Literature

Papadopoulos et al. [127] suggested a phenomenological model for thrombin gen-

eration. Based on the mechanism of thrombin generation, they propose a simplified

thrombin generation model using four reactions. The reactions include dynamics of

thrombin, prothrombin, platelets, and activated platelets. Using the assumption of

fast platelet activation, they derive analytical expression for thrombin generation.

These are similar to thrombin generation functions prescribed by Hemker et al. [63].

The model essentially fits patient-specific thrombin generation profiles and the ef-

fect of the plasma factor composition and inhibitors on the dynamics of thrombin

generation were not emphasized.

This motivated Sagar et al. [128] to come up with a dynamical model for thrombin

generation using a hybrid strategy. The strategy combines differential equations and

several logical rules to model thrombin generation. They design their approach to

model systems where mechanistic insights are poor and experimental interrogation
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is difficult. This results in reduced order model that has rates of the product of

Hill-like terms [129] and activation functions that act as the logical rules, i.e.,

ri = kix
ηi
i

1 + kix
ηi
i

min
(

kjx
ηj

j

1 + kjx
ηj

j

,
kmx

ηm
m

1 + kmx
ηm
m

)
(5.1)

where r is the reaction rate, k and η are parameters, and x pertains to protein con-

centration or activity. Though the model shows great performance, the transparency

in the mechanistic models such as [63] and [127] is lost. We seek a middle ground

between the two simplified models where we find a dynamical model that makes use

of the mechanistic knowledge of blood coagulation and is able to account for changes

in plasma factor composition.

We suggest a simple phenomenological model for thrombin generation:

1. We model the stoichiometry of certain important chemical species. The model

is based on the classically viewed initiation, propagation, and termination of

thrombin generation. Hence the chemistry involved in the simulations should

offer physiological insight.

2. The functionality of the parameters are evident and different aspects of throm-

bin generation are easily alterable.

3. A good model should be able to capture the necessary rich behavior of the

phenomena as well as generalize well in order to predict important qualitative

and quantitative responses. The model we propose is able to predict certain

important changes in thrombin generation due to changes in prothrombin and

antithrombin concentration.
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Figure 5.1: Schematic of the extrinsic pathway. We propose a simplified model for
thrombin reduction. Note that events that occur after thrombin generation result in
changes of mechanical properties.

5.4 Extrinsic Thrombin Generation

Figure 5.1 shows a schematic of the key elements of the extrinsic pathway involved

during clotting. We consider the extrinsic pathway because hemostasis occurs due to

tissue factor initiation. Further, we simply simplify thrombin generation. Given that

flow properties affect and are affected by fibrin formation, such a simple thrombin

generation model factors out the two phenomena. We will focus on an extrinsic

parameter model as hemostasis occurs due this pathway. In particular, we study

blood coagulation using a model for the Tissue factor(Tf)-initiated extrinsic pathway

developed by Hockin et al. [60]. A schematic of the model used is shown in Figure

5.2.

We exploit two key ideas for model simplification:

1. We separate the parameters in the initiation and termination phase of throm-
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Figure 5.2: Schematic of the extrinsic pathway model for thrombin generation used in
this work. There are essentially three elements in this network, namely, i) thrombin
initiation; ii) thrombin propagation; and iii) thrombin inhibition.

bin using a switching model. The model switches from initiation to propoga-

tion/termination phase based on the concentration of thrombin. A similar idea

was exploited in [127]. Though [128] also models switching using logical rules

in the transfer function, they are not as explicit as in our model.

2. We model the effect of patient-specificity of thrombin generation using varia-

tions in the rate constants of the model. We show that training the model for a

specific choice of initial condition (physiological mean) is able to predict qual-

itative responses of changes in prothrombin and antithrombin concentration.

We use the traditional simplification of the thrombin generation cascade:

1. Thrombin Initiation: Tissue factor activates prothrombin to form thrombin.

2. Thrombin propagation: Given that sufficient amount of thrombin is acti-

vated, clotting propagates via a different set of reactions.
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Figure 5.3: Schematic of the simplified model proposed in this study. There is fuel
prothrombin, the key enzyme thrombin, the inhibitor antithrombin, and the by-
product anti-thrombin. KS is a rate constant that models initiation due to injury.
KP is the rate of thrombin propagation. KI is the rate of thrombin inhibition.

3. Thrombin inhibition: Finally normal hemostasis requires that thrombin gen-

eration is controlled so that clot is localized.

We describe kinetics for prothrombin, thrombin, antithrombin, and thrombin-

antithrombin (Figure 5.3) using the following set of rates:

d

dt
[II] = −KS −KP [II][IIa]

d

dt
[IIa] = KS +KP [II][IIa]−KI [IIa][AT]

d

dt
[AT] = −KI [IIa][AT]

d

dt
[IIa-AT] = KI [IIa][AT] (5.2)

where we model initiation using the rate constant KS, propagation using the rate

constant KP , and inhibition using the rate constant KI . In order to be stoichio-

metrically consistent, our [IIa] is the sum of both forms of thrombin in the full 34

variable model (the variables used in our model are drawn in continuos lines in the

full model simulation as seen in Figure 5.4). [IIa-AT] in our model is the sum of the
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two antithrombin complex formed due to inhibition1.

We propose the following switching rules that changes the response of the model

during initiation and propagation/termination.

KS =


ks > 0, [IIa] < 2nM and injury

0, otherwise
(5.3)

KI =


ki2 > 0, [IIa] < 2nM

ki1 > 0, otherwise
(5.4)

KP =


0, [IIa] < 2nM

kp > 0, otherwise
(5.5)

Essentially, thrombin propagation occurs if [IIa] crosses a threshold. For normal

clotting, rate of propagation is expected to be orders of magnitude higher than that

of rate of initiation, i.e., kp � ks. We also use two different inhibition rate constant

ki1 and ki2 so that rate of inhibition could be separately controlled during the two

phases.

5.5 Estimation of Model Parameters

We carried out the simulations of the full model using the Tf-initiated clotting

model [60]. In the simulations, clotting was initiated with 5 pM and the plasma

factor composition was set to physiological mean values [60] (Table 2.1). We used
1there are other antithrombin complexes formed in the full model but they are 3 orders of

magnitude smaller than [IIa-AT] and we neglect them.
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Figure 5.4: Stoichiometry of thrombin and antithrombin. Only the species drawn
with a continuous straight line are considered in the model. This ensures stoichiomet-
ric consistency. [IIa] or thrombin in our model is sum of the two forms of thrombin in
the full model. Similarly, [IIa-AT] or thrombin-antithrombin in our model the sum
of the two by products of thrombin inhibition due to antithrombin in the full model.
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the data from the full model to fit parameters for the reduced model. Particle

swarm optimization was used for parameter estimation and we obtained one set of

parameters for the physiological mean composition.

Figure 5.5: Comparison of all the species modeled in the simplified model. The
simplified model captures the full models behaviour very well. There is a slight
mismatch in the maximum amount of thrombin generation. This could be improved
by also choosing the clot propagation threshold ([IIa] = 2 nM) better.
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We used the following objective for minimization,

u =
4∑
i=1

(Creduced
i − Cfull

i )1/2

Cconstant
i

(5.6)

which is sum of squared differences of the normalized concentration profiles between

the common species in the full model and the reduced model. Mean concentration of

prothrombin and antithrombin were used as normalization constants. Comparison of

the reduced and full model simulation for the physiological mean initial composition

is shown in Figure 5.5.

5.6 Parameter Study of the Simplified Model

We show the effect of parameters by changing one at a time. Clot time depends

exponentially on KS (seen in Figure 5.6). Rate constant ki2 also controls the clot

time Figure 5.7. For certain combinations of KS and ki2 it takes more than 1200

seconds for clot initiation. Both the parameters together offer more control over

dynamics of clot initiation.

Figures 5.8 and 5.9 show the effect of changes in the rate constants KP and ki1

respectively. The parameters offer a wide range of thrombin generation rates. Similar

to the initiation, there are certain values of KP (for a given value of ki1) and vice

versa where thrombin generation is too low. These two parameters together offer

control over simulating a wide range of thrombin propagation.

5.7 Prediction of Variation in Prothrombin and Antithrombin

Finally, we check the qualitative response of the model predictions for variations

in initial prothrombin and antithrombin concentrations. As seen in Figure 5.10,

higher values of prothrombin are able to predict more thrombin generation. This

has been observed in experiments [39]. Thrombin rates during termination could
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Figure 5.6: Controlling thrombin initiation using KS. There is an exponential de-
pendence of clot time on this parameter.

Figure 5.7: Controlling thrombin initiation using ki2. This parameter along with KS,
allows for modeling a wide range of clot times and dynamics during initiation.
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Figure 5.8: Controlling thrombin propagation using KP . As expected, variations in
the propagation rate constant is able to capture a wide range of thrombin generation
rate.

Figure 5.9: Controlling thrombin termination using ki1. This parameter has more
effect on the termination phase of thrombin generation.
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be improved using better training data and using different reaction rates. Similarly,

lower values of antithrombin are able to predict higher thrombin generation.

Figure 5.10: Prediction on prothrombin variation.

One of the most important predictions of this model is that thrombin termina-

tion appears to halt at non-zero values (Figure 5.11). Such sustained activity is

also in observed in experiments when there is too much prothrombin compared to

antithrombin [39]. Inhibitors such as APC may need to modeled in order to account

for oscillations observed in such sustained activity. In this model, the reaction es-

sentially runs out of the inhibitor [AT] when initiated with a certain plasma factor

composition. In such a scenario, other phenomena like diffusion and convection will

control the extent of clotting. For example, when there is less inflow of antithrombin

concentration, as in the case of stasis, we would expect more clotting due to the

presence of excess active thrombin. Further, active thrombin could be propagated
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downstream and could cause clotting elsewhere. This observation and model pre-

diction on sustained activity of thrombin are hypothesized to play a necessary role

towards effectively studying clotting in realistic geometries.

Figure 5.11: Prediction on antithrombin variation. This is the most important and
significant prediction of the model. This has been observed in thrombin generation
experiments [39]. Moreover, this phenomena could be blind to markers like TAT that
estimate thrombin activity.

The parameters need to be altered in order to better simulate thrombin gener-

ation on a wider range of plasma factor composition. We are currently working on

augmenting this model with data-driven models to predict thrombin generation in a

wider range of plasma factor composition and to account for the effect of transport.

5.8 Conclusion

We proposed a simplified model for thrombin generation based on the stoichiom-

etry of certain important chemical species. The model fits data well and different
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aspects of thrombin dynamics are easily alterable. The model is able to predict cer-

tain important changes in thrombin generation due to changes in prothrombin and

antithrombin concentration.
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6. CONCLUSIONS AND FUTURE DIRECTIONS

“At the root of science and scientific research is the urge, the compulsion,

to understand the nature of things.”

– David Ruelle, The Mathematicians Brain

Our results include the following:

• We sampled patient-specific plasma factor composition using the maximum en-

tropy principle. We used GMM to model dependent features and used expecta-

tion maximization to infer the GMM parameters. The classification model we

built using GMM of 2 thrombin features had an accuracy of 77 %. In the future,

GMM could be further used to better describe plasma factor composition.

• We used information from all protein factors in the extrinsic pathway model

to classify ACS and CAD. While the conventionally used thrombin genera-

tion parameters could classify with accuracies close to 81 %, the models we

built using information from all protein factors could classify with accuracies

close to 88.7 %. Further, we found certain combinations of 3 protein factor

activities at specific times during clotting that could classify ACS and CAD

with accuracies close to 87 %. These improvements obtained using information

from model simulations has the potential to screen thousands of patients with

greater certainty every year.

• Finally, we proposed a simplified model for the dynamics of thrombin. The

model predicts sustained thrombin activity in plasma factor compositions with

low concentrations of the inhibitor antithrombin compared to prothrombin con-

centration.
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This work could be improved by coupling with simplified platelet aggregation

and fibrin dynamics models. Further, such simplified models need to be coupled

with fluid flow and transport models. The likely involvement of thrombin in cancer

and inflammatory diseases [103] needs to be better characterized.

We hypothesize that sustained thrombin activity is a key phenomenon to model

clotting in realistic geometries. It opens up a way to study the effect of clotting in

one part of the body on clotting elsewhere in the body. We also envision better risk

assessment by the use of complex networks [130] to model transport in the human

body. The simplified model proposed in this work is expected to catalyze any such

advancements.

To conclude, in this thesis we have developed a non self-evident simplified model

for patient-specific thrombin dynamics.
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APPENDIX A

CODE FOR THROMBIN GENERATION

Listing A.1: Thrombin Full Model Reaction Rates

function dC = fReaction42Rates2002(t,C)

dC = zeros(34,1);

k1 = 3.1E-03;

k2 = 3.2E+06;

k3 = 3.1E-03;

k4 = 2.3E+07;

k5 = 4.4E+05;

k6 = 1.3E+07;

k7 = 2.3E+04;

k8 = 1.05E+00;

k9 = 2.5E+07;

k10 = 6.0E+00;

k11 = 19.0E+00;

k12 = 2.2E+07;

k13 = 2.4E+00;

k14 = 1.0E+07;

k15 = 1.8E+00;

k16 = 7.5E+03;

k17 = 2.0E+07;
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k18 = 5.0E-03;

k19 = 1.0E+07;

k20 = 1.0E-03;

k21 = 1.0E+08;

k22 = 8.2E+00;

k23 = 2.2E+04;

k24 = 6.0E-03;

k25 = 1.0E-03;

k26 = 2.0E+07;

k27 = 0.2E+00;

k28 = 4.0E+08;

k29 = 103.0E+00;

k30 = 1.0E+08;

k31 = 63.5E+00;

k32 = 1.5E+07;

k33 = 3.6E-04;

k34 = 9.0E+05;

k35 = 1.1E-04;

k36 = 3.2E+08;

k37 = 5.0E+07;

k38 = 1.5E+03;

k39 = 7.1E+03;

k40 = 4.9E+02;

k41 = 7.1E+03;

k42 = 2.3E+02;

k43 = 0;

k44 = 0;
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dC(1,1) = -k2*C(1)*C(2) + k1*C(3) - k4*C(1)*C(4) + k3*C(5);

dC(2,1) = -k2*C(1)*C(2) + k1*C(3) - k5*C(5)*C(2) - k6*C(6)*C(2)

- k7*C(7)*C(2);

dC(3,1) = -k1*C(3) + k2*C(1)*C(2);

dC(4,1) = -k4*C(1)*C(4) + k3*C(5) + k5*C(5)*C(2) + k6*C(6)*C(2)

+ k7*C(7)*C(2);

dC(5,1) = -k3*C(5) + k4*C(1)*C(4) - k9*C(5)*C(8) + k8*C(9)...

-k12*C(5)*C(6) + k11*C(10) - k14*C(5)*C(11) + k13*C(12)...

+k15*C(12) - k37*C(5)*C(27) - k42*C(5)*C(29);

dC(6,1) = -k12*C(5)*C(6) + k11*C(10) + k22*C(18) -

k28*C(6)*C(22)...

+k27*C(23) - k34*C(6)*C(26) + k33*C(27) - k38*C(6)*C(29)...

+k43*C(13)*C(8);

dC(7,1) = k16*C(6)*C(14) + k32*C(25)*C(23) - k41*C(7)*C(29);

dC(8,1) = -k9*C(5)*C(8) + k8*C(9) - k21*C(17)*C(8) +

k20*C(18)...

+k25*C(18) - k43*C(13)*C(8);

dC(9,1) = k9*C(5)*C(8) - k10*C(9) - k8*C(9);

dC(10,1) = k10*C(9) + k12*C(5)*C(6) - k11*C(10) -

k36*C(10)*C(26)...

+k35*C(28);

dC(11,1) = -k14*C(5)*C(11) + k13*C(12);

dC(12,1) = k14*C(5)*C(11) - k13*C(12) -k15*C(12);

dC(13,1) = k15*C(12) - k19*C(16)*C(13) + k18*C(17) + k25*C(18)

...

+k25*C(17) - k40*C(13)*C(29);
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dC(14,1) = -k16*C(6)*C(14) - k30*C(23)*C(14) + k29*C(24);

dC(15,1) = -k17*C(7)*C(15);

dC(16,1) = k17*C(7)*C(15) - k19*C(16)*C(13) + k18*C(17) -

k24*C(16)...

+k23*C(19)*C(20);

dC(17,1) = k19*C(16)*C(13) - k18*C(17) - k21*C(17)*C(8) +

k20*C(18)...

+k22*C(18) - k25*C(17);

dC(18,1) = k21*C(17)*C(8) - k20*C(18) - k22*C(18) - k25*C(18);

dC(19,1) = k24*C(16) + k25*C(18) + k25*C(17) - k23*C(19)*C(20);

dC(20,1) = k24*C(16) + k25*C(18) + k25*C(17) - k23*C(19)*C(20);

dC(21,1) = -k26*C(7)*C(21) - k44*C(25)*C(21);

dC(22,1) = k26*C(7)*C(21) - k28*C(6)*C(22) + k27*C(23) +

k44*C(25)*C(21);

dC(23,1) = k28*C(6)*C(22) - k27*C(23) - k30*C(23)*C(14) +

k29*C(24)...

+k31*C(24);

dC(24,1) = k30*C(23)*C(14) - k29*C(24) - k31*C(24);

dC(25,1) = k31*C(24) - k32*C(25)*C(23) - k39*C(25)*C(29);

dC(26,1) = -k34*C(6)*C(26) + k33*C(27) - k36*C(10)*C(26) +

k35*C(28);

dC(27,1) = k34*C(6)*C(26) - k33*C(27) - k37*C(5)*C(27);

dC(28,1) = k36*C(10)*C(26) - k35*C(28) + k37*C(5)*C(27);

dC(29,1) = -k38*C(6)*C(29) - k39*C(25)*C(29) - k40*C(13)*C(29)

...

-k41*C(7)*C(29) - k42*C(5)*C(29);

dC(30,1) = k38*C(6)*C(29);
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dC(31,1) = k39*C(25)*C(29);

dC(32,1) = k40*C(13)*C(29);

dC(33,1) = k41*C(7)*C(29);

dC(34,1) = k42*C(5)*C(29);

end

103



APPENDIX B

CODE FOR SIMPLIFIED THROMBIN GENERATION

Listing B.1: Thrombin Simplified Model Reaction Rates

function [dy] = fch6_fThesisSimplfiedThrombinRate(t, y, K)

Ksurft = K.surf;

dy = zeros(4,1);

if (y(2) <= K.IIaThres)

ksurf = Ksurft;

kin = K.in2;

kpropagation = 0;

elseif ( y(2) > K.IIaThres)

ksurf = 0;

kin = K.in1;

kpropagation = K.propagation;

end

dy(1) = -ksurf - kpropagation*y(1)*y(2);

dy(2) = -kin*y(2)*y(3) + ksurf + kpropagation*y(1)*y(2);

dy(3) = -kin*y(2)*y(3);

dy(4) = kin*y(2)*y(3);

end
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