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Preface

I first came across the
ffiffiffiffiffiffiffi�1

p
in the complex roots of quadratic equations. i, or its

doppelgänger j, popped up in my electrical engineering studies, where it separates
phase differences in voltages and currents. In mathematics, I learned about Euler’s
equation eip þ 1 ¼ 0 and how i creates totally new subjects, such as complex
function theory. In industry, I came across quaternions, which are complex num-
bers in four dimensions. More recently, I have discovered octonions and geometric
algebra. This journey of discovery has been long and arduous, but exciting.

During my youth, I questioned the meaning of i, but I no longer worry about
such matters. However, I wish that I had discovered all that I now understand about
imaginary mathematics from one source, which is the reason behind this book.
I remember trying to understand an internal document on quaternions during my
time in flight simulation. I felt that the author had written the document to delib-
erately hide the contents from me. I learned nothing from this communication, apart
from a determination to understand the subject.

Although I am far from being an expert in mathematics, I would like to pass on
what I have discovered about complex numbers in the following chapters. I suppose
I had to include an obligatory introductory chapter tracing the history of i’s rise to
fame. Chapter 2 on Complex Numbers places them in a numerical context and
describes topics such as the complex plane, complex exponentials, logarithms,
hyperbolic functions and simple derivatives. I have included many illustrations and
worked examples to reinforce the mathematical ideas.

Chapter 3 is on Matrix Algebra and describes topics such as complex eigen-
values and eigenvectors, representing complex numbers as matrices, complex
matrix algebra, and the complex inner and outer products. I also include many
worked examples.

Quaternions are the subject of Chap. 4, and take my word, that if you understand
complex numbers, then quaternions are just as easy. The chapter starts with
Hamilton’s struggle to develop a 3D form of complex numbers, describes the
various forms and associated algebra, and concludes with some worked examples.
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Octonions are new to me, and Chap. 5 reveals what I have discovered from my
research. The Cayley–Dickson construction shows that an octonion can be regarded
as an ordered pair of quaternions; a quaternion is an ordered pair of complex
numbers, and a complex number is an ordered pair of reals. Even if you never use
them in your work, at least you know where they belong in imaginary mathematics.

Chapter 6 describes geometric algebra, which was not developed to exploit the
imaginary unit, but turns out to possess imaginary qualities. I have previously
written about the subject and believe that it will play an important role in future
descriptions of science and physics. I describe the various products associated with
different geometric elements and their relationship to quaternions.

The rest of the book deals with applications of the above algebras. Chapter 7
shows how complex numbers simplify the representation of compound angles, and
Chap. 8 describes how complex exponential notation simplifies the combination of
waves. This chapter shows the importance of complex numbers in dealing with
wave phenomena, be they simple water waves or waves in quantum fields.

Chapter 9 covers Circuit Analysis Using Complex Numbers. The objective is not
to turn you into an electrical engineer, but to reinforce the role of complex notation
in representing out-of-phase electrical waves.

Chapter 10 is on Geometry Using Geometric Algebra and may inspire you to
write software using GA’s constructs. Still on a geometric theme, Chap. 11 shows
how quaternions are used to rotate vectors about an arbitrary 3D axis.

I have always been fascinated by prime numbers, especially the Riemann
hypothesis. Entire books have been written on the subject, and in Chap. 12, I have
attempted to condense the explanation to half-a-dozen pages. Chapter 13 describes
the simple algorithm behind the Mandelbrot set, using some beautiful images
provided by Dr. Wolfgang Beyer and Dr. Dominic Ford.

The last chapter concludes the book and reminds the reader how complex
numbers have found their way into quantum physics, by including references to
Pauli matrices, Dirac matrices, the Dirac equation, and the Schrödinger equation.

I have really enjoyed writing and researching this book. During this time, I have
discovered some extremely well-written books and articles on the Internet. As
always, Wikipedia is an amazing resource, and long may it continue as an inde-
pendent agency. I thank Dr. Tony Crilly for reading the final manuscript and
making some important suggestions. Naturally, if I have included any mistakes,
they are of my own doing!

As always, I thank Beverley Ford, Editorial Director—Computer Science, and
Helen Desmond, Editor—Computer Science for Springer-Verlag, for the support
and guidance they have provided throughout the book’s development.

Finally, enjoy this fascinating subject.

Breinton, Herefordshire, UK John Vince
August 2018
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Chapter 1
Introduction

1.1 Why i is Necessary

Early civilisations only required to count using positive integers, making arithmetic
relatively easy. However, with the advent of negative numbers new rules had to
be found. The Indian mathematician and astronomer Brahmagupta (598-c.–670),
showedhowpositive andnegative numbers interactedwith one-another, andproposed
the rules in Table 1.1. Table 1.2 shows the rules for multiplying and dividing positive
and negative numbers.

Children and adults are often surprised that the product or division of two negative
numbers results in a positive number, but a little algebra proves why this must be.

Consider the expansion of (a + b)2:

(a + b)2 = (a + b)(a + b)

= a2 + 2ab + b2.

When a = 5 and b = 2, then

(5 + 2)2 = (5 + 2)(5 + 2)

= 25 + 2 × 5 × 2 + 4

= 49

which is correct.
Now consider the expansion of (a − b)2:

(a − b)2 = (a − b)(a − b)

= a2 − 2ab + b2.

When a = 5 and b = 2, then
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Table 1.1 Rules for adding and subtracting positive and negative numbers

+ b −b

a a + b a − b

−a b − a −(a + b)

− b −b

a a − b a + b

−a −(a + b) b − a

Table 1.2 Rules for multiplying and dividing positive and negative numbers

× b −b

a ab −ab

−a −ab ab

/ b −b

a a/b −a/b

−a −a/b a/b

(5 − 2)2 = (5 − 2)(5 − 2)

= 25 − 2 × 5 × 2 + 4

= 9

which is also correct, and assumes: −2 × −2 = +4. The rule we learn as children:
“two negatives make a positive” ensures that algebra is consistent. Consequently,
for any x , (±x)2 ≥ 0, which implies that

√−x cannot have a numerical solution.
However, this does not prevent us from inventing a symbol that breaks this rule:
i2 = −1; it simply means that i is not an ordinary number.

1.2 The Language of Mathematics

Mathematics is a language for describing problems involving numbers and unknown
quantities. For example, I can express a numerical problem as follows:What number,
when squared and increased by 13 equals 49? Using algebra this becomes

x2 + 13 = 49

which when manipulated reveals

x2 = 36

and provides the result:

x = ±6.
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Fig. 1.1 Graph of
y = x2 − 3x + 2

0 1 2 3

1

2

I am certain that most readers solved this problem without algebra, but algebra
becomes very handy as the question becomes more elaborate, such as:What number,
when squared and reduced by three times the original number equals −2? Using
algebra this is

x2 − 3x = −2

and is solved as follows

x2 − 3x = −2

x2 − 3x + 2 = 0

(x − 1)(x − 2) = 0

and reveals:

x = 1, x = 2.

Figure 1.1 illustrates the two roots.
Now let’s modify the question slightly: What number, when squared and reduced

by three times the original number equals −3? Algebraically, this is

x2 − 3x = −3 (1.1)

and is solved as follows

x2 − 3x = −3

x2 − 3x + 3 = 0

and makes us think about a possible solution.
Fortunately, we know that an equation of the form

ax2 + bx + c = 0
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has roots

x = −b ± √
b2 − 4ac

2a

which when applied to (1.1) reveals

x = 3 ± √
9 − 12

2

= 3 ± √−3

2
. (1.2)

We could stop at this point as there is no real solution to
√−3, which means that

there is no real solution to the original question. However, simply by introducing the
subterfuge i2 = −1 into (1.2) we have

x = 3 ± √
3i2

2

= 3 ± √
3 i

2
= 1.5 ± √

0.75 i

which expresses the solution in terms of a new object, i . There is still no real solution
to (1.1), but we have found what are called the complex roots to the original problem,
which may not seem very useful.

Figure 1.2 shows why (1.1) has no real roots: the parabola never touches or
intersects the x-axis.

Just to make sure, let’s substitute these complex roots back into (1.1).
Substituting x = 1.5 + √

0.75 i into (1.1)

Fig. 1.2 Graph of
y = x2 − 3x + 3

0 1 2 3

1

2
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x2 − 3x =
(
1.5 + √

0.75 i
)2 − 3

(
1.5 + √

0.75 i
)

= 2.25 + 3
√
0.75 i + 0.75 i2 − 4.5 − 3

√
0.75 i

= −2.25 − 0.75

= −3

which is correct. Similarly, substituting x = 1.5 − √
0.75 i into (1.1)

x2 − 3x =
(
1.5 − √

0.75 i
)2 − 3

(
1.5 − √

0.75 i
)

= 2.25 − 3
√
0.75 i + 0.75 i2 − 4.5 + 3

√
0.75 i

= −2.25 − 0.75

= −3

which is also correct.
The addition of i to the language of mathematics illustrates how mathematics

evolves over time. i is now recognised as a fundamental feature of mathematics, and
when we ask “but what is i?” we can only reply, it is not a number, but i is a symbol
with the property that i2 = −1. It is often called the imaginary unit. Soon we will
see that i behaves like a spatial operator, and often reveals amazing hidden patterns
and symmetries.

1.3 A Brief History of i

The Bologna mathematician Scipione del Ferro (1465–1526), was particularly inter-
ested in solving cubic equations. For example, Fig. 1.3 shows the graph of the cubic
function y = x3 − 6x2 + 11x − 6 which has three distinct, real roots x = 1, 2, 3.
Figure 1.4, on the other hand, shows the graph of y = x3 − 5x2 + 8x − 4, where the
root x = 2 occurs twice.

Fig. 1.3 Graph of
y = x3 − 6x2 + 11x − 6

0 1 2 3

1

2
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Fig. 1.4 Graph of
y = x3 − 5x2 + 8x − 4

0 1 2 3

1

2

Fig. 1.5 Graph of
y = x3 − 5x2 + 9x − 5

0 1 2 3

1

2

Figure 1.5 shows the graph of y = x3 − 5x2 + 9x − 5 with a single real root
x = 1, and two complex roots. Although del Ferro could not call upon complex
numbers, he was aware that cubics could have one, two and three real roots.

The Italian polymath Gerolamo Cardano (1501–1576), continued del Ferros’
interest in cubics and acknowledged the existence of terms such as

√−23, but con-
sidered them “sophistic” [1], plausible but fallacious.

The Italian mathematician Rafael Bombelli (1526–1572), developed Cardano’s
techniques for solving cubic equations, and although he showed that expressions
involving the square-root of negative terms obeyed the laws of algebra, he was unable
to find a physical meaning for

√−1.
The French philosopher, mathematician and scientist René Descartes (1596–

1650), published La Géométrie in 1637, and in the context of the roots for the
cubic

y3 − 3a2y + 3a3c3

b3
√
3 = 0

he commented:

Neither the true nor the false roots are always real; sometimes they are imaginary; (Mais
quelquefois seulment imaginaires) ........ Thus, while we may conceive of the equation x3 −
6x2 + 13x − 10 = 0 as having three roots, yet there is only one real root, 2, while the other
two, however we may increase, diminish, or multiply them in accordance with the rules just
laid down, remain always imaginary [2].
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Fig. 1.6 Graph of
y = x3 − 6x2 + 13x − 10

0 1 2 3

1

2

Figure 1.6 shows the graph of the equation referred to by Descartes. Unfortu-
nately, the word imaginary is today associated with ideas or thoughts created by our
imagination, such as ghosts or fairies, whereas the

√−1 is far from imaginary. It has
been suggested that in an historical context, imaginary was a derogatory term [3].

The English mathematician John Wallis (1616–1703), was one of the leading
mathematicians of the seventeenth century, and in his treatise Algebra he anticipated
the concept of complex numbers, i.e. a + bi . Wallis is also credited with inventing
the idea of the number line, with positive numbers to the right and negative numbers
to the left.

The French mathematician Abraham de Moivre (1667–1754), is particularly
remembered for a formula published in 1722 – De Moivre’s formula:

(cos θ + i sin θ)n = cos(nθ) + i sin(nθ).

In 1749 the Swissmathematician, physicist, astronomer, logician and engineer Leon-
hard Euler (1707–1783), used his own formula

eiθ = cos θ + i sin θ

to prove De Moivre’s formula for any real n. Euler wrote in his Elements of Algebra
of 1770:

All such expressions, as
√−1,

√−2,
√−3,

√−4, &c. are consequently impossible, or
imaginary numbers, since they represent roots of negative quantities; and of such numbers
we may truly assert that they are neither nothing, nor greater than nothing, nor less than
nothing; which necessarily constitutes them imaginary, or impossible [4].

Even though Euler regarded terms involving
√−1 as imaginary, he did show that

eix = cos x + i sin x , and when x = π we get eiπ + 1 = 0, which has become such
an icon in mathematics.

As the words imaginary and impossible had started to be associated with
√−1,

Euler took the first letter of imaginary and adopted the notation i = √−1 [5]. And
in anticipation of Jean-Robert Argand’s use of the complex plane, Euler visualised
complex numbers as points with rectangular coordinates.
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The Norwegian-Danish mathematician Caspar Wessel (1745–1818), used com-
plex numbers to represent vectorial quantities, and published a paper in 1799 describ-
ing complex numbers and the complex plane: Om Directionens analytiske Betegn-
ing, et Forsog, anvendt fornemmelig til plane og sphriske Polygoners Oplosning, but
because it was in Danish it remained undiscovered until 1897 [6]. Today, Wessel is
universally recognised as the inventor of the complex plane for describing complex
numbers. One of the world’s foremost theoretical physicists Roger Penrose, refers
to the complex plane in his book Fashion, Faith and Fantasy in the New Physics of
the Universe as the Wessel Plane [7].

TheSwiss amateurmathematician Jean-RobertArgand (1768–1822),wasunaware
of Wessel’s paper when he published his own paper in 1806 on a graphical basis
for complex numbers: Essai sur une manière de représenter des quantités imagi-
naires dans les constructions géométriques [8]. Even thoughWessel published before
Argand, Argand’s name is today associated with the complex plane – Argand plane.
Argand also noted that when a complex number of the form a + bi is multiplied by
i , it is rotated 90◦ about the origin to a new point −b + ai .

The German mathematician Carl Friedrich Gauss (1777–1855), formalised and
disseminated the geometric interpretation of i , and in his 1831 publication Theoria
Residuorum Biquadraticorum, introduced the term complex number. In the second
memoir (Werke 2) he wrote:

If this subject has hitherto been considered from the wrong viewpoint and thus enveloped in
mystery and surrounded by darkness, it is largely an unsuitable terminology which should
be blamed. Had +1, −1 and

√−1, instead of being called positive, negative and imaginary
(or worse still, impossible) unity, been given the names say, of direct, inverse and lateral
unity, there would hardly have been any scope for such obscurity [9].

The French mathematician and physicist Baron Augustin-Louis Cauchy (1789–
1857), is remembered for several contributions to mathematics and physics, but in
the context of complex numbers he is recognised for developing complex function
theory.

The brilliant Irish mathematician, physicist and astronomer Sir William Rowan
Hamilton (1805–1865), is particularly known for inventing quaternions, which are
a four-dimensional complex number, and take the form a + ri + s j + tk, where
i2 = j2 = k2 = i jk = −1. Hamilton published On Quaternions: Or a New System
of Imaginaries in Algebra in 1844 [10].

Hamilton invented quaternions in October 1843, and by December of the same
year, his friend, Irishmathematician John ThomasGraves (1806–1870), had invented
octaves, an eight-dimensional complex number, which would eventually be called
octonions. The British mathematician Arthur Cayley (1821–1895), had also been
intrigued by Hamilton’s quaternions, and independently invented octonions in 1845.
Octonions eventually became known as Cayley numbers rather than octaves, simply
because Graves did not publish his results until 1848 – three years after Cayley!

Hamilton also originated the algebra of ordered pairs of numbers, and showed that
complex numbers could be regarded as a pair of numbers. In addition to complex
numbers, quaternions occupy a central place in mathematical systems, and today
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there are four such composition algebras: real �, complex �, quaternion �, and
octonion � that obey an n-square identity used to compute their norms.

In 1898 the German mathematician Adolf Hurwitz (1859–1919), proved that the
product of the sum of n squares by the sum of n squares is the sum of n squares only
when n is equal to 1, 2, 4 and 8, which are represented by the reals, complex numbers,
quaternions and octonions. This is known as Hurwitz’s Theorem, or the 1, 2, 4, 8
Theorem. No other system is possible, which shows how important quaternions are
within the realm of mathematics. Consequently, Hamilton’s search for a system of
triples was futile, because there is no three-square identity.

1.4 Summary

From the above, one can see how long it has taken for the
√−1 to be taken seriously.

Descartes’ use of the word “imaginary” was unfortunate, and Gauss was correct to
comment that the subject was “enveloped in mystery and surrounded by darkness”
due to this label. However, we are where we are, and there is no way we can rewrite
history or change the nomenclature. i will remain an imaginary quantity, and a +
bi will always be a complex number, even though they are neither imaginary, nor
complex.

To help the reader understand the role of complex numbers within the world of
mathematics and science, I will conclude this chapter with a quote by Roger Penrose:

However, the terminology is misleading, for it suggests that there is some greater “reality” to
these so-called real numbers than there is to the so-called imaginary numbers. The impression
comes about, I suppose, because there is the feeling that distancemeasures and timemeasures
are, in some sense “really” such real-number quantities. But we do not know this. We
know that these real numbers are indeed very good for describing distances and times, but
we do not know that this description holds good at absolutely all scales of distance or
time. We have no actual understanding of the nature of a physical continuum at a scale of,
say, one googolth of a metre or of a second, for example. The so-called real numbers are
mathematical constructions,which are, nevertheless, immensely valuable for the formulation
of the physical laws of classical physics.

Yet, real numbers may also be regarded as “real” in the Platonic sense – the same Platonic
sense as any other consistent mathematical structure – if we are to adopt the common stand-
point amongmathematicians wherebymathematical consistency is the sole criterion for such
Platonic “existence”. However, the so-called imaginary numbers form just as consistent a
mathematical structure as do the so-called real numbers, so, in this Platonic sense, they are
also just as “real”. A separate (and, indeed, open) question is the extent to which either of
these number systems precisely models the actual world [7].
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Chapter 2
Complex Numbers

2.1 Introduction

In this chapter I review the axioms associated with different number systems, and
show how they also cover imaginary and complex numbers. The complex plane is
described as a way of visualising complex numbers and various algebraic opera-
tions, and two functions for isolating the real and imaginary parts of a complex
expression. The section on Complex Algebra examines topics such as the complex
conjugate, powers of i , complex exponentials, logarithms of a complex number, and
the hyperbolic functions. Finally, there are a dozen worked examples.

2.2 Laws of Algebra

Laws or axioms provide a formal basis for mathematics, and in the following descrip-
tions a binary operation is an arithmetic operation such as +,−,×, / which operate
on two operands.

2.2.1 Commutative Law

The commutative law in algebra states that when two numbers are associated with
certain binary operations, the result is independent of the order of the numbers. The
commutative law of addition is

a + b = b + a

e.g. 1 + 2 = 2 + 1 = 3.

The commutative law of multiplication is

© Springer International Publishing AG, part of Springer Nature 2018
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https://doi.org/10.1007/978-3-319-94637-5_2

11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94637-5_2&domain=pdf


12 2 Complex Numbers

a × b = b × a

e.g. 1 × 2 = 2 × 1 = 2.

Note that subtraction is not generally commutative:

a − b �= b − a

e.g. 1 − 2 �= 2 − 1.

2.2.2 Associative Law

The associative law in algebra states that when three or more numbers are associated
with certain binary operations, the result is independent of how each pair of numbers
is grouped. The associative law of addition is

a + (b + c) = (a + b) + c

e.g. 1 + (2 + 3) = (1 + 2) + 3 = 6.

The associative law of multiplication is

a × (b × c) = (a × b) × c

e.g. 1 × (2 × 3) = (1 × 2) × 3 = 6.

However, note that subtraction is not generally associative:

a − (b − c) �= (a − b) − c

e.g. 1 − (2 − 3) �= (1 − 2) − 3.

It turns out that octonions are neither commutative nor associative.

2.2.3 Distributive Law

The distributive law in algebra describes an operation which when performed on a
combination of numbers is the same as performing the operation on the individual
numbers. The distributive law does not work in all cases of arithmetic. For example,
multiplication over addition holds:

a(b + c) = ab + ac

e.g. 2(3 + 4) = 6 + 8 = 14



2.2 Laws of Algebra 13

whereas addition over multiplication does not:

a + (b × c) �= (a + b) × (a + c)

e.g. 3 + (4 × 5) �= (3 + 4) × (3 + 5).

Although these laws are natural for numbers, they do not necessarily apply to all
mathematical objects. For instance, vectors and matrices do not commute.

2.3 Types of Numbers

Here are the various types of numbers and their set names.

2.3.1 Natural Numbers

The natural numbers {1, 2, 3, 4, . . .} are used for counting, ordering and labelling
and represented by the set �. When zero is included, �0 or �0 is used:

�0 = �0 = {0, 1, 2, . . .}.

Note that negative numbers are not included. Natural numbers are used to subscript
a quantity to distinguish one element from another, e.g. x1, x2, x3, x4, . . . , xn .

2.3.2 Integers

Integers include the natural numbers and are represented by the set �:

� = {. . . , −2, −1, 0, 1, 2, 3, . . .}.

2.3.3 Rational Numbers

Any number that equals the quotient of one integer divided by another non-zero
integer, is a rational number and represented by the set�. For example: 2,

√
16, 0.25

are rational numbers because
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2 = 4/2√
16 = 4 = 8/2

0.25 = 1/4.

2.3.4 Irrational Numbers

An irrational number cannot be expressed as the quotient of two integers. Irrational
numbers never terminate, nor contain repeated sequences of digits; consequently,
they are always subject to a small error when stored within a computer. Examples
are

√
2 = 1.414 213 56 . . .

φ = 1.618 033 98 . . . (golden section)

e = 2.718 281 82 . . .

π = 3.141 592 65 . . .

2.3.5 Real Numbers

Rational and irrational numbers comprise the set of real numbers �. Examples are
1.5, 0.004, 12.999 and 23.0.

2.3.6 Algebraic and Transcendental Numbers

Polynomial equations with rational coefficients have the form:

f (x) = axn + bxn−1 + cxn−2 + · · · + C

such as

y = 3x2 + 2x − 1

and their roots belong to the set of algebraic numbers �. A consequence of this
definition implies that all rational numbers are algebraic, since if

x = p

q
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then

qx − p = 0

which is a polynomial. Numbers that are not roots to polynomial equations are
transcendental numbers and include most irrational numbers, but not

√
2, since if

x = √
2

then

x2 − 2 = 0

which is a polynomial.

2.3.7 Imaginary Numbers

Imaginary numbers take the form ±bi , and belong to the set �, where

bi ∈ �, b ∈ �, i2 = −1.

Although some mathematicians place i before its multiplier: i4, others place it after
the multiplier: 4i , which is the convention I use in this book. However, when i is
associated with trigonometric functions, it is good practice to place it before the
function to avoid any confusion with the function’s angle. For example, sin αi can
imply that the angle is imaginary, which is possible, whereas i sin α implies that the
value of sin α is imaginary, which is also possible. Consequently, parentheses are
used to clarify constructs such as sin(αi).

Imaginary numbers obey all the axioms associated with real numbers.

2.3.8 Complex Numbers

A complex number has a real and an imaginary part a + bi , either of which may be
zero, and belong to the set �, where

(a + bi) ∈ �, a, b ∈ �, i2 = −1.

The following are all complex numbers

3.5, 3 + 4i, −4 − 6i, 7i, 5.5 + 6.7i.
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A real number is a complex number – it just has no imaginary part. This leads to the
idea that real and imaginary numbers are subsets of complex numbers:

� ⊂ �, � ⊂ �.

Therefore, a complex number can be constructed in all sorts of ways

sin α + i cosβ, 2 − i tan α, 23 + y2i.

2.4 Representing Complex Numbers

This section explores various ways of representing complex numbers numerically
and graphically.

2.4.1 Real and Imaginary Parts

The real and imaginary parts of a complex number z are isolated by the Re(z) and
Im(z) functions. For example:

z = a + bi

a = Re(z)

b = Im(z).

These two functions permit one to construct formal algebraic definitions such as
defining one complex number being equal to another. In words, one would say “two
complex numbers are equal iff (if and only if ) they have identical real and imaginary
parts”. e.g. given z1 = x1 + y1i and z2 = x2 + y2i , then z1 = z2 iff x1 = x2 and
y1 = y2. Using Re and Im, we can write:

z1 = z2 ↔ [Re(z1) = Re(z2) ∧ Im(z1) = Im(z2)] .

2.4.2 The Complex Plane

When the real number line is combined with a vertical imaginary axis, it creates
the complex plane, as shown in Fig. 2.1, where any complex number has a unique
position. Figure 2.2 shows the positions of the following four complex numbers

P = 4 + 3i, Q = −3 + 2i, R = −3 − 3i, S = 4 − 5i.
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Fig. 2.1 The complex plane
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Fig. 2.2 Four complex
numbers
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2.5 Complex Algebra

This section reviews the axioms associated with complex algebra, the complex con-
jugate, complex division, powers of i , the rotational properties of i , polar notation,
the complex norm, the complex inverse, complex exponentials, the roots and loga-
rithms of a complex number, hyperbolic functions, and the role of the complex plane
in visualising complex functions.

2.5.1 Algebraic Laws

Complex numbers obey the axioms associated with real numbers. But for clarity,
examples are included to show how imaginary terms are resolved.
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Given

z1 = x1 + y1i

z2 = x2 + y2i

z3 = x3 + y3i.

The commutative law of addition:

z1 + z2 = z2 + z1 = (x1 + x2) + (y1 + y2)i

e.g. (2 + 3i) + (4 + 5i) = 6 + 8i.

The commutative law of multiplication:

z1z2 = z2z1

e.g. (2 + 3i)(4 + 5i) = 8 + 10i + 12i + 15i2

= −7 + 22i.

The associative law of addition:

z1 + (z2 + z3) = (z1 + z2) + z3 = z1 + z2 + z3
e.g. (2 + 3i) + (4 + 5i) + (6 + 7i) = 12 + 15i.

The associative law of multiplication:

z1(z2z3) = (z1z2)z3 = z1z2z3

e.g. (2 + 3i)(4 + 5i)(6 + 7i) = (8 + 22i + 15i2)(6 + 7i)

= (−7 + 22i)(6 + 7i)

= −42 + 132i − 49i + 154i2

= −196 + 83i.

The distributive law of multiplication:

z1(z2 + z3) = z1z2 + z1z3
e.g. (2 + 3i) [(4 + 5i) + (6 + 7i)] = (2 + 3i)(10 + 12i)

= 20 + 30i + 24i + 36i2

= −16 + 54i.

From the above, one can see that the addition of complex numbers is identical to
the addition of vectors. Figure 2.3 illustrates the addition of z1 = −2 + 3i and z2 =
3 + i .
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Fig. 2.3 The addition of
z1 + z2
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2.5.2 Complex Conjugate

The complex conjugate is a useful algebraic construct and is denoted by z̄ or z∗. To
avoid confusion, I will use z̄ for complex numbers, Ā for conjugating a matrix, and
A∗ for the conjugate transpose of a matrix.

Given z = a + bi , then z̄ = a − bi . Also

z̄ = Re(z) − Im(z)i.

The product zz̄ is extremely useful, as it is a real quantity. Generally,

z = a + bi

z̄ = a − bi

zz̄ = (a + bi)(a − bi)

= a2 − abi + abi − b2i2

= a2 + b2

which is real. For example,

z = 3 + 4i

z̄ = 3 − 4i

zz̄ = 25.

Figure 2.4 shows z and z̄.
Let’s prove that z1z2 = z1z2. Given
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Fig. 2.4 A complex number
and its complex conjugate
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z1 = a1 + b1i

z2 = a2 + b2i

z1z2 = (a1 + b1i)(a2 + b2i)

= a1(a2 + b2i) + b1i(a2 + b2i)

= a1(a2 − b2i) − b1i(a2 − b2i)

= (a1 − b1i)(a2 − b2i)

= z1z2.

2.5.3 Complex Division

The complex conjugate is useful in resolving the quotient of two complex numbers;
for if wemultiply the numerator and the denominator by the complex conjugate of the
denominator, the denominator becomes a real quantity and simplifies the division.
For example, we evaluate this quotient as follows

z = 10 + 5i

1 + 2i

= (10 + 5i)

(1 + 2i)

(1 − 2i)

(1 − 2i)

= (10 + 5i)(1 − 2i)

5
= (2 + i)(1 − 2i)

= 2 − 4i + i − 2i2

= 4 − 3i.
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Table 2.1 Increasing powers of i

i0 i1 i2 i3 i4 i5 i6

1 i −1 −i 1 i −1

2.5.4 Powers of i

As i2 = −1, it must be possible to raise i to other powers. For example,

i4 = i2i2 = 1

and

i5 = i i4 = i.

Table 2.1 shows the sequence up to i6.
This cyclic pattern is quite striking, and reminds one of:

(x, y,−x,−y, x, ...)

that arises when rotating around the Cartesian axes in a anti-clockwise direction. The
above sequence is summarised as

i4n = 1

i4n+1 = i

i4n+2 = −1

i4n+3 = −i

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

where n ∈ N
0.

But what about negative powers? Well they, too, are also possible. Consider i−1,
which is evaluated as follows

i−1 = 1

i
= 1(−i)

i(−i)
= −i

1
= −i.

Similarly,

i−2 = 1

i2
= 1

−1
= −1

and

i−3 = i−1i−2 = −i(−1) = i.
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Table 2.2 Decreasing powers of i

i0 i−1 i−2 i−3 i−4 i−5 i−6

1 −i −1 i 1 −i −1

Table 2.2 shows the sequence down to i−6.
This time the cyclic pattern is reversed and is similar to

(x,−y,−x, y, x, ...)

that arises when rotating around the Cartesian axes in a clockwise direction.

2.5.5 Rotational Qualities of i

Now let’s investigate how a real number behaves when it is repeatedly multiplied by
i . Starting with the number 3, we have,

i × 3 = 3i

i × 3i = −3

i × (−3) = −3i

i × (−3)i = 3.

The cycle is (3, 3i,−3,−3i, 3, 3i,−3,−3i, 3, . . .), which has four steps, as shown
in Fig. 2.5.

Fig. 2.5 The cycle of points
created by repeatedly
multiplying 3 by i
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Fig. 2.6 Multiplying a
complex number by i
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If we multiply a complex number by i , it is also rotated 90◦. For example, the
complex number P = 4 + 3i in Fig. 2.6 is rotated 90◦ to Q by multiplying it by i ,

i(4 + 3i) = 4i + 3i2

= 4i − 3

= −3 + 4i.

The point Q = −3 + 4i is rotated 90◦ to R by multiplying it by i ,

i(−3 + 4i) = −3i + 4i2

= −3i − 4

= −4 − 3i.

The point R = −4 − 3i is rotated 90◦ to S by multiplying it by i ,

i(−4 − 3i) = −4i − 3i2

= −4i + 3

= 3 − 4i.

Finally, the point S = 3 − 4i is rotated 90◦ back to P by multiplying it by i ,

i(3 − 4i) = 3i − 4i2

= 3i + 4

= 4 + 3i.
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As you can see, complex numbers are intimately related to Cartesian coordinates,
in that the ordered pair (x, y) ≡ (a + bi).

2.5.6 Modulus and Argument

As a complex number has a unique position on the complex plane, and is always
relative to the origin of the real and imaginary axes, it can be visualised as a position
vector and assigned a modulus or magnitude, which is the distance r of the com-
plex point to the origin; consequently, z = a + bi has a modulus r = √

a2 + b2 and
notated as |z| = √

a2 + b2. This can also be expressed as

|z|2 = a2 + b2 = [Re(z)]2 + [Im(z)]2 .

Here are some useful relationships:

zz̄ = (a + bi)(a − bi) = a2 + b2

zz̄ = |z|2
|z| = |z̄|

| − z| = |z|
|z1z2| = |z1||z2|

|z1z2|2 = |z1|2|z2|2

Pursuing the similarity between complex numbers and position vectors, the
straight line from the origin to a complex number z = a + bi , subtends with the
real axis an angle θ , called the argument; consequently, θ = tan−1(b/a), and is
notated as arg(z) = tan−1(b/a). Figure 2.7 shows the complex number z = 3 + 4i
with a modulus r = √

32 + 42 = 5 and an argument θ = tan−1(4/3) ≈ 53.125◦.
From Fig. 2.7 we can generalise that a complex number z = a + bi has real and

imaginary components,

a = r cos θ

b = r sin θ

which permits us to state

z = r cos θ + ir sin θ

and when r = 1,

z = cos θ + i sin θ.
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Fig. 2.7 The argument θ
and modulus r of a complex
number
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For example, given two complex numbers,

z1 = a1 + b1i

z2 = a2 + b2i

where

a1 = r1 cos θ1, b1 = r1 sin θ1

a2 = r2 cos θ2, b2 = r2 sin θ2

then

z1z2 = (a1 + b1i)(a2 + b2i)

= (a1a2 − b1b2) + (a1b2 + b1a2)i (2.1)

= (r1 cos θ1r2 cos θ2 − r1 sin θ1r2 sin θ2)

+ (r1 cos θ1r2 sin θ2 + r1 sin θ1r2 cos θ2)i

= r1r2(cos θ1 cos θ2 sin θ1 sin θ2) + ir1r2(cos θ1 sin θ2 + sin θ1 cos θ2)

= r1r2 cos(θ1 + θ2) + ir1r2 sin(θ1 + θ2) (2.2)

which shows that to compute the product of two complex numbers, we multiply their
moduli and add their arguments. Let’s illustrate this operationwith an example.We’ll
start by computing the product using (2.1).
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Given

z1 = 1
2 +

√
3
2 i

z2 = − 1
2 +

√
3
2 i

z1z2 = 1
2

(− 1
2

) −
√
3
2

√
3
2 +

[
1
2

√
3
2 +

√
3
2

(− 1
2

)]
i

= − 1
4 − 3

4 +
(√

3
4 −

√
3
4

)
i

= −1.

Next using (2.2). But first, we need to compute the moduli and arguments:

r1 =
√

(
1
2

)2 +
(√

3
2

)2 = 1

r2 =
√

(− 1
2

)2 +
(√

3
2

)2 = 1

θ1 = tan−1
(√

3
2

2
1

)
= 60◦

θ2 = tan−1
(
−

√
3
2

2
1

)
= 120◦

z1z2 = cos(60◦ + 120◦) + i sin(60◦ + 120◦)
= −1.

Naturally, the results are the same.

2.5.7 Complex Norm

The term norm causes a lot of confusion, simply because there are so many, and
each one requires a precise definition. For our purposes, norms are associated with
vector spaces, where the norm of a vector is a function that returns some numerical
property of the vector. The Euclidean norm of vector v, is generally written

||v‖ = √
v · v

which is the square-root of the inner product of the vector with itself. For example,
if vector v = [3 4], then ‖v‖ = √

32 + 42 = 5, and represents the Euclidean length
of the vector.

The absolute value of a signed number ±x is written |x |. For example, if x =
+23, |x | = 23, and if x = −23, |x | = 23. The absolute-value norm ‖x‖, equals
the absolute value, i.e. ‖x‖ = |x |.
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The Euclidean norm of a complex number z = a + bi is given by

‖z‖ = |z| =
√
a2 + b2

which is the modulus of z.
The modulus or Euclidean norm of a complex number measures an abstract dis-

tance corresponding to the length of the complex point to the origin on the complex
plane, and is normally expressed:

‖z‖ = √
zz = √

(a + bi)(a − bi) =
√
a2 + b2.

Let’s prove that the Euclidean norm of the product of two complex numbers, equals
the product of the individual Euclidean norms.

z1 = a1 + b1i = r1, θ1
z2 = a2 + b2i = r2, θ2

‖z1z2‖ = |z1z2|
= |z1| · |z2|
= ‖z1‖ · ‖z2‖.

2.5.8 Complex Inverse

We have already seen that to divide a complex number x by another z, we multiply
the numerator and denominator by the conjugate of the denominator:

x

z
= a + bi

c + di

c − di

c − di

which can be written as

xz−1 = x
z

|z|2

thus the inverse of a complex number is

z−1 = z

|z|2 .

For example, the inverse of 3 + 4i is

(3 + 4i)−1 = 1
25 (3 − 4i).
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2.5.9 Complex Exponentials

In order to describe complex exponentials we require three power series. We start
with the power series for eθ , sin θ and cos θ ,

eθ = 1 + θ1

1! + θ2

2! + θ3

3! + θ4

4! + θ5

5! + θ6

6! + θ7

7! + θ8

8! + θ9

9! + . . .

sin θ = θ − θ3

3! + θ5

5! − θ7

7! + θ9

9! + . . .

cos θ = 1 − θ2

2! + θ4

4! − θ6

6! + θ8

8! + . . . .

Euler discovered that by making θ imaginary: eiθ , we have

eiθ = 1 + iθ1

1! − θ2

2! − iθ3

3! + θ4

4! + iθ5

5! − θ6

6! − iθ7

7! + θ8

8! + iθ9

9! . . .

= 1 − θ2

2! + θ4

4! − θ6

6! + θ8

8! + · · · + iθ1

1! − iθ3

3! + iθ5

5! − iθ7

7! + iθ9

9! + . . .

= 1 − θ2

2! + θ4

4! − θ6

6! + θ8

8! + · · · + i

(
θ1

1! − θ3

3! + θ5

5! − θ7

7! + θ9

9! + . . .

)

= cos θ + i sin θ

which is Euler’s trigonometric formula. If we now reverse the sign of iθ to −iθ , we
have

e−iθ = 1 − iθ1

1! − θ2

2! + iθ3

3! + θ4

4! − iθ5

5! − θ6

6! + iθ7

7! + θ8

8! − iθ9

9! . . .

= 1 − θ2

2! + θ4

4! − θ6

6! + θ8

8! + · · · − iθ1

1! + iθ3

3! − iθ5

5! + iθ7

7! − iθ9

9! + . . .

= 1 − θ2

2! + θ4

4! − θ6

6! + θ8

8! + · · · − i

(
θ1

1! − θ3

3! + θ5

5! − θ7

7! + θ9

9! + . . .

)

= cos θ − i sin θ

thus we have

eiθ = cos θ + i sin θ

e−iθ = cos θ − i sin θ

from which we obtain
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cos θ = eiθ + e−iθ

2

sin θ = eiθ − e−iθ

2i
.

Given eiθ = cos θ + i sin θ , when θ = π , we have eiπ = −1, or eiπ + 1 = 0, which
is Euler’s famous equation. The American physicist Richard Feynman (1918–1988)
referred to the equation as “our jewel” and “the most remarkable formula in mathe-
matics.” [1]

Another strange formula emerges as follows:

cos θ + i sin θ = eiθ

cos
(

π
2

) + i sin
(

π
2

) = eiπ/2

i = eiπ/2

i i = (
eiπ/2)i

= ei
2π/2

= e−π/2

i i = 0.207 879 576 . . .

which reveals that i i is a real number, even though i is not a number, as we know it!
Geometrically, eiθ is a point on the unit circle, on the complexplane.Consequently,

reiβ is another point, radius r from the origin, with real and imaginary coordinates
x = r cosβ and y = r sin β, respectively, as shown in Fig. 2.8. This is the polar form
of a complex number.

Let’s return to the product of two complex numbers, and see how the product can
be visualised using polar notation.

Fig. 2.8 The unit circle and
reiβ

Re1 2 3 4 5

2i

1i

3i

4i

5i

Im

-1-2-3-4-5 0
-1i

-3i

-2i

-4i

-5i

eiθ

reiβ

r sinβ

r cosββ

r
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Fig. 2.9 Three complex
numbers

Re1 2 3

2i

1i

3i
Im

-1-2-3 0

-1i

-3i

-2i

30◦

z1

3

z2

2

60◦

z3

45◦

1

Equation (2.2) shows that

z1 = r1(cos θ1 + i sin θ1)

z2 = r2(cos θ2 + i sin θ2)

z1z2 = r1r2 (cos(θ1 + θ2) + i sin(θ1 + θ2)) .

Using polar notation:

z1 = r1e
iθ1

z2 = r2e
iθ2

z1z2 = r1e
iθ1r2e

iθ2

= r1r2e
i(θ1+θ2).

Now let’s show three ways of computing the product of the following three complex
numbers shown in Fig. 2.9:

z1 = 3
√
3

2 + 3
2 i

z2 = 1 + √
3i

z3 = −
√
2
2 −

√
2
2 i.

z1: the argument is 30◦ and a modulus of 3.
z2: the argument is 60◦ and a modulus of 2.
z3: the argument is 225◦ and a modulus of 1.
Let’s compute the product z1z2z3
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z1z2z3 =
(
3
√
3

2 + 3
2 i

) (
1 + √

3i
) (

−
√
2
2 −

√
2
2 i

)

=
(
3
√
3

2 + 9
2 i + 3

2 i − 3
√
3

2

) (
−

√
2
2 −

√
2
2 i

)

= 6i
(
−

√
2
2 −

√
2
2 i

)

= 3
√
2 − 3

√
2i

which confirms that the product z1z2z3 rotates any complex number 315◦, and scales
its modulus by 6.

Now let’s compute the product using cosines and sines.

z1 = 3(cos 30◦ + i sin 30◦)
z2 = 2(cos 60◦ + i sin 60◦)
z3 = cos 225◦ + i sin 225◦

z1z2z3 = 3(cos 30◦ + i sin 30◦)2(cos 60◦ + i sin 60◦)(cos 225◦ + i sin 225◦)
= 6(cos 315◦ + i sin 315◦)

= 3
√
2 − 3

√
2i

which is much simpler. Finally, let’s define the complex numbers in polar form, with
angles in degrees, for clarity.

z1 = 3ei30
◦

z2 = 2ei60
◦

z3 = ei225
◦

z1z2z3 = 3ei30
◦
2ei60

◦
ei225

◦

= 6e315
◦

= 6(cos 315◦ + i sin 315◦)

= 3
√
2 − 3

√
2i

which is even neater!

2.5.10 de Moivre’s Theorem

Euler’s trigonometric formula can be developed as follows.

cos θ + i sin θ = eiθ

(cos θ + i sin θ)n = (
eiθ

)n

= einθ

(cos θ + i sin θ)n = cos(nθ) + i sin(nθ) (2.3)
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where (2.3) is known as de Moivre’s theorem, after Abraham de Moivre.
Substituting n = 2 in (2.3) we obtain

cos(2θ) + i sin(2θ) = (cos θ + i sin θ)2

= cos2 θ − sin2 θ + 2i cos θ sin θ.

Therefore,

cos(2θ) = Re
(
cos2 θ − sin2 θ + 2i cos θ sin θ

)

= cos2 θ − sin2 θ

sin(2θ) = Im
(
cos2 θ − sin2 θ + 2i cos θ sin θ

)

= 2 cos θ sin θ.

de Moivre’s theorem can be used for similar identities by substituting other values
of n. Let’s try n = 3:

cos(3θ) + i sin(3θ) = (cos θ + i sin θ)3

= (cos θ + i sin θ)(cos2 θ − sin2 θ + 2i cos θ sin θ).

Therefore,

cos(3θ) = Re
[
(cos θ + i sin θ)(cos2 θ − sin2 θ + 2i cos θ sin θ)

]

= cos3 θ − cos θ sin2 θ − 2 cos θ sin2 θ

= cos3 θ − 3 cos θ sin2 θ

= cos3 θ − 3 cos θ(1 − cos2 θ)

= 4 cos3 θ − 3 cos θ.

sin(3θ) = Im
[
(cos θ + i sin θ)(cos2 θ − sin2 θ + 2i cos θ sin θ)

]

= cos2 θ sin θ − sin3 θ + 2 cos2 θ sin θ

= 3 cos2 θ sin θ − sin3 θ

= 3 sin θ(1 − sin2 θ) − sin3 θ

= 3 sin θ − 4 sin3 θ.

Let’s test these identities with θ = 30◦:

cos(3θ) = 4 cos3 θ − 3 cos θ

cos 90◦ = 4 cos3 30◦ − 3 cos 30◦

= 4
(√

3
2

)3 − 3
√
3
2

= 3
2

√
3 − 3

2

√
3
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= 0.

sin(3θ) = 3 sin θ − 4 sin3 θ

sin 90◦ = 3 sin 30◦ − 4 sin3 30◦

= 3
2 − 4

(
1
2

)3

= 1.

Given z = cos θ + i sin θ , we can define cos θ and sin θ in terms of z as follows.

z = cos θ + i sin θ (2.4)

= eiθ

1
z = e−iθ

= cos θ − i sin θ (2.5)

adding and subtracting (2.4) and (2.5):

z + 1
z = 2 cos θ

z − 1
z = 2i sin θ

cos θ = 1
2

(
z + 1

z

)
(2.6)

sin θ = −i
2

(
z − 1

z

)
. (2.7)

Let’s use de Moivre’s formula to show that

zn + 1

zn
= 2 cos(nθ).

Proof:

zn = cos(nθ) + i sin(nθ)

z−n = cos(−nθ) + i sin(−nθ)

= cos(nθ) − i sin(nθ)

zn + z−n = 2 cos(nθ).

2.5.11 nth Root of Unity

The real roots of 1 can only be ±1, but complex numbers introduce the concept that
unity possesses an infinite number of complex roots. The complex roots of 1 satisfy
the equation zn = 1, where n is a positive integer. Such roots are are employed
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in different branches of mathematics, such as number theory and discrete Fourier
transforms. (See https://en.wikipedia.org/wiki/Root_of_unity)

If the nth root of 1 is z, then zn = 1. Therefore, using de Moivre’s theorem:

11/n = ei2πk/n, k = 0, 1, 2, . . . , n − 1

= cos
(
2πk
n

) + i sin
(
2πk
n

)
.

For example, when n = 3:

[k = 0] z0 = cos
(
0
3

) + i sin
(
0
3

) = 1

[k = 1] z1 = cos
(
2π
3

) + i sin
(
2π
3

) = − 1
2 + i

√
3
2

[k = 2] z1 = cos
(
4π
3

) + i sin
(
4π
3

) = − 1
2 − i

√
3
2 .

Let’s confirm these results:

z31 =
(
− 1

2 + i
√
3
2

) (
− 1

2 + i
√
3
2

) (
− 1

2 + i
√
3
2

)

=
(
− 1

2 − i
√
3
2

) (
− 1

2 + i
√
3
2

)
= 1

z32 =
(
− 1

2 − i
√
3
2

) (
− 1

2 − i
√
3
2

) (
− 1

2 − i
√
3
2

)

=
(
− 1

2 + i
√
3
2

) (
− 1

2 − i
√
3
2

)
= 1.

These roots are located on the unit-radius complex circle, as shown in Fig. 2.10.
Connecting the points together creates a regular polygon.

Fig. 2.10 Three roots of
unity

https://en.wikipedia.org/wiki/Root_of_unity
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2.5.12 nth Roots of a Complex Number

Given

z = r(cos θ + i sin θ)

then

n
√
z = n

√
r
[
cos

(
θ+k2π

n

) + i sin
(

θ+k2π
n

)]
, 0 ≤ k ≤ (n − 1).

For example, let’s find
(
8 + i8

√
3
)1/4

.

To begin, we convert it into polar form: z = 16eiπ/3.

z = 16
[
cos

(
π
3

) + i sin
(

π
3

)]

4
√
z = 4

√
16

[
cos

(
π/3+k2π

4

)
+ i sin

(
π/3+k2π

4

)]

[k = 0] z0 = 2
[
cos

(
π
12

) + i sin
(

π
12

)] ≈ 1.932 + i0.518

[k = 1] z1 = 2
[
cos

(
π
12 + 2π

4

) + i sin
(

π
12 + 2π

4

)] ≈ −0.518 + i1.932

[k = 2] z2 = 2
[
cos

(
π
12 + 4π

4

) + i sin
(

π
12 + 4π

4

)] ≈ −1.932 − i0.518

[k = 3] z3 = 2
[
cos

(
π
12 + 6π

4

) + i sin
(

π
12 + 6π

4

)] ≈ 0.518 − i1.932.

Figure 2.11 shows these roots.

Fig. 2.11 4th roots of
16(cos(π/3) + i sin(π/3)
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2.5.13 Logarithm of a Complex Number

In order to take the natural logarithm of a complex number, we use the exponential
form. Consequently, if we are given a + bi , this must be converted to reiθ . Therefore,
given

z = reiθ

then

ln z = ln r + iθ

or

ln z = ln |z| + i arg(z).

As exponential functions can have multiple values, the imaginary component is
restricted to the interval −π < θ ≤ π . For example, −1 is represented by eiπ , e3iπ ,

e5iπ etc., but to satisfy the agreed interval constraint, −1 = eiπ .
For example, given z = −2 + 2i , then

−2 + 2i =
√

(−2)2 + 22 · ei tan−1 (2/−2)

= √
8ei0.75π

ln(−2 + 2i) = ln
(√

8ei0.75π
)

= ln
√
8 + 0.75π i

≈ 1.039721 + 2.356194i.

Similarly, given z = 3 − 4i , then

3 − 4i =
√
32 + (−4)2 · ei tan−1(−4/3)

= 5e−i0.927295

ln(3 − 4i) = ln
(
5e−i0.927295)

= ln 5 − 0.927295i

≈ 1.609438 − 0.927295i.

Logarithms of other complex numbers are shown in Table 2.3.
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Table 2.3 Logarithms of complex numbers

z e form ln z

1 ei0 0

−1 eiπ π i

i eiπ/2 π
2 i

−i e−iπ/2 − π
2 i

5 5ei0 1.609438

−5 5eiπ 1.609438 + π i

5i 5eiπ/2 1.609438 + π
2 i

−5i 5e−iπ/2 1.609438 − π
2 i

5 + 5i
√
50eiπ/4 1.956012 + π

4 i

5 − 5i
√
50e−iπ/4 1.956012 − π

4 i

−5 + 5i
√
50ei3π/4 1.956012 + 3π

4 i

−5 − 5i
√
50e−i3π/4 1.956012 − 3π

4 i

0.5 0.5ei0 −0.693147

−0.5 0.5eiπ −0.693147 + π i

0.5i 0.5eπ/2 −0.693147 + π
2 i

−0.5i 0.5e−iπ/2 −0.693147 − π
2 i

2.5.14 Raising a Complex Number to a Complex Power

Now that we have seen how to take a logarithm of a complex number, the way is
open to raise a complex number to a complex power. For example, given

z = ey (2.8)

then
y = ln z (2.9)

and substituting (2.9) in (2.8), we obtain

z = eln z . (2.10)

Raising both sides of (2.10) to some power w,

zw = (
eln z

)w = ew ln z . (2.11)

Equation 2.11 applies to both real and complex numbers, so first, let’s begin with

z = 2

w = 1 + i
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which requires raising e to the product of 1 + i and the natural logarithm of 2.

ln 2 ≈ 0.693147

(1 + i)0.693147 = 0.693147 + 0.693147i

e(0.693147+0.693147i) = e0.693147e0.693147i

= 2(cos 0.693147 + i sin 0.693147)

≈ 2(0.769239 + 0.638961i)

= 1.538478 + 1.277922i

therefore,

21+i ≈ 1.538478 + 1.277922i.

Now let’s use

z = 2 + 2i

w = 1 + i

then

zw = (2 + 2i)1+i = e(1+i) ln(2+2i)

which requires raising e to the product of 1 + i and the natural logarithm of 2 + 2i .
Not very nice, but let’s have a go!

2 + 2i =
√
22 + 22eiπ/4

= √
8eiπ/4

ln(2 + 2i) = ln 2.828427 + iπ

4
≈ 1.039721 + 0.785398i

(1 + i)(1.039721 + 0.785398i) = 1.039721 + 1.039721i + 0.785398i − 0.785398

= 0.254323 + 1.825119i

e(0.254323+1.825119i) = e0.254323e1.825119i

= 1.289588(cos 1.825119 + i sin 1.825119)

≈ 1.289588(−0.25159 + 0.967834i)

≈ −0.324447 + 1.248107i

therefore,

(2 + 2i)1+i ≈ −0.324447 + 1.248107i.
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2.5.15 Visualising Simple Complex Functions

We are aware of how real functions such as f (x) = 2x2 + 3x + 5 behave, as it is
possible to draw a graph relating f (x) to x . But when it comes to complex functions,
such as f (z) = (a + bi)2, we require two dimensions to represent the original real
and imaginary terms, and two further dimensions to represent the function, which
is difficult in our three-dimensional world. However, in order to get a feel for what
is happening between a complex variable and function, we can plot how individual
numbers behave when subject to a function. To illustrate this, Fig. 2.12 illustrates
how nine complex numbers in the first quadrant, behave when they are subject to a
square function. For example, (1 + 3i)2 moves to −8 + 6i , and (3 + 3i)2 moves to
18i . The dashed lines show the trajectory as the exponent increases from 1 to 2. Note
that the squaring function imposes an anti-clockwise rotation on the trajectories,
with the end complex numbers in the same or second quadrant. The solid blue lines
connect the transformed points together to emphasise the distortion caused by the
squaring transformation.

The functions used to draw the blue lines are

f (z) = [(1 + i)(1 − t) + (1 + 3i)t]2

f (z) = [(2 + i)(1 − t) + (2 + 3i)t]2

f (z) = [(3 + i)(1 − t) + (3 + 3i)t]2

f (z) = [(1 + i)(1 − t) + (3 + i)t]2

f (z) = [(1 + 2i)(1 − t) + (3 + 2i)t]2

f (z) = [(1 + 3i)(1 − t) + (3 + 3i)t]2

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

0 ≤ t ≤ 1.

Fig. 2.12 The trajectories of
nine complex numbers in the
first quadrant, when squared
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Fig. 2.13 The trajectories of
nine complex numbers in the
second quadrant, when
squared

Fig. 2.14 The trajectories of
nine complex numbers in the
third quadrant, when squared

Figure 2.13 shows the trajectories for nine similar complex numbers in the second
quadrant, where the squaring function imposes an anti-clockwise rotation on the
trajectories, with the end complex numbers in the third or fourth quadrant.

Figure 2.14 shows the trajectories for nine complex numbers in the third quadrant,
where the squaring function imposes a clockwise rotation on the trajectories, with
the end complex numbers in the first or second quadrant.

Figure 2.15 shows the trajectories for nine complex numbers in the fourth quad-
rant, where the squaring function imposes a clockwise rotation on the trajectories,
with the end complex numbers in the third or fourth quadrant.
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Fig. 2.15 The trajectories of
nine complex numbers in the
fourth quadrant, when
squared

Fig. 2.16 The trajectories of
eight, squared imaginary
numbers

The only remaining numbers to consider are on the real and imaginary axes. The
real axis is simple, as the square of any real number is another real number. Figure 2.16
shows the anti-clockwise trajectories of four positive imaginary numbers, and the
clockwise trajectories of four negative imaginary numbers.

2.5.16 The Hyperbolic Functions

The trigonometric functions derive from the geometry of the circle x2 + y2 = 1,
whereas the hyperbolic functions are associated with the geometry of the hyperbola
x2 − y2 = 1. However, they are all related to e as we will see.

Given

cos θ = eiθ + e−iθ

2
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then

cos(iθ) = ei(iθ) + e−i(iθ)

2
= e−θ + eθ

2
= cosh θ.

Similarly, given

sin θ = eiθ − e−iθ

2i

then

sin(iθ) = eiiθ − e−i iθ

2i
= e−θ − eθ

2i
= i(eθ − e−θ )

2
= i sinh θ.

By definition:

tanh θ = sinh θ

cosh θ
= eθ − e−θ

eθ + e−θ
.

Therefore,

cosh θ = eθ + e−θ

2
= cos(iθ)

sinh θ = eθ − e−θ

2
= −i sin(iθ)

tanh θ = eθ − e−θ

eθ + e−θ
= −i tan(iθ)

cosh θ + sinh θ = eθ

cosh θ − sinh θ = e−θ

cosh2 θ − sinh2 θ = 1.

Figure 2.17 shows how sinh and cosh relate to the hyperbola.

2.5.17 Derivative of a Complex Number

Basic calculus informs us that

d

dθ
enθ = nenθ
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Fig. 2.17 The hyperbolic
functions

-5 -4 -3 -2 -1 0 1 2 3 4 5

-3

-2

-1

1

2

3

cosh t

sinh t

t/2

x 2−
y 2
=
1

therefore,

d

dθ
eiθ = ieiθ

and

d

dθ
(cos θ + i sin θ) = − sin θ + i cos θ = i(cos θ + i sin θ).

We also expect the derivative of the exponential form to agree:

d

dθ
cos θ = d

dθ
Re

(
eiθ

)

= d

dθ

[
1
2

(
eiθ + e−iθ

)]

= i
2

(
eiθ − e−iθ

)

= − sin θ

d

dθ
sin θ = d

dθ
Im

(
eiθ

)

= d

dθ

[
1
2i

(
eiθ − e−iθ

)]

= 1
2

(
eiθ + e−iθ

)

= cos θ.
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2.6 Summary

Hopefully, this chapter has established i = √−1 as an incredible invention. Even
though it does not belong to the traditional number systems, it is a valid math-
ematical object and reveals hidden numerical relationships between various con-
stants and functions. Perhaps the two outstanding examples being eiπ + 1 = 0 and
i i = 0.207 879 . . . .

The complex plane provides a simple way of visualising complex numbers, and
illustrates their connection with vectors.

Euler’s proof for eiθ = cos θ + i sin θ opens the door for associating complex
numberswithwavephenomena,which include acousticwaves, seawaves, electronics
and quantum mechanics. These are covered in later chapters.

2.6.1 Summary of Complex Formulae

For all the following formulae, z = a + bi and i2 = −1.
Imaginary Number

bi, bi ∈ �, b ∈ �.

Complex Number

z = a ± bi, (a ± bi) ∈ �, a, b ∈ �
� ⊂ �, � ⊂ �.

Real and Imaginary Parts

a = Re(z), b = Im(z).

Complex Conjugate

z = a − bi

zz = a2 + b2

z1z2 = z1z2.

Powers of i

i4n = 1, i4n+1 = i, i4n+2 = −1, i4n+3 = −i.
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Modulus and Argument

z = (r, θ), r =
√
a2 + b2, θ = tan−1(b/a)

a = r cos θ

b = r sin θ

z = r(cos θ + i sin θ)

z1 = a1 + b1i = (r1, θ1)

z2 = a2 + b2i = (r2, θ2)

z1z2 = r1r2[cos(θ1 + θ2) + i sin(θ1 + θ2)].

Complex Norm

‖z‖ = |z| = √
zz =

√
a2 + b2.

Complex Inverse

z−1 = z

|z|2 .

Complex Exponential

eiθ = cos θ + i sin θ

e−iθ = cos θ − i sin θ

cos θ = eiθ + e−iθ

2

sin θ = eiθ − e−iθ

2i
eiπ + 1 = 0

i i = 0.207 879 576 . . . .

de Moivre’s Theorem

(cos θ + i sin θ)n = cos(nθ) + i sin(nθ)

cos(2θ) = cos2 θ − sin2 θ

sin(2θ) = 2 cos θ sin θ

cos(3θ) = 4 cos3 θ − 3 cos θ

sin(3θ) = 3 sin θ − 4 sin3 θ

zn + 1

zn
= 2 cos(nθ).
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nth Root of Unity

zn = 1

z = cos
(
k2π
n

) + i sin
(
k2π
n

)
.

nth Root of a Complex Number

n
√
z = n

√
r
[
cos

(
θ+k2π

n

) + i sin
(

θ+k2π
n

)]
, 0 ≤ k ≤ n − 1.

Logarithm of a Complex Number

z = reiθ

ln z = ln r + iθ

ln z = ln |z| + i arg(z).

Raising a Complex Number to a Complex Power

zw = ew ln z .

The Hyperbolic Functions

cosh θ = eθ + e−θ

2
= cos(iθ)

sinh θ = eθ − e−θ

2
= −i sin(iθ)

tanh θ = eθ − e−θ

eθ + e−θ
= −i tan(iθ)

cosh θ + sinh θ = eθ

cosh θ − sinh θ = e−θ

cosh2 θ − sinh2 θ = 1.

Derivative of a Complex Number

d

dθ
eiθ = ieiθ .
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2.7 Worked Examples

2.7.1 Complex Addition

Compute (3 + 2i) + (2 + 2i) + (5 − 3i).
Solution: Collect up like terms.

(3 + 2i) + (2 + 2i) + (5 − 3i) = 10 + i.

2.7.2 Complex Products

Compute (3 + 2i)(2 + 2i)(5 − 3i).
Solution: Expand algebraically and simplify.

(3 + 2i)(2 + 2i)(5 − 3i) = (3 + 2i)(10 − 6i + 10i + 6)

= (3 + 2i)(16 + 4i)

= 48 + 12i + 32i − 8

= 40 + 44i.

2.7.3 Complex Division

Compute 1
(2+3i)(4−5i) .

Solution: Expand the denominator, then multiply top and bottom by the denomina-
tor’s conjugate.

1

(2 + 3i)(4 − 5i)
= 1

23 + 2i

= 1

(23 + 2i)

(23 − 2i)

(23 − 2i)

= 23 − 2i

529 + 4
= 1

533 (23 − 2i).

2.7.4 Complex Rotation

Rotate the complex point 3 + 2i by ±90◦ and ±180◦.
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Solution: Multiply by ±i and −1.
To rotate +90◦ (anti-clockwise) multiply by i .

i(3 + 2i) = 3i − 2 = −2 + 3i.

To rotate −90◦ (clockwise) multiply by −i .

−i(3 + 2i) = −3i + 2 = 2 − 3i.

To rotate +180◦ (anti-clockwise) multiply by −1.

−1(3 + 2i) = −3 − 2i.

To rotate −180◦ (clockwise) multiply by −1.

−1(3 + 2i) = −3 − 2i.

2.7.5 Polar Notation

Given z1 = 1√
2

+
√
2
2 i and z2 = − 1√

2
+

√
2
2 i , compute their product using standard

complex number format, and polar notation.
Standard complex number format.
Solution: Expand algebraically.

z1z2 =
(

1√
2

+
√
2
2 i

) (
− 1√

2
+

√
2
2 i

)

= − 1
2 − 1

2

= −1.

Polar notation.
Solution:Compute the amplitude and argument for z1 and z2;multiply the amplitudes,
and add the arguments.

r1 =
√

(
1√
2

)2 +
(√

2
2

)2 = 1

r2 =
√

(
− 1√

2

)2 +
(√

2
2

)2 = 1

θ1 = tan−1
(√

2
2

√
2
1

)
= 45◦

θ2 = tan−1
(
−

√
2
2

√
2
1

)
= 135◦

z1 = (1, 45◦)
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z2 = (1, 135◦)
z1z2 = (1, 180◦) = −1.

2.7.6 Real and Imaginary Parts

Find the real and imaginary parts of 1/(1 + ei2θ ).
Solution: Multiply top and bottom by the conjugate, expand and isolate the real and
imaginary parts.

1

1 + ei2θ
= 1 + e−i2θ

(1 + ei2θ )(1 + e−i2θ )

= 1 + cos(2θ) − i sin(2θ)

2 + 2 cos(2θ)

= 1 + cos(2θ)

2 + 2 cos(2θ)
− i

sin(2θ)

2 + 2 cos(2θ)

Re

(
1

1 + ei2θ

)

= 1
2

Im

(
1

1 + ei2θ

)

= − 1
2

(
sin(2θ)

1 + cos(2θ)

)

.

2.7.7 Magnitude of a Complex Number

Find
∣
∣
∣ 1
1+ei2θ

∣
∣
∣.

Solution: Use zz̄ = |z|2 and expand.

∣
∣
∣
∣

1

1 + ei2θ

∣
∣
∣
∣

2

= 1

(1 + ei2θ )(1 + e−i2θ )

= 1

1 + e−i2θ + ei2θ + 1

= 1

2 + 2 cos(2θ)
∣
∣
∣
∣

1

1 + ei2θ

∣
∣
∣
∣ = [2 + 2 cos(2θ)]−1/2 .
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2.7.8 Complex Norm

Find the norm of z = 5 + 12i .
Solution: Use ‖z‖ = √

a2 + b2.

‖z‖ = |z| =
√
52 + 122 = 13.

2.7.9 Complex Inverse

Find the inverse of 1 + i .
Solution: Multiply top and bottom by the conjugate and expand.

(1 + i)−1 = (1 − i)

(1 − i)(1 + i)
= 1

2 (1 − i).

2.7.10 de Moivre’s Theorem

Express cos(5θ) in terms of cos θ , and sin(5θ) in terms of sin θ .
Solution: Use (cos θ + i sin θ)n = cos(nθ) + i sin(nθ) and simplify.

cos(5θ) + i sin(5θ) = (cos θ + i sin θ)5

= cos5 θ + 5i cos4 θ sin θ + 10i2 cos3 θ sin2 θ

+ 10i3 cos2 θ sin3 θ + 5i4 cos θ sin4 θ + i5 sin5 θ

= cos5 θ − 10 cos3 θ sin2 θ + 5 cos θ sin4 θ

+ i(5 cos4 θ sin θ − 10 cos2 θ sin3 θ + sin5 θ)

cos(5θ) = Re[(cos θ + i sin θ)5]
= cos5 θ − 10 cos3 θ sin2 θ + 5 cos θ sin4 θ

but sin2 θ = 1 − cos2 θ

= cos5 θ − 10 cos3 θ(1 − cos2 θ) + 5 cos θ(1 − cos2 θ)2

= cos5 θ − 10 cos3 θ + 10 cos5 θ + 5 cos θ(1 − 2 cos2 θ + cos4 θ)

= 11 cos5 θ − 10 cos3 θ + 5 cos θ − 10 cos3 θ + 5 cos5 θ

cos(5θ) = 16 cos5 θ − 20 cos3 θ + 5 cos θ.

sin(5θ) = Im[(cos θ + i sin θ)5]
= 5 cos4 θ sin θ − 10 cos2 θ sin3 θ + sin5 θ

but cos2 θ = 1 − sin2 θ

= 5 sin θ(1 − sin2 θ)2 − 10 sin3 θ(1 − sin2 θ) + sin5 θ
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Fig. 2.18 cos(5θ) =
16 cos5 θ − 20 cos3 θ +
5 cos θ

Fig. 2.19 sin(5θ) =
16 sin5 θ − 20 sin3 θ +
5 sin θ

= 5 sin θ − 10 sin3 θ + 5 sin5 θ − 10 sin3 θ + 10 sin5 θ + sin5 θ

sin(5θ) = 16 sin5 θ − 20 sin3 θ + 5 sin θ.

Figure 2.18 shows the individual waveforms contributing towards cos(5θ), and
Fig. 2.19, the individual waveforms contributing towards sin(5θ).

2.7.11 nth Root of Unity

Find the 4th and 6th roots of 1.
Solution: Use

z = ei2kπ/n, k = 0, 1, 2, . . . , n − 1

= cos
(
2kπ
n

) + i sin
(
2kπ
n

)
.

substituting different values for n and k.
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When n = 4:

[k = 0] z0 = cos
(
0
4

) + i sin
(
0
4

) = 1

[k = 1] z1 = cos
(
2π
4

) + i sin
(
2π
4

) = i

[k = 2] z1 = cos
(
4π
4

) + i sin
(
4π
4

) = −1

[k = 3] z1 = cos
(
6π
4

) + i sin
(
6π
4

) = −i.

When n = 6:

[k = 0] z0 = cos
(
0
6

) + i sin
(
0
6

) = 1

[k = 1] z1 = cos
(
2π
6

) + i sin
(
2π
6

) = 1
2 + i

√
3
2

[k = 2] z1 = cos
(
4π
6

) + i sin
(
4π
6

) = − 1
2 + i

√
3
2

[k = 3] z1 = cos
(
6π
6

) + i sin
(
6π
6

) = −1

[k = 4] z1 = cos
(
8π
6

) + i sin
(
8π
6

) = − 1
2 − i

√
3
2

[k = 5] z1 = cos
(
10π
6

) + i sin
(
10π
6

) = 1
2 − i

√
3
2 .

2.7.12 Roots of a Complex Number

Find 3
√
i .

Solution: Convert i to polar form and use

n
√
z = n

√
r
[
cos

(
θ+k2π

n

) + i sin
(

θ+k2π
n

)]
, 0 ≤ k ≤ n − 1.

z = 0 + i = (r, θ)

r = 1

θ = π/2
3
√
i = cos

(
θ+k2π

3

) + i sin
(

θ+k2π
3

)
, 0 ≤ k ≤ 2

= cos
(

π
6 + k2π

3

) + i sin
(

π
6 + k2π

3

)

z0 = cos
(

π
6

) + i sin
(

π
6

) =
√
3
2 + i 12

z1 = cos
(

π
6 + 2π

3

) + i sin
(

π
6 + 2π

3

) = −
√
3
2 + i 12

z2 = cos
(

π
6 + 4π

3

) + i sin
(

π
6 + 4π

3

) = −i.
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2.7.13 Logarithm of a Complex Number

Compute the natural logarithm of z = 5 − 12i .
Solution: Convert z to polar form and use ln z = ln |z| + i arg(z).

5 − 12i =
√
52 + (−12)2ei tan

−1(−12/5)

≈ 13e−i1.176

ln(5 − 12i) ≈ ln
(
13e−i1.176

)

≈ ln 13 − 1.176i

≈ 2.565 − 1.176i.

2.7.14 Raising a Number to a Complex Power

Compute 31+i .
Solution: Use zw = ew ln z .

z = 3

w = 1 + i

zw = ew ln z

ln 3 ≈ 1.0986

(1 + i) ln 3 ≈ 1.0986 + 1.0986i

31+i ≈ e(1.0986+1.0986i)

≈ e1.0986e1.0986i

≈ 3(cos 1.0986 + i sin 1.0986)

≈ 3(0.4548 + 0.8906i)

≈ 1.3644 + 2.6718i

Reference

1. Feynman RP (1977) The feynman lectures on physics, vol 1. Addison-Wesley, Boston, p 10–22



Chapter 3
Matrix Algebra

3.1 Introduction

This chapter reviews the various types of matrices and their associated algebra
that apply to real and complex numbers. For clarity, they are described in a complex
context. I also describe how a complex number can be represented as a matrix, and
show that a + bi , cos θ + i sin θ , eiθ , i and i−1, all have a 2 × 2 equivalent matrix. If
matrix notation is new to you, then take a look at my book for a complete description
[1].

3.2 Complex Matrices

3.2.1 Matrix Addition and Subtraction

When adding or subtracting matrices, they must be of the same order:

C = A ± B
[
ci j

] = [
ai j

] ± [
bi j

]

where C has the same order as A and B.
As real and complex number addition is commutative and associative, it follows

that matrix addition is also commutative and associative:

A + B = B + A

(A + B) + C = A + (B + C).

For example, given

A =
[
1 + 2i 2 + 3i
3 + 4i 5 − −6i

]
, B =

[
1 − 2i 3 + i
4 − 2i −2

]

© Springer International Publishing AG, part of Springer Nature 2018
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then

A + B =
[
1 + 2i 2 + 3i
3 + 4i 5 − −6i

]
+

[
1 − 2i 3 + i
4 − 2i −2

]

=
[

2 5 + 4i
7 + 2i 3 − 6i

]

A − B =
[
1 + 2i 2 + 3i
3 + 4i 5 − 6i

]
−

[
1 − 2i 3 + i
4 − 2i −2

]

=
[

4i −1 + 2i
−1 + 6i 7 − 6i

]
.

3.2.2 Matrix Scaling

Matrix scaling is the action of multiplying each element of a matrix by a scaling
factor, real or complex. For example, matrix A is scaled by λ as follows:

λA = λ
[
ai j

] = [
λai j

]

where each element of A is multiplied by λ. If λ = 2i then

A =
[
1 + i 2 − 3i
3 − 2i 4

]

λA = 2i

[
1 + i 2 − 3i
3 − 2i 4

]
=

[−2 + 2i 6 + 4i
4 + 6i 8i

]
.

It follows that if the elements of a matrix share a common factor, the factor can be
placed outside the matrix. For example,

B =
[
10i 20i
30i 40i

]

= i

[
10 20
30 40

]
.

3.2.3 Zero Matrix

By definition, all the elements of a zero matrix equal zero and is represented by 0.
Here are some examples,
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[0 0], [0 0 0],
[
0
0

]
,

⎡

⎣
0
0
0

⎤

⎦ ,

⎡

⎣
0 0 0
0 0 0
0 0 0

⎤

⎦ .

It follows from the rules of matrix addition that A + 0 = A.

3.2.4 Matrix Multiplication

For matrix multiplication to be consistent with its algebraic equivalent, matrix mul-
tiplication must obey certain rules. For instance, given two matrices A and B,

A =
[
a11 a12
a21 a22

]
, B =

[
b11 b12
b21 b22

]

then

AB =
[
a11b11 + a12b21 a11b12 + a12b22
a21b11 + a22b21 a21b12 + a22b22

]
.

This can be generalised as follows. Given two matrices A and B, where A is a matrix
of order m × p with elements aik , and B is a matrix of order p × n with elements
bkj , then C = AB is a matrix of order m × n with elements ci j , where

ci j = ai1b1 j + ai2b2 j + ai3b3 j + · · · + aipbpj ,

which can be expressed as

ci j =
p∑

k=1

aikbk j . (3.1)

For example, two complex matrices of order 2 are multiplied as follows:

A =
[
1 + i 2 − 2i
4 5 + 4i

]
, B =

[
3 + i 4 − i
2 + 3i 5 + 2i

]
.

C = AB

=
[
1 + i 2 − 2i
4 5 + 4i

] [
3 + i 4 − i
2 + 3i 5 + 2i

]

=
[

(1 + i)(3 + i) + (2 − 2i)(2 + 3i) (1 + i)(4 − i) + (2 − 2i)(5 + 2i)
4(3 + i) + (5 + 4i)(2 + 3i) 4(4 − i) + (5 + 4i)(5 + 2i)

]
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=
[

(2 + 4i) + (10 + 2i) (5 + 3i) + (14 − 6i)
(12 + 4i) + (−2 + 23i) (16 − 4i) + (17 + 30i)

]

=
[
12 + 6i 19 − 3i
10 + 27i 33 + 26i

]
.

Reversing the product such that C = BA, changes every element of C and is the
reason why, in general, matrix multiplication is non-commutative.

3.2.5 Negative Matrix

By definition, given a matrix A with elements ai j , its negative, −A is defined such
that

−A = [−ai j ].

For example, given

A =
⎡

⎣
1 + i −2 − 3i 3i
−4 5 + 2i −6 + 4i
7i −8 9 − 3i

⎤

⎦

then

−A =
⎡

⎣
−1 − i 2 + 3i −3i

4 −5 − 2i 6 − 4i
−7i 8 −9 + 3i

⎤

⎦ .

It follows that A + (−A) = 0, because

A + (−A) = [ai j ] + [−ai j ] = [0i j ].

3.2.6 Determinant of a Matrix

When a 2 × 2 matrix is used as a geometric transform, its determinant represents
the scaling action. For instance, the determinant of the identity matrix is 1:

det

[
1 0
0 1

]
=

∣∣∣∣
1 0
0 1

∣∣∣∣ = 1.
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The determinant of a rotation matrix should also equal 1, as no scaling takes place,

det

[
cos θ − sin θ

sin θ cos θ

]
=

∣
∣∣∣
cos θ − sin θ

sin θ cos θ

∣
∣∣∣ = cos2 θ + sin2 θ = 1.

However, given a complex matrix, its determinant is probably complex, but not
necessarily so. Let’s start with the following matrix

A =
[
2 + 3i 3 + 2i
1 − i 4 − 2i

]

then

|A| = (2 + 3i)(4 − 2i) − (1 − i)(3 + 2i)

= (14 + 8i) − (5 − i)

= 9 + 9i.

whereas, given

B =
[
4 + 3i 3 + 2i
3 − 2i 4 − 3i

]

then

|B| = (4 + 3i)(4 − 3i) − (3 − 2i)(3 + 2i)

= 23 − 13

= 10.

3.2.7 Diagonal Matrix

A diagonal matrix is an n × n matrix whose elements are zero, apart from its diag-
onal:

A =

⎡

⎢⎢⎢
⎣

a11 0 . . . 0
0 a22 . . . 0
...

...
. . .

...

0 0 . . . ann

⎤

⎥⎥⎥
⎦

,

consequently, the determinant of a diagonal matrix must be

|A| = a11 × a22 × · · · × ann .
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Here is a diagonal matrix with its determinant

A =
⎡

⎣
2 + 3i 0 0

0 3 − i 0
0 0 4 + 5i

⎤

⎦

|A| = (2 + 3i)(3 − i)(4 + 5i)

= (2 + 3i)(17 + 11i)

= 1 + 73i.

Now let’s consider the product of two diagonal matrices A and B with the same
order. The general product rule is

ci j = ai1b1 j + ai2b2 j + ai3b3 j + · · · + ainbnj ,

for all i j pairs. As the rows of A multiply the columns of B, the only time there will
be a non-zero result, is when the row and column share a common diagonal element.
Consequently, the resulting product is also a diagonal matrix. Let’s illustrate this
with a 3 × 3 matrix:

A =
⎡

⎣
a11 0 0
0 a22 0
0 0 a33

⎤

⎦ , B =
⎡

⎣
b11 0 0
0 b22 0
0 0 b33

⎤

⎦

AB =
⎡

⎣
a11 0 0
0 a22 0
0 0 a33

⎤

⎦

⎡

⎣
b11 0 0
0 b22 0
0 0 b33

⎤

⎦

=
⎡

⎣
a11b11 0 0
0 a22b22 0
0 0 a33b33

⎤

⎦

which is another diagonal matrix.
Here is an example:

A =
⎡

⎣
2 + i 0 0
0 4 0
0 0 6i

⎤

⎦ , B =
⎡

⎣
3 0 0
0 5 + i 0
0 0 7 − i

⎤

⎦

AB =
⎡

⎣
6 + 3i 0 0

0 20 + 4i 0
0 0 6 + 42i

⎤

⎦ .

It should be clear that matrix multiplication of diagonal matrices is commutative. i.e.
AB = BA.
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3.2.8 Identity Matrix

An identity matrix is a diagonal matrix with its elements equal to 1. For example:

I2 =
[
1 0
0 1

]
, I3 =

⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ , I4 =

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦ .

Thuswhenwemultiply anymatrix by In it leaves thematrix unchanged. It is common
to employ I as the identity matrix, as its order is determined by the associated matrix.
Note that I A = AI .

3.2.9 Transpose Matrix

A transposematrix is denoted by AT and exchanges rowswith columns in the original
matrix. Only the diagonal elements remain unchanged. For example:

A =
⎡

⎣
1 + i 2 + 2i 3 + 3i
4 + 4i 5 + 5i 6 + 6i
7 + 7i 8 + 8i 9 + 9i

⎤

⎦

then

AT =
⎡

⎣
1 + i 4 + 4i 7 + 7i

2 + 2i 5 + 5i 8 + 8i
3 + 3i 6 + 6i 9 + 9i

⎤

⎦ .

3.2.10 Trace

The trace of a square matrix A is defined as the sum of its diagonal elements and
written as Tr

(
A
)
. For example, given

A =
⎡

⎣
1 + i 4 + 4i 7 + 7i
2 + 2i 5 + 5i 8 + 8i
3 + 3i 6 + 6i 9 + 9i

⎤

⎦

Tr
(
A
) = (1 + i) + (5 + 5i) + (9 + 9i) = 15 + 15i.
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3.2.11 Symmetric Matrix

It is worth exploring two types of matrices called symmetric and anti-symmetric
matrices, as we refer to them later on. A symmetric matrix is a matrix which equals
its own transpose:

A = AT.

For example, the following matrix is symmetric:

A =
⎡

⎣
1 + 2i 3 + 4i 4 + 5i
3 + 4i 2 + 3i 6 + 7i
4 + 5i 6 + 7i 3 + 4i

⎤

⎦ .

The symmetric part of any square matrix can be isolated as follows. Given a matrix
A and its transpose AT:

A =

⎡

⎢⎢
⎢
⎣

a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...

an1 an2 . . . ann

⎤

⎥⎥
⎥
⎦

, AT =

⎡

⎢⎢
⎢
⎣

a11 a21 . . . an1
a12 a22 . . . an2
...

...
. . .

...

a1n a2n . . . ann

⎤

⎥⎥
⎥
⎦

their sum is

A + AT =

⎡

⎢⎢
⎢
⎣

2a11 a12 + a21 . . . a1n + an1
a12 + a21 2a22 . . . a2n + an2

...
...

. . .
...

a1n + an1 a2n + an2 . . . 2ann

⎤

⎥⎥
⎥
⎦

. (3.2)

By inspection, (3.2) is symmetric, and dividing by 2 we have

S = 1
2

(
A + AT

)
,

which is defined as the symmetric part of A.
For example, given

A =
⎡

⎣
a11 a12 a13
a21 a22 a23
a31 a32 a33

⎤

⎦ , AT =
⎡

⎣
a11 a21 a31
a12 a22 a32
a13 a23 a33

⎤

⎦
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then

S = 1
2

(
A + AT

)

=

⎡

⎢⎢⎢⎢⎢
⎣

a11
a12 + a21

2

a13 + a31
2

a12 + a21
2

a22
a23 + a32

2
a13 + a31

2

a23 + a32
2

a33

⎤

⎥⎥⎥⎥⎥
⎦

=

⎡

⎢⎢⎢
⎢
⎣

a11
s3
2

s2
2

s3
2

a22
s1
2

s2
2

s1
2

a33

⎤

⎥⎥⎥
⎥
⎦

where

s1 = a23 + a32
s2 = a13 + a31
s3 = a12 + a21.

For example, given

A =
⎡

⎣
0 1 + i 4 + 4i

3 − i 2 + i −3i
4 + 4i 2 + 3i 6 + 2i

⎤

⎦ , AT =
⎡

⎣
0 3 − i 4 + 4i

1 + i 2 + i 2 + 3i
4 + 4i −3i 6 + 2i

⎤

⎦

s1 = 2, s2 = 8 + 8i, s3 = 4

S =
⎡

⎣
0 2 4 + 4i
2 2 + i 1

4 + 4i 1 6 + 2i

⎤

⎦

which equals its own transpose.

3.2.12 Anti-symmetric Matrix

An anti-symmetric matrix is a matrix whose transpose is its own negative:

AT = −A,

and is also known as a skew symmetric matrix.
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As the elements of A and AT are related by

ai j = −a ji ,

when k = i = j

akk = −akk,

which implies that the diagonal elements must be zero. For example, this is an anti-
symmetric matrix

⎡

⎣
0 6 + 5i 2 + 3i

−6 − 5i 0 4 + 5i
−2 − 3i −4 − 5i 0

⎤

⎦ .

In general, we have

A =

⎡

⎢⎢⎢
⎣

a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...

an1 an2 . . . ann

⎤

⎥⎥⎥
⎦

, AT =

⎡

⎢⎢⎢
⎣

a11 a21 . . . an1
a12 a22 . . . an2
...

...
. . .

...

a1n a2n . . . ann

⎤

⎥⎥⎥
⎦

and their difference is

A − AT =

⎡

⎢
⎢⎢
⎣

0 a12 − a21 . . . a1n − an1
−(

a12 − a21
)

0 . . . a2n − an2
...

...
. . .

...

−(
a1n − an1

) −(
a2n − an2

)
. . . 0

⎤

⎥
⎥⎥
⎦

. (3.3)

It is clear that (3.3) is anti-symmetric, and dividing by 2 we have

Q = 1
2

(
A − AT

)
.

For example,

A =
⎡

⎣
a11 a12 a13
a21 a22 a23
a31 a32 a33

⎤

⎦ , AT =
⎡

⎣
a11 a21 a31
a12 a22 a32
a13 a23 a33

⎤

⎦

Q =

⎡

⎢
⎢⎢⎢
⎣

0
a12 − a21

2

a13 − a31
2

a21 − a12
2

0
a23 − a32

2
a31 − a13

2

a32 − a23
2

0

⎤

⎥
⎥⎥⎥
⎦
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and if we maintain some symmetry with the subscripts, we have

Q =

⎡

⎢⎢⎢⎢
⎣

0
a12 − a21

2
−a31 − a13

2
−a12 − a21

2
0

a23 − a32
2

a31 − a13
2

−a23 − a32
2

0

⎤

⎥⎥⎥⎥
⎦

=

⎡

⎢⎢⎢
⎣

0
q3
2

−q2
2

−q3
2

0
q1
2q2

2
−q1

2
0

⎤

⎥⎥⎥
⎦

where

q1 = a23 − a32
q2 = a31 − a13
q3 = a12 − a21.

For example,

A =
⎡

⎣
0 1 + i 4 + 4i

3 − i 2 + i −3i
4 + 4i 2 + 3i 6 + 2i

⎤

⎦ , AT =
⎡

⎣
0 3 − i 4 + 4i

1 + i 2 + i 2 + 3i
4 + 4i −3i 6 + 2i

⎤

⎦

q1 = −2 − 6i, q2 = 0, q3 = −2 + 2i

Q =
⎡

⎣
0 −1 + i 0

1 − i 0 −1 − 3i
0 1 + 3i 0

⎤

⎦ .

Furthermore, we have already computed

S =
⎡

⎣
0 2 4 + 4i
2 2 + i 1

4 + 4i 1 6 + 2i

⎤

⎦

and

S + Q =
⎡

⎣
0 1 + i 4 + 4i

3 − i 2 + i −3i
4 + 4i 2 + 3i 6 + 2i

⎤

⎦ = A.
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3.2.13 Inverse Matrix

One of the useful features of matrix notation is the concept of the inverse matrix
where a square matrix A, may have an inverse A−1, such that the product AA−1 = I .
In the world of transforms, a matrix A performs a transformation such as a rotation
about an axis, whilst its inverse A−1, performs the inverse transformation, which
rotates in the opposite direction.

So a useful definition for an inverse matrix is: Let A be a square matrix of order
n, and A−1 be another square matrix of order n, such that their product AA−1 =
A−1A = I . This definition preempts the possibility of matrices that do not have an
inverse. For example, the followingmatrix does not have an inverse, as its determinant
is zero:

A =
[
1 + i 1 + i
1 + i 1 + i

]

|A| = (1 + i)(1 + i) − (1 + i)(1 + i)

= 0.

Therefore, from now on, when we talk about an inverse matrix, we assume the
existence of the inverse form.

One way to derive an inverse matrix employs a cofactor matrix, which is based
upon the cofactors associated with any matrix element.

3.2.14 Cofactor Matrix

Let’s start with the following matrix and its cofactor matrix

A =
⎡

⎣
i 1 + i 3 − 3i

2 + 2i 1 − i 4 + 4i
4 − 4i 2 + i 2 − 2i

⎤

⎦

cofactor matrix of A =
⎡

⎣
A11 A12 A13

A21 A22 A23

A31 A32 A33

⎤

⎦

where

A11 = +
∣∣∣
∣
a22 a23
a32 a33

∣∣∣
∣ = +

∣∣∣
∣
1 − i 4 + 4i
2 + i 2 − 2i

∣∣∣
∣ = −4 − 16i

A12 = −
∣∣∣∣
a21 a23
a31 a33

∣∣∣∣ = −
∣∣∣∣
2 + 2i 4 + 4i
4 − 4i 2 − 2i

∣∣∣∣ = 24
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A13 = +
∣∣
∣∣
a21 a22
a31 a32

∣∣
∣∣ = +

∣∣
∣∣
2 + 2i 1 − i
4 − 4i 2 + i

∣∣
∣∣ = 2 + 14i

A21 = −
∣∣∣∣
a12 a13
a32 a33

∣∣∣∣ = −
∣∣∣∣
1 + i 3 − 3i
2 + i 2 − 2i

∣∣∣∣ = 5 − 3i

A22 = +
∣∣
∣∣
a11 a13
a31 a33

∣∣
∣∣ = +

∣∣
∣∣

i 3 − 3i
4 − 4i 2 − 2i

∣∣
∣∣ = 2 + 26i

A23 = −
∣∣∣∣
a11 a12
a31 a32

∣∣∣∣ = −
∣∣∣∣

i 1 + i
4 − 4i 2 + i

∣∣∣∣ = 9 − 2i

A31 = +
∣∣
∣∣
a12 a13
a22 a23

∣∣
∣∣ = +

∣∣
∣∣
1 + i 3 − 3i
1 − i 4 + 4i

∣∣
∣∣ = 14i

A32 = −
∣∣∣∣
a11 a13
a21 a23

∣∣∣∣ = −
∣∣∣∣

i 3 − 3i
2 + 2i 4 + 4i

∣∣∣∣ = 16 − 4i

A33 = +
∣∣∣
∣
a11 a12
a21 a22

∣∣∣
∣ = +

∣∣∣
∣

i 1 + i
2 + 2i 1 − i

∣∣∣
∣ = 1 − 3i

therefore, the cofactor matrix of A is

⎡

⎣
−4 − 16i 24 2 + 14i
5 − 3i 2 + 26i 9 − 2i
14i 16 − 4i 1 − 3i

⎤

⎦ .

It can be shown that the product of a matrix with the transpose of its cofactor matrix
has the following form:

A(cofactor matrix of A)T =

⎡

⎢⎢⎢
⎣

|A| 0 . . . 0
0 |A| . . . 0
...

...
. . .

...

0 0 0 |A|

⎤

⎥⎥⎥
⎦

and dividing throughout by |A| we have

A(cofactor matrix of A)T

|A| = I,

which implies that

A−1 = (cofactor matrix of A)T

|A| .

Naturally, this assumes that the inverse actually exists.
Let’s find the inverse of the above matrix
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A =
⎡

⎣
i 1 + i 3 − 3i

2 + 2i 1 − i 4 + 4i
4 − 4i 2 + i 2 − 2i

⎤

⎦

(cofactor matrix of A) =
⎡

⎣
−4 − 16i 24 2 + 14i
5 − 3i 2 + 26i 9 − 2i
14i 16 − 4i 1 − 3i

⎤

⎦

(cofactor matrix of A)T =
⎡

⎣
−4 − 16i 5 − 3i 14i

24 2 + 26i 16 − 4i
2 + 14i 9 − 2i 1 − 3i

⎤

⎦

|A| = a11A11 + a12A12 + a13A13

= i(−4 − 16i) + (1 + i)(24) + (3 − 3i)(2 + 14i)

= 16 − 4i + 24 + 24i + 48 + 36i

= 88 + 56i

A−1 = 1

88 + 56i

⎡

⎣
−4 − 16i 5 − 3i 14i

24 2 + 26i 16 − 4i
2 + 14i 9 − 2i 1 − 3i

⎤

⎦ .

Let’s check this result by multiplying A by A−1 which must equal I :

AA−1 = 1

88 + 56i

⎡

⎣
i 1 + i 3 − 3i

2 + 2i 1 − i 4 + 4i
4 − 4i 2 + i 2 − 2i

⎤

⎦

⎡

⎣
−4 − 16i 5 − 3i 14i

24 2 + 26i 16 − 4i
2 + 14i 9 − 2i 1 − 3i

⎤

⎦

= 1

88 + 56i

⎡

⎣
88 + 56i 0 0

0 88 + 56i 0
0 0 88 + 56i

⎤

⎦

=
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ .

Finally, let’s compute the inverse matrix of the following matrix using cofactors:

A =
[
2 + i 3 − 2i
4 − i −1 + i

]

(cofactor matrix of A) =
[ −1 + i −4 + i

−3 + 2i 2 + i

]

(cofactor matrix of A)T =
[−1 + i −3 + 2i

−4 + i 2 + i

]

|A| = (2 + i)(−1 + i) + (3 − 2i)(−4 + i) = −13 + 12i

A−1 = 1

−13 + 12i

[−1 + i −3 + 2i
−4 + i 2 + i

]
.
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Let’s test it:

A−1A = 1

−13 + 12i

[−1 + i −3 + 2i
−4 + i 2 + i

] [
2 + i 3 − 2i
4 − i −1 + i

]

= 1

−13 + 12i

[−13 + 12i 0
0 −13 + 12i

]

=
[
1 0
0 1

]
.

In general, the inverse of a 2 × 2 matrix is given by

A =
[
a11 a12
a21 a22

]

A−1 = 1

a11a22 − a12a21

[
a22 −a12

−a21 a11

]
.

3.2.15 Conjugate Matrix

By definition, the conjugate of a complex number z = a + bi is z = a − bi . Simi-
larly, given an n × m matrix containing complex entries, its conjugate is an n × m
matrix with the sign of the imaginary parts reversed. For example, given A

A =
[
2 + 3i 4 − 5i

−i 1 + 2i

]

its conjugate, A is

A =
[
2 − 3i 4 + 5i

i 1 − 2i

]
.

If A = A then A must be a real matrix.

3.2.16 Normal Matrix

A complex square matrix is normal when

ATA = AAT
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whereas a real square matrix is normal when

ATA = AAT.

For example, A is normal:

A =
⎡

⎣
1 4i 5

−4i 2 3 + 3i
5 3 − 3i 3

⎤

⎦

AT =
⎡

⎣
1 −4i 5
4i 2 3 − 3i
5 3 + 3i 3

⎤

⎦

AT =
⎡

⎣
1 4i 5

−4i 2 3 + 3i
5 3 − 3i 3

⎤

⎦

ATA =
⎡

⎣
1 4i 5

−4i 2 3 + 3i
5 3 − 3i 3

⎤

⎦

⎡

⎣
1 4i 5

−4i 2 3 + 3i
5 3 − 3i 3

⎤

⎦ = AAT.

3.2.17 Conjugate Transpose

Given an n × m matrix A, its conjugate transpose or Hermitian transpose A∗ is
achieved by transposing A and then, conjugating all the entries:

A∗ = AT .

In fact, it should be obvious that reversing the transposition and conjugation has no
effect on the result:

A∗ = A
T
.

For example, given

A =
[

1 4i −2i
−4i 2 3 + 3i

]

then

A =
[
1 −4i 2i
4i 2 3 − 3i

]
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and

A∗ =
⎡

⎣
1 4i

−4i 2
2i 3 − 3i

⎤

⎦ .

Here are some observations regarding such matrices:

1. Reversing the conjugate and transpose operations has no effect on the result.
2. (A + B)∗ = A∗ + B∗, where A and B are n × n matrices.
3. (AB)∗ = B∗A∗, for any m × n matrix A and any n × p matrix B.
4. (A∗)∗ = A, for any m × n matrix A.
5. (zA)∗ = z̄ A∗, for any complex number z and any m × n matrix A.
6. Other names for the conjugate transpose are Hermitian conjugate or adjoint

matrix.

3.2.18 Hermitian Matrix

A Hermitian matrix is a complex square matrix that is equal to its own conjugate

transpose, and is denoted AH. i.e. A = A
T
, or A = AT. It is named after the French

mathematician Charles Hermite (1822–1901), whomade a significant contribution to
mathematics, including a proof for e being a transcendental number. Let’s illustrate
this with an example. Given,

A =
⎡

⎣
1 4i 5

−4i 2 3 + 3i
5 3 − 3i 3

⎤

⎦

then

A =
⎡

⎣
1 −4i 5
4i 2 3 − 3i
5 3 + 3i 3

⎤

⎦

whose transpose A
T
gives the original matrix, A:

A =
⎡

⎣
1 4i 5

−4i 2 3 + 3i
5 3 − 3i 3

⎤

⎦

and makes it a Hermitian matrix.
An important property with Hermitian matrices is that they always have real

eigenvalues. For example, matrix A is Hermitian, and has real eigenvalues λ = 1.5 ±√
65/2:
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A =
[

1 4i
−4i 2

]

and solving the characteristic equation:

∣∣∣∣
1 − λ 4i
−4i 2 − λ

∣∣∣∣ = 0

(1 − λ)(2 − λ) − 16 = 0

λ2 − 3λ − 14 = 0

λ = 3 ± √
9 + 56

2
λ = 1.5 ± √

65/2.

Let’s also show that the above 3 × 3 Hermitian matrix has real eigenvalues.

A =
⎡

⎣
1 4i 5

−4i 2 3 + 3i
5 3 − 3i 3

⎤

⎦

solving the characteristic equation:

∣
∣∣∣∣∣

1 − λ 4i 5
−4i 2 − λ 3 + 3i
5 3 − 3i 3 − λ

∣
∣∣∣∣∣
= 0.

Using Sarrus’s rule:

0 = (1 − λ)(2 − λ)(3 − λ) + 4i(3 + 3i)5 + 5(−4i)(3 − 3i)−
(1 − λ)(3 + 3i)(3 − 3i) − 4i(−4i)(3 − λ) − 5(2 − λ)5

= (2 − 3λ + λ2)(3 − λ) − 60 + 60i − 60 − 60i−
(1 − λ)18 − (48 − 16λ) − (50 − 25λ)

= − λ3 + 6λ2 − 11λ + 6 − 120−
18 + 18λ − 48 + 16λ − 50 + 25λ

= − λ3 + 6λ2 + 48λ − 230

= λ3 − 6λ2 − 48λ + 230.
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Fig. 3.1 Graph of
y = λ3 − 6λ2 − 48λ + 230

Figure3.1 shows the graph of y = λ3 − 6λ2 − 48λ + 230, with real solutions: λ ≈
−6.6, 4.1, 8.5.

Hermitian matrices are rather special and possess many properties:

1. The main diagonal entries have to be real, because they must equal their complex
conjugate.

2. Charles Hermite proved in 1855 that matrices, where A = A
T
, always have real

eigenvalues. He didn’t use this term, as this was coined by Hilbert, 50years later.
3. Hermitian matrices are normal matrices.
4. AH

1 + AH
2 = AH

3 .
5. If AH has an inverse, it is also Hermitian.
6. A matrix such that AH = −A is a skew-Hermitian matrix. See www.wikipedia.

org for a complete overview.

3.2.19 Orthogonal Matrix

The transpose of an orthogonal matrix is also its inverse:

AT = A−1

which makes inverting extremely easy. For example, the following 2D rotation trans-
form is orthogonal:

A =
[
cos θ − sin θ

sin θ cos θ

]

because its transpose is its inverse:

AT =
[

cos θ sin θ

− sin θ cos θ

]
= A−1.

www.wikipedia.org
www.wikipedia.org
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One can prove this by evaluating the product AAT to show that it equals the identity
matrix I :

AAT =
[
cos θ − sin θ

sin θ cos θ

] [
cos θ sin θ

− sin θ cos θ

]

=
[
cos2 θ + sin2 θ 0

0 cos2 + sin2 θ

]

=
[
1 0
0 1

]
= I

which confirms that AT = A−1.
It goes without saying that the identity matrix is orthogonal:

I I T =
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦

⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦

=
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ .

Naturally, a complex matrix can also be orthogonal. For example, the following
matrix satisfies the definition for orthogonality:

A =
[

i
√
2

−√
2 i

]

AAT =
[

i
√
2

−√
2 i

] [
i −√

2√
2 i

]

=
[
1 0
0 1

]
.

3.2.20 Unitary Matrix

A unitary matrix is a complex square matrix whose conjugate transpose is also its
inverse:

ATA = I.
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The following matrix is unitary

A =
⎡

⎢
⎣

1√
2

1√
2

0

− i√
2

i√
2

0

0 0 i

⎤

⎥
⎦

because

AT =
⎡

⎢
⎣

1√
2

− i√
2

0
1√
2

i√
2

0

0 0 i

⎤

⎥
⎦

AT =
⎡

⎢
⎣

1√
2

i√
2

0
1√
2

− i√
2

0

0 0 −i

⎤

⎥
⎦

ATA =
⎡

⎢
⎣

1√
2

i√
2

0
1√
2

− i√
2

0

0 0 −i

⎤

⎥
⎦

⎡

⎢
⎣

1√
2

1√
2

0

− i√
2

i√
2

0

0 0 i

⎤

⎥
⎦

=
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ .

A unitary matrix is also normal, i.e. ATA = AAT.

3.3 Eigenvectors and Eigenvalues

3.3.1 Real Eigenvectors and Eigenvalues

The German mathematician David Hilbert (1862–1943), is associated with coining
the terms eigenwert and eigenvektor in 1904. The English translation of eigen is
proper or characteristic, where an eigenvector is a special vector associated with a
matrix. Let’s begin by defining an eigenvector.

When the following transform A acts upon different vectors, generally, it creates
a vector with a new orientation and length.

A =
[
4 1
1 4

]
.
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For example, if v = [2 3]T, then

Av =
[
4 1
1 4

] [
2
3

]
=

[
11
14

]

which has a different orientation and length to v.
Similarly, if v = [1 − 3]T, then

Av =
[
4 1
1 4

] [
1

−3

]
=

[
1

−11

]

which also has a different orientation and length to v.
However, if v = [2 2]T, then

Av =
[
4 1
1 4

] [
2
2

]
=

[
10
10

]

which has the same orientation as v, and has been stretched by a factor of 5.
Similarly, if v = [2 − 2]T, then

Av =
[
4 1
1 4

] [
2

−2

]
=

[
6

−6

]

which also has the same orientation as v, and has been stretched by a factor of 3.
The two vectors, [2 2]T and [2 − 2]T are the eigenvectors, and the two stretch-

ing factors, 5 and 3, are the associated eigenvalues.
We identify an eigenvector and its eigenvalue as follows. Given a square matrix

A, then a non-zero vector v is an eigenvector, and a scalar λ is the corresponding
eigenvalue if

Av = λv.

The equation that determines the existence of any eigenvectors is called the char-
acteristic equation of a square matrix, and is given by

|A − λI | = 0. (3.4)

Let’s derive the characteristic equation (3.4).
Consider the following matrix A and vector v:

A =
[
a b
c d

]
, v =

[
x
y

]
.



3.3 Eigenvectors and Eigenvalues 77

If v is an eigenvector of A, and λ its associated eigenvalue, then

Av = λv

= λIv

(A − λI )v = 0
[
a − λ b

c d − λ

] [
x
y

]
=

[
0
0

]
.

For a non-zero eigenvector [x y]T to exist, we must have

∣∣∣∣
a − λ b
c d − λ

∣∣∣∣ = 0.

Let’s use this on the matrix A:

A =
[
4 1
1 4

]

then
∣
∣∣∣
4 − λ 1
1 4 − λ

∣
∣∣∣ = 0

(
4 − λ

)2 − 1 = 0

λ2 − 8λ + 16 − 1 = 0

λ2 − 8λ + 15 = 0
(
λ − 5

)(
λ − 3

) = 0.

Thus λ = 5 and λ = 3, are the two eigenvalues, which make the matrix singular, due
to its zero determinant. Figure3.2 shows the graph of the quadratic in λ, with the two
roots.

Fig. 3.2 Graph of
y = λ2 − 8λ + 15
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To discover the associated eigenvectors, we substitute the values of λ in

[
4 − λ 1

1 4 − λ

] [
x
y

]
=

[
0
0

]
.

Let’s start with λ = 5:
[−1 1

1 −1

] [
x
y

]
=

[
0
0

]

which represents the equation y = x or the vector [1 1]T. Note that the equal and
opposite vector [−1 − 1]T is also a solution.

Next, we substitute λ = 3:

[
1 1
1 1

] [
x
y

]
=

[
0
0

]

which represents the equation y = −x or the vector [1 − 1]T. Note that the equal
and opposite vector [−1 1]T is also a solution. Thus we have discovered that the
two eigenvectors are [1 1]T and [1 − 1]T, with their mirror vectors, and their
respective eigenvalues λ = 5 and λ = 3, as predicted.

Figure3.3 shows points on the unit circle, and arrows pointing to their positions
after the matrix operation. The blue arrows align with the eigenvectors, and their
eigenvalues, are the lengths relative to the origin.

The characteristic equation in the above example is a quadratic in λ, as it came
from a 2 × 2 matrix. Increasing the order of the matrix, increases the order of the
polynomial, which sometimes makes it necessary to employ software to evaluate the
eigenvalues and eigenvectors. Both eigenvalues are real positive numbers, but they
can take on a wide range of values, including complex.

A 2 × 2matrix Awill normally give rise to two eigenvalues and two eigenvectors,
but in the case of A = I , (the identity matrix), we have

Fig. 3.3 How points on the
unit circle move to their
transformed positions
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Av = λv

Iv = λIv

v = λv

and λ = ±1. Furthermore, all vectors must be eigenvectors.

3.3.2 Complex Eigenvectors and Eigenvalues

The characteristic equation may have real or complex roots, and if they are complex,
there are no real eigenvectors. For example, let’s examine the following matrix:

A =
[
6 −4
8 −2

]
.

The characteristic equation is

∣∣
∣∣
6 − λ −4
8 −2 − λ

∣∣
∣∣ = (6 − λ)(−2 − λ) − (−4)8 = 0

0 = −12 − 6λ + 2λ + λ2 + 32

= λ2 − 4λ + 20

which has roots given by

λ = 4 ± √
16 − 80

2
= 2 ± 4i

and form a complex conjugate pair. The graph of this quadratic is shown in Fig. 3.4.
To find the corresponding eigenvectors, we substitute each eigenvalue into Av =

λv:

Fig. 3.4 Graph of
y = λ2 − 4λ + 20
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Av = (2 + 4i)v
[
6 −4
8 −2

] [
x
y

]
= (2 + 4i)

[
1 0
0 1

] [
x
y

]

[
4 − 4i −4

8 −(4 + 4i)

] [
x
y

]
=

[
0
0

]

which provides two equations:

(4 − 4i)x − 4y = 0

8x − (4 + 4i)y = 0.

However, the determinant of the associated matrix is zero:

∣∣∣∣
4 − 4i −4

8 −4 − 4i

∣∣∣∣ = 0

and either equation can be used:

(4 − 4i)x − 4y = (1 − i)x − y = 0

y = (1 − i)x . (3.5)

A cunning way to simplify (3.5) is to let k = x :

v =
[
x
y

]
=

[
k

k(1 − i)

]
= k

[
1

1 − i

]

where k is an arbitrary scalar.
Next, we take the second eigenvalue 2 − 4i , and show that the corresponding

eigenvector is

v = k

[
1

1 + i

]
.

We have shown that the eigenvalues and eigenvectors are

λ = 2 + 4i, v =
[

1
1 − i

]

λ = 2 − 4i, v =
[

1
1 + i

]
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now let’s show that Av = λv for both pairs:

Av =
[
6 −4
8 −2

] [
1

1 − i

]
=

[
2 + 4i
6 + 2i

]

λv = (2 + 4i)

[
1

1 − i

]
=

[
2 + 4i

(2 + 4i)(1 − i)

]
=

[
2 + 4i
6 + 2i

]

Av =
[
6 −4
8 −2

] [
1

1 + i

]
=

[
2 − 4i
6 − 2i

]

λv = (2 − 4i)

[
1

1 + i

]
=

[
2 − 4i

(2 − 4i)(1 + i)

]
=

[
2 − 4i
6 − 2i

]
.

In fact, if the square matrix A has real entries and complex eigenvalues, they will
always occur in complex conjugate pairs due to the form of the equation giving the
roots. Furthermore, if

Av = λv

where v is a non-zero eigenvector, then taking complex conjugates:

Av = λv

and as A has real entries, A = A, which means

Av = λv

i.e. the eigenvalues and eigenvectors come in complex conjugate pairs.

3.3.3 Eigenvectors of a Rotation Matrix

We would not expect a rotation transform to have any specific eigenvector, as this
would imply that it shows a rotational preference to certain points. Let’s explore this
transform to see how the characteristic equation behaves.

A =
[
cosβ − sin β

sin β cosβ

]

where β is the angle of rotation.
The characteristic equation is

∣∣
∣∣
cos(β) − λ − sin β

sin β cos(β) − λ

∣∣
∣∣ = 0 (3.6)
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therefore,

(
cos(β) − λ

)2 + sin2 β = 0

λ2 − 2λ cosβ + cos2 β + sin2 β = 0

λ2 − 2λ cosβ + 1 = 0. (3.7)

Equation (3.7) is a quadratic in λ and solved using

λ = −b ± √
b2 − 4ac

2a

where a = 1, b = −2 cosβ, c = 1:

λ = 2 cosβ ± √
4 cos2 β − 4

2

= cosβ ±
√
cos2 β − 1

= cosβ ±
√

− sin2 β

λ1 = cosβ + i sin β

λ2 = cosβ − i sin β.

A problem with trigonometric functions is that they have multiple zero and non-zero
values. So let’s test for these conditions.

(A − λI )v = 0
[
cos(β) − λ − sin β

sin β cos(β) − λ

] [
x
y

]
=

[
0
0

]
.

When β = 0 or π , then λ = 1, and which implies that each non-zero vector v is an
eigenvector.

Now let’s find the eigenvectors for the eigenvalues when β �= 0, starting with
λ1 = cosβ + i sin β.

Using the characteristic equation:

|A − λI | = 0
∣∣∣
∣
cos(β) − λ1 − sin β

sin β cos(β) − λ1

∣∣∣
∣ = 0

∣∣∣∣
−i sin β − sin β

sin β −i sin β

∣∣∣∣ = − sin2 β + sin2 β = 0
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which means that the two associated equations are identical, and either can be used:

−i x sin β − y sin β = i x − y = 0

y = i x .

This is resolved by letting x = k:

v =
[
x
y

]
=

[
k
ki

]
= k

[
1
i

]

where k is an arbitrary scalar.
The corresponding complex eigenvectors are

v1 =
[
1
i

]

v2 =
[

1
−i

]
.

To summarise:
When β = 0 then λ1 = λ2 = 1, and when β = π then λ1 = λ2 = −1, and all

non-zero vectors are eigenvectors.
When β �= 0 then λ1 = cosβ + i sin β with the eigenvector [1 i]T, λ2 =

cosβ − i sin β with the eigenvector [1 − i]T.

3.4 Representing a Complex Number as a Matrix

To illustrate how a complex number is represented by a matrix, we exploit the fact
that a complex number can be represented as an ordered pair or a vector. We also
bear in mind that the product of two matrices must generate the same answer as their
algebraic form. Let’s begin by multiplying two complex numbers z1 and z2 together
to separate their real and imaginary parts.

z1 = a1 + b1i

z2 = a2 + b2i

z1z2 = (a1 + b1i)(a2 + b2i)

= a1a2 − b1b2 + (b1a2 + a1b2)i.

We now represent the product z1z2 and z2 as column vectors, and introduce a 2 × 2
matrix with unknown terms to represent z1:
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[
a1a2 − b1b2
b1a2 + a1b2

]
=

[
A B
C D

] [
a2
b2

]
. (3.8)

It is clear from (3.8) that Aa2 + Bb2 must equal a1a2 − b1b2, which makes A = a1
and B = −b2. Similarly, Ca2 + Db2 must equal b1a2 + a1b2, which makes C = b1
and D = a1. Therefore,

[
a1a2 − b1b2
b1a2 + a1b2

]
=

[
a1 −b1
b1 a1

] [
a2
b2

]
. (3.9)

The 2 × 2 matrix in (3.9) is equivalent to the complex number z1:

a1 + b1i ≡
[
a1 −b1
b1 a1

]
. (3.10)

For example, the complex number 2 + 3i is equivalent to the matrix

2 + 3i ≡
[
2 −3
3 2

]
.

Let’s confirm this further by evaluating the product of two complex numbers alge-
braically and by using matrices.

z1 = 2 + 3i

z2 = 4 + 5i

z1z2 = (2 + 3i)(4 + 5i)

= 8 − 15 + 12i + 10i

= −7 + 22i.

Now using vectors and matrices, where

4 + 5i ≡ [4 5]T

2 + 3i ≡
[
2 −3
3 2

]

therefore,

z1z2 ≡
[
2 −3
3 2

] [
4
5

]

≡
[
8 − 15
12 + 10

]

≡
[−7
22

]
≡ −7 + 22i.
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Let’s explore (3.10) further. The matrix for 1 is

1 ≡
[
1 0
0 1

]

which is the identity matrix and leaves any matrix it multiplies untouched.
The matrix for the imaginary unit i is

i ≡
[
0 −1
1 0

]
. (3.11)

If this is correct, then the square of the matrix must equal another matrix whose effect
is to multiply by −1:

[
0 −1
1 0

] [
0 −1
1 0

]
=

[−1 0
0 −1

]

= −1

[
1 0
0 1

]

and confirms that (3.11) is correct.
Having computed the matrix for i , its inverse is

i−1 ≡
[

0 1
−1 0

]

because

1

a + bi
= (a − bi)

(a − bi)

1

(a + bi)

= a − bi

a2 + b2

and as x = 0 and y = 1 then

1

0 + i
= 0 − i

i−1 ≡
[

0 1
−1 0

]
.
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Multiplying the matrices for i and i−1 must give the identity matrix:

i i−1 ≡
[
0 −1
1 0

] [
0 1

−1 0

]

≡
[
1 0
0 1

]
.

Finally, let x = cos θ , and y = sin θ , to represent the polar form eiθ = cos θ +
i sin θ :

a + bi ≡
[
x −y
y x

]

eiθ = cos θ + i sin θ ≡
[
cos θ − sin θ

sin θ cos θ

]
. (3.12)

The 2 × 2 matrix in (3.12) is known as a rotation matrix, and rotates a position
vector θ about the origin, which is the effect of multiplying a complex number by
cos θ + i sin θ .

Now let’s compute the determinant of the matrix representing a complex number:

z = a + bi

a + bi ≡
[
a −b
b a

]

det

[
a −b
b a

]
= a2 + b2

= |z|2

which is the modulus, squared.

3.5 Complex Algebra Using Matrices

Now that we have the following matrices:

a + bi ≡
[
a −b
b a

]

i ≡
[
0 −1
1 0

]

cos θ + i sin θ ≡
[
cos θ − sin θ

sin θ cos θ

]

we can undertake complex algebra without using i directly.
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For example, let’s compute the product (2 + 4i)(3 + 5i) using matrices.

(2 + 4i)(3 + 5i) ≡
[
2 −4
4 2

] [
3 −5
5 3

]

≡
[
6 − 20 −10 − 12
12 + 10 −20 + 6

]

≡
[−14 −22

22 −14

]

= −14 + 22i.

Now let’s compute the product i(3 cos θ + 2i sin θ) using matrices.

i(3 cos θ + 2i sin θ) ≡
[
0 −1
1 0

] [
3 cos θ −2 sin θ

2 sin θ 3 cos θ

]

≡
[−2 sin θ −3 cos θ

3 cos θ −2 sin θ

]

= −2 sin θ + 3i cos θ.

Finally, the product (2 + 3i)(3 cos θ + 2i sin θ) using matrices.

(2 + 3i)(3 cos θ + 2i sin θ) ≡
[
2 −3
3 2

] [
3 cos θ −2 sin θ

2 sin θ 3 cos θ

]

≡
[
6 cos θ − 6 sin θ −4 sin θ − 9 cos θ

9 cos θ + 4 sin θ −6 sin θ + 6 cos θ

]

= 6(cos θ − sin θ) + (9 cos θ + 4 sin θ)i.

3.6 Complex Vectors

3.6.1 Cartesian Vector Space

Cartesian vectors are normally used to represent physical quantities possessing a
magnitude and direction. The mathematical construct is a linear combination of the
basis vectors, which for �n are

e1 = (1, 0, 0, . . . , 0)

e2 = (0, 1, 0, . . . , 0)

...

en = (0, 0, 0, . . . , 1).
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Any vector v is a linear combination of e1, e2, . . . , en:

v = r1e1 + r2e2 + · · · + rnen where {r1, r2, . . . , rn} ∈ �

and

v = [r1, r2, . . . , rn] .

3.6.2 Complex Vector Space

The complex vector space �n employs the same standard basis, but substitutes com-
plex numbers, instead of real scalars:

v = c1e1 + c2e2 + · · · + cnen, {c1, c2, . . . , cn} ∈ �

and

v = [c1, c2, . . . , cn] .

For example, v is a complex vector in �3:

v =
⎡

⎣
2 + 3i
1 − 4i
3 + 5i

⎤

⎦ .

Complex vectors in �n can be scaled, added and subtracted, just like real vectors in
�n . For example,

u =
⎡

⎣
2 + 3i
1 − 4i
3 + 5i

⎤

⎦ , v =
⎡

⎣
4 + 4i
1 + 4i
5 + 3i

⎤

⎦

u + v =
⎡

⎣
6 + 7i

2
8 + 8i

⎤

⎦

and

(2 + i)u = (2 + i)

⎡

⎣
2 + 3i
1 − 4i
3 + 5i

⎤

⎦
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=
⎡

⎣
(2 + i)(2 + 3i)
(2 + i)(1 − 4i)
(2 + i)(3 + 5i)

⎤

⎦

=
⎡

⎣
1 + 8i
6 − 7i
1 + 13i

⎤

⎦ .

3.6.3 Inner Product in �n

I have included the inner product in�n , also called the Euclidean inner product and
the dot product, to highlight the similarity between �n and �n .

Given two column vectors u and v:

u =

⎡

⎢⎢⎢
⎣

u1
u2
...

un

⎤

⎥⎥⎥
⎦

, v =

⎡

⎢⎢⎢
⎣

v1
v2
...

vn

⎤

⎥⎥⎥
⎦

their inner product is a scalar:

u · v = uTv = [u1, u2, . . . , un]

⎡

⎢⎢⎢
⎣

v1
v2
...

vn

⎤

⎥⎥⎥
⎦

=
n∑

i=1

uivi = u1v1 + u2v2 + · · · + unvn

where {u1, u2, . . . , un, v1, v2, . . . , vn} ∈ �.

The inner product also reveals the angle between u and v:

cos θ = u · v
|u| |v|

where |u| is the length of u, which also equals the Euclidean norm ‖u‖:

‖u‖ = √
u · u

=
√√√√

n∑

i=1

u2i =
√
u21 + u22 + · · · + u2n.
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If u and v are regarded as position vectors for two points, the distance between the
vectors, or points, is d(u, v):

d(u, v) = |u − v|
= √

(u − v) · (u − v)

=
√√√√

n∑

i=1

(ui − vi )2 =
√

(u1 − v1)2 + (u2 − v2)2 + · · · + (un − vn)2.

3.6.4 Inner Product in �n

The inner product in�n is similar to the inner product in�n , but requires the complex
conjugate of one of the vectors:

u =

⎡

⎢⎢⎢
⎣

u1
u2
...

un

⎤

⎥⎥⎥
⎦

, v =

⎡

⎢⎢⎢
⎣

v1
v2
...

vn

⎤

⎥⎥⎥
⎦

their inner product is:

u · v = uTv = [u1, u2, . . . , un]

⎡

⎢⎢
⎢
⎣

v̄1
v̄2
...

v̄n

⎤

⎥⎥
⎥
⎦

=
n∑

i=1

ui v̄i = u1v̄1 + u2v̄2 + · · · + un v̄n

where {u1, u2, . . . , un, v1, v2, . . . , vn} ∈ �.

For example,

u =
⎡

⎣
1 + 2i
2 − 3i
4 + 3i

⎤

⎦ , v =
⎡

⎣
2 − i
3 + 3i
1 + 2i

⎤

⎦

u · v = uTv = [1 + 2i, 2 − 3i, 4 + 3i]
⎡

⎣
2 + i
3 − 3i
1 − 2i

⎤

⎦
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= (1 + 2i)(2 + i) + (2 − 3i)(3 − 3i) + (4 + 3i)(1 − 2i)

= 5i − 3 − 15i + 10 − 5i

= 7 − 15i.

The Euclidean norm of u in �n is

‖u‖ = √
u · u

=
√

|u1|2 + |u2|2 + · · · + |un|2.

For example,

u = [1 + 2i, 2 − 3i, 4 + 3i]
‖u‖ =

√
|1 + 2i |2 + |2 − 3i |2 + |4 + 3i |2

=
√

(12 + 22) + (22 + 32) + (42 + 32)

= √
5 + 13 + 25 = √

43.

The Euclidean distance between u and v is d(u, v):

d(u, v) = |u − v|
= √

(u − v) · (u − v)

=
√√√√

n∑

i=1

|ui − vi |2 =
√

|u1 − v1|2 + |u2 − v2|2 + · · · + |un − vn|2.

For example,

u = [1 + 2i, 2 − 3i, 4 + 3i]
v = [2 − i, 3 + 3i, 1 + 2i]

d(u, v) = |u − v|
= |(−1 + 3i), (−1 − 6i), (3 + i)|
=

√
12 + 32 + 12 + 62 + 32 + 12

= √
1 + 9 + 1 + 36 + 9 + 1 = √

57.

3.6.5 Outer Product in �n

Given two column vectors u and v:
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u =

⎡

⎢⎢⎢
⎣

u1
u2
...

un

⎤

⎥⎥⎥
⎦

, v =

⎡

⎢⎢⎢
⎣

v1
v2
...

vn

⎤

⎥⎥⎥
⎦

where {u1, u2, . . . , un, v1, v2, . . . , vn} ∈ �, their outer product is a matrix:

A = u ⊗ v = uvT

=

⎡

⎢
⎢⎢
⎣

u1
u2
...

un

⎤

⎥
⎥⎥
⎦
[v1, v2, · · · , vn]

=

⎡

⎢⎢⎢
⎣

u1v1 u1v2 · · · u1vn
u2v1 u2v2 · · · u2vn

...
...

. . .
...

unv1 unv2 · · · unvn

⎤

⎥⎥⎥
⎦

.

For example,

u =
⎡

⎣
2
3
4

⎤

⎦ , v =
⎡

⎣
5
6
7

⎤

⎦

u ⊗ v = uvT =
⎡

⎣
2
3
4

⎤

⎦ [5 6 7]

=
⎡

⎣
10 12 14
15 18 21
20 24 28

⎤

⎦ .

3.6.6 Outer Product in �n

The only difference between the outer product in �n and �n is that the transposed
vector is also the complex conjugate. Given two column complex vectors u and v:

u =

⎡

⎢⎢⎢
⎣

u1
u2
...

un

⎤

⎥⎥⎥
⎦

, v =

⎡

⎢⎢⎢
⎣

v1
v2
...

vn

⎤

⎥⎥⎥
⎦
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where {u1, u2, . . . , un, v1, v2, . . . , vn} ∈ �, their outer product is a matrix:

A = u ⊗ v = u
(
v
)T

=

⎡

⎢⎢
⎢
⎣

u1
u2
...

un

⎤

⎥⎥
⎥
⎦
[v1, v2, · · · , vn]

=

⎡

⎢⎢⎢
⎣

u1v1 u1v2 · · · u1vn

u2v1 u2v2 · · · u2vn
...

...
. . .

...

unv1 unv2 · · · unvn

⎤

⎥⎥⎥
⎦

.

For example,

u =
⎡

⎣
2 + 3i
3 + 4i
4 + 5i

⎤

⎦ , v =
⎡

⎣
5 + 6i
6 + 7i
7 + 8i

⎤

⎦

u ⊗ v = u
(
v
)T =

⎡

⎣
2 + 3i
3 + 4i
4 + 5i

⎤

⎦ [5 − 6i 6 − 7i 7 − 8i]

=
⎡

⎣
(2 + 3i)(5 − 6i) (2 + 3i)(6 − 7i) (2 + 3i)(7 − 8i)
(3 + 4i)(5 − 6i) (3 + 4i)(6 − 7i) (3 + 4i)(7 − 8i)
(4 + 5i)(5 − 6i) (4 + 5i)(6 − 7i) (4 + 5i)(7 − 8i)

⎤

⎦

=
⎡

⎣
28 + 3i 33 + 4i 42 + 5i
39 + 2i 46 + 3i 53 + 4i
50 + i 58 + 2i 68 + 3i

⎤

⎦ .

3.7 Summary

This chapter should provide the reader with a good background in matrix algebra,
especially when involving complex numbers. Hopefully, the above examples, and
the following section on Worked Examples, will contextualise the mathematical
definitions.

3.7.1 Summary of Formulae

Symmetric Matrix
The symmetric part of a matrix A is given by
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S = 1
2

(
A + AT

)
.

Anti-Symmetric Matrix
The anti-symmetric part of a matrix A is given by

Q = 1
2

(
A − AT

)
.

Conjugate Matrix
Given a matrix A, its conjugate matrix A has the signs of its imaginary elements
reversed.

Normal Matrix

A complex square matrix A is normal when ATA = AAT.

Eigenvector and Eigenvalue

Given a complex matrix A and vector v, then v is an eigenvector and λ an eigenvalue
when

Av = λv

Av = λv

|A − λI| = 0.

Conjugate Transpose

Given an n × m matrix, its conjugate transpose or Hermitian transpose is A∗ = AT.

Hermitian Matrix

A Hermitian matrix is a complex, square matrix A where A = AT.

Orthogonal Matrix

The transpose of an orthogonal matrix is also its inverse: AT = A−1.

Unitary Matrix

A unitary matrix is a complex square matrix whose conjugate transpose is also its
inverse: ATA = I .

Complex Number as a Matrix

1 ≡
[
1 0
0 1

]
, i ≡

[
0 −1
1 0

]
, a + bi ≡

[
a −b
b a

]

i−1 ≡
[

0 1
−1 0

]
, eiθ ≡

[
cos θ − sin θ

sin θ cos θ

]
, |z|2 = det

[
a −b
b a

]
.

Inner Product in �n

Given two column vectors u and v their scalar inner product is
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u · v = uTv = [u1, u2, . . . , un]

⎡

⎢⎢⎢
⎣

v1
v2
...

vn

⎤

⎥⎥⎥
⎦

=
n∑

i=1

uivi .

Inner Product in �n

Given two column vectors u and v their complex inner product is

u · v = uTv = [u1, u2, . . . , un]

⎡

⎢⎢⎢
⎣

v1

v2
...

vn

⎤

⎥⎥⎥
⎦

=
n∑

i=1

uivi .

Distance Between Two Real Vectors

The distance between two vectors u and v is d(u, v):

d(u, v) = |u − v| = √
(u − v) · (u − v) =

√√√√
n∑

i=1

(ui − vi )2

Distance Between Two Complex Vectors

The distance between two complex vectors u and v is d(u, v):

d(u, v) = |u − v| = √
(u − v) · (u − v) =

√√√
√

n∑

i=1

|ui − vi |2

Outer Product in �n

Given two real column vectors u and v, their outer product is

A = u ⊗ v = uvT

=

⎡

⎢
⎢⎢
⎣

u1
u2
...

un

⎤

⎥
⎥⎥
⎦
[v1, v2, . . . , vn]

=

⎡

⎢⎢
⎢
⎣

u1v1 u1v2 · · · u1vn
u2v1 u2v2 · · · u2vn

...
...

. . .
...

unv1 unv2 · · · unvn

⎤

⎥⎥
⎥
⎦

.
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Outer Product in �n

Given two complex column vectors u and v, their outer product is

A = u ⊗ v = u
(
v
)T

=

⎡

⎢
⎢⎢
⎣

u1
u2
...

un

⎤

⎥
⎥⎥
⎦
[v1, v2, . . . , vn]

=

⎡

⎢⎢
⎢
⎣

u1v1 u1v2 · · · u1vn

u2v1 u2v2 · · · u2vn
...

...
. . .

...

unv1 unv2 · · · unvn

⎤

⎥⎥
⎥
⎦

.

3.8 Worked Examples

3.8.1 Matrix Scaling

Scale matrix A by −10i .

A =
[ −9i 100i
1 + i 4i

]
.

Solution: Multiply all the elements of A by −10i .

−10i A =
[ −90 1000
10 − 10i 40

]
.

3.8.2 Common Factor

Identify the common factor of matrix A.

A =
[
4i −12i
32 40i

]
.

Solution: 4i is the common factor of the elements of A.

A = 4i

[
1 −3

−8i 10

]
.
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3.8.3 Matrix Multiplication

Compute the product AB.

A =
[
2 + i 2 − i
5 4 + 5i

]
, B =

[
3 + i 4 − i
2 + 3i 5 + 2i

]
.

Solution: Expand the product AB according to the rules of matrix algebra.

AB =
[
2 + i 2 − i
5 4 + 5i

] [
3 + i 4 − i
2 + 3i 5 + 2i

]

=
[

(2 + i)(3 + i) + (2 − i)(2 + 3i) (2 + i)(4 − i) + (2 − i)(5 + 2i)
5(3 + i) + (4 + 5i)(2 + 3i) 5(4 − i) + (4 + 5i)(5 + 2i)

]

=
[

(5 + 5i) + (7 + 4i) (9 + 2i) + (12 − i)
(15 + 5i) + (−7 + 22i) (20 − 5i) + (10 + 33i)

]

=
[
12 + 9i 21 + i
8 + 27i 30 + 28i

]
.

3.8.4 Determinant of a Matrix

Find the determinant of A.

A =
⎡

⎣
i 2 + 2i 3 + 3i

1 + 2i 2 + 3i 3 + 4i
1 + 3i 2 + 4i 3 + 5i

⎤

⎦ .

Solution: Use Sarrus’s rule.

det[A] = i(2 + 3i)(3 + 5i) + (2 + 2i)(3 + 4i)(1 + 3i) + (3 + 3i)(1 + 2i)(2 + 4i)

− (1 + i)(3 + 4i)(2 + 4i) − (2 + 2i)(1 + 2i)(3 + 5i) − (3 + 3i)(2 + 3i)(1 + 3i)

= i(−9 + 19i) + (2 + 2i)(−9 + 13i) + (3 + 3i)(−6 + 8i)

− i(−10 + 20i) − (2 + 2i)(−7 + 11i) − (3 + 3i)(−7 + 9i)

= (−19 − 9i) + (−44 + 8i) + (−42 + 6i) − (−20 − 10i) − (−36 + 8i) − (−48 + 6i)

= −1 + i.

3.8.5 Transpose Matrix

State the transpose of matrix A.
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A =
⎡

⎣
i 2 + 2i 3 + 3i

1 + 2i 2 + 3i 3 + 4i
1 + 3i 2 + 4i 3 + 5i

⎤

⎦ .

Solution: Exchange A’s rows and columns.

AT =
⎡

⎣
i 1 + 2i 1 + 3i

2 + 2i 2 + 3i 2 + 4i
3 + 3i 3 + 4i 3 + 5i

⎤

⎦ .

3.8.6 Symmetric Matrix

Compute the symmetric part of A.

A =
⎡

⎣
i 2 + 2i 3 + 3i

1 + 2i 2 + 3i 3 + 4i
1 + 3i 2 + 4i 3 + 5i

⎤

⎦ .

Solution: Use S to compute the symmetric part of A.

S =

⎡

⎢
⎢⎢
⎣

a11
s3
2

s2
2s3

2
a22

s1
2s2

2

s1
2

a33

⎤

⎥
⎥⎥
⎦

where

s1 = a23 + a32 = 3 + 4i + 2 + 4i = 5 + 8i

s2 = a13 + a31 = 3 + 3i + 1 + 3i = 4 + 6i

s3 = a12 + a21 = 2 + 2i + 1 + 2i = 3 + 4i

S =
⎡

⎣
i 1.5 + 2i 2 + 3i

1.5 + 2i 2 + 3i 2.5 + 4i
2 + 3i 2.5 + 4i 3 + 5i

⎤

⎦ .

3.8.7 Anti-symmetric Matrix

Compute the anti-symmetric part of A and show that together with the symmetric
part, creates A.
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A =
⎡

⎣
i 2 + 2i 3 + 3i

1 + 2i 2 + 3i 3 + 4i
1 + 3i 2 + 4i 3 + 5i

⎤

⎦ .

Solution: Use Q to compute the anti-symmetric part of A.

Q =

⎡

⎢
⎢⎢⎢
⎣

0
q3
2

−q2
2

−q3
2

0
q1
2

q2
2

−q1
2

0

⎤

⎥
⎥⎥⎥
⎦

where

q1 = a23 − a32 = (3 + 4i) − (2 + 4i) = 1

q2 = a31 − a13 = (1 + 3i) − (3 + 3i) = −2

q3 = a12 − a21 = (2 + 2i) − (1 + 2i) = 1

Q =
⎡

⎣
0 0.5 1

−0.5 0 0.5
−1 −0.5 0

⎤

⎦ .

S + Q =
⎡

⎣
i 1.5 + 2i 2 + 3i

1.5 + 2i 2 + 3i 2.5 + 4i
2 + 3i 2.5 + 4i 3 + 5i

⎤

⎦ +
⎡

⎣
0 0.5 1

−0.5 0 0.5
−1 −0.5 0

⎤

⎦

A =
⎡

⎣
i 2 + 2i 3 + 3i

1 + 2i 2 + 3i 3 + 4i
1 + 3i 2 + 4i 3 + 5i

⎤

⎦ .

3.8.8 Cofactor Matrix

Determine the cofactor matrix for A.

A =
⎡

⎣
i 2 + 2i 3 + 3i

1 + 2i 2 + 3i 3 + 4i
1 + 3i 2 + 4i 3 + 5i

⎤

⎦ .

Solution: Use the following cofactor template.
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cofactor matrix of A =
⎡

⎣
A11 A12 A13

A21 A22 A23

A31 A32 A33

⎤

⎦

where

A11 = +
∣∣∣∣
a22 a23
a32 a33

∣∣∣∣ = +
∣∣∣∣
2 + 3i 3 + 4i
2 + 4i 3 + 5i

∣∣∣∣ = 1 − i

A12 = −
∣∣∣
∣
a21 a23
a31 a33

∣∣∣
∣ = −

∣∣∣
∣
1 + 2i 3 + 4i
1 + 3i 3 + 5i

∣∣∣
∣ = −2 + 2i

A13 = +
∣∣∣∣
a21 a22
a31 a32

∣∣∣∣ = +
∣∣∣∣
1 + 2i 2 + 3i
1 + 3i 2 + 4i

∣∣∣∣ = 1 − i

A21 = −
∣∣∣
∣
a12 a13
a32 a33

∣∣∣
∣ = −

∣∣∣
∣
2 + 2i 3 + 3i
2 + 4i 3 + 5i

∣∣∣
∣ = −2 + 2i

A22 = +
∣∣∣∣
a11 a13
a31 a33

∣∣∣∣ = +
∣∣∣∣

i 3 + 3i
1 + 3i 3 + 5i

∣∣∣∣ = 1 − 9i

A23 = −
∣∣∣
∣
a11 a12
a31 a32

∣∣∣
∣ = −

∣∣∣
∣

i 2 + 2i
1 + 3i 2 + 4i

∣∣∣
∣ = 6i

A31 = +
∣∣∣∣
a12 a13
a22 a23

∣∣∣∣ = +
∣∣∣∣
2 + 2i 3 + 3i
2 + 3i 3 + 4i

∣∣∣∣ = 1 − i

A32 = −
∣∣∣
∣
a11 a13
a21 a23

∣∣∣
∣ = −

∣∣∣
∣

i 3 + 3i
1 + 2i 3 + 4i

∣∣∣
∣ = 1 + 6i

A33 = +
∣∣∣∣
a11 a12
a21 a22

∣∣∣∣ = +
∣∣∣∣

i 2 + 2i
1 + 2i 2 + 3i

∣∣∣∣ = −1 − 4i

therefore, the cofactor matrix of A is

⎡

⎣
1 − i −2 + 2i 1 − i

−2 + 2i 1 − 9i 6i
1 − i 1 + 6i −1 − 4i

⎤

⎦ .

3.8.9 Inverse Matrix

Find the inverse of matrix A using the determinant and cofactor matrix from above.

A =
⎡

⎣
i 2 + 2i 3 + 3i

1 + 2i 2 + 3i 3 + 4i
1 + 3i 2 + 4i 3 + 5i

⎤

⎦ .
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Solution: Invert matrix A using the cofactor matrix algorithm.

(cofactor matrix of A) =
⎡

⎣
1 − i −2 + 2i 1 − i

−2 + 2i 1 − 9i 6i
1 − i 1 + 6i −1 − 4i

⎤

⎦

(cofactor matrix of A)T =
⎡

⎣
1 − i −2 + 2i 1 − i

−2 + 2i 1 − 9i 1 + 6i
1 − i 6i −1 − 4i

⎤

⎦

|A| = −1 + i

A−1 = 1

−1 + i

⎡

⎣
1 − i −2 + 2i 1 − i

−2 + 2i 1 − 9i 1 + 6i
1 − i 6i −1 − 4i

⎤

⎦

= −1 − i

2

⎡

⎣
1 − i −2 + 2i 1 − i

−2 + 2i 1 − 9i 1 + 6i
1 − i 6i −1 − 4i

⎤

⎦

=
⎡

⎣
−1 2 −1
2 −5 + 4i 2.5 − 3.5i

−1 3 − 3i −1.5 + 2.5i

⎤

⎦ .

Let’s check this result by multiplying A by A−1 which must equal I :

AA−1 =
⎡

⎣
i 2 + 2i 3 + 3i

1 + 2i 2 + 3i 3 + 4i
1 + 3i 2 + 4i 3 + 5i

⎤

⎦

⎡

⎣
−1 2 −1
2 −5 + 4i 2.5 − 3.5i

−1 3 − 3i −1.5 + 2.5i

⎤

⎦

a11 = −i + 2(2 + 2i) − (3 + 3i) = 1

a12 = 2i + (2 + 2i)(−5 + 4i) + (3 + 3i)(3 − 3i) = 0

a13 = −i + (2 + 2i)(2.5 − 3.5i) + (3 + 3i)(−1.5 + 2.5i) = 0

a21 = −(1 + 2i) + 2(2 + 3i) − (3 + 4i) = 0

a22 = 2(1 + 2i) + (2 + 3i)(−5 + 4i) + (3 + 4i)(3 − 3i) = 1

a23 = −(1 + 2i) + (2 + 3i)(2.5 − 3.5i) + (3 + 4i)(−1.5 + 2.5i) = 0

a31 = −(1 + 3i) + 2(2 + 4i) − (3 + 5i) = 0

a32 = 2(1 + 3i) + (2 + 4i)(−5 + 4i) + (3 + 5i)(3 − 3i) = 0

a33 = −(1 + 3i) + (2 + 4i)(2.5 − 3.5i) + (3 + 5i)(−1.5 + 2.5i) = 1

=
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ .
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3.8.10 Conjugate Matrix

State the conjugate matrix of A.

A =
⎡

⎣
1 − 2i 2 3 + 2i
−3i i 2 − 4i
3 −2i 4 + 2i

⎤

⎦ .

Solution: Conjugate the individual elements of A.

A =
⎡

⎣
1 + 2i 2 3 − 2i
3i −i 2 + 4i
3 2i 4 − 2i

⎤

⎦ .

3.8.11 Complex Eigenvectors and Eigenvalues

Find the eigenvectors and eigenvalues for matrix A.

A =
[
6 −1
17 −2

]
.

Solution: Solve the characteristic equation to determine the eigenvectors and eigen-
values. The characteristic equation is

∣∣∣
∣
6 − λ −1
17 −2 − λ

∣∣∣
∣ = (6 − λ)(−2 − λ) − (−1)17 = 0

0 = −12 − 6λ + 2λ + λ2 + 17

= λ2 − 4λ + 5

which has roots given by

λ = 4 ± √
16 − 20

2
= 2 ± i

and form a complex conjugate pair.
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Av = (2 + i)v
[
6 −1
17 −2

] [
x
y

]
= (2 + i)

[
1 0
0 1

] [
x
y

]

[
4 − i −1
17 −(4 + i)

] [
x
y

]
=

[
0
0

]

which provides two equations:

(4 − i)x − y = 0

17x − (4 + i)y = 0.

However, the determinant of the associated matrix is zero:

∣∣∣∣
4 − i −1
17 −4 − i

∣∣∣∣ = 0

and either equation can be used:

y = (4 − i)x . (3.13)

To simplify (3.13) let k = x :

v =
[
x
y

]
=

[
k

k(4 − i)

]
= k

[
1

4 − i

]

where k is an arbitrary scalar.
The second eigenvalue 2 − i , has a corresponding eigenvector:

v = k

[
1

4 + i

]
.

The eigenvalues and eigenvectors are

λ = 2 + i, v =
[

1
4 − i

]

λ = 2 − i, v =
[

1
4 + i

]

now let’s show that Av = λv for both pairs:
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Av =
[
6 −1
17 −2

] [
1

4 − i

]
=

[
6 − 4 + i

17 − 8 + 2i

]
=

[
2 + i
9 + 2i

]

λv =(2 + i)

[
1

4 − i

]
=

[
2 + i

(2 + i)(4 − i)

]
=

[
2 + i
9 + 2i

]
,

Av =
[
6 −1
17 −2

] [
1

4 + i

]
=

[
6 − 4 − i

17 − 8 − 2i

]
=

[
2 − i
9 − 2i

]

λv =(2 − i)

[
1

4 + i

]
=

[
2 − i

(2 − i)(4 + i)

]
=

[
2 − i
9 − 2i

]
.

3.8.12 Conjugate Transpose Matrix

Find the conjugate transpose of A.

A =

⎡

⎢⎢
⎣

2 − 3i −i 4
4 + 2i 6i 0
2 + 5i 2 + 2i 3 + 3i

1 3i 9 + 9i

⎤

⎥⎥
⎦ .

Solution:Conjugate the individual elements of A and transpose the rows and columns.

A =

⎡

⎢⎢
⎣

2 + 3i i 4
4 − 2i −6i 0
2 − 5i 2 − 2i 3 − 3i

1 −3i 9 − 9i

⎤

⎥⎥
⎦

A
T =

⎡

⎣
2 + 3i 4 − 2i 2 − 5i 1

i −6i 2 − 2i −3i
4 0 3 − 3i 9 − 9i

⎤

⎦ .

3.8.13 Hermitian Matrix

Show that A is a Hermitian matrix and B is not.

A =
⎡

⎣
1 1 + 4i 5i

1 − 4i 2 8 + 3i
−5i 8 − 3i 0

⎤

⎦ , B =
⎡

⎣
1 1 + 4i 5i

1 − 4i 2 8 + 3i
−5i 8 − 3i 2i

⎤

⎦ .

Solution: Show that A
T = A and B

T �= B.
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Find A

A =
⎡

⎣
1 1 − 4i −5i

1 + 4i 2 8 − 3i
5i 8 + 3i 0

⎤

⎦

whose transpose A
T
is

A
T =

⎡

⎣
1 1 + 4i 5i

1 − 4i 2 8 + 3i
−5i 8 − 3i 0

⎤

⎦ = A = AH.

Find B

B =
⎡

⎣
1 1 − 4i −5i

1 + 4i 2 8 − 3i
5i 8 + 3i −2i

⎤

⎦

whose transpose B
T
is

B
T =

⎡

⎣
1 1 + 4i 5i

1 − 4i 2 8 + 3i
−5i 8 − 3i −2i

⎤

⎦ �= B �= BH.

3.8.14 Orthogonal Matrix

Show that A is orthogonal.

A =
⎡

⎣
i

√
2 0

−√
2 i 0

0 0 −i

⎤

⎦ .

Solution: Show that AAT = I .

AAT =
⎡

⎣
i

√
2 0

−√
2 i 0

0 0 −i

⎤

⎦

⎡

⎣
i −√

2 0√
2 i 0
0 0 −i

⎤

⎦

=
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ = I.

Therefore, A is orthogonal.
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3.8.15 Unitary Matrix

Show that A is a unitary matrix.

A =

⎡

⎢⎢
⎣

1√
2

1√
2

0

− i√
2

i√
2

0

0 0 −i

⎤

⎥⎥
⎦

Solution: Show that ATA = AAT = I .

AT =

⎡

⎢⎢
⎣

1√
2

− i√
2

0

1√
2

i√
2

0

0 0 −i

⎤

⎥⎥
⎦

AT =

⎡

⎢⎢
⎣

1√
2

i√
2

0

1√
2

− i√
2

0

0 0 i

⎤

⎥⎥
⎦

ATA =

⎡

⎢⎢
⎣

1√
2

i√
2

0

1√
2

− i√
2

0

0 0 −i

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

1√
2

1√
2

0

− i√
2

i√
2

0

0 0 −i

⎤

⎥⎥
⎦ =

⎡

⎢
⎣

1 0 0

0 1 0

0 0 1

⎤

⎥
⎦

AAT =

⎡

⎢⎢
⎣

1√
2

1√
2

0

− i√
2

i√
2

0

0 0 −i

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

1√
2

i√
2

0

1√
2

− i√
2

0

0 0 −i

⎤

⎥⎥
⎦ =

⎡

⎢
⎣

1 0 0

0 1 0

0 0 1

⎤

⎥
⎦

therefore, A is a unitary matrix.

3.8.16 Complex Vector Addition

Given u, v and w, compute u + v, u + w and v + w.

u =

⎡

⎢⎢
⎣

2 − 3i
1 + 4i
3 + 5i

i

⎤

⎥⎥
⎦ , v =

⎡

⎢⎢
⎣

4 − 4i
6 + 4i
5 + 3i

3

⎤

⎥⎥
⎦ , w =

⎡

⎢⎢
⎣

2
6 − 4i

−5 − 3i
−i

⎤

⎥⎥
⎦ .

Solution: Add the respective elements.
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u + v =

⎡

⎢⎢
⎣

6 − 7i
7 + 8i
8 + 8i
3 + i

⎤

⎥⎥
⎦ , u + w =

⎡

⎢⎢
⎣

4 − 3i
7

−2 + 2i
0

⎤

⎥⎥
⎦ , v + w =

⎡

⎢⎢
⎣

6 − 4i
12
0

3 − i

⎤

⎥⎥
⎦ .

3.8.17 Complex Inner Product

Find the inner product of u and v.

u =
⎡

⎣
2 + 2i
3 − 3i
5 + 3i

⎤

⎦ , v =
⎡

⎣
3 − i
4 + 3i
1 + 2i

⎤

⎦ .

Solution: Multiply u and v using uTv.

u · v = uTv = [2 + 2i, 3 − 3i, 5 + 3i]
⎡

⎣
3 + i
4 − 3i
1 − 2i

⎤

⎦

= (2 + 2i)(3 + i) + (3 − 3i)(4 − 3i) + (5 + 3i)(1 − 2i)

= 4 + 8i + 3 − 21i + 11 − 7i

= 18 − 20i.

3.8.18 Complex Norm

Find the complex norms of u and v.

u =
⎡

⎣
2 + 2i
3 − 3i
5 + 3i

⎤

⎦ , v =
⎡

⎣
3 − i
4 + 3i
1 + 2i

⎤

⎦ .

Solution: For each vector, take the square-root of the sum of the squares of the norms.

‖u‖ =
√

|2 + 2i |2 + |3 − 3i |2 + |5 + 3i |2

=
√(

22 + 22
) + (

32 + 32
) + (

52 + 32
)

= √
8 + 18 + 34 = √

60.
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‖v‖ =
√

|3 − i |2 + |4 + 3i |2 + |1 + 2i |2

=
√(

32 + 12
) + (

42 + 32
) + (

12 + 22
)

= √
10 + 25 + 5 = √

40.

3.8.19 Distance Between Complex Vectors

Find the distance between u and v.

u =
⎡

⎣
2 + 2i
3 − 3i
5 + 3i

⎤

⎦ , v =
⎡

⎣
3 − i
4 + 3i
1 + 2i

⎤

⎦ .

Solution: Use d(u, v) = |u − v|.

d(u, v) = |u − v|
= |(−1 + 3i), (−1 − 6i), (3 + i)|
=

√
12 + 32 + 12 + 62 + 32 + 12

= √
1 + 9 + 1 + 36 + 9 + 1 = √

57.

3.8.20 Complex Outer Product

Compute u ⊗ v.

u =
⎡

⎣
1 + i
2 + 2i
3 + 3i

⎤

⎦ , v =
⎡

⎣
1 − i
2 − 2i
3 − 3i

⎤

⎦ .

Solution: Use u ⊗ v = u
(
v
)T
.
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u ⊗ v = u
(
v
)T =

⎡

⎣
1 + i
2 + 2i
3 + 3i

⎤

⎦ [1 − i 2 − 2i 3 − 3i]

=
⎡

⎣
(1 + i)(1 − 1i) (1 + i)(2 − 2i) (1 + i)(3 − 3i)
(2 + 2i)(1 − i) (2 + 2i)(2 − 2i) (2 + 2i)(3 − 3i)
(3 + 3i)(1 − i) (3 + 3i)(2 − 2i) (3 + 3i)(3 − 3i)

⎤

⎦

=
⎡

⎣
2 4 6
4 8 12
6 12 18

⎤

⎦ .

Reference
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Chapter 4
Quaternions

4.1 Introduction

In this chapter I describe the invention of quaternions by Sir William Rowan Hamil-
ton, and their associated complex algebra. However, as so often happens in mathe-
matics, someone-else had already touched upon the subject before Hamilton, as we
shall see. If you are interested in the historical development of quaternions, vectors
and geometric algebra, then youmust readMichael Crowe’s bookAHistory of Vector
Analysis [1].

Quaternions are a natural extension to complex numbers and have a variety
of forms and operations such as pure, unit, binary, inverse, etc., all of which are
described. The chapter containsmanyworked examples, and leads the reader towards
the point where they can be used to rotate vectors in �3.

4.1.1 History of Quaternions

In Chap.1 we saw how Wessel and Argand both invented the complex plane, and
used it to visualise complex numbers. It was unfortunate for both men that they
didn’t have access to today’s ubiquitous publishing network, and the world-wide
web. Nevertheless, priority was – and still is – decided by who gets to the printing
presses first. But as we saw with Wessel, even being first into print didn’t guarantee
fame.

A similar story surrounds the invention of quaternions. SirWilliamRowanHamil-
ton is recognised as the inventor of quaternion algebra, which became the first non-
commutative algebra to be discovered. One can imagine the elation he felt when
finding a solution to a problem he had been thinking about for over a decade!

The invention provided the first mathematical framework for manipulating vecto-
rial quantities, although this was to be refined by the American theoretical physicist,
chemist, and mathematician, Josiah Willard Gibbs (1839–1903). Although Hamil-
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ton had arrived at his invention through an algebraic route, it was obvious to him
that quaternions had significant geometric potential, and he immediately started to
explore their vectorial and rotational properties.

Unbeknown to Hamilton – and virtually everyone else at the time – the French
social reformer, and brilliant recreationalmathematicianBenjaminOlindeRodrigues
(1795–1851), had already published a paper in 1840 describing how to represent two
successive rotations about different axes, by a single rotation about a third axis [2].
What is more, Rodrigues expressed his solution using a scalar and a 3D axis, which
pre-empted Hamilton’s own approach using a scalar and a vector, by three years!
Simon Altmann has probably done more than any other person to set this record
straight, and has published his views widely [3–6]. However, for the moment, let’s
continue with Hamilton’s imaginary algebra.

The very existence of complex numbers presented a tantalising question for math-
ematicians of the 18 and 19th centuries. Could there be a 3D equivalent? The answer
to this question was not obvious, and many gifted mathematicians, including Gauss,
Möbius, Grassmann, and Hamilton had been searching for the answer.

Hamilton’s research is well documented and covers a period from the early 1830s
to 1843, when he invented quaternions. And for a further 22 years, until his death
in 1865, he was preoccupied with the subject. By 1833 he had shown that complex
numbers form an algebra of couples, i.e. ordered pairs [7].

As a 2D complex number is represented by a + bi , Hamilton conjectured that a
3D complex number could be represented by the triple, a + bi + cj , where i2 and
j2 are imaginary units that equal −1. However, the product of two such triples raises
a problem with their algebraic expansion:

z1 = a1 + b1i + c1 j

z2 = a2 + b2i + c2 j

z1z2 = (a1 + b1i + c1 j)(a2 + b2i + c2 j)

= a1a2 + a1b2i + a1c2 j

+ b1a2i + b1b2i
2 + b1c2i j + c1a2 j + c1b2 j i + c1c2 j

2

= (a1a2 − b1b2 − c1c2) + (a1b2 + b1a2)i + (a1c2 + c1a2) j + b1c2i j + c1b2 j i

the operation almost closes – apart from the terms involving i j and j i . Even if we
assume that j i = −i j , we are still left with

(b1c2 − c1b2)i j.

This presented a real problem for Hamilton and he toiled for over a decade trying to
resolve it. Then, on 16 October, 1843, whilst walking with his wife, Lady Hamilton,
along the Royal Canal in Ireland to preside at a meeting of the Royal Irish Academy
[8], a flash of inspiration came to him where he saw the solution as a quadruple,
rather than a triple. Instead of using two imaginary terms, three terms provided the
extra permutations necessary to resolve products like i j .
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The solution was z = a + bi + cj + dk where i2 = j2 = k2 = −1. And because
of the four terms, Hamilton gave the name quaternion. Hamilton took the opportunity
to record the event in stone, by carving the rules into thewall of Broome bridge,which
he was passing at the time. Although his original inscription has not withstood years
of Irish weather, a more permanent plaque now replaces it.

When Hamilton invented quaternions, he also created all sorts of names such
as tensor, versor and vector to describe their attributes. As the inventor, it was
Hamilton’s prerogative to choose whatever names he wanted, and at the time, such
names were associated with the notation of the period. For example, he called the
quaternion’s real part a scalar, and the imaginary part a vector. However today, a
vector does not have any imaginary associations, which has slightly confused how
quaternions are interpreted.

Let’s examine the algebra of quaternions which form the set � in recognition of
Hamilton’s achievement.

4.2 Some Algebraic History

Hamilton defined a quaternion q, and its associated rules as

q = s + ia + jb + kc, {s, a, b, c} ∈ �

and

i2 = j2 = k2 = i jk = −1

i j = k, jk = i, ki = j

j i = −k, k j = −i, ik = − j

References [9–11]; but today, we tend to write a quaternion as

q = s + ai + bj + ck.

Observe from Hamilton’s rules, Table 4.1, how the occurrence of i j is replaced
by k, and j i = −k. The extra imaginary k term is key to the cyclic patterns i j = k,
jk = i , and ki = j , which are very similar to the cross product of two unit Cartesian
vectors:

i × j = k, j × k = i, k × i = j.

In fact, this similarity is no coincidence, as Hamilton also invented the scalar and
vector products. However, although quaternions provide an algebraic framework to
describe vectors, one must acknowledge that vectorial quantities had been studied
for many years prior to Hamilton.
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Table 4.1 Multiplication table for quaternion imaginaries

i j k

i −1 k − j

j −k −1 i

k j −i −1

Hamilton also saw that the i, j, k terms could represent threeCartesian unit vectors
i, j and k, which had to possess imaginary qualities. i.e. i2 = −1, etc., which didn’t
go down well with some mathematicians and scientists who were suspicious of the
need to involve so many imaginary terms.

Hamilton’s motivation to search for a 3D equivalent of complex numbers was
part algebraic, and part geometric. For as a complex number can be represented by a
couple (an ordered pair), and is capable of rotating points on the complex plane, then
perhaps a triple could rotate points in space? In the end, a triple had to be replaced
by a a quadruple – a quaternion.

One can regard Hamilton’s rules from two perspectives. The first, is that they
are an algebraic consequence of combining three imaginary terms. The second, is
that they reflect an underlying geometric structure of space. The latter interpretation
was adopted by P. G. Tait, and outlined in his book An Elementary Treatise on
Quaternions. Tait’s approach assumes three unit vectors i, j, k aligned with the x-,
y-, z-axis respectively:

The result of the multiplication of i into j or ij is defined to be the turning of j through a right
angle in the plane perpendicular to i in the positive direction, in other words, the operation
of i on j turns it round so as to make it coincide with k; and therefore briefly ij = k.

To be consistent it is requisite to admit that if i instead of operating on j had operated on
any other unit vector perpendicular to i in the plane yz, it would have turned it through a
right-angle in the same direction, so that ik can be nothing else than −j.

Extending to other unit vectors the definition which we have illustrated by referring to i, it
is evident that j operating on k must bring it round to i, or jk = i [12].

Tait’s explanation is illustrated in Fig. 4.1a–d. Figure 4.1a shows the original align-
ment of i, j,k. Figure4.1b shows the effect of turning j into k. Figure4.1c shows the
turning of k into i, and Fig. 4.1d shows the turning of i in to j.

So far, there is no mention of imaginary quantities – we just have

ij = k, jk = i, ki = j
ji = −k, kj = −i, ik = −j.

If we assume that these vectors obey the distributive and associative axioms of
algebra, their imaginary qualities are exposed. For example:

ij = k



4.2 Some Algebraic History 115

y

xz
i

j

k

y

xz
i

j

k

jk

y

xz
i

j

k

ki

y

xz
i

j

k

ij

(a) (b)

(c) (d)

Fig. 4.1 Interpreting the products ij, jk, ki

and multiplying throughout by i:

iij = ik = −j

therefore,

ii = i2 = −1.

Similarly, we can show that j2 = k2 = −1.
Next:

ijk = i(jk) = ii = i2 = −1.

Thus, simply by declaring the action of the cross-product, Hamilton’s rules
emerge, with all of their imaginary features. Tait also made the following obser-
vation:

A very curious speculation, due to Servois, and published in 1813 in Gergonne’s Annales
is the only one, so far has been discovered, in which the slightest trace of an anticipation
of Quaternions is contained. Endeavouring to extend to space the form a + b

√−1 for the
plane, he is guided by analogy to write a directed unit-line in space the form

p cosα + q cosβ + r cos γ,
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where α, β, γ are its inclinations to the three axes. He perceives easily that p, q, r must
be non-reals : but, he asks, ‘seraient-elles imaginaires réductibles à la forme générale
A + B

√−1?’ This could not be the answer. In fact they are the i, j,k of the Quaternion
Calculus [12].

So the French mathematician François-Joseph Servois (1768–1847), was another
person who came very close to discovering quaternions. Furthermore, both Tait and
Hamilton were apparently unaware of the paper published by Rodrigues.

And it doesn’t stop there.Gausswas extremely cautious, and nervous of publishing
anything too revolutionary, just in case he was ridiculed by fellow mathematicians.
His diaries reveal that he had anticipated non-Euclidean geometry ahead of Nikolai
Ivanovich Lobachevsky. And in a short note from his diary in 1819 [13] he reveals
that he had identified a method of finding the product of two quadruples (a, b, c, d)

and (α, β, γ, δ) as:

(A, B,C, D) = (a, b, c, d)(α, β, γ, δ)

= (aα − bβ − cγ − dδ, aβ + bα − cδ + dγ,

aγ + bδ + cα − dβ, aδ − bγ + cβ + dα).

At first glance, this result does not look like a quaternion product, but transposing
the second and third coordinates of the quadruples, and treating them as quaternions,
we have

(A, B,C, D) = (a + ci + bj + dk)(α + γ i + β j + δk)

= aα − cγ − bβ − dδ + a(γ i + β j + δk)

+ α(ci + bj + dk), (bδ − dβ)i + (dγ − cδ) j + (cβ − bγ )k

which is identical toHamilton’s quaternionproduct! Furthermore,Gauss also realised
that the product was non-commutative. However, he did not publish his findings, and
it was left to Hamilton to invent quaternions for himself, publish his results and take
the credit.

In 1881 and 1884, Josiah Willard Gibbs, at Yale University, printed his lecture
notes on vector analysis for his students. Gibbs had cut the “umbilical cord” between
the real and vector parts of a quaternion and raised the 3D vector as an independent
object without any imaginary connotations. Gibbs also took on board the ideas of the
German mathematician Hermann Günter Grassmann (1809–1877), who had been
developing his own ideas for a vectorial system since 1832. Gibbs also defined the
scalar and vector products using the relevant parts of the quaternion product. Finally,
in 1901, a student of Gibbs, Edwin Bidwell Wilson, published Gibbs’ notes in book
form: Vector Analysis [14], which contains the notation in use today.

Quaternion algebra is definitely imaginary, yet simply by isolating the vector
part and ignoring the imaginary rules, Gibbs was able to reveal a new branch of
mathematics that exploded into vector analysis.
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Hamilton and his supporters were unable to persuade their peers that quaternions
could represent vectorial quantities, and eventually, Gibbs’ notation won the day, and
quaternions faded from the scene.

In recent years, quaternions have been used in quantum mechanics, flight sim-
ulation, and by the computer graphics community, where they are used to rotate
vectors about an arbitrary axis. In the intervening years, various people have had
the opportunity to investigate the algebra, and propose new ways of harnessing its
qualities.

So let’s look at three ways of annotating a quaternion q:

q = s + xi + y j + zk (4.1)

q = s + v (4.2)

q = [s, v] (4.3)
where {s, x, y, z} ∈ �, v ∈ �3

and i2 = j2 = k2 = −1.

The difference is rather subtle: In (4.1) we have Hamilton’s original definition
with its imaginary terms and associated rules. In (4.2) a “+” sign is used to add a
scalar to a vector, which seems strange, yet works. In (4.3) we have an ordered pair
comprising a scalar and a vector.

Now youmay be thinking: How is it possible to have three different definitions for
the same object? Well, I would argue that you can call an object whatever you like,
so long as they are algebraically identical. For example, matrix notation is used to
represent a set of linear equations, and leads to the same results as every-day algebra.
Therefore, both systems of notation are equally valid.

Although I have employed the notation in (4.1) and (4.2) in other publications,
in this book I have used ordered pairs. So what we need to show is that Hamilton’s
original definition of a quaternion (4.1), with its scalar and three imaginary terms,
can be replaced by an ordered pair (4.3) comprising a scalar and a “modern” vector.

4.3 Defining a Quaternion

Let’s start with two quaternions qa and qb à la Hamilton:

qa = sa + xai + ya j + zak

qb = sb + xbi + yb j + zbk

and the obligatory rules:

i2 = j2 = k2 = i jk = −1
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i j = k, jk = i, ki = j

j i = −k, k j = −i, ik = − j.

Our objective is to show that qa and qb can also be represented by the ordered pairs

qa = [sa, a]

qb = [sb, b]

}
{sa, sb} ∈ �, {a,b} ∈ �3.

I have employed square brackets as part of the definition as parentheses are often
used to delimit expressions within a quaternion.

The quaternion product qaqb expands to

qaqb = [sa, a][sb, b] = (sa + xai + ya j + zak)(sb + xbi + yb j + zbk)

= (sasb − xaxb − ya yb − zazb)

+ (saxb + sbxa + yazb − ybza)i

+ (sa yb + sb ya + zaxb − zbxa) j

+ (sazb + sbza + xa yb − xb ya)k. (4.4)

Equation (4.4) takes the form of another quaternion, and confirms that the quaternion
product is closed.

At this stage, Hamilton turned the imaginary terms i, j, k into unit Cartesian vec-
tors i, j,k and transformed (4.4) into a vector form. The problem with this approach
is that the vectors retain their imaginary roots. Simon Altmann’s suggestion is to
replace the imaginaries by the ordered pairs:

i = [0, i] , j = [0, j], k = [0, k]

which are themselves quaternions, and called quaternion units.
The idea of defining a quaternion in terms of quaternion units is exactly the same

as defining a vector in terms of its unit Cartesian vectors. Furthermore, it permits
vectors to exist without any imaginary associations.

Let’s substitute these quaternion units in (4.4) together with [1, 0] = 1:

[sa, a][sb, b] = (sasb − xaxb − ya yb − zazb)[1, 0]
+ (saxb + sbxa + yazb − ybza)[0, i]
+ (sa yb + sb ya + zaxb − zbxa)[0, j]
+ (sazb + sbza + xa yb − xb ya)[0, k]. (4.5)
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Next, we expand (4.5) using previously defined rules:

[sa, a][sb, b] = [sasb − xaxb − ya yb − zazb, 0]
+ [0, (saxb + sbxa + yazb − ybza)i]
+ [0, (sa yb + sb ya + zaxb − zbxa)j]
+ [0, (sazb + sbza + xa yb − xb ya)k]. (4.6)

A vertical scan of (4.6) reveals some hidden vectors:

[sa, a][sb, b] = [sasb − xaxb − ya yb − zazb, 0]
+ [0, sa(xbi + ybj + zbk) + sb(xa i + yaj + zak)

+ (yazb − ybza)i + (zaxb − zbxa)j + (xa yb − xb ya)k]. (4.7)

Equation (4.7) contains two ordered pairs which can now be combined:

[sa, a][sb, b] = [sasb − xaxb − ya yb − zazb,

sa(xbi + ybj + zbk) + sb(xa i + yaj + zak)

+ (yazb − ybza)i + (zaxb − zbxa)j + (xa yb − xb ya)k]. (4.8)

If we make

a = xa i + yaj + zak

b = xbi + ybj + zbk

and substitute them in (4.8) we get:

[sa, a][sb, b] = [sasb − a · b, sab + sba + a × b] (4.9)

which defines the quaternion product.
Fromnowon,we don’t have toworry aboutHamilton’s rules as they are embedded

within (4.9). Furthermore, our vectors have no imaginary associations.
AlthoughRodrigues did not have access to Gibbs’ vector notation used in (4.9), he

managed to calculate the equivalent algebraic expression, which was some achieve-
ment.

4.3.1 The Quaternion Units

Using (4.9) we can check to see if the quaternion units are imaginary by squaring
them:
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i = [0, i]
i2 = [0, i][0, i]

= [i · i, i × i]
= [−1, 0]

which is a real quaternion and equivalent to −1, confirming that [0, i] is imaginary.
Using a similar expansionwe can shown that [0, j] and [0, k]have the sameproperty.

Now let’s compute the products i j, jk and ki :

i j = [0, i][0, j]
= [−i · j, i × j]
= [0, k]

which is the quaternion unit k.

jk = [0, j][0, k]
= [−j · k, j × k]
= [0, i]

which is the quaternion unit i .

ki = [0, k][0, i]
= [−k · i, k × i]
= [0, j]

which is the quaternion unit j .
Next, let’s confirm that i jk = −1:

i jk = [0, i][0, j][0, k]
= [0, k][0, k]
= [−k · k, k × k]
= [−1, 0]

which is a real quaternion equivalent to −1, confirming that i jk = −1.
Thus the notation of ordered pairs upholds all of Hamilton’s rules. However, the

last double product assumes that quaternions are associative. So let’s double check
to show that (i j)k = i( jk):



4.3 Defining a Quaternion 121

i( jk) = [0, i][0, j][0, k]
= [0, i][0, i]
= [−i · i, i × i]
= [−1, 0]

which is correct.
Although we have yet to discover how quaternions are used to rotate vectors, let’s

concentrate on their algebraic traits by evaluating an example.

qa = [1, 2i + 3j + 4k]
qb = [2, 3i + 4j + 5k]

their product is

qaqb = [1, 2i + 3j + 4k][2, 3i + 4j + 5k]
= [1 × 2 − (2 × 3 + 3 × 4 + 4 × 5),

1(3i + 4j + 5k) + 2(2i + 3j + 4k)

+ (3 × 5 − 4 × 4)i − (2 × 5 − 4 × 3)j + (2 × 4 − 3 × 3)k]
= [−36, 7i + 10j + 13k − i + 2j − k]
= [−36, 6i + 12j + 12k]

which is another ordered pair representing a quaternion.
Having shown that Hamilton’s imaginary notation has a vector equivalent, and

can be represented as an ordered pair, we continue with this notation and describe
other features of quaternions. Note that we can abandon Hamilton’s rules as they
are embedded within the definition of the quaternion product, and will surface in the
following definitions.

4.4 Algebraic Definition

A quaternion is the ordered pair:

q = [s, v], s ∈ �, v ∈ �3.

If we express v in terms of its components, we have

q = [s, x i + yj + zk], {s, x, y, z} ∈ �, {i, j,k} ∈ �3.
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4.5 Adding and Subtracting Quaternions

Addition and subtraction employ the following rule:

qa = [sa, a]
qb = [sb, b]

qa ± qb = [sa ± sb, a ± b].

For example,

qa = [0.5, 2i + 3j − 4k]
qb = [0.1, 4i + 5j + 6k]

qa + qb = [0.6, 6i + 8j + 2k]
qa − qb = [0.4, −2i − 2j − 10k].

4.6 Real Quaternion

A real quaternion has a zero vector term:

q = [s, 0].

The product of two real quaternions is

qa = [sa, 0]
qb = [sb, 0]

qaqb = [sa, 0][sb, 0]
= [sasb, 0]

which is another real quaternion, and shows that they behave just like real numbers:

[s, 0] ≡ s.

Wehave already come across this with complex numbers containing a zero imaginary
term:

a + bi = a, when b = 0.
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4.7 Scaling a Quaternion

Intuition suggests that multiplying a quaternion by a scalar should obey the rule:

q = [s, v]
λq = λ[s, v], λ ∈ �

= [λs, λv].

We can confirm our intuition by multiplying a quaternion by a scalar in the form of
a real quaternion:

q = [s, v]
λ = [λ, 0]

λq = [λ, 0][s, v]
= [λs, λv]

which is excellent confirmation.

4.8 Pure Quaternion

Hamilton defined a pure quaternion as one having a zero scalar term:

q = xi + y j + zk

and was just a vector, with all its imaginary qualities. However, Simon Altmann and
others, believe that this was a serious mistake on Hamilton’s part to call a quaternion
with a zero real term, a vector.

The main issue is that there are two types of vectors: polar and axial, also called
a pseudovector. Richard Feynman describes polar vectors as “honest” vectors [15]
and represent the every-day vectors of directed lines. Whereas, axial vectors are
computed from polar vectors, such as in a vector product. However, these two types
of vector do not behave in the same way when transformed. For example, given two
“honest”, polar vectors a and b, we can compute the axial vector: c = a × b. Next, if
we subject a and b to an inversion transform through the origin, such that a becomes
−a, and b becomes −b, and compute their cross product (−a) × (−b), we still get
c! Which implies that the axial vector c must not be transformed along with a and
b. It could be argued that the inversion transform is not a “proper” transform as it
turns a right-handed set of axes into a left-handed set. Unfortunately, Hamilton was
not aware of this distinction, as he had only just invented vectors. However, in the
intervening years, it has become evident that Hamilton’s quaternion vector is an axial
vector, and not a polar vector.
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As we will see, in 3D rotations quaternions take the form

q = [
cos

(
θ
2

)
, sin

(
θ
2

)
v
]

where θ is the angle of rotation and v is the axis of rotation, andwhenwe set θ = 180◦,
we get

q = [0, v]

which remains a quaternion, even though it only contains a vector part.
Consequently, we define a pure quaternion as

q = [0, v].

The product of two pure quaternions is

qa = [0, a]
qb = [0, b]

qaqb = [0, a][0, b]
= [−a · b, a × b]

which is no longer “pure”, as some of the original vector information has “tunnelled”
across into the real part via the dot product.

4.9 Unit Quaternion

Let’s pursue this analysis further by introducing some familiar vector notation.
Given vector v, then

v = vv̂, where v = |v|, |v̂| = 1.

Combining this with the definition of a pure quaternion we get:

q = [0, v]
= [0, vv̂]
= v[0, v̂]

and reveals the object [0, v̂] which is called the unit quaternion and comprises a
zero scalar and a unit vector. It is usual to identify this unit quaternion as q̂:

q̂ = [0, v̂].
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So now we have a notation similar to that of vectors where a vector v is described in
terms of its unit form:

v = vv̂

and a quaternion q is also described in terms of its unit form:

q = vq̂.

Note that q̂ is imaginary:

q̂2 = [0, v̂][0, v̂]
= [−v̂ · v̂, v̂ × v̂]
= [−1, 0]
= −1

which is not too surprising, bearing in mind Hamilton’s original invention!

4.10 Additive Form of a Quaternion

We now come to the idea of splitting a quaternion into its constituent parts: a real
quaternion and a pure quaternion. Again, intuition suggests that we can write a
quaternion as

q = [s, v]
= [s, 0] + [0, v]

and we can test this by forming the algebraic product of two quaternions represented
in this way:

qa = [sa, 0] + [0, a]
qb = [sb, 0] + [0, b]

qaqb = ([sa, 0] + [0, a])([sb, 0] + [0, b])
= [sa, 0][sb, 0] + [sa, 0][0, b] + [0, a][sb, 0] + [0, a][0, b]
= [sasb, 0] + [0, sab] + [0, sba] + [−a · b, a × b]
= [sasb − a · b, sab + sba + a × b]

which is correct, and confirms that the additive form works.
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4.11 Binary Form of a Quaternion

Having shown that the additive form of a quaternion works, and discovered the unit
quaternion, we can join the two objects together as follows:

q = [s, v]
= [s, 0] + [0, v]
= [s, 0] + v[0, v̂]
= s + vq̂.

Just to recap, s is a scalar, v is the length of the vector term, and q̂ is the unit quaternion
[0, v̂].

Look how similar this notation is to a complex number:

z = a + bi

q = s + vq̂

}
{a, b, s, v} ∈ �, i ∈ �

and q̂ is the unit quaternion.

4.12 Quaternion Conjugate

We have already discovered that the conjugate of a complex number z = a + bi is
given by

z = a − bi

and is very useful in computing the inverse of z. The quaternion conjugate plays a
similar role in computing the inverse of a quaternion. Therefore, given

q = [s, v]

the quaternion conjugate is defined as

q = [s, −v]
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If we compute the product qq we obtain

qq = [s, v][s, −v]
= [

s2 − v · (−v), −sv + sv + v × (−v)
]

= [
s2 + v · v, 0

]
= [

s2 + v2, 0
]
.

Let’s show that qq = qq:

qq = [s, −v][s, v]
= [

s2 − (−v) · v, sv − sv + (−v) × v
]

= [
s2 + v · v, 0

]
= [

s2 + v2, 0
]

= qq.

Now let’s show that qaqb = qbqa:

qa = [sa, a]
qb = [sb, b]

qaqb = [sa, a][sb, b]
= [sasb − a · b, sab + sba + a × b]

qaqb = [sasb − a · b, −sab − sba − a × b]. (4.10)

Next, we compute qbqa :

qa = [sa, −a]
qb = [sb, −b]

qbqa = [sb, −b][sa, −a]
= [sasb − a · b, −sab − sba − a × b]. (4.11)

And as (4.10) equals (4.11), qaqb = qbqa .

4.13 Norm of a Quaternion

The norm of a complex number z = a + bi is defined as

‖z‖ =
√
a2 + b2
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which allows us to write

zz = ‖z‖2.

Similarly, the norm of a quaternion q = [s, v] is defined as

‖q‖ =
√
s2 + v2

which allows us to write

qq = ‖q‖2.

For example,

q = [1, 4i + 4j − 4k]

‖q‖ =
√
12 + 42 + 42 + (−4)2

= √
49

= 7.

4.14 Normalised Quaternion

A quaternion with a unit norm is called a normalised quaternion. For example, the
quaternion q = [s, v] is normalised by dividing it by ‖q‖:

q ′ = q√
s2 + v2

.

We must be careful not to confuse the unit quaternion with a unit-norm quaternion.
The unit quaternion is [0, v̂]with a unit-vector part, whereas a unit-norm quaternion
is normalised such that s2 + v2 = 1.

I will be careful to distinguish between these two terms as many authors – includ-
ing myself – use the term unit quaternion to describe a quaternion with a unit norm.
For example

q = [1, 4i + 4j − 4k]

has a norm of 7, and q is normalised by dividing by 7:

q ′ = 1
7 [1, 4i + 4j − 4k] .
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The type of unit-norm quaternion we will be using takes the form:

q = [
cos

(
θ
2

)
, sin

(
θ
2

)
v̂
]

because cos2
(

θ
2

) + sin2
(

θ
2

) = 1.

4.15 Quaternion Products

Having shown that ordered pairs can represent a quaternion and its various manifes-
tations, let’s summarise the products we will eventually encounter. To start, we have
the product of two normal quaternions:

qaqb = [sa, a][sb, b]
= [sasb − a · b, sab + sba + a × b].

4.15.1 Pure Quaternion Product

Given two pure quaternions:

qa = [0, a]
qb = [0, b]

qaqb = [0, a][0, b]
= [−a · b, a × b].

4.15.2 Unit-Norm Quaternion Product

Given two unit-norm quaternions:

qa = [sa, a]
qb = [sb, b]
a = |a|
b = |b|

where |qa| = |qb| = 1, their product is another unit-normquaternion,which is proved
as follows.
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Fig. 4.2 The geometry for c

We assume qc = [sc, c] and show that |qc| = s2c + c2 = 1, where c = |c| and

[sc, c] = [sa, a][sb, b]
= [sasb − a · b, sab + sba + a × b].

Let’s assume the angle between a and b is θ , which permits us to write

sc = sasb − ab cos θ

c = sabb̂ + sbaâ + ab sin θ
(
â × b̂

)
.

Therefore,

s2c = (sasb − ab cos θ) (sasb − ab cos θ)

= s2a s
2
b − 2sasbab cos θ + a2b2 cos2 θ.

Figure 4.2 shows the geometry representing c.

d2 = s2ba
2 + s2ab

2 − 2sasbab cos(π − θ)

= s2ba
2 + s2ab

2 + 2sasbab cos θ

c2 = d2 + a2b2 sin2 θ

= s2ba
2 + s2ab

2 + 2sasbab cos θ + a2b2 sin2 θ

s2c + c2 = s2a s
2
b − 2sasbab cos θ + a2b2 cos2 θ + s2ba

2 + s2ab
2 + 2sasbab cos θ + a2b2 sin2 θ

= s2a s
2
b + a2b2 + s2ba

2 + s2ab
2

= s2a
(
s2b + b2

) + a2
(
s2b + b2

)
= s2a + a2

= 1.
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Therefore, the product of two unit-norm quaternions is another unit-norm quaternion.
Consequently, multiplying a quaternion by a unit-norm quaternion, does not change
its norm:

qa = [sa, a]
‖qa‖ = 1

qb = [sb, b]
‖qaqb‖ = ‖qb‖.

4.15.3 Square of a Quaternion

The square of a quaternion is given by

q = [s, v]
q2 = [s, v][s, v]

= [
s2 − v · v, 2sv + v × v

]
= [

s2 − v · v, 2sv
]

= [
s2 − x2 − y2 − z2, 2s(x i + yj + zk)

]
.

For example:

q = [7, 2i + 3j + 4k]

q2 = [
72 − 22 − 32 − 42, 14(2i + 3j + 4k)

]
= [20, 28i + 42j + 56k] .

The square of a pure quaternion is

q = [0, v]
q2 = [0, v][0, v]

= [0 − v · v, v × v]

= [0 − v · v, 0]
= [− (

x2 + y2 + z2
)
, 0

]
which makes the square of a pure, unit-norm quaternion equal to −1, and was one
of the results, to which some 19th-century mathematicians objected.
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4.15.4 Norm of the Quaternion Product

In proving that the product of two unit-norm quaternions is another unit-norm quater-
nion we saw that

qa = [sa, a]
qb = [sb, b]
qc = qaqb

‖qc‖2 = s2a
(
s2b + b2

) + a2
(
s2b + b2

)
= (

s2a + a2
) (
s2b + b2

)
which, if we ignore the constraint of unit-norm quaternions, shows that the norm of
a quaternion product equals the product of the individual norms:

‖qaqb‖2 = ‖qa‖2‖qb‖2
‖qaqb‖ = ‖qa‖ ‖qb‖.

4.16 Inverse Quaternion

An important feature of quaternion algebra is the ability to divide two quaternions
qb/qa , as long as qa does not vanish.

By definition, the inverse q−1 of q satisfies

qq−1 = [1, 0] = 1. (4.12)

To isolate q−1, we multiply (4.12) by q

qqq−1 = q

‖q‖2q−1 = q (4.13)

and from (4.13) we can write

q−1 = q

‖q‖2 .

If q is a unit-norm quaternion, then

q−1 = q
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which is useful in the context of rotations. Furthermore, as

qaqb = qbqa

then

(qaqb)
−1 = q−1

b q−1
a .

Note that qq−1 = q−1q:

qq−1 = qq

‖q‖2 = 1

q−1q = qq

‖q‖2 = 1.

Thus, we represent the quotient qb/qa as

qc = qb
qa

= qbq
−1
a

= qbqa

‖qa‖2 .

For completeness let’s evaluate the inverse of q where

q =
[
1, 1√

3
i + 1√

3
j + 1√

3
k
]

q =
[
1, − 1√

3
i − 1√

3
j − 1√

3
k
]

‖q‖2 = 1 + 1
3 + 1

3 + 1
3 = 2

q−1 = q

‖q‖2 = 1
2

[
1, − 1√

3
i − 1√

3
j − 1√

3
k
]
.

It should be clear that q−1q = 1:

q−1q = 1
2

[
1, − 1√

3
i − 1√

3
j − 1√

3
k
] [

1, 1√
3
i + 1√

3
j + 1√

3
k
]

= 1
2

[
1 + 1

3 + 1
3 + 1

3 , 0
]

= 1.
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4.17 Quaternion Matrix

Matrices provide another way to express a quaternion product. For convenience, let’s
repeat (4.8) again and show it in matrix form:

[sa, a][sb, b] = [sasb − xaxb − ya yb − zazb,

sa(xbi + ybj + zbk) + sb(xa i + yaj + zak)+
(yazb − ybza)i + (zaxb − zbxa)j + (xa yb − xb ya)k]

=

⎡
⎢⎢⎣
sa −xa −ya −za
xa sa −za ya
ya za sa −xa
za −ya xa sa

⎤
⎥⎥⎦

⎡
⎢⎢⎣
sb
xb
yb
zb

⎤
⎥⎥⎦ . (4.14)

Let’s recompute the product qaqb using the above matrix:

qa = [1, 2i + 3j + 4k]

qb = [2, 3i + 4j + 5k]

qaqb =

⎡
⎢⎢⎣
1 −2 −3 −4
2 1 −4 3
3 4 1 −2
4 −3 2 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣
2
3
4
5

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

−36
6

12
12

⎤
⎥⎥⎦

= [−36, 6i + 12j + 12k] .

4.17.1 Orthogonal Quaternion Matrix

We can demonstrate that the unit-norm quaternion matrix is orthogonal by showing
that the product with its transpose equals the identity matrix. As we are dealing with
matrices, Q will represent the matrix for q:
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q = [s, x i + yj + zk]
where 1 = s2 + x2 + y2 + z2

Q =

⎡
⎢⎢⎣
s −x −y −z
x s −z y
y z s −x
z −y x s

⎤
⎥⎥⎦

QT =

⎡
⎢⎢⎣

s x y z
−x s z −y
−y −z s x
−z y −x s

⎤
⎥⎥⎦

QQT =

⎡
⎢⎢⎣
s −x −y −z
x s −z y
y z s −x
z −y x s

⎤
⎥⎥⎦

⎡
⎢⎢⎣

s x y z
−x s z −y
−y −z s x
−z y −x s

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

For this to occur, QT = Q−1.

4.18 Quaternion Algebra

Ordered pairs provide a simple notation for representing quaternions, and allow us
to represent the real unit 1 as [1, 0], and the imaginary units i, j, k as [0, i], [0, j],
[0, k] respectively. A quaternion then becomes a linear combination of these ele-
ments with associated real coefficients. Under such conditions, the elements form
the basis for an algebra over the field of reals.

Furthermore, because quaternion algebra supports division, and obeys the normal
axioms of algebra, except that multiplication is non-commutative, it is called a divi-
sion algebra. Ferdinand Georg Frobenius proved in 1878 that only three such real
associative division algebras exist: real numbers, complex numbers and quaternions
[3].

The Cayley numbers�, constitute a real division algebra, but the Cayley numbers
are 8-dimensional and are not associative, i.e. a(bc) �= (ab)c for all {a, b, c} ∈ �.
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4.19 Summary

Quaternions are very similar to complex numbers, apart from the fact that they
have three imaginary units, rather than one. Consequently, they inherit some of the
properties associated with complex numbers, such as norm, conjugate, unit norm
and inverse. They can also be added, subtracted, multiplied and divided. However,
unlike complex numbers, they anti-commute when multiplied.

4.19.1 Summary of Operations

Quaternion

qa = [sa, a] = [sa, xa i + yaj + zak]
qb = [sb, b] = [sb, xbi + ybj + zbk].

Adding and subtracting

qa ± qb = [sa ± sb, a ± b].

Product

qaqb = [sa, a][sb, b]
= [sasb − a · b, sab + sba + a × b]

=

⎡
⎢⎢⎣
sa −xa −ya −za
xa sa −za ya
ya za sa −xa
za −ya xa sa

⎤
⎥⎥⎦

⎡
⎢⎢⎣
sb
xb
yb
zb

⎤
⎥⎥⎦ .

Square

q2 = [s, v][s, v]
= [

s2 − x2 − y2 − z2, 2s(x i + yj + zk)
]
.

Pure

q2 = [0, v][0, v]
= [−(x2 + y2 + z2), 0

]
.

Norm

‖q‖ =
√
s2 + v2.
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Norm of the Product

‖qaqb‖2 = ‖qa‖2‖qb‖2
‖qaqb‖ = ‖qa‖ ‖qb‖.

Unit norm

‖q‖ =
√
s2 + v2 = 1.

Conjugate

q = [s, −v]
( qaqb) = qbqa .

Inverse

q−1 = q

‖q‖2
(qaqb)

−1 = q−1
b q−1

a .

4.20 Worked Examples

Here are some further worked examples that employ the ideas described above. In
some cases, a test is included to confirm the result.

4.20.1 Adding and Subtracting Quaternions

Add and subtract qa and qb.

qa = [2, −2i + 3j − 4k] , qb = [1, −2i + 5j − 6k] .

Solution: Add and subtract the real and vector elements.

qa + qb = [3, −4i + 8j − 10k]

qa − qb = [1, −2j + 2k] .
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4.20.2 Norm of a Quaternion

Find the norm of qa and qb.

qa = [2, −2i + 3j − 4k] , qb = [1, −2i + 5j − 6k] .

Solution: Compute the square-root of the sum of the squares.

‖qa‖ =
√
22 + (−2)2 + 32 + (−4)2 = √

33

‖qb‖ =
√
12 + (−2)2 + 52 + (−6)2 = √

66.

4.20.3 Unit-Norm Form of a Quaternion

Convert qa and qb to their unit-norm form.

qa = [2, −2i + 3j − 4k] , qb = [1, −2i + 5j − 6k] .

Solution: Divide each quaternion by their norms calculated above.

‖qa‖ = √
33

‖qb‖ = √
66

q ′
a = 1√

33
[2, −2i + 3j − 4k]

q ′
b = 1√

66
[1, −2i + 5j − 6k] .

4.20.4 Quaternion Product

Compute the product and reverse product of qa and qb.

qa = [2, −2i + 3j − 4k] , qb = [1, −2i + 5j − 6k] .

Solution: Compute qaqb using [sasb − a · b, sab + sba + a × b]. For the product
qbqa , the cross-product vector is reversed.
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qaqb = [2, −2i + 3j − 4k] [1, −2i + 5j − 6k]

= [2 × 1 − ((−2) × (−2) + 3 × 5 + (−4) × (−6)),

2(−2i + 5j − 6k) + 1(−2i + 3j − 4k)

+ (3 × (−6) − (−4) × 5)i − ((−2) × (−6) − (−4) × (−2))j + ((−2) × 5 − 3 × (−2))k]
= [−41, −6i + 13j − 16k + 2i − 4j − 4k]

= [−41, −4i + 9j − 20k]

qbqa = [1, −2i + 5j − 6k] [2 − 2i + 3j − 4k]

= [1 × 2 − ((−2) × (−2) + 5 × 3 + (−6) × (−4)),

1(−2i + 3j − 4k) + 2(−2i + 5j − 6k)

+ (5 × (−4) − (−6) × 3)i − ((−2) × (−4) − (−6) × (−2))j + ((−2) × 3 − 5 × (−2))k]
= [−41, −6i + 13j − 16k − 2i + 4j + 4k]

= [−41, −8i + 17j − 12k] .

Note: The only thing that has changed in this computation is the sign of the cross-
product axial vector.

4.20.5 Square of a Quaternion

Compute the square of q.

q = [2, −2i + 3j − 4k].

Solution: Compute q2 using
[
s2 − x2 − y2 − z2, 2s(x i + yj + zk)

]
.

q2 = [2, −2i + 3j − 4k] [2, −2i + 3j − 4k]

= [2 × 2 − ((−2) × (−2) + 3 × 3 + (−4) × (−4)),+2 × 2(−2i + 3j − 4k)]

= [−25, −8i + 12j − 16k] .

4.20.6 Inverse of a Quaternion

Compute the inverse of q.

q = [2, −2i + 3j − 4k] .

Solution: Compute the inverse using q−1 = q/‖q‖2.
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q = [2, +2i − 3j + 4k]

‖q‖2 = 22 + (−2)2 + 32 + (−4)2 = 33

q−1 = 1
33 [2, 2i − 3j + 4k] .
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Chapter 5
Octonions

5.1 Introduction

Starting with a complex number z = a + bi , and extending this to a quaternion q =
[s + ai + bj + ck], it seems only natural to seek the existence of something similar
with higher dimensions, which turns out to be an octonion, with eight elements.
In this chapter I describe octonions, their algebraic properties and some worked
examples. It is in no way a definitive exposition, but a gentle introduction to this
obscure mathematical construct.

5.2 Background

A division algebra A possesses a multiplicative inverse a−1 ∈ A for every non-zero
element a ∈ A such that

aa−1 = a−1a = 1.

The multiplicative inverses are for a

real number x, x−1 = 1/x, R

complex number z = a + bi, z−1 = z/(a2 + b2), C

quaternion q = [s, vv̂], q−1 = q/(s2 + v2). Q
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The Euclidean norm of an element is a measure of its magnitude or length. Such
norms are for a

real number x, ||x || = √
x2, R

complex number z = a + bi, ||z|| =
√
a2 + b2, C

quaternion q = [s, vv̂], ||q|| =
√
s2 + v2. Q

A normed division algebra is one where

||ab|| = ||a|| · ||b||.

For
real numbers: ||ab|| = |a| · |b|, R

complex numbers: ||z1z2|| = ||z1|| · ||z2||, C

quaternions: ||qaqb|| = ||qa|| · ||qb||. Q

When Hamilton’s friend John Graves invented “octaves” in 1843, he wrote to Hamil-
ton about his invention, showing that they were a normed division algebra requiring
eight dimensions. Graves continued his research to look for a 16-dimensional ver-
sion, which resulted in failure – this is because there are only four normed division
algebras, as proved by Adolf Hurwitz in 1898 [1]. However, a 16-dimension algebra
does exist: sedenions S, but does not possess the properties of a normed division
algebra.

The history of mathematics is littered with examples where two, or more, math-
ematicians come across the same idea simultaneously, and octonions are a good
example. In 1845, the 24-year-old English mathematician Arthur Cayley published
a paper on Jacobi’s elliptic functions [2], which also included an appendix describ-
ing his discovery of an 8-dimensional normed division algebra. Unfortunately, for
Graves, Cayley’s paperwas published first, and his discovery becameknown as “Cay-
ley numbers”. Today, they are known as octonions. Thus the four normed division
algebras comprise: R,C,Q and O.

John Baez describes the four normed division algebras as follows:

There are exactly four normed division algebras: the real numbers (R), complex numbers
(C), quaternions (H) and octonions (O). The real numbers are the dependable breadwinner
of the family, the complete ordered field we all rely on. The complex numbers are a slightly
flashier but still respectable younger brother: not ordered, but algebraically complete. The
quaternions, being noncommutative, are the eccentric cousin who is shunned at important
family gatherings. But the octonions are the crazy old uncle nobody lets out of the attic: they
are nonassociative [3].

So let’s look closer at “the crazy old uncle in the attic”!
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5.3 The Octonions

5.3.1 Notation

With complex numbers and quaternions defined respectively as

z = a + bi

q = s + ai + bj + ck

it follows that an octonion should be expressed as

x = s + ai + bj + ck + dl + eI + f J + gK

where {s, a, b, c, d, e, f, g} ∈ R and {i, j, k, l, I, J, K } ∈ I.

However, the following notation is also used, which is employed in geometric
algebra:

x = x0e0 + x1e1 + x2e2 + x3e3 + x4e4 + x5e5 + x6e6 + x7e7
where e0 = 1, xi ∈ R, {0 ≤ i ≤ 7} ei ∈ I, {1 ≤ i ≤ 7}.

Although octonions obey the axioms ofR for addition and subtraction,multiplication
is non-commutative, like quaternions; but curiously they are non-associative.
Table 5.1 shows the multiplication table for the octonion imaginary units i, j, k, l,
I, J, K , and Table 5.2 shows an alternative multiplication table for the octonion
imaginary units e1, e2, . . . , e6, e7. Thus we still have

i j = k, jk = i, ki = j

Table 5.1 Multiplication table for the octonion imaginary units i, j, k, l, I, J, K
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Table 5.2 Multiplication table for the octonion imaginary units e1, e2, . . . , e6, e7

together with

i2 = j2 = k2 = l2 = I 2 = J 2 = K 2 = −1.

To illustrate the non-associativity, consider the expression l(J I ). We evaluate (J I )
first, which gives k, then premultiply by l, which results in−K . Changing the expres-
sion to (l J )I , where evaluating (l J ) gives j , which post-multiplied by I , results in
K . Thus great care must be taken when evaluating multiple products.

5.3.2 Cayley–Dickson Construction

The Cayley–Dickson construction, named after Arthur Cayley and the American
mathematician Leonard Dickson (1874–1954), generalises Hamilton’s substitution
of an ordered pair of real numbers for a complex number, to quaternions and octo-
nions. The construction describes one algebra as a pair of elements from an algebra
of a lower dimension. Thus, an octonion is an ordered pair of quaternions, which are
ordered pairs of complex numbers, which, in turn, are ordered pairs of real numbers.

For example, a complex number z is defined by a pair of real numbers as follows:

z = (a, b) = a + bi

and the product of two complex numbers is defined by:

ordered pair notation complex notation

z1 = (a, b) z1 = a + bi

z2 = (c, d) z2 = c + di

(a, b)(c, d) = (ac − bd, ad + bc) z1z2 = ac − bd + (ad + bc)i.
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The conjugate of z: z = a − bi , becomes the ordered pair (a,−b), which makes

zz = (a, b)(a, −b) = (a2 + b2, 0)

and is used as the basis for the Euclidean norm of z:

‖z‖ = |z| = √
zz.

Next, a quaternion q is defined by a pair of complex numbers as follows:

a = a1 + a2i

b = b1 + b2i

q = (a, b) = a + bj

= a1 + a2i + (b1 + b2i) j

= a1 + a2i + b1 j + b2k

which is a quaternion. Note that in the above, i j = k.
The product of two quaternions is defined by two pairs of complex numbers

a = a1 + a2i, b = b1 + b2i

c = c1 + c2i, d = d1 + d2i

(a, b)(c, d) = (a1 + a2i + b1 j + b2k)(c1 + c2i + d1 j + d2k)

= (a1c1 − a2c2 − b1d1 − b2d2)

+ (a1c2 + b1d2 + a2c1 − b2d1)i

+ (a1d1 − a2d2 + b1c1 + b2c2) j

+ (a1d2 + a2d1 − b1c2 + b2c1)k

= (a1c1 − a2c2) + (a1c2 + a2c1)i

− [(b1d1 + b2d2) + (−b1d2 + b2d1)i]
+ [(a1d1 − a2d2) + (a1d2 + a2d1)i] j
+ [(b1c1 + b2c2) + (−b1c2 + b2c1)i] j

= (ac − bd) + (ad + bc) j

= (ac − bd, ad + bc).

Thus the product of two quaternions represented by two ordered pairs of complex
numbers is:

(a, b)(c, d) = (ac − bd, ad + bc).
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The only difference between this and the expression for the product of two complex
numbers, is the introduction of the conjugate operation, which has no effect on real
numbers.

TheCayley–Dickson construction shows that this relationship holds for octonions,
such that defining an octonion from two pairs of quaternions (a, b) and (c, d), their
product is

(a, b)(c, d) = (ac − bd, ad + bc).

5.4 Octonion Algebra

Starting with the definition for an octonion x as

x = (x0e0, x1e1, . . . , x7e7) = x0e0 +
7∑

i=1

xi ei

where e0 = 1, xi ∈ R {0 ≤ i ≤ 7}, ei ∈ I {1 ≤ i ≤ 7}.

An octonion comprises a real scalar part x0 and a vector part
∑7

i=1 xi ei .

5.4.1 Octonion Addition and Subtraction

Twooctonions are added or subtracted like complex numbers and quaternions, simply
by resolving pairs of terms. For example, two octonions are added and subtracted as
follows:

x =
7∑

i=0

xi ei , y =
7∑

i=0

yi ei

x ± y =
7∑

i=0

(xi ± yi )ei .

a = 3 + 2i + 4 j − 5k + 6I + 2K

b = 2 + 2i + 2 j − 3k + 2l + 3K

a + b = 5 + 4i + 6 j − 8k + 2l + 6I + 5K

a − b = 1 + 2 j − 2k − 2l + 6I − K .
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5.4.2 Octonion Multiplication

In order to simplify the algebra, I will employ two octonions with only three terms:

a = 2 + 3 j + 4I

b = 2i + k + 3K

ab = (2 + 3 j + 4I )(2i + k + 3K )

= 2(2i + k + 3K ) + 3 j (2i + k + 3K ) + 4I (2i + k + 3K )

= 4i + 2k + 6K − 6k + 3i − 9I + 8l + 4J + 12 j

= 7i + 12 j − 4k − 9I + 4J + 6K .

Let’s reverse the product sequence:

a = 2 + 3 j + 4I

b = 2i + k + 3K

ba = (2i + k + 3K )(2 + 3 j + 4I )

= 2i(2 + 3 j + 4I ) + k(2 + 3 j + 4I ) + 3K (2 + 3 j + 4I )

= 4i + 6k − 8l + 2k − 3i − 4J + 6K + 9I − 12 j

= i − 12 j + 8k − 8l + 9I − 4J + 6K .

Which confirms that octonions do not commute.

5.4.3 Octonion Conjugate

As with complex numbers and quaternions, the conjugate operation reverses the sign
of the imaginary part:

x = x0 −
7∑

i=1

xi ei .

For example,

x = −12 + 3 j + 6I − 4K

x = −12 − 3 j − 6I + 4K .
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The real and imaginary parts of an octonion are isolated algebraically using:

x0 = 1
2 (x + x),

7∑

i=1

xi ei = 1
2 (x − x).

Conjugating the product of two octonions is defined as

(xy) = y x .

The product xx or xx always results in a nonnegative real value:

xx =
7∑

i=0

x2i .

For example,

x = 2 + 3 j + 4J

x = 2 − 3 j − 4J

xx = (2 + 3 j + 4J )(2 − 3 j − 4J )

= 2(2 − 3 j − 4J ) + 3 j (2 − 3 j − 4J ) + 4J (2 − 3 j − 4J )

= 4 − 6 j − 8J + 6 j + 9 + 12l + 8J − 12l + 16

= 29.

5.4.4 Norm of an Octonion

The norm of an octonion, which is also the Euclidean norm on R
8, is defined as

‖x‖ = √
xx .

For example,

x = 3 + 2 j + 3I + 4K

xx =
7∑

i=0

x2i = 32 + 22 + 32 + 42 = 38

‖x‖ = √
38 ≈ 6.16.
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5.4.5 Inverse of an Octonion

The inverse of a non-zero octonion is given by

x−1 = x

‖x‖2 .

For example,

x = 2 + 3 j + 4J − 2K

x = 2 − 3 j − 4J + 2K

‖x‖2 = xx = 22 + 32 + 42 + 22 = 33

x−1 = x

‖x‖2 = 1
33 (2 − 3 j − 4J + 2K )

One can see that the product xx−1 = 1.

5.5 Summary of Operations

Octonion

x = s + ai + bj + ck + dl + eI + f J + gK

where {s, a, b, c, d, e, f, g} ∈ R and {i, j, k, l, I, J, K } ∈ I

or

x = x0e0 + x1e1 + x2e2 + x3e3 + x4e4 + x5e5 + x6e6 + x7e7
where e0 = 1, xi ∈ R {0 ≤ i ≤ 7}, ei ∈ I {1 ≤ i ≤ 7}.

Adding and Subtracting

x =
7∑

i=0

xi ei , y =
7∑

i=0

yi ei

x ± y =
7∑

i=0

(xi ± yi )ei .

Conjugate

x = x0 −
7∑

i=1

xi ei .
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Norm

‖x‖ = √
xx .

Inverse

x−1 = x

‖x‖2 .

5.6 Worked Examples

5.6.1 Adding and Subtracting Octonions

Given two octonions x and y, calculate x + y and x − y.
Solution: Add and subtract the respective elements.

x = 2 + 3i + 4 j + 5k + 6l − 7I + 8J − 9K

y = 1 + 2i + 2 j − 4k + 4I + 7K

x + y = 3 + 5i + 6 j + k + 6l − 3I + 8J − 2K

x − y = 1 + i + 2 j + 9k + 6l − 11I + 8J − 16K .

5.6.2 Multiplying Two Octonions

Given two octonions x and y, calculate their product xy.
Solution: Expand algebraically the product terms using Table 5.1.

x = 2 + 3i + 4J + 2K

y = 3 + 2 j + 2l + 2K

xy = 2(3 + 2 j + 2l + 2K ) + 3i(3 + 2 j + 2l + 2K )

+ 4J (3 + 2 j + 2l + 2K ) + 2K (3 + 2 j + 2l + 2K )

= 6 + 4 j + 4l + 4K + 9i + 6k + 6I + 6J

+ 12J + 8l − 8 j − 8i + 6K + 4l − 4k − 4

= 2 + i − 4 j + 2k + 16l + 6I + 18J + 10K .
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5.6.3 Conjugate of an Octonion

State the conjugate of octonion x = 12 + 3i − 6 j + 7k + 2l − 6I + 4J + 3K .

Solution: Reverse the signs of the imaginary elements.

x = 12 − 3i + 6 j − 7k − 2l + 6I − 4J − 3K .

5.6.4 Norm of an Octonion

Calculate the Euclidean norm of x = 2 + 3i + 3J + 4K .

Solution: Compute the square-root of the sum of the squares of the scalar terms.

‖x‖ =
√
22 + 32 + 32 + 42 = √

38 ≈ 6.16.

5.6.5 Inverse of an Octonion

Calculate the inverse of octonion x = 2 + 3i + 3J + 4K .
Solution: Divide the conjugate of x by its norm squared, calculated above.

x = 2 − 3i − 3J − 4K

‖x‖2 = 38

x−1 = 1
38 (2 − 3i − 3J − 4K ).
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Chapter 6
Geometric Algebra

6.1 Introduction

This can only be a brief introduction to geometric algebra as the subject really
demands an entire book. Those readers who wish to pursue the subject further should
consult the author’s books [1, 2].

Complex numbers, quaternions and octonions, explicitly define objects such as
i2, j2 and k2 that equal −1, from which a complex algebra is constructed. Geometric
algebra, on the other hand, reverses the sequence by developing an algebra for geo-
metric analysis, and reveals that the underlying algebraic constructs are imaginary.
This chapter begins by examining some trigonometric foundations associated with
line segments, defines two geometric products, and then reveals the hidden imaginary
properties.

A challenge for computer science is to develop software that undertakes the sym-
bolic manipulation that is revealed in this chapter.

6.2 Background

Before Hamilton discovered quaternions, Hermann Grassmann had developed his
own theory of vectors, but was unable to influence the tide of opinion, even though
the first application of his notation was employed in a 200-page essay on the theory
of tides Theorie der Ebbe und Flut [3].

By the early 20th century, vector analysis had been determined by Josiah Willard
Gibbs, who was not an admirer of Hamilton’s quaternions. Gibbs recognised that a
pure quaternion could be interpreted as a vector without any imaginary connotation,
and could form the basis of a vectorial system. Two products for vectors emerged:
the dot (scalar) product and the cross (vector) product, which could be combined to
form the scalar triple product and the vector triple product. At last, vector analysis
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had been defined and was understood. But mathematicians were unaware that they
had walked up a mathematical cul de sac!

Every student of mathematics knows that the cross product has no meaning in
2D, behaves immaculately in 3D, but is ambiguous in higher dimensional spaces. So
because of its inherent fussiness, it is not an important mathematical product after
all, in spite of its usefulness in resolving 3D geometric problems.

Geometric algebra proposes an alternative vectorial frameworkwhere lines, areas,
volumes and hyper-volumes are recognised as structures with magnitude and orien-
tation. Oriented lines are represented by vectors, oriented areas by bivectors and
oriented volumes by trivectors. Higher dimensional objects are also permitted. At
the heart of geometric algebra is the geometric product, which is defined as the sum
of the inner and outer products. The inner product is related to the scalar product,
and the outer product is related to the cross product. What is so flexible about this
approach is that all sorts of products are permitted such as (line × line), (line ×
area), (area × area), (line × volume), (area × volume), (volume × volume), etc.
Furthermore, the cross product has its alias within the algebra as do quaternions; and
on top of these powerful features one can add, subtract and even divide such oriented
objects.

You are probably wondering how it is possible that such a useful algebra has
lain dormant for so many years? Well, through the endeavours of the English math-
ematician William Kingdon Clifford (1845–1879), and the American theoretical
physicist David Orlin Hestenes (1933–), we now have a geometric calculus that is
being embraced by the physics community through the work of Anthony Lasenby,
Joan Lasenby and Chris Doran. In spite of geometric algebra’s struggle to surface,
today it does exist and is relatively easy to understand, and I will reveal its axioms
and structures in the following chapter.

6.3 Symmetric and Anti-symmetric Functions

It is useful to classify functions into two categories: symmetric (even) and anti-
symmetric (odd) functions. For example, given two symmetric functions f (x) and
f (x, y):

f (−x) = f (x)

and

f (y, x) = f (x, y)

an example being cos x where cos(−x) = cos x. Figure 6.1 illustrates how the cosine
function is reflected about the origin. However, if the functions are anti-symmetric:
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Fig. 6.1 The graph of the
symmetric cosine function
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Fig. 6.2 The graph of the
anti-symmetric sine function
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f (−x) = −f (x)

and

f (y, x) = −f (x, y)

an example being sin x where sin(−x) = − sin x. Figure 6.2 illustrates how the sine
function is reflected about the origin.

6.4 Trigonometric Foundations

Figure 6.3 shows two line segments a and b with coordinates (a1, a2), (b1, b2)
respectively. The lines are separated by an angle θ , and Iwill compute the expressions
ab cos θ and ab sin θ , as these play an important role in geometric algebra.

Using the trigonometric identities

sin(θ + φ) = sin θ cosφ + cos θ sin φ (6.1)

cos(θ + φ) = cos θ cosφ − sin θ sin φ (6.2)

and the following observations
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Fig. 6.3 Two line segments
a and b separated by +θ

a2

a1b1

b2

φ
θ

ab

x

y

cosφ = a1
a

, sin φ = a2
a

, cos(θ + φ) = b1
b

, sin(θ + φ) = b2
b

I can rewrite (6.1) and (6.2) as

b2
b

= a1
a
sin θ + a2

a
cos θ (6.3)

b1
b

= a1
a
cos θ − a2

a
sin θ. (6.4)

To isolate cos θ , multiply (6.3) by a2 and (6.4) by a1:

a2b2
b

= a1a2
a

sin θ + a22
a

cos θ (6.5)

a1b1
b

= a21
a

cos θ − a1a2
a

sin θ. (6.6)

Adding (6.5) and (6.6):

a1b1 + a2b2
b

= a21 + a22
a

cos θ = a cos θ

therefore,

ab cos θ = a1b1 + a2b2.

To isolate sin θ , multiply (6.3) by a1 and (6.4) by a2

a1b2
b

= a21
a

sin θ + a1a2
a

cos θ (6.7)

a2b1
b

= a1a2
a

cos θ − a22
a

sin θ (6.8)
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Fig. 6.4 Two line segments
a and b separated by −θ
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b2

φ
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b−θ
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Subtracting (6.8) from (6.7):

a1b2 − a2b1
b

= a21 + a22
a

sin θ = a sin θ

therefore,

ab sin θ = a1b2 − a2b1.

If we form the product of b’s projection on awith a, we get ab cos θ whichwe have
shown equals a1b1 + a2b2. Similarly, if we form the product ab sin θ we compute the
area of the parallelogram formed by sweeping a along b, which equals a1b2 − a2b1.
What is noteworthy, is that the product ab cos θ is independent of the sign of the
angle θ , whereas the product ab sin θ is sensitive to the sign of θ . Consequently, if we
construct the lines a and b such that b is rotated−θ relative to a as shown in Fig. 6.4,
ab cos θ = a1b1 + a2b2, but ab sin θ = −(a1b2 − a2b1). The anti-symmetric nature
of the sine function reverses the sign of the area.

Having shown that area is a signed quantity just by using trigonometric identities,
let’s explore how vector algebra responds to this idea.

6.5 Vectorial Foundations

The algebraic product of two 2D vectors a and b is

a = a1i + a2j

b = b1i + b2j

ab = a1b1i2 + a2b2j2 + a1b2ij + a2b1ji (6.9)
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and it is clear that a1b1i2 + a2b2j2 has something to do with ab cos θ , and a1b2ij +
a2b1ji has something to do with ab sin θ . The product ab creates the terms i2, j2, ij
and ji, which are resolved as follows.

6.6 Inner and Outer Products

Let’s begin with the products ij and ji in (6.9) and assume that they anti-commute:
ji = −ij. Therefore,

ab = a1b1i2 + a2b2j2 + (a1b2 − a2b1)ij (6.10)

and if we reverse the product to ba we obtain

ba = a1b1i2 + a2b2j2 − (a1b2 − a2b1)ij. (6.11)

From (6.10) and (6.11) we see that the product of two vectors contains a symmetric
component

a1b1i2 + a2b2j2

and an anti-symmetric component

(a1b2 − a2b1)ij.

It is interesting to observe that the symmetric component has 0◦ between its vector
pairs (i2 and j2), whereas the anti-symmetric component has 90◦ between its vector
pairs (i and j). Therefore, the sine and cosine functions play a natural role in our rules.
What we are looking for are two functions that, when given our vectors a and b, one
function returns the symmetric component and the other returns the anti-symmetric
component. We call these the inner and outer functions respectively.

It should be clear that if the inner function includes the cosine of the angle between
the two vectors it will reject the anti-symmetric component and return the symmet-
ric element. Similarly, if the outer function includes the sine of the angle between
the vectors, the symmetric component is rejected, and returns the anti-symmetric
element.

Let’s declare the inner function as the inner product

a · b = |a||b| cos θ (6.12)
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then

a · b = (a1i + a2j) · (b1i + b2j)

= a1b1i · i + a1b2i · j + a2b1j · i + a2b2j · j
= a1b1 + a2b2

which is perfect!
Next, let’s declare the outer function as the outer product using the wedge “∧”

symbol; which is why it is also called the wedge product:

a ∧ b = |a||b| sin θ i ∧ j. (6.13)

Note that product includes a strange i ∧ j term. This is included as we just can’t
ignore the ij term in the anti-symmetric component:

a ∧ b = (a1i + a2j) ∧ (b1i + b2j)

= a1b1i ∧ i + a1b2i ∧ j + a2b1j ∧ i + a2b2j ∧ j

= (a1b2 − a2b1)i ∧ j

which permits us to write

ab = a · b + a ∧ b (6.14)

ab = |a||b| cos θ + |a||b| sin θ i ∧ j. (6.15)

6.7 The Geometric Product in 2D

Clifford named the sum of the two products the geometric product, which means that
(6.14) reads: The geometric product ab is the sum of the inner product “a dot b” and
the outer product “a wedge b”. Remember that all this assumes that ji = −ij which
seems a reasonable assumption.

Given the definition of the geometric product, let’s evaluate i2

ii = i · i + i ∧ i.

Using the definition for the inner product (6.12) we have

i · i = 1 × 1 × cos 0◦ = 1

whereas, using the definition of the outer product (6.13) we have
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i ∧ i = 1 × 1 × sin 0◦ i ∧ i = 0.

Thus i2 = 1 and j2 = 1, and aa = |a|2:

aa = a · a + a ∧ a

= |a||a| cos 0◦ + |a||a| sin 0◦i ∧ j

aa = |a|2.

Now let’s evaluate ij:

ij = i · j + i ∧ j.

Using the definition for the inner product (6.12) we have

i · j = 1 × 1 × cos 90◦ = 0

whereas using the definition of the outer product (6.13) we have

i ∧ j = 1 × 1 × sin 90◦ i ∧ j = i ∧ j.

Thus ij = i ∧ j. But what is i ∧ j? Well, it is a new object called a bivector, and
defines the orientation of the plane containing i and j.

As the order of the vectors is from i to j, the angle is +90◦ and sin(+90)◦ = 1.
Whereas, if the order is from j to i the angle is −90◦ and sin(−90◦) = −1.
Consequently,

ji = j · i + j ∧ i

= 0 + 1 × 1 × sin(−90◦)i ∧ j

ji = −i ∧ j.

Thus the bivector i ∧ j defines the orientation of a surface as anti-clockwise,
whilst the bivector j ∧ i defines the orientation as clockwise. These ideas are shown
in Fig. 6.5.

Fig. 6.5 An anti-clockwise
and clockwise bivector

ii

i ∧ j j ∧ i

j j
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The inner product (6.12) is our old friend the dot product, and does not need
explaining. However, the outer product (6.13) does require some further explanation.

The equation

ab = 9 + 12i ∧ j

simply means that the geometric product of two vectors a and b creates a scalar,
inner product of 9, and an outer product of 12 on the ij-plane.

For example, given

a = 3i

b = 3i + 4j

then

ab = 3i · (3i + 4j) + 3i ∧ (3i + 4j)

= 9 + 9i ∧ i + 12i ∧ j

ab = 9 + 12i ∧ j.

The 9 represents |a||b| cos θ , whereas the 12 represents an area |a||b| sin θ on the
ij-plane. The angle between the two vectors θ is given by

θ = cos−1(3/5).

However, reversing the product, we obtain

ba = (3i + 4j) · 3i + (3i + 4j) ∧ 3i

= 9 + 9i ∧ i + 12j ∧ i

ab = 9 − 12i ∧ j.

The sign of the outer (wedge) product has flipped to reflect the new orientation of
the vectors relative to the accepted orientation of the basis bivectors.

So the geometric product combines the scalar and wedge products into a single
product, where the scalar product is the symmetric component and thewedge product
is the anti-symmetric component. Now let’s see how these products behave in 3D.

6.8 The Geometric Product in 3D

Before we consider the geometric product in 3D we need to introduce some new
notation, which will simplify future algebraic expressions. Rather than use i, j and k
to represent the unit basis vectors let’s employ e1, e2 and e3 respectively. This means
that (6.15) can be written
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ab = |a||b| cos θ + |a||b| sin θ e1 ∧ e2.

We begin with two 3D vectors:

a = a1e1 + a2e2 + a3e3
b = b1e1 + b2e2 + b3e3

therefore, their inner product is

a · b = (a1e1 + a2e2 + a3e3) · (b1e1 + b2e2 + b3e3)

= a1b1 + a2b2 + a3b3

and their outer product is

a ∧ b = (a1e1 + a2e2 + a3e3) ∧ (b1e1 + b2e2 + b3e3)

= a1b2e1 ∧ e2 + a1b3e1 ∧ e3 + a2b1e2 ∧ e1 + a2b3e2 ∧ e3
+ a3b1e3 ∧ e1 + a3b2e3 ∧ e2

a ∧ b = (a1b2 − a2b1)e1 ∧ e2 + (a2b3 − a3b2)e2 ∧ e3 + (a3b1 − a1b3)e3 ∧ e1.

(6.16)

This timewe have three unit-basis bivectors: e1 ∧ e2, e2 ∧ e3, e3 ∧ e1, and three asso-
ciated scalar multipliers: (a1b2 − a2b1), (a2b3 − a3b2), (a3b1 − a1b3) respectively.

Thus the geometric product of two 3D vectors remains ab = a · b + a ∧ b:

ab = (a1b1 + a2b2 + a3b3)

+ (a1b2 − a2b1)e1 ∧ e2 + (a2b3 − a3b2)e2 ∧ e3 + (a3b1 − a1b3)e3 ∧ e1.

Continuing with the idea described in the previous section, the three bivectors
represent the three planes containing the respective vectors as shown in Fig. 6.6, and
the scalar multipliers are projections of the area of the vector parallelogram onto the
three bivectors as shown in Fig. 6.7. The orientation of the vectors a and b determine
whether the projected areas are positive or negative.

You may think that (6.16) looks familiar. In fact, it looks very similar to the cross
product a × b:

a × b = (a1b2 − a2b1)e3 + (a2b3 − a3b2)e1 + (a3b1 − a1b3)e2. (6.17)

This similarity is no accident. For when Hamilton invented quaternions, he did not
recognise the possibility of bivectors, and invented some rules, which eventually
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Fig. 6.6 The 3D bivectors

e1 ∧ e2e2 ∧ e3

e3 ∧ e1
e1

e2

e3

Fig. 6.7 The projections on
the three bivectors

e1 ∧ e2e2 ∧ e3

e3 ∧ e1

e1

e2

e3

a
b

e1 ∧ e2e2 ∧ e3

e3 ∧ e1

e1

e2

e3

a
b

became the cross product! Later in this chapter we discover that quaternions are
really bivectors in disguise.

We can see that a simple relationship exists between (6.16) and (6.17):

e1∧e2 and e3
e2∧e3 and e1
e3∧e1 and e2

the wedge product bivectors are perpendicular to the vector components of the cross
product. So the wedge product is just another way of representing the cross product.
However, the wedge product introduces a very important bonus: it works in space of
any dimension, whereas, the cross product is only comfortable in 3D. Not only that,
the wedge (outer product) is a product that creates volumes, hypervolumes, and can
also be applied to vectors, bivectors, trivectors, etc.
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6.9 The Outer Product of Three 3D Vectors

Having seen that the outer product of two 3D vectors is represented by areal pro-
jections onto the three basis bivectors, let’s explore the outer product of three 3D
vectors.

Given

a = a1e1 + a2e2 + a3e3
b = b1e1 + b2e2 + b3e3
c = c1e1 + c2e2 + c3e3

then

a ∧ b ∧ c = (a1e1 + a2e2 + a3e3) ∧ (b1e1 + b2e2 + b3e3) ∧ (c1e1 + c2e2 + c3e3)

= [(a1b2 − a2b1)e1 ∧ e2 + (a2b3 − a3b2)e2 ∧ e3 + (a3b1 − a1b3)e3 ∧ e1]
∧ (c1e1 + c2e2 + c3e3).

At this stagewe introduce another axiom: the outer product is associative. Thismeans
that a ∧ (b ∧ c) = (a ∧ b) ∧ c. Therefore, knowing that a ∧ a = 0:

a ∧ b ∧ c = c3(a1b2 − a2b1)e1 ∧ e2 ∧ e3 + c1(a2b3 − a3b2)e2 ∧ e3 ∧ e1
+ c2(a3b1 − a1b3)e3 ∧ e1 ∧ e2.

But we are left with the products e1 ∧ e2 ∧ e3, e2 ∧ e3 ∧ e1 and e3 ∧ e1 ∧ e2. Not to
worry, because we know that a ∧ b = −b ∧ a. Therefore,

e2 ∧ e3 ∧ e1 = −e2 ∧ e1 ∧ e3 = e1 ∧ e2 ∧ e3

and

e3 ∧ e1 ∧ e2 = −e1 ∧ e3 ∧ e2 = e1 ∧ e2 ∧ e3.

Therefore, we can write a ∧ b ∧ c as

a ∧ b ∧ c = c3(a1b2 − a2b1)e1 ∧ e2 ∧ e3 + c1(a2b3 − a3b2)e1 ∧ e2 ∧ e3
+ c2(a3b1 − a1b3)e1 ∧ e2 ∧ e3

or

a ∧ b ∧ c = [c3(a1b2 − a2b1) + c1(a2b3 − a3b2) + c2(a3b1 − a1b3)] e1 ∧ e2 ∧ e3
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or using a determinant:

a ∧ b ∧ c =
∣
∣
∣
∣
∣
∣

a1 b1 c1
a2 b2 c2
a3 b3 c3

∣
∣
∣
∣
∣
∣

e1 ∧ e2 ∧ e3

which is the well-known expression for the volume of a parallelepiped formed by
three vectors.

The term e1 ∧ e2 ∧ e3 is a trivector and reminds us that the volume is oriented.
If the sign of the determinant is positive, the original three vectors possess the same
orientation of the three basis vectors. If the sign of the determinant is negative, the
three vectors possess an orientation opposing that of the three basis vectors.

6.10 Axioms

One of the features of geometric algebra is that it behaves very similar to the every-
day algebra of scalars:
Axiom 1: The associative rule:

a(bc) = (ab)c.

Axiom 2: The left and right distributive rules:

a(b + c) = ab + ac

(b + c)a = ba + ca.

The next four axioms describe how vectors interact with a scalar λ:
Axiom 3:

(λa)b = λ(ab) = λab.

Axiom 4:

λ(φa) = (λφ)a.

Axiom 5:

λ(a + b) = λa + λb.
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Axiom 6:

(λ + φ)a = λa + φa.

The next axiom that is adopted is
Axiom 7:

a2 = |a|2

which has already emerged as a consequence of the algebra. However, for non-
Euclidean geometries, this can be set to a2 = −|a|2, which does not concern us
here.

6.11 Notation

Having abandoned i, j, k for e1, e2, e3, it is convenient to convert geometric products
e1e2 . . . en to e12...n. For example, e1e2e3 = e123. Furthermore, we must get used to
the following substitutions:

eieiej = ej
e21 = −e12
e312 = e123
e112 = e2
e121 = −e2.

6.12 Grades, Pseudoscalars and Multivectors

As geometric algebra embraces such awide range of objects, it is convenient to grade
them as follows: scalars are grade 0, vectors are grade 1, bivectors are grade 2, and
trivectors are grade 3, and so on for higher dimensions. In such a graded algebra
it is traditional to call the highest grade element a pseudoscalar. Thus in 2D the
pseudoscalar is e12 and in 3D the pseudoscalar is e123.

One very powerful feature of geometric algebra is the idea of amultivector, which
is a linear combination of a scalar, vector, bivector, trivector or any other higher
dimensional object. For example the following are multivectors:

A = 3 + (2e1 + 3e2 + 4e3) + (5e12 + 6e23 + 7e31) + 8e123
B = 2 + (2e1 + 2e2 + 3e3) + (4e12 + 5e23 + 6e31) + 7e123
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and we can form their sum:

A + B = 5 + (4e1 + 5e2 + 7e3) + (9e12 + 11e23 + 13e31) + 15e123

or their difference:

A − B = 1 + (e2 + e3) + (e12 + e23 + e31) + e123.

We can even form their product AB, but at the moment we have not explored the
products between all these elements.

We can isolate any grade of a multivector using the following notation:

〈multivector〉g
where g identifies a particular grade. For example, say we have the following
multivector:

2 + 3e1 + 2e2 − 5e12 + 6e123

we extract the scalar term using:

〈2 + 3e1 + 2e2 − 5e12 + 6e123〉0 = 2

the vector term using

〈2 + 3e1 + 2e2 − 5e12 + 6e123〉1 = 3e1 + 2e2

the bivector term using:

〈2 + 3e1 + 2e2 − 5e12 + 6e123〉2 = −5e12

and the trivector term using:

〈2 + 3e1 + 2e2 − 5e12 + 6e123〉3 = 6e123.

It is also worth pointing out that the inner vector product converts two grade 1
elements, i.e. vectors, into a grade 0 element, i.e. a scalar, whereas the outer vector
product converts two grade 1 elements into a grade 2 element, i.e. a bivector. Thus
the inner product is a grade lowering operation, while the outer product is a grade
raising operation. These qualities of the inner and outer products are associated with
higher grade elements in the algebra. This is why the scalar product is renamed as the
inner product, because the scalar product is synonymous with transforming vectors
into scalars. Whereas, the inner product transforms two elements of grade n into a
grade n − 1 element.
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6.13 Redefining the Inner and Outer Products

As the geometric product is defined in terms of the inner and outer products, it
seems only natural to expect that similar functions exist relating the inner and outer
products in terms of the geometric product. Such functions do exist and emerge when
we combine the following two equations:

ab = a · b + a ∧ b (6.18)

ba = a · b − a ∧ b. (6.19)

Adding and subtracting (6.18) and (6.19) we have

a · b = 1
2 (ab + ba) (6.20)

a ∧ b = 1
2 (ab − ba). (6.21)

Equations (6.20) and (6.21) and used frequently to define the products between
different grade elements.

6.14 The Inverse of a Vector

In traditional vector analysis we accept that it is impossible to divide by a vector, but
that is not so in geometric algebra. In fact, we don’t actually divide a multivector by
another vector but find a way of representing the inverse of a vector. For example,
we know that a unit vector â is defined as

â = a
|a|

and using the geometric product

â2 = a2

|a|2 = 1

therefore,

b = a2b
|a|2

and exploiting the associative nature of the geometric product we have

b = a(ab)

|a|2 . (6.22)
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Equation (6.22) is effectively stating that, given the geometric product ab we can
recover the vector b by pre-multiplying by a−1:

a−1 = a
|a|2 .

Similarly, we can recover the vector a by post-multiplying by b−1:

a = (ab)b
|b|2 .

For example, given two vectors

a = e1 + 2e2
b = 3e1 + 2e2

their geometric product is

ab = 7 − 4e12.

Therefore, given ab and a, we can recover b as follows:

b = e1 + 2e2
5

(7 − 4e12)

= 1
5 (7e1 − 4e112 + 14e2 − 8e212)

= 1
5 (7e1 − 4e2 + 14e2 + 8e1)

b = 3e1 + 2e2.

Similarly, give ab and b, a is recovered as follows:

a = (7 − 4e12)
3e1 + 2e2

13
= 1

13 (21e1 + 14e2 − 12e121 − 8e122)

= 1
13 (21e1 + 14e2 + 12e2 − 8e1)

a = e1 + 2e2.

Note that the inverse of a unit vector is the original vector:

â−1 = â
|â|2 = â.
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6.15 The Imaginary Properties of the Outer Product

So far we know that the outer product of two vectors is represented by one or more
unit basis vectors, such as

a ∧ b = λ1e12 + λ2e23 + λ3e31

where, in this case, the λi terms represent areas projected onto their respective unit
basis bivectors. But what has not emerged is that the outer product is an imaginary
quantity, which is revealed by expanding e212:

e212 = e1212

but as

e21 = −e12

then

e1(21)2 = −e1(12)2

= −e21e
2
2

e212 = −1.

Consequently, the geometric product effectively creates a complex number! Thus in
a 2D scenario, given two vectors

a = a1e1 + a2e2
b = b1e1 + b2e2

their geometric product is

ab = (a1b1 + a2b2) + (a1b2 − a2b1)e12

and knowing that e12 = i, then we can write ab as

ab = (a1b1 + a2b2) + (a1b2 − a2b1)i. (6.23)

However, this notation is not generally adopted by the geometric community. The
reason being that i is normally only associated with a scalar, with which it commutes.
Whereas in 2D, e12 is associatedwith scalars and vectors, and although scalars present
no problem, under some conditions, it anti-commutes with vectors. Consequently,
an upper-case I is used so that there is no confusion between the two elements. Thus
(6.23) is written as
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Fig. 6.8 The effect of
pre-multiplying a vector by a
bivector

e1

e2

e3

a
e12

a1

a2

a3

ab = (a1b1 + a2b2) + (a1b2 − a2b1)I

where

I2 = −1.

It goes without saying that the 3D unit basis bivectors are also imaginary quantities,
so is e123.

Multiplying a complex number by i rotates it 90◦ on the complex plane. Therefore,
it should be no surprise that multiplying a 2D vector by e12 rotates it by 90◦. However,
because vectors are sensitive to their product partners, we must remember that pre-
multiplying a vector by e12 rotates a vector clockwise and post-multiplying rotates
a vector anti-clockwise.

Whilst on the subject of rotations, let’s consider what happens in 3D. We begin
with a 3D vector

a = a1e1 + a2e2 + a3e3

and the unit basis bivector e12 as shown in Fig. 6.8. Next we construct their geometric
product by pre-multiplying a by e12:

e12a = a1e12e1 + a2e12e2 + a3e12e3

which becomes

e12a = a1e121 + a2e122 + a3e123
= −a1e2 + a2e1 + a3e123
= a2e1 − a1e2 + a3e123

and contains two parts: a vector (a2e1 − a1e2) and a volume a3e123.
Figure 6.8 showshow the projection of vectora is rotated clockwise on the bivector

e12. A volume is also created perpendicular to the bivector. This enables us to predict
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that if the vector is coplanar with the bivector, the entire vector is rotated −90◦ and
the volume component will be zero.

By post-multiplying a by e12 creates

ae12 = −a2e1 + a1e2 + a3e123

which shows that while the volumetric element has remained the same, the projected
vector is rotated anti-clockwise.

You may wish to show that the same happens with the other two bivectors.

6.16 Duality

The ability to exchange pairs of geometric elements such as lines and planes involves
a dual operation, which in geometric algebra is relatively easy to define. For example,
given a multivector A its dual A∗ is defined as

A∗ = IA

where I is the local pseudoscalar. For 2D this is e12 and for 3D it is e123. Therefore,
given a 2D vector

a = a1e1 + a2e2

its dual is

a∗ = e12(a1e1 + a2e2)

= a1e121 + a2e122
= a2e1 − a1e2

which is another vector rotated 90◦ anti-clockwise.
It is easy to show that (a∗)∗ = −a, and two further dual operations return the

vector back to a.
In 3D the dual of a vector e1 is

e123e1 = e1231 = e23

which is the perpendicular bivector. Similarly, the dual of e2 is e31 and the dual of e3
is e12.

For a general vector a1e1 + a2e2 + a3e3 its dual is
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e123(a1e1 + a2e2 + a3e3) = a1e1231 + a2e1232 + a3e1233
= a3e12 + a1e23 + a2e31.

The duals of the 3D basis bivectors are:

e123e12 = e12312 = −e3
e123e23 = e12323 = −e1
e123e31 = e12331 = −e2.

6.17 The Relationship between the Vector Product
and the Outer Product

We have already discovered that there is a very close relationship between the vector
product and the outer product, and just to recap: Given two vectors

a = a1e1 + a2e2 + a3e3
b = b1e1 + b2e2 + b3e3

then

a × b = (a2b3 − a3b2)e1 + (a3b1 − a1b3)e2 + (a1b2 − a2b1)e3 (6.24)

and

a ∧ b = (a2b3 − a3b2)e2 ∧ e3 + (a3b1 − a1b3)e3 ∧ e1 + (a1b2 − a2b1)e1 ∧ e2

or

a ∧ b = (a2b3 − a3b2)e23 + (a3b1 − a1b3)e31 + (a1b2 − a2b1)e12. (6.25)

If we multiply (6.25) by I123 we obtain

I123(a ∧ b) = (a2b3 − a3b2)e123e23 + (a3b1 − a1b3)e123e31 + (a1b2 − a2b1)e123e12
= −(a2b3 − a3b2)e1 − (a3b1 − a1b3)e2 − (a1b2 − a2b1)e3

which is identical to the cross product (6.24) apart from its sign. Therefore, we can
state:

a × b = −I123(a ∧ b).
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Table 6.1 Hamilton’s quaternion product rules

i j k

i −1 k −j

j −k −1 i

k j −i −1

Table 6.2 3D bivector product rules

e23 e31 e12
e23 −1 −e12 e31
e31 e12 −1 −e23
e12 −e31 e23 −1

Table 6.3 Left-handed 3D bivector product rules

e32 e13 e21
e32 −1 e21 −e13
e13 −e21 −1 e32
e21 e13 −e32 −1

6.18 The Relationship between Quaternions and Bivectors

Hamilton’s rules for the imaginaries i, j and k are shown in Table 6.1, whilst Table 6.2
shows the rules for 3D bivector products.

Although there is some agreement between the table entries, there is a sign reversal
in some of them. However, if we switch to a left-handed axial system the bivectors
become e32, e13, e21 and their products are as shown in Table 6.3.

If we now create a one-to-one correspondence (isomorphism) between the two
systems:

i ↔ e32 j ↔ e13 k ↔ e21

there is a true correspondence between quaternions and a left-handed set of bivectors.

6.19 Reflections and Rotations

Oneof geometric algebra’s strengths is the elegance it brings to calculating reflections
and rotations. Unfortunately, there is insufficient space to examine the derivations of
the formulae, but if you are interested, these can be found in the author’s books [1,
2]. Let’s start with 2D reflections.
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Fig. 6.9 The reflection of a
2D vector

e1

e2

a

a
m̂

6.19.1 2D Reflections

Given a line, whose perpendicular unit vector is m̂ and a vector a its reflection a′ is
given by

a′ = m̂am̂

which is rather elegant! For example, Fig. 6.9 shows a scenario where

m̂ = 1√
2
(e1 + e2)

a = e1

therefore,

a′ = 1√
2
(e1 + e2)(e1) 1√

2
(e1 + e2)

= 1
2 (1 − e12)(e1 + e2)

= 1
2 (e1 + e2 + e2 − e1)

a′ = e2.

Note that in this scenario a reflectionmeans amirror image about the perpendicular
vector.

6.19.2 3D Reflections

Let’s explore the 3D scenario shown in Fig. 6.10 where
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Fig. 6.10 The reflection of a
3D vector

e1

e2

e3

m̂ aa

a = e1 + e2 − e3
m̂ = e2

therefore,

a′ = e2(e1 + e2 − e3)e2
= e212 + e222 − e232
= −e1 + e2 + e3.

As one might expect, it is also possible to reflect bivectors, trivectors and higher-
dimensional objects, and for reasons of brevity, they are summarised as follows:

Reflecting about a line:

scalars invariant

vectors v′ = m̂vm̂

bivectors B′ = m̂Bm̂

trivectors T′ = m̂Tm̂.

Reflecting about a mirror:

scalars invariant

vectors v′ = −m̂vm̂

bivectors B′ = m̂Bm̂

trivectors T′ = −m̂Tm̂.

6.19.3 2D Rotations

Figure 6.11 shows a plan view of two mirrorsM and N separated by an angle θ . The
point P is in front of mirrorM and subtends an angle α, and its reflection PR exists in
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Fig. 6.11 Rotating a point
by a double reflection
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Fig. 6.12 Rotating a point
by a double reflection
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the virtual space behind M and also subtends an angle α with the mirror. The angle
between PR and N must be θ − α, and its reflection P′ must also lie θ − α behind
N . By inspection, the angle between P and the double reflection P′ is 2θ .

If we apply this double reflection transform to a collection of points, they are
effectively all rotated 2θ about the origin where the mirrors intersect. The only slight
drawback with this technique is that the angle of rotation is twice the angle between
the mirrors.

Instead of using points, let’s employ position vectors and substitute normal unit
vectors for the mirrors’ orientation. For example, Fig. 6.12 shows the same mirrors
with unit normal vectors m̂ and n̂. After two successive reflections, P becomes P′,
and using the relationship:

v′ = −m̂vm̂

we compute the reflections as follows:

pR = −m̂pm̂

p′ = −n̂pRn̂

p′ = n̂m̂pm̂n̂

which is also rather elegant and compact. However, we must remember that P is
rotated twice the angle separating the mirrors, and the rotation is relative to the
origin. Let’s demonstrate this technique with an example.
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Fig. 6.13 Rotating a point
by 180◦
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Figure 6.13 shows two mirrors M and N with unit normal vectors m̂, n̂ and
position vector p:

m̂ = e2
n̂ = −e1
P = (1,−1)

p = e1 − e2.

As the mirrors are separated by 90◦ the point P is rotated 180◦:

p′ = n̂m̂pm̂n̂

= −e1e2(e1 − e2)e2(−e1)

= e12121 − e12221
= −e1 + e2

P′ = (−1, 1).

6.20 Rotors

Quaternions are the natural choice for rotating vectors about an arbitrary axis, and
although it may not be immediately obvious, we have already started to discover
geometric algebra’s equivalent.

We begin with

p′ = n̂m̂pm̂n̂

and substitute R for n̂m̂ and R̃ for m̂n̂, therefore,
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p′ = RpR̃

where R and R̃ are called rotors which perform the same function as a quaternion.
Because geometric algebra is non-commutative, the sequence of elements, be they

vectors, bivectors, trivectors, etc., is very important. Consequently, it is very useful
to include a command that reverses a sequence of elements. The notation generally
employed is the tilde “ ˜ ” symbol:

R = n̂m̂

R̃ = m̂n̂.

Let’s unpack a rotor in terms of its angle and bivector as follows:
The bivector defining the plane is m̂ ∧ n̂ and θ is the angle between the vectors.

Let

R = n̂m̂

R̃ = m̂n̂

where

n̂m̂ = n̂ · m̂ − m̂ ∧ n̂

m̂n̂ = n̂ · m̂ + m̂ ∧ n̂

n̂ · m̂ = cos θ

m̂ ∧ n̂ = B̂ sin θ.

Therefore,

R = cos θ − B̂ sin θ

R̃ = cos θ + B̂ sin θ.

We now have an equation that rotates a vector p through an angle 2θ about an axis
defined by B̂:

p′ = RpR̂

or

p′ =
[

cos θ − B̂ sin θ)
]

p
[

cos θ + B̂ sin θ
]

.

We can also express this such that it identifies the real angle of rotation α:

p′ =
[

cos(α/2) − B̂ sin(α/2)
]

p
[

cos(α/2) + B̂ sin(α/2)
]

. (6.26)
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Fig. 6.14 Rotating a vector
by 90◦

e1

e2

e3

a

B̂

p
p 90◦

Equation (6.26) references a bivector, which may make you feel uncomfortable! But
remember, it simply identifies the axis perpendicular to its plane. Let’s demonstrate
how (6.26) works with two examples.

Figure 6.14 shows a scenario where vector p is rotated 90◦ about e2 which is
perpendicular to B̂, where

α = 90◦

a = e2
p = e1 + e2

B̂ = e31.

Therefore,

p′ = (cos 45◦ − e31 sin 45◦) (e1 + e2) (cos 45◦ + e31 sin 45◦)

=
(√

2
2 −

√
2
2 e31

)

(e1 + e2)
(√

2
2 +

√
2
2 e31

)

= 1
2 (e1 + e2 − e3 − e312) (1 + e31)

= 1
2 (e1 + e2 − e3 − e312 − e3 − e231 − e1 − e31231)

= 1
2 (e1 + e2 − 2e3 − e1 + e2)

p′ = e2 − e3.

Observe what happens when the bivector’s sign is reversed to −e31:

p′ = (cos 45◦ + e31 sin 45◦)(e1 + e2)(cos 45◦ − e31 sin 45◦)

=
(√

2
2 +

√
2
2 e31

)

(e1 + e2)
(√

2
2 −

√
2
2 e31

)

= 1
2 (e1 + e2 + e3 + e312) (1 − e31)
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Fig. 6.15 Rotating a vector
by 120◦
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120◦

= 1
2 (e1 + e2 + e3 + e312 + e3 − e231 − e1 − e31231)

= 1
2 (e1 + e2 + 2e3 − e1 + e2)

p′ = e2 + e3.

the rotation is clockwise about e2.
Figure 6.15 shows another scenario where vector p is rotated 120◦ about the

bivector B, where

m = e1 − e3
n = e2 − e3
α = 120◦

p = e2 + e3
B = m ∧ n

= (e1 − e3) ∧ (e2 − e3)

B = e12 + e31 + e23.

Next, we normalise B to B̂:

B̂ = 1√
3
(e12 + e23 + e31)

therefore,

p′ = (cos 60◦ − B̂ sin 60◦)p(cos 60◦ + B̂ sin 60◦)

=
(
1
2 − 1√

3
(e12 + e23 + e31)

√
3
2

)

(e2 + e3)
(
1
2 + 1√

3
(e12 + e23 + e31)

√
3
2

)

=
(
1

2
− e12

2
− e23

2
− e31

2

)

(e2 + e3)
(
1

2
+ e12

2
+ e23

2
+ e31

2

)

= 1
4 (e2 + e3 − e1 − e123 + e3 − e2 − e312 + e1) (1 + e12 + e23 + e31)

= 1
2 (e3 − e123)(1 + e12 + e23 + e31)
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= 1
2 (e3 + e312 − e2 + e1 − e123 − e12312 − e12323 − e12331)

= 1
2 (e3 − e2 + e1 + e3 + e1 + e2)

p′ = e1 + e3.

These examples show that rotors behave just like quaternions. Rotors not only rotate
vectors, but they can be used to rotate bivectors, and even trivectors.

6.21 Summary

This chapter has provided a brief introduction to geometric algebra, which turns
out to possess imaginary foundations. The algebra provides some elegant ways to
compute reflections and rotations, which are extended in Chap.10.

6.21.1 Summary of Formulae

2D Inner Product

a = a1e1 + a2e2
b = b1e1 + b2e2

a · b = |a||b| cos θ = a1b1 + a2b2.

2D Outer Product

a = a1e1 + a2e2
b = b1e1 + b2e2

a ∧ b = |a||b| sin θe1 ∧ e2 = (a1b2 − a2b1)e1 ∧ e2.

2D Geometric Product

a = a1e1 + a2e2
b = b1e1 + b2e2

ab = |a||b| cos θ + |a||b| sin θe1 ∧ e2 = (a1b1 + a2b2) + (a1b2 − a2b1)e1 ∧ e2.

3D Inner Product

a = a1e1 + a2e2 + a3e3
b = b1e1 + b2e2 + b3e3

a · b = |a||b| cos θ = a1b1 + a2b2 + a3b3.
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3D Outer Product

a = a1e1 + a2e2 + a3e3
b = b1e1 + b2e2 + b3e3

a ∧ b = (a1b2 − a2b1)e1 ∧ e2 + (a2b3 − a3b2)e2 ∧ e3 + (a3b1 − a1b3)e3 ∧ e1.

3D Geometric Product

a = a1e1 + a2e2 + a3e3
b = b1e1 + b2e2 + b3e3

ab = a · b + a ∧ b = (a1b1 + a2b2 + a3b3)+
(a1b2 − a2b1)e1 ∧ e2 + (a2b3 − a3b2)e2 ∧ e3 + (a3b1 − a1b3)e3 ∧ e1.

Outer Product of Three 3D Vectors

a = a1e1 + a2e2 + a3e3
b = b1e1 + b2e2 + b3e3
c = c1e1 + c2e2 + c3e3

a ∧ b ∧ c = [c3(a1b2 − a2b1) + c1(a2b3 − a3b2) + c2(a3b1 − a1b3)] e1 ∧ e2 ∧ e3

a ∧ b ∧ c =
∣
∣
∣
∣
∣
∣

a1 b1 c1
a2 b2 c2
a3 b3 c3

∣
∣
∣
∣
∣
∣

e1 ∧ e2 ∧ e3.

Generalised Inner and Outer Products

ab = a · b + a ∧ b

ba = a · b − a ∧ b

a · b = 1
2 (ab + ba)

a ∧ b = 1
2 (ab − ba).

Inverse of a Vector

a−1 = a
|a|2 .

Imaginary Properties of the Outer Product

a ∧ b = λ1e12 + λ2e23 + λ3e31
e212 = e223 = e231 = −1.
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Reflections
About a line:

vectors v′ = m̂vm̂

bivectors B′ = m̂Bm̂

trivectors T′ = m̂Tm̂.

In a mirror:

vectors v′ = −m̂vm̂

bivectors B′ = m̂Bm̂

trivectors T′ = −m̂Tm̂.

6.22 Worked Examples

6.22.1 2D Inner Product

Calculate the inner product of a = 1e1 and b = 1e1 + 2e2.
Solution: The inner product is given by

a · b = a1b1 + a2b2
= 1 × 1 + 0 × 2 = 1.

6.22.2 2D Outer Product

Calculate the outer product of a = 1e1 and b = 1e1 + 2e2.

Solution: The outer product is given by

a ∧ b = (a1b2 − a2b1)e1 ∧ e2
= (1 × 2 − 0 × 1)e1 ∧ e2 = 2e1 ∧ e2.

6.22.3 2D Geometric Product

Calculate the geometric product of a = e1 and b = e1 + e2.
Solution: The geometric product is given by
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ab = a · b + a ∧ b

a · b = 1

a ∧ b = 2e1 ∧ e2
ab = 1 + 2e1 ∧ e2.

6.22.4 3D Inner Product

Calculate the inner product of a = e1 + 2e2 − 3e3 and b = 2e1 − 3e2 + 4e3.
Solution: The inner product is given by

a · b = a1b1 + a2b2 + a3b3
= 1 × 2 + 2 × (−3) − 3 × 4

= −16.

6.22.5 3D Outer Product

Calculate the outer product of a = e1 + 2e2 + 3e3 and b = 2e1 + 3e2 + 5e3.
Solution: The outer product is given by

a ∧ b = (a1b2 − a2b1)e1 ∧ e2 + (a2b3 − a3b2)e2 ∧ e3 + (a3b1 − a1b3)e3 ∧ e1
= (1 × 3 − 2 × 2)e1 ∧ e2 + (2 × 5 − 3 × 3)e2 ∧ e3 + (3 × 2 − 1 × 5)e2 ∧ e3
= −1e1 ∧ e2 + 1e2 ∧ e3 + 1e2 ∧ e3.

6.22.6 3D Geometric Product

Calculate the geometric product of a = e1 + 2e2 + 3e3 and b = 2e1 + 3e2 + 5e3.

Solution: The geometric product is given by

ab = a · b + a ∧ b

= −16 − 1e1 ∧ e2 + 1e2 ∧ e3 + 1e2 ∧ e3.
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6.22.7 Outer Product of Three Vectors

Calculate the outer product of

a = 1e1 + 1e2 + 1e3
b = 2e1 + 4e2 + 3e3
c = −5e1 + 6e2 + 7e3.

Solution: The outer product of three vectors is given by

a ∧ b ∧ c =
∣
∣
∣
∣
∣
∣

a1 b1 c1
a2 b2 c2
a3 b3 c3

∣
∣
∣
∣
∣
∣

e1 ∧ e2 ∧ e3

=
∣
∣
∣
∣
∣
∣

1 1 1
2 4 3

−5 6 7

∣
∣
∣
∣
∣
∣

e1 ∧ e2 ∧ e3

= [(4 × 7) + (3 × −5) + (2 × 6) − (3 × 6) − (2 × 7) − (4 × −5)]e1 ∧ e2 ∧ e3
= (28 − 15 + 12 − 18 − 14 + 20)e1 ∧ e2 ∧ e3
= 13e1 ∧ e2 ∧ e3.

6.22.8 Inverse of a Vector

Find the inverse of a = 1e1 + 2e2 + 3e3.

Solution: The inverse of a vector is given by

a−1 = a/|a|2
|a| =

√

12 + 22 + 32

|a|2 = 14

a−1 = 1
14 (1e1 + 2e2 + 3e3).
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6.22.9 Recovering a Vector from a Geometric Product

Find b, given ab = 3 + e12 and a = 2e1 + e2.

Solution: Premultiply ab by a−1.

|a|2 = 5

a−1 = 1
5 (2e1 + e2)

b = 1
5 (2e1 + e2)(3 + e12)

= 1
5 (6e1 + 2e112 + 3e2 + e212)

= 1
5 (6e1 + 2e2 + 3e2 − e1)

= e1 + e2.

6.22.10 Reflecting a 2D Vector about a Line

Calculate the reflection of v = e1 + e2 about the normal m̂ = e2.

Solution: The reflected vector is given by

v′ = m̂vm̂

= e2(e1 + e2)e2
= (e21 + 1)e2
= e212 + e2
= −e1 + e2.

6.22.11 Reflecting a 3D Vector about a Line

Calculate the reflection of v = e1 + e2 + e3 about the normal m̂ = e2.

Solution: The reflected vector is given by
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v′ = m̂vm̂

= e2(e1 + e2 + e3)e2
= (e21 + 1 + e23)e2
= e212 + e2 + e232
= −e1 + e2 − e3.

6.22.12 Rotating a 3D Vector

Rotate vector p = 2e1 + e2 by α = 90◦ about e1 which is perpendicular to B̂ = e23.

Solution: The rotated vector is given by

p′ =
[

cos(α/2) − B̂ sin(α/2)
]

p
[

cos(α/2) + B̂ sin(α/2)
]

= [

cos 45◦ − e23 sin 45◦] (2e1 + e2)
[

cos 45◦ + e23 sin 45◦]

= 1
2 [2e1 + e2 − 2e231 − e232] [1 + e23]

= 1
2 [2e1 + e2 + e3 − 2e123] [1 + e23]

= 1
2 [2e1 + e2 + e3 − 2e123 + 2e123 + e223 + e323 − 2e12323]

= 1
2 [2e1 + 2e3 + 2e1]

= [2e1 + e3] .
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Chapter 7
Trigonometric Identities Using Complex
Numbers

7.1 Introduction

Proving trigonometric identities is normally approached geometrically, where one
constructs a diagram containing useful ratios, to reveal the required answer using
logic. In this chapter I show how complex numbers provide an algebraic way of
proving trigonometric identities.

7.2 Compound Angle Identities

Compound angle identities such as sin(α + β) are normally taught using Euclidean
geometry. For example, Fig. 7.1 does not seem to be a natural answer to the problem,
nevertheless, is used to tackle the problem as follows.

sin(α + β) = FD

AD
= BC + ED

AD

= BC

AD

AC

AC
+ ED

AD

CD

CD

= BC

AC

AC

AD
+ ED

CD

CD

AD
sin(α + β) = sin α cosβ + cosα sin β. (7.1)

Now let’s expand cos(α + β) with reference to Fig. 7.1:

cos(α + β) = AE

AD
= AB − EC

AD

= AB

AD

AC

AC
− EC

AD

CD

CD
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A B

C

D

E

F

Fig. 7.1 The geometry to expand sin(α + β)

= AB

AC

AC

AD
− EC

CD

CD

AD
cos(α + β) = cosα cosβ − sin α sin β. (7.2)

However,we canderive (7.1) and (7.2) by employing complex numbers as follows.

cos(θ + β) + i sin(θ + β) = ei(θ+β) = eiθeiβ

= (cos θ + i sin θ)(cosβ + i sin β)

= (cos θ cosβ − sin θ sin β) + i(sin θ cosβ + cos θ sin β)

equating real and imaginary parts, we have

cos(θ + β) = cos θ cosβ − sin θ sin β

sin(θ + β) = sin θ cosβ + cos θ sin β

and if we make β negative, we obtain

cos(θ − β) = cos θ cosβ + sin θ sin β

sin(θ − β) = sin θ cosβ − cos θ sin β.

This is much more intuitive, and just relies on the relationship

eiα = cosα + i sin α

furthermore, no diagram is required!
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7.3 de Moivre’s Theorem

de Moivre’s theorem states

(cos θ + i sin θ)n = cos(nθ) + i sin(nθ).

which we have seen is useful to deduce various trigonometric identities. However,
we can isolate cosn θ and sinn θ as follows:

cosn θ =
(
eiθ + e−iθ

2

)n

sinn θ =
(
eiθ − e−iθ

2i

)n

which, using the binomial expansion, can be used to deduce identities of the form
cosn θ and sinn θ . Let’s evaluate cosn θ and sinn θ, 2 ≤ n ≤ 5.

cos2 θ =
(
eiθ + e−iθ

2

)2

= ei2θ + 2 + e−i2θ

4

= 1
2

(
2 + ei2θ + e−i2θ

2

)

cos2 θ = 1 + cos(2θ)

2
.

sin2 θ =
(
eiθ − e−iθ

2i

)2

= ei2θ − 2 + e−i2θ

−4

= 1
2

(
2 − (ei2θ + e−i2θ )

2

)

sin2 θ = 1 − cos(2θ)

2
.

cos3 θ =
(
eiθ + e−iθ

2

)3

= ei3θ + 3eiθ + 3e−iθ + e−i3θ

8

= 1
4

(
3(eiθ + e−iθ ) + ei3θ + e−3θ

2

)
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cos3 θ = 3 cos θ + cos(3θ)

4
.

sin3 θ =
(
eiθ − e−iθ

2i

)3

= ei3θ − 3eiθ + 3e−iθ − e−i3θ

−8i

= 1
4

(
(ei3θ − e−3θ ) − 3(eiθ − e−iθ )

−2i

)

sin3 θ = 3 sin θ − sin(3θ)

4
.

cos4 θ =
(
eiθ + e−iθ

2

)4

= ei4θ + 4ei2θ + 6 + 4e−i2θ + e−i4θ

16

= 1
8

(
6 + 4(ei2θ + e−i2θ ) + (ei4θ + e−i4θ )

2

)

cos4 θ = 3 + 4 cos(2θ) + cos(4θ)

8
.

sin4 θ =
(
eiθ − e−iθ

2i

)4

= ei4θ − 4ei2θ + 6 − 4e−i2θ + e−i4θ

16

= 1
8

(
6 − 4(ei2θ + e−i2θ ) + (ei4θ + e−i4θ )

2

)

sin4 θ = 3 − 4 cos(2θ) + cos(4θ)

8
.

cos5 θ =
(
eiθ + e−iθ

2

)5

= ei5θ + 5ei3θ + 10eiθ + 10e−iθ + 5e−i3θ + ei5θ

32

= 1
16

(
10(eiθ + e−iθ ) + 5(ei3θ + e−i3θ ) + (ei5θ + e−i5θ )

2

)

cos5 θ = 10 cos θ + 5 cos(3θ) + cos(5θ)

16
.

sin5 θ =
(
eiθ − e−iθ

2i

)5

= ei5θ − 5ei3θ + 10eiθ − 10e−iθ + 5e−i3θ − ei5θ

32i
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= 1
16

(
10(eiθ − e−iθ ) − 5(ei3θ − e−i3θ ) + (ei5θ − e−i5θ )

2i

)

sin5 θ = 10 sin θ − 5 sin(3θ) + sin(5θ)

16
.

7.4 Summary

Although eiθ does not appear to be a natural mathematical object for proving trigono-
metric identities, it does provide some elegant proofs for compound angles and identi-
ties of the form cosn θ and sinn θ . Unfortunately, we often discover complex numbers
just when we have mastered geometric solutions to these problems!



Chapter 8
Combining Waves Using Complex
Numbers

8.1 Introduction

Waves play an important role in transferring energy and information from one place
to another, whether they are waves of air pressure, water, magnetism, electricity
or gravity. When waves are combined, they cancel and reinforce one another; and
as waves possess velocity, wavelength, frequency, amplitude and phase, computing
the resultant waveform can be difficult using conventional trigonometric functions.
Fortunately, complex numbers greatly simplify the analysis, and this chapter explains
how.

8.2 Wave Equation

Before we begin, let’s agree the notation used to describe sinusoidal waves. The
following terms are often used to describe a sinusoidal waveform:

k = the angular wavenumber [rad/metre]

ω = the angular frequency [rad/sec]

λ = 2π/k = the wavelength [metre]

υ = ω/2π = the frequency [cycles/sec].

A sinusoidal wave is written

ψ(x) = a cos(kx)

where ψ is the Greek letter psi, a is the amplitude, k is the angular wavenumber, and
x is a position along the wave.
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Fig. 8.1 A cosine wave

Figure8.1 shows a cosine wave with amplitude a, wavelength λ = 2π/k, and the
distance x in metres. If k = 1 [rad/metre], then λ = 2π [metre].

If the wave changes with time, the parameter t must be multiplied by ω to create
units of radians:

ψ(x, t) = a cos(kx − ωt).

To determine the phase speed cp, we increment t = t + 1, and x = x + ω/k:

ψ(x, t) = a cos

(
k

(
x + ω

k

)
− ω(t + 1)

)

= a cos(kx + ω − ωt − ω)

= a cos(kx − ωt).

Therefore, the wave’s phase speed is the ratio of the increments:

cp = ω/k

1
= ω

k
.

Next, we need to introduce a phase angle term φ, in order to delay or advance the
wave:

ψ(x, t, φ) = a cos(kx − ωt + φ). (8.1)

8.3 Combining Waves

We can now use trigonometric identities or complex numbers to resolve various
waveform combinations with different frequency, phase and amplitude. However,
this entails many combinations:
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a sin x + b sin x

a sin x + b cos x

a sin x + b cos(x + φ)

a cos x + b sin(x + φ)

a sin(x + φ) + b cos(x + α)

etc.

So rather than develop a solution for every combination, I will illustrate a strategy,
that will permit the reader to undertake other waveform combinations. Let’s begin
with trigonometric identities.

8.3.1 Using Trigonometric Identities

In the following description, either the cosine or sine function could be used, but I
have chosen the cosine function. Consequently, the following identities will be useful

cos(α + β) = cosα cosβ − sin α sin β

cosα + cosβ = 2 cos

(
α + β

2

)
cos

(
α − β

2

)
.

To simplify the following waveforms, β is substituted for kx − ωt . The simplest
combination is two waves with the same frequency and amplitude, but no phase
difference:

ψ1 = a cosβ

ψ2 = a cosβ

ψ1 + ψ2 = 2a cosβ.

Next, two waves with the same frequency and no phase difference, but different
amplitudes:

ψ1 = a1 cosβ

ψ2 = a2 cosβ

ψ1 + ψ2 = (a1 + a2) cosβ.

Next, two waves with the same frequency and amplitude, but one includes a phase
change:

ψ1 = a cos(β + φ)

ψ2 = a cosβ.
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The aim is to create a wave equation of the form A cosΦ, where A is the amplitude,
and references the original amplitude a and phase angle φ, and Φ references the
original frequency and phase angle:

ψ1 + ψ2 = a cos(β + φ) + a cosβ

= 2a cos

(
2β + φ

2

)
cos

(
φ

2

)

= 2a cos

(
φ

2

)
cos

(
β + φ

2

)
.

The amplitude is 2a cos(φ/2), and the cosine wave is cos(β + φ/2).
Finally, a general solution for two waves with the same frequency, but different

amplitudes and phase angles:

ψ1 = a1 cos(β + φ1)

ψ2 = a2 cos(β + φ2).

The aim is to create a wave equation of the form A cosΦ, where A is the amplitude,
and references the original amplitudes a1 & a2 and phase angles φ1 & φ2, and Φ

references the original frequency and phase angles:

ψ1 + ψ2 = a1 cos(β + φ1) + a2 cos(β + φ2)

= a1 cosβ cosφ1 − a1 sin β sin φ1 + a2 cosβ cosφ2 − a2 sin β sin φ2

= a1 cosβ cosφ1 + a2 cosβ cosφ2 − a1 sin β sin φ1 − a2 sin β sin φ2

= cosβ(a1 cosφ1 + a2 cosφ2) − sin β(a1 sin φ1 + a2 sin φ2). (8.2)

At this point, (8.2) is of the form

ψ1 + ψ2 = X cosβ − Y sin β

where

X = a1 cosφ1 + a2 cosφ2 (8.3)

Y = a1 sin φ1 + a2 sin φ2 (8.4)

and we have managed to separate the frequency terms from those containing the
amplitudes and phase angles.

One can see that (8.3) and (8.4) possess a symmetry where X is the sum of two
terms projected onto the x-axis, whilst Y is the sum of two terms projected onto the
y-axis. Therefore, we can express X and Y in polar form as
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X = r cos θ

Y = r sin θ

where r2 = X2 + Y 2 and θ is the angle associated with r :

r2 = (a1 cosφ1 + a2 cosφ2)
2 + (a1 sin φ1 + a2 sin φ2)

2

= a21 cos
2 φ1 + a22 cos

2 φ2 + 2a1a2 cosφ1 cosφ2

+ a21 sin
2 φ1 + a22 sin

2 φ2
2 + 2a1a2 sin φ1 sin φ2

= a21
(
cos2 φ1 + sin2 φ1

) + a22
(
cos2 φ2 + sin2 φ2

)
+ 2a1a2(cosφ1 cosφ2 + sin φ1 sin φ2)

= a21 + a22 + 2a1a2 cos(φ1 − φ2)

r =
√
a21 + a22 + 2a1a2 cos(φ1 − φ2).

Next, tan θ = Y/X , therefore,

θ = tan−1

(
a1 sin φ1 + a2 sin φ2

a1 cosφ1 + a2 cosφ2

)
.

We now have

a1 cosφ1 + a2 cosφ2 = r cos θ

a1 sin φ1 + a2 sin φ2 = r sin θ

which when substituted in (8.2) give:

ψ1 + ψ2 = cosβ(a cosφ1 + b cosφ2) − sin β(a sin φ1 + b sin φ2)

= cosβ(r cos θ) − sin β(r sin θ)

= r cos(β + θ)

and can be written

ψ1 + ψ2 =
√
a21 + a22 + 2a1a2 cos(φ1 − φ2) · cos

[
β + tan−1

[
a1 sin φ1 + a2 sin φ2

a1 cosφ1 + a2 cosφ2

)]
.

(8.5)

Solving the above equations using trigonometric identities is not always easy, and
one can waste vast amounts of time trying to simplify expressions. So now let’s see
how complex exponentials help resolve the situation.
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8.4 Using Complex Exponentials

The complex exponential notation reiθ offers a very effective mathematical object
for manipulating waves. As reiθ = r cos θ + ir sin θ , we can select the real part for
cosine waves, or the imaginary part for sine waves.

Let’s continue using β = kx − ωt , and φ for the phase angle. Therefore, a wave
equation is expressed

Ψ = aei(β+φ). (8.6)

Equation (8.6) contains all the properties of a wave, either explicitly or implicitly:
amplitude, wavelength, frequency, phase angle and phase speed.

Given two such waves

Ψ1 = a1e
i(β+φ1)

Ψ2 = a2e
i(β+φ2)

then a general solution is given by

Ψ1 + Ψ2 = a1e
iβeiφ1 + a2e

iβeiφ2

= eiβ
(
a1e

iφ1 + a2e
iφ2

)

= eiβ (a1 cosφ1 + ia1 sin φ1 + a2 cosφ2 + ia2 sin φ2)

= eiβ [(a1 cosφ1 + a2 cosφ2) + i(a1 sin φ1 + a2 sin φ2)]

= eiβ
√

(a1 cosφ1 + a2 cosφ2)2 + (a1 sin φ1 + a2 sin φ2)2 · e
i tan−1

(
a1 sin φ1 + a2 sin φ2

a1 cosφ1 + a2 cosφ2

)

Ψ1 + Ψ2 =
√

(a1 cosφ1 + a2 cosφ2)2 + (a1 sin φ1 + a2 sin φ2)2 · e
i

[
β+tan−1

(
a1 sin φ1 + a2 sin φ2

a1 cosφ1 + a2 cosφ2

)]

(8.7)

Equation (8.7) is a general wave equation for different amplitudes and phase angles.
The radical term can be simplified as before, which produces

Ψ1 + Ψ2 =
√
a21 + a22 + 2a1a2 cos(φ1 − φ2) · ei

[
β+tan−1

(
a1 sin φ1+a2 sin φ2
a1 cosφ1+a2 cosφ2

)]
(8.8)

We can either select the real or imaginary parts of (8.8), where the real part combines
two cosine waves:

ψ1 + ψ2 =
√
a21 + a22 + 2a1a2 cos(φ1 − φ2) · cos

[
β + tan−1

(
a1 sin φ1 + a2 sin φ2

a1 cosφ1 + a2 cosφ2

)]

(8.9)
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or the imaginary part, which combines two sine waves:

ψ1 + ψ2 =
√
a21 + a22 + 2a1a2 cos(φ1 − φ2) · sin

[
β + tan−1

(
a1 sin φ1 + a2 sin φ2

a1 cosφ1 + a2 cosφ2

)]

(8.10)

Let’s use (8.9) and (8.10) to provide expressions for various wave combinations. For
the moment, we will assume that the waves are either both sine or cosine waves, and
provide equations for both functions. I will illustrate each wave combination with
graphs based on the cosine or the sine wave equation.

8.4.1 Same Frequency and Amplitude, but no Phase Angle

Combining two cosine waves with the same frequency and amplitude, but no phase
angle:

ψ1 = a cosβ

ψ2 = a cosβ

ψ1 + ψ2 = 2a cosβ.

If ψ1 and ψ2 are sine waves, then

ψ1 + ψ2 = 2a sin β.

Figure8.2 shows graphs of the following cosine waveforms:

0 ≤ t ≤ 720◦

ψ1 = 4 cos t [blue]

ψ2 = 4 cos t [green]

ψ1 + ψ2 = 8 cos t [red].

8.4.2 Same Frequency, Different Amplitudes, but no Phase
Angle

Combining two cosine waves with the same frequency, different amplitudes, but no
phase angle:
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Fig. 8.2 Combining two
cosine waves ψ1 = 4 cos t
and ψ2 = 4 cos t

Fig. 8.3 Combining two
sine waves ψ1 = 3 sin t and
ψ2 = 5 sin t

ψ1 = a1 cosβ

ψ2 = a2 cosβ

ψ1 + ψ2 = (a1 + a2) cosβ.

If ψ1 and ψ2 are sine waves, then

ψ1 + ψ2 = (a1 + a2) sin β.

Figure8.3 shows graphs of the following sine waveforms:

0 ≤ t ≤ 720◦

ψ1 = 3 sin t [blue]

ψ2 = 5 sin t [green]

ψ1 + ψ2 = 8 sin t [red].
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Fig. 8.4 Combining two
cosine waves
ψ1 = 4 cos(t + 60◦) and
4 cos(t + 60◦)

8.4.3 Same Frequency, Amplitude and Phase Angle

Combining two cosine waves with the same frequency, amplitude and phase angle:

ψ1 = a cos(β + φ)

ψ2 = a cos(β + φ)

ψ1 + ψ2 = 2a cos(β + φ).

If ψ1 and ψ2 are sine waves, then

ψ1 + ψ2 = 2a sin(β + φ).

Figure8.4 shows graphs of the following cosine waveforms:

0 ≤ t ≤ 720◦

ψ1 = 4 cos(t + 60◦) [blue]

ψ2 = 4 cos(t + 60◦) [green]

ψ1 + ψ2 = 8 cos(t + 60◦) [red].

8.4.4 Same Frequency and Amplitude, but Different Phase
Angles

Combining two cosine waves with the same frequency and amplitude, but different
phase angles:
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Fig. 8.5 Combining two
sine waves
ψ1 = 4 sin(t + 60◦) and
ψ2 = 4 sin(t + 30◦)

ψ1 = a cos(β + φ1)

ψ2 = a cos(β + φ2)

ψ1 + ψ2 = a
√
2(1 + cos(φ1 − φ2)) · cos

[
β + tan−1

(
sin φ1 + sin φ2

cosφ1 + cosφ2

)]
.

If ψ1 and ψ2 are sine waves, then

ψ1 + ψ2 = a
√
2(1 + cos(φ1 − φ2)) · sin

[
β + tan−1

(
sin φ1 + sin φ2

cosφ1 + cosφ2

)]
.

Figure8.5 shows graphs of the following sine waveforms:

0 ≤ t ≤ 720◦

ψ1 = 4 sin(t + 60◦) [blue]

ψ2 = 4 sin(t + 30◦) [green]

ψ1 + ψ2 ≈ 7.727 sin(t + 45◦) [red].

8.4.5 Same Frequency and Amplitude, but One has a Phase
Angle

Combining two cosine waves with the same frequency and amplitude, but one
includes a phase angle:
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Fig. 8.6 Combining two
cosine waves
ψ1 = 4 cos(t + 60◦) and
ψ2 = 4 cos t

ψ1 = a cos(β + φ)

ψ2 = a cosβ

ψ1 + ψ2 =
√
a2 + a2 + 2a2 cosφ · cos

[
β + tan−1

(
a sin φ

a cosφ + a

)]

= a
√
2 + 2 cosφ · cos

[
β + tan−1

(
2 sin(φ/2) cos(φ/2)

2 − 2 sin2(φ/2)

)]

= a
√
2 + 2 − 4 sin2(φ/2) · cos

[
β + tan−1

(
sin(φ/2) cos(φ/2)

cos2(φ/2)

)]

ψ1 + ψ2 = 2a cos(φ/2) cos(β + φ/2).

If ψ1 and ψ2 are sine waves, then

ψ1 + ψ2 = 2a cos(φ/2) sin(β + φ/2).

Figure8.6 shows graphs of the following cosine waveforms:

0 ≤ t ≤ 720◦

ψ1 = 4 cos(t + 60◦) [blue]

ψ2 = 4 cos t [green]

ψ1 + ψ2 = 8 cos 30◦ cos(t + 30◦) [red].

8.4.6 Same Frequency, Different Amplitudes, and One
has a Phase Angle

Combining two cosine waves with the same frequency, different amplitudes, and one
includes a phase angle:
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Fig. 8.7 Combining two
cosine waves
ψ1 = 3 cos(t + 60◦) and
ψ2 = 5 cos t

ψ1 = a1 cos(β + φ)

ψ2 = a2 cosβ

ψ1 + ψ2 =
√
a21 + a22 + 2a1a2 cosφ · cos

[
β + tan−1

(
a1 sin φ

a1 cosφ + a2

)]
.

If ψ1 and ψ2 are sine waves, then

ψ1 + ψ2 =
√
a21 + a22 + 2a1a2 cosφ · sin

[
β + tan−1

(
a1 sin φ

a1 cosφ + a2

)]
.

Figure8.7 shows graphs of the following cosine waveforms:

0 ≤ t ≤ 720◦

ψ1 = 3 cos(t + 60◦) [blue]

ψ2 = 5 cos t [green]

ψ1 + ψ2 =
√
32 + 52 + 30 cos 60◦ · cos

[
t + tan−1

(
3 sin 60◦

3 cos 60◦ + 5

)]

≈ 7 cos(t + 18.875◦) [red].

8.4.7 Same Frequency and Phase Angle, but Different
Amplitudes

Combining two cosine waves with the same frequency and phase angle, but different
amplitudes:
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Fig. 8.8 Combining two
sine waves
ψ1 = 3 sin(t + 60◦) and
ψ2 = 5 sin(t + 60◦)

ψ1 = a1 cos(β + φ)

ψ2 = a2 cos(β + φ)

ψ1 + ψ2 = (a1 + a2) cos(β + φ).

If ψ1 and ψ2 are sine waves, then

ψ1 + ψ2 = (a1 + a2) sin(β + φ).

Figure8.8 shows graphs of the following sine waveforms:

0 ≤ t ≤ 720◦

ψ1 = 3 sin(t + 60◦) [blue]

ψ2 = 5 sin(t + 60◦) [green]

ψ1 + ψ2 = 8 sin(t + 60◦) [red].

8.4.8 Same Frequency, but Different Amplitudes and Phase
Angles

Combining two cosine waves with the same frequency, but different amplitudes and
phase angles:

ψ1 = a1 cos(β + φ1)

ψ2 = a2 cos(β + φ2)

ψ1 + ψ2 =
√
a21 + a22 + 2a1a2 cos(φ1 − φ2) · cos

[
β + tan−1

(
a1 sin φ1 + a2 sin φ2

a1 cosφ1 + a2 cosφ2

)]
.



208 8 Combining Waves Using Complex Numbers

Fig. 8.9 Combining two
cosine waves
ψ1 = 3 cos(t + 60◦) and
ψ2 = 4 cos(t + 30◦)

If ψ1 and ψ2 are sine waves, then

ψ1 + ψ2 =
√
a21 + a22 + 2a1a2 cos(φ1 − φ2) · sin

[
β + tan−1

(
a1 sin φ1 + a2 sin φ2

a1 cosφ1 + a2 cosφ2

)]
.

Figure8.9 shows graphs of the following cosine waveforms:

0 ≤ t ≤ 720◦

ψ1 = 3 cos(t + 60◦)
ψ2 = 4 cos(t + 30◦)

ψ1 + ψ2 = r cos(t + θ)

r =
√
32 + 42 + 2 × 3 × 4 cos(60◦ − 30◦)

=
√
25 + 12

√
3

≈ 6.766

θ = tan−1

(
3 sin 60◦ + 4 sin 30◦

3 cos 60◦ + 4 cos 30◦

)

≈ tan−1

(
4.598

4.9641

)

≈ 42.8◦

ψ1 + ψ2 ≈ 6.766 cos(t + 42.8◦).

8.4.9 Combining Sine and Cosine Functions

The above wave combinations assume that both waves have a sine or cosine basis.
So let’s derive similar equations for a mixture of sine and cosine waves of the form
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ψ1 = a1 cos(β + φ1)

ψ2 = a2 sin(β + φ2)

which can be written as

ψ1 = a1 cos(β + φ1)

ψ2 = a2 cos(β + φ2 − π/2)

and means that the general wave equation (8.7) can be used where φ2 is replaced by
φ2 − π/2:

Ψ1 + Ψ2 =
√

(a1 cosφ1 + a2 cos(φ2 − π/2))2 + (a1 sin φ1 + a2 sin(φ2 − π/2))2·

exp

{
i

[
β + tan−1

(
a1 sin φ1 + a2 sin(φ2 − π/2)

a1 cosφ1 + a2 cos(φ2 − π/2)

)]}
. (8.11)

But

cos(φ2 − π/2) = sin φ2

sin(φ2 − π/2) = − cosφ2

which when substituted into (8.11) gives

Ψ1 + Ψ2 =
√

(a1 cosφ1 + a2 sin φ2)2 + (a1 sin φ1 − a2 cosφ2)2·
exp

{
i

[
β + tan−1

(
a1 sin φ1 − a2 cosφ2

a1 cosφ1 + a2 sin φ2

)] }

whose real part gives

ψ1 + ψ2 =
√
a21 + a22 − 2a1a2 sin(φ1 − φ2) · cos

[
β + tan−1

(
a1 sin φ1 − a2 cosφ2

a1 cosφ1 + a2 sin φ2

)]
.

(8.12)
Let’s test (8.12) with some examples.

8.4.10 Same Frequency and Amplitude, but no Phase Angle

Combining a sine and cosine wave with the same frequency and amplitude, but no
phase angle:
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Fig. 8.10 Combining two
waves ψ1 = 5 cos t and
ψ2 = 5 sin t

ψ1 = a cosβ

ψ2 = a sin β

ψ1 + ψ2 = a
√
2 cos(β − π/4).

Figure8.10 shows graphs of the following cosine and sine waveforms:

0 ≤ t ≤ 720◦

ψ1 = 5 cos t [blue]

ψ2 = 5 sin t [green]

ψ1 + ψ2 = 5
√
2 cos(t − π/4) [red].

8.4.11 Same Frequency, Different Amplitudes, but no Phase
Angle

Combining a sine and cosine wave with the same frequency, different amplitudes,
but no phase angle:

ψ1 = a1 cosβ

ψ2 = a2 sin β

ψ1 + ψ2 =
√
a21 + a22 · cos

[
β − tan−1

(
a2
a1

)]
.

Figure8.11 shows graphs of the following cosine and sine waveforms:
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Fig. 8.11 Combining two
waves ψ1 = 4 cos t and
ψ2 = 5 sin t

0 ≤ t ≤ 720◦

ψ1 = 4 cos t [blue]

ψ2 = 5 sin t [green]

= √
41 cos[t − tan−1(5/4)]

ψ1 + ψ2 ≈ √
41 cos(t − 51.35◦) [red].

8.4.12 Same Frequency, Amplitude and Phase Angle

Combining a sine and cosine wave with the same frequency, amplitude and phase
angle:

ψ1 = a cos(β + φ)

ψ2 = a sin(β + φ)

ψ1 + ψ2 = a
√
2 cos

[
β + tan−1

(
sin φ − cosφ

cosφ + sin φ

)]
.

Figure8.12 shows graphs of the following cosine and sine waveforms:

0 ≤ t ≤ 720◦

ψ1 = 5 cos(t + 60◦) [blue]

ψ2 = 5 sin(t + 60◦) [green]

ψ1 + ψ2 ≈ 7.071 cos(t + 15◦) [red].
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Fig. 8.12 Combining two
waves ψ1 = 5 cos(t + 60◦)
and 5 sin(t + 60◦)

8.4.13 Same Frequency and Amplitude, but Different Phase
Angles

Combining a sine and cosine wave with the same frequency and amplitude, but
different phase angles:

ψ1 = a cos(β + φ1)

ψ2 = a sin(β + φ2)

ψ1 + ψ2 = a
√
2(1 − sin(φ1 − φ2)) · cos

[
β + tan−1

(
sin φ1 − cosφ2

cosφ1 + sin φ2

)]

Figure8.13 shows graphs of the following cosine and sine waveforms:

0 ≤ t ≤ 720◦

ψ1 = 5 cos(t + 60◦) [blue]

ψ2 = 5 sin(t + 30◦) [green]

ψ1 + ψ2 = 5 cos t. [red]

8.4.14 Same Frequency and Amplitude, but One has a Phase
Angle

Combining a sine and cosine wave with the same frequency and amplitude, but one
includes a phase angle:
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Fig. 8.13 Combining two
waves ψ1 = 5 cos(t + 60◦)
and ψ2 = 5 sin(t + 30◦)

Fig. 8.14 Combining two
waves ψ1 = 5 cos(t + 30◦)
and ψ2 = 5 sin t

ψ1 = a cos(β + φ)

ψ2 = a sin β

ψ1 + ψ2 =
√
a2 + a2 − 2a2 sin φ · cos

[
β − tan−1

(
1 − sin φ

cosφ

)]

= a
√
2(1 − sin φ) · cos

[
β − tan−1

(
1 − sin φ

cosφ

)]
.

Figure8.14 shows graphs of the following cosine and sine waveforms:

0 ≤ t ≤ 720◦

ψ1 = 5 cos(t + 30◦) [blue]

ψ2 = 5 sin t [green]

ψ1 + ψ2 = 5 cos(t − 30◦) [red].
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Fig. 8.15 Combining two
waves ψ1 = 4 cos(t + 30◦)
and ψ2 = 6 sin t

8.4.15 Same Frequency, Different Amplitudes, and One
has a Phase Angle

Combining a sine and cosine wave with the same frequency, different amplitudes,
and one includes a phase angle:

ψ1 = a1 cos(β + φ)

ψ2 = a2 sin β

ψ1 + ψ2 =
√
a21 + a22 − 2a1a2 sin φ · cos

[
β + tan−1

(
a1 sin(φ) − a2

a1 cosφ

)]

Figure8.15 shows graphs of the following cosine and sine waveforms:

0 ≤ t ≤ 720◦

ψ1 = 4 cos(t + 30◦) [blue]

ψ2 = 6 sin t [green]

ψ1 + ψ2 =
√
42 + 62 − 48 sin 30◦ · cos

[
t + tan−1

(
4 sin(30◦) − 6

4 cos 30◦

)]

≈ 5.292 cos(t − 49.1◦) [red].

8.4.16 Same Frequency, but Different Amplitudes and Phase
Angles

Combining a sine and cosine wave with the same frequency, but different amplitudes
and phase angles:
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Fig. 8.16 Combining two
waves ψ1 = 5 cos(t + 60◦)
and ψ2 = 6 sin(t + 30◦)

ψ1 = a1 cos(β + φ1)

ψ2 = a2 sin(β + φ2)

ψ1 + ψ2 =
√
a21 + a22 − 2a1a2 sin(φ1 − φ2) · cos

[
β + tan−1

(
a1 sin φ1 − a2 cosφ2

a1 cosφ1 + a2 sin φ2

)]
.

Figure8.16 shows graphs of the following cosine and sine waveforms:

0 ≤ t ≤ 720◦

ψ1 = 5 cos(t + 60◦)
ψ2 = 6 sin(t + 30◦)

ψ1 + ψ2 =
√
52 + 62 − 60 sin 30◦ · cos

[
t + tan−1

(
5 sin 60◦ − 6 cos 30◦

5 cos 60◦ + 6 sin 30◦

)]

ψ1 + ψ2 ≈ 5.568 cos(t − 8.914◦).

8.4.17 Adding Several Cosine Waves

Now let’s consider the problem of adding several, similar cosine waves together. For
this exercise, let’s assume that the waves share a common amplitude a, but have a
constant phase difference δ:

ψ = a cos(β) + a cos(β + δ) + a cos(β + 2δ) + a cos(β + 3δ). (8.13)

Equation (8.13) has a complex equivalent:
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Ψ = aeiβ + aei(β+δ) + aei(β+2δ) + aei(β+3δ)

= aeiβ
(
1 + eiδ + ei2δ + ei3δ

)
= aeiβ Aeiφ

where

Aeiφ = 1 + eiδ + ei2δ + ei3δ

The problem to resolve is the value of A and φ. Boas and Arfken [1] provide an
excellent solution in the form of the sum of a geometric series:

1 + r + r2 + · · · + r N−1 = 1 − r N

1 − r

therefore,

1 + eiδ + ei2δ + ei3δ = 1 − ei4δ

1 − eiδ

= ei4δ − 1

eiδ − 1

= ei2δ

eiδ/2

(
ei2δ − e−i2δ

)
(
eiδ/2 − e−iδ/2

)
Aeiφ = sin(2δ)

sin(δ/2)
ei3δ/2

therefore,

A = sin(2δ)

sin(δ/2)

and

φ = 3δ/2

Ψ = aeiβ
sin(2δ)

sin(δ/2)
ei3δ/2

= a
sin(2δ)

sin(δ/2)
ei(β+3δ/2)

consequently,
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Fig. 8.17 Combining four
cosine waves

Fig. 8.18 Combining four
sine waves

ψ = Re

(
a
sin(2δ)

sin(δ/2)
ei(β+3δ/2)

)

= a
sin(2δ)

sin(δ/2)
cos(β + 3δ/2).

Figure8.17 shows the combination of the following cosine waves

ψ = 2 cos t + 2 cos(t + 20◦) + 2 cos(t + 40◦) + 2 cos(t + 60◦), 0 ≤ t ≤ 720◦.

If the waves are sine waves, then

ψ = Im

(
a
sin(2δ)

sin(δ/2)
ei(β+3δ/2)

)

= a
sin(2δ)

sin(δ/2)
sin(β + 3δ/2).

Figure8.18 shows the combination of the following sine waves

ψ = 2 sin t + 2 sin(t + 20◦) + 2 sin(t + 40◦) + 2 sin(t + 60◦), 0 ≤ t ≤ 720◦.
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Adding more waves is not a problem. For example, let’s increase the number to
five:

1 + eiδ + ei2δ + ei3δ + ei4δ = 1 − ei5δ

1 − eiδ

= ei5δ − 1

eiδ − 1

= ei2.5δ

eiδ/2

(
ei2.5δ − e−i2.5δ

)
(
eiδ/2 − e−iδ/2

)
Aeiφ = sin(2.5δ)

sin(δ/2)
ei2δ

Ψ = aeiβ
sin(2.5δ)

sin(δ/2)
ei2δ

= a
sin(2.5δ)

sin(δ/2)
ei(β+2δ)

consequently,

ψ = Re

(
a
sin(2.5δ)

sin(δ/2)
ei(β+2δ)

)

= a
sin(2.5δ)

sin(δ/2)
cos(β + 2δ).

Figure8.19 shows the combination of the following cosine waves

ψ = 2 cos t + 2 cos(t + 20◦) + 2 cos(t + 40◦) + 2 cos(t + 60◦) + 2 cos(t + 80◦), 0 ≤ t ≤ 720◦.

One can now write a general equation for n cosines:

Fig. 8.19 Combining five
cosine waves
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four waves ψ = a
sin(2δ)

sin(δ/2)
cos(β + 3δ/2)

five waves ψ = a
sin(2.5δ)

sin(δ/2)
cos(β + 2δ)

n waves ψ = a
sin(nδ/2)

sin(δ/2)
cos(β + (n − 1)δ/2).

8.5 Summary

Hopefully, the above comparison between trigonometric identities and complex
exponentials have convinced the reader the clarity imaginary mathematics brings
to the area of wave combinations. The illustrations are included to bring a degree of
reality to the whole subject.

Reference

1. Boas ML, Mathematical methods in the physical sciences. In: Arfken G (ed) Mathematical
methods for physicists. http://www.physics.csbsju.edu/211/complex-review.pdf
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Chapter 9
Circuit Analysis Using Complex
Numbers

9.1 Introduction

In this chapter I show how complex numbers are used to resolve multi-phase currents
in electrical circuits. I describe how a resistor, inductor and capacitor behave when
subjected to an alternating voltage, and derive complex equations to express the
instantaneous current, reactance and impedance.

9.2 Electronics

When studying electronics as a student, I came across the j operator, which is used to
solve alternating currents in circuits containing resistors, capacitors and inductors.
j is an imaginary unit: j2 = −1, and is often used instead of i , which is used to
represent current in electrical circuits. If you are not familiar with electrical circuits,
here are some basic ideas.

9.2.1 Alternating Current and Voltages

Direct current (DC) is a stream of electrons moving in one direction, whilst with
alternating current (AC), electrons move backwards and forwards, sinusoidally. A
battery provides a constant voltage or potential difference for direct current, and a
generator or electronic circuit produces an alternating voltage, to create an alternating
current.

The SI unit for electrical potential difference is the volt [V], named after the
Italian pioneer of electricity Alessandro Volta (1745–1827). The unit for current is

© Springer International Publishing AG, part of Springer Nature 2018
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RV I

Fig. 9.1 A purely resistive circuit

the ampere [A], named after the French physicist and mathematician André-Marie
Ampère (1775–1836).

9.2.2 Resistor

A resistor is an electrical component that impedes the flow of electrons, either DC or
AC. The SI unit of resistance R, is the ohm [�], named after the German physicist
Georg Simon Ohm (1789–1854). Figure9.1 shows a pure resistive circuit, where
resistance R is connected to the alternating voltage V .

For example, if R = 100�, and V = 12V, the resulting current I is

I = V

R
= 12

100
= 0.12A = 120mA.

This relationship is known as Ohm’s law.
Figure9.2 shows the voltage and current waveforms for a resistive circuit, which

are always in phase.

0 2 3

-3

-2

-1

1

2

3

V

I

Fig. 9.2 Voltage and current waveforms in a pure resistive circuit
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9.2.3 Inductor

An inductor is an electrical component in the formof a coil that opposes an alternating
current. The SI unit of inductance L , is the henry [H], named after the American
scientist JosephHenry (1797–1878). Figure9.3 shows a pure inductive circuit, where
inductor L is connected to the alternating voltage V .

The inductance L of a circuit is the ratio of the induced voltage and the rate of
change of the current, or

v(t) = L
d

dt
i(t)

where v(t) is a time-varying voltage, and i(t) a time-varying current. A coil with an
inductance of 1H generates a voltage 1V across the coil when the current changes
at 1A/sec. Figure9.4 shows the voltage waveform leading the current waveform by
a phase angle of 90◦ for a perfect inductor.

An inductor’s opposition to alternating current is called its reactance XL [Ω],
and is proportional to the current’s frequency f , and inductance L; and because the
voltage leads the current by 90◦, is represented by the complex number jωL , where
ω = 2π f .

LV I

Fig. 9.3 A pure inductive circuit

0 2 3

-3

-2

-1

1

2

3

V

I

Fig. 9.4 Voltage and current waveforms in a perfect inductor
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For example, if the alternating voltage has an amplitude of 10V, and frequency
60Hz, and the inductance L = 40mH, then

I = V

XL
= V

jωL

= 10

j2π60 × 40 × 10−3

≈ 10

j15.08

≈ − j0.663A.

The − j implies that the current of 0.663A lags the voltage by 90◦.

9.2.4 Capacitor

A capacitor is an electrical component that stores energy in an electric field across
two plates separated by an insulating dielectric. The SI unit of capacitance C is the
farad [F], named after the English scientist Michael Faraday (1791–1867). Figure9.5
shows a pure capacitive circuit, where capacitor C is connected to the alternating
voltage V .

The capacitance C of a circuit is the ratio of the induced current and the rate of
change of voltage, or

i(t) = C
d

dt
v(t)

where v(t) is a time-varying voltage, and i(t) a time-varying current. Figure9.6
shows the voltage waveform trailing the current waveform by a phase angle of 90◦
for a pure capacitor.

A capacitor’s opposition to alternating voltage is called its reactance XC [Ω],
and is inversely proportional to the current’s frequency f , and capacitance C ; and

CV I

Fig. 9.5 A pure capacitive circuit
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0 2 3

-2

-1

1

2
v(t)

i(t)

Fig. 9.6 Voltage and current waveforms in a perfect capacitor

because the voltage lags the current by 90◦, it is represented by the complex number
1/jωC .

For example, if the alternating voltage has an amplitude of 10V, and frequency
60Hz, and the capacitance C = 60µF, then

I = V

XC
= jVωC

= j10 × 2π60 × 60 × 10−6

≈ j0.226A.

The j implies that the current of 0.226A leads the voltage by 90◦.

9.2.5 Resistance, Reactance and Impedance

Resistance [R] is the fixed opposition a circuit offers to the flow of electrons, irre-
spective of the voltage frequency. Reactance [X ] is the varying opposition a circuit
offers to the flow of electrons, and depends on the voltage frequency. Impedance [Z ]
is the combined opposition a resistive and reactive circuit offers to the flow of elec-
trons, and depends on the voltage frequency. All three forms of electrical opposition
are measured in units of ohms [�]. Consequently,

Z = R + XL + XC

= R + jωL + 1

jωC
.
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R

LV I

Fig. 9.7 A resistor and inductor circuit

Figure9.7 shows a simple series circuit containing a resistor and an inductor. Let’s
calculate the current I , given V = 10V, f = 50Hz, R = 50�, L = 40mH.

Z = R + jωL

= 50 + 2π50 × 40 × 10−3 j

≈ 50 + 12.56 j

≈ 51.55ei0.2461

I = V

Z

≈ 10

51.55ei0.2461

≈ 0.194e−i0.2461

where 0.194A is the amplitude, and e−i0.2461 is the frequency and phase of the
complex current. The current waveform is the real part of I :

I (t) = Re
(
0.194e−i0.2461

)

= 0.194 cos(ωt − 0.2461)

= 0.194 cos(2π50t − 0.2461)

= 0.194 cos(314t − 0.2461)

Approximately, the current is 194mA, and lags the voltage by 0.2461 rad, (14.1◦).
Figure9.8 shows a circuit with a resistor, inductor and capacitor in series with an

alternating voltage source. Let’s compute the current I , given V = 10V, f = 50Hz,
R = 50�, L = 40mH, C = 50µF.
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R

LV I

C

Fig. 9.8 A resistor, inductor and capacitor circuit

Z = R + jωL + 1/( jωC)

= 50 + 2π50 × 40 × 10−3 j − j

2π50 × 50 × 10−6

≈ 50 + 12.566 j − 63.662 j

≈ 50 − 51.096 j

≈ 71.49e−i0.7964

I = V

Z

= 10

71.49e−i0.7964

= 0.14ei0.7964

where 0.14A is the amplitude, and ei0.7964 is the frequency and phase of the complex
current. The current waveform is the real part of I :

I (t) = Re
(
0.14ei0.7964

)

= 0.14 cos(ωt + 0.7964)

= 0.14 cos(2π50t + 0.7964)

= 0.14 cos(314t + 0.7964).

Approximately, the current is 140mA, and leads the voltage by 0.7964 rad, (45.63◦).

9.3 Summary

This chapter has shown how useful the imaginary operator j is in representing phase
differences between current and voltage in simple electronic circuits. More elaborate
circuits require larger systems of equations, and those of you who wish to study the
subject further will discover many books and web sites.



Chapter 10
Geometry Using Geometric Algebra

10.1 Introduction

Traditionally, problems in geometry are solved by constructing “scaffolding” lines
and some suitable vectors. Then, with the aid of the dot and cross product, we
devise some parametric equations that hopefully reveal an answer. In this chapter I
describe how geometric algebra concepts are used to solve some familiar problems in
geometry. This approach relies upon thewedge product and pre- and post-multiplying
by imaginary bivectors.

10.1.1 The Sine Rule

The sine rule states that for any triangle�ABC with anglesα,β and θ , and respective
opposite sides a, b and c, then

a

sin α
= b

sin β
= c

sin θ
.

This rule can be proved using the outer product of two vectors, which we know
incorporates the sine of the angle between two vectors:

|a ∧ b| = |a||b| sin α.

With reference to Fig. 10.1 the area of �ABC can be expressed as

area of �ABC = 1
2 | − c ∧ a| = 1

2 |c||a| sin β

area of �BCA = 1
2 | − a ∧ b| = 1

2 |a||b| sin θ

area of �CAB = 1
2 | − b ∧ c| = 1

2 |b||c| sin α
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Fig. 10.1 The sine rule

A B

C

ab

c
α β

θ

which means that

|c||a| sin β = |a||b| sin θ = |b||c| sin α

therefore,

|a| sin β = |b| sin α

|c| sin β = |b| sin θ

|a|
sin α

= |b|
sin β

= |c|
sin θ

.

10.1.2 The Cosine Rule

The cosine rule states that for any triangle �ABC with sides a, b and c, then

a2 = b2 + c2 − 2bc cosα

where α is the angle between b and c.
Although this is an easy rule to prove using simple trigonometry, the geometric

algebra solution is even easier.
Figure 10.2 shows a triangle �ABC constructed from vectors a, b and c. From

Fig. 10.2

a = b − c. (10.1)

Squaring (10.1) we obtain

a2 = b2 + c2 − (bc + cb).
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Fig. 10.2 The cosine rule

A B

C

ab

c
α

Fig. 10.3 A point P
perpendicular to a point T on
a line

e1

e2

T

P

t

p
δ v̂

But

bc + cb = 2b · c = 2|b||c| cosα

therefore,

|a|2 = |b|2 + |c|2 − 2|b||c| cosα.

10.1.3 A Point Perpendicular to a Line

Figure 10.3 shows a scenario where a line with direction vector v̂ passes through a
point T . The objective is to locate another point P perpendicular to v̂ and a distance
δ from T . The solution is found by post-multiplying v̂ by the imaginary pseudoscalar
e12, which rotates v̂ through an angle of 90◦.
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Fig. 10.4 A point P
perpendicular to a point T on
a line

e1

e2

T

P

t

p
δ

v̂

As v̂ is a unit vector

−→
T P = δv̂e12

therefore,

p = t + −→
T P

and

p = t + δv̂e12. (10.2)

For example, Fig. 10.4 shows a 2D scenario where

v̂ = 1√
2
(e1 + e2)

T = (4, 1)

t = 4e1 + e2

δ = √
32.

Using (10.2)

p = t + δv̂e12

= 4e1 + e2 + √
32 1√

2
(e1 + e2)e12

= 4e1 + e2 + 4e2 − 4e1
= 5e2
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and

P = (0, 5).

If p is required on the other side of the line, we pre-multiply v̂ by e12:

p = t + δe12v̂

which is the same as reversing the sign of δ.

10.1.4 Reflecting a Vector about a Vector

Reflecting a vector about another vector happens to be a rather easy problem for
geometric algebra. Figure 10.5 shows the scenario where we see a vector a reflected
about the normal to a line with direction vector v̂.

We begin by calculating m̂:

m̂ = v̂e12 (10.3)

then reflecting a about m̂:

a′ = m̂am̂

substituting m̂ we have

a′ = v̂e12av̂e12. (10.4)

Fig. 10.5 Reflecting a
vector about a vector

e1

e2

v̂
m̂ a

a
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Fig. 10.6 Reflecting a
vector about a vector

e1

e2

v̂m̂
a

a

As an illustration, consider the scenario shown in Fig. 10.6 where

v̂ = 1√
2
(e1 + e2)

a = −e1

therefore, using (10.3)

m̂ = 1√
2
(e1 + e2)e12

m̂ = 1√
2
(e2 − e1)

and using (10.4)

a′ = 1√
2
(e2 − e1)(−e1) 1√

2
(e2 − e1)

= 1
2 (e12 + 1)(e2 − e1)

= 1
2 (e1 + e2 + e2 − e1)

a′ = e2.

10.1.5 A Point Above or Below a Plane

In 3D geometry it is often required to test whether a point is above, below or on
a planar surface. If we already have the plane equation for the surface it is just a
question of substituting the test point in the equation and investigating its signed
value. But here is another way using geometric algebra. For example, if a bivector
is used to represent the orientation of a plane, the outer product of the test point’s



10.1 Introduction 235

Fig. 10.7 Point relative to a
bivector

a

b
p

P

a∧b

Fig. 10.8 Three points
relative to a bivector

e1

e2

e3

p

a ∧ b
R

Q

P

q

a

b r

position vector with the bivector computes an oriented volume. Figure 10.7 shows a
bivector a ∧ b and a test point P with position vector p relative to the bivector.

Let

a ∧ b ∧ p is +ve, then P is “above” the bivector
a ∧ b ∧ p is −ve, then P is “below” the bivector
a ∧ b ∧ p is zero, then P is coplanar with the bivector.

The terms “above” and “below” mean in the bivector’s positive and negative
half-space respectively.

As an example, consider the scenario shown in Fig. 10.8 where the plane’s orien-
tation is represented by the bivector a ∧ b, and three test points P , Q and R.

If P = (0, 1, 0), Q = (0, −1, 0), R = (1, 0, 0),

a = e1 + e3
b = e1

then

p = e2
q = −e2
r = e1
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and

a ∧ b ∧ p = (e1 + e3) ∧ e1 ∧ e2
= e123

a ∧ b ∧ q = (e1 + e3) ∧ e1 ∧ (−e2)

= −e123
a ∧ b ∧ r = (e1 + e3) ∧ e1 ∧ e1

= 0.

We can see that the signs of the first two volumes show that P is in the positive
half-space, Q is in the negative half-space, and R is on the plane.

10.2 Summary

Hopefully, the above examples illustrate how useful geometric algebra is in resolving
different types of geometric problems. And if you intend to discover more about
the subject, then Chris Doran and Anthony Lasenby’s book Geometric Algebra for
Physicists is highly commended [1].

Reference
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Chapter 11
Rotating Vectors Using Quaternions

11.1 Introduction

In this chapter I show how quaternions are used to rotate vectors about an arbitrary
axis. I begin by reviewing some of the history associated with quaternions, in partic-
ular, the role of Rodrigues, who discovered the importance of half-angles in rotation
transforms.

For a particular quaternion product, when a quaternion is expressed as

q = [cos θ, sin θv]

a vector is rotated about the axis v by an angle θ . But, as we will discover, using a
triple quaternion product, when a quaternion is expressed as

q = [cos
(

θ
2

)
, sin

(
θ
2

)
v]

a vector is rotated about the axis v by an angle θ . This half-angle representation was
discovered by Rodrigues.

We examine various quaternion products to discover their rotational properties.
This begins with two orthogonal quaternions, and moves towards the general case of
using the triple qpq−1, where q is a unit-norm quaternion, and p is a pure quaternion.

Two techniques are covered to express a quaternion product as a matrix, which
in turn encode the eigenvector and eigenvalue. Finally, we examine how quaternions
can be interpolated.

We continue to represent a quaternion as an ordered pair, with italic, lower-case
letters to represent quaternions, and bold, lower-case letters to represent vectors.
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11.2 Some History

Rodrigues studied in Paris, and in 1816 was awarded his doctorate at the age of
21. The subject of his thesis was solving Legendre polynomials, and he proposed a
solution which is still known as the Rodrigues Formula.

Although he pursued a career in politics and banking, his doctoral research con-
firms that he was more than just a “recreational” mathematician, for in 1840 he pub-
lished a mathematical paper in the Annales de Mathématiques Pures et Appliquées
on transformation groups [1]. The paper contains a formula describing a geometric
construction equating two successive rotations about different axes, with a third rota-
tion about another axis. Today, we know this correspondence as the Euler–Rodrigues
Parameterisation. Euler had already shown in 1775 that a single rotation could rep-
resent two successive rotations about different axes, but did not provide an algebraic
solution.

Ifwe represent a rotation θ about an axial vectorv asRθ,v, thenRodrigues provided
the solution

Rγ,n = Rα,lRβ,m

in the form of

cos
(

γ

2

)
= cos

(
α
2

)
cos

(
β

2

)
− sin

(
α
2

)
sin

(
β

2

)
l · m (11.1)

sin
(

γ

2

)
n = sin

(
α
2

)
cos

(
β

2

)
l + cos

(
α
2

)
sin

(
β

2

)
m + sin

(
α
2

)
sin

(
β

2

)
l × m.

(11.2)

Rodrigues did not use the vector notation employed in (11.1) and (11.2), as this
was yet to be defined by Hamilton, but he did employ the algebraic equivalent of
these vector products. Figure 11.1 shows the spherical triangle formed by the axes
and angles of rotation used by Rodrigues.

Fig. 11.1 Rodrigues’
spherical triangle showing l,
m and n

l

m n

A

B C

α

2

β

2
π − γ

2
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Equations (11.1) and (11.2) contain some features familiar to the quaternion prod-
uct, which become obvious with the following analysis. We start by defining the
quaternions

ql =
[
cos

(
α
2

)
, sin

(
α
2

)
l
]

qm =
[
cos

(
β

2

)
, sin

(
β

2

)
m

]

qn =
[
cos

(
γ

2

)
, sin

(
γ

2

)
n
]

and form the product

qn = qlqm

=
[
cos

(
α
2

)
, sin

(
α
2

)
l
] [

cos
(

β

2

)
, sin

(
β

2

)
m

]

=
[
cos

(
α
2

)
cos

(
β

2

)
− sin

(
α
2

)
sin

(
β

2

)
l · m,

sin
(

α
2

)
cos

(
β

2

)
l + cos

(
α
2

)
sin

(
β

2

)
m + sin

(
α
2

)
sin

(
β

2

)
l × m

]

cos
(

γ

2

)
= cos

(
α
2

)
cos

(
β

2

)
− sin

(
α
2

)
sin

(
β

2

)
l · m (11.3)

sin
(

γ

2

)
n = sin

(
α
2

)
cos

(
β

2

)
l + cos

(
α
2

)
sin

(
β

2

)
m + sin

(
α
2

)
sin

(
β

2

)
l × m

(11.4)

where (11.3) and (11.4) are identical to (11.1) and (11.2) respectively. Although
Rodrigues had not invented quaternions in the form of

q = s + ai + bj + ck,

he had discovered the coefficients of a quaternion product before Hamilton. C’est la
vie!

11.3 Quaternion Products

A quaternion q is the union of a scalar s and a vector v:

q = [s, v], s ∈ �, v ∈ �3.

If we express v in terms of its components, we have

q = [s, x i + yj + zk], {s, x, y, z} ∈ �.
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Hamilton had hoped that a quaternion could be used like a complex rotor, where

Rθ = cos θ + i sin θ

rotates a complex number by θ . Could a unit-norm quaternion q be used to rotate
a vector stored as a pure quaternion p? Well yes, but only in a restricted sense. To
understand this, let’s construct the product of a unit-norm quaternion q and a pure
quaternion p. The unit-norm quaternion q is defined as

q = [s, λv̂], {s, λ} ∈ �, v̂ ∈ �3

|v̂| = 1

s2 + λ2 = 1

and the pure quaternion p stores the vector p to be rotated:

p = [0, p], p ∈ �3.

Let’s compute the product p′ = qp and examine the vector part of p′ to see if p is
rotated:

p′ = qp

= [s, λv̂][0, p]
= [−λv̂ · p, sp + λv̂ × p]. (11.5)

We can see from (11.5) that the result is a general quaternion with a scalar and a
vector component.

11.3.1 Special Case

The “restricted sense” referred to above is that v̂ must be perpendicular to p, which
makes the dot product term −λv̂ · p in (11.5) vanish, and we are left with the pure
quaternion

p′ = [0, sp + λv̂ × p]. (11.6)

Figure 11.2 illustrates this scenario, where p is perpendicular to v̂, and v̂ × p
is perpendicular to the plane containing p and v̂. Now because v̂ is a unit vector,
|p| = |v̂ × p|, which means that we have two orthogonal vectors: p and v̂ × p, with
the same length. Therefore, to rotate p about v̂, all that we have to do is make
s = cos θ and λ = sin θ in (11.6):
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Fig. 11.2 Three orthogonal
vectors p, v̂ and v̂ × p

θ

v̂

v̂ × p

p

p
x

y

z

Fig. 11.3 The vector p = 2i
is rotated 45◦ by the

quaternion q =
[√

2
2 ,

√
2
2 v̂

]

p =
√
2i+

√
2j

45◦

p = 2i
v̂ = k

z
x

y

p′ = [0, p′]
= [0, cos θp + sin θ v̂ × p].

For example, to rotate a vector about the z-axis, q’s vector v̂must be aligned with
the z-axis as shown in Fig. 11.3. If we make the angle of rotation θ = 45◦ then

q = [s, λv̂]
= [cos θ, sin θk]
=

[√
2
2 ,

√
2
2 k

]

and if the vector to be rotated is p = 2i, then

p = [0, p]
= [0, 2i].

There are now four product combinations worth exploring: qp, pq, q−1 p and pq−1.
It’s not worth considering qp−1 and p−1q as p−1 simply reverses the direction of p.
Let’s start with qp:
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p′ = qp

=
[√

2
2 ,

√
2
2 k

]
[0, 2i]

=
[
0, 2

√
2
2 i + 2

√
2
2 k × i

]

=
[
0,

√
2i + √

2j
]

and p has been rotated 45◦ to p′ = √
2i + √

2j.

Next, pq:

p′ = pq

= [0, 2i]
[√

2
2 ,

√
2
2 k

]

=
[
0, 2

√
2
2 i − 2

√
2
2 k × i

]

=
[
0,

√
2i − √

2j
]

and p has been rotated −45◦ to p′ = √
2i − √

2j.

Next, q−1 p, and as q is a unit-norm quaternion, q−1 = q∗:

p′ = q−1 p

=
[√

2
2 , −

√
2
2 k

]
[0, 2i]

=
[
0, 2

√
2
2 i − 2

√
2
2 k × i

]

=
[
0,

√
2i − √

2j
]

and p has been rotated −45◦ to p′ = √
2i − √

2j.

Finally, pq−1:

p′ = pq−1

= [0, 2i]
[√

2
2 , −

√
2
2 k

]

=
[
0, 2

√
2
2 i + 2

√
2
2 k × i

]

=
[
0,

√
2i + √

2j
]

and p has been rotated 45◦ to p′ = √
2i + √

2j. Thus, for orthogonal quaternions, θ
is the angle of rotation, then
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Fig. 11.4 Rotating the
vector p = 2i by the
quaternion
q = [

cos θ, sin θ v̂
]

45◦
p = 2i

v̂ = 1√
2
i+ 1√

2
k

y

x
z

qp = pq−1

pq = q−1 p.

Before moving on, let’s see what happens to the product qp when θ = 180◦:

p′ = qp

= [−1, 0][0, 2i]
= [0, −2i]

and p has been rotated 180◦ to p′ = −2i.
Note that in all the above products, the vector has not been scaled during the

rotation. This is because q is a unit-norm quaternion. Now let’s see what happens if
we change the angle between v̂ and p. Let’s reduce the angle to 45◦ and retain q’s
unit vector, as shown in Fig. 11.4. Therefore,

v̂ = 1√
2
i + 1√

2
k

q = [
cos θ, sin θ v̂

]

p = [0, p].

This time we must include the dot product term − sin θ v̂ · p, as it is no longer
zero:

p′ = qp

= [cos θ, sin θ v̂][0, p]
= [− sin θ v̂ · p, cos θp + sin θ v̂ × p]. (11.7)

Substituting v̂, p and θ = 45◦ in (11.7), we have
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p′ =
[
−

√
2
2

(
1√
2
i + 1√

2
k
)

· (2i) ,
√
2
2 2i +

√
2
2

(
1√
2
i + 1√

2
k
)

× 2i
]

=
[
−1,

√
2i + j

]
(11.8)

which, unfortunately, is no longer a pure quaternion. It has not been rotated 45◦,
and the vector’s norm is reduced to

√
3! Multiplying the vector by a non-orthogonal

quaternion has converted some of the vector information into the quaternion’s scalar
component.

11.3.2 General Case

Not to worry. Could it be that an inverse quaternion reverses the operation? Let’s see
what happens if we post-multiply qp by q−1.

Given

q =
[
cos θ, sin θ

(
1√
2
i + 1√

2
k
)]

then

q−1 =
[
cos θ, − sin θ

(
1√
2
i + 1√

2
k
)]

=
[√

2
2 , −√

2
2

(
1√
2
i + 1√

2
k
)]

= 1
2

[√
2, −i − k

]
.

Therefore, post-multiplying (11.8) by q−1 we have

qpq−1 =
[
−1,

√
2i + j

]
1
2

[√
2, −i − k

]

= 1
2

[
−√

2 −
(√

2i + j
)

· (−i − k), i + k + √
2

(√
2i + j

)
− i + √

2j + k
]

= 1
2

[
−√

2 + √
2, i + k + 2i + √

2j − i + √
2j + k

]

=
[
0, i + √

2j + k
]

(11.9)

which is a pure quaternion. Furthermore, there’s no scaling as its norm is still 2, but
the vector has been rotated 90◦ rather than 45◦, twice the desired angle, as shown in
Fig. 11.5.

If this “sandwiching” of the vector in the form of a pure quaternion by q and q−1

is correct, it suggests that increasing θ to 90◦ should rotate p = 2i by 180◦ to 2k.
Let’s try this.
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Fig. 11.5 The vector p = 2i
is rotated 90◦ to
p′ = i + √

2j + k

45◦
p = 2i

v̂ = 1√
2
i+ 1√

2
k

90◦

p = i+
√
2j+ k

z
x

y

Let θ = 90◦, therefore,

qp =
[
0, 1√

2
i + 1√

2
k
] [

0, 2i
]

=
[
− 2√

2
, 2√

2
j
]

next, we post-multiply qp by q−1:

qpq−1 =
[
− 2√

2
, 2√

2
j
] [

0, − 1√
2
i − 1√

2
k
]

= [0, i + k − i + k]

= [0, 2k]

which confirms our prediction and suggests that qpq−1 works. Now let’s show how
this double angle arises. We begin by defining a unit-norm quaternion q:

q = [s, λv̂]

where s2 + λ2 = 1.
The vector p to be rotated is encoded as a pure quaternion:

p = [0, p]

and the inverse quaternion q−1 is

q−1 = [s, −λv̂].

Therefore, the product qpq−1 is
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qpq−1 = [s, λv̂][0, p][s, −λv̂]
= [−λv̂ · p, sp + λv̂ × p

] [s, −λv̂]
= [−λsv̂ · p + λsp · v̂ + λ2(v̂ × p) · v̂,
λ2(v̂ · p)v̂ + s2p + λsv̂ × p − λsp × v̂ − λ2(v̂ × p) × v̂

]

= [
λ2(v̂ × p) · v̂, λ2(v̂ · p)v̂ + s2p + 2λsv̂ × p − λ2(v̂ × p) × v̂

]
.

Note that

(v̂ × p) · v̂ = 0

and

(v̂ × p) × v̂ = (v̂ · v̂)p − (p · v̂)v̂
= p − (p · v̂)v̂.

Therefore,

qpq−1 = [
0, λ2

(
v̂ · p)

v̂ + s2p + 2λsv̂ × p − λ2p + λ2
(
p · v̂) v̂]

= [
0, 2λ2

(
v̂ · p)

v̂ + (
s2 − λ2

)
p + 2λsv̂ × p

]
. (11.10)

Obviously, this is a pure quaternion as the scalar component is zero. However, it is
not obvious where the angle doubling comes from. But look what happens when we
make s = cos θ and λ = sin θ :

qpq−1 = [0, 2 sin2 θ
(
v̂ · p)

v̂ + (
cos2 θ − sin2 θ

)
p + 2 sin θ cos θ v̂ × p]

= [
0, (1 − cos(2θ))

(
v̂ · p)

v̂ + cos(2θ)p + sin(2θ)v̂ × p
]
.

The double-angle trigonometric terms emerge! Now, if we want this product to
actually rotate the vector by θ , then we must build this in from the outset by halving
θ in q:

q = [
cos

(
θ
2

)
, sin

(
θ
2

)
v̂
]

(11.11)

which makes

qpq−1 = [
0, (1 − cos θ)

(
v̂ · p)

v̂ + cos θp + sin θ v̂ × p
]
. (11.12)

The product qpq−1 was discovered by Hamilton who failed to publish the result.
Cayley, also discovered the product and published the result in 1845 [2]. However,
Altmann notes that “in Cayley’s collected papers he concedes priority to Hamil-
ton.” [3], which was a nice gesture. However, the person who had recognised the
importance of the half-angle parameters in (11.11) before Hamilton and Cayley was
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Rodrigues – who published a solution that was not seen by Hamilton, but apparently,
was seen by Cayley.

Let’s test (11.12) using the previous example where we rotated a vector p = 2i,
θ = 90◦ about the quaternion’s vector v̂ = 1√

2
i + 1√

2
k.

qpq−1 = [
0, (1 − cos θ)(v̂ · p)v̂ + cos θp + sin θ v̂ × p

]

= [
0, (v̂ · p)v̂ + v̂ × p

]

=
[
0, 2√

2

(
1√
2
i + 1√

2
k
)

+ √
2j

]

=
[
0, i + √

2j + k
]

which agrees with (11.9). Thus, when a unit-norm quaternion takes the form

q = [
cos

(
θ
2

)
, sin

(
θ
2

)
v̂
]

and a pure quaternion storing a vector to be rotated takes the form

p = [0, p]

the pure quaternion

p′ = qpq−1

stores the rotated vector p′. Let’s show why this product preserves the magnitude of
the rotated vector.

|p′| = |qp||q−1|
= |q||p||q−1|
= |q|2|p|

and if q is a unit-norm quaternion, |q| = 1, then |p′| = |p|.
Youmay be wondering what happens if the product is reversed to q−1 pq? A guess

would suggest that the rotation sequence is reversed, but let’s see what an algebraic
analysis confirms.

q−1 pq = [
s, −λv̂

][
0, p

][
s, λv̂

]

= [
λv̂ · p, sp − λv̂ × p

][
s, λv̂

]

= [
λsv̂ · p − λsp · v̂,

λ2v̂ × p · v̂ + λ2v̂ · pv̂ + s2p − λsv̂ × p + λsp × v̂ − λ2v̂ × p × v̂
]

= [
λ2(v̂ × p) · v̂, λ2(v̂ · p)v̂ + s2p − 2λsv̂ × p − λ2(v̂ × p) × v̂

]
.
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Once again

(v̂ × p) · v̂ = 0

and

(v̂ × p) × v̂ = p − (p · v̂)v̂.

Therefore,

q−1 pq = [
0, λ2(v̂ · p)v̂ + s2p − 2λsv̂ × p − λ2p + λ2(p · v̂)v̂]

= [
0, 2λ2(v̂ · p)v̂ + (

s2 − λ2
)
p − 2λsv̂ × p

]
.

Again, let’s make s = cos θ and λ = sin θ :

q−1 pq = [
0, (1 − cos(2θ))(v̂ · p)v̂ + cos(2θ)p − sin(2θ)v̂ × p

]

and the only thing that has changed from qpq−1 is the sign of the cross-product term,
which reverses the direction of its vector. However, wemust remember to compensate
for the angle-doubling by halving θ :

q−1 pq = [
0, (1 − cos θ)(v̂ · p)v̂ + cos θp − sin θ v̂ × p

]
. (11.13)

Let’s see what happens when we employ (11.13) to rotate p = 2i, 90◦ about the
quaternion’s vector v̂ = 1√

2
i + 1√

2
k:

q−1 pq =
[
0, 2√

2

(
1√
2
i + 1√

2
k
)

− √
2j

]

= [0, i − √
2j + k]

which has rotated p clockwise 90◦ about the quaternion’s vector. Therefore, the rotor
qpq−1 rotates a vector counter-clockwise, and q−1 pq rotates a vector clockwise:

qpq−1 = [
0, (1 − cos θ)(v̂ · p)v̂ + cos θp + sin θ v̂ × p

]

q−1 pq = [
0, (1 − cos θ)(v̂ · p)v̂ + cos θp − sin θ v̂ × p

]
.

Let’s compute another example. Consider the point P(0, 1, 1) in Fig. 11.6 which
is to be rotated 90◦ about the y-axis. We can see that the rotated point P ′ has the
coordinates (1, 1, 0)which we will confirm algebraically. The point P is represented
by its position vector p in the pure quaternion

p = [0, p].

The axis of rotation is v̂ = j, and the vector to be rotated is p = j + k. Therefore,
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Fig. 11.6 The point
P(0, 1, 1) is rotated 90◦ to
P ′(1, 1, 0) about the y-axis

P (0, 1, 1) P (1, 1, 0)

p = j+ k
p = i + j

v̂ = j

y

z
x

qpq−1 = [
0, (1 − cos θ)(v̂ · p)v̂ + cos θp + sin θ v̂ × p

]

= [0, j · (j + k) j + j × (j + k)]

= [0, i + j]

and confirms that P is indeed rotated to (1, 1, 0).
Now let’s explore how this product is represented in matrix form.

11.4 Quaternions in Matrix Form

Having discovered a vector equation to represent the triple qpq−1, let’s continue and
convert it into a matrix. We will explore two methods: the first is a simple vectorial
method which translates the vector equation representing qpq−1 directly into matrix
form. The second method uses matrix algebra to develop a rather cunning solution.

11.4.1 Vector Method

For the vector method it is convenient to describe the unit-norm quaternion as

q = [s, v]
= [s, x i + yj + zk]

where

s2 + |v|2 = 1
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and the pure quaternion as

p = [0, p]
= [0, xpi + ypj + z pk].

A simple way to compute qpq−1 is to use (11.10) and substitute |v| for λ:

qpq−1 = [
0, 2λ2

(
v̂ · p)

v̂ + (
s2 − λ2

)
p + 2λsv̂ × p

]

= [
0, 2|v|2 (

v̂ · p)
v̂ + (

s2 − |v|2)p + 2|v|sv̂ × p
]
.

Next, we substitute v for |v|v̂:

qpq−1 = [
0, 2 (v · p) v + (

s2 − |v|2)p + 2sv × p
]
.

Finally, as we are working with unit-norm quaternions to prevent scaling

s2 + |v|2 = 1

and

s2 − |v|2 = 2s2 − 1

therefore,

qpq−1 = [
0, 2(v · p)v + (

2s2 − 1
)
p + 2sv × p

]
.

If we let p′ = qpq−1, which is a pure quaternion, we have

p′ = qpq−1

= [0, p′]
= [

0, 2(v · p)v + (
2s2 − 1

)
p + 2sv × p

]

p′ = 2(v · p)v + (
2s2 − 1

)
p + 2sv × p.

We are only interested in the rotated vector p′ comprising the three terms 2(v · p)v,(
2s2 − 1

)
p and 2sv × p, which can be represented by three individual matrices and

summed together.

2(v · p)v = 2
(
xxp + yyp + zz p

)(
x i + yj + zk

)

=
⎡
⎣
2x2 2xy 2xz
2xy 2y2 2yz
2xz 2yz 2z2

⎤
⎦

⎡
⎣
xp
yp
z p

⎤
⎦

(
2s2 − 1

)
p = (

2s2 − 1
)
xpi +

(
2s2 − 1

)
ypj + (

2s2 − 1
)
z pk



11.4 Quaternions in Matrix Form 251

=
⎡
⎣
2s2 − 1 0 0

0 2s2 − 1 0
0 0 2s2 − 1

⎤
⎦

⎡
⎣
xp
yp
z p

⎤
⎦

2sv × p = 2s
((

yz p − zyp
)
i + (

zxp − xz p
)
j + (

xyp − yxp
)
k
)

=
⎡
⎣

0 −2sz 2sy
2sz 0 −2sx

−2sy 2sx 0

⎤
⎦

⎡
⎣
xp
yp
z p

⎤
⎦ .

Adding these matrices together:

p′ =
⎡
⎢⎣
2
(
s2 + x2

) − 1 2
(
xy − sz

)
2
(
xz + sy

)

2
(
xy + sz

)
2
(
s2 + y2

) − 1 2
(
yz − sx

)

2
(
xz − sy

)
2
(
yz + sx

)
2
(
s2 + z2

) − 1

⎤
⎥⎦

⎡
⎣
xp
yp
z p

⎤
⎦ (11.14)

or

p′ =
⎡
⎢⎣
1 − 2

(
y2 + z2

)
2
(
xy − sz

)
2
(
xz + sy

)

2
(
xy + sz

)
1 − 2

(
x2 + z2

)
2
(
yz − sx

)

2
(
xz − sy

)
2
(
yz + sx

)
1 − 2

(
x2 + y2

)

⎤
⎥⎦

⎡
⎣
xp
yp
z p

⎤
⎦ (11.15)

where

[0, p′] = qpq−1.

Now let’s reverse the product. To compute the vector part of q−1 pq all that we have
to do is reverse the sign of 2sv × p:

p′ =
⎡
⎢⎣
2
(
s2 + x2

) − 1 2
(
xy + sz

)
2
(
xz − sy

)

2
(
xy − sz

)
2
(
s2 + y2

) − 1 2
(
yz + sx

)

2
(
xz + sy

)
2
(
yz − sx

)
2
(
s2 + z2

) − 1

⎤
⎥⎦

⎡
⎣
xp
yp
z p

⎤
⎦ (11.16)

or

p′ =
⎡
⎢⎣
1 − 2

(
y2 + z2

)
2
(
xy + sz

)
2
(
xz − sy

)

2
(
xy − sz

)
1 − 2

(
x2 + z2

)
2
(
yz + sx

)

2
(
xz + sy

)
2
(
yz − sx

)
1 − 2

(
x2 + y2

)

⎤
⎥⎦

⎡
⎣
xp
yp
z p

⎤
⎦ (11.17)
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where

[0, p′] = q−1 pq.

Observe that (11.16) is the transpose of (11.14), and (11.17) is the transpose of
(11.15).

11.4.2 Matrix Method

The second method to derive (11.12) employs the matrix representing a quaternion
product:

qa = [sa, xa i + yaj + zak]
qb = [sb, xbi + ybj + zbk]

and their product is

qaqb = [
sa, xa i + yaj + zak

][
sb, xbi + ybj + zbk

]

= [
sasb − xaxb − ya yb − zazb,

sa
(
xbi + ybj + zbk

) + sb
(
xa i + yaj + zak

)

+ (
yazb − ybza

)
i + (

xbza − xazb
)
j + (

xa yb − xb ya
)
k
]

= [
sasb − xaxb − ya yb − zazb,(

saxb + sbxa + yazb − ybza
)
i

+ (
sa yb + sb ya + xbza − xazb

)
j

+ (
sazb + sbza + xa yb − xb ya

)
k
]

=

⎡
⎢⎢⎣
sa −xa −ya −za
xa sa −za ya
ya za sa −xa
za −ya xa sa

⎤
⎥⎥⎦

⎡
⎢⎢⎣
sb
xb
yb
zb

⎤
⎥⎥⎦ = Aqb.

At this stage we have quaternion qa represented by matrix A, and quaternion qb
represented as a column vector. Now let’s reverse the scenario without altering the
result by making qb the matrix and qa the column vector:

qaqb =

⎡
⎢⎢⎣
sb −xb −yb −zb
xb sb zb −yb
yb −zb sb xb
zb yb −xb sb

⎤
⎥⎥⎦

⎡
⎢⎢⎣
sa
xa
ya
za

⎤
⎥⎥⎦ = Bqa .
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So now we have two ways of computing qaqb and we need a way of distinguish-
ing between the two matrices. Let L be the matrix that preserves the left-to-right
quaternion sequence, and R be the matrix that reverses the sequence to right-to-left:

qaqb = L(qa)qb =

⎡
⎢⎢⎣
sa −xa −ya −za
xa sa −za ya
ya za sa −xa
za −ya xa sa

⎤
⎥⎥⎦

⎡
⎢⎢⎣
sb
xb
yb
zb

⎤
⎥⎥⎦

qaqb = R(qb)qa =

⎡
⎢⎢⎣
sb −xb −yb −zb
xb sb zb −yb
yb −zb sb xb
zb yb −xb sb

⎤
⎥⎥⎦

⎡
⎢⎢⎣
sa
xa
ya
za

⎤
⎥⎥⎦ .

Remember thatL(qa)qb = R(qb)qa , as this is central to understanding the next stage.
Furthermore, don’t be surprised if you can’t follow the argument in the first reading.
It took the author many hours of anguish trying to decipher the original algorithm,
and this explanation has been expanded to ensure that you do not suffer the same
experience!

First, let’s employ the matrices L and R to rearrange the quaternion product
qaqcqb to qaqbqc. i.e. move qc from the middle to the right-hand-side. We start with
the quaternion product qaqcqb and divide it into two parts, qaqc and qb. We can do
this because quaternion algebra is associative:

qaqcqb = (qaqc)qb.

We have already demonstrated above that the product qaqc can be replaced by
L(qa)qc:

qaqcqb = L(qa)qcqb.

We now have another two parts: L(qa)qc and qb which can be reversed using R
without disturbing the result:

qaqcqb = L(qa)qcqb = R(qb)L(qa)qc

which has achieved our objective to move qc to the right-hand-side. But the most
important result is that the matrices R(qb) and L(qa) can be multiplied together to
form a single matrix, which operates on qc.

Now let’s repeat the same process to rearrange the product qpq−1. The objective
is to move p from the middle of q and q−1, to the right-hand-side. The reason for
doing this is to bring together q and q−1 in the form of two matrices, which can be
multiplied together into a single matrix.
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We start with the quaternion product qpq−1 and divide it into two parts, qp and q−1:

qpq−1 = (qp)q−1.

The product qp can be replaced by L(q)p:

qpq−1 = L(q)pq−1.

We now have another two parts: L(q)p and q−1 which can be reversed using R
without disturbing the result:

qpq−1 = L(q)pq−1 = R(q−1)L(q)p

which has achieved our objective to move p to the right-hand-side.
The next step is to compute L(q) and R(q−1) using q = [s, x i + yj + zk].

L(q) is easy as it is the same as L(qa):

L(q) =

⎡
⎢⎢⎣
s −x −y −z
x s −z y
y z s −x
z −y x s

⎤
⎥⎥⎦ .

R(q−1) is also easy, but requires converting qb in the original definition into q−1

which is effected by reversing the signs of the vector components:

R(q−1) =

⎡
⎢⎢⎣

s x y z
−x s −z y
−y z s −x
−z −y x s

⎤
⎥⎥⎦ .

So now we can write

qpq−1 = R(q−1)L(q)p

=

⎡
⎢⎢⎣

s x y z
−x s −z y
−y z s −x
−z −y x s

⎤
⎥⎥⎦

⎡
⎢⎢⎣
s −x −y −z
x s −z y
y z s −x
z −y x s

⎤
⎥⎥⎦

⎡
⎢⎢⎣

0
xp
yp
z p

⎤
⎥⎥⎦

=

⎡
⎢⎢⎢⎣

1 0 0 0
0 1 − 2

(
y2 + z2

)
2(xy − sz) 2(xz + sy)

0 2(xy + sz) 1 − 2
(
x2 + z2

)
2(yz − sx)

0 2(xz − sy) 2(yz + sx) 1 − 2
(
x2 + y2

)

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣

0
xp
yp
z p

⎤
⎥⎥⎦ .
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If we ignore the first row and column, the matrix computes p′:

p′ =
⎡
⎢⎣
1 − 2

(
y2 + z2

)
2(xy − sz) 2(xz + sy)

2(xy + sz) 1 − 2
(
x2 + z2

)
2(yz − sx)

2(xz − sy) 2(yz + sx) 1 − 2
(
x2 + y2

)

⎤
⎥⎦

⎡
⎣
xp
yp
z p

⎤
⎦

which is identical to (11.15)!

11.4.3 Geometric Verification

Let’s illustrate the action of (11.14) by rotating the point P(0, 1, 1), 90◦ about the
y-axis, as shown in Fig. 11.6. The quaternion takes the form

q = [
cos

(
θ
2

)
, sin

(
θ
2

)
v̂
]

which means that θ = 90◦ and v̂ = j, therefore,

q =
[
cos 45◦, sin 45◦ ĵ

]
.

Consequently,

s =
√
2
2 , x = 0, y =

√
2
2 , z = 0.

Substituting these values in (11.14) gives

p′ =
⎡
⎢⎣
2
(
s2 + x2

) − 1 2
(
xy − sz

)
2
(
xz + sy

)
2
(
xy + sz

)
2
(
s2 + y2

) − 1 2
(
yz − sx

)
2
(
xz − sy

)
2
(
yz + sx

)
2
(
s2 + z2

) − 1

⎤
⎥⎦

⎡
⎣
xp
yp
z p

⎤
⎦

⎡
⎣
1
1
0

⎤
⎦ =

⎡
⎣

0 0 1
0 1 0

−1 0 0

⎤
⎦

⎡
⎣
0
1
1

⎤
⎦

where P(0, 1, 1) is rotated to P ′(1, 1, 0), which is correct.
So nowwe have a transform that rotates a point about an arbitrary axis intersecting

the origin, and can easily be implemented in software.
Before moving on, let’s evaluate one more example. Let’s perform a 180◦ rotation

about a vector v = i + k. To beginwith, I will deliberately forget to convert the vector
into a unit vector, just to see what happens to the final matrix. The quaternion takes
the form

q = [
cos

(
θ
2

)
, sin

(
θ
2

)
v̂
]
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but we will use v as specified. Therefore, with θ = 180◦

s = 0, x = 1, y = 0, z = 1.

Substituting these values in (11.14) gives

p′ =
⎡
⎢⎣
2
(
s2 + x2

) − 1 2
(
xy − sz

)
2
(
xz + sy

)

2
(
xy + sz

)
2
(
s2 + y2

) − 1 2
(
yz − sx

)

2
(
xz − sy

)
2
(
yz + sx

)
2
(
s2 + z2

) − 1

⎤
⎥⎦

⎡
⎣
xp
yp
z p

⎤
⎦

=
⎡
⎣
1 0 2
0 −1 0
2 0 1

⎤
⎦

⎡
⎣
1
0
0

⎤
⎦

which looks nothing like a rotation matrix, and reminds us how important it is to
have a unit vector to represent the axis. Let’s repeat these calculations normalising
the vector to v̂ = 1√

2
i + 1√

2
k:

s = 0, x = 1√
2
, y = 0, z = 1√

2
.

Substituting these values in (11.14) gives

p′ =
⎡
⎣
0 0 1
0 −1 0
1 0 0

⎤
⎦

⎡
⎣
1
0
0

⎤
⎦

which not only looks like a rotation matrix, but has a determinant of 1 and rotates
the point P(1, 0, 0) to P ′(0, 0, 1) as shown in Fig. 11.7.

Fig. 11.7 The point
P(1, 0, 0) is rotated 180◦
about the vector v̂ to
P ′(0, 0, 1)

P (1, 0, 0)

P (0, 0, 1) v̂ = 1√
2
i+ 1√

2
k

p = ip = k

x

y

z
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11.5 Multiple Rotations

Say a vector, or frame of reference, is subjected to two rotations specified by q1
followed by q2. There is a temptation to convert both quaternions to their respective
matrix and multiply the matrices together. However, this not the most efficient way
of combining the rotations. It is best to accumulate the rotations as quaternions and
then convert to matrix notation, if required.

To illustrate this, consider the pure quaternion p subjected to the first quaternion
q1:

q1 pq
−1
1

followed by a second quaternion q2

q2
(
q1 pq

−1
1

)
q−1
2

which can be expressed as

(q2q1) p (q2q1)
−1 .

Extra quaternions can be added accordingly. Let’s illustrate this with two examples.
To keep things simple, the first quaternion q1 rotates 30◦ about the y-axis:

q1 = [
cos 15◦, sin 15◦j

]
.

The second quaternion q2 rotates 60◦ also about the y-axis:

q2 = [
cos 30◦, sin 30◦j

]
.

Together, the two quaternions rotate 90◦ about the y-axis. To accumulate these rota-
tions, we multiply them together:

q1q2 = [
cos 15◦, sin 15◦j

] [
cos 30◦, sin 30◦j

]

= [
cos 15◦ cos 30◦ − sin 15◦ sin 30◦, cos 15◦ sin 30◦j + cos 30◦ sin 15◦j

]

=
[√

2
2 ,

√
2
2 j

]

which is a quaternion that rotates 90◦ about the y-axis. Using the matrix (11.14) we
have

s =
√
2
2 , x = 0, y =

√
2
2 , z = 0,
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p′ =
⎡
⎢⎣
2
(
s2 + x2

) − 1 2
(
xy − sz

)
2
(
xz + sy

)
2
(
xy + sz

)
2
(
s2 + y2

) − 1 2
(
yz − sx

)
2
(
xz − sy

)
2
(
yz + sx

)
2
(
s2 + z2

) − 1

⎤
⎥⎦

⎡
⎣
xp
yp
z p

⎤
⎦

=
⎡
⎣

0 0 1
0 1 0

−1 0 0

⎤
⎦

⎡
⎣
xp
yp
z p

⎤
⎦

which rotates points about the y-axis by 90◦.
For a second example, let’s just evaluate the quaternions. The first quaternion q1

rotates 90◦ about the x-axis, and q2 rotates 90◦ about the y-axis:

q1 =
[√

2
2 ,

√
2
2 i

]

q2 =
[√

2
2 ,

√
2
2 j

]

p = [0, i + j]

therefore,

q2q1 =
[√

2
2 ,

√
2
2 j

] [√
2
2 ,

√
2
2 i

]

=
[
1
2 ,

√
2
2

√
2
2 i +

√
2
2

√
2
2 j − 1

2k
]

= [
1
2 ,

1
2 i + 1

2 j − 1
2k

]

(q2q1)
−1 = [

1
2 , − 1

2 i − 1
2 j + 1

2k
]

(q2q1) p = [
1
2 ,

1
2 i + 1

2 j − 1
2k

]
[0, i + j]

= [− 1
2 − 1

2 ,
1
2 (i + j) + 1

2 i − 1
2 j

]

= [−1, i]

(q2q1) p(q2q1)
−1 = [−1, i]

[
1
2 , − 1

2 i − 1
2 j + 1

2k
]

= [− 1
2 + 1

2 ,
1
2 i + 1

2 j − 1
2k + 1

2 i − 1
2 j − 1

2k
]

= [0, i − k] .

Thus the point (1, 1, 0) is rotated to (1, 0,−1), which is correct.

11.6 Eigenvalue and Eigenvector

Although there is no doubt that (11.14) is a rotation matrix, we can secure further
evidence by calculating its eigenvalue and eigenvector. The eigenvalue should be θ

where

Tr
(
qpq−1) = 1 + 2 cos θ.
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and Tr is the trace function, which is the sum of the diagonal elements of a matrix.
The trace of (11.14) is

Tr
(
qpq−1

) = 2
(
s2 + x2

) − 1 + 2
(
s2 + y2

) − 1 + 2
(
s2 + z2

) − 1

= 4s2 + 2
(
s2 + x2 + y2 + z2

) − 3

= 4s2 − 1

= 4 cos2
(

θ
2

) − 1

= 4 cos θ + 4 sin2
(

θ
2

) − 1

= 4 cos θ + 2 − 2 cos θ − 1

= 1 + 2 cos θ

and

cos θ = 1
2

(
Tr

(
qpq−1

) − 1
)
.

To compute the eigenvector of (11.14) we use three equations derived as follows.

11.7 Analysis

We begin with the fact that a rotation matrix always has a real eigenvalue λ = 1,
which permits us to write

Av = λv

Av = λIv = Iv

(A − I) v = 0

therefore, ⎡
⎣

(
a11 − 1

)
a12 a13

a21
(
a22 − 1

)
a23

a31 a32
(
a33 − 1

)

⎤
⎦

⎡
⎣
xv

yv

zv

⎤
⎦ =

⎡
⎣
0
0
0

⎤
⎦ (11.18)

Expanding (11.18) we have

(
a11 − 1

)
xv + a12yv + a13zv = 0

a21xv + (
a22 − 1

)
yv + a23zv = 0

a31xv + a32yv + (
a33 − 1

)
zv = 0.
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There exists a trivial solution where xv = yv = zv = 0, but to discover something
more useful we can relax any one of the v terms which gives us three equations in
two unknowns. Let’s make xv = 0:

a12yv + a13zv = −(
a11 − 1

)
(11.19)(

a22 − 1
)
yv + a23zv = −a21 (11.20)

a32yv + (
a33 − 1

)
zv = −a31. (11.21)

We are now faced with choosing a pair of equations to isolate yv and zv . In fact, we
have to consider all three pairings because it is possible that a future rotation matrix
will contain a column with two zero elements, which could conflict with any pairing
we make at this stage.

Let’s begin by choosing (11.19) and (11.20). The solution employs the following
strategy: Given the following matrix equation

[
a1 b1
a2 b2

] [
x
y

]
=

[
c1
c2

]

then

x∣∣∣∣
c1 b1
c2 b2

∣∣∣∣
= y∣∣∣∣

a1 c1
a2 c2

∣∣∣∣
= 1∣∣∣∣

a1 b1
a2 b2

∣∣∣∣ .

Therefore, using the 1st and 2nd Eqs. (11.19) and (11.20) we have

yv∣∣∣∣
−(a11 − 1) a13

−a21 a23

∣∣∣∣
= zv∣∣∣∣

a12 −(a11 − 1)
(a22 − 1) −a21

∣∣∣∣
= 1∣∣∣∣

a12 a13
(a22 − 1) a23

∣∣∣∣

xv = a12a23 − a13(a22 − 1)

yv = a13a21 − a23(a11 − 1)

zv = (a11 − 1)(a22 − 1) − a12a21.

Similarly, using the 1st and 3rd Eqs. (11.19) and (11.21) we have

xv = a12(a33 − 1) − a13a32
yv = a13a31 − (a11 − 1)(a33 − 1)

zv = a32(a11 − 1) − a12a31
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and using the 2nd and 3rd Eqs. (11.20) and (11.21) we have

xv = (a22 − 1)(a33 − 1) − a23a32
yv = a23a31 − a21(a33 − 1)

zv = a21a32 − a31(a22 − 1).

Now we have nine equations to cope with any eventuality. In fact, there is nothing to
stop us from choosing any three that take our fancy, for example these three equations
look interesting and sound:

xv = (a22 − 1)(a33 − 1) − a23a32 (11.22)

yv = (a33 − 1)(a11 − 1) − a31a13 (11.23)

zv = (a11 − 1)(a22 − 1) − a12a21. (11.24)

Therefore, the solution for the eigenvector is [xv yv zv]T. Note that the sign of yv

has been reversed to maintain symmetry.

xv = (
a22 − 1

)(
a33 − 1

) − a23a32

yv = (
a33 − 1

)(
a11 − 1

) − a31a13

zv = (
a11 − 1

)(
a22 − 1

) − a12a21.

Therefore,

xv = (
2
(
s2 + y2

) − 2
) (
2
(
s2 + z2

) − 2
) − 2

(
yz − sx

)
2
(
yz + sx

)

= 4
(
s2 + y2 − 1

) (
s2 + z2 − 1

) − 4
(
y2z2 − s2x2

)

= 4
((
x2 + z2

)(
x2 + y2

) − y2z2 + s2x2
)

= 4
(
x4 + x2y2 + x2z2 + z2y2 − y2z2 + s2x2

)

= 4x2
(
s2 + x2 + y2 + z2

)

= 4x2.

Similarly, yv = 4y2 and zv = 4z2, which confirm that the eigenvector has compo-
nents associatedwith the quaternion’s vector. The square terms should be no surprise,
as the triple qpq−1 includes the product of three quaternions.

Let’s test these formulae with the matrix associated with Fig. 11.7, which rotates
a point 180◦ about the vector v̂ = 1√

2
i + 1√

2
k:

M =
⎡
⎣
a11 a12 a13
a21 a22 a23
a31 a32 a33

⎤
⎦ =

⎡
⎣
0 0 1
0 −1 0
1 0 0

⎤
⎦
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therefore,

xv = −2 × −1 − 0 = 2

yv = −1 × −1 − 1 × 1 = 0

zv = −1 × −2 − 0 = 2

which confirms that the eigenvector is 2i + 2k.
Next, Tr(M) = −1, therefore

cos θ = 1
2

(
Tr

(
qpq−1

) − 1
)

= 1
2

(
(−1) − 1

)

= −1

θ = ±180◦

which agrees with the previous results.

11.8 Interpolating Quaternions

Like vectors, quaternions can be interpolated to compute an in-between quaternion.
However, whereas two interpolated vectors results in a third vector that is readily
visualised, two interpolated quaternions results in a third quaternion that acts as a
rotor, and is not immediately visualised.

The spherical interpolant for vectors is

v = sin[(1 − t)θ ]
sin θ

v1 + sin(tθ)

sin θ
v2

where θ is the angle between the vectors, and requires no modification for quater-
nions:

q = sin[(1 − t)θ ]
sin θ

q1 + sin(tθ)

sin θ
q2. (11.25)

So, given

q1 = [s1, x1i + y1j + z1k]

q2 = [s2, x2i + y2j + z2k]
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Fig. 11.8 The point
P(0, 1, 1) is rotated 90◦
about the vector v1 to
P ′(1, 1, 0)

P (0, 1, 1) P (1, 1, 0)v1

p p

z
x

y

θ is obtained by taking the 4D dot product of q1 and q2:

cos θ = q1 · q2
|q1||q2|

= s1s2 + x1x2 + y1y2 + z1z2
|q1||q2|

and if we are working with unit-norm quaternions, then

cos θ = s1s2 + x1x2 + y1y2 + z1z2. (11.26)

Let’s use (11.25) in a scenario with two simple unit-norm quaternions.
Figure 11.8 shows one such scenario where the point P(0, 1, 1) is rotated 90◦

about v1, the axis of q1. Figure 11.9 shows another scenario where the same point
P(0, 1, 1) is rotated 90◦ about v2, the axis of q2. The quaternions are

q1 = [
cos 45◦, sin 45◦j

] =
[√

2
2 ,

√
2
2 j

]

q2 = [
cos 45◦, sin 45◦i

] =
[√

2
2 ,

√
2
2 i

]
.

Therefore, using (11.26)

cos θ =
√
2
2

√
2
2 = 0.5

θ = 60◦.

Before proceeding, let’s compute the matrices for the two quaternion products.
For q1:

s =
√
2
2 , x = 0, y =

√
2
2 , z = 0, xp = 0, yp = 1, z p = 1
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Fig. 11.9 The point
P(0, 1, 1) is rotated 90◦
about the vector v2 to
P ′(0,−1, 1)

P (0, 1, 1)

p

p

v2

P (0,−1, 1)

y

x
z

which when substituted in (11.14) gives

p′
1 =

⎡
⎢⎣
2
(
s2 + x2

) − 1 2
(
xy − sz

)
2
(
xz + sy

)

2
(
xy + sz

)
2
(
s2 + y2

) − 1 2
(
yz − sx

)

2
(
xz − sy

)
2
(
yz + sx

)
2
(
s2 + z2

) − 1

⎤
⎥⎦

⎡
⎣
xp
yp
z p

⎤
⎦

⎡
⎣
1
1
0

⎤
⎦ =

⎡
⎣

0 0 1
0 1 0

−1 0 0

⎤
⎦

⎡
⎣
0
1
1

⎤
⎦ . (11.27)

which is correct.
For q2:

s =
√
2
2 , x =

√
2
2 , y = 0, z = 0, xp = 0, yp = 1, z p = 1,

which when substituted in (11.14) gives

p′
2 =

⎡
⎢⎣
2
(
s2 + x2

) − 1 2
(
xy − sz

)
2
(
xz + sy

)

2
(
xy + sz

)
2
(
s2 + y2

) − 1 2
(
yz − sx

)

2
(
xz − sy

)
2
(
yz + sx

)
2
(
s2 + z2

) − 1

⎤
⎥⎦

⎡
⎣
xp
yp
z p

⎤
⎦

⎡
⎣

0
−1
1

⎤
⎦ =

⎡
⎣
1 0 0
0 0 −1
0 1 0

⎤
⎦

⎡
⎣
0
1
1

⎤
⎦ . (11.28)

which is also correct.
Using (11.25) with t = 0.5, computes a mid-way position for an interpolated

quaternion, with its vector at 45◦ between the x- and y-axes, as shown in Fig. 11.10.
We already know that θ = 60◦, therefore sin θ = √

3/2:
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Fig. 11.10 The point
P(0, 1, 1) is rotated about
the vector v to P ′(1, 0, 1)

X

Y

Z

P (0, 1, 1)

p

p

v

P (1, 0, 1)

q = sin[(1 − t)θ ]
sin θ

q1 + sin(tθ)

sin θ
q2

= sin
(
60◦
2

)

sin 60◦
[√

2
2 ,

√
2
2 j

]
+ sin

(
60◦
2

)

sin 60◦
[√

2
2 ,

√
2
2 i

]

= 1√
3

[√
2
2 ,

√
2
2 j

]
+ 1√

3

[√
2
2 ,

√
2
2 i

]

=
[√

2√
3
, 1√

6
i + 1√

6
j
]

where

s =
√
2√
3
, x = 1√

6
, y = 1√

6
, z = 0, xp = 0, yp = 1, z p = 1,

which when substituted in (11.14) gives

p′ =
⎡
⎢⎣
2
(
s2 + x2

) − 1 2
(
xy − sz

)
2
(
xz + sy

)

2
(
xy + sz

)
2
(
s2 + y2

) − 1 2
(
yz − sx

)

2
(
xz − sy

)
2
(
yz + sx

)
2
(
s2 + z2

) − 1

⎤
⎥⎦

⎡
⎣
xp
yp
z p

⎤
⎦

⎡
⎣
1
0
1

⎤
⎦ =

⎡
⎣

2
3

1
3

2
3

1
3

2
3 − 2

3− 2
3

2
3

1
3

⎤
⎦

⎡
⎣
0
1
1

⎤
⎦ (11.29)

which gives the point P ′(1, 0, 1).
One of the reasons for using a spherical interpolant is that it linearly interpolates

the angle between the two unit-norm quaternions, which creates a constant-angular
velocity between them. However, one of the problems with visualising quaternions is
that they reside in a four-dimensional space and create a hyper-sphere with a radius
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Fig. 11.11 Spherical
interpolation between q1 and
q2

q1

q2
φ

φ
φ

φ

t = 0
t = 1

4

t = 3
4

t = 1
2

t = 1

Fig. 11.12 Sketch showing
the actions of the
interpolated quaternions

(0, 1, 1) (1, 1, 0)
t = 0

t = 0.25
t =

0.5t =
0.75

t =
1

(0,−1, 1)
(1, 0, 1)z

x

y

equal to the quaternion’s norm. With our 3D brains, this is difficult to visualise.
Nevertheless, we can convince ourselves into thinking we see what is going on with
a simple sketch, as shown in Fig. 11.11, where we see part of the hyper-sphere and
two quaternions q1 and q2. In this example, the angle φ is a constant angle between
two values of the interpolant t . The spherical interpolant also ensures that the norm
of the interpolated quaternion remains constant at unity, preventing any unwanted
scaling.

Figure 11.12 provides another sketch to help visualise what is going on. For exam-
ple, when t = 0, the interpolated quaternion is q1 which rotates the point (0, 1, 1) to
(1, 1, 0), and when t = 1, the interpolated quaternion is q2 which rotates the point
(0, 1, 1) to (0,−1, 1). When t = 0.5, the interpolated quaternion rotates the point
(0, 1, 1) to (1, 0, 1) as computed above. Two other curves show what happens for
t = 0.25 and t = 0.75.

A natural consequence of the interpolant is that the angle of rotation is 90◦ for
t = 0 and t = 1, but for t = 0.5 the angle of rotation (eigenvalue) is approximately
70.5◦. Corresponding angles arise for other values of t .
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11.9 Converting a Rotation Matrix to a Quaternion

The matrix transform equivalent to qpq−1 is

qpq−1 =
⎡
⎢⎣
2
(
s2 + x2

) − 1 2(xy − sz) 2(xz + sy)

2(xy + sz) 2
(
s2 + y2

) − 1 2(yz − sx)

2(xz − sy) 2(yz + sx) 2
(
s2 + z2

) − 1

⎤
⎥⎦

⎡
⎣
xp
yp
z p

⎤
⎦

=
⎡
⎣
a11 a12 a13
a21 a22 a23
a31 a32 a33

⎤
⎦

⎡
⎣
xp
yp
z p

⎤
⎦ .

Inspection of the matrix shows that by combining various elements we can isolate
the terms of a quaternion s, x, y, z. For example, by adding the terms a11 + a22 + a33
we obtain

a11 + a22 + a33 = [
2
(
s2 + x2

) − 1
] + [

2
(
s2 + y2

) − 1
] + [

2
(
s2 + z2

) − 1
]

= 6s2 + 2
(
x2 + y2 + z2

) − 3

= 4s2 − 1

therefore,

s = ± 1
2

√
1 + a11 + a22 + a33.

To isolate x, y and z we employ

x = 1

4s

(
a32 − a23

)

y = 1

4s

(
a13 − a31

)

z = 1

4s

(
a21 − a12

)
.

We can test their correctness using the matrix (11.29):

⎡
⎣
a11 a12 a13
a21 a22 a23
a31 a32 a33

⎤
⎦ =

⎡
⎢⎣

2
3

1
3

2
3

1
3

2
3 − 2

3

− 2
3

2
3

1
3

⎤
⎥⎦

s = ± 1
2

√
1 + a11 + a22 + a33 = ± 1

2

√
1 + 2

3 + 2
3 + 1

3 =
√
2√
3

x = 1
4s

(
a32 − a23

) =
√
3

4
√
2

(
2
3 + 2

3

) = 1√
6
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y = 1
4s

(
a13 − a31

) =
√
3

4
√
2

(
2
3 + 2

3

) = 1√
6

z = 1
4s

(
a21 − a12

) =
√
3

4
√
2

(
1
3 − 1

3

) = 0

which agree with the original values.
Say, for example, the value of s had been close to zero, this could have made the

values of x, y, z unreliable. Consequently, other combinations are available:

x = ± 1
2

√
1 + a11 − a22 − a33

y = 1

4x

(
a12 + a21

)

z = 1

4x

(
a13 + a31

)

s = 1

4x

(
a32 − a23

)
.

y = ± 1
2

√
1 − a11 + a22 − a33

x = 1

4y

(
a12 + a21

)

z = 1

4y

(
a23 + a32

)

s = 1

4y

(
a13 − a31

)
.

z = ± 1
2

√
1 − a11 − a22 + a33

x = 1

4z

(
a13 + a31

)

y = 1

4z

(
a23 + a32

)

s = 1

4z

(
a21 − a12

)
.

11.10 Euler Angles to Quaternion

Euler angles are rotation transforms about the Cartesian axes: Rα,x , Rβ,y and Rγ,z ,
and can be combined to create twelve triple combinations to represent a composite
rotation. Let’s see how such a transform is represented by a quaternion.

To demonstrate the technique we must choose one of the twelve combinations,
then the same technique can be used to convert other combinations. For example,
let’s choose the sequence Rγ,zRβ,yRα,x where the equivalent quaternions are
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qx = [
cos

(
α
2

)
, sin

(
α
2

)
i
]

qy =
[
cos

(
β

2

)
, sin

(
β

2

)
j
]

qz = [
cos

(
γ

2

)
, sin

(
γ

2

)
k
]

and
q = qzqyqx . (11.30)

Expanding (11.30):

q =
[
cos

( γ
2

)
, sin

( γ
2

)
k
][
cos

(
β
2

)
, sin

(
β
2

)
j
][
cos

(
α
2

)
, sin

(
α
2

)
i
]

=
[
cos

( γ
2

)
cos

(
β
2

)
,

cos
( γ
2

)
sin

(
β
2

)
j + cos

(
β
2

)
sin

( γ
2

)
k − sin

( γ
2

)
sin

(
β
2

)
i
][
cos

(
α
2

)
, sin

(
α
2

)
i
]

=
[
cos

( γ
2

)
cos

(
β
2

)
cos

(
α
2

) + sin
( γ
2

)
sin

(
β
2

)
sin

(
α
2

)
,

cos
( γ
2

)
cos

(
β
2

)
sin

(
α
2

)
i + cos

(
α
2

)
cos

( γ
2

)
sin

(
β
2

)
j + cos

(
α
2

)
cos

(
β
2

)
sin

( γ
2

)
k

− cos
(

α
2

)
sin

( γ
2

)
sin

(
β
2

)
i − cos

( γ
2

)
sin

(
β
2

)
sin

(
α
2

)
k + cos

(
β
2

)
sin

( γ
2

)
sin

(
α
2

)
j
]

=
[
cos

( γ
2

)
cos

(
β
2

)
cos

(
α
2

) + sin
( γ
2

)
sin

(
β
2

)
sin

(
α
2

)
,

(
cos

( γ
2

)
cos

(
β
2

)
sin

(
α
2

) − cos
(

α
2

)
sin

( γ
2

)
sin

(
β
2

))
i

+
(
cos

(
α
2

)
cos

( γ
2

)
sin

(
β
2

)
+ cos

(
β
2

)
sin

( γ
2

)
sin

(
α
2

))
j

+
(
cos

(
α
2

)
cos

(
β
2

)
sin

( γ
2

) − cos
( γ
2

)
sin

(
β
2

)
sin

(
α
2

))
k
]
.

Now let’s place the angles in a consistent sequence:

s = cos
(

γ

2

)
cos

(
β

2

)
cos

(
α
2

) + sin
(

γ

2

)
sin

(
β

2

)
sin

(
α
2

)

xq = cos
(

γ

2

)
cos

(
β

2

)
sin

(
α
2

) − sin
(

γ

2

)
sin

(
β

2

)
cos

(
α
2

)

yq = cos
(

γ

2

)
sin

(
β

2

)
cos

(
α
2

) + sin
(

γ

2

)
cos

(
β

2

)
sin

(
α
2

)

zq = sin
(

γ

2

)
cos

(
β

2

)
cos

(
α
2

) − cos
(

γ

2

)
sin

(
β

2

)
sin

(
α
2

)

where
q = [

s, xq i + yq j + zqk
]
. (11.31)

Let’s test (11.31). We start with the three rotation transforms
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Rα,x =
⎡
⎣
1 0 0
0 cosα − sin α

0 sin α cosα

⎤
⎦

Rβ,y =
⎡
⎣

cosβ 0 sin β

0 1 0
− sin β 0 cosβ

⎤
⎦

Rγ,z =
⎡
⎣
cos γ − sin γ 0
sin γ cos γ 0

0 0 1

⎤
⎦ .

Then

Rγ,zRβ,yRα,x =⎡
⎣
cos γ cosβ − sin γ cosα + cos γ sin β sin α sin γ sin α + cos γ sin β cosα

sin γ cosβ cos γ cosα + sin γ sin β sin α − cos γ sin α + sin γ sin β cosα

− sin β cosβ sin α cosβ cosα

⎤
⎦ .

Let’s make α = β = γ = 90◦, then

R90◦,zR90◦,yR90◦,x =
⎡
⎣

0 0 1
0 1 0

−1 0 0

⎤
⎦

which rotates points 90◦ about the y-axis:

⎡
⎣
1
1
0

⎤
⎦ =

⎡
⎣

0 0 1
0 1 0

−1 0 0

⎤
⎦

⎡
⎣
0
1
1

⎤
⎦ .

Now let’s evaluate (11.31):

s = cos
(

γ

2

)
cos

(
β

2

)
cos

(
α
2

) + sin
(

γ

2

)
sin

(
β

2

)
sin

(
α
2

)

=
√
2
2

√
2
2

√
2
2 +

√
2
2

√
2
2

√
2
2

=
√
2
2

xq = cos
(

γ

2

)
cos

(
β

2

)
sin

(
α
2

) − sin
(

γ

2

)
sin

(
β

2

)
cos

(
α
2

)

=
√
2
2

√
2
2

√
2
2 −

√
2
2

√
2
2

√
2
2

= 0
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yq = cos
(

γ

2

)
sin

(
β

2

)
cos

(
α
2

) + sin
(

γ

2

)
cos

(
β

2

)
sin

(
α
2

)

=
√
2
2

√
2
2

√
2
2 +

√
2
2

√
2
2

√
2
2

=
√
2
2

zq = sin
(

γ

2

)
cos

(
β

2

)
cos

(
α
2

) − cos
(

γ

2

)
sin

(
β

2

)
sin

(
α
2

)

=
√
2
2

√
2
2

√
2
2 −

√
2
2

√
2
2

√
2
2

= 0

and

q =
[√

2
2 ,

√
2
2 j

]

which is a quaternion that also rotates points 90◦ about the y-axis.

11.11 Summary

In this chapter I have shown how unit-norm quaternions can be used to rotate a vector
about a quaternion’s vector. It would have been useful if this could have been achieved
by the simple product qp, like complex numbers. But as we saw, this only works
when the quaternion is orthogonal to the vector. The product qpq−1 – discovered by
Hamilton and Cayley – works for all orientations between a quaternion and a vector.
We also saw that the product can be represented as a matrix, which can be integrated
with other matrices, and implemented in software.

Perhaps one of the most interesting features of quaternions that has emerged in
this chapter, is that their imaginary qualities are not required in any calculations,
because they are embedded within the algebra.

The spherical interpolant provides a clever way to dynamically change a quater-
nion’s axis and angle of rotation, but can be difficult to visualise as an animated
sequence without access to a real-time display system.

The reverse product q−1 pq reverses the angle of rotation, and is equivalent to
changing the sign of the rotation angle in qpq−1. Consequently, it can be used to
rotate a frame of reference in the same direction as qpq−1.

11.11.1 Summary of Operations

Rotating a Point About a Vector

q = [s, v]
s2 + |v|2 = 1
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p = [0, p]
qpq−1 = [

0, 2(v · p)v + (
2s2 − 1

)
p + 2sv × p

]

q = [
cos

(
θ
2

)
, sin

(
θ
2

)
v̂
]

p = [0, p]
qpq−1 = [

0, (1 − cos θ)(v̂ · p)v̂ + cos θp + sin θ v̂ × p
]
.

Matrix for Rotating a Point about a Vector

p′ =
⎡
⎣
1 − 2

(
y2 + z2

)
2(xy − sz) 2(xz + sy)

2(xy + sz) 1 − 2
(
x2 + z2

)
2(yz − sx)

2(xz − sy) 2(yz + sx) 1 − 2
(
x2 + y2

)

⎤
⎦

⎡
⎣
xp
yp
z p

⎤
⎦ .

Matrix for a Quaternion Product

q1q2 = L(q1)q2 =

⎡
⎢⎢⎣
s1 −x1 −y1 −z1
x1 s1 −z1 y1
y1 z1 s1 −x1
z1 −y1 x1 s1

⎤
⎥⎥⎦

⎡
⎢⎢⎣
s2
x2
y2
z2

⎤
⎥⎥⎦

q1q2 = R(q2)q1 =

⎡
⎢⎢⎣
s2 −x2 −y2 −z2
x2 s2 z2 −y2
y2 −z2 s2 x2
z2 y2 −x2 s2

⎤
⎥⎥⎦

⎡
⎢⎢⎣
s1
x1
y1
z1

⎤
⎥⎥⎦ .

Interpolating Two Quaternions

q = sin[(1 − t)θ ]
sin θ

q1 + sin(tθ)

sin θ
q2

where

cos θ = q1 · q2
|q1||q2|

= s1s2 + x1x2 + y1y2 + z1z2
|q1||q2| .
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Quaternion from a Rotation Matrix

s = ±1

2

√
1 + a11 + a22 + a33

x = 1

4s

(
a32 − a23

)

y = 1

4s

(
a13 − a31

)

z = 1

4s

(
a21 − a12

)
.

x = ±1

2

√
1 + a11 − a22 − a33

y = 1

4x

(
a12 + a21

)

z = 1

4x

(
a13 + a31

)

s = 1

4x

(
a32 − a23

)
.

y = ±1

2

√
1 − a11 + a22 − a33

x = 1

4y

(
a12 + a21

)

z = 1

4y

(
a23 + a32

)

s = 1

4y

(
a13 − a31

)
.

z = ±1

2

√
1 − a11 − a22 + a33

x = 1

4z

(
a13 + a31

)

y = 1

4z

(
a23 + a32

)

s = 1

4z

(
a21 − a12

)
.

Eigenvector and Eigenvalue

xv = (
a22 − 1

)(
a33 − 1

) − a23a32

yv = (
a33 − 1

)(
a11 − 1

) − a31a13

zv = (
a11 − 1

)(
a22 − 1

) − a12a21

cos θ = 1
2

(
Tr

(
qpq−1

) − 1
)
.
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Euler Angles to Quaternion
Using the transform Rγ,zRβ,yRα,x :

s = cos
(

γ

2

)
cos

(
β

2

)
cos

(
α
2

) + sin
(

γ

2

)
sin

(
β

2

)
sin

(
α
2

)

xq = cos
(

γ

2

)
cos

(
β

2

)
sin

(
α
2

) − sin
(

γ

2

)
sin

(
β

2

)
cos

(
α
2

)

yq = cos
(

γ

2

)
sin

(
β

2

)
cos

(
α
2

) + sin
(

γ

2

)
cos

(
β

2

)
sin

(
α
2

)

zq = sin
(

γ

2

)
cos

(
β

2

)
cos

(
α
2

) − cos
(

γ

2

)
sin

(
β

2

)
sin

(
α
2

)

where

q = [
s, xq i + yq j + zqk

]
.

11.12 Worked Examples

11.12.1 Rotate a Vector Using qp

Use the product qp to rotate p = [0, j], 90◦ about the x-axis.
Solution: For this to work, q must be orthogonal to p:

q = [cos θ, sin θ i]

= [0, i]

and

p′ = qp

= [0, i][0, j]
= [0, k].

11.12.2 Rotate a Vector Using qpq−1

Use the product qpq−1 to rotate p = [0, j], 90◦ about the x-axis.
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Solution: For this to work:

q = [
cos

(
θ
2

)
, sin

(
θ
2

)
i
]

=
[√

2
2 ,

√
2
2 i

]

and

p′ = qpq−1

=
[√

2
2 ,

√
2
2 i

]
[0, j]

[√
2
2 , −

√
2
2 i

]

=
[
0,

√
2
2 j +

√
2
2 k

] [√
2
2 , −

√
2
2 i

]

=
[
0,

√
2
2

(√
2
2 j +

√
2
2 k

)
+ 1

2 j + 1
2k

]

= [
0, 1

2 j + 1
2k − 1

2 j + 1
2k

]

= [0, k]

which is correct.

11.12.3 Rotate a Vector 360◦ Using qpq−1

Evaluate the product qpq−1 for p = [0, p] and q = [
cos

(
θ
2

)
, sin

(
θ
2

)
v
]
, where

θ = 360◦.
Solution:

q = [−1, 0]

qpq−1 = [−1, 0] [0, p] [−1, 0]

= [
0, −p

]
[−1, 0]

= [
0, p

]

which confirms that the vector remains unmoved, as expected.

11.12.4 Quaternion as a Matrix

Compute the matrix (11.14) for q =
[
1
2 ,

√
3
2 k

]
, and find its eigenvector and eigen-

value.
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Solution: From q:

s = 1
2 , x = 0, y = 0, z =

√
3
2

p′ =
⎡
⎢⎣
2
(
s2 + x2

) − 1 2
(
xy − sz

)
2
(
xz + sy

)
2
(
xy + sz

)
2
(
s2 + y2

) − 1 2
(
yz − sx

)
2
(
xz − sy

)
2
(
yz + sx

)
2
(
s2 + z2

) − 1

⎤
⎥⎦

⎡
⎣
xp
yp
z p

⎤
⎦

=
⎡
⎢⎣

− 1
2 −

√
3
2 0√

3
2 − 1

2 0

0 0 1

⎤
⎥⎦

⎡
⎣
xp
yp
z p

⎤
⎦ .

If we plug in the point (1, 0, 0) it is rotated about the z-axis by 120◦:

⎡
⎢⎣

− 1
2√
3
2

1

⎤
⎥⎦ =

⎡
⎢⎣

− 1
2 −

√
3
2 0√

3
2 − 1

2 0

0 0 1

⎤
⎥⎦

⎡
⎣
1
0
0

⎤
⎦ .

Using

cos θ = 1
2

(
Tr

(
qpq−1) − 1

)

= 1
2

(
0 − 1

)

θ = 120◦.

Using

xv = (
a22 − 1

)(
a33 − 1

) − a23a32

= (− 3
2

) (
0
) − 0

= 0

yv = (
a33 − 1

)(
a11 − 1

) − a31a13

= (0)
(− 3

2

) − 0

= 0

zv = (
a11 − 1

)(
a22 − 1

) − a12a21

= (− 3
2

) (− 3
2

) +
√
3
2

√
3
2

= 3

which makes the eigenvector 3k and the eigenvalue 120◦.
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11.12.5 Interpolating a Quaternion

Find the half-way quaternion between q1 = [
cos

(
α
2

)
, sin

(
α
2

)
k
]

and
q2 = [

cos
(

α
2

)
, sin

(
α
2

)
i
]
when α = 90◦. Show that it is a unit-norm quaternion,

and find its angle of rotation.
Solution: The angle between q1 and q2 is θ where

cos θ = s1s2 + x1x2 + y1y2 + z1z2
|q1||q2|

= cos2 α
2

= 0.5

θ = 60◦.

Using

q = sin((1 − t)θ)

sin θ
q1 + sin(tθ)

sin θ
q2

= sin 30◦

sin 60◦
[
cos 45◦, sin 45◦k

] + sin 30◦

sin 60◦
[
cos 45◦, sin 45◦i

]

= 1√
3

[√
2
2 ,

√
2
2 k

]
+ 1√

3

[√
2
2 ,

√
2
2 i

]

=
[√

2√
3
,

√
2

2
√
3
i +

√
2

2
√
3
k
]

=
[

2√
6
, 1√

6
i + 1√

6
k
]
.

The norm of q is

|q| =
(

2√
6

)2 +
(

1√
6

)2 +
(

1√
6

)2

= 2
3 + 1

6 + 1
6

= 1.

Therefore, cos
(

α
2

) =
√
2√
3
and sin

(
α
2

) = 1√
3
, and α ≈ 70.5◦.

11.12.6 Convert a Rotation Matrix as a Quaternion

Convert the matrixM into a quaternion and identify its function.
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Solution:

M =
⎡
⎣

0 0 1
0 1 0

−1 0 0

⎤
⎦

therefore,

s = 1
2

√
1 + a11 + a22 + a33

= 1
2

√
1 + 0 + 1 + 0 =

√
2
2

x = 1

4s

(
a32 − a23

)

=
√
2
4 (0 + 0) = 0

y = 1

4s

(
a13 − a31

)

=
√
2
4 (1 + 1) =

√
2
2

z = 1

4s

(
a21 − a12

)

=
√
2
4 (0 + 0) = 0

which is the quaternion
[√

2
2 ,

√
2
2 j

]
, and is a rotation of 90◦ about the y-axis.
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Chapter 12
Complex Numbers and the Riemann
Hypothesis

12.1 Introduction

Prime numbers are very easy to define: a number whose factors are 1 and itself;
the first nine primes being 2, 3, 5, 7, 11, 13, 17, 19, 23. However, in spite of this
simple definition, it has been impossible to find a formula that predicts primes, or
even count the exact number of primes up to some limit. Many mathematicians
have taken up the challenge, but all have failed. Nevertheless, their endeavours have
been astounding and created some incredible results, formulae and conjectures. This
chapter outlines the work of Leonhard Euler, and the brilliant Germanmathematician
Bernhard Riemann (1826–1866), and his famous hypothesis.

12.2 Euler’s Work

12.2.1 Euler’s Zeta Function

Euler was aware that

sin x = x

1! − x3

3! + x5

5! − x7

7! + · · ·

and therefore,

sin x

x
= 1 − x2

3! + x4

5! − x6

7! + · · · . (12.1)
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Factorising (12.1) using the Weierstrass factorisation theorem [1], we obtain

sin x

x
=

(
1 − x

π

)(
1 + x

π

)(
1 − x

2π

)(
1 + x

2π

)(
1 − x

3π

)(
1 + x

3π

)
· · ·

=
(
1 − x2

π2

)(
1 − x2

4π2

)(
1 − x2

9π2

)(
1 − x2

16π2

)
· · · . (12.2)

The x2 coefficient of (12.1) is − 1
6 , which must equal the x2 coeffiicent of (12.2):

−1

6
= −

(
1

π2
+ 1

4π2
+ 1

9π2
+ 1

16π2
+ · · ·

)

= − 1

π2

(
1

12
+ 1

22
+ 1

32
+ 1

42
+ · · ·

)

therefore,

π2

6
= 1

12
+ 1

22
+ 1

32
+ 1

42
+ · · · =

∞∑
n=1

1

n2
. (12.3)

Equations (12.3) and (12.4) show Euler’s zeta function, which was the starting point
for Riemann. It is defined for any real number s greater than 1 by the infinite sum:

ζ(s) = 1 + 1

2s
+ 1

3s
+ 1

4s
+ 1

5s
+ · · · . (12.4)

When s = 1 we get the harmonic series:

ζ(1) = 1 + 1

2
+ 1

3
+ 1

4
+ 1

5
+ · · ·

which diverges to infinity.
Euler’s extraordinary algebraic skills revealed how his zeta function is linked to

the primes. For example, he found individual sums for the odd and even terms in
(12.3) as follows:

π2

6
= 1

12
+ 1

22
+ 1

32
+ 1

42
+ · · · (12.5)



12.2 Euler’s Work 281

multiplying both sides by 1
22 :

1

22
π2

6
= 1

22
1

12
+ 1

22
1

22
+ 1

22
1

32
+ 1

22
1

42
+ · · ·

= 1

22
+ 1

42
+ 1

62
+ 1

82
+ · · · (12.6)

subtracting (12.6) from (12.5):

(
1 − 1

22

)
π2

6
= 1

12
+ 1

32
+ 1

52
+ 1

72
+ · · ·

π2

8
= 1

12
+ 1

32
+ 1

52
+ 1

72
+ · · · (12.7)

and subtracting (12.7) from (12.5):

π2

24
= 1

22
+ 1

42
+ 1

62
+ 1

82
+ · · · .

Employing the same algebraic strategy with the zeta function, we have

ζ(s) = 1

1s
+ 1

2s
+ 1

3s
+ 1

4s
+ 1

5s
+ · · ·

(
1 − 1

2s

)
ζ(s) = 1

1s
+ 1

3s
+ 1

5s
+ 1

7s
+ 1

9s
+ · · · (12.8)

(
1

2s

)
ζ(s) = 1

2s
+ 1

4s
+ 1

6s
+ 1

8s
+ 1

10s
+ · · · . (12.9)

Euler then used (12.8) and (12.9) to develop his famous prime product formula by
multiplying (12.8) by 1

3s :

1

3s

(
1 − 1

2s

)
ζ(s) = 1

3s
1

1s
+ 1

3s
1

3s
+ 1

3s
1

5s
+ 1

3s
1

7s
+ · · ·

= 1

3s
+ 1

9s
+ 1

15s
+ 1

21s
+ 1

27s
+ · · · . (12.10)

Subtracting (12.10) from (12.8) we have

(
1 − 1

3s

)(
1 − 1

2s

)
ζ(s) = 1

1s
+ 1

5s
+ 1

7s
+ 1

11s
+ · · · (12.11)
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By repeating this process for the remaining terms on the RHS of (12.11), in the limit,
we have

· · ·
(
1 − 1

7s

)(
1 − 1

5s

)(
1 − 1

3s

)(
1 − 1

2s

)
ζ(s) = 1

and

ζ(s) = 1(
1 − 1

2s

)(
1 − 1

3s

)(
1 − 1

5s

)(
1 − 1

7s

)
· · ·

.

But

∞∑
n

1

ns
= ζ(s)

and

∏
p

1

1 − 1
ps

= 1(
1 − 1

2s

)(
1 − 1

3s

)(
1 − 1

5s

)(
1 − 1

7s

)
· · ·

therefore,

∏
p

1

1 − 1
ps

=
∞∑
n

1

ns

which is Euler’s prime product formula, and was the starting point for Riemann’s
seminal 1859 paperUeber die Anzahl der Primzahlen unter einer gegebenen Grösse,
which translated is About the Number of Prime Numbers Under a Given Number [2].

12.3 The Prime Number Theorem

An approximate formula for counting primes up to a value x , is given by

π(x) ∼ x

ln x
.

Table12.1 shows the percentage error for increasing values of x .



12.3 The Prime Number Theorem 283

Table 12.1 π(x) and x/ lnx for different values of x

x π(x) x/ lnx % error

102 25 22 −12

103 168 145 −13.7

106 78,498 72,382 −7.8

109 50,847,534 48,254,942 −5.1

Table 12.2 π(x) and Li(x) − π(x) for different values of x

x π(x) Li(x) − π(x) % error

108 5,761,455 754 0.013

109 50,847,534 1, 701 0.0033

1010 455,052,511 3, 104 0.00068

1014 53,204,941,750,802 314,890 0.0000006

Riemann’s paper introduced an improved prime number theorem:

π(x) ∼ Li(x)

where

Li(x) =
∫ x

2

1

ln(t)
dt.

Table12.2 shows the accuracy of the prime number theorem at counting primes.
Thus π(x) lies between an upper value of Li(x), and a lower value of x/ ln x .

12.4 The Riemann Zeta Function

Euler’s zeta function ζ(s) assumes that s > 1, where s ∈ R, and is convergent. The
breakthroughmade by Riemannwas tomake s complex: s ∈ C. Riemannwas partic-
ularly interested in when ζ(s) = 0, and showed that Euler’s prime product formula
converges for complex s, with Re(s) > 1, and therefore has no zeros in the region
marked yellow in Fig. 12.1.

The infinite sum form of the zeta function is not very useful when one is looking
for particular values of s that make ζ(s) = 0, which is why Riemann proposed a
functional form (12.12) in his paper:

ζ(s) = 2sπ s−1 sin

(
πs

2

)
Γ (1 − s)ζ(1 − s) (12.12)
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Fig. 12.1 The complex
plane for the zeta function
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where the gamma function Γ (n) = (n − 1)!
Equation (12.12) applies to the entire complex plane, and one can see in the green

zone of Fig. 12.1 values of s that make ζ(s) = 0; these are called “trivial zeros”,
and arise when sin(πs/2) = 0 in (12.12). i.e. when s = −2n. Thus there exists an
infinite number of points along the negative real axis, where s makes ζ(s) = 0.

Riemann also showed that other values of s exist on a critical line Re(s) = 1/2,
where ζ(s) = 0; these are called “non-trivial zeros”. Furthermore, these occur in
conjugate pairs. i.e. 1/2 ± bi . In the critical red strip of Fig. 12.1, the first such non-
trivial zero is 1/2 + 14.134725 . . . i . Others include 1/2 + 21.022040 . . . i, 1/2 +
25.010856 . . . i, 1/2 + 30.425 and 1/2 + 32.935 . . . i .

The other point marked on Fig. 12.1 is s = 1, which makes ζ(1) = ∞.

12.4.1 The Riemann Hypothesis

Having gone through the above explanation, the Riemann hypothesis is extremely
simple to state, and is the conjecture that “the zeta function is zero only at the negative
even integers (trivial zeros), and complex numbers s with Re(s) = 1/2, (non-trivial
zeros)”.

Some mathematicians regard the Riemann conjecture as a major unsolved prob-
lem, and that its proof will influence other branches of mathematics, especially the
distribution of prime numbers. Others believe that it is false. So far, no one has been
able to prove or disprove the conjecture. Hopefully, the prize of prize of $106, offered
by the Clay Mathematics Institute, will keep mathematicians trying.
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Chapter 13
The Mandelbrot Set

13.1 Introduction

The Mandelbrot set is a simple application of complex numbers that reveals an
amazing degree of complexity that would have remained hidden without the digital
computer. I remember discovering the set in the mid-1980s, and tried running the
program onmyBBCmicro. It took forever, and was not worth the wait. Today, things
are completely different, and many beautiful images are possible in a fraction of a
second.

13.2 The Mandelbrot Set

The Polish born, mathematician Benoit Mandelbrot (1924–2010), is recognised for
inventing the term fractal in 1975, which describe structures possessing self-similar
properties. During his time at IBM as an IBM Fellow, Mandelbrot researched the
subject of fractal geometry, and a particular image known as the Mandelbrot Set,
Fig. 13.1 is named after him.

The Mandelbrot set� is a set of complex numbers that pass a specific test, that
determines whether a complex number is inside or outside �. As the Mandelbrot
set possesses an infinite level of detail and complexity, the test is subject to two
conditions: the first, normally constrains the test to a radius of 2 on the complex plane;
the second, controls the number of iterations made by the algorithm to conduct the
test. The points on the complex plane are assigned colours according to the number
of iterations, and the result reveals amazing images that reflect the hidden beauty of
fractals.

As we are interested in creating an image, the complex plane is effectively the
display device, and is divided into pixels defined by the required image resolution.
Each pixel has an associated complex number c = x + iy, which is input to the
algorithm and iterated. The result determines the pixel’s colour.

The algorithm is extremely simple:

zn+1 = z2n + c, where {z, c} ∈ �, and z0 = 0.
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Fig. 13.1 The Mandelbrot set created by the program Ultra Fractal 3. Reproduced by kind per-
mission of Dr. Wolfgang Beyer

By iterating this algorithm, subject to the two test criteria, the point c is classified
as in� or not. The sequence of z0, z1, z2 etc., is called the orbit of c. Some points
only require a few iterations to show that they are unbounded, and the orbit moves
off towards infinity. Some may oscillate between two small values and confirm that
they are bounded. Others may take many iterations before the orbit reveals whether
c is bounded or otherwise.

To start the algorithm, z0 = 0, and c is any chosen complex pixel. For example,
when c = 0, the value of z remains unmoved at 0, therefore 0 ∈�. However, when
c = 1, the value of zn grows rapidly: 0, 1, 2, 5, 26, 677, . . . ,∞, is unbounded, and
1 /∈�. When c = −1, the value of zn oscillates between −1 and 0, and is bounded
by the set. This process is repeated for all values of c and the calculation repeated
until c ∈�, c /∈�, |zn| ≥ 2 or a specified number of iterations is exceeded.

Table13.1 shows part of the orbit of zn for c = i : zn = i, (−1 + i),−i,
(−1 + i),−i and is clearly bounded. Similarly, Table13.2 shows part of the orbit
of zn for c = −i : zn = −i, (−1 − i), i, (−1 − i), i and is also bounded. Finally, the
point c = −2, produces −2, 2, 2, 2, . . . and is also inside�.

Figure13.2 shows how� evolves from 10 to 80 iterations, and Fig. 13.3 shows
the set after zooming in to the black circle on top of the main cardioid. There were
5000 iterations, which creates the fine detail.
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Table 13.1 Mandelbrot algorithm for c = i

n zn zn+1

0 0 i

1 i −1 + i

2 −1 + i −i

3 −i −1 + i

4 −1 + i −i

Table 13.2 Mandelbrot algorithm for c = −i

n zn zn+1

0 0 −i

1 −i −1 − i

2 −1 + i i

3 i −1 − i

4 −1 − i i

10 iterations 20 iterations

40 iterations 80 iterations

Fig. 13.2 TheMandelbrot setwith increasing number of iterations. Reproduced by kind permission
of Dr. Dominic Ford
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Fig. 13.3 Zooming in with 5000 iterations. Reproduced by kind permission of Dr. Dominic Ford

Fig. 13.4 Part of the Mandelbrot set. Reproduced by kind permission of Dr. Wolfgang Beyer
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My thanks to Dr. Dominic Ford (www.sciencedemos.org.uk). and Dr. Wolfgang
Beyer for permission to use their images. Last, but not least, I include an image
by Dr. Beyer showing the endpoint of the “seahorse tail” downloaded from www.
wikipedia.org (Fig. 13.4).

www.sciencedemos.org.uk
www.wikipedia.org
www.wikipedia.org


Chapter 14
Conclusion

14.1 Imaginary Mathematics for Computer Science

Studying computer science prepares you for a wide range of careers. You could
start running a website design company, offering consultancy in cyber security or
working as a technical director for a special-effects company – to name but three.
Consequently, it is impossible to address every aspect of computer science relevant
to these career opportunities. But what is possible, is to design a teaching programme
containing the essential foundations that give breadth to new knowledge, and can be
extended if necessary with higher education.

While writing this book, I tried to keep this an introductory text for complex
numbers, with topics I hope are relevant to computer science. This has made cer-
tain subjects, such as quaternions, octonions, matrix algebra and geometric algebra
essential subjects. Complementing these, I included circuit analysis, geometry, com-
bining waves and 3D rotations, that show real applications for complex numbers.
The two chapters on the Riemann Hypothesis and the Mandelbrot set, reveal how
mathematicians have employed complex numbers to resolve challenging problems
in prime numbers and fractals, both of which, are relevant to computer science.

If you are still interested in learning more about complex numbers, there is the
subject of complex analysis, hypercomplex numbers in n dimensions, geometric
algebra for physicists, etc. Finally, I include some famous complex equations that
have created the new subject of quantum field theory. They may tempt you to delve
deeper into this exciting subject!

14.1.1 Pauli Matrices

These matrices are named after the Austrian-born Swiss and American theoretical
physicist Wolfgang Pauli (1900–1958), who used them in quantum mechanics in
relation to the spin of atomic particles in an electromagnetic field.
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σ1 =
[
0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]

These matrices are Hermitian and unitary and

σ 2
1 σ 2

2 σ 2
3 = −iσ1σ2σ3 = I

σ 2
1 =

[
0 1
1 0

] [
0 1
1 0

]
=

[
1 0
0 1

]

σ 2
2 =

[
0 −i
i 0

] [
0 −i
i 0

]
=

[
1 0
0 1

]

σ 2
3 =

[
1 0
0 −1

] [
1 0
0 −1

]
=

[
1 0
0 1

]

−iσ1σ2σ3 = −i

[
0 1
1 0

] [
0 −i
i 0

] [
1 0
0 −1

]

= −i

[
i 0
0 −i

] [
1 0
0 −1

]
=

[
1 0
0 1

]
.

14.1.2 Dirac Matrices

These matrices are named after the English theoretical physicist Paul Dirac
(1902–1984):

γ 0 =

⎡
⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎤
⎥⎥⎦ , γ 1 =

⎡
⎢⎢⎣

0 0 0 1
0 0 1 0
0 −1 0 0

−1 0 0 0

⎤
⎥⎥⎦ ,

γ 2 =

⎡
⎢⎢⎣

0 0 0 −i
0 0 i 0
0 i 0 0
−i 0 0 0

⎤
⎥⎥⎦ , γ 3 =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 −1

−1 0 0 0
0 1 0 0

⎤
⎥⎥⎦ .

γ 5 = iγ 0γ 1γ 2γ 3 =

⎛
⎜⎜⎝
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎟⎠ .
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γ 5 is Hermitian, and because

(
γ 5

)2 =

⎛
⎜⎜⎝
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ = I4

its eigenvalues are ±1. The matrices also anti-commute.

14.1.3 The Dirac Equation

The above gamma matrices were used by Dirac in this equation, which predicts the
existence of antimatter:

[
γ μ

(
i

∂

∂xμ
− eAμ(x)

)
+ m

]
ψ(x) = 0, where 0 ≤ μ ≤ 3.

γ μ references one of the four gamma matrices, γ 0, γ 1, γ 2, γ 3,

ψ(x) is a wave function with four componentsψe↑(x), ψe↓(x), ψp↑(x), ψp↓(x)
e ↑ and e ↓ stands for an electron with spin up and spin down, respectively,
p ↑ and p ↓ stands for a positron with spin up and spin down, respectively,
∂/∂xμ measures the rate at which the wave function is changing in time and space,
Aμ(x) represents the electromagnetic field potentials,
−e is the electron’s electric charge,
m is the electron’s mass.

In Dirac’s original equation:

(
βmc2 + c

(
3∑

n=1

αn pn

))
ψ(x, t) = i�

∂ψ(x, t)

∂t

Prof. Hestenes identified the term i� as a bivector, which describes an oriented plane
in geometric algebra.

14.1.4 The Schrödinger Wave Equation

The Austrian theoretical physicist Erwin Schrödinger (1887–1961), is famous for
many things, but most notably his wave equation, and his imaginary cat experiment.
Here is his equation:



296 14 Conclusion

i�
∂

∂t
ψ(r, t) = − �

2

2m
∇2ψ(r, t) + V (r, t)ψ(r, t)

� = h/2π is called the Dirac constant, where h is Planck’s constant,
ψ(r, t) is the wave function in space and time,
∂
∂t ψ(r, t) is the rate of change of the wave function,
m is the mass of a particle,
∇2ψ(r, t) is the Laplacian of the wave function, where

∇ = ∂

∂x
i + ∂

∂y
j + ∂

∂z
k

and

∇2ψ = ∂2ψ

∂x2
+ ∂2ψ

∂y2
+ ∂2ψ

∂z2

V (r, t) is the potential energy of the system.
Quantum field theory computes the probability of finding a particle in a place and

time, which is derived from the square of the Euclidean norm of the wave function.

14.2 The Imaginary Unit

All the above equations contain the imaginary unit i = √−1,which initially resolved
solutions to quadratic equations, and today is being used in quantum field equations.
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