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Foreword

Cancer incidence and death rates started to decline after 1990 in the USA, largely
because of improvements in the ability to detect cancer at early stages and in more
accurate disease staging, which in turn were facilitated by advances in imaging and
the advent of a multidisciplinary approach to caring for patients with cancer.

At this time, early-stage cancer or small metastatic lesions can be treated by
stereotactic ablative radiotherapy to the lung, liver, adrenal glands, or other organs.
Some brain metastases can be also eliminated by stereotactic radiosurgery.

However, eliminating small lesions with high-dose irradiation requires that
irradiation be exquisitely precise, such as that used in stereotactic radiosurgery.
An important component of that precision, in terms of both killing the tumor and
avoiding damage to surrounding normal tissues, is the use of imaging that combines
visualization of anatomic detail (such as computed tomography [CT] or magnetic
resonance imaging [MRI]) with visualization of tumor metabolism (such as posi-
tron emission tomography [PET]).

Once tumors became too large to be ablated by radiation or removed by surgery,
current practice involves combining chemotherapy with radiation therapy. Chemo-
therapy is well known to act as a radiation sensitizer, enhancing the ability of both
modalities to kill cancer cells. However, most traditional chemotherapy regimens
are quite toxic to normal tissues. Improving the therapeutic ratio under these
conditions will require improving the ability to kill cancer cells while reducing
the toxic effects of therapy on surrounding normal cells. Before the advent of
sophisticated imaging techniques for cancer diagnosis, such as CT, PET, or MRI,
very large radiation treatment fields were needed to encompass areas thought to be
harboring metastases or microscopic extensions of the tumor.

Now, even though we can delineate tumor extension and metastasis much more
precisely with imaging, we still need histologic confirmation of small nodal metas-
tases by means of biopsy by interventional radiologists or endoscopists.

The next step after diagnosis and staging is radiation treatment simulation,
which also requires sophisticated imaging techniques such as CT, PET, or MRI
depending on the site of the tumor. Sometimes, we use contrast solution for
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simulating treatment of gastrointestinal tumors. Another important aspect of treat-
ment simulations is to control or account for tumors that move, such as lesions of
the lung, gastrointestinal tract, or other anatomic sites. Respiration-induced motion
is often accounted for with 4-dimensional CT.

Another important application of imaging is in confirming that each radiation
fraction has been directed toward the appropriate target or targets. Daily imaging is
used for this purpose, to account for irregularities in patient positioning or other
uncertainties involved in the delivery of radiation. This is even more important for
hypofractionated treatments (involving smaller numbers of larger-dose fractions),
such as stereotactic radiosurgery or stereotactic ablative radiation therapy. More
prolonged courses of radiation should involve verification with cone-beam CT and
adjustments made or treatments replanned depending on the response of the tumor
to the treatment. This is especially important for small cell lung cancer or other very
radiosensitive (or chemosensitive) tumors that tend to respond to treatment quickly.

Finally, imaging is crucial for evaluating tumor response. Regardless of whether
the outcome is local tumor control or ablation of distant metastasis, further
improvements in treatment strategies require that we accurately—and quickly—
identify tumor recurrence. If tumors recur in the middle of the radiation treatment
field, then higher-dose radiation may be needed. If tumors recur at the margin, then
methods for controlling tumor motion such as fiducial markers and/or larger
margins would be required.

If tumors appear at distant sites before local recurrence, then more effective
systemic treatments are needed. Such therapies may be based on molecular targets,
tumor histopathologic characteristics, and the ability of the patient to tolerate the
proposed treatment, which ideally comes from close communication with medical
oncologists. Although the ability to image molecular targets is still in the development
stage, the ability to visualize hypoxia or other aspects of the tumor microenvironment
would be valuable as well. The use of PET, particularly uptake of the tracer by tumor
or normal tissues, is being explored for its potential to predict failure sites so that the
radiation dose or type of systemic treatment can be modified early in the course of the
treatment. Although this topic is currently the subject of intense study, information
that is gathered prospectively rather than after the fact will be crucial.

I highly recommend this book not only for radiation oncologists and radiologists but
also for radiology technologists, medical physicists, medical dosimetrists, and engi-
neers as well as for medical oncologists and surgeons, all of whom make important
contributions to the multidisciplinary approach to caring for patients with cancer.

Professor, Ritsuko Komaki, MD, FACR, FASTRO
Gloria Lupton Tennison

Distinguished Professorship

in Lung Cancer Research,

Department of Radiation Oncology

The University of Texas

MD Anderson Cancer Center

Houston, TX



Preface

X-rays were discovered by Wilhelm Conrad Rontgen in 1895, leading to the initial
investigations of the ionizing effect of radiation. The effects were considered
beneficial for curing malignant tumors. The applications of radiation to curing
cancer around this time are relevant to the birth of radiation therapy and medical
physics. In early times, medical physics appeared to be a field that combined only
medicine and physics. However, current medical physics is a multidisciplinary
field, which requires a wide range of knowledge, including medicine, biology,
physics, chemistry, mathematics, and engineering, as shown in Fig. 1. The field
of medical physics is therefore dependent on the other fields. We feel proud as
medical physics researchers that outcomes from the medical physics field such as
computed tomography, magnetic resonance imaging, and medical linear accelera-
tors are so useful in clinical practice. Medical physics researchers play a bridging
role between cancer patients and diagnosis or radiation therapy by discovering and
investigating novel medical physics technologies that have been helpful for the
detection, differentiation, and treatment of cancer. Since the editor believes that we
need a wide range of knowledge (imaging, computer science, and mathematics, as
well as physics and medicine) in order to perform medical physics researches, the
policy in the editor’s laboratory is “Diverse knowledge in various fields is better
than a lot of knowledge in a specific narrow field. Multifaceted knowledge is best.”
(with apologies to Blaise Pascal) In spite of the fact that we need a wide range of
knowledge to do medical physics researches, the academic field is still very small.
That is why the editor has been attracted by this niche field, which requires the
wisdom to apply diversified knowledge to problems in diagnosis and radiation
therapy.
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Fig. 1 Relationship
between medical physics
and other academic fields.
Actually, there are a number
of other fields, which are not
shown in this figure

Preface

Patients

Medicine
Biology

Physics
Chemistry

Engineering

All the authors in this book believe that the readers will enjoy learning diverse
knowledge from a wide range of fields, which they might not be familiar with, but
could inspire them to do something new and unique.

Fukuoka, Japan

Hidetaka Arimura
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Chapter 1
Introduction

Hidetaka Arimura

Radiation therapy can ideally maintain organ functions and reduce the physical
burden of patients compared with surgery, particularly elderly patients. Conse-
quently, radiation therapy has attracted rising attention, and this modality is con-
siderably important for developed countries that have been rapidly moving toward
an aging society, such as Japan, China, Korea, European Union countries, and the
United States of America. In Japan, the percentage of elderly people of 65 years old
and over was estimated to be around 26.5 % in 2011 (MIC 2015). Radiation therapy
can be greatly beneficial for many patients, especially elderly patients, whose
quality of life could be improved.

The primary aim of radiation therapy is to deliver as a high dose as possible to a
cancerous tumor, while causing as little damage as possible to normal tissues and
organs at risk (OAR), in order to reduce adverse effects (Dawson and Sharpe 2006;
Evans 2008). The OAR are critical organs whose radiation sensitivity may signif-
icantly influence radiation treatment planning (RTP) and/or the prescribed dose
(ICRU 1999). In order to achieve the primary aim of radiation therapy, high-
precision radiation therapy approaches have been developed, such as stereotactic
body radiation therapy (SBRT), intensity-modulated radiation therapy (IMRT),
adaptive radiotherapy (ART), real-time tumor-tracking radiotherapy (RTRT), and
image-guided radiation therapy (IGRT). In recent years, these advanced approaches
have led to outstanding outcomes with respect to the precision of radiation delivery.
As a result, high-precision radiation therapy has been reported to provide clinical
results that were comparable to surgery for some cancers (Onishi et al. 2011). In
these radiation therapies, novel methods of multidimensional image analysis are
used, including multimodalities, image transformation, region segmentation, pat-
tern recognition, radiomics, and so on. These methods play considerable roles in
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Fig. 1.1 “Harmonic” collaborations of radiation therapy with multidimensional image analysis

improving the accuracy of radiation therapy and assisting radiation oncology pro-
fessionals such as radiation oncologists, radiation technologists, and medical phys-
icists in their decision-making. Figure. 1.1 illustrates the “harmonic” collaboration
of radiation therapy with multidimensional image analysis.

This book is dedicated to image-based computer-assisted radiation therapy,
which requires diverse knowledge from many different fields such as imaging
technology, image processing, radiation physics, radiation measurement, image
registration, pattern recognition, machine learning, and radiomics. The radiation
therapy procedure consists of five steps: diagnosis, treatment planning, patient
setup, radiation treatment, and follow-up. The five steps of radiation therapy are
shown with several approaches relevant to image-based computer-assisted radia-
tion therapy below:

1. Diagnosing a cancer patient (computer-aided diagnosis, CAD)

2. Design of treatment plans (computer-assisted radiation treatment planning,
CARTP)

. Patient positioning (image-guided patient positioning, IGPP)

. Performing the radiation treatment (intelligent radiation treatment systems)

5. Follow-up (computerized prediction of treatment outcomes)

W

The first step is to diagnose a cancer patient. Radiation oncologists should
determine the treatment policies, e.g., curative treatment or palliative treatment,
based on reports from radiologists. CAD systems such as automated detection and
differentiation of lung cancer (Chap. 2, Suzuki) or breast cancer (Chap. 3,


http://dx.doi.org/10.1007/978-981-10-2945-5_2
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Nakayama) may be helpful for the diagnosis and decision-making of treatment
policies. Pathological CAD will be a significant tool for diagnostic pathology such
as cancer detection, grade differentiation, and the decision of treatment approaches
(Chap. 4, Yamaguchi). Recently, “radiomics” has emerged as an innovative area,
which can be applied to personized medicine based on image features (phenotypes)
extracted from several types of medical images (Lambin et al. 2012, Aerts et al.
2014). The radiomics has been studied to be applied to customizing radiation
treatment approaches for individual patients (Chap. 14, El Naqa).

The second step is to construct the treatment plans. Radiation oncologists should
estimate the regions of gross tumor volume (GTV), clinical target volume (CTV),
and the OAR, and then treatment planners should design the optimum plan by
changing the planning parameters so that the dose distributions for the tumor and
OAR can be maximized and minimized, respectively. The GTV is defined by the
gross demonstrable extent and location of a malignant growth (ICRU 1999). In
current clinical practices, the GTV regions are manually delineated by radiation
oncologists using treatment planning computed tomography (CT). The subjective
manual contouring of tumor regions is tedious and time-consuming, and the
reproducibility is relatively low, which could cause intra- and inter-variability of
tumor regions (van de Steene et al. 2002; El Naqa et al. 2007; Nakamura et al.
2008). Therefore, automated frameworks for segmentation of GTVs have been
developed to overcome these problems (Chap. 5, Arimura). Furthermore, compu-
tational approaches for determination of the CTV-to-PTV margins have been
studied (Chap. 5, Arimura).

The determination of treatment parameters (e.g., beam arrangements in SBRT
and IMRT) is a very demanding task for both inexperienced and experienced
treatment planners. This may result in intra- and inter-planner variabilities of
treatment plans. Computer-assisted radiation treatment planning can reduce intra-
and interobserver variability of target delineations (observer noise) and the subse-
quent intra- and interobserver variability of the treatment plans. Actually,
computer-assisted planning systems for SBRT could help treatment planners by
utilizing past similar cases that are stored in treatment planning databases with
knowledge and skills of treatment planners (Chap. 6, Magome). The IMRT plan-
ning approaches assist planners to automatically optimize dose distributions around
the PTVs except setting of initial parameters, but it is still on trial-and-error basis
(Chap. 8, Haryanto). Treatment procedures for particle beam therapy are similar to
those for the photon beam therapy, but beam range (penetration depth) should be
taken into account carefully in the particle beam therapy due to different physical
characteristics (Chap. 7, Mori).

The third step is the patient positioning. In this step, the radiation technologist
should manually position the patient as accurately as possible on the treatment
couch. Correcting patient setup errors is then performed using image registration
techniques. The image registration involves registering a moving image with a
reference image with respect to a common object between the two images. Digitally
reconstructed radiograph (DRR) images and planning CT images are generally used
as the reference images to aid the patient positioning. Electronic portal imaging


http://dx.doi.org/10.1007/978-981-10-2945-5_4
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device (EPID) and cone-beam CT (CBCT) images are employed as the moving
images at the treatment time. Past studies have revealed that these techniques are
effective in reducing setup errors (Ploquin et al. 2008; Wang et al. 2009). Several
techniques with the X-ray-based patient positioning have been utilized based on
digitally reconstructed radiograph, cone-beam computed tomography reconstruc-
tion, and patient registration (Chap. 9, Haga). Recently, a number of optical
imaging-based approaches have been researched and developed for estimation of
the intra-fractional patient motion without ionizing radiation (Kang et al. 2012;
Schaerer et al. 2012) (Chap. 10, Soufi).

The fourth step is to perform the radiation treatment (treatment execution). An
X-ray or charged particle beam is delivered to the planning target volume (PTV) in
the patient according to the treatment plan. However, it is difficult to deliver the
radiation to moving tumors such as lung or liver cancers. Pattern recognition
techniques, e.g., the detection of tumors and fiducial markers (e.g., gold markers),
are needed to minimizing the internal margin in these cases. For example, the
RTRT system employs pattern recognition techniques in order to track surrogate
tumors (actually gold markers) and switch the X-ray beam on and off (Shirato et al.
2000). The real-time tumor tracking can reduce the internal margin for the PTV,
which could result in sparing the healthy tissues near the tumor (Chap. 11,
Ishikawa). Furthermore, the visualization approaches of dose distributions during
the treatment time have been investigated to ensure the treatment quality in SBRT
(Chap. 12, Nakamoto). In the proton treatment room, a beam ON-LINE PET system
was constructed for dose-volume delivery-guided proton therapy by visualization
of activity distribution in proton irradiation (Chap. 13, Nishio).

Finally, the fifth step is the follow-up. In this step, the radiation oncologist
evaluates the treatment outcomes using multimodality imaging devices. Pattern
recognition techniques have also been applied during the follow-up to predict the
radiation therapy outcomes and normal tissue complications (Su et al. 2005; Kakar
et al. 2009; El Naqa et al. 2009; Jayasurya et al. 2010; Atsumi et al. 2012)
(Chap. 14, El Naqa).

The main requirements in radiation therapy from a medical physics point of view
are (1) high conformity and homogeneity of the dose distributions to the tumor
regions and (2) accurate tumor localization and patient positioning. To achieve
these requirements, radiation therapy researchers have dedicated their efforts to the
development of novel technologies such as conformal radiotherapy (Takahashi
1965), IMRT (Brahme 1988), RTRT (Shirato et al. 2000), and IGRT (Dawson
and Sharpe 2006; Evans 2008).

The five steps of radiation therapy are covered in this book by the following
chapters, each including content from dedicated authors as shown below:

1. Diagnosis of cancer patients

» Computer-aided detection of lung cancer (Chap. 2, Kenji Suzuki)

» Computer-aided detection and differentiation of breast cancer on mammo-
grams (Chap. 3, Ryohei Nakayama)

» Computer-aided differentiation for pathology images (Chap. 4, Masahiro
Yamaguchi)
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2. Construction of treatment plans

» Computer-assisted target volume determination (Chap. 5, Hidetaka Arimura)

» Computer-assisted treatment planning approaches for SBRT (Chap. 6, Taiki
Magome)

» Computer-assisted treatment planning approaches for carbon-ion beam ther-
apy (Chap. 7, Shinichiro Mori)

e Computer-assisted treatment planning approaches for IMRT (Chap. 8§,
Freddy Haryanto)

3. Patient positioning

e X-ray image-based positioning (Chap. 9, Akihiro Haga)
e Surface-imaging-based patient positioning in radiation therapy (Chap. 10,
Mazen Soufi)

4. Performing of radiation treatments

e Tumor tracking approaches (Chap. 11, Masayori Ishikawa)

» Visualization of dose distributions for photon beam radiation therapy during
treatment delivery (Chap. 12, Takahiro Nakamoto)

» Visualization of dose distributions for proton (Chap. 13, Teiji Nishio)

5. Follow-up: Prediction of treatment outcomes

» Computerized prediction of treatment outcomes and radiomics analysis
(Chap. 14, Issam El Naqa)

Epoch-making innovations caused by a new type of researchers encourage
paradigm shifts to higher levels. They always make leaps or quantum jumps in
science. I believe that all the authors are this type of researchers. They have
collaborated in this book to open a new field of medical physics.
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Chapter 2
Computer-Aided Detection of Lung Cancer

Kenji Suzuki

Abstract As medical imaging technologies advance, a large number of medical
images are produced which physicians/radiologists must interpret. Consequently,
computer aids are becoming indispensable in physicians’ decision-making based on
medical images. Computer-aided diagnosis (CAD) has been investigated and
becomes an active research area in medical imaging. CAD is defined as detection
and/or diagnosis made by a radiologist/physician who takes into account the
computer output as a “second opinion.” In CAD research, detection of lung cancer
in thoracic imaging constitutes a major research area, because lung cancer is the
leading cause of cancer death worldwide, including the United States, Japan, and
other countries. In this chapter, CAD for the detection of lung cancer in thoracic
computed tomography (CT) is overviewed with emphasis on machine learning that
plays an essential role in CAD systems. Massive training artificial neural network
(MTANN) technology is one of the most promising machine learning techniques in
image analysis. The MTANNSs have substantially improved the sensitivity and
specificity of CAD systems in detection and diagnosis of lung cancer. MTANN
CAD systems offer high performance in detection and diagnosis of lung cancer in
CT. Thus, MTANN CAD systems would be useful for improving the diagnostic
performance of radiologists/physicians in early detection of lung cancer.
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2.1 Introduction

2.1.1 CAD Field

Medical imaging has been indispensable in modern medicine since the discovery of
x-rays by Wilhelm C. Rontgen in 1895. Medical imaging provides helpful infor-
mation on medical conditions of patients and clues to causes of their diseases and
symptoms. Medical imaging has unique advantages in the localization of lesions,
diseases, and/or causes of symptoms over other examinations such as blood tests.
As imaging technologies have been advancing, a large number of medical images
are produced which physicians/radiologists have to read and interpret. Thus, com-
puter aids have been strongly demanded by physicians and radiologists, and they
are becoming indispensable in physicians’ decision-making based on medical
images. Consequently, computer-aided detection and diagnosis (CAD) (Giger and
Suzuki 2007; Doi 2005; Doi 2007; Giger et al. 2008) have been an active research
area in medical imaging. CAD is defined as detection and/or diagnosis made by a
radiologist/physician who takes into account the computer output as a “second
opinion” (Doi 2005). CAD is often categorized into two major groups: computer-
aided detection (CADe) and computer-aided diagnosis (CADx). CADe focuses on a
detection task, i.e., detection (or localization) of lesions in medical images. CADx
focuses on a diagnosis (characterization) task, e.g., classification among different
lesion types and distinction between malignant and benign lesions.

The history of CAD started in 1955. A radiologist, Lee Lusted, mentioned the
potential use of digital computers (people at that time called ordinary computers
today as digital computers, as there were analog computers.) for large-scale data
problems in medicine in (Lusted 1955) in 1955. Notably, it was only 9 years after
the first general-purpose computer, ENIAC, was introduced in 1946. Becker et al.
developed an automated measurement of the cardiothoracic ratio in chest radio-
graphs in 1964 (Becker et al. 1964; Meyers et al. 1964). In 1967, the first study on
CADe of abnormalities in mammograms was published by Winsberg et al. (1967).
In 1973, Toriwaki et al. (1973) reported the first study on CADe of a focal
abnormality in chest radiographs, and Roellinger et al. (1973) reported the first
study on CADe of a heart abnormality in chest radiographs. In the mid-1980s,
investigators in the Kurt Rossmann Laboratories in the Department of Radiology at
the University of Chicago began studies on the development and evaluation of
CAD. Chan et al. (1987), Fujita et al. (1987), Giger et al. (1988), and Katsuragawa
et al. (1988) published a series of papers on CADe of microcalcifications in
mammography, CAD for vessel size measurement in angiography, CADe of lung
nodules in chest radiography, and CADe of interstitial lung disease in chest
radiography, respectively. In 1988, a venture company, R2 Technology (acquired
by Hologic), which obtained licenses for CAD technologies from the University of
Chicago, received approval for the first commercial CAD system for mammogra-
phy from the US Food and Drug Administration (FDA).
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2.1.2 Overview of CADe for Lung Cancer Detection

Lung cancer continues to rank as the leading cause of cancer death in the United
States and in other countries such as Japan. Some evidence suggests that early
detection of lung cancer may allow more timely therapeutic intervention and thus a
more favorable prognosis for the patient. Because CT is more sensitive than chest
radiography in the detection of small nodules (i.e., potential lung cancer) and of
lung carcinoma at an early stage (Kaneko et al. 1996; Sone et al. 1998; Henschke
et al. 1999; Miettinen and Henschke 2001), lung cancer screening programs were
conducted in the United States (Swensen et al. 2003; Henschke et al. 2004), Japan
(Kaneko et al. 1996; Sone et al. 1998), and other countries with low-dose helical CT
as the screening modality. Helical CT, however, generates a large number of
images that must be read by radiologists. This may lead to “information overload”
for the radiologists. Furthermore, radiologists may miss some cancers during
interpretation of CT images. Therefore, a CAD scheme for the detection of lung
nodules in low-dose CT images has been investigated as a useful tool for lung
cancer screening.

Many investigators have developed a number of methods for the automated
detection of lung nodules on CT scans (Suzuki 2012b). In 1994, Giger et al. (1994)
developed a CADe scheme for the detection of lung nodules in CT based on the
comparison of geometric features. They applied their CADe scheme to a database
of thick-slice diagnostic CT scans of eight patients with 47 nodules. They achieved
a sensitivity of 94 % with 1.25 false positives (FPs) per case. In 1999, Armato et al.
(1999, 2001) extended the method to include 3D feature analysis, a rule-based
scheme, and linear discriminant analysis (LDA) for classification. They tested their
CADe scheme with a database of thick-slice diagnostic CT scans of 43 patients with
171 nodules. They achieved a sensitivity of 70 % with 42.2 FPs per case in a leave-
one-out cross-validation test. Gurcan et al. (2002) employed a similar approach,
i.e., a rule-based scheme based on 2D and 3D features, followed by LDA for
classification. They achieved a sensitivity of 84 % with 74.4 FPs per case for a
database of thick-slice (mostly 5 mm) diagnostic CT scans of 34 patients with
63 nodules in a leave-one-out test. Lee et al. (2001) employed a simpler approach
which is a rule-based scheme based on 13 features for classification. They achieved
a sensitivity of 72 % with 30.6 FPs per case for a database of thick-slice (10 mm)
diagnostic CT scans of 20 patients with 98 nodules.

Suzuki et al. (2003a) developed a pixel-based machine learning technique called
a massive training artificial neural network (MTANN) for reduction of a single
source of FPs and a multiple MTANN scheme for reduction of multiple sources of
FPs that had not been removed by feature-based LDA. They achieved a sensitivity
of 80.3 % with 4.8 FPs per case for a database of thick-slice (10 mm) screening
low-dose CT (LDCT) scans of 63 patients with 71 nodules with solid, part-solid,
and nonsolid patterns, including 66 cancers in a validation test. This MTANN
approach did not require a large number of training cases: the MTANN was able
to be trained with ten positive and ten negative cases (Suzuki and Doi 2005),
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whereas feature-based classifiers generally require 400—-800 training cases (Chan
et al. 1999; Sahiner et al. 2008). Arimura et al. (2004) employed a rule-based
scheme followed by LDA or by an MTANN (Suzuki et al. 2003a) for classification.
They tested their scheme with a database of 106 thick-slice (10 mm) screening
LDCT scans of 73 patients with 109 cancers that had solid, part-solid, and nonsolid
patterns, and they achieved a sensitivity of 83 % with 5.8 FPs per case in a
validation test (or a leave-one-patient-out test for LDA). Farag et al. (2005)
developed a template modeling approach that uses level sets for classification.
They achieved a sensitivity of 93.3 % with an FP rate of 3.4 % for a database of
thin-slice (2.5 mm) screening LDCT scans of 16 patients with 119 nodules and
34 normal patients. Ge et al. (2005) incorporated 3D gradient field descriptors and
ellipsoid features in LDA for classification. They employed Wilks’ lambda step-
wise feature selection for selecting features before the LDA classification. They
achieved a sensitivity of 80 % with 14.7 FPs per case for a database of 82 thin-slice
(1.0-2.5 mm) CT scans of 56 patients with 116 solid nodules in a leave-one-patient-
out test. Matsumoto et al. (2006) employed LDA with eight features for classifica-
tion. They achieved a sensitivity of 90 % with 64.1 FPs per case for a database of
thick-slice (5 or 7 mm) diagnostic CT scans of five patients (four of which used
contrast media) with 50 nodules in a leave-one-out test.

Yuan et al. (2006) tested a commercially available CADe system (ImageChecker
CT, LN-1000, by R2 Technology, Sunnyvale, CA; acquired by Hologic). They
achieved a sensitivity of 73 % with 3.2 FPs per case for a database of thin-slice
(1.25 mm) CT scans of 150 patients with 628 nodules in an independent test. Pu
et al. (2008) developed a scoring method based on the similarity distance of medial
axis-like shapes for classification. They achieved a sensitivity of 81.5 % with 6.5
FPs per case for a database of thin-slice (2.5 mm) screening CT scans of 52 patients
with 184 nodules, including 16 nonsolid nodules. Retico et al. (2008) used a voxel-
based neural approach (i.e., a class of the MTANN approach) with pixel values in a
subvolume as input for classification. They obtained sensitivities of 80-85 % with
10-13 FPs per case for a database of thin-slice (1 mm) screening CT scans of
39 patients with 102 nodules. Ye et al. (2009) used a rule-based scheme followed by
a weighted SVM for classification. They achieved a sensitivity of 90.2 % with 8.2
FPs per case for a database of thin-slice (1 mm) screening CT scans of 54 patients
with 118 nodules including 17 nonsolid nodules in an independent test. Golosio
et al. (2009) used a fixed-topology ANN for classification, and they evaluated their
CADe scheme with a publicly available database from the Lung Image Database
Consortium (LIDC) (Armato et al. 2004). They achieved a sensitivity of 79 % with
4 FPs per case for a database of thin-slice (1.5-3.0 mm) CT scans of 83 patients
with 148 nodules that one radiologist detected from an LIDC database in an
independent test.

Murphy et al. (2009) used a k-nearest neighbor classifier with features selected
from 135 features for classification. They achieved a sensitivity of 80 with 4.2 FPs
per case for a large database of thin-slice screening CT scans of 813 patients with
1525 nodules in an independent test. Tan et al. (2011) developed a feature-selective
classifier based on a genetic algorithm and ANNS for classification. They achieved
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a sensitivity of 87.5 % with 4 FPs per case for a database of thin-slice CT scans of
125 patients with 80 nodules that four radiologists agreed from the LIDC database
in an independent test. Messay et al. (2010) developed a sequential forward
selection process for selecting the optimum features for LDA and quadratic dis-
criminant analysis (QDA). They obtained a sensitivity of 83 % with 3 FPs per case
for a database of thin-slice CT scans of 84 patients with 143 nodules from the LIDC
database in a sevenfold cross-validation test. Riccardi et al. (2011) used a heuristic
approach based on geometric features, followed by an SVM for classification. They
achieved a sensitivity of 71 % with 6.5 FPs per case for a database of thin-slice CT
scans of 154 patients with 117 nodules that four radiologists agreed on from the
LIDC database in a twofold cross-validation test.

Thus, various approaches have been proposed for CADe schemes for lung
nodules in CT. Sensitivities for detection of lung nodules in CT range from 70 to
95 %, with FPs from a few to 70 per case. Major sources of FPs are various-sized
lung vessels. Major sources of false negatives are ground-glass nodules, nodules
attached to vessels, and nodules attached to the lung wall (i.e., juxtapleural nod-
ules). Ground-glass nodules are difficult to detect, because they are subtle, of
low-contrast, and have ill-defined boundaries. The MTANN approach was able to
enhance and thus detect ground-glass nodules (Suzuki et al. 2003a). The cause of
false negatives due to vessel-attached nodules and juxtapleural nodules is
mis-segmentation and thus inaccurate feature calculation. Because the MTANN
approach does not require segmentation or feature calculation, it was able to detect
such nodules (Suzuki et al. 2003a).

2.1.3 Overview of CADx for Lung Cancer Diagnosis

Although CT has been shown to be sensitive to the detection of lung nodules, it may
be difficult for radiologists to distinguish between benign and malignant nodules on
LDCT images. In a screening program with LDCT in New York, 88 % (206/233) of
suspicious lesions were found to be benign on follow-up examinations (Henschke
et al. 1999). In a screening program in Japan, only 83 (10 %) among 819 scans with
suspicious lesions were diagnosed to be cancer cases (Li et al. 2002). According to
findings at the Mayo Clinic, 2792 (98.6 %) of 2832 nodules detected by a
multidetector CT were benign, and 40 (1.4 %) nodules were malignant (Swensen
et al. 2003). Thus, a large number of benign nodules were found with CT; follow-up
examinations such as high-resolution CT (HRCT) and/or biopsy were performed on
these patients. Therefore, CADx schemes for distinction between benign and
malignant nodules in LDCT would be useful for reducing the number of “unnec-
essary” follow-up examinations.

A number of researchers developed CADx schemes for distinguishing malignant
nodules from benign nodules automatically and/or determining the likelihood of
malignancy for the detected nodules. The performance of the schemes was gener-
ally evaluated by using receiver operating characteristic (ROC) analysis (Metz
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1986), because this task is a two-class classification. The area under the ROC curve
(AUC) (Hanley and Mcneil 1983) was often used as a performance index.

In 1999, McNitt-Gray et al. (1999) developed a classification scheme based on
LDA for distinction between malignant and benign nodules in HRCT. They
achieved a correct classification rate of 90.3 % for a database of 17 malignant
and 14 benign nodules. Matsuki et al. (2002) used an ANN with subjective features
determined by radiologists for classification between 99 malignant and 56 benign
nodules in HRCT and achieved an AUC value of 0.951. Aoyama et al. (2002) used
LDA for distinction between malignant and benign nodules in thick-slice (10 mm)
screening LDCT. They achieved an AUC value of 0.846 for a database of
73 patients with 76 primary cancers and 342 patients with 413 benign nodules.
Mori et al. (2005) developed a classification scheme for distinction between
malignant and benign nodules in contrast-enhanced (CE) CT by using LDA with
three features (i.e., attenuation, shape index, and curvedness value). They used a
database of thin-slice (2 mm) CE-CT scans of 35 malignant and 27 benign nodules
for testing their CADx scheme. They achieved AUC values of 0.91 and 1.0 with
non-CE-CT and CE-CT, respectively, in a leave-one-out test.

Shah et al. (2005) employed different classifiers such as logistic regression and
QDA with features selected from a group of 31 by using stepwise feature selection
based on the Akaike information criterion. Their scheme with logistic regression
achieved an AUC value of 0.92 in the distinction between 19 malignant and
16 benign nodules in thin-slice CE-CT. Suzuki et al. (2005a) developed a pixel-
based machine-learning technique called a multiple MTANN scheme for the
classification task. They achieved an AUC value of 0.88 for thick-slice screening
LDCT scans of 73 patients with 76 primary cancers and 342 patients with
413 benign nodules. Iwano et al. (2008) achieved a sensitivity of 76.9 % and a
specificity of 80 % with their scheme based on LDA with two features in their
evaluation of HRCT images of 52 malignant and 55 benign nodules. Way et al.
(2009) incorporated nodule surface features into their classification based on LDA
or an SVM, and they achieved an AUC value of 0.857 in the classification of
124 malignant and 132 benign nodules in 152 patients. Chen et al. (Chen et al.
2010) employed an ANN ensemble to classify 19 malignant and 13 benign nodules,
and they achieved an AUC value of 0.915. Lee et al. (2010) developed a two-step
supervised learning scheme combining a genetic algorithm with a random subspace
method, and they achieved an AUC value of 0.889 in the classification between
62 malignant and 63 benign nodules.

Thus, various approaches to CADx schemes have been proposed. The database
size varied in different studies; CT scans in the databases included screening
LDCT, standard diagnostic CT, and HRCT. This chapter does not review CADx
due to the limitation of the space, but focuses on CADe.
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2.2 Generic Architectures of CADe Schemes

2.2.1 Generic Architecture

A flowchart for a generic CADe scheme of lesions in medical images is shown in
Fig. 2.1. A CADe scheme generally consists of seven major steps: (1) segmentation
of the organ(s) of interest, (2) enhancement of lesions, (3) detection of lesion
candidates from the segmented organ, (4) segmentation of the detected lesion
candidates, (5) feature analysis of the segmented lesion candidates, (6) classification
of the lesion candidates by using a classifier with features, and (7) reduction of
false-positive (FP) detections. Segmentation of the organ(s) of interest is the first
necessary step that aims to make the rest of the steps focus on the organ(s). The
development of the detection of lesion candidates generally aims to obtain a high
sensitivity level, because we cannot recover a sensitivity loss in this step in the later
steps. In the next step, the detected lesion candidates are segmented, and connected-
component labeling (He et al. 2009; Suzuki et al. 2003b) is performed for the
identification of each segmented candidate as an individual isolated object. Pattern
features such as gray-level-based features, texture features, and morphologic fea-
tures are extracted from the segmented candidates. Feature selection (Xu and
Suzuki 2014) is generally performed to select a subset of “effective” features
from an entire set of features to remove redundant or unnecessary features. Finally,
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the detected lesion candidates are classified into lesions or non-lesions by using a
classifier with the extracted features. The development of the classification step
aims to remove as many non-lesions (i.e., FPs) as possible, while minimizing the
removal of lesions (i.e., true-positive detections).

2.2.2 Enhancement of Lesions in CADe

Among the steps in CADe schemes, thresholding-based methods such as multiple
thresholding (Xu et al. 1997; Aoyama et al. 2002; Bae et al. 2002; Giger et al. 1988)
are often used for detection of lesion candidates in CT. With such methods, the
specificity can generally be low, because normal structures of gray levels similar to
those of lesions could be detected erroneously as lesions. To obtain a high speci-
ficity as well as sensitivity, some researchers employ a filter for enhancement of
lesions before the lesion candidate detection step. Such a filter aims at enhancement
of lesions and sometimes the suppression of noise. The filter enhances objects
similar to a model employed in the filter. For example, a blob enhancement filter
based on the Hessian matrix enhances sphere-like objects (Frangi et al. 1999). A
difference image technique employs a filter designed for the enhancement of
nodules and the suppression of noise in chest radiographs (Xu et al. 1997).

Actual lesions, however, are not simple enough to be modeled accurately by a
simple equation in many cases. For example, a lung nodule is generally modeled as
a solid sphere, but there are nodules of various shapes and with internal inhomo-
geneities such as spiculated opacity and ground-glass opacity. Thus, conventional
filters often fail to enhance actual lesions. Moreover, such filters enhance any
objects similar to a model employed in the filter. For example, a blob enhancement
filter enhances not only spherical solid nodules but also any spherical parts of
objects in the lungs such as vessel crossing, vessel branching, and a part of a vessel,
which leads to a low specificity. Therefore, methods which can enhance actual
lesions accurately (as opposed to enhancing a simple model) are demanded for
improvement of the sensitivity and specificity of the lesion candidate detection and
thus of the entire CAD scheme. To improve the performance of CADe schemes,
investigators sometimes employ the step of enhancement of lesions after the step of
the segmentation of the organ(s) of interest. This step aims to improve the sensi-
tivity for detection of lesion candidates in the subsequent step. It often helps
improve the specificity as well.

2.2.3 False-Positive Reduction

A machine learning technique (Suzuki 2013) is generally used in the step of
classification of lesion candidates. The machine learning technique is trained with
sets of input features and correct class labels. This class of machine learning is
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referred to as feature-based machine learning or simply as a classifier. The task of
the machine learning here is to determine “optimal” boundaries for separating
classes in the multidimensional feature space which is formed by the input features
(Duda et al. 2001). Feature-based machine-learning algorithms include linear
discriminant analysis (LDA) (Fukunaga 1990), quadratic discriminant analysis
(QDA) (Fukunaga 1990), multilayer perceptron (one of the most popular artificial
neural network (ANN) models) (Rumelhart et al. 1986), support vector machines
(SVMs) (Vapnik 1995), and random forests. The structure of an ANN may be
designed by using an automated design method such as sensitivity analysis (Suzuki
et al. 2001; Suzuki 2004).

Investigators often employ an additional step of the reduction of FPs at the end in
a CADe scheme. The FP reduction step aims to improve the specificity of the CADe
scheme. Reduction of FPs is very important, because a large number of FPs could
adversely affect the clinical application of CADe. A large number of FPs are likely
to confound the radiologist’s task of image interpretation and thus lower his/her
efficiency. In addition, radiologists may lose their confidence in CADe as a
useful tool.

Recently, as available computational power has increased dramatically, pixel-/
patch-based machine learning (Suzuki 2012a) emerged in medical image
processing/analysis which uses pixel values in images directly, instead of features
calculated from segmented regions, as input information; thus, feature calculation
or segmentation is not required. Pixel-/patch-based machine learning has been used
in the classification of the detected lesion candidates in CADe and CADx schemes
(Suzuki et al. 2003a, 2005a, b, 2006b, 2008b, 2010a; Arimura et al. 2004).

2.3 Supervised “Lesion Enhancement” MTANN Filter

We believe that enhancing actual lesions requires some form of “learning from
examples”; thus, machine learning plays an essential role in this task. To enhance
actual lesions accurately, we developed a supervised filter based on a machine-
learning technique called a massive training artificial neural network (MTANN)
(Suzuki et al. 2003a) filter in a CADe scheme for the detection of lung nodules in
CT. By extension of “neural filters” (Suzuki et al. 2002a, b) and “neural edge
enhancers” (Suzuki et al. 2003c, 2004b), which are ANN-based (Rumelhart et al.
1986) supervised nonlinear image-processing techniques, MTANNSs (Suzuki et al.
2003a) have been developed for accommodating the task of distinguishing a
specific opacity from other opacities in medical images. MTANNs have been
applied for the reduction of false positives (FPs) in CADe of lung nodules in
low-dose CT (Arimura et al. 2004; Suzuki et al. 2003a) and chest radiography
(Suzuki et al. 2005b), for distinction between benign and malignant lung nodules in
CT (Suzuki et al. 2005a), for enhancement of lung nodules in CT (Suzuki 2009), for
suppression of ribs in chest radiographs (Suzuki et al. 2004a, 2006a; Chen et al.
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Fig. 2.2 Architecture of an MTANN consisting of a linear-output ANN regression model with
multiple layers, with subregion/volume input and single-pixel output

2016; Chen and Suzuki 2013, 2014), and for reduction of FPs in computerized
detection of nodules in CT colonography (Suzuki et al. 2006b, 2008b, 2010a, b).

2.3.1 Architecture of an MTANN Filter

The architecture of an MTANN supervised filter is shown in Fig. 2.2. An MTANN
filter consists of a supervised regression model such as a linear-output ANN
regression model (Suzuki et al. 2003c) which is a regression-type ANN capable
of operating on pixel data directly. The MTANN filter is trained with input CT
images and the corresponding “teaching” images that contain a map for the
“likelihood of being lesions.” The pixel values of the input images are linearly
scaled such that —1000 Hounsfield units (HUs) correspond to 0 and 1000 HUs
correspond to 1. The input to the MTANN filter consists of pixel values in a
subregion/volume (image patch), Vg, extracted from an input image. The output
of the MTANN filter is a continuous scalar value, which is associated with the
center pixel in the subregion/volume (image patch) and is represented by

O(X,y, Z) = NN(ix,y,z), (21)
where
Z\‘,y,z:{I(x_ivy_jvz_k)|i7j7k€VS} (22)

is the input vector to the MTANN; x, y, and z are the coordinate indices; NN (-) is
the output of a supervised regression model (e.g., linear-output ANN regression



2 Computer-Aided Detection of Lung Cancer 19

model); i, j, and k are the coordinate indices in V; and I(x,y,z) is the normalized
voxel value of the input isotropic volume. The linear-output ANN
regression employs a linear function,f; (1) =a-u+0.5, instead of a sigmoid func-
tion, fs(u) =1/{1+ exp(—u)}, as the activation function of the output layer unit
because the characteristics and performance of an ANN are improved significantly
with a linear function when applied to the continuous mapping of values in image
processing (Suzuki et al. 2003c). Note that the activation function in the hidden
layers is still a sigmoid function. For processing of the entire image, the scanning of
an input CT image with the MTANN is performed pixel by pixel, as illustrated in
Fig. 2.3b.

2.3.2 Training of an MTANN Filter

For the enhancement of lesions and suppression of non-lesions in CT images, the
teaching image T(x,y,z) contains a map of the “likelihood of being lesions,” as
illustrated in Fig. 2.3a. To create the teaching image, we first segment lesions
manually for obtaining a binary image with 1 being lesion pixels and 0 being
non-lesion pixels. Then, Gaussian smoothing is applied to the binary image for
smoothing down the edges of the segmented lesions, because the likelihood of
being lesions should gradually be smaller as the distance from the boundary of the
lesion decreases.

The MTANN filter involves training with a large number of pairs of subregions/
volumes (image patches) and pixels/voxels. For enrichment of the training samples,
a training image, V7, extracted from the input CT image is divided pixel by pixel
into a large number of subregions/volumes (image patches). Note that close sub-
regions/volumes overlap each other. Single pixels are extracted from the
corresponding teaching image as teaching values. The MTANN filter is massively
trained by use of each of a large number of input subregions/volumes (image
patches) together with each of the corresponding teaching single pixels/voxels,
hence the term “massive training ANN.” The error to be minimized by training of
the MTANN filter is given by

E=5> 3 AT —0uny)} (2.3)

¢ xy,=Vr

where c is a training case number and P is the number of total training voxels in V7.
The MTANN filter is trained by a linear-output backpropagation algorithm (Suzuki
et al. 1995, 2003c) where the generalized delta rule (Rumelhart et al. 1986) is
applied to the linear-output ANN architecture (Suzuki et al. 2003c), which was
derived for the linear-output ANN model by using the same method used for
deriving the original BP algorithm (Rumelhart et al. 1986) (see Refs. (Suzuki
et al. 1995, 2003c, ) for the details and the property of the linear-output BP
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Fig. 2.3 Training and application of an MTANN filter for enhancement of lesions. (a) Training of
an MTANN filter. (b) Application of the trained MTANN filter to a new CT image

algorithm). After training, the MTANN filter is expected to output the highest value
when a lesion is located at the center of the subregion of the MTANN filter, a lower
value as the distance from the subregion center increases, and zero when the input
subregion contains a non-lesion.
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In the computer vision field, a technology called deep learning (Lecun et al.
2015; Mnih et al. 2015) or deep convolutional neural networks (Krizhevsky et al.
2012) obtained enthusiastic attentions from the research communities and indus-
tries. The deep convolutional neural networks (Krizhevsky et al. 2012) were able to
classify objects in images 20 % more correctly than did other existing classifiers
that had been studied in the field in the past three decades. The MTANN approach is
similar to deep convolutional neural networks, as both use image patches as input,
but there are differences: (1) the output of the MTANN is images, whereas that of
deep learning is class labels (e.g., cancer or non-cancer); (2) the MTANN can do
image processing and pattern enhancement, but deep learning cannot; (3) the
MTANN requires a very small number of training samples, but deep learning
requires a million of samples; and (4) the MTANN has simpler architecture and
training and thus easy to train.

2.3.3 Experiments
2.3.3.1 Database of Lung Nodules in CT

To test the performance of the MTANN filter, we applied it to our CT database
consisting of 69 lung cancers in 69 patients (Li et al. 2002). The scans used for this
study were acquired with a low-dose protocol of 120 kVp, 25 mA or 50 mA, 10 mm
collimation, and 10 mm reconstruction interval at a helical pitch of two. The
reconstructed CT images were 512 x 512 pixels in size with a section thickness
of 10 mm. The 69 CT scans consisted of 2052 sections (slices). All cancers were
confirmed either by biopsy or surgically. The locations of the cancers were deter-
mined by an expert chest radiologist.

2.3.3.2 Enhancement of Nodules in the Lungs in CT

To limit processing area to the lungs, we segmented the lung regions in a CT image
by the use of thresholding based on Otsu’s threshold value determination (Otsu
1979). Then, we applied a “rolling-ball” technique (Hanson 1992), which is a
mathematical morphology operator, along the outlines of the extracted lung regions
to include a nodule attached to the pleura in the segmented lung regions (Armato
et al., 2001).

To enhance lung nodules in CT images, we trained an MTANN filter with
13 lung nodules in a training database which was different from the testing database
and the corresponding “teaching” images that contained maps for the “likelihood of
being nodules,” as illustrated in Fig. 2.3a. To obtain the training regions, V7, we
applied a mathematical morphology opening operator to the lung nodules that were
segmented manually (i.e., binary regions) such that the training regions sufficiently
covered nodules and surrounding normal structures. The number of hidden units
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was selected to be 20 by use of a method for designing the structure of an ANN
(Suzuki et al. 2001; Suzuki 2004). The method is a sensitivity-based pruning
method, i.e., the sensitivity to the training error was calculated when a certain
unit was removed experimentally, and the unit with the smallest training error was
removed. Removing the redundant hidden units and retraining for recovering the
potential loss due to the removal were performed alternately, resulting in a reduced
structure where redundant units were removed. The size of the input subregion, Ry,
was 9 by 9 pixels, which was determined experimentally in our previous studies,
i.e., the highest performance was obtained with this size (Arimura et al. 2004;
Suzuki and Doi 2005; Suzuki et al. 2003a); thus, the number of input units in the
MTANN filter is 81. The slope of the linear function, a, was 0.01. With the
parameters above, training of the MTANN filter was performed by 1,000,000
iterations. To test the performance, we applied the trained MTANN filter to the
entire lungs. We applied thresholding to the output images of the trained MTANN
filter to detect nodule candidates. We compared the results of nodule candidate
detection with and without the MTANN filter.

2.3.3.3 A CAD Scheme Incorporating the MTANN Lesion
Enhancement

A previously reported CAD scheme (Arimura et al. 2004) for detection of lung
nodules in thoracic CT is shown in Fig. 2.4a. The CAD scheme employs a standard
approach which consists of lung segmentation, difference image technique for
enhancing nodules (Xu et al. 1997), multiple thresholding for detection of nodule
candidates, segmentation of the detected nodule candidates, feature analysis of the
segmented nodule candidates, rule-based scheme for reduction of FPs, and classi-
fication based on linear discriminant analysis (LDA) for the final FP reduction. The
difference image technique uses two different filters: a matched filter is used for
enhancing nodule-like objects in CT images, and a ring-average filter is used for
suppressing nodule-like objects. We incorporated the MTANN lesion enhancement
filter in our CAD scheme to improve the overall performance. A schematic diagram
of our MTAN-based CAD scheme is shown in Fig. 2.4b. In the MTANN-based
CAD scheme, nodule candidates are detected (localized) by the MTANN lesion
enhancement filter followed by thresholding. The detected nodule candidates gen-
erally include true positives and mostly FPs.

2.3.4 Results

2.3.4.1 Enhancement of Nodules in the Lungs on CT Images

We applied the trained MTANN filter to original CT images. The results of
enhancement of nodules in CT images by the trained MTANN filter (Suzuki et al.
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| Detection of nodule candidates | MTANN “lesion
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| Rule-based scheme | | MTANN for classification |
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Fig. 2.4 Comparison of a standard CAD scheme with an MTANN-based CAD scheme. (a)
Schematic diagram of a standard CAD scheme. (b) Schematic diagram of an MTANN-based
CAD scheme

2008a) are shown in Fig. 2.5. The MTANN filter enhances nodules and suppresses
most of the normal structures in CT images. Although some medium-sized vessels
remain in the output image, the nodule with spiculation is enhanced well. We
applied thresholding with a single threshold value (65 % of the maximum gray
scale) to the output images of the trained MTANN filter. We compared the
MTANN nodule enhancement filter with a sphere enhancement filter (Li et al.
2003) based on Hessian matrix (Frangi et al. 1999), as shown in Fig. 2.6. There are a
smaller number of candidates in the MTANN-based images, whereas there are
many nodule candidates in binary images obtained by using the sphere enhance-
ment filter. The MTANN filter followed by thresholding identified 97 % (67/69) of
cancers with 6.7 FPs per section, which is a substantial improvement over the
performance (96 % sensitivity with 19.3 FPs/section) of our previously reported
CAD scheme without MTANNS.

2.4 False-Positive Reduction with MTANNSs

Reduction of FPs is very important, because a large number of FPs could adversely
affect the clinical application of CADe. A large number of FPs are likely to
confound the radiologist’s task of image interpretation and thus lower his/her
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(b)

Fig. 2.5 Lesion enhancement by using a supervised MTANN lesion enhancement filter. (a)
Original axial CT slice with a lung nodule (indicated by an arrow). (b) Output image of the
trained MTANN nodule enhancement filter

Original CT image Selective sphere Supervised selective
enhancement filter “nodule”
enhancement filter

Fig. 2.6 Comparison of nodule enhancement by the conventional sphere enhancement filter based
on the Hessian matrix and our supervised MTANN “nodule” enhancement filter
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efficiency. In addition, radiologists may lose their confidence in CADe as a useful
tool. Suzuki et al. developed an FP reduction technique based on MTANNSs (Suzuki
et al. 2003a) for reduction of FPs in a CADe scheme for lung nodules in CT. The
MTANNS were trained to enhance lung nodules and suppress various types of FPs
(i.e., non-nodules) such as lung vessels.

2.4.1 A. Database of Low-Dose CT Images

The database used in this study consisted of 101 noninfused, low-dose thoracic
helical CT (LDCT) scans acquired from 71 different patients who participated
voluntarily in a lung cancer screening program between 1996 and 1999 in Nagano,
Japan.>'®7 The CT examinations were performed on a mobile CT scanner
(CT-WO950SR; Hitachi Medical, Tokyo, Japan). The scans used for this study
were acquired with a low-dose protocol of 120 kVp, 25 mA (54 scans) or 50 mA
(47 scans), 10 mm collimation, and 10 mm reconstruction interval at a helical pitch
of two.'® The pixel size was 0.586 mm for 83 scans and 0.684 mm for 18 scans.
Each reconstructed CT section (slice) had an image matrix size of 512 x 512 pixels.
We used 38 of 101 LDCT scans which were acquired from 31 patients as a training
set for our CAD scheme. The 38 scans consisted of 1057 sections and contained
50 nodules, including 38 “missed” nodules that represented biopsy-confirmed lung
cancers and were not reported or misreported during the initial clinical interpreta-
tion.7 The remaining 12 nodules in the scans were classified as “confirmed benign”
(n = 8), “suspected benign” (n = 3), or “suspected malignant” (n = 1). The
confirmed benign nodules were determined by biopsy or by follow-up over a period
of 2 years. The suspected benign nodules were determined by follow-up less than
2 years. The suspected malignant nodule was determined on the basis of results of
follow-up diagnostic CT studies; no biopsy results were available. We used 63 of
101 LDCT scans which were acquired from 63 patients as a test set. The 63 scans
consisted of 1765 sections and contained 71 nodules, including 66 primary cancers
that were determined by biopsy and five confirmed benign nodules that were
determined by biopsy or by follow-up over a period of 2 years. The scans included
23 scans from the same 23 patients as those in the training set, which were acquired
at a different time (the interval was about 1 year or 2 years). Thus, the training set
consisted of 38 LDCT scans including 50 nodules, and the test set consisted of
63 LDCT scans including 71 confirmed nodules.

The nodule size was determined by an experienced chest radiologist and ranged
from 4 to 27 mm. The mean diameter of the 50 nodules in the training set was
12.7 £+ 6.1 mm, and that of the 71 nodules in the test set was 13.5 + 4.7 mm. In the
training set, 38 % of nodules were attached to the pleura, 22 % of nodules were
attached to vessels, and 10 % of nodules were in the hilum. As to the test set, 30 %
of nodules were attached to the pleura, 34 % of nodules were attached to vessels,
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and 7 % of nodules were in the hilum. Three radiologists determined the nodules in
the training set as three categories such as pure ground-glass opacity (pure GGO;
40 % of nodules), mixed GGO (28 %), and solid nodule (32 %); the nodules in the
test set were determined as pure GGO (24 %), mixed GGO (30 %), and solid nodule
(46 %).

2.4.2 Scheme for Lung Nodule Detection in Low-Dose CT

Technical details of our current scheme have been published previously (Armato
etal., 1999, Armato et al., 2001). With our current CAD scheme, the multiple gray-
level thresholding technique initially identified 20 743 nodule candidates in 1057
sections of LDCT images in the training set. Forty-five of 50 nodules were correctly
detected. Then a rule-based classifier followed by a series of two linear discriminant
classifiers was applied for removal of some false positives, thus yielding a detection
of 40 (80.0 %) of 50 nodules (from 22 patients) together with 1078 (1.02 per
section) false positives. The sizes of the 10 false-negative nodules ranged from
5 mm to 25 mm, and the mean diameter was 13.2+6.1 mm. In this study, we used
all 50 nodules, the locations of which were identified by the radiologist, and all
1078 false positives generated by our CAD scheme in the training set, for investi-
gating the characteristics of the MTANN and training the MTANN. The use of
radiologist-extracted true nodules with computer-generated false positives was
intended to anticipate future improvements in the nodule detection sensitivity of
our CAD scheme. When a nodule was present in more than one section, the section
that included the largest nodule was used. When we applied our current CAD
scheme to the test set, a sensitivity of 81.7 % (58 of 71 nodules) with 0.98 false
positives per section (1726/1765) was achieved. We used the 58 true positives
(nodules from 54 patients) and 1726 false positives (non-nodules) for testing the
MTANN in a validation test.

2.4.3 MTANN for FP Reduction
2.4.3.1 Architecture

The architecture and training method of the MTANN for FP reduction are shown in
Fig. 2.7. When the task is the distinction between nodules and non-nodules, the
output would be interpreted as the “likelihood of being a nodule.” In order to
distinguish between nodules and various types of non-nodules, we extended the
capability of the single MTANN and developed a multiple MTANN (multi-
MTANN). The architecture of a mixture of expert MTANNs (multi-MTANN) is
shown in Fig. 2.8. The multi-MTANN consists of plural MTANNSs that are arranged
in parallel. Each MTANN is trained by using a different type of non-nodule, but
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for nodule

: MTANN

Non-nodule \ Teaching image

Fig. 2.7 Architecture and training of an MTANN for classification of candidates into a nodule or a
non-nodule. A teaching image for a nodule contains a Gaussian distribution at the center of the
image, whereas that for a non-nodule contains zero (i.e., it is completely dark)
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Fig. 2.8 Architecture of a mixture of expert MTANNS consisting of multiple MTANNSs combined
by the integration ANN

with the same nodules. Each MTANN acts as an expert for the distinction between
nodules and a specific type of non-nodule, e.g., MTANN No. 1 is trained to
distinguish nodules from false positives caused by medium-sized vessels;
MTANN No. 2 is trained to distinguish nodules from soft-tissue-opacity false
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positives caused by the diaphragm; and so on. A scoring method is applied to the
output of each MTANN, and then thresholding of the score from each MTANN is
performed for distinction between nodules and the specific type of non-nodule. The
output of each MTANN is then integrated by the integration ANN or the logical
AND operation. If each MTANN can eliminate the specific type of non-nodule with
which the MTANN is trained, then the multi-MTANN will be able to reduce a
larger number of false positives than does a single MTANN.

2.4.3.2 Training of MTANN

For the enhancement of nodules and suppression of non-nodules in CT images, the
teaching volume contains a 3D distribution of values that represent the “likelihood
of being a nodule.” We used a 3D Gaussian distribution with standard deviation o7,
the peak of which is located at the center of the nodule, as a teaching volume for a
nodule and a volume that contains all zeros for a non-nodule, represented by

1 (P +y2+2)) .
e - f tual nodul
T(v,y,%) = { Varar xp{ 2072 if an actual nodule 5 4
0

otherwise

The MTANN involves training with a large number of subvolume-voxel pairs; we
call it a massive-subvolumes training scheme. A training volume V7 extracted from
the input CT volume is divided voxel by voxel into a large number of overlapping
subvolumes (image patch). Single voxels are extracted from the corresponding
teaching volume as teaching values. The 3D MTANN is massively trained by use
of each of a large number of the input subvolumes together with each of the
corresponding teaching single voxels. A training set of pairs of a subvolume and
a teaching voxel is represented by

{I(x,y,2),T(x,y,2)|x,y,2€ Vs } = {(I1,T1), (12, T2) -, (Ip,Tp) -, (Iny T,
(2.5)

where V7 is a training volume, p is a voxel number in V7, T), is a teaching value in

the teaching volume that corresponds to the center voxel in I 1, and Nris the number
of voxels in V7. In order to learn the relationship between the input image and the
teacher image, the MTANN is trained with a set of input images and the teacher
images by adjusting the weights between layers. The error to be minimized by
training is defined in Eq. (2.3). After training, the MTANN is expected to output the
highest value when a nodule is located at the center of the subvolume of the
MTANN, a lower value as the distance from the subvolume center increases, and
zero when the input subvolume contains a non-nodule.
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2.4.3.3 Scoring of the MTANN Output for Testing

When an original image for the sth nodule candidate is entered into the nth trained
MTANN for testing, the output image for the sth nodule candidate is obtained by
scanning of the original image with the trained MTANN. The distinction between a
nodule and a non-nodule is determined by use of a score defined from the output
image of the nth trained MTANN, described as follows:

S= Z fG(G;xvva) . O(X,y,Z), (26)
x’y’ZEVE
where
1 (xz +y2 _,’_22)
. _ _wry+z) 2.7
fg(U,X,y,Z) \/ﬂgexp{ 262 ( )

is a 3D Gaussian weighting function with standard deviation ¢ with its center
corresponding to the center of the volume for evaluation, Vg; Vi is the volume
for evaluation that is sufficient to cover a nodule or a non-nodule; and O(x,y,z) is the
output of the trained MTANN. The use of the 3D Gaussian weighting function
allows us to combine the individual voxel-based responses (outputs) of a trained
MTANN as a single score. The score obtained by the above equations represents the
weighted sum of the estimates for the likelihood that the volume (nodule candidate)
contains an actual nodule near the center, i.e., a higher score would indicate a
nodule and a lower score would indicate a non-nodule. We use the same 3D
Gaussian weighting function as is used in the nodule teaching volumes.
Thresholding is performed on the scores to distinguish between nodules and
non-nodules.

2.4.4 Results
2.4.4.1 MTANN Performance

An imaging expert selected ten representative non-nodules from each of the nine
groups as the training samples for each MTANN; thus, the multi-MTANN
employed nine MTANNSs. The same ten nodules were used as training samples
for all nine MTANNS. Therefore, ten nodules and 90 non-nodules were used for
training the multi-MTANN. The single MTANN trained with medium-sized vessels
(with relatively high contrast) was used as MTANN No.1. Non-nodules for the
training of MTANN No. 1 to No. 5 ranged from medium-sized vessels to small
(peripheral) vessels. Non-nodules for the training of MTANN No. 6 to No. 9 were
large vessels in the hilum, relatively large vessels with some opacities, soft-tissue
opacities caused by the partial volume effect between peripheral vessels and the
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diaphragm, and some abnormal opacities (focal interstitial opacities), respectively.
Each MTANN was trained in the same way as a single MTANN.

The trained MTANN was applied to 1068 false-positive nodule candidates not
used for training. The results for non-training cases are shown in Fig. 2.9. In the
output image of the MTANN for nodules, the nodules are represented by light
distributions near the center as expected, whereas the output images for false
positives (non-nodules) are relatively dark, as shown in Fig. 2.10.

The scoring method was applied to the output images of the individually
trained MTANNSs. The free-response receiver operating characteristic (FROC)
curve expresses a classification rate as a function of the number of false
positives per section at a specific operating point. With the single MTANN
(MTANN No.1), we can achieve a classification rate of 100 % (40/40) with 0.36
false positives per section, as shown in Fig. 2.11. With the single MTANN
(MTANN No.l), the false-positive rate of our current scheme could be
improved from 1.02 to 0.36 false positives per section, while maintaining the
current sensitivity. Note that 38 out of 50 nodules used in this study were
missed by radiologists. When the multi-MTANN employed nine MTANN:S,
91 % (902/988) of false positives (non-nodules) were removed without elimi-
nating any true positives, i.e., we can achieve a classification rate of 100 %
(40/40) with 0.08 false positives per section.

a

Output images

Fig. 2.9 Actual nodules (a) and the output images of the trained MTANN (b). Nodules are
enhanced and represented by light distributions in the output images
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Fig. 2.9 (continued)
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Fig. 2.10 FROC curves indicating the performance of multi-MTANNSs with different numbers of
MTANNSs
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Fig. 2.11 FROC curve for the performance of the multi-MTANN for CAD for thin-slice CT

2.4.4.2 Performance of a CAD Scheme with MTANN Lesion Enhancer

The MTANN lesion enhancement filter followed by thresholding identified 97 %
(67/69) of cancers with 6.7 FPs per section. The six classification-MTANNSs were
applied to the nodule candidates (true positives and FPs) for the classification of the
candidates into nodules or non-nodules. The mixture of expert MTANNSs was able
to remove 60 % (8172/13,688) or 93 % (12,667/13,688) of non-nodules (FPs) with a
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Table 2.1 Comparison of the performance of the previously reported CAD scheme with that of
our MTANN-based CAD scheme at different stages

Previously reported CAD scheme

MTANN-based CAD scheme

Nodule candidate detection

96 % sensitivity

Nodule candidate

97 % sensitivity

by multiple thresholding with 19.3 detection by with 6.7
FPs/section MTANN FPs/section
Future analysis and rule- 96 % sensitivity Classification by 96 % sensitivity
based scheme with 9.3 MTANN with 2.7
FPs/section FPs/section
Classification by LDA 84 % sensitivity 84 % sensitivity
with 1.4 with 0.5
FPs/section FPs/section

loss of 1 true positive or 10 true positives, respectively. Thus, our MTANN-based
CAD scheme achieved a 96 % (66/69) or 84 % (57/69) sensitivity with 2.7 (5516/
2052) or 0.5 (1021/2052) FPs per section, respectively, as shown in Table 2.1. The
remaining true-positive nodules included a ground-glass opacity, cancer
overlapping vessels, and a cancer touching the pleura. In contrast, the difference
image technique followed by multiple thresholding in the previously reported CAD
scheme detected 96 % (66/69) of cancers with 19.3 FPs per section. Thus, the
MTANN lesion enhancement filter was effective for improving the sensitivity and
specificity of a CAD scheme. The feature analysis and the rule-based scheme
removed FPs further and achieved 9.3 FPs per section. Finally, with LDA, the
previously reported CAD scheme yielded a sensitivity of 84 % (57/69) with 1.4
(2873/2052) FPs per section (the difference between the specificity of the previ-
ously reported CAD scheme and that of our new MTANN-based CAD scheme at
the 84 % sensitivity level was statistically significant (P < 0.05) (Edwards et al.
2002)). Table 2.1 summarizes the comparison of the performance of the previously
reported CAD scheme with that of the MTANN-based CAD scheme at different
stages. Therefore, MTANNs were effective for improving the sensitivity and
specificity of a CAD scheme.

2.4.5 Results for CAD for Thin-Slice CT

Recent technology of multidetector-row CT (MDCT) can provide thinner CT
slices; and thus, quasi-isotropic or isotropic volume data are available. Conse-
quently, nodules are more continuous in MDCT volumes. To process 3D MDCT
volumes effectively, the development of a 3D technique for the reduction of FPs
is necessary. Therefore, we developed a CAD scheme for nodule detection for
thin-slice CT, which consisted of the detection of initial nodule candidates
based on a selective enhancement filter (Li et al. 2003) and classification of
the nodule candidates into nodules and non-nodules based on a rule-based
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scheme with image features. For handling MDCT slices with different slice
thickness, we converted original CT data to isotropic volumes. We applied the
selective enhancement filter to the isotropic volumes for enhancing nodules and
suppressing vessels. Thresholding followed by the rule-based scheme was
applied to the filtered volumes to classify candidates into nodules and
non-nodules.

Our database contained 62 nodules in 32 scans acquired from 32 patients with an
MDCT system with a four-detector scanner. The MDCT scan consisted of an
average of 186 thin-slice CT images (slice thickness ranged from 1.0 to 2.5 mm).
Each CT slice had an image matrix size of 512 x 512 pixels. Nodule sizes ranged
from 5 to 30 mm. All nodules were confirmed by consensus between two chest
radiologists.

With our initial CAD scheme, a sensitivity of 97 % (60/62 nodules) together
with an average of 15 (476/32) false positives per patient was achieved. The
trained multi-3D MTANN was applied for reduction of the FPs. Each 3D
MTANN in the multi-3D MTANN was able to enhance nodules and suppress
non-nodules representing the particular non-nodule type with which the 3D
MTANN was trained, namely, various nodules in the output volumes of the 3D
MTANN were represented by light distributions, whereas the eight different types
of non-nodules were almost dark. Although the distribution of scores for nodules
and non-nodules obtained by use of the scoring method overlapped, each 3D
MTANN was able to distinguish nodules from each type of non-nodule; therefore,
the multi-3D MTANN was able to remove many non-nodules. The performance
of the multi-3D MTANN was evaluated by FROC analysis. Results indicated that
66 % (315/476) of FPs were removed with a loss of only two true positives by the
multi-3D MTANN, as shown in Fig. 2.12. Thus, the FP rate of our CAD scheme
was improved to 5.0 (161/32) FPs per patient at an overall sensitivity of 94 %
(58/62 nodules).

2.5 Conclusion

In this chapter, CADe of lung cancer in thoracic CT is overviewed. In CADe
schemes, machine learning plays an essential role, because accurate detection of
lung cancer thus classification between lung cancer and other normal structures
requires learning from image data/examples. Among various machine learning
techniques, image-based machine learning such as the MTANNSs is one of the
most promising techniques in CADe schemes. There are two types of MTANNs
used in CADe schemes: a supervised lesion enhancer and an FP reducer. The
MTANN lesion enhancer improves the sensitivity of a CADe scheme substantially,
whereas the MTANN FP reducer improves the specificity substantially. With the
MTANN technology, both sensitivity and specificity of a CADe scheme were
improved substantially, and the MTANN CADe scheme for lung nodule detection
in thin-slice CT achieved 94 % sensitivity with 5.0 FPs per patient.
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Fig. 2.12 CADe outputs (indicated by circles) on an axial CT slice of the lungs. A lung nodule
(indicated by an arrow) was detected correctly by a CADe scheme with one FP detection (branch
of lung vessels) on the right

Recently, convolutional neural networks and deep learning gained attentions
from the computer vision community as well as medical image analysis commu-
nity, because they outperformed feature-based machine learning (or simply classi-
fiers) that had been dominant in the past three decades, in various computer vision
competitions. The same observation was seen in the MTANN applications to
CADe, namely, MTANNSs were able to remove “difficult” FPs that had not been
removed by feature-based machine learning, and the performance of CADe
schemes was substantially improved by using the MTANNSs. Thus, CADe schemes
with the MTANN technology offer high performance in the detection and diagnosis
of lesions in medical images, such as lung nodules in CT. I expect MTANN CAD
schemes will be useful for improving the diagnostic performance of radiologists/
physicians in early detection of lung cancer and, thus, potentially reducing the
mortality of lung cancer.
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Chapter 3

Computer-Aided Detection

and Differentiation of Breast Cancer
on Mammograms

Ryohei Nakayama

Abstract Mammography is the most sensitive method available for early detection
of breast cancer. However, approximately 10-30 % of breast cancer incidents are
not detected using mammograms because of the size and location of a lesion,
density of the breast tissue, and interpretation ability of radiologists. It is also
difficult for radiologists to determine whether a detected lesion is malignant or
benign. The positive predictive value of mammography is typically between 15 and
30 %, which is rather low. To overcome these problems, many investigators have
developed computer-aided diagnosis (CAD) schemes for identifying regions of
potential lesions in mammograms and for evaluating the malignancy of a detected
lesion. CAD is defined as a diagnosis performed by a radiologist who considers the
computer output as a second opinion. The purpose of CAD is to improve the
diagnostic accuracy and consistency of image interpretation by radiologists. In
this chapter, we provide a brief summary of some works, development examples,
and potential usefulness of CAD in clinical practice.

Keywords Computer-aided diagnosis * Mammogram ¢ Breast cancer  Detection
aid « Differentiation aid

3.1 Introduction

Breast cancer has the highest incidence rate in females (World Health Organization
2006). As with cancer of other organs, early detection and early treatment can help
to reduce the rates of breast cancer mortality. Mammography is the most sensitive
method available for early detection of breast cancer. Therefore, it is widely used
for breast cancer screening in many developed countries (Dowling et al. 2010;
Smith et al. 2014). When interpreting mammograms, it is important to detect

R. Nakayama, Ph.D. (I<)

Department of Electronic and Computer Engineering, Ritsumeikan University,
1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan

e-mail: ryohei@fc.ritsumei.ac.jp

© Springer Nature Singapore Pte Ltd. 2017 41
H. Arimura (ed.), Image-Based Computer-Assisted Radiation Therapy,
DOI 10.1007/978-981-10-2945-5_3


mailto:ryohei@fc.ritsumei.ac.jp

42 R. Nakayama

radiographic indications of breast cancer such as clustered microcalcifications,
masses, architectural distortions, and bilateral asymmetries (Kopans 2006). How-
ever, approximately 10-30 % of breast cancer incidents are not detected using
mammograms because of the size and location of a lesion, density of the breast
tissue, and interpretation ability of radiologists (Bird et al. 1992; Burhenne et al.
1994; Kolb et al. 2002). It is also difficult for radiologists to determine whether a
detected lesion is malignant or benign. The positive predictive value of mammog-
raphy, i.e., the ratio of the number of found breast cancers to the number of biopsies,
is typically between 15 and 30 % (Adler and Helvie 1992; Kopans 1992), which is
rather low. Unnecessary biopsies are physical and psychological burden for
patients.

To overcome these problems, many investigators have developed computer-
aided diagnosis (CAD) schemes for identifying regions of potential lesions in
mammograms and for evaluating the malignancy of a detected lesion over the
past two decades. The former is frequently called the computer-aided detection
(CADe) scheme as a detection aid, whereas the latter is called the computer-aided
differentiation (CADX) scheme as a differentiation aid. CAD is defined as a
diagnosis performed by a radiologist who considers the computer output as a
second opinion (Doi 2005, 2007). The purpose of CAD is to improve the diagnostic
accuracy and consistency of image interpretation by radiologists. In this chapter, we
provide a brief summary of some works, development examples, and potential
usefulness of CADe and CADXx in clinical practice.

3.2 CADe Schemes

Many investigators studied CADe schemes for clustered microcalcifications,
masses, architectural distortions, and bilateral asymmetries. Most of them have
been focused on clustered microcalcifications and masses, which are more common
radiographic indications. These CADe schemes consist of two main steps: lesion
image enhancement and false-positive (FP) reduction.

3.2.1 CADe Schemes for Clustered Microcalcifications

Conventional methods used in CADe schemes for clustered microcalcifications are
based on image enhancement and the segmentation of regions of interest (ROIs).
Chan et al. (1988) developed a difference-image approach using a combination of a
matched filter and a box-rim filter. They removed the structured background of a
mammogram by subtracting a signal-suppressed image from a signal-enhanced
image. Romualdo et al. (2013) proposed restoration methodology to enhance
mammographic images by improving contrast features and suppressing noise
simultaneously. Using the Anscombe transformation, a signal-dependent quantum
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noise was converted into an approximately signal-independent Gaussian additive
noise. In the Anscombe domain, noise was filtered using an adaptive Wiener filter.
A filter based on the modulation transfer function of the imaging system was
employed for image enhancement. Gulsrud and Husgy (2001) proposed a texture
feature extraction method based on a single filter optimized with respect to the
Fisher criterion. The texture features were employed to differentiate an ROI with
clustered microcalcifications from that with normal tissue. Bocchi et al. (2004) used
a fractal model to describe the background of a mammogram. They showed that the
fractal model coupled with matched filtering could enhance microcalcification
images with respect to the background. Yoshida et al. (1996) multiplied every
scale by a weight factor and then reconstructed the enhanced images of microcal-
cifications by applying the inverse transform for a discrete wavelet transform. The
weights were determined through supervised learning, using a set of training cases.

As other approaches, many CADe schemes based on machine learning for
detecting and classifying microcalcifications were reported by investigators.
Cheng et al. (2004) proposed an approach based on fuzzy logic and scale-space
techniques. A mammogram was fuzzified using fuzzy entropy principle and the
fuzzy set theory, and then scale-space and Laplacian-of-Gaussian filter techniques
were applied to detect the locations of microcalcifications. They showed that fuzzy
logic systems can detect microcalcifications accurately even in mammograms of
very dense breasts. Lee and Chen (1996) showed that in the wavelet analysis, the
multiresolution information related to the contextual information, which was
extracted from the Gaussian Markov random field, provided a useful technique
for detecting microcalcifications. Zhang and Gao (2012) proposed a novel frame-
work using twin support vector machine (SVM). Microcalcification images were
enhanced using an artifact removal filter and a high-pass filter. Subspace learning
algorithms were embedded into this framework for subspace selection of each
image block to be handled. A twin SVM classifier was employed to distinguish
the blocks with microcalcifications from other blocks. Hernandez-Cisneros and
Terashima-Marin (2006) proposed a procedure for classifying clustered microcal-
cifications in mammograms using the sequential difference of Gaussian filters and
three evolutionary artificial neural networks (ANNSs).

Some studies reported that CADe-assisted reading in screening mammography
increases sensitivity, but decreases specificity. A decrease in specificity causes an
increase of the recall rate. Therefore, CADe schemes which detect only clustered
microcalcifications with high likelihood of malignancy have been developed in
recent years.

3.2.2 CADe Schemes for Masses

The mass detection and the identification of the margin of mass using mammo-
grams are difficult processes for radiologists. Two types of CADe schemes for
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masses have been proposed: schemes for detecting masses and schemes for
detecting and segmenting them.

As one of the studies aimed at only detection, Herredsvela et al. (2005) proposed
the detection process using morphological hierarchical watersheds. A mammogram
image was simplified using a reconstructive open/close alternating sequential filter
while the object shapes and edges were maintained. Then the regional maxima of
the simplified image were extracted as internal markers for the hierarchical water-
shed transform. Rojas-Dominguez and Nandi (2008) developed an enhancement
algorithm that improved the image contrast based on local statistical measures of
mammograms. Mass candidate regions were segmented through thresholding at
multiple levels, and objective features were determined. A region-ranking system
identified the candidate with the highest likelihood of abnormality based on the
objective features. Sakellaropoulos et al. (2006) showed the usefulness of the
wavelet-based feature analysis for identifying spiculated and circumscribed masses
in dense breast regions. Dense parenchyma was first labeled using Gaussian mix-
ture modeling. Orientation features were extracted from large-scale and small-scale
subimages obtained using the wavelet decomposition. The logistic regression
analysis was employed to differentiate spiculated and circumscribed masses from
normal dense parenchyma. Oliver et al. (2006) reported that mass candidate regions
were detected using a deformable template matching approach, in which a template
was constructed using the eigenimages of masses. An algorithm adapted from the
eigenface approach was then used to reduce detected FP regions. Li et al. (2015)
developed a bilateral image analysis scheme for reducing FP regions during the
detection of masses in dense mammograms. A matching cost was defined to
quantify the credibility of the corresponding region in a pair of bilateral mammo-
grams. The similarity measurement was employed to distinguish masses from
normal tissues in a pair of bilateral regions based on global and local image
appearances.

As one of the studies aimed at both detection and segmentation, Wei et al. (2005)
combined the gradient field analysis with the gray-level information to identify
mass candidates. The morphological and spatial gray-level-dependent texture fea-
tures were extracted for each candidate. Linear discriminant analysis classifiers
were employed to differentiate masses from normal tissues. Eltonsy et al. (2007)
proposed a technique based on the concentric layers surrounding a focal area with
suspicious morphological characteristics and low relative incidence in the breast
region. The mammographic regions with a high concentration of the concentric
layers with a progressively lower average intensity were assumed mass candidates.
Petrick et al. (1996) detected masses automatically by applying a Gaussian—
Laplacian edge detector to an image, whose regions of potential masses were
enhanced using an adoptive density-weighted contrast enhancement filter. Fauci
et al. (2004) proposed a detection method of ROIs with masses using a supervised
neural network. Some objective features related to the geometrical information and
the shape parameters were determined in each ROI. A supervised neural network
using objective features differentiated ROIs with masses from those with normal
tissue. Yin et al. (2003) presented a method for robustly located mass areas even in
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noisy mammograms using the so-called intelligent mesh. Varela et al. (2007)
applied an iris filter at different scales to enhance mass regions. Mass candidate
regions were segmented using an adaptive threshold. Mass regions were character-
ized using a neural network classifier based on the iris filter output, gray level,
texture, and contour-related and morphological features. Abdel-Dayem and
El-Sakka (2005) proposed a detection/segmentation method based on the optimal
threshold determined by minimizing the fuzzy entropy. Moreover, they employed a
block-based performance criterion; thus, radiologists could compare segmented
mass regions using a computer.

As with clustered microcalcifications, CADe schemes focused on masses with
high likelihood of malignancy only have been developed in recent years.

3.2.3 CADe Schemes for Architectural Distortions

Most CADe schemes are focused on clustered microcalcifications and masses,
which are detected easily than architectural distortions (Burrell et al. 2001; Bird
et al. 1992). Using even commercial CADe systems, the sensitivities of architec-
tural distortions were from 21 to 38 % (Baker et al. 2003). Therefore, a high-
performance CADe scheme for architectural distortions has been desired.
Matsubara et al. (2015) developed an automated method for the direction
analysis of linear structures. The direction of the linear structures in each ROI
was defined by a direction filter and a background filter, which determined one of
eight directions. The concentration and the isotropic indexes were evaluated using
the determined direction of the linear structures to detect architectural distortion
candidates. Karssemeijer and Te-Brake (1996) proposed a method based on the
statistical analysis of the map of pixel orientations using a multiscale approach.
Line-based orientations were evaluated from the output values of three-directional,
second-order, and Gaussian derivative operators at each scale. A classifier with the
output of these operators was employed to detect stellate patterns such as architec-
tural distortions. Guo et al. (2005) investigated a detection method based on SVM
with the Hausdorff dimension, which characterized the texture feature. When
compared to radial basis function neural networks, they showed more accurate
classification results produced using the SVM in distinguishing architectural dis-
tortion abnormality from normal breast parenchyma. Rangayyan et al. (2010)
presented a detection method using Gabor filters, phase portrait analysis, fractal
analysis, and texture analysis. Using this method, initial architectural distortion
candidates were detected in prior mammograms of interval cancer and in normal
control cases. Tourassi et al. (2006) investigated the application of the fractal
analysis to detection of architectural distortions. The fractal dimension of mammo-
graphic ROIs was calculated using the circular average power spectrum technique.
They showed that the average fractal dimension of normal ROIs was statistically
significantly higher than that of ROIs with architectural distortions. Yoshikawa
et al. (2014) detected the mammary gland structures using an adaptive Gabor filter.
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The adaptive Gabor filter consisted of three Gabor filters, which were manufactured
by changing the combination of parameters. A concentrated region, such as an
architectural distortion, was enhanced based on the detected mammary gland.

In the described studies, the sensitivities of architectural distortions were
approximately 70-90 %, which were lower than those of clustered microcalci-
fications and masses. The improvement of the detection accuracy has been desired
to apply a CADe scheme for architectural distortions to clinical practice.

3.2.4 CADe Schemes for Bilateral Asymmetries

Although bilateral asymmetry is not a common radiographic indication like clus-
tered microcalcifications and masses, its detection is important in mammography.
This is because bilateral asymmetry may be the only clue to breast cancer when
clustered microcalcifications, masses, and architectural distortions are not visible
(Sickles 2011). Bilateral asymmetry can be caused by physiological processes or
projection artifacts. Therefore, radiologists have to diagnose the cause of bilateral
asymmetry. However, it can be overlooked or misinterpreted even by experienced
radiologists (Majid et al. 2003; Burrell et al. 2001; Venkatesan et al. 2009).

Although a CADe scheme for bilateral asymmetry is desired, a limited number
of studies were conducted. Ferrari et al. (2001) proposed a procedure based on the
detection of linear directional components using a multiresolution representation
through Gabor wavelets. The filter responses for different scales and orientations
were analyzed using the Karhunen—Loeve transform to select the principal compo-
nents. Rose diagrams computed from the phase images and statistical measures
computed thereof were used for quantitative and qualitative analyses of the oriented
patterns. Rangayyan et al. (2007) analyzed bilateral asymmetry in mammograms by
combining the directional information, morphological measures, and geometric
moments related to the density distributions. The difference of the rose diagrams
was obtained using the directional data of the aligned left and right breasts. The
directional features in the difference of the rose diagrams were employed to identify
the changes caused by breast cancer. Tzikopoulos et al. (2011) presented a fully
automated segmentation scheme based on breast density estimation. SVMs with
some features, such as a fractal dimension-related feature for breast density cate-
gorization, classified bilateral asymmetry areas. Wang et al. (2010, 2011) devel-
oped a method for detecting asymmetry of the mammographic tissue density
represented by the related feature differences from bilateral images. A genetic
algorithm was applied to select a set of optimal features from 20 features and
build an ANN for distinguishing between the positive and negative cases.

In described studies, sensitivity and specificity of bilateral asymmetry are
insufficient. We hope that the detection accuracy will be improved in further
studies.
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3.3 Example of CADe Scheme

3.3.1 Summary

The detection performances of clustered microcalcifications in the CADe schemes
based on the wavelet transform are relatively higher than those in other methods
without implementing the wavelet transform (Yoshida et al. 1994, 1996; Clarke
et al. 1994; Qian et al. 1994, 1995; Laine et al. 1994, 1995). The results indicate that
the multiresolution analysis on the wavelet transform is useful for detecting
microcalcifications with various sizes. However, using most of the CADe schemes
based on the wavelet transform, the shape of microcalcifications is not analyzed in
detail. In this section, we provide a novel filter bank based on the concept of the
Hessian matrix for classifying nodular and linear structures. Then we attempt to
detect ROIs with clustered microcalcifications using the nodular features
(N features) and the nodular and linear features (NL features) obtained through
this filter bank.

3.3.2 Materials

Our database consists of 1200 standard-view mammograms obtained from
300 patients in the DDSM (Digital Database for Screening Mammography, Uni-
versity of South Florida) (Heath et al. 1998). In these mammograms, the total
number of clustered microcalcifications is 610 (239 malignant lesions and
371 benign lesions). All mammograms were digitized to a pixel size of
0.0435 mm x 0.0435 mm in a 12-bit gray scale.

3.3.3 Methods
3.3.3.1 Overall Scheme for Detecting Clustered Microcalcifications

Figure 3.1 shows the schematics of the method for detecting ROIs with clustered
microcalcifications in mammograms. First, the mammogram images were
decomposed into several subimages at different scales from 1 to 4 using a novel
filter bank. These subimages were horizontal, vertical, and diagonal subimages for
the second difference. The subimages for nodular component (NC) and the
subimages for nodular and linear component (NLC) were obtained using the
analysis of the Hessian matrix consisted of the subimages for the second difference.
ROIs with a size of 5 mm X 5 mm were then selected automatically from the
mammogram images in increments of 1 mm, so that one ROI would overlap with
the adjacent ROIs. In each ROI, eight features were determined from the subimages
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for NC at scales from 1 to 4 and the subimages for NLC at scales from 1 to 4. The
Bayes discriminant function with these eight features was employed for
distinguishing abnormal ROIs with clustered microcalcifications from two different
types of normal ROIs without clustered microcalcifications. The region connecting
the ROIs classified as abnormal was considered to be the region with potential
clustered microcalcifications.

3.3.3.2 Filter Bank for Detecting NC and NLC

1. Hessian matrix classifying nodular and linear structures

For the distinction of clustered microcalcifications from normal tissues in mam-
mograms, both NCs, such as microcalcifications, and LCs, such as blood vessels
and mammary ducts, are important to be detected. To detect these components, we
can employ the second derivative (Shimizu et al. 1994, 1995). The values of the
second derivatives for nodular structure in all directions are negative. However, the
value of the second derivative for the linear structure is zero along the direction of
the axis of the linear structure, whereas it is negative along the direction perpen-
dicular to the axis of the linear structure. Therefore, filters based on the second
derivatives can be used for the detection or enhancement of nodular and linear
structures. On the other hand, the minimal and maximal values of the second
derivatives in all directions can be calculated using small eigenvalue A, and large
eigenvalue 4, of the Hessian matrix, because the second derivative of function f(x,
y) in arbitrary direction @ is given by
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Therefore, the following formulas indicate the conditions that must be satisfied
by two eigenvalues 4; and 4, for nodular and linear structures, respectively:

For a nodular structure: 4, =2 1, <O0.
For a linear structure: 4, <0, 1,220.

2. Filter bank for detecting NC and NLC

Figure 3.2 shows the filter bank based on the concept of the Hessian matrix for
classifying nodular and linear structures. To obtain each element of the Hessian
matrix using this filter bank, high-pass filter Hy/(z), high-pass filter F4(z), high-pass
filter Hy(2)F y(z), and smoothing filter H;(z)F;(z) at scale j are given by

Hy(z) = 1/2(—2 +z7),
Fulz) = 1/2( — =),
Hy(2)Fy(z) = 1/4(—¥ +2 —z7%),
Hi(z)FL(z) = 1/4(7 + 2+ 7).

By applying the smoothing filter H;(z)F;(z) to original image Syf, smoothed
subimage Sf at the next scale, i.e., a scale of 1, is obtained. Horizontal subimage
WfH is obtained by applying high-pass filter Hy(z)Fy(z) at vertical direction,
whereas vertical subimage WfV is obtained by applying high-pass filter Hy(z)
Fy(z) at horizontal direction. Diagonal subimage WfD is obtained by applying
high-pass filter Hy(z) at vertical direction followed by high-pass filter Hy(z) at
horizontal direction.

In the filter bank shown in Fig. 3.2, NCj(x,y) (the subimage for NC at scale j)
was defined by the absolute value of large eigenvalue 4, of the Hessian matrix at
scale j. Here, if 1, > 0, the pixels were zero because the eigenvalues for the nodular
structure tend to become negative. NLC(x, y) (the subimage for NLC at the scale ;)
was defined by the absolute value of small eigenvalue 4, of the Hessian matrix at
the scale j. Here, if 4, > 0, the pixels were zero.
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Fig. 3.2 Filter bank based on the concept of the Hessian matrix for classifying nodular and linear
structures

3.3.3.3 Extraction of the Features for Detecting Clustered
Microcalcifications

We determined the eight features for distinguishing abnormal ROIs with clustered
microcalcifications from two different types of normal ROIs without clustered
microcalcifications (normal ROIs with blood vessels and normal ROIs without
blood vessels). These eight features were extracted from the subimages for NC at
scales from 1 to 4 and the subimages for NLC at scales from 1 to 4. Figure 3.3
shows the subimages for NC and for NLC, which were obtained from an abnormal
ROI with clustered microcalcifications, normal ROI with blood vessels, and normal
ROI without blood vessels. As shown in the subimages for NC, some pixel values
for abnormal ROI were higher than those for two normal ROIs. As shown in the
subimages for NLC, some pixel values for normal ROI without blood vessels were
lower than those for abnormal ROI and normal ROI with blood vessels. The N
features at each scale from 1 to 4 were determined using the average value of the
pixel values higher than 97 % of the cumulative histograms of the subimage for NC
at each scale from 1 to 4. The NL features at each scale from 1 to 4 were also
determined using the average value of the pixel values higher than 97 % of the
cumulative histograms of the subimage for NLC at each scale from 1 to 4.

3.3.3.4 Detection of ROIs with Clustered Microcalcifications

To detect clustered microcalcifications, we employed the Bayes discriminant func-
tion (Duda et al. 2000) for distinguishing three classes w; (i =1,2,3). Classes wy,
@,, and w3 corresponded to abnormal ROI with clustered microcalcifications,
normal ROI with blood vessels, and normal ROI without blood vessels, respec-
tively. We divided our database into a training set and a test set. Each set included
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Fig. 3.3 Subimages for NC and for NLC, which were obtained from an abnormal ROI with
clustered microcalcifications, normal ROI with blood vessel, and normal ROI without blood vessel

600 mammograms obtained from 150 patients. We then trained the Bayes discrim-
inant function using three different types of ROIs selected from the training set. The
studied ROIs were 300 abnormal ROIs with clustered microcalcifications, 300 nor-
mal ROIs with blood vessels, and 300 normal ROIs without blood vessels. The
normal ROIs were randomly selected from normal mammograms without clustered
microcalcifications. In each of these three classes, the N and NL feature vector x at
scales from 1 to 4 which were determined from each ROI were used for calculating
mean vector m; and covariance matrix V;. Mean vector m; and covariance matrix V;
are defined as

1
m; = — X,
1
V, = . XEXE (x —m)(x —m;)".

Here, n; and X; are the number of patterns and the pattern set in class w;,
respectively. The Bayes discriminant function for distinguishing three classes
w; (i=1,2,3) is given by
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where || is the determinant. Then we then selected the ROIs at intervals of
approximately 1 mm in the test set. To distinguish the three types of ROIs, the
eight features determined from the selected ROIs were inputted to the Bayes
discriminant function as feature vector x. Bayes discriminant function g;(x) out-
putted three values indicating the likelihood of each class. The class yielding the
largest output value was considered as the result of the distinction of the three types
of ROIs. Regions connecting the ROIs, which were classified as abnormal, were
considered as regions with potential clustered microcalcifications.

3.3.3.5 Evaluation of the Detection Performance

A free-response receiver operating characteristic (FROC) curve (Metz 1989) is
usually used to summarize the detection performance of a CADe scheme quantita-
tively. An FROC curve is a plot of the true-positive (TP) fraction achieved by a
computerized scheme with respect to the average number of FPs per image varied
over the continuum of a given threshold. In our case, the FROC curve is not easy to
be calculated because the Bayes discriminant function output three values indicat-
ing the likelihood of each class. Therefore, first, we multiplied output value g;(x),
indicating the likelihood of an ROI with clustered microcalcifications, by a coeffi-
cient before comparing g;(x), g>(x), and gs(x). Next, the ROI was considered
abnormal when g;(x) was the highest value among the three output values. When
the center of the region connecting the ROIs, which were classified as abnormal,
was within a true cluster identified by an experienced radiologist, this region was
considered “truly” detected. In this study, the coefficient was varied from 0.5 to 1.5.

3.3.4 Detection Performance

Figure 3.4 shows the relationship between the TP and the FPs obtained by applying
the Bayes discriminant function with the eight features. For detecting clustered
microcalcifications, many investigators have developed CADe schemes using the
features related to the nodular structure only. Therefore, to investigate the useful-
ness of the NL features, the relationship between the TP and the FPs for the Bayes
discriminant function with the four features, i.e., all features except for the NL
feature, is also shown in Fig. 3.4. The detection performance of the Bayes discrim-
inant function with the eight features is much higher than that of the Bayes
discriminant function with the four features. The points, at which the blood vessels
intersect, tended to become nodular in structure. Therefore, they were detected as
FP candidates in many other algorithms for the detection of clustered
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Fig. 3.4 Comparison of relationships between the TP and the FPs obtained by applying the Bayes
discriminant functions with the eight features and with the four features

microcalcifications. This result indicates that the number of these FP candidates is
reduced by identifying the ROIs with blood vessels.

A CADe scheme based on the Bayes discriminant function with the eight
features for distinguishing the three types of ROIs identifies 310 of the 310 clustered
microcalcifications in the test set, yielding a sensitivity of 100.0 % and a false-
positive rate of 0.98 per mammogram. Please refer to the paper (Nakayama et al.
2006a) for the details.

3.4 Usefulness of CADe

Freer and Ulissey (2001) prospectively assessed the effect of CADe on the inter-
pretation of screening mammograms. In this study, 12,860 screening mammograms
over a 12-month period were interpreted using a CADe system. The use of the
CADe system resulted in the following: an increase in the recall rate from 6.5 to
7.7 %, no change in the positive predictive value for biopsy (38 %), an increase in
the number of detected cancer incidents of 19.5 %, and an increase in the rate of
detected early-stage cancer incidents from 73 to 78 %. Birdwell et al. (2005) studied
prospectively 8682 women during a 19-month period. Approximately 10 % of 8682
patients were recalled using a CADe scheme. CAD-prompted recalls contributed to
8 % of total recalled findings and 7 % of detected cancer incidents. Ko et al. (2006)
prospectively interpreted 5016 screening mammograms over a 26-month period
without and with the use of a CADe system. With the CADe system, the recall rate
increased from 12 to 14 %. The use of the CADe system had no significant effect on
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the positive predictive value for biopsy and could increase the cancer detection rate
by at least 4.7 % and the sensitivity by at least 4 %. Gur et al. (2004) interpreted
115,571 screening mammograms with (n = 59,139) or without (n = 56,432) the use
of a CADe system in an academic setting. They presented that the recall and breast
cancer detection rates did not change significantly if the CADe system was used.
Fenton et al. (2007) analyzed 429,345 mammograms for 222,135 women without
and with the use of a CADe system. The use of the CADe system decreased the
specificity from 90.2 to 87.2 %, increased the rate of biopsies by 19.7 %, and
decreased the rate of the detection of invasive cancer by 12 %. They concluded that
the CADe system reduces the accuracy of interpretation of screening mammo-
grams. However, in this study, the use of the CADe system increased the sensitivity
from 80.4 to 84 % (P = 0.32) and increased the rate of the detection of ductal
carcinomas in situ by 34 %.

Even the same CADe schemes will demonstrate different sensitivities and
specificities depending on the practice setting, number of the interpreted cases,
experience of radiologists in mammogram interpretation, and experience of radi-
ologists in the usage of the CADe scheme. These results are associated with an
increase in sensitivity and with a decrease in specificity in screening mammography
if a CADe scheme is used.

3.5 CADx Schemes

Most of the studies of CADx schemes focus on clustered microcalcifications and
masses. There are few studies of CADx schemes for architectural distortions or
bilateral asymmetries. Therefore, we only provide the information on CADx
schemes for clustered microcalcifications and masses in this section. A CADx
scheme consists of four main steps: image segmentation, feature extraction, feature
selection, and classification.

Jiang et al. (1996) developed a method for differentiating malignant clustered
microcalcifications from those benign. An ANN with eight computer-extracted
features of clustered microcalcifications was employed to identify breast cancer.
Computer analysis allowed to identify malignant clustered microcalcifications in
100 % cases and those benign in 82 % cases. The accuracy of computer analysis
was statistically significantly better than that of five radiologists. Jiang et al. (1999)
also extended this method of the classification of lesions as malignant or benign to
multiple-view mammograms. Markopoulos et al. (2001) analyzed the malignancy
of clustered microcalcifications using an ANN with eight features of the calcifica-
tions (density, number, area, brightness, diameter average, distance average, prox-
imity average, and perimeter compacity average). They showed a statistically
significant difference in the area under the ROC curve (AUC) values between the
ANN (0.937) and the performance of physicians (0.810). Kallergi (2004) selected
13 classification features from descriptors of the morphology of the individual
calcifications and the cluster distribution. The 13 features were combined with
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the age of patients and were given as inputs to an ANN. The classification
performance reached a sensitivity of 100 % for a specificity of 85 %. Chan et al.
(1998) developed computerized feature extraction of morphological features (size,
contrast, and shape) and the texture features derived from the spatial gray-level
dependence matrices. Linear discriminant classifiers with the features selected from
the morphological features and the texture features were employed to evaluate the
malignancy of clustered microcalcifications. They reported that the classifier could
identify 50 % of the benign clusters at a sensitivity of 100 % for malignancy.

Huo et al. (1998, 2000) developed a computerized method for the classification
of benign and malignant masses. The inputs to an ANN included four characteris-
tics of masses (margin, sharpness, density, and texture) that were automatically
extracted using an image-processing algorithm. The categorization of lesions as
malignant or benign using the ANN achieved an AUC value of 0.90. Bilska-Wolak
et al. (2003) compared the performance of a likelihood ratio-based algorithm (LRb)
with respect to a case-based reasoning (CBR) classifier, which provided a solution
to a new problem using past similar cases. The difference in the estimation of the
probability density functions results in a very small difference in the performance.
They reported that using both classifiers in approximately half of cases of benign
mammographic masses, biopsy could be avoided at a sensitivity of 98 %. Brake
et al. (2000) defined a number of features related to the image characteristics that
radiologists use to distinguish real lesions from normal tissue. An ANN was used to
map the computed features to a measure of suspiciousness of each region that was
found suspicious using a mass detection method. Approximately 75 % of all cancer
incidents were detected at a specificity level of 0.1 false positive per image. Floyd
et al. (2000) proposed a case-based reasoning approach for the classification based
on the ratio of the number of matched malignant cases to the number of total
matches in the database. When 98 % of the malignancies would be biopsied, the
number of benign biopsies would be decreased by 41 %.

3.6 Examples of CADx Schemes

3.6.1 Summary

Many investigators reported that the performance of radiologists was improved
significantly when they used the computer output indicating the likelihood of
malignancy for clustered microcalcifications, as shown in Sect. 3.7. However, the
performance level of the computerized schemes was considerably greater than that
of radiologists using the computer output. This result implies that radiologists
cannot rely on the computer output completely even if the computerized scheme
has a high-performance level.

To make clinical decisions to perform biopsy or follow-up on clustered
microcalcifications by considering possible histological classifications of
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magnification mammograms may reduce the number of unnecessary biopsies.
Invasive carcinoma and noninvasive carcinoma of the comedo type usually grow
rapidly (Kopans 2006; Morimoto and Sasa 1996; Sakamoto and Haga 2001).
Noninvasive carcinoma of the noncomedo type, which presents a lower risk than
noninvasive carcinoma of the comedo type, grows relatively slowly (Kopans 2006;
Morimoto and Sasa 1996; Sakamoto and Haga 2001). Mastopathy and
fibroadenoma expand very slowly (Kopans 2006; Morimoto and Sasa 1996;
Sakamoto and Haga 2001). Therefore, the computerized analysis of microcalci-
fications on determining the likelihood of histological classifications and the like-
lihood of malignancy may help radiologists to make a decision on patient treatment.
In this section, we provide a CADx scheme for identifying histological classifica-
tions of clustered microcalcifications on magnification mammograms.

3.6.2 Materials

Our database consists of 58 magnification mammograms that were obtained from
35 patients. It includes 35 malignant clustered microcalcifications (9 invasive
carcinomas, 12 noninvasive carcinomas of the comedo type, and 14 noninvasive
carcinomas of the noncomedo type) and 23 benign clustered microcalcifications
(17 mastopathies and 6 fibroadenomas). The histological classifications of all
clustered microcalcifications were proved using stereotaxic core needle biopsy.

These magnification mammograms were obtained using Kodak MinR-2000/
MinR-2000 screen/film system. The magnification factor of the magnification
mammograms was 1.8. The mammographic X-ray system included an X-ray tube
with a focal spot of 0.1 mm and a molybdenum anode, 0.03-mm-thick molybdenum
filter, and 5:1 reciprocating grid. These mammograms were digitized to a matrix
size of 512 x 512 with a pixel size of 0.0275 mm in a 12-bit gray scale using
EPSON ES-8000 digitizer (the optical resolution is 800 x 1600 dpi; the optical
density range is 0.0-3.3D).

3.6.3 Methods

3.6.3.1 Segmentation of Microcalcifications and the Determination
of the Cluster Margin

Figure 3.5 shows an example of the segmentation of microcalcifications and the
determination of the cluster margin. For the segmentation of individual microcal-
cifications within a cluster on mammograms, first, we enhanced the microcalci-
fications using the filter bank described in Sect. 3.3.3. Then a gray-level
thresholding technique (Gonzales and Woods 2007) was applied to the enhanced
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Fig. 3.5 Example of the segmentation of microcalcifications and the definition of cluster margin.
(a) The original ROI containing clustered microcalcifications; (b) the microcalcifications
enhanced by a novel filter bank; (c) the microcalcifications segmented by a gray-level thresholding
technique; (d) the candidate for the cluster margin yielded by drawing the circles at the center of
gravity of each microcalcifications; (e) the cluster margin determined by smoothing the shape of
the candidate for the cluster margin

image. To segment all microcalcifications in our database, we empirically used a
600-pixel value as a threshold value.

For obtaining information about the distribution of microcalcifications within a
cluster, the cluster margin was determined automatically. First, we drew circles at
the center of gravity of each microcalcification. The diameters of these circles were
increased from 20 to 60 pixels until all circles within a cluster were connected. Then
the region of the connected circles was considered as a candidate for the cluster
margin. The shape of the cluster margin could not be estimated accurately when the
candidate for the cluster margin had a large indentation, as shown in
Fig. 3.5d. Therefore, we employed a binary morphologic closing operator (Sera
1988) to smooth the shape of the candidate for the cluster margin. The structure
element for this binary morphologic closing operator was given by the circle with
half the diameter of the circle, which was used for determining the candidate for the
cluster margin. Finally, the edge of the smoothed candidate was determined as the
cluster margin.

3.6.3.2 Extraction of Five Objective Features

We selected five objective features to identify histological classification by consid-
ering the differences in image features among five histological classifications.
These objective features were (i) variation in the size of microcalcifications within
a cluster, (ii) variation in the pixel values of microcalcifications within a cluster,
(iii) shape irregularity of microcalcifications within a cluster, (iv) extent of the
linear and branching distributions of microcalcifications, and (v) distribution of
microcalcifications toward the nipple.

(1) The variation in the size: The variation in the size of microcalcifications was
determined using the relative standard deviation in the areas of microcalci-
fications within a cluster. The area of each microcalcification was defined as
the number of pixels within the segmented microcalcification.
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(i) The variation in the pixel values: The variation in the pixel values of the
microcalcifications was determined using the standard deviation in the pixel
values of microcalcifications within a cluster. The pixel value of each
microcalcification was defined as the mean value of the five largest pixel
values in the segmented microcalcification of the original image.

(iii) Shape irregularity: To determine the shape irregularity of microcalcifications,
first, we defined the irregularity index for each microcalcification as the
standard deviation of 16 shape factors. The 16 shape factors consisted of
eight minimal distances and eight maximal distances between the center of a
microcalcification and its edges. The minimal and maximal distances were
obtained in the eight regions located at intervals of 45°. Then the shape
irregularity of microcalcifications was determined using the mean value of
the five largest irregularity indices of individual microcalcifications within a
cluster.

(iv) The extent of the linear and branching distributions: The extent of the linear
and branching distributions was determined using the standard deviation of the
16 shape factors. These 16 shape factors were not applied to individual
microcalcifications but to the cluster margins defined in the previous section.

(v) The distribution toward the nipple: To determine the distribution of microcal-
cifications toward the nipple, first, we drew a straight line from the center of
the nipple to the center of a cluster. Then we drew a straight line perpendicular
to this line through the cluster center. The first line is called the main straight
line, and the second line is called the substraight line. Next, the distances of all
microcalcifications from these two lines were determined, and the two mean
values were calculated. The distribution of microcalcifications toward the
nipple was determined using the ratio of the mean distance of the substraight
line to the mean distance of the main straight line.

3.6.3.3 Identification of the Histological Classifications

A classifier based on the Bayes decision function (Duda et al. 2000) was employed
for distinguishing between the five different types of histological classifications.
The probability density function for each histological classification was assumed to
be approximated using the normal distribution. The mean vector and the covariance
matrix of the normal distributions were obtained from all data in our database. The
prior probabilities were assumed equal. A leave-one-out testing method was used
for training and testing the Bayes decision function. In this method, training was
carried out for all cases except for one case in the database. The case not used for
training was used for testing through the trained Bayes decision function. This
procedure was repeated until every case in our database was used once. The five
output values obtained using the trained Bayes decision function indicated the
likelihood of each histological classification. The output value yielding the largest
value was considered as the result of the classification.
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3.6.4 Classification Performance

Figure 3.6 shows the mean values and the standard deviations of each objective
feature of the five different types of histological classifications. These objective
features were normalized using all cases in the database. The values on the vertical
axis may correspond to the likelihood of malignancy because the five objective
features have large values in case of malignant microcalcifications. The five
objective features of invasive carcinoma and noninvasive carcinoma of the comedo
type have large values. However, invasive carcinoma can be distinguished from
noninvasive carcinoma of the comedo type using the two features related to the
extent of the linear and branching distributions and the distribution toward the
nipple. The five objective features of mastopathy and fibroadenoma have low
values. Fibroadenoma can be distinguished from mastopathy because the five
objective features of fibroadenoma have lower values than those of mastopathy.

2.3 :
o l |N0ninvasi\-‘c Nonilwasivc| Invasive
Fibroadenoma Mastopathy s i i carciioma
2 noncomedo comedo
5
=
=
]
S 15
2
st
N1 o
= 5 | A R
s NI o NE
S N | A N
N | N
e N | A N
c N N
=
=
=
[
0 -0.5 \
=
[+~
=]
=
8
75}
b= Variation in the size
2']'5 Variation in the pixel values
S . : ;
§ Y Shape irregularity
-2 B Extent of the linear and branching distributions
77 Distribution towards the nipple
25

Histological Classifications

Fig. 3.6 Mean values and the standard deviations of each objective feature of the five different
types of histological classifications
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The five objective features of noninvasive carcinoma of the noncomedo type are
nearly zero. It is difficult to distinguish noninvasive carcinoma of the noncomedo
type from mastopathy. Therefore, these cases should undergo follow-up at a short
interval in clinical practice. Table 3.1 shows the results of tests for univariate
equality of group means. The Wilk’s lambda (Johnson and Wichern 2007) for the
shape irregularity was smaller than any other features, and the F value (Johnson and
Wichern 2007) for the shape irregularity was larger than any other features.
Therefore, the shape irregularity made a larger contribution to identifying five
histological classifications of clustered microcalcifications. The distribution toward
the nipple made some contributions to the classification. However, the p value for
the distribution toward the nipple satisfied the significance level (p < 0.001).
Therefore, the five objective features were statistically significant for identifying
histological classifications of clustered microcalcifications.

Table 3.2 shows the results of the distinction of the five histological classifica-
tions by use of the classifier based on a Bayes decision function. The classification
accuracies of this CADx scheme for distinguishing between the three malignant

Table 3.1 Results of tests for univariate equality of group means

Wilk’s lambda F value p value
Variation in the size 0.52 12.19 < 0.001
Variation in the pixel values 0.65 07.04 < 0.001
Shape irregularity 0.50 13.00 < 0.001
Extent of linear and branching distributions 0.68 06.32 < 0.001
Distribution toward the nipple 0.69 06.05 < 0.001

Table 3.2 Results of the distinction of the five histological classifications by use of the classifier
based on a Bayes decision function

Computer output
Noninvasive

Noninvasive | carcinoma of
Pathological Invasive carcinoma of | noncomedo
diagnosis carcinoma | comedo type | type Mastopathy | Fibroadenoma
Invasive carci- 7(77.8 %) | 1(11.1 %) 0(0.0 %) 1(11.1 %) | 0(0.0 %)
noma (9)
Noninvasive 2(16.7 %) | 9(75.0 %) 1(8.3 %) 0(0.0 %) | 0(0.0 %)
carcinoma of
comedo type
(12)
Noninvasive 000.0 %) |2(14.2 %) 12(85.8 %) 0(0.0 %) | 0(0.0 %)
carcinoma of
noncomedo type
{4
Mastopathy (17) | 0(0.0 %) 1(5.9 %) 1(5.9 %) 14(82.3 %) 1(5.9 %)
Fibroadenoma 0(0.0 %) | 0(0.0 %) 0(0.0 %) 1(16.7 %) | 5(83.3 %)
(©)
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histological classifications were 77.8 % (7/9) for invasive carcinoma, 75.0 % (9/12)
for noninvasive carcinoma of the comedo type, and 85.8 % (12/14) for noninvasive
carcinoma of the noncomedo type. The classification accuracies for distinguishing
between the two benign histological classifications were 82.3 % (14/17) for
mastopathy and 83.3 % (5/6) for fibroadenoma. The sensitivity and the specificity
were 97.1 % (34/35) and 91.3 % (21/23), respectively. The positive predictive value
was 94.4 % (34/36), whereas the negative predictive value was 95.4 % (21/22).
Please refer to papers (Nakayama et al. 2004, 2006a, b, 2007) for the details.

3.7 Usefulness of CADx

An observer study of most of the studies for evaluating the usefulness of CADx was
carried out retrospectively. Jiang et al. (1999) tested whether CADx can improve
the performance of radiologists in the diagnosis of clustered microcalcifications in
mammograms. The average AUC increased from 0.61 without the use of CADx to
0.75 with the use of CADx (P < .0001). On average, using the computer aid, each
observer recommended 6.4 additional biopsies for malignant lesions and 6.0 fewer
biopsies for benign lesions. Jiang et al. (2001) also evaluated whether CADx can
reduce the interobserver variation in the accuracy of radiologists. As measured
using the SD of the AUC, it was reduced by 46 % if the computer aid was used.

Huo et al. (2002) evaluated the effectiveness of CADx as an aid to radiologists
reviewing clinical mammograms. When CADx was used, the average performance
of radiologists improved, as indicated by an increase in the AUC from 0.93 to 0.96
and by an increase in the sensitivity from 94 to 98 %. Chan et al. (1999) evaluated
the effects of using CADx on the classification of malignant and benign masses seen
on mammograms by radiologists. The AUC values of radiologists varied from 0.79
to 0.92 without implementing CADx and improved to 0.87-0.96 if CADx was used.
An improved positive predictive value as a function of the false-negative fraction
was predicted using the improved ROC curves.

These results are associated with an increase in both sensitivity and specificity in
retrospective observer studies using the CADx schemes for clustered microcalci-
fications and masses. We look forward to the introduction of an integrated CAD
scheme with the combination of a CADe scheme and a CADXx scheme to clinical
practice with no further delay.
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Chapter 4
Computer-Aided Differentiation
for Pathology Images

Masahiro Yamaguchi

Abstract The evolution of whole slide imaging (WSI) technology promotes the
pathology environment based on digital imaging, called “digital pathology,” and
enables monitor-based diagnosis instead of conventional diagnosis based on micro-
scopic observation, as well as the application of computer image analysis to
pathology practice. This chapter introduces the background, basic techniques, and
examples of image analysis technology for digital pathology. Computer-aided
diagnosis with quantifying morphological and molecular features will be a signif-
icant tool for diagnostic pathology such as cancer detection, grade differentiation,
and the decision of therapeutic plan. Some systems for automated processing of
WSI data are also presented including the systems that have been employed in
practice. The color correction, which is one of the most important issues in the
pathological image analysis, is also addressed.

Keywords Digital pathology « Whole slide imaging ¢ Quantitative pathology ¢
Nuclear atypia ¢ Structural atypia ¢ Morphological feature ¢« Color correction
Spectral imaging

4.1 Introduction

In diagnostic pathology, pathologists examine the tissue taken from the lesion
through macroscopic and microscopic observations, to determine the type of
disease or to make a decision if the tumor is malignant or benign. The result directly
contributes to the decision of therapeutic plan. Thus pathology plays an essential
role in cancer diagnosis and treatment, and it is often called “definitive diagnosis”
or “final diagnosis.” Molecular and genetic analyses are extensively used presently,
such as for subtype classification. Even so, the observation of tissue and cell
morphology is still a fundamental and important part in diagnostic pathology.
Since diagnosis is done by direct observation under a microscope, digital imaging
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technology has not been introduced in routine practice, in contrast to radiology
field. However, recently emerging technology called “digital slide” or whole slide
imaging (WSI) (Pantanowitz et al. 2011; Gilbertson et al. 2006) allows the full
introduction of digital imaging in diagnostic pathology. In WSI, the specimen on a
glass slide is scanned in very high resolution, and huge-size image data thus
obtained can be observed on a monitor with changing the field and magnification
interactively.

Once the tissue specimens are digitized, they can be exploited not only for
making a diagnosis by observing images on a monitor but also for diagnostic
support system based on image analysis technology (Meijer et al. 1997; Gurcan
et al. 2009; Saito et al. 2013; Kothari et al. 2013; Kayser et al. 2009; He et al. 2012).
In this chapter, the application of digital image analysis and pattern recognition
technology to the advancement of diagnostic pathology is described, along with
some challenges in this field.

When applying the digital imaging technology to pathology domain, the practice
in the radiology imaging is useful; computer-aided diagnosis (CAD) is one of them.
Although the methodology in radiology CAD can be applied, some differences
should be noted. In radiology CAD, screening or the detection of tumor was one of
the main targets, while differential or qualitative diagnosis is a major part in
pathology since the tissue under examination is acquired from a lesion. Not only
the detection of abnormality but the decision of malignancy or the classification of
grades or subtype is needed as well in pathology CAD. Moreover, the performance
of pathology CAD should be evaluated based on the therapeutic effectiveness,
which is an actual outcome of diagnostic pathology.

In the microscopic observation in histopathology and cytology, the color of
tissue plays significant role. In histopathology, the tissue acquired from the
human body is fixed with formalin, embedded in paraffin block, cut to thin sections,
and then colorized with staining for visualizing the tissue structure. There are
roughly three types of staining techniques: hematoxylin and eosin (HE) stain that
is often called general stain, special stains that visualize specific tissue element
depending on the purpose of observation, and immunohistochemistry (IHC) stain
useful for visualizing the protein expressions. Figure 4.1 shows the example of
images of HE-stained, special-stained, and IHC-stained tissues. Accordingly, the
color information is very important in the pathology image analysis (Yagi and
Gilbertson 2005; Rabinovich et al. 2004; Abe et al. 2005; Murakami et al. 2012). In
Sect. 4.4, some issues related to color in pathology imaging are also discussed.
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Fig. 4.1 Examples of images of histological stained tissues. (a) HE, (b) Masson’s trichrome
(special stain), and (¢) IHC

4.2 Digital Imaging Technology in Diagnostic Pathology

4.2.1 Evolution of WSI Technology

The introduction of digital imaging technology started with telepathology
(Weinstein et al. 2009). A remote pathologists support clinicians through network
by observing the digital image in telepathology. A pathologist can also be supported
by another pathologist at remote site with different specialty, and double-check can
be performed in efficient manner by employing telepathology system. There have
been different types of telepathology systems used—store-forward, video, robotic,
and WSI. The development of telepathology system has greatly contributed to the
advancement of pathology imaging technology.

The research and development of WSI have been made since late 1990s, but
practical deployment was difficult because it needs to deal with huge amount of
data. The pixel pitch should be smaller than 1 pm or even 0.3 pm, and the size of a
specimen is typically 20~30 mm, that is, the image size becomes 20,000 x 20,000 ~
100,000 100,000 pixels. Then the corresponding data amount is 1.2 GB~30 GB
per image in uncompressed case. The scanning time, data transfer, and interactive
display as well as image quality were difficult problems for practical use. Never-
theless, now the technologies for WSI scanner and viewer have been greatly
evolved, such as the systems of optics, mechanical controlling, digital image
interface, and fast computing. Advanced scanner system now enables the scan of
a single slide in 1 minute and comfortable interactive display. Figure 4.2 shows the
schematic drawing of WSI technology. In this example shown in Fig. 4.2b, the area
in 25.2 mm x 22.7 mm was scanned with 0.23 pm pixel pitch, and an image in
110,592 x99,840 pixels was obtained.

Still it is expected to address some issues related to image quality and focusing.
Since a tissue sample on a glass slide is not completely flat, it is necessary to adjust
the focus of the objective lens depending on the location on the specimen, but the
autofocusing occasionally fails. In addition, when the tissue section is relatively
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WSI scanner

Fig. 4.2 (a) The concept of WSI system. Tissue specimen on a glass slide is digitized by a WSI
scanner, and the image is reproduced on a monitor. (b) An example of observation. The whole
specimen is shown in the window at bottom right, and the image scanned with using a 40x
objective lens is displayed on the entire screen

thick, or in the case of cytology samples, the focus position needs to be changed
during observation. The images of different focus positions can be acquired by
state-of-the-art scanners, called “z-stack.” However, much larger amount of data
and longer acquisition time are required, and z-stack is currently used in limited
cases. As an effort related to the image quality control, some techniques (Hashi-
moto et al. 2012) are developed for automatic detection of the area suffered by
image blur due to focusing error as well as strong noise generated during the
scanning process. The detected areas are re-scanned so that good quality WSI can
be obtained.

So far, WSI has been used in practice mainly in telepathology, education,
conference, and research applications. Moreover, it is being also adopted to primary
diagnosis and clinical use (Pantanowitz et al. 2011; Gilbertson et al. 2006). WSI
technology will significantly contribute to the introduction of information technol-
ogy in pathology division, the connection and integration with PACS or EMR, and
the deployment of pathology CAD based on digital image analysis.
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The lineup of WSI apparatus includes a small-scale research-purpose device and
a large-scale system suitable for hospital clinical use that automatically process a
large number of slides. This practical WSI technology promotes the revolution of
pathology field, referred to as “digital pathology.” The Food and Drug Adminis-
tration (FDA) of the USA established a WSI working group, and the issues toward
clinical use are discussed in the working group (Center for Devices and Radiolog-
ical Health 2016).

In pathology department, traditionally the diagnostic workflow is based on the
exchange of tissue block or biopsy samples taken from lesion, or specimens on
glass slides. If all pathological specimens are digitized and managed as digital data,
the need of handling “things” like tissue samples is minimum, and overall workflow
of pathology department can be integrated into a computerized management sys-
tem. It will promote more efficient diagnosis process; thereby the diagnosis results
will be informed sooner to the patient, and the patient treatment will start earlier.
Besides, the management of “things” will also be improved, e.g., reducing the risk
of mixing-up samples and shortening turnaround time. The discipline on this
subject is recognized as pathology informatics, and digital pathology is a key
technology in this field.

4.2.2 Application of Image Analysis Technology

Since the diagnosis in pathology is carried out by visual observation of the tissue
morphology, cell arrangement, and color, it is sometimes pointed out that there is a
problem in the observer variability and reproducibility. In some cases, the morpho-
logical feature is represented by several levels of numbers, but it is based on visual
determination and said to be qualitative or semiquantitative diagnosis rather than
quantitative. Although counting the number of IHC stained cells is done as well, the
manual counting is inaccurate and troublesome.

The progress of digital image analysis, pattern recognition, and machine learn-
ing is remarkable, such as face recognition. By measuring the image features by
applying such a digital image analysis technology, it becomes possible to quantify
the morphological features of tissue specimen. Then it will enable more detailed
lesion classification, accuracy improvement in the determination of the degree of
malignancy, and better diagnostic report which is more useful for clinicians. Under
this background, active research is being carried out on the application of image
analysis technology to the pathology diagnosis.

Tissue architecture and cell morphology have been studied long regarding the
relation between the morphological features and the type of disease or the degree of
malignancy. It is known as pathological morphology or morphometry, and com-
puterized analysis has been also applied (Meijer et al. 1997). For example, the shape
features of cell nuclei are measured, such as the diameter, area, and circularity, or
the nuclear-cytoplasmic ratio (N/C ratio). Those morphological features are com-
pared with other pathological indices, clinical course, or prognostic indications.
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However, even though using a computer, the measurement is based on manual
process using general-purpose image processing software, and the results are rather
affected by the operator judgment. Then it is still considered as “semiquantitative.”
Moreover, as it requires labor and time, full application to routine practice is
difficult, and the use has been limited mainly for research purpose.

Recently, the development of molecular-targeted therapy is remarkable in can-
cer treatment. The effectiveness of such therapy is completely different depending
on the target molecule expression, and the determination of applicability is
extremely important. The image analysis technology of IHC-stained tissue is
getting attention as a tool for the objective assessment of applicability and the
improved accuracy and efficiency (Gurcan et al. 2009; Irshad et al. 2014). The
molecular expression is also important in subtype classification and evaluation of
tumor grade. It is evaluated by IHC-stained samples and more recently fluorescent
staining. Some examples of image analysis for molecular expression are introduced
in the Sect. 4.3.2.

On the other hand, HE staining which is a routine staining technique has long
history, and pathologists acquire considerable information from the observation of
HE-stained samples. Thus it is promising to apply computerized image analysis to
HE-stained samples. Although there have been many reports on the image analysis
of HE-stained tissue specimen, most of them need manual process as mentioned
above (Meijer et al. 1997). The region of interest is determined manually; the tissue
elements such as nuclei are extracted with adjusting threshold, or the contour is
traced by hand; then morphological features are measured; and statistical analysis is
applied. As it needs laborious process, it is difficult to be employed in routine
diagnosis. But the emergence of WSI is changing the situation. A completely
automated system is developed for the analysis of HE-stained specimens, in
which the WSI data is processed without human interaction, and the malignant
regions are automatically detected (Gurcan et al. 2009; Wienert et al. 2012; Kiyuna
et al. 2008). The system has been put into practice in laboratory test company for
quality control and quality assurance by double-check. 