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Preface 

The motivation for this book started when I introduced a course on 
Human-Computer Interaction in the BSc Computation degree at UMIST 
and began to look for a course textbook. At the time (1984) there were few 
books on the subject as a whole and no really suitable textbook for 
undergraduate courses. Although that situation is now changing, I find my 
motivation undiluted for another reason. Increasingly the human­
computer interface has become part of software development which 
practitioners in industry and academia recognise as important, yet the 
subject is taught in very few computer science courses. Unless we educate 
the system developers of tomorrow-that is, the systems analysts and 
programmers who are being trained now-about human--computer inter­
action, there is little chance of changing the current practice of poor 
interface design. Accordingly my chief aim is to bring the message of 
human--computer interaction to computer science students. 

This perspective is worth so me comment because the whole field of 
human--computer interaction is relatively young and a consensus about 
what should be taught within the subject area has only recently become 
clearer. I shall therefore explain my motives in writing this book in more 
depth. 

The primary aim is to give computer scientists knowledge of the issues 
in human-computer interaction, and help develop the skills needed to 
design better human-computer interfaces. As computer scientists are the 
major creators of software and hence human-computer interfaces, it is vital 
that they acquire knowledge and good practices of interface design. If this 
part of their education is neglected poor interfaces will continue to be 
foisted on users, making systems frustrating or unbearable, even though 
the internal software might be a perfect example of good software 
engineering practice. 

I have attempted to place interface design into a framework of software 
development by drawing on methods from systems analysis and design as 
weIl as ideas in human-computer interaction. Interface design is ultimately 
part of a wider design process for the whole system and should be 
integrated with mainstream systems development. Accordingly I place 
interface design and its components within the systems design life cycle. 

viii 



Preface ix 

The objective of teaching interface design begs the question of wh at to 
teach. Interface design is about designing human-computer interfaces for 
people. It seems common sense for designers to be knowledgeable about 
the subject of their designs, in this case people. The starting point 
therefore was to provide some appreciation of human psychology which is 
of importance to human-computer interaction: principally, perception and 
cognition which cover how we see, hear, think, learn and remember. It was 
not my intention to turn computer scientists into psychologists, hence the 
treatment of psychological material has had to be brief and is presented 
without extensive reference to background research. 

Psychologists, being empirical scientists, are quite correctly guarded in 
their assertions and conclusions. Computer scientists on the other hand 
deal in a more finite world and are unaccustomed to unsure knowledge and 
guarded assertions. This difference in view has caused some conflict in the 
field of human-computer interaction, with computer scientists criticising 
psychologists for not offering firm opinions; while psychologists criticise 
the computer scientists' thirst for simplistic views in a subject which is 
extremely complicated. To please both views is a task somewhat akin to 
playing hop-scotch on amine field. At the risk of offending my psycholo­
gical colleagues, in this book I have taken the computer scientist's 
viewpoint. In doing so I have had to gloss over the controversies which 
surround some topics in cognition and perception. 

In addition to providing psychological background to the subject, this 
book aims to teach a methodical approach and practical skills in interface 
design. The material is organised into four sections. Chapters 1 to 5 cover 
the psychological background, establishing general principles of human­
computer interaction and describing a method of interface design. This is 
followed by chapters 6 to 9 which give practical design advice for data 
entry, data display, and command and control interfaces. Chapter 10 
concludes with an examination of the pi ace of interface design within 
systems analysis and design, and abrief survey of current research topics in 
the subject. 

Human-computer interaction is a large field of endeavour with ill 
defined edges. In an undergraduate text it is impossible to cover the whole 
field; I have therefore been selective in the topics for study. Many issues 
which are more hardware in nature are not treated in depth; also system 
environment issues, social consequences of computer systems, and exper­
imental practices for interface evaluation receive little space. These topics 
are more than capably investigated by others whose works are cited in the 
references. 

It is a pleasure to acknowledge the help of Bill Black, Graham Hitch, 
William Edmonson and Ken Eason who have commented on the contents 
and various parts of the manuscript. Any inaccuracies which remain are of 
my own making. Finally, my last motivation for taking up the author's pen 
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my own making. I am also indebted to Gillian Martin for her efficient 
proof reading and her tolerance and support during the creation of this 
book. Finally, my last motivation for taking up the author's pen was 
self-interest. This book was prepared on a variety of word processing 
software with inadequate interfaces. If future authors have better tools, I 
will have succeeded in my quest to stamp out user-vicious software. 

AG. Sutcliffe 
December 1987 
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1 I ntroduction 

This chapter sets the scene for interface design by first placing interface 
design within the context of human factors and human-computer inter­
action and then exploring some justifications for why it is necessary to 
spend time and money designing human-computer interfaces. 

1.1 What is Human-Computer Interface Design? 

New areas of endeavour in any discipline have ill defined boundaries which 
take so me time to become stable. During this process the important issues 
in a subject become clear and the span of topics which properly constitute 
the subject becomes defined. Unfortunately, interface design, because it is 
relatively new, has ill defined boundaries, a variety of names and a great 
number of topics which may be considered. Therefore, I shall begin by 
drawing so me boundaries around the topics covered in this book and look 
at the wider perspective of the subject as weIl. 

Generally , human-computer interface design falls into the subject area 
called Human-Computer Interaction or the Man-Machine Interface. This 
spans the two older disciplines of computer science and psychology but also 
draws on material from linguistics, ergonomics and sociology. Human­
computer interface design, in the sense of this book, is the process of 
designing interface software so that computer systems are efficient, 
pleasant, easy to use and do wh at people want them to. The human­
computer interface is more than just the software and concerns hardware, 
the system environment and human organisation, but because this book is 
aimed primarily at computer scientists, software is the prime focus. 
Although this book concentrates on interface design from the computer 
scientists' point of view, and within that contraint focuses on the design of 
the software part of human-computer interfaces, it is important to realise 
that this is only part of human-computer interaction. 

One particular discipline, ergonomics, has made a considerable contri­
bution to interface design in both the broad and narrow perspectives over 
many years. Ergonomics, which is called Human Factors in the USA, is a 
branch of applied psychology wh ich aims to improve the design of 
machines for people. In doing so, it is intimately involved with understand-

1 



2 Human-Computer Interface Design 

ing the process of human-computer interaction. While this book will draw 
on some material from ergonomics, constraints of space mean that many 
ergonomically oriented interface issues (such as workplace design and 
hardware ergonomics) cannot be covered. 

The importance of this area of research has been recognised in the 
British Government's information technology research programme, the 
Alvey initiative, which placed the Man-Machine Interface on equal terms 
with three other branches of computer science: Software Engineering, 
Intelligent Knowledge Based Systems, and Very Large Scale Integration. 
As a result of the Alvey programme, a large amount of research is 
currently under way into interface design problems. Emphasis has also 
been placed on the subject in the research programmes of the EEC 
(ESPRIT), the USA and Japan. 

Human-computer interaction research covers a broad field from inter­
face hardware, the environment in which the interface is situated, and the 
effect of the interface on people, both individuals and groups, to the 
software issues of building interface software and tools to help construct 
interface software itself. A broad classification of the field subdivides into 
background issues, methodological issues, design practices and tool cons­
truction, giving the following topics: 
• Understanding thc essential properties of people which affect their 

interaction with computers 
• Analysing wh at people do with computer systems and their interfaces; 

understanding the user's task and requirements 
• Methods of specifying how the interface should function, how it should 

respond to the user, and how it should appear 
• Design of computer interfaces so they fit the properties of people and 

their objectives 
• Design of tools to help designers build better interfaces 
• Evaluating the properties of human-computer interfaces and the effect 

of systems on people 
These topics are naturally inter-related, so the theoretical background of 
the subject, based on psychology, should have an impact on the methods 
practised and on the tool environments constructed to help interface 
developers. Likewise the process of analysis, specification and design are 
necessarily interlinked. 

1.2 Why Design Interfaces? 

Before investing time, money and effort in any endeavour, the prudent will 
always ask if it is worth the investment. Interface design will undoubtedly 
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add to the cost and effort of developing computer systems, so it is worth 
devoting a little space to the question of justification. 

Interface design has been present in the computer science literature and 
industry for a decade or more; see, for instance, the early text by Martin 
(1973). People have realised and complained for a long time that computer 
systems are difficult to use, obtuse and jargon-ridden. By and large, users 
had to put up with this state of affairs because computer programmers took 
no notice of their complaints. The rise of human-computer interaction as 
an active discipline correlates weIl with the rise of the microcomputer. A 
plausible explanation for this is that for the first time computers and their 
software became mass circulation commodities for ordinary people. People 
rejected the jargon-ridden, unreliable offerings of earlier systems because 
they had a choice in an open market place. Early interfaces to micro­
computer software are user-vicious by today's standards, but compared 
with their contemporary mainframe rivals they were way ahead, astate of 
affairs which still generally applies at the present time. 

Interface design became important because pleasant, attractive, easy-to­
use software seIls weIl. But interface design is important whether a system 
is to be sold or not. The interface is the part of the system which the user 
sees, hears and communicates with. Depending on his or her experience 
with the interface, a computer system may succeed or fail. It is irrelevant 
how weIl engineered the software code is and how sophisticated the 
hardware is; a bad interface can ruin an otherwise excellent system. On the 
other hand, a good interface can save poOf software and make a system 
acceptable. 

Computing systems are becoming increasingly interactive. As they do 
so, the amount of code which is written for input and output (that is, the 
interface) has risen. It is estimated that most commercial decision support 
and information systems have beetween 70 and 80 per cent of their code 
devoted to interface handling. In on-line systems it is the interface which is 
not only the critical part but also physically the largest part. Good design is 
vital. 

The cost justification of interface design is not hard to argue, although 
statistics are hard to find (as is the case with software reliability). Poor 
interface design can have the following consequences: 

• Increased mistakes in data entry and system operation. Mistakes cost 
money to rectify and errors which go uncorrected can have very 
damaging consequences if decisions are taken on the basis of incorrect 
data 

• User frustration. This may be manifest in low productivity, employee 
stress, sabotage of the system or simple under-utilisation of the system. 
All these consequences cost money 

• Poor system performance. The system may not handle the volume of 
throughput it was designed for, or the accuracy of output may not agree 
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with the specification. Poor interface design makes it too cumbersome 
to use or too obscure to learn. Extra resources and money have to be 
put into the system 

• System lai/ure because 01 user rejection. This may seem to be an 
extreme case considering the tolerance of users to appalling software, 
but it happens. The US Dept of Defense ascribes its worst system 
failures to a combination of poor interface design and inadequate 
system requirements analysis 

Good interface design is essential for good system performance. All the 
above problems, inherent in poor designs, cost money either to fix or in 
terms of operating costs. In addition to system performance considera­
tions, there is the question of user tolerance to poor interface design. In the 
past, users have tolerated much poor interface software. This is unlikely to 
be so in the future. Many people are becoming exposed to microcomputers 
with attractive, pleasant-to-use software. Such software will become a 
norm which cannot be ignored by developers of in-house mainframe 
systems. Defending poor interface design is becoming harder to 
justify. Both the pro gram and systems design communities have recognised 
the vital importance of good design, and the application of design to 
human-computer interfaces is long overdue. 

Design is not an intuitive process. True, so me designers have a flair for 
finding innovative and good designs, but most people do not. Design is a 
process which has to be taught. It is a matter of applying knowledge to a 
design problem. The knowledge may be guidelines and principles bound 
up in a method which shows designers how to proceed; then as experience 
and design practice mature, more formal procedures and specifications 
may be introduced. In the case of interface design, the knowledge is in the 
form of guidelines and principles derived from psychology, the science of 
understanding the customers, that is, the people who are computer users. 

1.3 Human-Computer Interface Design and Computer Science 

The Human-Computer Interface (HCI) permeates many parts of com­
puter science and should be part of any system development which involves 
people as users. However, within computer science the most closely 
related areas are systems analysis and design, and artificial intelligence. 
The methodological part of HCI is concerned with many issues familiar to 
systems analysts. Wh at HCI workers call task analysis, systems analysts 
call requirements and current logical system analysis. The approach, 
methods and emphasis may be different but both disciplines are trying to 
establish and specify wh at the users want the computer system to do for 
them. Both system developers and HCI designers build software, the 
difference being one of perspective; the HCI designer concentrates on the 
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user whereas the system developer is more concerned with data and 
functional analysis. In the future this distinction should disappear. 

Artificial intelligence shares the HCI interest in human cognition. Both 
disciplines construct models of reasoning and problem solving, although 
again the approach and perspective may be different. In HCI design, 
understanding human reasoning and memory is important so that systems 
can be built to accord more closely with natural human properties and to 
adapt to human individual differences. The artificial intelligence perspect­
ive is more motivated towards building machines with human-like think­
ing, memory and learning abilities in the long term, and finding efficient 
problem-solving mechanisms in the short term. Both artificial intelligence 
and HCI may come to use the emerging discipline of Cognitive Science as 
their theoretical inspiration as this subject embraces computational 
approach es for the study of human processes. 

Human-computer interaction bridges, to an extent, the gap between 
systems analysis and design, and knowledge-based systems, having a 
methodological similarity with the former and a theoretical basis largely 
shared with the latter. In addition, HCI specification shares commonalities 
with software engineering. Interfaces have to be specified so that their 
behaviour can be predicted and described in an exact manner; to do so 
requires precise methods of specification, many of which have been 
borrowed from software engineering. As the human-computer interface 
will comprise a significant amount of the overall software in a system, it is 
natural that computer scientists should wish to apply rigorous standards to 
it, as they do to non-interactive software. These issues are returned to in 
chapter 10. 

Design of the human-computer interface is a necessary activity in nearly 
every system wh ich is designed. The subject fits with more established 
disciplines within computer science and should, as it matures, become 
increasingly integrated within the kernel of computer science subjects. 



2 User Psychology 

This chapter gives an overview of cognitive psychology which is relevant to 
human-computer interaction. It starts with how we perceive information 
from the environment with the senses of sight and hearing and then 
progresses to understanding the information we receive. Memory is then 
investigated: how information is coded and possibly stored, with the 
limitations of human memory. This leads on to mental activity and how we 
reason and solve problems, and the control of mental activity as attention 
is reviewed together with more general topics of stress and fatigue. The 
chapter concludes with a summary of the principles of interaction based on 
knowledge of human psychology. 

2.1 Understanding Users 

Throughout this chapter a metaphor of a human computer will be used, 
with the objective, I hope, of making the workings of the human brain 
easier to understand. Please note that this view is just a model· of how 
things may operate in the human mind based on psychological study; it is 
by no means a definitive statement of how the human brain is structured or 
how it operates. Such topics are still active areas of psychological research. 
Viewing the brain in terms of processors, memories and messages is a 
convenient analogy, nothing more. 

Basic anatomy of the human processor 

The human brain is composed of a vast number of nerve cells, estimates 
varying around 15 billion. Nerve cells are the basic elements of human 
processing and memory. Each cell is a single small living unit (see figure 
2.1) bounded by an envelope which keeps it all together called the cell 
membrane. The important quality of nerve cells is that they are capable of 
electrical activity. The electrical activity is not the same as in electrical 
circuits; instead it is electrochemical activity caused by different concentra­
tions of metallic ions separated by the cell membrane. The electrical 
activity is caused when ions are allowed to flow across the membrane to 

6 
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Figure 2.1 Microscopic view of a single nerve cell showing inter-cell 
connections. Other nerve cells send impulses which either excite or inhibit 

the receiving cell, making it more, or less, likely to fire. 

re-adjust differences in concentrations. This causes a change in the 
electrical potential across the membrane, called depolarisation. 

Depolarisation signals astate change in the nerve cell, creating the 
digitall/O states necessary for computation. Unlike transistors, nerve cells 
do not retain astate change indefinitely. As soon as depolarisation has 
occurred, the nerve cell tries to return to its previous resting state by 
pumping metallic ions across the membrane to re-establish the concentra-
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tion difference. Once the concentrations have been restored the nerve cell 
can fire again; however, re-ad j ustment of concentrations takes a short 
period, so continuous activity is not possible. 

Nerve signals (called impulses) travel along nerve cells, but to transfer to 
the next cell they must cross an inter-cell gap. This gap is very sm all (2-5 
microns) but so is the electrical voltage, wh ich means it cannot jump the 
gap. Inter-cell transmission is by chemical means. When an impulse 
reaches the nerve end it triggers the release of a chemical which has to 
diffuse across the gap. The chemical then stimulates electrical activity in 
the next cell, causing it to depolarise. This electrochemical activity means 
that the speed of nerve messages is slow compared with the speeds of 
electrical signals in computers. 

Electrical signals from nerve cells usually co me as aseries of blips, each 
firing being a transient 010 state change as depicted in .figure 2.2. The 

(a) 

+60 

+30 

mVO 

-30 0 o o 
State changes 

(b) 

1.5 ms 

Figure 2.2 View of a nerve cell impulse recorded as a cell fires. The 
electrical potential changes from resting level of -10m V by about 

60 m V, then overshoots to -5 mV before returning to the resting level. 
The whole event, called a nerve impulse, forms the basis of a 010 state 

change. (a) Electrical changes in a nerve cello (b) Typical recording from 
a nerve cell showing aseries of impulses. Frequency of nerve impulses 

can code analogue signals. The second recording shows aseries of nerve 
impulses within a 1.5 ms time period. 
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coding of messages between nerve cells is different from that of electronic 
circuits because nerve impulses are transient and on account of the effect 
they have on receiving cells, either increasing or decreasing the tendency of 
a receiving nerve to fire. Inter-nerve cell connections can therefore be 
inhibitory and damp down a cell's activity, or exätatory and stimulate it. 
Wh ether a nerve cell fires or not and its rate of firing depend on its innate 
tendency to fire and the inhibitory and excitatory influences upon it. As 
most nerve cells in the brain have an average of 150 connections, this 
composite influence can be very complex and is capable of expressing 
analogue effects as weIl as being very finely tuned. The complex signalling 
permits much more complex coding than in digital electrical signals. As a 
result a branch of computer science, neural computing, has developed to 
build artificial versions of nervous processors. The essence of nerve cell 
based communication is: 

• An electrical change of the order of 30 mV can be detected in nerve 
cells when they fire. This is called a nerve impulse. It lasts for a few 
milliseconds 

• The nerve cell restores itself to its original state a short time after firing 
• The change can be repeated many times a second 
• A single nerve cell signal is a transient 010 state change 
• Nerve cell signals are a mixture of digital and analogue. Unlike 

computer logic circuits the digital signal is very transient and analogue 
signals can be generated by differences in frequency, that is, many or 
few impulses per second 

• Nerve cells can signal a change of state easily but continuous activity is 
not possible; this creates problems for signalling steady-state conditions 

• Nerve cell signals are slow in comparison with electrical circuits 
(milliseconds compared with nanoseconds) because the signal is an 
electrochemical change 

The effect nerve cells have on each other is determined not only by the 
quantity of impulses they receive from other nerve cells but also by the 
sensitivity of their reaction. Some cells require a lot of impulses to excite 
them sufficiently to fire, while others are tuned to hair-trigger levels. In 
this way nerve cells can imitate AND and OR logic gates and other familiar 
computer logic components, as iIIustrated in figure 2.3, as weIl as coding 
analogue signals. 

Nerve cells in the brain are highly interconnected in a very complex 
network. Even if psychologists have not been able to unravel the wiring 
diagram of the brain, we do know something of its higher-Ievel compo­
nents. Processing is divided into right and left halves. The right-hand side 
of the brain is generally considered to be responsible for the more creative 
and artistic functions while the left-hand side has the more logical 
reasoning faculties. There are also discrete areas for sight, hearing, touch 
and the other senses, memory and areas devoted to coordinating musdes; 
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e e 

1: e 
9 J..-

(cl 

(b) (d) 

Figure 2.3 Connections between nerve cells to form a human logic circuit. 
The effect on the receiving cell depends on both the frequency of the 

impulses received from sending cells and the type of connection which 
may be excitatory or inhibitory. (a) and (b) show an AND gate, (c) and 

(d) an OR, respectively in firing and non-firing conditions. 

figure 2.4 illustrates the anatomical geography of these areas. Beyond a top 
level functional division, little definite information can be given about the 
microstructure of the human brain. The human wiring diagram is infinitely 
more complex and subtle than the most advanced microprocessor and is 
still poorly understood. Attempts to follow the real architecture of the 
brain at lower levels are at present unrewarding; therefore to further our 
understanding of the human machine we shall use an abstract model, that 
is, an interpretation of how the logical processing units in the brain may 
work. 

Cognitive models 

These models have been devised by psychologists to explain human mental 
activity using an analogy of computer processing. It is important to 
remember that models are only an abstraction; the final story of how the 
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human machine works will be much more complex. Cognitive models, 
however, are useful because they illustrate the advantages and limitations 
of the human machine, qualities which can be inferred from experimental 
evidence. In interface design we will need to take these qualities into 
account. 

In the following sections, perception and cognition will be explored 
using an information processing model based on the work at Xerox by 
Card et al. (1983). Perception is the process of receiving information from 
the outside world, while cognition is the mental activity we describe in 
everyday terms as reasoning, problem solving, thinking and learning. The 
boundary between the two is blurred because as we receive information, 
we also interpret it, and use it to problem-solve. We shall look at the 
receptive processes first. 

2.2 Vision 

Vision is the dominant sense we use when interacting with computers, 
which has implications for VDU screen design and other display devices. 

Perception poses three problems for the human machine: 



12 Human-Computer Interface Design 

• Receiving an external stimulus, in this case the electromagnetic 
radiation of light 

• Translating the stimulus into nerve impulses in a manner faithful to the 
stimulus 

• Attaching meaning to the stimulus 
To resolve the first problem, nerve cells have to be made sensitive to light. 
Light is a form of electromagnetic radiation with a wavelength between 400 
and 700 nanometres (nm). Other forms of radiation have longer wave­
lengths, for example, infra-red radiation or heat, 1000 nm, or shorter 
wavelengths such as X-rays. Within visible light colour sub divisions are 
defined by wavelength; at the longer wavelengths (650-700 nm) is red 
light, progressing through the colours of the spectrum to blue light at short 
wavelengths (300 nm). 

The other physical property of light is its intensity, a measure of how 
much energy it contains. Unfortunately, human perception of light rarely 
bears a dose relationship to the actual physical properties, the disparity 
being a testament to the pre-processing of physical light by the eye. 
Consequently, brightness of light is not just its physical intensity but is also 
conditioned by the difference between light intensities in an image and 
what we have seen previously. The subjective judgement of brightness also 
overlaps with measures of colour, as we see colours mixed with white as 
brighter than darker ones. 

Light has two objective measures, luminance and contrast, and one 
subjective measure, brightness. Luminance is a measure of the light 
reflected from a surface. This is a composite of the amount of light falling 
upon a surface and the quantity reflected from the surface; in general, dark 
surfaces absorb more light, light ones ab so rb less light. Luminance as 
measured by photographic light meters is expressed in candelas per square 
metre (cd/m2). Contrast measures the difference in luminance between two 
surfaces and is expressed as the ratios 

Lmax - Lmin {L(object) - L(background)} 
Co nt rast = or -'---'---'---'------'-----'-----'-'-

L max + Lmin L(background) 

The Lmaxlmin formula ratio gives a measure between 0 and 1 for low to high 
contrast. Hence to make an object stand out in an image, a high overall 
luminance is desirable (Lmax) and a large difference between the object and 
background. This gives our intuitive feeling of high contrast in bright 
sunlight. 

Brightness, on the other hand, is a subjective measure; although it may 
have a relationship to luminance this is not always reliable. Contrast can 
play tricks with our judgement, with the result that figures of identical 
luminance can be discriminated as having different brightnesses, as illus­
trated in the contrast bands and intersection contrast illusions in figure 2.5. 
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Figure 2.5 Perceptual illusions in contrast: Mach bands and the Hermann 
grid. The bands do not have the sharp change inbrightness which we see 

and the shadows in the grid intersections do not really exist. 

Brightness is measured by discrimination tests on thresholds or just 
noticeable differences. The limit of discrimination for human vision can be 
summarised by a ratio: 

dL 

L = k 

where dL = threshold luminance 
L = background luminance 
k = a constant, roughly 0.01 to 0.02 for VDU displays. 
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This gives a foreground/background ratio between 1: 100 and 1 :50, hence as 
the background luminance is increased, objects become increasingly 
difficult to see. Our visual acuity, however, is not just dependent on 
luminance and contrast; other factors such as background lighting and 
image composition are important. 

Visual acuity and sensitivity 

Visual acuity is influenced by several factors. There is the complexity of the 
image itself, the intensity of the light, and image colour. Low light intensity 
makes images difficult to resolve. If the object is illuminated on a VDU 
screen, high background light intensity also makes resolution worse. 

Absolute human visual sensitivity is remarkable, as the human eye can 
see in almost complete darkness, although the threshold of vision, that is, 
the smallest quantity of light that can be seen, increases with age. Even 
though people can see light at low intensities, they can resolve little detail 
and for normal working good illumination is required. This has implica­
tions for VDU displays. The advantages of good luminance in VDU 
displays are: 

• Acuity increases with better luminance 
• Better luminance means a sm aller aperture in the eye which increases 

the depth of field. In the eye, aperture is controlled by the iris; the 
effect is the same as reducing the camera stop from F5.6 to F8, which 
gives a better depth of focus 

• Better luminance means reflected light is less noticeable and hence less 
distracting 

On the minus side, increased luminance makes VDU flicker more obvious 
and direct glare may become uncomfortable. Visual flicker is caused by the 
eye discriminating changes in an image over a short time period. If the 
change happens quickly enough the eye assurnes a continuous state and 
does not differentiate between each image; this quality, called the flicker 
fusion frequency, happens at approximately 32 images/second, and the 
continuous-state illusion is exploited in motion picture photography. At 
slower rates of change the eye starts to notice the difference, which on a 
VDU screen becomes an annoying flicker. VDU flickers depend on the 
refresh rate, that is, the number of times a second the screen is scanned and 
the image redrawn. Usually VDU monitors use rates around 50 Hz (scans 
per second) which avoids flicker in most circumstances except for high 
luminance displays. 

Human visual acuity is quite remarkable but individually very variable. 
Most people can resolve gaps of 2 mm at a distance of 2 metres but this 
teIls us little about how people see meaningful shapes. Of more import an ce 
for interface design is resolution of more complex shapes and letters. The 
optician's test measures optimal visual ability as resolving letters 20 mm 
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high on the bottom row at 6 metres even though average ability is only 
capable of resolving 40 mm letters. Few people have perfect vision, so 
display design should ac((omm,odate average human abilities. One design 
implication of acuity is the size of text characters. 

The size of printed letters is measured in points, a point being roughly 
1/72 of an inch; thus 10 point type has letters with an approximate height of 
10/72 or 0.14 of an inch. Printed text usually ranges between 18 and 8 
point; anything sm aller than 8 point is difficult to read for a long period of 
time and letters sm aller than 6 point are alm ost impossible to resolve for 
reading purposes. 

Colour sensitivity varies between individuals and between colours. Most 
people can see yellows better than reds, greens ahd blues; however, colour 
blindness should also be considered. Approximately 9 per cent of the male 
population have some colour blindness, and the inability to discriminate 
reds and greens is most common. Discrimination between colours is best in 
the mid range of the spectrum where the discriminable difference for 
shades of colour in terms of wavelength is 1 nm; towards the edges of the 
spectrum this rises to 20 nm. However, apart from simple images, discrimi­
nation also involves recognition. Behind the statistics of human vision lies a 
complex apparatus of reception and image interpretation, which we shall 
now consider. 

Visual processing 

Our eyes are sensitive to light because of photo sensitive pigments, 
chemicals which change in response to light and create an electrical signal 
for transmission by the optic nerves. The chemicals, rhodopsin for colour, 
and iodopsin for black and white, are present in cells in the retina or back 
of the eye. The receptive cells, rods for black and white and cones for 
colour, have an irregular distribution in the retina. Rods are more 
concentrated around the periphery while cones are concentrated at the 
centre with the maximum cell density in the fovea which is the natural 
point of focus on the retina. 

Light enters the eye through the lens and is focused, upside down, on the 
retina as illustrated in figure 2.6 which depicts the anatomy of the eye. The 
retinal cells react to the patterns of light in the image, firing with a 
frequency corresponding to the light intensity. The nerve cells are orga­
nised in a mosaic of small groups to cover the whole image. So far the 
mechanism may appear to be similar to a photographic process but in fact 
vision is very different. 

Before images are transmitted to the brain, the eye does a considerable 
amount of image enhancement. The human visual system is much better at 
dealing with variation in light intensity than even the most sophisticated 
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Figure 2.6 Anatomy of the eye. Images are focused by the Zens on to the 
photoreceptive retina at the back of the eye. 

cameras. This is because the eye has an automatie intensity adjustment 
device which turns the nerve cell sensitivity up in dark conditions and down 
in bright light. Another example of pre-processing is in the treatment of 
boundaries. The retina has feedback circuits which enhance the effect of 
boundaries in images; these work by adjacent cells either inhibiting or 
stimulating each other to make the co nt rast between black and white stand 
out more clearly. The result is that oUf eyes pick up edges and especiaHy 
moving edges very weH indeed. This has implications for screen design, 
making moving stimuli very noticeable, and for icon design in which clear 
boundaries be co me important. 

More abstraction of image qualities is carried out in the next stage, 
image interpretation. The main point of image reception is that it is not just 
a photographic process; even at this early stage certain qualities of the 
physical image are being abstracted. 

Image interpretation 

Nerve impulses are transmitted from the eyes via the optic nerve to the 
optic cortex in the brain. Here images are translated into what we see. The 
whole process is still not completely understood; however, the basic 
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principles have been weIl investigated. Part of the optic cortex is organised 
in columns of nerve ceIls, each column being linked to a group of receptive 
cells in the retina. The cortex column cells have specialised roles for 
detection. Each cell type responds to a different primitive component in 
the image such as edges, corners, bars and gaps. 

Depending on the pattern of nerve impulses coming from the retina cell 
group, one particular column cell will fire, transmitting the message that 
this part of the visual field has a particular shape (bar, edge, etc.) in it. By 
combination of many thousands of retinal cell groups an image can be 
built up as a composite of primitive features which define shapes, which in 
turn make up the complex pictures that we see. To supplement the shape 
outlines, the optical cortex gets more information from the retina. Retinal 
nerve cells are specialised for different receptive duties; some respond to 
colour, depending on its wavelength (red, blue and yeIlow), others detect 
movement, while some respond to the texture (such as rough or smooth) of 
surfaces in the image. 

The optic cortex receives a mass of information coded in nerve impulses 
about different qualities of the image. The cortex then lias to create visual 
meaning, the image we see, out of this information. It fulfils this task by 
referring to past records in memory, using an object-property matching 
process and reasoning about the objects within the image; for further detail 
the reader is referred to the work of the late David Marr (1982) who has 
described visual perception in detail. Marr demonstrated that we under­
stand images by aseries of processing steps; first objects are identified in 
terms of basic shape, then additional features are added ineIuding depth 
and perspective in the image to give a 2.5D sketch; further processing may 
then follow for a true perspective. 

Object matching usually works very weIl but the result is that what we 
see is not wh at is there, rather it is our brain's interpretation of what is 
there based on memory and a mass of highly coded signals. Occasionally 
the process makes amistake and we see a visual illusion. 

Visual illusions use two tricks to fool the eye and brain; ambiguity and 
suggestion. Ambiguous images are ones which are open to two or more 
interpretations; different people will see different images because they 
have attached their own meaning to the picture. Some weIl known 
ambiguity illusions can be found in figure 2.7. Suggestion fools the eye by 
giving it a false eIue in an image. The eye then supplies the missing 
information from memory to fit the eIue, and creates an illusion of what is 
there. Only on eIoser examination does a contradiction become apparent. 
Suggestion can also work by supplying insufficient information in an image 
and then giving an extra eIue verbaIly. People instantly see something in an 
image which beforehand they could not see, as illustrated in the Dalmatian 
illusion (figure 2.8). The implication of visual interpretation is that images 
are open to misinterpretation, because each person attaches his or her own 
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Figure 2.8 The power o[ suggestion on interpretation. When prompted, 
most people see a Dalmation dog in the picture, some however insist it is 

a cow. 

meaning to wh at is seen. As we shall see, icons, too, are open to many 
interpretations by different people. Correct interpretation of an iconic 
image can only be assured by testing its meaning. 

2.3 Hearing 

While vision is the dominant sense for human-computer communication at 
present, it is probable that hearing will assume at least equal importance in 
the future. Speech is the natural human communication medium and it 
would seem to be an appropriate method for computer control. Hearing 
involves the same set of problems as vision: reception of the stimulus, 
translating its properties into nerve impulses, and then attaching meaning 
to the nerve messages. 

Sound is pressure waves in agas. The air surrounding us is composed of 
gases, and sound is transmitted to us as aseries of pressure waves in air. 
Sound waves have properties of frequency and intensity. Frequency is a 
measure of how close the sound waves are together and is recorded as the 
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number of waves arriving at a point per second, expressed as cycles per 
second or more often thousands of cycles per second--called kiloHerz. 
Sound frequency is usually described as pitch; the high er the frequency the 
higher the pitch of asound. 

Sound intensity is a measure of the energy in the sound waves, roughly 
how compressed the air molecules are in each wave. Intensity is related to 
the amplitude of sound, which is a measure of the sound wave energy at a 
particular frequency-see figure 2.9. We refer to intensity as loudness of a 
sound but, as with vision, wh at we hear does not always correlate with the 
physical measurements. Lower-frequency sound transmits more energy 
and is therefore technically louder. People, however, will reliably describe 
a high-pitch but physically low-intensity sound as being louder than a 
low-pitch high-energy sound. We react to our interpretation of sound, 
something quite different from the physics of wh at we receive. 

Sounds are rarely composed of a single frequency; instead most sounds 
are a composite of waves at many different frequencies. Even a simple 
sound produced by a tuning fork has a main frequency and aseries of 
extra, higher frequencies called harmonics. The tone of a sound, in the 
musical sense of the word, is produced by complex combinations of these 
harmonic frequencies. Complex wave forms can be resolved into aseries of 
simpler waves by the process of Fourier analysis which describes the 
mathematical relationships between a complex wave and its components. 
The ear does a type of Fourier analysis on sounds and codes them as a 
series of frequencies and amplitudes corresponding to the wave's complex 
components. 

As with the reception of light, considerable pre-processing occurs with 
hearing. The human ear is adapted to analyse complex sounds, and in 
particular speech. Speech is such a complex combination of sound waves 
that a graphical representation as shown in a spectrogram recording, 
illustrated in figure 2.10, looks like a complete blur. The ear has to detect 
all the separate frequency and amplitude components in speech. 

Auditory pre-processing 

Receptors in the inner ear show a similar specialisation to the optical 
system; some are tuned to fire for particular frequencies of sound, while 
others respond to the amplitude at a particular frequency. The ear acts as a 
se ries of semi-overlapping filters about a quarter of an octave wide. Nerve 
cells in each filter res pond if part of the sound spectrum falls within their 
band; so asound wh ich is a composite of many frequencies is converted 
into a pattern of nerve impulses representing its various features. The 
filters have narrower band widths at lower frequencies with progressively 
wider bandwidths at higher frequencies, hence the ear is tuned to extract 
more information from lower-frequency sound. The frequency range for 
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Figure 2.9 The frequency and amplitude of sound waves: (a) a simple 
sound wave showing the change of amplitude with frequency; (b) a 

comp/ex wave decomposed into its harmonie components at different 
frequencies. 
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Q t th e u 5 er n t er f Q ce 

Figure 2.10 Sound spectrogram showing the continuous nature of speech, 
recorded as frequency over time. 

deciphering speech is from 260 to 5600 Hz; however, the region of2-3 kHz 
is most important. Telephones only transmit from 300 to 3000 Hz, yet we 
can he ar speech quite adequately. 

The ear bas to extract certain sounds mixed in witb background noise. 
Tbe relationsbip of sounds to background noise is expressed as decibels 
(dB), a logaritbmic ratio of tbe power of tbe sound:background noise, 
usually referred to as tbe signal/noise ratio. So not only does the ear bave to 
be sensitive to tbe overall frequency range but it also bas to resolve 
small-frequency components witbin tbe overall noise input. Tbe key 
factors of auditory processing are: 

• Frequency range for speecb interpretation 260-5600 Hz, overall hear­
ing range 200-10 000 Hz althougb tbis is individually variable 

• Resolution capable of telling frequency components one-quarter of an 
octave apart 

• Temporal resolution of sounds separated by 5-15 milliseconds (ms) 
• Amplitude resolution of 1 dB in peaks of sound 

Interpretation of sound 

Tbe most important aspect of sound from abuman point of view is 
language. Sound interpretation is integrally linked with language un­
derstanding, both functions being carried out in the auditory cortex of the 
brain. To interpret sound the auditory system has to classify the input into 
three categories: noise and unimportant sounds which can be ignored; 
significant noise, that is sounds which are important and have meaning 
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attached to them such as a dog's bark; and meaningful utterances 
composing language. 

The hearing system, like vision, makes use of past experience when 
interpreting input. Spoken language is full of mispronounced words, 
unfinished senten ces and interruptions; furthermore, it happens quickly so 
the interpretation mechanism has to keep pace with the input. Speech rates 
are in the range of 160-220 words per minute, so interpretation has to be 
rapid. 

Language recognition from speech has to start by discovering the basic 
sound units of language called phonemes. These sounds can then be 
matched to the basic units of written language, called morphemes which 
correspond approximately to syllabies, suffixes, prefixes, etc. and thereby 
words. Phonemes describe all the possible sounds in a language. Some 
languages possess many sounds; for instance, Norwegian has 24 different 
vowel sounds alone, while 40 phonemes make up all the vowel and 
consonant sounds in English. Phonemes mayaiso differ considerably from 
the written language, as in English plural nouns which, although written 
with an 's/es' suffix have two different sounds, a 'z' as in hens, fens and 's' 
as in books, locks. 

Interpretation, however, does not use phonemes alone, it is a layered 
and integrated approach in which the brain makes use of language syntax 
(the grammar), semantics (the meaning of words and sentences), and 
pragmatics (knowledge of the context of communication), to decipher 
communication. 

Speech does not appear as a sequence of conveniently separated 
phoneme sounds but as a continuous band of sound throughout a phrase or 
sentence. Our ears extract most information from the lower frequencies 
where resolution is better, but temporal patterns in higher frequencies are 
also important. Simple template matching of sound spectrograms to 
phonemes is unsatisfactory because of the problem of finding word 
boundaries; in addition, a wide variety of physical sounds can be generated 
for one phoneme by different speeds of speech, different dialects and 
speech inaccuracies. It is the knowledge of language syntax and semantics 
which enables us to break the continuous speech into discrete phonemes 
and words. People supply a significant amount of wh at they hear on the 
basis of expectancy. This can be demonstrated by experiments asking 
people to identify asound masked by a cough in the middle of a sentence. 
Most subjects reply that no sound is missing. Further evidence of verbal 
suggestion is demonstrated by an experiment in which one word 'eel' was 
heard as four different words depending on the sentence context: 

It was found that the eel was on the axle 
It was found that the eel was on the shoe 
It was found that the eel was on the table 
It was found that the eel was on the orange 
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The sound 'eel' was heard as wheel, heel, eel and peel respectively in the 
four sentences (Warren and Warren, 1970). Speech recognition also suffers 
from illusions in a similar manner to the visual system. In speech the timing 
of perception is more critical and as a result the tolerance of speech­
interpretation mistakes is higher; consequently illusions in speech are not 
referred to as such. 

Memory plays a crucial role in both vision and hearing; consequently the 
role of perception, in the sense of receiving information, and cognition, in 
the sense of understanding and using external information, cannot be 
meaningfully separated. This leads to investigation of how memory works 
and how it is used in the processes of understanding and reasoning. 

2.4 Learning and Memory 

Human memory comes in two varieties: short-term working memory and 
long-term permanent storage. The information-processing model will be 
used to place memory in the perspective of perception and cognition. 

According to the model, each perceptual sense has a processor and 
associated short-term memory. These memo ries form the input and 
output buffers of the human system, storing abstract images in visual 
short-term memory and sounds in auditory short-term memory. Each 
memory is associated with a sensory processor. The sensory processors 
analyse the contents of their memories and pass the resulting information 
to the cognitive processor for identification of the sensory input. The 
overall schema of the model human information processor is illustrated in 
figure 2.11. 

The capacity of sensory short-term memory is not dear, but for vision it 
must be at least the contents of one visual field. The contents decay rapidly 
in about 100 milliseconds and are continually overwritten by new input; for 
an illustration, when you dose your eyes the visual image vanishes quickly. 
The visual input buffer has to be overwritten because the quantity of data 
in an image is vast and images change continually; consequently storing 
even a few images would take a vast amount of memory. The auditory 
input buffer, also referred to as echoic memory, may contain several 
phonemes' worth of sound because no one millisecond of sound contains 
enough information for correct language identification. The contents of 
echoic memory probably last for up to 1 second before they are lost. 

The contents of visual and auditory short-term memories are in an 
abstract form after sensory processing, although no meaning has been 
attached to the input at this stage. Meaning is generated when information 
in the input short-term memories is passed on to the central cognitive 
short-term memory for interpretation. The cognitive processor is thought 
to be responsible for object identification. This is effected by matching the 
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incoming information with past experience and then attaching semantic 
meaning to the image or sound. To complete the model, the cognitive 
processor has an associated short-term memory which is used for storing 
temporary working information. The information may have come from the 
sensory processors or may have been retrieved from long-term memory. 

The cognitive processor performs most of the actions which are consi­
dered in everyday language to be thinking. The results of thinking are 
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either placed back in short-term memory, or may be stored in long-term 
memory, or may be passed on to the motor processor to elicit behaviour by 
operating musc1es. The motor processor is responsible for controlling 
actions by musele movements which create human responses and behav­
iour, such as running, talking, pointing, etc. The motor processor has its 
own short-term memory to store input from the cognitive processor. Its 
output is sent down the peripheral nervous system, which forms the body's 
data communications network to the musc1es. Speech output is a special 
case which requires a separate output processor and buffer of its own. 
Evidence indicates that approximately 2 seconds' worth of speech can be 
held in the buffer which allows words to be assembled in a sequence for 
rapid output. 

The information-processing model provides an outline description of the 
cognitive apparatus, although the whole system is known to be more 
complex. At this point, the important distinction to make is between the 
roles of short-term and long-term memory. 

2.4.1 Short-term Memory 

Short-term memory (STM) is the human equivalent of computer RAM 
memory, in other words the working memory of the central processor. In 
contrast to computers, human short-term memory loses its contents unless 
it is refreshed every 200 ms; however, the readlwrite access time, about 
70 ms, is quite quick so information can be held in STM by continual 
rewriting. 

According to the information processing model, short-term memory has 
to store information from many sources, hence it may seem strange that 
experimental evidence indicates that it has a very limited capacity . In an 
influential paper, Miller (1956) summarised experiments which placed a 
limit on short-term memory of seven items plus or minus two. Items were 
not stored as in computer memory 'bytes' but in 'chunks' of information. 
These can vary from simple characters and numerals to complex abstract 
concepts and images. The secret of expanding the limited storage in STM is 
to abstract qualities from the basic information and store the abstraction 
instead. 

This concept is best understood by example. Telephone codes may be 
given in an unordered fashion, such as 0612363311; such large numbers are 
difficult to assimilate and remember, but break the number up into smaller 
units and memorisation is easier, for example, 061-236--3311. The effect is 
to suggest a chunking strategy to the reader. Instead of storing ten separate 
digits, the number groups can be stored as whole chunks, reducing the 
storage required from ten chunks to three. The more order which can be 
imposed on the raw data, the better the chunking. To convince yourself of 
the point try to memorise the following quickly: 
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832751984221 - accurate recall would be unusual 

061-236-3311 - should present no problems 

246 
357 
81012 
91113 

should also be recalled without error 
once the pattern has been seen 
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The second and third number sequences have order within them that 
prornotes chunking. What has been stored is so me quality of the data 
which can be used to reconstruct it: in the latter case, the algorithm of 
evenlodd triplets in an ascending numeric series. 

In summary, the important features of short-term memory are: 
• Rapid read/write access time-70 ms 
• Memory decays quickly-200 ms unless refreshed 
• Capacity is Iimited to 7 ± 2 chunks 
• Storage capacity can be increased by abstraction qualities of raw 

information 
More recent research has shown that the information-processing model is a 
little simplistic (see Hitch, 1987). STM has at least two sub-systems; one 
deals with language-based data while the other deals with visio-spatial 
information. The linguistic sub-system functions as a list but access is like 
a hybrid UFO (last in first out) queue. We tend to remember the last and 
first few items in the list and forget the middle. Storage and retrieval are 
generally sequential. The whole short-term system, called working 
memory, is controlled by an executive, similar in concept to the cognitive 
processor. This more elaborate model helps explain how temporary 
memory for visual and textual information differs and how interference 
during memorisation impairs retention of information. In the latter case 
the executive appears to be distracted during the process of storing and 
refreshing the contents of working memory. 

Some key features of working memory are: 
• Distraction causes forgetting of recently learned material. Even a sm all 

number of simple chunks of information are lost within 20 seconds if 
there is distraction during input 

• Other inputs impair recall. Supplying irrelevant material during input 
to working memory makes recall worse 

• Very similar inputs impair recall. Supplying closely related items 
during memorisation makes recall worse 

• Immediate memory for details in complex images is poor 
• Recall of items is better if both the word for and a picture of the item 

are presented together, compared with the image or word in isolation 
• People remember in the short term «30 s) by scanning back along the 

input-thus last in first out 
The consequences of working memory lead to some general 
guidelines: 
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• Minimise distraction during tasks and memorisation 
• Beware of overloading short-term memory, both in terms of quantity 

of information and time span of retention 
• Structuring (chunking) information helps memorisation 
• Images are helpful but need to be accompanied by text 

The central role that short-term memory plays within computer interface 
operation will become apparent in chapter 3 on task design. Short-term 
memory limits our ability to process information during tasks. Its counter­
part, long-term memory, is important in storing the knowledge which we 
use to help us understand and perform tasks. 

2.4.2 Long-term Memory 

Long-term memory is the main file store of the human system. It has a near 
infinite capa city as no-one has been able to demonstrate an upper limit on 
wh at we can remember. Memory failure appears to be a problem of not 
retrieving wh at is al ready inside our memory. 

Retrieval of facts from memory can be remarkably fast, especially for 
frequently used items and procedures. Retrieval time for information used 
less frequently varies; it can be quick, but may be slow especially for older 
people. Retrieval according to the information-processing model is a 
function of the cognitive processor, but in reality the process must be more 
complex. Often, remembering a fact is not instantaneous; instead it comes 
back some minutes after the original effort to retrieve it. During the 
intervening time attention will have been devoted to other matters, hence 
it appears that a background memory processor must be invoked to effect 
difficult long-term memory searches. 

The basic organisation of this memory is thought to be semantic, that is, 
data is stored in terms of linguistically based concepts linked together in a 
highly developed network. An over-simplified analogy is to consider 
long-term memory as a sophisticated network type of database with access 
paths following a line of associative pointers to the information. A 
semantic network model, as depicted in figure 2.12a, is not the whole 
story. Memory also has categories which contain many related items, and 
the network may act as a link to these categories. However, there are 
probably two types of access, one chain of semantic associative pointers 
and a more direct access mechanism via images. This gives rise to the 
possibility of two types of human memory, associative and analogue, the 
former storing concepts while the latter stores more concrete objects such 
as images and sounds. 

Memory mechanisms 

How memory works in the physical dimension is still a subject of research. 
One hypothesis predicts that it is a chemical process of making network 
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(a) Semantic network model of memory. Objects are associated in a network 
of classification and attributes. The image of the object is not stored in a 
photographic form, rather a representation is generated from the network 
of interconnected labels which describe it. 

~,,7"W' 
CAT ---t"~ cat -----~.~ animal ------'.~ living 

/ m;o, 

mouse ...... -----flMOUSE 

~..--~ 
• /squeak/ 

(b) Category model. Objects are held within categories which have descriptive 
tags for recall. Individual objects are not directly addressable, instead 
they are recalled by list searching the category contents. 

kiwis penguins 

Category attributes -
used for recall 
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members 
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Figure 2.12 Organisation o[ memory: semantic network and category 
models. 

links between nerve cells, and that the act of remembering re-creates the 
links. Computer simulations of learning, which may be regarded as a form 
of making new memories, have shown that within network models, human 
learning can be mimicked by complex algorithms which contral how 
associations are formed between nodes in the network. Certain algorithms 
can form new network pathways from inputs to outputs by alte ring weights 
on connections. These weights mimic the synaptic structure of nerves and 
control whether the influence on the next node will be excitatory or 
inhibitory. One such algorithm is Hebb association which states that if two 
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adjacent nodes are activated together then the weights should be changed 
to increase their association. This creates associative learning as illustrated 
in figure 2.13. Simultaneous firing by parts of input neurons has the effect 
of strengthening their connections to the output neuron. 

The models work by iterative cycling of the algorithms around the 
network until a stable pattern of associations emerges. Interpretation of 
these patterns requires a human observer , but in some ca ses it appears that 
new meaningful associations can be generated. In one example a network 
input representing royal family trees in a parent/children form created new 
outputs which described kings and queens in terms of brothers and sisters. 
This research, called parallel distributed processing (Rumelhart and 
McClelland, 1987) may form a credible model of human memory as there 
is some evidence that human nerve cell networks change their connective 
properties during learning. So memorisation and learning may be by 
formation of complex pathways in neural networks. Forgetting, on the 

8 
/ 
Input (shape 
dc tcctors) 

--------)---1----1-----+----+-_- _-_-__ -:::.::. Synapse 

Figure 2.13 Memory schema: possible neural organisation in visual 
perception. The input comes fram edge detectors; connections in the 
matrix can then detect different firing patterns among the input nerve 
cells. In the example the cell connected to all four inputs fires when a 

square is found. Firing in adjacent cells could make the synaptic contacts 
with output cells stranger. 
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other hand, happens when the links decay with age or were poorly formed 
in the first place. 

Memorisation is usually an effortful process. There are various methods 
of memorisation, the simplest being rote learning in which information is 
committed to memory as a list with few associations between individual 
items. An example of rote learning is the practice of learning tables of 
numbers by heart. However, most learning is by association, in which facts 
are linked together to provide an access path. There is experimental 
evidence that the greater the number of separate access paths, or the more 
often an access path is used, the easier a fact is to remember. The depth of 
processing in terms of elaborate reasoning carried out during memorisation 
also helps recall in the future. 

Organisation o[ memory 

The organisation of human memory is far from clear, although most 
evidence favours the view that all storage is finally of the semantic 
associative kind, with two different, linguistic and visual, access mechan­
isms. There are two types of knowledge of importance for human­
computer interaction. First is categorial knowledge, that is objects and 
their associations. In this case memory may be organised in categories and 
the access mechanism finds the category although, as indicated by exper­
imental evidence, not the members within a category. There is evidence 
that we organise the world not into discrete non-overlapping categories but 
in a more fuzzy manner, with co re and peripheral members. To illustrate, 
most people have an idealised concept of a bird. A robin fits this core or 
prototypical image, having the properties: round, feathered, sings, lays 
eggs, etc. In contrast, a penguin is a more peripheral member of birds 
because it does not share all the attributes of the prototype image and it has 
additional non-standard attributes, for example, it swims and cannot fly. 
The concept is illustrated in figure 2.12b. Retrieval is more rapid and 
accurate for core items in categories and slower for peripheral items. 

The second type is knowledge about actions and how to do things. This is 
held in two different forms; declarative or rule based knowledge and 
procedural knowledge. When we start out knowing little about a subject, 
we acquire fragments of declarative knowledges as rules and mini­
procedures. This knowledge, however, is not organised, so to carry out a 
task we have to reason with declarative knowledge fragments and compose 
them into a plan of action. This process, often described as 'figuring it out' , 
involves considerable effort. That effort is the demand on short-term 
memory as we organise the knowledge fragments. As people become more 
familiar with a task, these fragments become compiled into procedures that 
can then be run automatically. Hence when we know how to do a task we 
simply call the procedural knowledge of how to perform it automatically. 
This is easy because the short-term memory load has been avoided. 
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Another view of memory is based on how information is stored. One 
type is episodic memory; here associations are made in a context. The 
other type is semantic memory in which associations are stored in an 
organised mann er. The former requires less effort, for example, we 
remember objects on a desk which provides the context. Semantic 
memory, however, requires understanding of wh at is being stored rather 
than a loose association such as spatial proximity and temporal co­
occurrence. In spite of this, episodic memory has its uses. It is a powerful 
me ans of recall especially when visual cues can be given. The icon-based 
desktop metaphor of Apple and Xerox workstations uses episodic memory 
to help us remember and understand the system as objects on a desktop. 

Storing information in long-term memory is generally linked to under­
standing facts. This is demonstrated by the way people reconstruct 
information from memory. Storage of data on every object of interest 
would swamp even the large capacity of human memory, consequently 
associations are stored with a limited amount of basic data. To illustrate 
the point, try to find out in which compass direction you are facing while 
you read this book. This may be an easy task if you know your room 
faces a particular direction; a more likely scenario is that you will 
establish the direction either by reasoning based on where the sun rises and 
sets or by using geographic knowledge of landmarks wh ich you can see. 
You can synthesise knowledge from associations between memorised facts 
rather than storing each fact individually. By storing links between facts 
we can memorise a large number of facts and reconstruct even more 
information by processing those links in new situations. The reasoning 
process which happened during memorisation is important for recall. For 
instance, you may have established the direction from the link between 
sunsets-west and the observation that you know where the sun sets in the 
view from your window. 

Memorisation techniques 

Formation of access paths can be helped by memorisation techniques. 
Perhaps the most famous of these was invented by Solomides, an ancient 
Greek poet. His technique was to associate information with spatial 
features of a house; so the first part of a speech was linked with the 
entrance hall, the middle part with the living room, and the end with a 
bedroom, etc. This technique formed more associative links during memo­
risation and possibly exploited the visual access path to memory. Other 
techniques involve coding extra semantic cues in memory pathways by 
learning additional associations with the object to be retrieved. Examples 
are keywords, peg words, mnemonics, similes and acronyms. 

Memorisation fails because an access path either decays through lack of 
use or was poorly constructed in the first place. Similar facts can interfere 
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with recall, so weIl recognised access paths which are sufficiently distinct 
from others are helpful in preventing recall errors. Distractions during the 
memorisation process also cause recall errors as the access path is liable to 
be incomplete. So if attention is diverted during memorisation, for instance 
by a noisy environment, memory performance will suffer. 

Memory is one of the critical limiting factors of human information 
processing which affects interface design in many ways. Interface design 
should strive to reduce the amount which has to be learned; and when 
learning is inevitable, recall should be helped by memory cues. We deal 
with the complexity of the world by ordering and classifying it. The 
interface designer should support this process by imposing structure on a 
design, one of the basic HCI principles. We understand and memorise 
complex information by breaking the complexity down into simpler 
components using a hierarchical approach. Complex objects are remem­
bered, and hence understood, by storing facts wh ich compose and describe 
the object at various levels, in combination with the access path of 
associations by which we analysed and understood the object in the first 
place. The more structure and categorisation we can put into a body of 
information, the easier it is to learn. 

A second HCI principle wh ich is important for memorisation and 
learning is consistency. The more consistent something is, the easier it is to 
perceive patterns within it and hence to learn its structure and character­
istics. Humans are good pattern recognition and association machines; 
anything which helps to establish a pattern will help to reduce the memory 
burden. A summary of the important features of long-term memory are: 

• Effectiveness of recall is correlated with the depth of processing on 
input, that is, the effort put into memorisation 

• Recall is helped by unique cues and the distinctiveness of the item in 
memory in relation to other items stored in the same context 

• Recall is hindered if distracting and irrelevant material is presented 
during memorisation 

• Recall suffers if one cue is used for many different objects (cue 
overload) 

• Recall is better for pictorially presented material and for text presented 
with pictures than for text alone 

• Recall is better if the context of remembering fits the context of 
memorisation (episodic match) 

• Similar items are more likely to be grouped in categories 
• Within categories, prototypical items are easy to memorise and recall 

General guidelines can be derived to help memorisation and recall; 
however, as with short-term memory, care must be exercised in applying 
these guidelines. General advice does not always fit into specific contexts. 

• Memorisation can be helped by enriching the information during 
learning. Reasoning and understanding what is being remembered 
help 
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• Stmcturing information helps reasoning and creates extra links to 
retrieve items 

• Techniques can be used to add extra recall cues, for example, 
keywords, spatial memorisation, etc. 

• Visual presentation with text helps learning and recall 
• Consistency of associations creates better contexts for memorisation 

and recall 

2.5 Thinking and Problem Solving 

Thinking, reasoning, and problem solving are all human mental activities 
wh ich process data derived from our senses and long-term memory. 
Problem solving is something that we do every day of our lives when we 
come up against something unexpected. It may be defined as 'the 
combination of existing ideas to form a new combination of ideas'. An 
alternative view focuses on the cause. Problems arise when there is a 
discrepancy between a desired state of affairs and the current state of 
affairs and there is no obvious method to change the state. 

Problem solving progresses through several stages; the names of stages 
vary between authorities on the subject, so the following scheme is a 
generalisation: 
(a) Preparation or formulation: the goal state is defined and necessary 

information for a solution is gathered. 
(b) Incubation or searching: anticipated solutions are developed, tested, 

and possibly rejected, leading to more information gathering and 
development of alternative hypotheses. 

(c) Inspiration: the correct solution is realised. 
(d) Verification: the solution is checked out to ensure it meets the goals 

and is consistent with the information available. 

To illustrate how problem solving may work, another model will be 
employed. The Goals Operators Methods Selection mIes (GOMS) model 
of Card et al. (1983) owes its heritage to the General Problem Solver model 
of Newell and Simon (1972). 

Problem-solving models 

The GOMS model is composed of a set of goals and sub-goals organised in 
a conceptual problem container, called the problem space. During the 
problem-searching phase, goals are broken down into a sub-goal network; 
searching then proceeds by traversing the network and testing hypotheses 
at each node. At each sub-goal node data is read into short-term memory, 
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evaluated and then stored back into long-term memory as searching 
progresses to the next sub-goal. 

EventuaIly, if the search network has been weIl constructed and all the 
facts are available to be evaluated, and the sub-goals pass the tests, the 
final solution node is reached, resulting in the problem solution. This 
operation is the familiar reasoning strategy of problem solving by steps, 
namely if X is A, then Y is probably B, which me ans that Z must be 
true . . . etc. However, not all problems can be approached in such a 
sequential manner. 

Other components of the model are operators which describe the 
sequence of actions necessary to reach the goal and methods which control 
the strategy or approach to the problem. Operators are controlled by 
selection rules, that is, production systems which invoke an operation. 
Facts are evaluated to give results either proving or disproving a sub-goal. 
According to the results, the goal network may be re-organised as new 
hypotheses are introduced and old ones discarded. 

Methods describe how the network is formulated and traversed; essen­
tially they are the problem-solving strategy. Humans use a variety of 
strategies, some of which they can articulate but some appear to be 
unconscious as in solutions which 'come in a flash'. This leads to difficulties 
when analysing human problem solving. The accepted method is protocol 
analysis, basically thinking out aloud, by asking the subject to verbalise the 
problem-solving steps and procedures. Unfortunately humans are often 
unaware of their own procedures in detail, with the consequence that steps 
are omitted. Reasoning analysis, therefore, poses problems for knowledge 
acquisition and problem-solving analysis in expert systems. 

There are different strategies or methods which can be applied to 
reasoning. One is known as forward chaining, in which facts are known 
allowing the 'IF(condition)' part of an If-condition-Then-action produc­
tion system to be evaluated. The chain progresses forward to an action or 
the next IF test. The mirror image is backward chaining when we have facts 
relating to the consequences (action) part and reasoning progresses 
backwards to establish the IF condition which is consistent with the 
observed facts. People use both methods interchangeably. 

Another problem-solving method is inductive reasoning. This case is 
similar to classification; by observation of facts we conclude a new fact 
which describes the initial assertions. Faced with a menagerie full of cows, 
Hons, giraffes and bears, the observation may be made that they all have 
four legs, leading to the conclusion that animals are quadrupedal. 

Various other strategies of problem solving are used by people, some of 
which have been incorporated into the semantics of databases, for 
example, aggregation of properties to define an object, inheritance of 
properties in a classification scheme of objects. Success in problem solving 
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can often depend on using novel strategies, such as visualising the problem 
in spatial terms or treating it mathematically, as shown in figure 2.14. 
People are naturally conservative in their approach to problem solving, 
and adopt the methods they are used to. 

Mental models 

Another common reasoning strategy is deduction. Deductive reasoning 
starts with assertions and discovers new facts by logically examining the 

(a) 

(b) 

Figure 2.14 Two methods of problem solving. (a) Visualisation of the 
Buddhist monk problem. The problem is: a monk climbs a mountain 

path starting at dawn, stopping for rests on the way up and arriving just 
before sunset. The next day he descends by the same path, aga in stopping 
tor rests but going [aster than on the way up. Demonstrate that there is a 
point on the path which the monk will occupy at exactly the same time of 
day on both the up and down journeys. (b) Visual mental model of the 
problem to order 'the fork is on the left of the knife, the plate is to the 

right of the cup, and the knife and plate are not adjacent.' 
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relationships or properties wh ich the assertions describe. This is associat­
ive, or syllogistic reasoning of the style: 

All animals with wings can fly 
Bats are an im als 
Bats have wings 

Therefore bats can fly 
! propositions or known facts 

a new conclusion based on 
the propositions 

The procedure is to pattern-match items and the truth conditions attached 
to them, from which new combinations of facts can be made. Logicians 
have formalised this process as propositional calculus and its more 
sophisticated brother, predicate calculus. People, however, do not obey 
these formalisms. While we reason weIl in terms of positive association, 
when negative terms are introduced our reasoning becomes illogical. Take 
the following problem, which is a classic in psychology: 

You are given four cards: on one side there is a number and on the other 
a letter. A rule states that if there is a vowel on one side then there must 
be an even number on the other. Which cards should be turned over to 
prove the rule true or false? 

DDD[J 
Most people go for card E and 4. Logically this is not correct because the 
rule states a vowel-even number link and not the converse. Finding a 
consonant on the reverse of 4 proves nothing. The correct answer is E 
and 7. 

However if the problem is restated in more concrete terms, performance 
improves. Test yourself with the following. There are four invoices on a 
desk. Invoices are marked pro-forma and normal payment. Pro-forma 
invoices must be paid and stamped on the reverse side with 'Payment 
Received' before goods can be dispatched. The four invoices are face-up 
pro-forma, face-up normal payment, face-down unstamped, face-down 
stamped. The question is the same as before: prove the rule that 
pro-formas must be stamped. Performance this time should be better 
(pro-forma and unstamped is the solution), although the underlying logical 
properties of the problem are identical. 
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It appears that the content and context of a problem are more important 
than underlying logical structure and that reasoning in abstract terms is 
more difficult than in concrete examples. The important consequence of 
this is that we transfer our knowledge about context and content between 
problems rather than the underlying logical structure. This has implications 
for task design because unfortunately knowing one task does not help 
learning of another task with the same underlying logical structure. 
Instead, context influences our decisions which may result in the wrong 
method being applied to a problem because superficially it appears to be 
similar to a previous one. 

Human and machine deduction are very different. Human reasoning 
uses logic loosely and backs it up with associations, that is, knowledge 
about the objects in the problem. To illustrate the point, consider the 
assertions: 

Some animals with wings can fly 
Birds have wings 
Therefor~ birds can fly 

The conclusion may b regarded as valid but it is not logically so because 
the assertion does not state that all animals with wings can fly. We mayaiso 
refute the argument from our knowledge that penguins have wings but 
cannot fly. We appear to construct mental models of things in terms of 
propositions or truths which we hold to be true on ,the basis of memory. 
These truths are then used in reasoning rather than logical examination of 
the problem in detail. The explanation of cognitive processes by mental 
models has been advocated by 10hnson-Laird (1983) and this work has had 
a wide influence on cognitive psychology. 

Mental models help explain observable phenomena about human mental 
abilities such as our in ability to reason logically in some situations. Human 
ability to reason logically may be limited by working memory because to 
solve problems several associations have to be held in working memory. 
Consider reasoning about the following: 

Some Artists are Brokers 
All Brokers are Consultants 

We form a model of the propositions symbolically 

A=B 
A=B 
(A) (B) 

B=C 
B=C 
B=C 

where 0 denotes an independent 
existence and = is a link equating 
the objects 
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Reasoning then proceeds by substitution to create 

A=B 
(A) (B) 
A=C 
(A) (C) 

We conclude that some artists are also consultants. 

39 

This is an easy example where the number of concepts does not exceed 
working memory limits but, when the number of terms increases, more 
than one mental model can be constructed for a set of propositions; and the 
relationships to be held in working memory increase. Furthermore, when 
negative terms are added this militates against the positive pattern­
matching process. Not surprisingly we reason poorly with complex logical 
relationships involving negation. To prove the point, consider the follow­
mg: 

No Brokers are Artists 
Some Brokers are Consultants 
Are any Artists also Consultants? 

More than one conclusion appears to be possible because more than one 
mental model can be constructed. In another case of No Aare Band 
No Bare C, there are two conclusions: 

There are three disjunct sets A, B, and C 
Set A and C may however be related, even though A,B and B,C are 
not 

Mental models may be either physical or conceptual. Physical models 
describe the relationships of objects in the real world in terms of spatial 
distribution of events in time. Physical models may be visualised in a 
spatial manner, especially if the problem involves spatial reasoning, such as 
the fork is on the left of the knife; the plate is on the right-hand side of the 
knife. Conceptual models come in different manifestations. There is the 
surface linguistic expression, then an internal mental language which, 
although linguistically based, represents a further abstraction. Conceptual 
models are a type of internal mentallanguage representing truth values of 
relationships with which we can reason. The form of mental models differs 
between people and depends on individual cognitive styles. Mental models 
are important in creating human-computer interfaces, and this theme is 
revisited in chapter 3. The main point to note is that mental models should 
be based on people's experience, that is, the truths wh ich they may be 
expected to hold. 
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Skills and errors 

We problem solve in two modes. If we know little about the problem we 
use previous knowledge and general rules of thumb or heuristies. This 
attentional reasoning is a diffieult proeess whieh makes heavy demands on 
working memory, as we form the problem-solving network. After expe­
rienee, problem solutions are stored in memory and the eorreet ealling 
eonditions then invoke automatie proeedures whieh eonsume less effort. 
People tend to minimise mental effort whenever possible so there is a 
natural tendeney to use automatie proeedures if possible and to automate 
new proeedures with praetice. Use of automatie behaviour presents a 
dilemma in matching ealling eonditions to the eorreet proeedures. In such 
situations we make mistakes. Errors in problem-solving tasks ean be 
classified as 'slips' which are errors in earrying out a eorreet sequenee of 
aetions and 'mistakes' when the plan of action was miseoneeived in the first 
plaee. Slips are probably eaused by a distraetion or failure in attention so 
that a step is missed out or not eompleted. True mistakes, however, are a 
failure in matching the eorreet proeedure to the problem. 

People are generaHy good at heuristie reasoning and this ability marks us 
apart from even the most sophistieated artifieial intelligenee maehine. 
IronicaHy, however, when we are under press ure this ability often deserts 
us; we revert to automatie proeedures which may weH be inappropriate. 
There is evidenee to suggest that people seleet proeedures on the basis of 
frequeney of use if environment cues do not identify the eorreet memory 
exaetly. This frequeney gambling ean lead to unfortunate consequenees, 
some of whieh have been manifest in aceidents in nuclear power stations. 

Aequisition of skill is by learning, the proeess of acquiring new memories 
for behavioural sequenees and mental proeedures of problem solving. Skill 
learning is subjeet to a law of diminishing returns known as the power law 
of praetiee; the time taken to eomplete a task plotted against the praetiee 
time forms a straight line on a log-log plot. The effeet is that more praetiee 
yields an inereasingly small improvement in performance. The power law 
ean be formalised: 

T = c + a(P + d)"b 

where c = near maximum speed (asymptotie) 
T = task eompletion time 
a = initial speed 
P = praetiee time 
b = number of trials 
d = possible number of trials before measurement. 

Acquisition of skill is influenced by factors which also affected memorisa­
tion. Frequent, regular learning sessions help skill acquisition whereas gaps 
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without practice help forgetting; positive feedback during task perfor­
mance helps automation, as does presenting a clear model to the task and 
making the task steps easily recognisable. Redundant feedback only 
confuses. Skilllearning is improved by use of context-dependent learning; 
this is also important in binding activation of the skilled procedure in the 
correct circumstances. Speed and ease of automation of task sequences are 
correlated with number of steps within a task. 

Skills and automatie processing are important mechanisms for the 
human machine. It enables parallel processing to occur by reducing the 
need for attention to extern al stimuli and the load on short-term memory. 
The penalty we pay is that sometimes our automatie procedures run in the 
wrong circumstances, in the face of environmental cues which obviously 
contradict the course of action. 

The implications of human reasoning for interface designers are that 
tasks should be structured to help users solve problems. This can be done 
by constructing a clear mental model for the user which invokes 
appropriate parts of the user's experience. The GOMS model may be used 
as a framework for design; breaking the problem down into goals, enabling 
operators to test the goals and providing an overall method for approach­
ing the problem. An over-rigid definition of problems in systems may be 
counter-productive as humans use many different methods to solve pro­
blems. In spite of good analysis, the designer may not choose the correct 
one. Hence in decision support tasks, making the goals and operators 
explicit could be advisable, but choiee of the method should be left to the 
user. In expert systems, the analyst is recording a problem domain and 
strategies for finding solutions; in this ca se the goals, operators, rules and 
methods have to be specified. Before moving on to the implications of 
human problem solving for human-computer interaction, it is worth 
summarising the salient features of human reasoning: 

• We reason by applying procedures to memorised facts and environ­
mental information 

• Problems are formulated as mental models of associations and truth 
values, possibly organised into spatial terms 

• There are a variety of different procedures which can be applied to 
problem solving including backward and forward chaining, syllogistic 
reasoning and classification 

• Human reasoning is not strictly logieal, rather it is a comparison against 
aseries of propositions which make up a mental model 

• Reasoning is heuristie in situations where little is known about the 
problem. Heuristic reasoning requires considerable effort 

• Experience leads to the results of reasoning being stored as automatie 
procedures 

• Automatie procedures have calling conditions. Mismatch of calling 
conditions and procedures can cause mistakes 
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So far, storage of data and processing, memory and reasoning in the 
human machine have been examined. The next element of the human 
machine is control; how all the conflicting demands of problem solving, 
memorisation and recall, and sensory input are resolved. In computer 
terms this is a scheduling problem; the human equivalent is attention. 

2.6 Control of Human Information Processing 

The information-processing model gives a picture of a sequential machine 
with a bottleneck at the cognitive processor and its short-term memory. 
Even though we may be sequential to an extent in our reasoning processes, 
the human machine is capable of considerable multi-tasking. The control 
of activity is partly automatie and therefore unconscious, although some 
control is in the realm of our conscious. This we refer to as paying 
attention. 

2.6.1 Attention 

From the information-processing model it should be apparent that there 
are several input/output channels competing for the resources of the 
cognitive processor and its short-term memory. Inputs from the visual and 
auditory systems compete with other senses which have not been reviewed, 
such as touch, smell and pain. In addition, the cognitive processor has to 
find time to access memory and control output to the motor processor and 
speech buffer. 

The fact that we are basically sequential machines should be apparent 
from our poor ability to do two or more mental tasks concurrently. Try 
reading a newspaper and listening to the radio at the same time; either the 
radio or the newsprint will be remembered but not both. Attention is 
selective, the best we can do is to time-slice between channels so that we 
remember part of what the radio announcer said and a few things from the 
newspaper article. In spite of our sequential attention we do have con­
siderable capacity for concurrent processing. We have already encountered 
background memory tasks, and parallel processing of input; in addition we 
also do certain aetions automatically, for instanee driving a car while 
holding a eonversation. These automatie aetions are more usually ealled 
skills. Action sequenees for skills are stored in long-term memory and 
subsequently aeeessed for output to the motor processor as instructions for 
an activity. 

To complete all its tasks the human machine must have more than one 
processor running concurrently. When driving a car and talking, the motor 
processor will be controlling the leg and arm muscles for steering and 
braking; the speech proeessor will be controlling the larynx to form speech, 



User Psychology 43 

while the cognitive processor divides its attention between monitoring the 
senses for road traffic and listening to what has been said. Such complexity 
appears to strain the resources of the information-processing model to its 
limits. Recently more complex and flexible models of human mental 
activity have been proposed wh ich account for more concurrency in human 
mental activity by envisaging a co operative system of parallel processors. 
Attention in the form of a system monitor must still have a key role. 

Although some parallel processing undoubtedly occurs, there is a 
limiting sequential bottleneck in cognitive processing. Resource rationing 
has to occur and like a computer this is controlled by scheduling with 
interrupts for important events. If little of interest is happening in the 
environment we pay little attention to sensory input, as may happen when 
we are lost deep in thought. The instant something unexpected happens, 
for example a loud noise, our attention is immediately switched to the 
sensory input. The visual or auditory processors effectively put an interrupt 
on the cognitive processor. The input processors are continually competing 
for the cognitive processors' attention in this manner. In this battle our 
attentional apparatus is finely tuned to ignore constant states and pick up 
changes in the environment. 

Unfortunately the human ability to ignore the steady state in the 
environment can lead to poor performance in monitoring tasks. If we have 
to concentrate on one channel containing input with little variation, there 
is a natural tendency to ignore changes and for attention to wander as the 
cognitive processor polIs other channels. Even worse, in long monitoring 
tasks fatigue may set in, causing the cognitive processor to miss significant 
events in environment. Distractions are very effective at diverting 
attention, particularly if the information is irrelevant to the task in hand. 
This probably occurs because the attention controller naturally polIs all 
input and enforced attention tries to over-ride this mechanism with the 
undesirable effect of making people more sensitive to distracting signals. 

Attention is influenced by the difficulty of the task attention is being 
paid to, by the distraction in the environment, and motivation of the 
individual. More difficult tasks hold attention better th r lundane boring 
ones, which explains why most people will read a g"Jd book without 
degraded attention but watching a stationary blip on aradar screen soon 
becomes boring and performance suffers. Motivation is the internal will of 
an individual to do something, which can be influenced by physiological 
factors (such as hunger), psychological factors (such as fear) and socio­
logical matters such as companionship and responsibility. Motivation is a 
study in its own right which cannot be dealt with here; for further study the 
reader is referred to Maslow (1987). 

In interface and dialogue design, attention has to be directed to 
important messages and actions which the user should take. Care has to be 
exercised that the design does not produce too many competing demands 
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for attention at once, thereby overloading the cognitive processor's 
ability to deal with events. Cognitive overload leads to malfunction and 
breakdown of the human machine, the symptoms of which are manifest in 
stress and task failure. While task overload is not the only cause of stress, it 
is an important facet of interface design. Stress can be caused by many 
factors such as worries about family life, social relationships, financial 
insecurity, etc. It is the interface designer's task not to add computer 
systems to this list. 

2.6.2 Stress and Fatigue 

Fatigue may result from continuous mental activity in over-Iong, monitor­
ing tasks and from intense concentration in tasks demanding difficult 
mental activity. In either case, rest is required for the human mental 
system to re-adjust itself. 

Fatigue can be caused by repetitive tasks containing no break points. 
Interface design should therefore ensure that long continuous tasks are 
broken up by rest periods in wh ich the user is allowed to do amental reset. 
These break points, called 'closure events', should be placed at natural 
intervals during operation of an interface. These intervals could be at the 
end of an operational sequence, such as entering a transaction record, or a 
search and replace operation in a word processor. The more complex a 
task, the more demanding and potentially fatiguing it may be. Break points 
should be planned with task complexity in mind, with more frequent break 
points provided to counter increased risk of fatigue. 

Task complexity, however, does not always lead to increased fatigue. 
People find stimulating but demanding tasks interesting. Complexity may 
hold their attention and delay the onset of fatigue for some considerable 
time, although highly demanding continuous activity should be avoided 
because users may be unaware of their tiredness and make mistakes. 
Mundane, non-stimulating tasks are liable to cause user fatigue precisely 
because they do not stimulate interest and hence do not hold attention. 
Such tasks should best be avoided but if they are necessary, a high 
frequency of break points helps to combat the strain of enforced attention 
to an uninteresting task. 

Fatigue can also be caused by sensory factors. Strong stimuli, such as 
bright colours, intense light and loud noise all cause sensory overload as 
they bombard the perceptual system and demand attention. If exposure to 
such stimuli continues for a long time, the cognitive system will try to 
ignore the steady state in the environment; however, such strong signals 
are not easily ignored. This sets up a conflict in the attentional process 
wh ich can become fatiguing. Strong stimuli can also induce fatigue in 
receptors as strong light can cause eye and head aches, and loud noises may 
result in temporary deafness. Interface designers should avoid using too 
many strong stimuli. 
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2.7 Principles of Human-Computer Interaction 

Having examined components of the human machine, its operation as a 
whole can now be described in a perspective of some of its limitations. 
Consideration of human properties of information processing allows a set 
of tentative principles to be drawn up, although care has to be taken in 
applying principles in practice, because the context of design has a strong 
effect on the validity of generalisations drawn from psychology. 

Compared with computers, humans excel at heuristic, associative tasks 
but are poor with high volumes of data and repetitive tasks. People deal 
with complexity in the environment by imposing order on it and trying to 
automate solutions to problems. Classification, structuring of information, 
and skills are consequences of this propensity to organise and automate. 
Both humans and computers can process algorithmic and logical problems 
weIl, although computers produce much more reliable results. The great 
advantage people have over machines is a vastly more complex knowledge 
base even for things which we consider to be simple common sense and 
everyday knowledge. This coupled with the ability to increase that 
knowledge base by learning and reasoning heuristically gives humans an 
advantage over machine systems which will take a very long time to erode. 

The human system is an associative reasoning machine. It deals with vast 
quantities of data from the environment by filtering it and abstracting 
interesting qualities from basic data. The system has to deal with multiple 
inputs, outputs and memory management as weIl as central processing 
(reasoning) according to a schedule which shares the limited resources of 
the system. The key point of designing for the human machine is to 
prevent overloading of its processing facilities, in particular short-term 
memory, and to harmonise design with human information processing. 
Hence principles which help memory and human reasoning abilities are 
important. 

From knowledge of human psychology and the applied psychology of 
human performance it should be possible to draw up basic principles to 
guide the design of human--computer interfaces. Unfortunately psychology 
does not lend itself to such a venture as many explanations of human 
behaviour are still models and hypotheses, and in some areas little definite 
proof exists. However, some principles can be derived in spite of this 
limitation, although they have to be supplemented by justifications to 
substantiate them based on general utility, interpretation in a context, as 
weIl as empirical evidence. 

Six basic principles are proposed: 

Consistency: this is similarity of patterns which may be perceived in 
tasks, in presentation of information and other facets of an interface 
design. Consistency reduces the human learning load and increases 
recognition by presenting a familiar pattern. As we are pattern-
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recognition machines, the more consistent patterns are, the less we have 
to learn, and the easier an interface will be to use. 
Compatibility: between the user's expectation and the reality of an 
interface design. This principle follows on from consistency to state that 
new designs should be compatible with, and therefore based upon, the 
user's previous experience. If this is followed, once again recognition is 
enhanced, learning is reduced and the interface should be easier to use. 
The essential compatibility is between the user's mental model of the 
task and the task model embedded in the software by the designer. 
Adaptability: interfaces should adapt to the user in several ways. The 
user should be in control, not the computer; so the interface adapts to 
the user's speed of work and does not enforce continuous attention. Also 
the interface should adapt to individual user characteristics, skill levels 
etc., as to do otherwise would offend the compatibility principle. 
Adaptability, however, must not be overdone otherwise the consistency 
of the interface is reduced. 
Economy: this principle is based more on common sense than psycho­
logy. Interface designs should be economic in the sense that they achieve 
an operation in the minimum number of steps necessary to support the 
user and lessen the work of users whenever possible. 
Guidance not control: interface designs should guide a user through a 
task with prompts and feedback information. The interface should 
function at the user's pace according to the user's command and should 
not attempt to control the user. This principie ):las two sub-components: 
predictability-users should be able to forecast what to do next from a 
system's current state; and reversibility-users should be able to back­
track at will when mistake~ are made. 
Structure: interface designs should be structured to reduce complexity, 
because humans process information by classifying and structuring it 
within a framework of understanding. Structuring should be compatible 
with the user's organisation of knowledge and not overburden memory. 
This leads to a sub-component of simplicity and relevance; information 
should be organised so that only relevant information is presented to the 
user in a simple manner. 

Principles are intended for overall guidance during design and as a set of 
criteria against which interfaces may be evaluated. To apply principles in 
the design process, they have to be translated into guidelines which pertain 
to different aspects of a human-computer interface. Guidelines, in turn, 
are modulated by the context of a particular application into design rules. 
Unfortunately, systems and people are complex; so to issue a simple set of 
guidelines for all situations may be appealing but in reality would only be 
misleading. 



User Psychology 47 

Designs need to be considered in terms of the objectives of creating good 
human--computer interfaces, which raises the question of assessment. The 
effectiveness of interface designs is frequently measured with terms such as 
usability, utility and efficiency. There are three basic concerns about the 
quality of an interface design: 

How weIl does it fulfil the users' objectives? 
How easy is it to learn and use? 
How much of it is used? 

A design should aim to provide users with what they require in order to 
fulfil their objectives. This concept is common to systems analysis and 
interface design, that is, the matching of user requirements to the facilities 
provided in the system. In human factors terms this is called task fit­
providing the appropriate tool to carry out a required task. A system may 
be easy to use and learn but if it does not do wh at the user wants it will be 
useless. Task fit is a consequence of the compatibility principle and mental 
models-the user's expectation of reality and what he gets. 

Efficiency is often measured in terms of how easy an interface is to learn 
and use, combined with the inverse measure of how many mistakes are 
made. Generally it may be thought that there is a trade off between ease of 
use and ease of learning, but evidence points the other way; interfaces 
should be easy to learn and easy to use. Efficiency is a consequence of the 
economy, consistency and compatibility principles. 

The concern for how much of an interface, and hence a system, is used is 
often ignored. The concept of usability aims to tackle this factor which may 
be caused by poor functionality in the task fit, by poor training, and by 
poor interface design. Users may be ignorant of or cannot be bothered to 
use a facility even though it may fulfil their task very weIl. 

Compatibility relates to the concept of users' models, that is the users' 
mental model of how a system should appear and should work. This will be 
based on previous experience of computer and non-computer systems. It is 
the analyst's task to capture that knowledge and build the new system to be 
as compatible as possible with the users' expectations. Full compatibility 
may be technically impossible because of improvements to the logical 
design of the new system. Also user models differ on account of variations 
in individual experience; one single model cannot be completely compa­
tible with each individual's view. The final design has to be a compromise 
with inter-individual variation. 

2.8 Summary 

Perception is the process of seeing and hearing. Images and sounds are 
received and coded in an abstract form as properties of the stimulus. 
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Interpretation is effected by comparing the input with long-term memory. 
Memory may supply a considerable amount of what we see and hear which 
creates illusions in some circumstances. 

The human information processing machine is composed of sensory, 
cognitive, and motor processors with associated short-term and long-term 
memory. Short-term memory has limited capacity wh ich may be expanded 
by increasing the level of abstraction of information. Information in 
short-term memory is held in chunk form and has to be refreshed 
frequently. Long-term memory has an infinite capacity and ean be thought 
of as a highly networked database. Memory is essentially semantic, 
although two access paths probably exist, one via a semantie network, the 
other via abstract images. 

Problem solving involves steps of formulating, searching and verifying 
problem solutions. A model of the process is a network of goal solution 
sub-steps, each of which has tests assoeiated with it. The network is 
traversed by a strategy called a method. Various methods are used by 
humans, some of which are similar to seareh strategies employed in expert 
systems. Problem solutions are stored as skills and automatic processes 
whieh are called by a eontext. Mismatch of calling eontext and automatie 
behaviour ean eause errors. 

Human information processing is essentially sequential although consi­
derable concurrent processing occurs. Sequential seheduling is eontrolled 
by attention which directs the resources of the cognitive processor. 
Attention has important eonsequences for task design. Fatigue affects 
attention and sensory processes and should be considered in task design. 

From knowledge of psychology, six general principles of interface design 
can be drawn: consistency, compatibility, adaptability, economy, guidance 
and structure. These principles should increase the effeetiveness of inter­
face design wh ich may be measured in terms of efficieney, task fit, and 
usability. 

Further Reading 

For general texts on cognition, Glass et al. (1979) or Lindsay and Norman 
(1977) give eomprehensive coverage of the field. For more detail on 
perception Frisby (1979) gives a weIl illustrated description of vision, and 
Fry (1977) is a good general introduction to speech and hearing. A very 
readable account of memory, both working and long term, can be found in 
Baddeley (1979). For more advanced study, Christie and Gardiner (1987) 
contains chapters on most relevant topics in which the authors summarise 
research in their field and give guideline summaries. Card et al. (1983), 
besides being the source of the GOMS model, makes instructive reading, 
although it does view cognition in a narrow perspective. 



3 Interface Analysis and Specijication 

This chapter covers the analysis phase of interface design in which 
information is gathered about users and the job they do. This work can be 
carried out and integrated with mainstream systems analysis. The steps 
involved are analysis of user characteristics, analysis of the user's job 
(calIed task analysis), recording user's perceptions and terminology relat­
ing to the system, followed by synthesising this information within the 
constraints of available hardware and system requirements to decide on the 
type of interface. 

The steps involved in interface analysis are summarised in figure 3.1. 
One approach based on structured systems analysis techniques is 
described, followed by an overview of specification methods which have 
been developed within the field of human-computer interaction. 

Tasks may be performed either completely by a computer, or completely 
by humans, or may be shared between man and machine. Computer tasks 
become part of the systems design, while human tasks become part of the 
human system job design. Shared tasks, however, require furt her analysis 
because they will impinge on both the human and computer systems. 

Interface design takes an interface specification and reviews the system 
requirements in the light of human factors analysis. From this review a type 
of interface design is chosen and the main components of a design 
specified. The steps involved are task design to create the human system of 
work modules, job descriptions and operating procedures; design of the 
system support environment, that is, parts of the system to help the user; 
and design of the interface modules. 

Abrief survey of interface design types is given with the human factors 
properties of each type as a background to choosing design types. 

3.1 Task Analysis 

Task analysis is the decomposition of the activities within the system. It is a 
similar activity to requirements analysis as practised in systems analysis and 
design, with the added proviso that in task analysis all the system tasks, 
including human-related actions, are described and not just the functions 
to be computerised. 

49 
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Methods of task analysis in human-computer interaction have not been 
weIl defined; in view of this and the dose relationship of task analysis to 
systems analysis, it is appropriate to employ a method borrowed from the 
latter discipline. A good method for this purpose is the techniques of 
Structured Analysis as described by De Marco (1978) and Gane and Sarson 
(1979). The method decomposes the system down into sm aller units called 
functions; these are discrete pieces of work which achieve one goal. 
Functions may be directly equated with tasks. Each function takes data in, 
does something to it (transforms the data) and then passes it to the next 
function. When aseries of functions are linked together they form a 
description of how the system operates in terms of its components. By 
linking functions with the data connections, called dataflows, a map of the 
functions within a system can be buiIt up as can be seen in figure 3.2. This 
approach, called functional decomposition by systems analysts, is the 
essence of task analysis. 

Functional decomposition segments systems into smaller units each of 
wh ich is identified by a goal or purpose-in other words the function which 
the system component carries out. By successive refinement during 
analysis an increasingly detailed view of the system is obtained, first at the 
sub-system level, then at sub-sub-system level and so on. When the units 
are reasonably sm all their contents can be described as actions in a 
procedural sequence. The procedure consists of the necessary steps for 
carrying out the task. Tasks are composed of groups of actions which 
achieve a purpose; combined together they either form the part of a 
person's job within the system or, possibly, an automated activity. 

Actions, described by verbs, are the primitive building blocks of tasks 
which cannot be decomposed further without losing meaning. For 
example, in an order-processing task, actions could be Check-Customer­
Credit -Limit, CaIculate-Order-Lead-Time, Determine-Order-Discount. 
However, although Check-Invoice-Payment, Allocate-Stock-to-Order are 
actions, Check-Days-not >31 in Estimate-Order-Date is probably too low 
level to be an action in its own right. Although the level of decomposition 
is a matter for the analyst's judgement, further decomposition would 
specify the logical operators of the comparison or mathematics for a 
caIculation, and this renders the description as a whole meaningless. 

When to stop subdividing functions is a matter of judgement and 
experience, but one heuristic method is to subdivide until each function 
achieves a single purpose and procedural detail of how it works can be 
described in roughly half a page of concise English (for example, 6 to 12 
steps). 

Connections between functions are by data flows. Other diagram 
components are data stores or files (open-ended boxes) and extern al 
entities (squares) which supply data to or receive data from the system. 
The whole task structure of the system can be illustrated using data-flow 
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dia grams to show a map of sub-tasks communicating by data messages 
which are passed between them. Further description of functional analysis 
and data-flow diagramming techniques can be found in De Marco (1978) or 
Gane and Sarson (1979). 

Using structured analysis techniques, task detail can be described in 
narrative or more formally as a sequence of actions in Structured English. 
Structured English is a constrained sub-set of English composed of a set of 
reserved words for expressing sequence contral (If, Then, Else, Repeat, 
etc.), verbs which describe actions, nouns to describe data, and conjunc­
tions (see figure 3.3). It describes the pracedural detail of how a task is 
carried out in terms of sequences of actions, alternatives and repetitions. 
The reserved word set combined with indentation of the text show the 
scope of contral. 

Structured English describes the sequence in which the actions are 
performed and any exceptions to that sequence. Once a task has been 
described the next step is to allocate all or parts of it to either man or 
machine. Task and action allocation is the first step of task design which is 
dealt with in the section 3.4.1. 

3.2 Analysing User Characteristics 

Human-computer interfaces should be built to suit the needs of people, 
consequently it is important to discover what types of people will be using 

Task: Loan-Books 

Repeat WHILE Borrowers 
Reqllest reader-ID 
Check reader-ID 
IF Reader-ID Invalid 

Pass to Membership-Check 
ELSE 

Continlle 
END-IF 
Repeat WHILE book-requests 

Enter book-mark on borrawer-slip 
Write reader-ID on borrawer-slip 
Stamp book with return-date 
Remove book-in-library-tag 

END WHILE 
END-WHILE. 

Note the reserved words are in capitals. actions are verbs with the first letter in upper 
case and data items are in lower case with hyphens to make the name continuous. 
Indentation is used to show the scope of contral for IF-THEN-ELSE constructs. etc. 

Figure 3.3 Structured English for book [oans within a library system. 
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the interface. Groups of users vary in their knowledge of computers, 
general abilities and in a variety of factors which affect their ability to deal 
with an interface. Therefore, the objective of user analysis is to obtain a 
thorough knowledge of the skills and experience of all users in order to be 
able to predict how they will react to different interface designs. This 
enables sound judgements to be made when matching the sophistication of 
the interface to users' abilities. 

3.2.1 User Categories 

Users have been categorised by many authors in a variety of schemas 
intended to describe user c1asses which have important implications for 
interface design. Four main categories of user are gene rally distinguished: 

Naive: users who have not previously encountered computer systems. 
They may show fear of computers, will be unfamiliar with their 
operation, and will have little or no knowledge about the system. 
Completely naive users are becoming rarer as computerisation spreads, 
but this user c1ass will still be encountered when introducing computers 
into a non-automated environment. 
Novice: users with some experience of computers, although they may be 
unfamiliar with a new system. They will probably have little knowledge 
or experience with the system and are liable to make many mistakes, 
consequently they need considerable support. Most users of new systems 
start as novices and progress with experience to becoming skilled; 
although if usage frequency varies they may regress to novice status after 
aperiod of inactivity. 
Skilled: users who have gained considerable experience with a system 
and are proficient operators. Most frequent users become skilled with 
time and require more economic, rapid-to-use interfaces with less 
support than novices. Skilled users, however, do not have much 
knowledge of the system structure so they are unable to repair unex­
pected errors or extend the system capabilities. Instead they are skilled 
at operating one or more system tasks. 
Expert: experts are distinguished from skilled users by their knowledge 
of the internal system structure. Experts generally have some computer 
software expertise, good knowledge of how the system operates and an 
ability to maintain and modify the basic system. Experts need a 
sophisticated interface which provides facilities that enable them to 
modify and extend the capabilities of the system. 

Although the above categories provide a workable framework for 
analysis, user c1assification is rarely so simple. Within a user population 
there may be a mix of people who have used the system for a long time, 
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that is, skilled users, and new recruits who will be novices. Variation occurs 
even within individuals over time. Expert users may rotate jobs and not use 
a system for several months, during which time they will forget their 
knowledge and may regress to a novice state. In spite of these difficulties, 
measuring user characteristics is worth while because it enables the 
designer to choose an interface type and level of support which is 
appropriate to most of the users. 

3.2.2 Measuring User Characteristics 

To start classifying users, so me basic metrics are required. These are a 
mixture of anticipated usage patterns and observed abilities of the user 
population. The critical factors are how often people use a system, how 
much they already know about the system and how much they may be 
prepared to learn. 

The choice of these measures is linked to expected user performance 
when operating the system. For instance, frequency of use will affect how 
skilled users become, computer familiarity will indicate how much training 
may be necessary to attain skills; system knowledge and experience with 
computer software may be used to predict how much knowledge users may 
acquire and their expectations of the sophistication of an interface, and 
discretionary users are usually less tolerant of poor interfaces than users 
who have no choice about using a system. The important measures are: 

• Frequency of use: how often will the system be used? Frequent users 
build up skills and become experienced quickly; if use is infrequent 
then skill build up will be slower and a more supportive interface may 
be necessary. The variation in usage frequency over time is also 
important. If frequent users have gaps between using the system, then 
they may forget key information and require help facilities 

• Discretionary usage: use of a system may either be compulsory, that is, 
part of someone's job, or it may be an option al extra, for instance, a 
data entry clerk may have to use the sales-order-processing system as 
part of the job duties, but it is up to a manager whether or not to use 
VisiCalc for forecasting. All interface designs should be good, but 
interfaces for discretionary users have to excel in ease of use and 
attractiveness to users, otherwise the system may never be used 

• Computer familiarity: most users have some experience of computers 
but the degree of experience varies. This measure will have important 
implications for user training 

• .user knowledge: some users may have considerable knowledge of 
computer programming and operation. These expert users have the 
ability to extend the functions of a system and its interface; conse­
quently they will need a flexible programming or command language 
type of interface to satisfy their aims 



56 Human-Computer Interface Design 

• User mental abilities: this is a measure of the general knowledge and 
intelligence of users. It is necessary to judge the level of interface 
sophistication which users can deal with and how much they may be 
expected to leam about an interface 

• User physical abilities and skills: the physical characteristics of user 
populations and workplace design properly belong to the realm of 
ergonomics. Information should be gathered at this stage especially if 
new equipment and the workplace environment are being designed. 
The objective of ergonomic analysis is to choose equipment which is 
designed to meet human needs; however, such considerations are 
beyond the scope of this book and the reader should consult Damoda­
ran et al. (1980) for further details. The relevant skills within the 
context of design of interface software are experience of any interface­
related skills such as typing, use of a mouse, etc. 

Using these measures, user populations may be scored on a simple scale 
(such as 1 to 10 where 1 = low frequency, 10 = high frequency). It is 
important not only to establish a picture of the average characteristics of 
the population but also of the variation, as the interface will have to try to 
satisfy different types of users. This information forms part of the 
interface-human requirements specification which feeds through into the 
strategie choice of interface type. 

In the example shown in figure 3.4, librarians were expected to use the 
system as part of their everyday job; therefore, their usage frequency was 
high; however, so me of the librarians rotated jobs, and hence they had a 
high range in frequency of use. Few librarians were familiar with com­
puters and likewise few had knowledge of automated library systems or 
computer systems in general; most, however, were of above average 
intelligence. The metric derived from this analysis points towards a 
supportive dialogue which is not too sophisticated. The measures of user 
characteristics are used in the selection of the dialogue type which is 
appropriate for the user population. 

3.3 User Models and Views 

User models come in several varieties depending on the interest of the 
authors. The terminology is further confused by ambiguity about who 
constructs the model, and what is being modelIed. User models can be 
inside the user's head (often called mental models), the designer's idea of 
wh at is inside the user's head (conceptual models), and finally a piece of 
software enshrining the designer's model. In this section we are concemed 
with acquiring the user's mental model of a system in the form of a 
designer's model which is used to help construct the interface. To put user 
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System ID : Automated Loan system 
Population 10 : Assistant Librarians 

Physical skills 
Discretionary 
Frecjuency 
Computer Familiarity 
User Knowledge 
Mental Abilities 
Population score 

Median Range 
typing (some) 
No 
8 2-10 
2 1-4 
1 1-3 
6 4-8 

----------------
17 8-25 

This score can be summarised for the two most important variables using the following 
table: 

Knowledge 
Abilities 
Sophistication 
Frequency 
Familiarity 
Support 

Total score 

20 - 15- 10 - 5 -- 0 
+++ ++ + 

20 - 15 - 10 - 5 - 0 
+ ++ +++ 

In this ca se the librarians rate low on the sophistication scale (7 out of 20) and average 
on the support measure (10 out of 20) 

Figure 3.4 Sampie analysis of a user population. 
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models in perspective, the following types are current in the human­
computer interface literature: 

• Theoretical cognitive models constructed by psychologists in order to 
understand human mental processes. Information processing models, 
as used in chapter 2, fall into this category 

• Models of user knowledge. These models are inspired by CBT 
(Computer Based Training) interests and adaptive interfaces. The 
model attempts to capture the knowledge categories in a domain and 
the inter-relationships between the categories. Models can then be 
constructed of each user's knowledge to assess how users leam by 
traversing the knowledge network. In adaptive interfaces the model 
attempts to describe the user's knowledge in terms of plans and 
procedures (see chapter 10 for more details). These models are 
embedded in software 

• Models of user characteristics. These models attempt to classify users in 
broad terms of skill and ability, as described in section 3.2. They are 
also called user profiles 

• User task models. The user's concept of how a task is constructed in 
terms of its functions and operation al sequence 
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• User views. The user's models of the system structure wh ich may be 
expressed either in terms of visual metaphors (for example, an office 
and its components) or in a verbal classification of system components. 
They are also called the user-system image 

In this section user task models, user views and models of user character­
istics are examined; theoretical models and models of user knowledge are 
not discussed because they have less direct relevance to the standard 
practice of interface design. User views are the way in wh ich users describe 
and visualise the structure of the current system. User task models are an 
attempt to discover how much users know ab out the system in terms of its 
operation and wh at are their expectations about how it will work. The 
importance of user models lies in the compatibility principle: the more an 
interface conforms to users' pre-conceived notions of how it should appear 
and operate, the easier it will be to learn. 

Most users construct mental models of systems based on their past 
experience of the system and similar computer systems. Experienced users 
are more likely than novices to have well-formed models. When the system 
is first encountered the user's model may be vague but it will grow as 
experience increases. It is the interface designer's responsibility to make 
the interface conform as far as possible to the user's previous model and, if 
no previous model existed, to present a clear structure of the new system 
and make assimilation of the new system model as easy as possible. 

User models are discovered during task analysis and may be found in the 
names people use for objects and functions in the system, the connections 
they make between tasks, and the visual and verbal metaphors they use to 
describe the system. User models may have varying degrees of accuracy; 
for instance, there is the designer's model of wh at he thinks the user 
expects, and the user's model of wh at he expects of the system. It is the 
analyst's job to make sure that these models coincide. 

Task models and user views have two dimensions: first, a static view of 
the system structure in terms of objects and their relationships which may 
be expressed in visual or linguistic terms. This will contribute towards 
design of interface presentation. Second, there is an expectation of system 
operations, or the dynamic behaviour of objects which is relevant to the 
dialogue design. The models are made up of a structure, either in terms of 
static objects and relationships, or pro ce dural sequences of activity and a 
set of descriptive labels by which users identify objects and operations 
within the system. For example, in banks, dealers see foreign exchange 
dealing not as money but as 'deals' which co me in a variety of types, 'spot', 
'forward' and 'overnight'; deals are not placed but 'struck'. The descriptive 
labels form the semantic, language-based view of the system. In addition 
users may have spatial metaphors for their system, expressing the physical 
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system layout and possibly a view of abstract objects described in visual­
spatial terms. 

In a library, for instance, users may view the system as books which 
reside on shelves which are organised in stacks which, in turn, occur in 
subject areas; all of which may be visualised in terms of a hierarchy. There 
may be other parts of the library wh ich serve specific purposes, such as a 
reference section, temporary stacks, books to be reshelved and the issue 
desk, which are seen in spatial terms as a network. Such system image 
views can contain a rich description by which users organise their 
knowledge about the current system in terms of a physical layout or map 
(see figure 3.5). 

User view analysis is important for presentation of the interface because 
the users' terminology should be employed ifpossible. Furthermore, visual 
metaphors of the system may be directly transferred into an iconic form as 
demonstrated by the Xerox office-desktop layout in the Star workstation. 
User views can also help in dialogue design because the view can also 
reflect the functional organisation of systems components from the user's 
angle. This can suggest ways in which components of the interface are put 
together to ensure that the sequence of operations in the new system 
matches the old. 

3.4 Task and Job Design 

The task specification resulting from analysis may not be weIl organised or 
even achieve the user's objectives. Task design aims to re-organise the task 
specification to produce a more logical organisation. Tasks are then 
grouped into units of work which will be co me a job description. This 
involves synthesising tasks with differing characteristics into a job suitable 
for people, and planning the work so that the workload is matched to the 
personnel resources available. 

Tasks vary in complexity in physical and mental dimensions. Design 
aims to create human tasks which are neither too demanding (that is, 
composed completely of very complex steps) nor too simple which may 
lead to the operator becoming bored. Variety is desirable in any task. Task 
complexity also has to be matched to personnel ability, hence the 
capabilities of the user have to be considered when designing tasks. It is no 
use giving someone a stimulating yet over-demanding task in relation to his 
or her abilities. A compromise has to be reached which ideally should give 
people tasks wh ich stretch their abilities thereby encouraging them to 
develop new skills and widen their experience, while not going beyond 
their abilities, because that would cause despair and frustration. 
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Figure 3.5 User view in terms of a conceptual model describing a library 
in physical terms of layout and book movements and in logical terms of 

book classification. 
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3.4.1 Task Allocation 

Within each task, actions are allocated to either the computer or the users, 
or to both users and the computer. Generally users should receive tasks 
which require initiative, judgement and heuristic reasoning. On the other 
hand, computers should get repetitive checking, calculations and data­
handling tasks. Data entry, da ta retrieval and decision support are 
examples of mixed tasks in wh ich human and computer interact to achieve 
an objective. Mixed tasks require further refinement to specify the human 
and computer components. 

Allocation pro duces two task networks: one human task network and 
one for the computer system. Both networks can be designed using 
data-flow diagrams to illustrate the logical sequences of tasks. The human 
network will form the basis of operating procedures and the user manual, 
and the computer network will add to the system specification. Task 
allocation could be done on the data-flow diagram at the level of a process/ 
task but this level obscures much of the interface operation al detail. Hence 
it is preferable to allocate parts of the system to either human or computer 
at the action level which is shown in Structured English. The steps are: 

• Inspect the data-flow diagram and mark tasks as either for the 
computer system, human system or joint tasks 

• Take the joint tasks and allocate actions within each task to either 
human or computer 

• Construct new computer system and human system task networks 
Cooperative actions involving both the user and computer require further 
refinement to specify how the human and computer are to interact. In the 
task sequence, illustrated in figure 3.6, most of the repetitive checking is 
given to the computer with the human operator supplying the input; 
however, in the Raise-Bulk-Order function there is a complex step which 
involves a trade-off between delivery date and sourcing the stock from one 
or more suppliers. This decision involves local knowledge of delivery dates 
and heuristic judgement to find the best delivery date in relation to the 
number of suppliers trade-off, and consequently this task is allocated to a 
human. It may be possible to computerise this function with a sm aU expert 
system, but the designer should preserve human interest and activity in a 
system so this step is left uncomputerised. 

The design elaborates separate human and computer actions in terms of 
human actions and computer support for those actions, such as displaying 
information, suggesting options, giving warnings etc. For instance, the 
computer may be required to provide decision support for the human 
operator. In the above example, finding the best suppliers involves 
browsing down a list with different combinations of product categories and 
suppliers. How the interaction for decision support will operate has to be 
designed and agreed in consultation with the user. 
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H: = allocated to human operator 
C: = allocated to computer 

Function: Check Customer Order 

Repeat while orders 
H: Enter customer number 
C: Check customer number 
C: lf no number assume customer & Pass to accounts 
C: Check customer against credit-control-list 
C: If customer on list Send to credit control 
H: Check order value against customer order credit limit 
C: If over limit Send to credit control 

Function: Enter Product Details 

Repeat for products ordered 
H: Enter product code 
C: Check product code 
C: lf in stock Tick ex-stock column 
C: If not a stock item Tick direct column 
C: Check product quantity 
C: If less than minimum quantity Raise query note 
H: If over delivery limit and not a stock item 

Raise bulk order 

Function: Raise Bulk Order 

Repeat for High quantity products ordered 
H: Enter stock category against product code 
H: Create list of suppliers who have appropriate stock categories 

H&C: Find minimal number of suppliers who can deliver all the categories ordered 
H: Find suppliers who have quiekest delivery dates for ordered categories 
C: Write out bulk order to suppliers 

Function: Calculate Delivery Details 

H: Enter estimated delivery date 
C: Check delivery details present 
C: If absent Raise query note 
H: Stamp to authorise order 

Figure 3.6 Task description in an order entry system. 

Tasks within a system may not always fall into a weil defined network. 
Some tasks naturally occur in sequences; in other systems task operation is 
fragmented and each task may be performed independently. Processing a 
sales order or a library book loan are examples of structured task 
sequences composed of aseries of sub-tasks having to be carried out to 
achieve the goal. On the other hand, many office tasks are unstructured; a 
manager may write a memo, book a meeting, answer the phone or analyse 
sales figures in an unpredictable sequence. In this case there will be no 
human task network, just a set of unrelated tasks which the user needs to 
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access individually. The structure of task sequences is relevant to how tasks 
are accessed by the human--computer interface. 

A further consideration in task sequence design is to provide break or 
rest points within the task. A continuous sequence of activity causes 
physical and mental strain which can lead to loss of concentration and 
errors. Careful design of tasks with break points at regular intervals allows 
concentration to be refreshed by a closure event; this is a short period 
during which the cognitive processor can be reset. Closure events should 
be planned at logical end-points in a sequence, such as the end of arecord, 
after each query, etc. If there are no natural break points in a sequence, 
closure events will have to be imposed on long task sequences at intervals 
of 2-5 minutes depending on complexity of the activity involved. 

Finally the mental load on the user should be estimated. The objective 
he re is to reduce overloading on short-term memory; so at each task step 
the quantity of information required by the user should be calculated. The 
design is then checked to establish if the information is readily available to 
the user in a display or if it has to be held in short-term memory. Memory 
loading is particularly important at decision points and error recovery 
within tasks, and care should be taken that users do not have to hold too 
many facts in working memory. Also users should have all the information 
available for the action they are engaged in, and not have to remember 
data displayed in previous task steps. 

3.4.2 Work Module and Job Design 

Task design in its fullest sense involves job design, wh ich aims to match 
task demands to the operator's abilities and to provide jobs which give 
people the correct amount of interest, responsibility and satisfaction. To 
treat such matters in detail is beyond the scope of this book; so the aim of 
task design within this limited context is to provide a better understanding 
of the designer's problem when designing the human part of an interface. 
The human side of the interface forms the basis of system operation 
manuals, training documentation and user guides. 

Tasks should be measured on a simple sc ale to establish their human 
factors properties: 

• Complexity-in terms of reasoning, judgements and decision making 
• Concentration-attention to detail, and the monitoring activity necess­

ary to complete the task successfully 
• Responsibility-importance of task in overall system; consequences of 

task failure 
• Variety-variability of task in one of the above measures 

A small number of tasks are combined into one work module. A work 
module is an identifiable piece of work wh ich will be performed by one 
person to fulfil one system objective. An illustration is the tasks involved in 
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order entry: data input, customer credit clearance, resolution of errors and 
credit queries. Another work module could be order progress chasing: 
determining where orders are in the system, identifying key late orders, 
investigating reasons for delays and proposing solutions. 

Work modules should be balanced in terms of complexity and concentra­
tion. Too many repetitive undemanding tasks will cause attention to 
wander; on the other hand, too many demanding tasks will cause fatigue. 
The correct balance should provide stimulation and interest without 
fatigue, ideally by a mixt ure of undemanding routines mixed with more 
challenging decision making. Task flow within modules should be 
examined to make sure task overload does not happen. Overload is caused 
by too many things happening at the same time. Many tasks may require 
the user's attention simultaneously, swamping the user's capacity with 
conflicting and urgent demands; as a result nothing gets done, leading to 
task failure. 

Task overload may not be apparent within normal operating procedures 
even if they are well planned; instead it occurs when errors or the 
unexpected happen. If the demands of error processing are poorly or 
incompletely specified, task overload may be the result. Expected frequen­
cies of errors should be calculated and work time allocated to the 
resolution of such errors. 

Another common cause of task overloading is peaks in workload. For 
example, in many transaction-processing systems inputs come in bursts, 
such as telephone orders at the end of a day or a peak of mail orders in the 
morning. Calculations should be made for the time it will take to process 
input at peak loading as well as at average input rates. Manpower has to be 
allocated to deal with the load within the constraints of cost because peak 
rates at one part of the day usually imply low rates at other times. It is 
uneconomic to have staff employed for processing the peak load com­
pletely unoccupied at other times. Part of the task designer's job is to plan 
the workload so it is as even as possible, allowing time for error processing. 
Manpower is then allocated to carry out the planned work, matching the 
skillieveis of individuals to the demands of the work. 

3.5 System Environment and Support 

Interfaces do not exist in isolation. The interface functions in an environ­
ment which influences the performance of the interface and may impose 
constraints upon it. Design of the interface/task environment has two 
considerations: 

• Physical design of the workplace. This subject is within the realm of 
ergonomics and readers are referred to Shackel (1974) for more details 
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• Design of interface support documentation. This consists of the user 
manuals, technical documentation, training courses and training 
manuals 

Design of user documentation 

User manuals can be based upon the human part of the task specification. 
Two types of documentation are produced for most systems: 

• User operations manual-this gives instructions on how to use the 
system 

• System technical documentation-this is intended to explain the struc­
ture and internal workings of the system and may be produced at 
different levels of complexity for system support programmers and 
skilled 'local expert' users 

User manuals should be clear, concise and weH structured. It is a 
weH known complaint that users never read the manuals, a symptom 
usuaHy of poor manual design. Users have two broad requirements of 
documentation: 

• Education-to find out about the system and how to operate it in its 
early stages of implementation 

• Aide memoire-to access a specific piece of information quickly and 
often in an emergency 

These demands conflict. The first requires a weH structured guide which 
leads the user systematicaHy through the system, while the second is for 
direct access to a specific point. Add to this people's propensity not to read 
massive amounts of documentation and the problem becomes apparent. 

It may be solved by writing three separate documents: 
• The training guide which introduces the user to the system, aimed 

basicaHy at education 
• The quick guide for users who are too lazy to read the whole training 

guide and need only the bare minimum of information to start using the 
system 

• The reference guide for trouble shooting and aide memoire later on 
The training guide should be weH structured to lead the user through 
various facets of the system one at a time, allowing one area of knowledge 
to be acquired before moving on to the next. Quick guides should contain 
commonly used command sequences with minimal instructions for opera­
tion and exhortations to read the training manual if the user gets into 
trouble. Reference guides should be laid out in an itemised manner with 
indexes and clear access paths to data. More general guidelines to help user 
assimilation of information, which can be applied to all guides, are: 
• Structure information in a hierarchical manner: chapters, sections, 

paragraphs, etc. 
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• Label sub-divisions with clear headings and codes to show the relation­
ship: 1, 1.2, 1.2.1, etc. Indentation can be used to further clarify 
hierarchical classification 

• Paragraphs and sentences should be short and to the point 
• Instructions and text should be jargon free, unless the user's own 

terminology is being used 
• Procedures should be laid out sequentially and numbered to show the 

steps 
• Important steps should be highlighted using bold characters, different 

fonts, colour or icons 
• Use pictures, diagrams and visual methods to illustrate points if 

possible 
• Keywords should be placed in the margin to provide direct access to 

specific topics 
• Point by point summaries should be given at the end of chapters 

Many of the above points are illustrated in figure 3.7 which shows part of a 
weIl designed user manual. 

3.6 Interface Design Styles 

Having designed the tasks the next step is to decide the interface design 
styles to be used. This is a trade-off decision, intended to match the users' 
characteristics with a suitable design style within the constraints of the 
system tasks and available hardware and software. 

Several different types of design have been created for human-computer 
interfaces. Each type has different qualities and capabilities; consequently, 
when choosing the correct interface type or types for a particular set of 
system and user requirements, designers have to be aware of the merits 
and limitations of each particular type. This section surveys interface types 
and their characteristics. The important criteria for judging a match of an 
interface design to a user population relate to the qualities of the dialogue 
style, that is, how many functions it can provide, how sophisticated it is, 
and how easy or difficult it is to use. The capabilities and ease of use are 
matched with system requirements before considering the effort and cost 
of interface development and then making a final choice. Most interfaces 
use more than one design style, each style being matched to the require­
ments of a task or group of tasks, while the overall design aims to provide 
the correct level of sophistication and support for the user population. The 
criteria which will be employed in the survey are: 

• Ease of use: how easy to use is the interface for inexperienced users? 
• Ease of learning: how easy are the interface commands and functions to 

learn? 
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DEL imm & def 

DEL linenuml , linenum2 

DEL deletes the range of lines from linenuml to linenum2, inclusive. If 
linenuml is not an existing program line number, the next greater line 
number in the program is used in lieu of linenuml; if linenum2 is not an 
existing program line number, the next smaller program line number is used. 

If you don't follow the usual format, DEL's performance varies as indicated 
below: 

DEL ?SYNTAX ERROR 

DEL , ?SYNTAX ERROR 

DEL ,b ?SYNTAX ERROR 

DEL -a[,bJ ?SYNTAX ERROR 

DEL ~,b deletes line zero, regardless of the value 
of b. 

DEL l,-b ignored, even if the program's smallest line 
number 1s zero. 

DEL a,-b ?SYNTAX ERROR if a is greater than the 
program's smallest line number, unless the 
program's smallest line number is zero and 
a 1s one. 

DEL a,-b ignored if a 1s not zero and the only 
program line is line number zero. 

ignored if a is not zero and if a is less 
than or equal to the program's smallest 
line number. 

~ DEL a(,J 

~) DEL a,b 
~ 

ignored. 

ignored if a is not zero and a is greater 
than b. 

~ 
When used in deferred execution, DEL works as described above, then halts 
execution. CONT will ~ work in this situation. 
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Figure 3.7 BASIC Programmer's User Manual for Apple II 
Microcomputer. Note that the eye symbol is used to draw attention to 

important features; the layout gives a dear link between cause and effect, 
and capitals for emphasis . 

• Speed of operation: how efficient is the interface in terms of opera­
tional steps, keystrokes and response time to achieve a particular 
operation? 

• Sophistication: what range of functions are provided and can functions 
be combined in new ways to extend the power of the interface? 
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• Control: does the user or the computer initiate and control the 
dialogue? 

• Ease of development: how easy is the interface to design and how much 
development effort will be required? 

The dialogue types are ordered by approximate complexity in this over­
view. A more detailed analysis of dialogues is contained in later chapters. 

(a) Question and ans wer 

This is a simple type of human-<:omputer dialogue which is a sequence of 
questions (or computer prompts) followed by answers (human replies), as 
illustrated in figure 3.8. The human replies are usually restricted to a Yes 
or No (YIN) in the simplest case; more complex versions allow numeric 
and alphanumeric code replies. Replies are invariably restricted to a sm all 
set of valid responses, therefore the sophistication of this dialogue type is 
severely limited. Question and answer dialogues are easy to use and learn 
because the prompts should give complete instructions to inform the user 
wh at to do by listing the valid responses. This interface type is also easy to 
pro gram as replies can be validated by simple conditional statements or 
against a smalllook-up table. 

Advantages 

Easy to use 
Easy to learn 
Easy to pro gram 

Disadvantages 

Unsophisticated 
Slow to use 

Suitable for: naive and novice users, with simple conversational 
systems. Computer-initiated and controlled dialogue. 

(b) Menus 

A menu is a simple dialogue type suitable for inexperienced users. All the 
choices available are displayed as prompts on the screen; the user selects 
one, usually by a single character or digit code, the code number or letter 
being displayed beside the option description (see figure 3.9). Menus are 
limited in the number of choices wh ich can be displayed on a screen at one 
time. Ideally there should be up to nine choices; more than this overloads 
short-term memory and increases the search time within menus. As a 
result, systems with many options have menus organised in hierarchies to 
provide a logical access path. This is simple to use for inexperienced users 
but slow and tedious for expert users who have to page through many 
menu levels to access the option that they want. 

Menus are used most frequently as an access mechanism; however, they 
can also be used for data entry when there is a choice between a limited 
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Patient Administration System 

Enter Patient Code (or E to exit): >220345 

Margaret Smith: admitted 12/12/87 

Enter selection for patient history 

>L 

o for diagnosis 
T for treatment 
X for X ray results 
L for laboratory tests 
C for consultation list 

There are no laboratory reports for this patient 

00 you want another option for this patient? (YJN»N 

00 you want to access another patient history ?(Y JN»N 

Patient Administration System 

Enter N to add a new patient 

> 

o to change or delete an existing patient record 
E to exit 
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Figure 3.8 Example of a Question and Answer Dialogue .. The user is 
prompted for either a simple Y/N ans wer or a small valid reply set in a 

'mini menu'. The conversation proceeds in aseries of short question and 
ans wer steps. 

number of items. Onee again the limitation of menus is the number of 
items whieh ean be displayed on one sereen. 

Menus are simple to program and easy to make 'buHet proof' for the 
users; that is, all possible invalid responses a user ean make are trapped by 
the program and an appropriate error message is displayed. The user ean 
seleet valid ehoiees, eseape and possibly a help option, but all other keys 
invoke error responses. For the information they provide to the users, 
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Local Infonnation Database 
Top level 

1. News 

2. Weather 

3. Sports 

4. Travel 

5. Shopping 

6. Markets 

7. Education - courses 

8. Libraries - reference services 

9. Local authority services 

o. Finish 

Enter your choice: 

( Type? for help on how to use the database) 

Figure 3.9 An example of a menu dialogue. Options are chosen by 
entering the number alongside the desired subject category. 

menus are resource hungry because a whole VDU screen has to be 
transmitted for every menu. Although some types of intelligent terminals 
can minimise the transmission load, transmission of whole screens of 
information for one reply can be a significant penalty in response times for 
systems using remote terminals. 

Advantages 

Easy to use 
Easy to leam 
Easy to pro gram 

Disadvantages 

Slow to use in large systems 
Limited choice per menu 
Transmission overhead 

Suitable for: novice users, with interfaces designed to access system 
options. Computer-initiated dialogue. 
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(c) Icons 

Pictures or icons are used to represent functions on a menu-like display. 
Figure 3.10 illustrates the use of icons for a personal computer interface. 
To select a function, users point at an icon with the cursor employing a 
mouse pointing device. leons are a very effective technique if the icon­
pictures are realistic, because the learning time is reduced and operation 
becomes very easy for inexperienced and experienced users. This techni­
que has been used extensively by Xerox and Apple and has the potential to 
generate an international dialogue language which transcends language 
barriers. 

leons, however, have limitations of individual differences in interpreta­
tion and therefore usually have to have some clarifying text associated with 
the image. Also icons take up a considerable amount of space on VDU 
screens so the technique is no more economical than standard menus when 
displaying a large number of choices. leons create meaning by being 
realistic, which works weH for concrete objects such as files (a filing 

33 Harns 

MacAppl ica t ions 

54542K in disk 

MacProiect MaQinal I Mac~ 3.( Ras~ Edilor s~r 
Currenl Werksheet 

Cepy 11 Mac 3.0 -TracksT• Instal l. Backup Cl ickArt$ Ellects Clock DA Kijker 

~ ~ CJ ~ ~ 
Install Workshee Keeper.appl Karmil Felder Lister Lecalizer MASINIT 

~ ~ ~ ~ -
Mass Copy Menu Editor New Install Date Key new stf Pr 

~ 8 
~ 

o "- CJ unix' .1Iserd e--E:::J 

Screen Maker Waystation Pascal LaserWriter Fants 

Screll ing Menu Installer 

PRAM 

Non-standard Fants Font/DA I LaserWri ter Plus Fents 

Figure 3.10 Use of icons to illustrate system facilities. 

44424K availat 



72 Human-Computer Interface Design 

cabinet), messages incoming (an in-tray full of paper), but their descriptive 
power is poor when more abstract concepts are being represented, such as 
validating, linking and sorting. Finally, icons are useful as long as they are 
individual and unambiguous. When icons are used to represent several 
similar items, for instance entities in a database, the designer soon comes 
up against the limitation of the number of discriminable and meaningful 
pictures which can be created. 

Advantages 

Very easy to learn 
Easy to use 
Language independent 
Relatively easy to program 

Disadvantages 

Not economic on space 
Need some text backup 
Require graphics hardware 
N eed icon builder software 

Suitable tor: novice users in system access and command interfaces. 
Computer-initiated dialogue. 

(d) Form tilling 

Form filling is the most commonly used dialogue type for data entry but it 
also has uses in data retrieval and editing. The essence of the method is 
displaying a form on the VDU which is similar to the layout of a paper 
form with which the user is familiar (see figure 3.11). The display has a 
form title, prompts for the various fields, markers to show where the data 
should be entered and messaging areas to guide the user. The cursor is 
software controlled to move from one field to the next, either automa­
tically or by using the Tab or Carriage return key. Data can be retrieved, 
displayed and edited after entry using the same display. 

Forms have the advantage of a familiar layout, even if the form does not 
exactly model a previous paper document which users are familiar with. 
All the information is shown on the VDU and as long as the form is weIl 
designed, the sequence of operation should be self-explanatory. In data 
entry dialogues, form filling is accompanied by on-line validation and 
editing of the data. With a few minor design changes form filling is a 
suitable technique for data entry for both expert and novice users. 

Advantages 

Quick to use 
Easy to use 
Easy to learn 

Disadvantages 

Primarily suitable for data entry 
U nsophisticated 

Suitable tor: all user types, data entry, display and retrieval interfaces. 
Computer-initiated dialogue with some user control. 
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Ready ORDER ENTRY Date 12/12/87 

Customer code < ______ > 

Name 

Address 

~--------------~ 
~--------------~ 

~--------------~ 

~--------------~ 

Posteode 

Previous order <_ ~ __ / __ > 

Catalog No Quantity Unitprice Sub-total 

Item 1 ---- ---

Item2 ---- ---

Item3 ---- ---

Item4 ---- ---

Press TAB to move to next field 

ENTER to save 
E to exit 
C to change record 

Figure 3.1I Form-filling interface for a mailorder system. 

(e) Command languages 

73 

This is a large and varied category which covers single word command 
strings to complex command languages with a grammar. The common 
feature of command languages is that little or no supportive information is 
displayed for users who enter commands in locations indicated by prompts 
which are often a cryptic $ or * symbol. The command then invokes a 
system operation which the user requires; when the operation is complete 
the command prompt returns. Because little information is displayed, 
command languages are very economical in use of screen space and, by the 
same token, in data transmission. 
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The great advantage of command languages is the sophistication and 
flexibility of the interface. If a system has a large number of functions 
which the user wants to access and, in addition, those functions may be 
required in different combinations, then a command language is the ideal 
interface. This is because various functions can be combined together in 
sentences using a grammar. Once a gramm ar is present, complex sentences 
can be constructed using the principle of nesting complex commands in 
phrases and substituting complex commands as a sub-routine identified by 
a simple name. In this manner the interface becomes a sophisticated and 
extensible method for controlling a system. 

The penalty of command languages is that users have to learn a code and 
some form of grammar; this takes time and makes command languages 
difficult to use for beginners. The user also has to have some knowledge 
about wh at the system does because no information is displayed on the 
screen. 

A further disadvantage is the development effort required for command 
language interfaces. Simple command interfaces can be implemented using 
keywords or a code set in which ca se only lexical checking is required to 
validate the command against a look-up table. As soon as the language has 
a syntax, a parser has to be built to check and interpret input. This 
becomes an increasingly demanding task which, taken to its logical 
extension, be comes compiler writing for programming languages. 
Command languages, however, come in various grades of complexity. 
Command such as the page address system in Prestel (that is, typing 134 
accesses page 134 in the database) are simple. Single keyword command 
languages can also make a simple, easy-to-use interface. However, to 
realise the power of a command language a grammar is required, which 
makes this style more complicated for users. 

Advantages 

Quick to use 
Sophisticated 
Extensible 

Disadvantages 

Difficult to learn 
Difficult to use for novices 
Difficult to program 

Suitable for: expert users with complicated command interfaces. 
User-initiated and controlled dialogue. 

(f) Naturallanguage 

Naturallanguage should be the ideal human-computer interface because it 
is the user's natural method of communication. Unfortunately it has 
limitations from the user's viewpoint and poses considerable computa­
tional problems. Naturallanguage may be input either directly as speech or 
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via a keyboard. Spoken input is quick and should be ideal, but the 
problems of deciphering speech are enormous and limit current speech 
recognition systems to simple phrases and single words. Typed input is 
verbose and time-consuming for the average user who is not an expert 
typist and prone to make typographical errors. 

The major problems for naturallanguage understanding is that meaning 
is generated at several different levels. First there is syntax which dictates 
how correct sentences should be formed; but to derive true meaning we 
need a framework of knowledge ab out words, their meanings and relation­
ships. This information brings in the 'semantic' level of interpretation. 
Unfortunately this is often not enough because the meaning of a word can 
depend on the context in which it was uttered. To build a true natural 
language interface necessitates making computers mirror this process; this 
implies building a machine with artificial intelligence comparable to human 
intelligence with a vast database of word meanings. 

Not surprisingly, naturallanguage interfaces are currently practical only 
in limited domain problems. By limiting the domain, the quantity and 
complexity of knowledge required can be restricted to manageable propor­
tions. Some limited naturallanguage interfaces are practical for databases 
in which the interface has knowledge ab out the data items and a restricted 
set of linguistic terms which the user may employ to ask for. the data. 

Advantages 

Natural communication 
No learning required 

Disadvantages 

Difficult to program 
Needs knowledge base 
Verbose input 
Can be ambiguous 

Suitable for: novice and naive users in a restricted problem domain. 
User-initiated dialogue. 

3.7 Review of the Type of Interaction 

The input for this step comes partly from interface analysis and partly from 
mainstream systems analysis as the functional specification of wh at data 
and input messages have to pass across the system interface. In most 
information and trans action processing systems this will be data and 
control messages specified as data flows (if structured analysis is being 
used) or data structures held in a data dictionary. Requirements analysis 
provides specification of the volume of data, the frequency of input/output, 
the timing (on demand or batch) and the validation constraints. 

In some systems, r'equirements may have a more direct bearing on the 
dialogue type. For instance, a VLSI circuit design system may require an 
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interactive graphic interface with an icon library of circuit components. 
The functionality of a system can dictate the range of interface design types 
that it is possible to employ; consequently, it is necessary to classify tasks 
according to their type of interaction. Tasks can then be matched to 
interface design styles, bearing the user characteristics in mind. The task 
interaction type may or may not indieate a partieular interface design style. 
A working classification of interaction types, which can be allocated to 
tasks, is as folIows: 

Data entry 
Data display 
Data retrieval (search and display) 
Data editing 
Command (user access to system facilities) 
Conversation (series of questions and answers) 

Although these categories are not mutually exclusive, they do give general 
guidance towards design of the interface. A command type of interaction 
may become a conversation if there is a long sequence of two-way dialogue 
between user and computer rather than short dialogues in which the user 
asks the computer to run a task. Menus or a command language are 
suitable for the latter while question and answer style is better for 
conversations. In a system with mixed types of interaction, a command 
language could be used with question and answer dialogues. 

In some cases the influence of requirements will be strong, for instance a 
medical interrogation system which asks patients about their medical 
history will probably have to be a conversation; while a business graphics 
system will require a graphieal display. However, it is important to 
remember that types of interaction do not pre-determine the dialogue style 
absolutely; a data entry function could be implemented by form filling, 
menus, touch panels or graphic-icon selection. 

3.8 Selecting the Interface Design Style 

This step aims to synthesise interface and systems analysis by taking the 
task descriptions, interaction types and the user profile, and arriving at a 
strategie decision about wh at style, or more likely styles, of interface are to 
be employed. 

Interfaces should serve people; therefore, when selecting the type, 
human requirements come first, followed by system requirements. The 
decision steps are: 

• From the user profile, decide on the level of support and sophistication 
wh ich the dialogue should provide 
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• Select one or more interface styles which are appropriate for the 
support and sophistication required 

• Match the interface tasks against the system requirements and 
categorise the type of interaction 

• Select appropriate interface design styles. If there is a dash between 
user and system requirements, then trade-off decisions will have to be 
taken 

The user profile specifies the level of support needed and degree of 
sophistication. These measures can be derived from a simple table in which 
the familiarity, frequency of usage, general ability and user's knowledge of 
computer operation are scored on a simple scale of + + + = good/frequent 
to --- = poor/infrequent, and matched against the sophistication and 
support wh ich are desirable: 

User measures 

Familiarity 
Frequency 
Ability 
Knowledge 

Familiarity 
Frequency 
Ability 
Knowledge 

Familiarity 
Frequency 
Ability 
Knowledge 

Familiarity 
Frequency 
Ability 
Knowledge 

Familiarity 
Frequency 
Ability 
Knowledge 

++ 
++ 
++ 
++ 

++ 
++ 
++ 

++ 

+ 
++ 

Interface characteristics 

Sophistication 
Support 
(expert interface) 

Sophistication 
Support 
(skilled user interface) 

Sophistication 
Support 
(skilled novice) 

Sophistication 
Support 
(dedicated unskilled) 

Sophistication 
Support 
(naive user interface) 

++ 

++ 
+ 

+ 
++ 

++ 

+++ 

Highly skilled expert users who use a system frequently will require a 
sophisticated interface to fulfil the complicated functions which they wish 
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to undertake and to give them the ability to extend the system's properties 
to suit their own needs. Users who are skilled and use the system 
frequently but lack background knowledge about the system structure are 
less likely to need the flexibility to extend the system's powers, even 
though they will still require a quick-to-use and sophisticated interface. 
High-frequency users who lack knowledge about the system structure and 
have low to moderate ability are unlikely to be able to deal with 
sophistication and need a supportive but quick-to-use interface. The 
inverse user profile (high ability, low frequency) is suitable for a sophisti­
cated interface but will require a high level of support because the low 
frequency of use will lead to the interface characteristics being forgotten. 

An approximate guide to link user abilities to interface type is: 

Type 

Expert user Interface 

Skilled user Interface 

Skilled novice 

Unskilled dedicated user 

Naive user 

User abilities 

Programming language 
Extensible command language 

Command language 
Code-keyword interfaces 

Code-keyword interfaces 
Menus 

Menus 
Page address 

Question and answer 
Simple menus 

Inevitably, users in a population will rarely fit neatly into one category so 
the eventual choice depends on trade-off decisions which try to satisfy as 
many different types of user in the overall population as possible. 

The level of sophistication can point strongly to a dialogue type; at this 
stage the system requirements are introduced to home-in on a small 
range of types. Support has a less direct bearing on the dialogue type: 
Obviously a requirement for a very supportive dialogue should not be 
implemented with command languages; however, a sophisticated dialogue 
can be successful with fairly inexperienced users if good support is provided 
in terms of help screens, tutorial guides, training and documentation. 

Interface styles frequently have to be chosen within the limitations of the 
available hardware which may constrain some more innovative solutions. 
The usual hardware encountered is the ubiquitous VDU; in this case the 
major constraint on interface design is provision of high-resolution screens; 
although with the growth in high-resolution raster graphics, this constraint 
should become less important in the future. 
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Finally, consideration of the user's views may have implications for the 
choice if there is a strong structural metaphor in the view. If the user views 
the system in terms of a map or a spatiallinked collection of objects, then 
use of graphics and icons would be advisable. 

Once all these factors have been considered and interface design styles 
have been chosen, the way is open to the next step of interface design 
wh ich is carried out using the properties, and within the limitations, of the 
chosen interface style. This step takes the task design, now tagged with 
design styles, and adds the dialogue to support the human use of the 
computerised tasks. 

Synthesis of the products of analysis into design decisions is in the end 
dependent on experience. The above guidelines are intended to be a 
framework within which to work, with the aim of ensuring that at least all 
the factors pertaining to the decision have been examined. 

3.9 Summary 

Task analysis is similar to functional analysis as practised in systems 
analysis and design. Top-down functional decomposition is used to break 
tasks down into sm aller components which can then be specified in detail. 
The techniques of Structured analysis, Data-flow diagrams and Structured 
English may be used for this purpose. 

Besides task analysis, analysis of user characteristics is important. 
Qualities of frequency of use, general ability and computer experience 
contribute towards measures of user sophistication and support. These 
measures can then be used to plan the type of interfaces suitable for a user 
population. Users can be approximately categorised as Naive, Novice, 
Skilled and Expert, depending on their previous experience. 

User models have several different objectives. User characteristics, user 
task models and user views are the more important models for interface 
design. User task models attempt to capture the user's knowledge about 
how a system is expected to operate while user views capture the user's 
perception of system structures. The closer an interface conforms to these 
pre-conceptions, the easier it should be to use. 

General interface design starts with task design. Allocation of actions 
and tasks to either human or computer, or both, is the first step. Allocation 
is best carried out at the detailed level of actions. Joint human-computer 
tasks and actions may need further analysis. Task networks are drawn up 
for the human and computer system. 

Task design then re-organises the human task network to create designs 
which allow for human limitations. The network is restructured to include 
closure events. Tasks are combined into work modules and jobs. Task 
combination aims to produce jobs which have the correct degree of 
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stimulation while not overloading the operator. Ca re must be taken to 
avoid task overload, especially with processing transactions peaks and 
error cycles. 

System support design involves documentation and training manuals. 
Structuring the information and simple clear layouts are vital. Manuals 
have to support trouble shooting as well as education, and good access 
paths should be provided to information. 

Interface design has a basic se ries of styles wh ich consists of Question 
and answer, Menus, Form filling, Command languages and Natural 
language. System requirements constrain the choice of dialogue style to an 
extent and have to be analysed by matching requirements against suitable 
interface styles. User characteristics are the more important determinant 
of which style is eventually selected. The interface design style is matched 
against the projected user sophistication. The user support requirement 
measure determines the level of environmental support which will be 
necessary. 

Further Reading 

Further details of task analysis and job design can be found in Bailey 
(1982) and Damodaran et al. (1980). 



4 Theoretical Approaches 

So far, a general method of interface design has been presented which is 
based on the concepts of structured systems analysis and design. Other 
methods of interface analysis and specification devised by workers in 
human~omputer interaction are now presented for a comparison. Two 
main groups of methods have evolved within human~omputer interaction: 
grammatic and diagrammatic techniques. Of the grammatic school, the 
best developed and weIl known method is the Command Language 
Grammar (CLG) of Moran (1981). 

4.1 Command Language Grammar 

Like structured analysis, CLG employs top-down functional decomposi­
tion to analyse systems; however, CLG has severallevels which start from 
an analysis perspective and progress towards a physical design. This 
approach puts analysis in a framework of abstraction from the goals of 
wh at the interface has to achieve through to the detail of how the interface 
will opreate. CLG uses a semi-formal language of reserved words for 
structure and sequencing, indentation to show the scope of control, verbs 
for actions and nouns for data. The reserved word set is not completely 
specified, making it open to extension by users. The CLG specification 
levels are: 

• Task level: this analyses user needs and how those needs should be 
achieved in terms of goals and sub-goals. User tasks are described using 
English narrative in terms of objectives and goals 

• Semantic level: this level elaborates the system as a set of objects and 
operations carried out on those objects. Tasks are formulated in terms 
of conceptual entities, operations and methods which specify how 
operations are organised 

• Syntactic level: operations of the semantic level are refined into a 
language composed of commands, user operations, contexts and state 
variables. It describes how the user and system components interact 
according to the gramm ar 

• Interaction level: this level defines user operations and system com­
mands in terms of physical operations such as keystrokes, device 
manipulation and displays 

81 
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As CLG is a gramm ar , it is composed of expressions which obey certain 
rules. The general format is: 

Symbol (arbitrary name) = expression list 

Three expression types are defined. First is a hierarchic expression used to 
describe objects (for example, message = a memo); this expresses the 
classification 'a memo', being an instance of the class message. Second is a 
set or sequence membership expression (SET = x,y,z). The third is 
ordinary English narrative. Expressions describe concepts and can be 
represented by an identifier; in this way sub-expressions and hence 
concepts can be embedded within other expressions in a hierarchical 
manner. 

At the task level CLG describes concepts in English. Tasks may be 
divided into a hierarchy with sub-tasks and so on (see figure 4.1). Each task 
and the entities upon which they act are described in a structured format 
with notes on organisation and any constraints. The example is an E-Mail 
system, described in full in Moran (1981): 

SEND-MESSAGE = (AN ENTITY NAME = "Send Message") 
(* this is a message sent by the SEND system 
A SEND message has a he ader and a body 
The he ader contains ... ) 

NEW-MAIL = (A TASK (* Check for new SEND MESSAGES and if any read 
them. This is the most frequent task» 
DO (SEQ: (CHECK-FOR-NEW-MAIL) 

(READ-NEW -MAlL) 

READ-NEW-MAIL = (A TASK (* Read all new SEND MESSAGES, de\eting all 
those that are of no further interest» 

The major difference with Structured English is the declaration of data 
objects, called entities. These are data aggregates upon which actions 
happen. The data is related to a common something for which no definition 
is given; however, in practice entities can be thought of as objects of 
interest in the system. Top-down decomposition continues until detailed 
assumptions have to be made about the structure of entities and tasks; this 
point is not clear, but it is closer to the action than the function concept in 
structured analysis. 

At the semantic level CLG defines conceptual entities and operations 
wh ich will carry out the tasks. So me English narrative is still used but more 
detail is included for entities and tasks. In the messaging system the 
semantic statements may be: 
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NEW-MAIL + THlN-OUT 

/ 
NEW-MAIL 

(I) (2) /~ (4) 
GET -INFORMA nON CHECK-FOR-NEW-MAIL READ-NEW-MAIL THlN-OUT -MESSAGES 

(a) 

S 
(SHOW-MESSAGE) 

~i------------- I 

WP ~~ I 

2 
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(OBJECT) 

~I------W B I 

6 

(b) 

I 
F 
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S 

(MESSAGE-NO) 

~~ 
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7 
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(INTEGER) 
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B 
I 
A 
I 
8 9 10 

11 12 

Figure 4.1 The Command Language Grammar: (a) at the task level 
showing a task hierarchy for an electronic mai! system; (b) at the 
interaction level showing the tree of possible interactions for one 

command, Show message. 
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MAlL-SYSTEM = (A SYSTEM NAME = "Email" 
ENTITIES = (SET: MESSAGE SUMMARY MAILBOX 

SCREEN DIRECTORY) 
OPERATIONS = (SET: SHOW DELETE» 

MESSAGE = (AN ENTITY REPRESENTS (A SEND MESSAGE) 
NAME = Message 

MAILBOX = (A LIST 

(* narrative description ... message has a header and a 
bodyetc. *» 

REPRESENTS (A MESSAGE FILE) 
OWNER = (A USER) 
MEMBER = (A MESSAGE) 
NAME = "Mailbox" 
(* this contains all messages . . .» 

Conceptual entities may be pure concepts, such as a Mailbox, or more 
tangible objects such as a Message. Hierarchical structuring can be shown 
in LIST Entities which group other entities; the system itself is composed 
of a SET of entities. Entities are described in this manner with various 
properties such as owners, membership of sets or name identifiers. 
Operations are linked to objects and values which are necessary to satisfy 
their function. Each operation may be described further in narrative or 
may not require elaboration. The difference between operations and tasks 
is not made explicit in the method. Operations, conceptually, happen to 
objects within the system, while tasks are a more goal-oriented statement 
of the user's intentions. In practice the two become merged as analysis 
progresses. Operations are classified as User or System operations. 

SHOW = (A SYSTEM OPERATION 
OBJECT = (A PARAMETER VALUE = (AN ENTITY» 
IN (A PARAMETER VALUE = A PLACE ON THE 

SCREEN) 
(* narrative description ... object may be a MESSAGE, 
SUMMARY OR DIRECTORY *» 

READ = (A USER OPERATION 
OBJECT = (A PARAMETER 

V ALUE = (AN ENTITY» 
IN (A PARAMETER 

VALUE = (A PLACE ON SCREEN) 
DEFAULT-VALUE = (UNKNOWN) 

(* The User reads an Object, which is in some place on the 
Screen. The Object may be a MESSAGE, SUMMARY or 
DIRECTORY») 
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The last component of the semantic level is a method or pracedure for 
achieving a task. Methods add control constructs to operations and entities 
of the form 'Do while' and 'If then else'. If the reader perceives some 
similarity with the GOMS model described earlier, that association is 
correct; CLG owes much of its heritage to cognitive prablem-solving 
models. An example of a method is: 

SEM-MI - (A SEMANTIC METHOD FOR CHECK FOR NEW MAlL) 
DO (SEQ: (START SYSTEM) 

(SHOW DIRECTORY) 
(LOOK AT DIRECTORY FOR 

(A MESSAGE = NEW))) 

SEM-M2 = (A SEMANTIC METHOD FOR READ-NEW-MAIL) 
DO (REPEAT 

BINDING M TO (EACH MESSAGE 
AGE = NEW) 
DOING (SEQ: (SHOW m) 

(READ m) 

(OPT DELETE m))) 

The binding operation instantiates a variable in an entity. The method then 
shows the pracedural sequence of operation in terms of the three basic 
contral structures SEQuence, REPEAT and OPTional selections. At this 
stage the rules governing selection and repetition are not detailed. 

At the syntactic level, operations and methods are defined as commands 
wh ich are issued by the user to the system. Commands are created for each 
semantic operation. Syntactic commands refer to entities with arguments 
and have contexts, that is, situations in wh ich they may and may not be 
used. One or more contexts describe the whole system in terms of displays, 
commands and state variables which hold values within a context and are 
used for contral (such as Message numbers). The system Entities are 
refined at the syntactic level into more physical objects which will 
correspond to screen displays. This gives a more detailed description of 
their praperties, for example, message layout, screen display· areas, 
directory structure, etc. Also added at this level are the identifiers to be 
used by the user to find conceptual entities, called Descriptors. In the Mail 
system these are simple message numbers. 

MAIL-CONTEXT = (A COMMAND-CONTEXT) 
STATE VARIABLES = (SET: CURRENT MESSAGES) 
DESCRIPTORS = (SET: MESSAGE NO) 
DISPLAY AREAS = (SET: DIRECTORY AREA, 

MESSAGE AREA, COMMAND AREA 
COMMANDS = (SET: SHOW-MESSAGE SHOW-NEXT, 

DELETE-MESSAGE EXIT) 
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MESSAGE NO = (A DESCRIPTOR 
NAME = "Message number" 
FORM = AN INTEGER 
V ALUE = (A MESSAGE) 
DEFAULT VALUE = (THE-CURRENT-MESSAGE)) 

MESSAGE AREAS = (A-DISPLA Y-AREA) 
NAME = "Message Window" 

Descriptive narrative mayaiso be included in the syntactic level to clarify 
the links between display areas and the objects to be displayed. At the 
syntactic level, conditions are added to repetitions and options in Methods. 
The show command becomes: 

SHOW MESSAGE = (A MAIL-COMMAND) 
NAME = "message" 
OBJECT = (AN ARGUMENT = (MESSAGE NO)) 
DOES (SET: (SHOW (SUMMARY OF (THE OBJECT))) 

IN DIRECTORY AREA 
(SHOW (MESSAGE NO OF (THE 
OBJECT))) IN DIRECTORY AREA 
(SHOW (THE OBJECT) 
IN THE MESSAGE AREA)) 

DELETE-MESSAGE = (A MAIL-COMMAND) 
NAME = "delete" 
DOES (SEQ: (DELETE (THE CURRENT MESSAGE)) 

(IF (THERE-IS (A MESSAGE) IN 
MAILBOX) 
THEN (SHOW-NEXT-MESSAGE) 
ELSE (SEQ: (DISPLAY (* No more 
messages)) IN COMMAND AREA))) 

The syntactic level brings the specification down to the detail of what 
commands can be used in the system, the effects the commands have on 
the objects in the system, the messages displayed and the screen layout of 
displays for messages and objects that the user needs to see. Syntactic 
methods are similar to the semantic level although the specification is 
refined to include more detail of system operations, for example: 

SYN-M2 = (A SYNTACTIC METHOD) 
FOR READ-NEW-MAIL 
DO (REPEAT UNTIL (* End of mailbox) 
DOING (SEQ: (READ (THE-CURRENT-MESSAGE) 

IN MESSAGE-AREA) 
CHOICE: (SHOW-NEXT-MESSAGE) 

(DELETE-CURRENT MESSAGE))) 
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The show command in the user's task can now be achieved by the system 
commands which have been designed for it. 

More detail is added at the interaction level which describes the dialogue 
and presentation design. In this step CLG becomes atme gramm ar 
composed of terminal symbols (wh ich are self-defining and cannot be 
subdivided) and non-terminal symbols which are composed of terminal 
symbols. The terminal symbols are: 

W When is 
P Prompt } 
R Response 
A Action 

(temporal specification primitives-before, after) 
primitive system action-display (x) 

(primitive user action-a keystroke) 

These can be combined into non-terminal stmctures. Interaction is 
described as a tree for each command operation, the tree defining the 
permissible sequences of prompts, responses and states. Inspect figure 4.1b 
and cross-refer to the text below: 

2 (P.S 

4 (A.D.B.S 

OF SHOW-MESSAGE-(DISPLA Y "Command") 
{where S = the specification}) 

OF SHOW-MESSAGE-(KEY: "M") 
{where D = "the designation of" 

B = "the body of" 
S = "the specification of"} ) 

The interaction level also elaborates methods by adding validation of 
interactive commands which may be used, actions to be taken in response 
to commands, and specifying messages, for example: 

MX = (AN INTERACTION METHOD FOR READ NEW MAlL) 
DO (REPEAT UNTIL (* End of mail» 
DOING (SEQ: (READ (THE CURRENT MESSAGE) IN 

MESSAGE AREA» 
(CHOICE: (KEY: "N") 

(KEY: "D"» 

Rules are added to link commands with states (When), prompts and 
responses. The mIes are fairly simple for single commands but if com­
mands have arguments then further mIes are required and complexity 
increases. 

The above description is just an overview of CLG. For more detail the 
reader is referred to Moran (1981), although the present description should 
be sufficient to appreciate the essentials of CLG. First it is a hierarchical 
analysis and specification from a conceptual dimension to the detailed level 
of physical interaction. There are informal mapping mIes between the 
levels, for instance: 
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Entities: Task conceptual entities-semantic system 
entities-syntactic descriptors 

Tasks: Tasks-semantic procedures and methods­
syntactic procedures and methods 

Operations: Semantic operations-syntactic commands 

Whether mapping is 1:1 or not is open to the analyst's discretion. 
Task design occurs primarily at the lower levels as the detailed specifica­

tion is developed. The task level describes the user's requirements as a set 
of goals and informal task descriptions; the semantic level follows this by 
describing the functionality of the system; and the syntactic level adds 
design detail of how the functions are evoked. Finally, the interaction level 
specifies the physical form of the command language and dialogue to 
support the tasks. Mapping between the levels is not always explicit and 
considerable judgement has to be exercised by the analyst. Also, CLG's 
critics may regard it as cumbersome and over-detailed especially at the 
interaction level. Nevertheless, CLG does form a powerful specification 
and design method. 

4.2 Other Grammatic Specifications 

One approach using Backus Naur Form (BNF) to notate a task-action 
gramm ar has been pioneered by Reisner (1984). Her objective was to 
create a predictive analysis of command languages by comparing the 
complexity of languages in terms of a metric derived from the grammatic 
specification. The metric is based on the number of command words and 
grammatic mies as expressed in Backus Naur Form. As a result the scope 
of Reisner's BNF specifications is not as comprehensive as CLG and expert 
user knowledge of the command language syntax is assumed when 
assessing the language. The basic method is to describe all valid commands 
in grammatic terms composed of terminal and non-terminal symbols. 

Terminal symbols are the basic words of command language; these are 
combined into non-terminal symbols, alias phrases, clauses and sentences. 
In addition there are a few special symbols for notation al purposes such as 
:: = 'is composed of', + 'and',: 'or'. Complexity is built up by nesting 
sm aller components within larger ones. In natural language this can be 
seen in paragraphs which are composed of sentences wh ich in turn are 
composed of phrases, etc. 

Grammars of this sort can be used to specify interfaces at different 
levels. To compare interface designs the word set is composed of verbs for 
physical actions that the user can perform, such as point, enter keystroke, 
position; and nouns describing the interface objects such as the cursor, 
display, key. By comparing the complexity of the grammatic strings and 
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the number of terminal symbols, a judgement could be made about the 
complexity of the command language. Generally the less complex a 
command language the better. 

Another extension of grammatic techniques is to tag the phrases as being 
(1981) which uses GOMS as its basis and then adds set times for various 
cognitive operations into which tasks are decomposed. Operations are 
classified according to components of the information-processing model, 
for example reads and writes to short-term memory, perceptual actions 
and mental action cycles of the cognitive processor. The method works 
by describing the task as sequences of these primitive cognitive actions, 
assigning times to the actions and thereby deriving an estimated task 
completion time. Unfortunately the method ass um es error-free perfor­
mance wh ich makes its use questionable. 

Another extension of grammatic techniques is to tag the phrases as being 
performed either by humans or computers (see Shneiderman, 1981). This 
enables sequences of interaction between human and computer to be 
described at the task level. An alternative approach has been to use a 
generalised task-action grammar to describe conceptual objects and 
actions thereon in specific task domains. This method, TAKD (Johnson, 
1985), creates a generalised task model by abstracting from specific objects 
in a domain (a letter in a word processor) to conceptual objects in the 
system (documents). The generalised task model is then mapped on to a 
generalised system model which specifies the system objects (which 
become data structures) and actions (which become dialogue). 

In conclusion, gramm ars have been used at different stages in interface 
development with the motivation of either early evaluation by predicting 
qualities of design or for describing and analysing interaction. 

4.3 Diagrammatic Specifications 

Diagram-based interface specifications have employed state event transi­
tion diagrams and occasionally data-flow diagrams for task and dialogue 
description. The latter have already been described, so attention will be 
focused on the use of state event transition diagrams. 

State event transition diagrams , also known as finite state machine 
diagrams , are familiar throughout computer science as a method of 
describing sequences of events within a system. The components are a 
state, represented as a circle, and a change of state, otherwise called an 
event, shown as a connecting arc. The diagrams may show branching to 
account for divergence in a sequence, and repetition of astate event cycle. 
However, state transition diagrams are not suitable for showing concurren­
ey and hierarchical structures. These facets are necessary to specify 
operations in eoncurrent windows within an interface and to control 
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complexity in specifications. Most authors have added extra features to 
deal with the main defects. These diagrams are more useful for detailed 
design of dialogues and are described further in chapter 5. The most 
influential method in the diagrammatic camp is Cognitive Complexity 
Theory of Kieras and Polson (1985). As its name implies, this theory 
specifies interface complexity, besides creating a diagrammatic specifica­
tion of dialogues. 

4.4 Cognitive Complexity Theory 

Classifying CCT as a diagrammatic method is not tmly accurate. The 
method uses two formalisms, production systems and generalised transi­
tion diagrams, to specify in turn the user's knowledge of the task and then 
the user-system dialogue. The main focus of this method is analysis of task 
complexity, so tasks and hence interfaces can be designed which do not 
overload the users' capabilities. The task is analysed using production 
systems to describe the user's model of the task in terms of wh at is known 
about how to do the task. Production systems are mIes in the form 'IF 
condition THEN do action' with associated working memory holding facts 
to be evaluated in the condition. 

The method aims to analyse the task fit between the user's concept of the 
task and how the task model is formulated in the system. CCT dis­
tinguishes between device-dependent and device-independent (that is, 
pure task) knowledge. Complexity is considered to be caused by: 

• Complexity of the user task in terms of learning and memory load 
• The number of device-dependent functions which have to be learned 
• The ease with which 'how to work it' knowledge can be acquired 

The better the task-system fit the smaller the number of device-dependent 
functions should be, and the more natural a design will be to use. 

The production systems are arranged in procedural sequences of task 
actions and the human reasoning behind the task, which is expressed in a 
GOMS-like goals network. Goals can be added, changed or deleted by the 
productions and this allows a description of the travers al of a problem­
solving network to be made. Actions allow goals to be inserted and 
deleted from working memory as weIl as performing manipulations on the 
environment. The production systems proceed by alternate recognise (test 
condition) and act modes. 

Production system sequences form methods for achieving goals and 
selection mIes test facts in working memory and control the execution of 
methods and actions. Special conditions are added to evaluate the presence 
and status of goals in working memory as TEST GOAL and ADD NOTE 
(status variable). Finally there are variables notated with a % which can 



Theoretical Approaches 91 

become instantiated with values. The whole system has a hierarchical 
organisation. An illustration of a production system for an editing task is: 

(task edit article 
IF(and(TEST-MSS manuseript is new article) 

(TEST-GOAL type manuseript) 
(TEST-GOAL seleet equipment) 

THEN «ADD-NOTE many revisions will be done)))) 

This is a top-level goal establishing the nature of the task. Lower-Ievel 
goals and the associated methods are: 

(SET UP-UNIT-TASK 
IF(AND(TEST-GOAL edit manuseript) 

(NOT (TEST-GOAL perform unit task))) 
THEN «GET-NEXT-UNIT-TASK) 

(ADD-GOAL perform unit task))) 

Unit tasks are selected in sequence to effect completion of sub-goals. In the 
word-processor example, goals are broken down into editing operations of 
decreasing complexity and finally into unitary simple operations such as 
deletion, insertion, replace, etc. 

Some selection and control rules for deletion: 

(SELECf-CHARACTER-DELETION 
IF(AND(TEST-GOAL perform unit task) 

(TEST-MSS funetion is delete) 
(TEST-MSS entity is character) 
(NOT (TEST-GOAL delete character) 
(NOT (TEST-NOTE executing character deletion))) 

THEN «ADD-GOAL delete character) 
(ADD-NOTE executing eharaeter deletion) 
(LOOK-MSS task is at %UT-HP %UT-VP»))) 

(CHARACTER-DELETION-DONE 
IF(AND(TEST-GOAL perform unit task) 

(TEST NOTE executing charaeter deletion) 
(NOT (TEST-GOAL deleting character))) 

THEN «DELETE-NOTE executing character deletion) 
(DELETE-GOAL perform unit task))) 

The method for deleting a single word, PDELWD1, is illustrated in the 
following text. First the cursor is positioned, then the word is deleted and 
finally the goal is removed from memory. 
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PDELWDl 
IF(AND(TEST-GOAL delete word) 

(NOT(TEST-GOAL move cursor to %UT-HP %UT-VP)) 
(NOT(TEST-CURSOR %UT-HP %UT-VP))) 

THEN (ADD-GOAL move cursor to %UT-HP %UT-HP) 

PDELWD2 
IF(AND(TEST-GOAL delete word) 

(TEST-CURSOR %UT-HP UT%-VP)) 
THEN «DO-KEYSTROKE DEL) 

(DO-KEYSTROKE SPACE) 
(DO-KEYSTROKE ENTER) 
(WAIT) 
(DELETE-GOAL delete word) 
(UNBIND %UT-HP %UT-VP)) 

The production systems describe the goal manipulations necessary to 
control operation of the task; the testing of extern al variables and the 
update of status variables are operations progress. All these impose a load 
on working memory wh ich can be quantified. The number of production 
system rules can be counted; more rules make a system more difficult to 
learn. 

Another analysis is to examine the goal structure in the system. There 
should be only one goal structure per task, any more will confuse the user 
by presenting unnecessary complexity with many ways of doing one task. 
Also the system goal structure can be compared with the user's model of 
the task goal stucture to test for goodness of fit. 

The second part of Kieras and Polson's method uses generalised 
transition network (GTN) diagrams to model the device dialogue. GTNs 
are derived from state transition dia grams augmented with a hierarchical 
nesting feature to deal with complexity. Hence top-level diagrams call 
sub-diagrams. The components of GTNs, illustrated in figure 4.2, are 
states (prompts and computer displays) shown as circles, transitions 
between states caused by human actions and replies, illustrated as arcs, and 
conditions which control the transitions. Nesting can occur in conditions, 
states or actions. Diagrams read from left to right, and conditions/action 
arcs are positioned clockwise around a circle state in the order in which the 
conditions are tested. Nesting is shown by sub-network calls and POP for 
the return-exit point in the sub-network. 

The nesting hierarchy of GTNs represents the system goal hierarchy. 
Hence the user and system goals hierarchies can be compared to discover 
the extent of task-tool fit. Drastic divergence in the two hierarchies 
indicates that users will have problems using the device because of a poor 
match with their conceptual model. An example of poor user goal-device 
hierarchy matching is shown in figure 4.3. 
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(after Kieras and Polson 1985) 
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Figure 4.2 Generalised transition network diagrams used for dialogue 
design in Cognitive Complexity Theory. The system illustrated is a word 

processor. 

As weIl as providing a method for examining complexity in tasks and the 
mapping between user and system task models, the GTNs in cer are a 
useful method of dialogue design which can be used to plan and verify good 
practices of dialogue design. The method is used for this purpose in chapter 
5. 
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Figure 4.3 Mapping between the user conceptual model and the system 
model. Some user goals have no corresponding match in the device 

model, leading to poor task-tool mapping. 

4.5 Comparison of Specification Methods 

Ideally, human--computer interface specification and design methods 
should cover all aspects of the interface development life cycle, be easy to 
use and learn, have predictive qualities for evaluating designs, and cover 
the diverse aspects of specification (cognitive load, task model, system 
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model, dialogue and presentation design). This is a tall order which no 
method has so far addressed. 

Some commonalities in approach, however, can be discerned. Many 
methods make reference to levels of abstraction. Commonly used terms 
are the Semantic (what to do), Syntactic (how to do it) and Lexical 
(physical details) levels, for instance, see Foley and van Dam (1982) and 
Shneiderman (1987). There is agreement that task-semantic specification 
occurs first and is then mapped on to features in a design. Another theme is 
conceptual modelling, in particular discovering the user's conceptual 
model and then basing a design on it. Cognitive complexity theory and 
Command language gramm ar provide a mechanism for this. 

Both CLG and CCT have been criticised as being too complex for 
practical use, although they have been used with a pragmatic reduction in 
complexity of notation. CLG also presents problems in the mapping mIes 
between levels, which even though they are stated in Moran's paper are 
not sufficiently complete to guide the novice practitioner. Nearly all 
methods omit coverage of the early stages of task analysis and assume that 
the analyst has a clear picture of wh at the user wishes to do. As such, they 
are methods for describing the system and then designing the interface, 
and not complete analysis and design methods. 

Another point of comparison is in the merits of notation; dogrammars 
or diagrams make a clearer specification? UnfQrtunately there is no 
complete standard within either approach. Grammatic methods have the 
advantage of making the stmcture of a dialogue clear and specify per­
missible computer and human actions concisely. Grammars can be used in 
different levels of specification from the conceptual to physical domains; 
and they are flexible because word sets and grammatic mles can be 
adapted to suit the application and needs of the investigator. But that 
flexibility limits the utility of gramm ars as a general specification method. 
Each institution has to create its own set of words and grammatic mIes; 
also, the mapping between grammar-based specifications at different levels 
is difficult to specify in a formal manner. 

A dis advantage of grammars is the poor illustration of sequencing. 
Although sequences may be specified by arranging phrases in approximate 
order of occurrence or by tagging them in an interactive series, text-based 
methods obscure any complex sequencing. As most dialogues are net­
works, sequence information may be important when planning human­
computer interaction. 

Diagrams can be used in interface specifications as a recording medium 
for time-ordered tasks and dialogue designs. Whereas gramm ars are good 
for stmcture, diagrams are good for sequences and network specifications. 
However, when dialogue networks become complex with high connectiv­
ity, diagrams be co me more difficult to understand, and maintaining 
diagrams without automated support can be arduous. 
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4.6 Summary 

Many methods of interface specification have been proposed by research­
ers in human-computer interaction. Two main groups are discernible, 
diagrammatic and grammatic approaches, of which Cognitive Complexity 
Theory and Command Language Grammar are the most influential 
examples in each category. 

HCI specification methods use concepts of levels of abstraction to 
describe the user's conceptual model at the semantic level, and then refine 
it into design of interaction at the syntactic and lexical levels. CLG is 
probablythe most complete method although it suffers from over­
complexity in notation. Diagrammatic methods can give clearer represen­
tations of task and dialogue as long as the connectivity is not too complex. 
CCT uses GTN dia grams to illustrate the user's task and the user-system 
dialogue. In addition it employs production systems to analyse complexity. 

Both diagrammatic and grammatic techniques have their merits; 
however, current HCI specification methods tend to be focused on a 
particular concern rather than covering all the issues in the lifecycle of 
development. 

Further Reading 

In addition to the references cited in the text, the INTERACT and CHI 
conference proceedings are a good source of HCI specification and design 
methods. 



5 Dialogue Design 

This chapter takes interface design from the strategie to the tacticallevel. 
The interface is designed first as a set of logical modules using input from 
task design, and then the modules are organised into an interface structure 
by addition of an access mechanism. Access mechanisms are the way in 
wh ich users address data or functions provided by the system, and can be 
hierarchie, network or direct. The type of mechanism will be dictated 
mainly by the task structure and to an ex te nt by the interface design 
style. For structured task systems, menus present a hierarchical organisa­
tion, while command languages provide for network and direct access, and 
icons are a direct access mechanism which mayaIso have a hierarchie al 
structure. The logical modules are then mapped on to physical screens, 
windows and overlays, depending on the target hardware and software 
environment. 

Each module is decomposed into discrete steps, each step being a single 
question and answer between man and machine. The steps are then 
re-assembled into a detailed dialogue design which describes how the 
interface communicates with the user. The detailed design aims to incor­
porate good practices of dialogue design and provides some means of 
verifying that the design adheres to those practices. The steps involved are 
first designing the structure, then the access paths, followed by either 
prototyping the design with interface design tools (4th generation 
languages, screen generators) or detailed design of each step before 
implementation. The steps are summarised in figure 5.1 Which route is 
followed will depend on the complexity of the interface. More complex 
interaction in which the dialogue is critical should be designed in detail. 

5.1 Designing the Interface Structure 

So far the interface specification is composed of a set of task descriptions, 
system requirements and a strategie choice about the style of dialogue 
design which is going to be used. The next task is to add the access 
mechanism and then subdivide the whole interface into modules wh ich can 
be mapped on to physical structures and then programmed as parts of the 
system interface, such as data entry screens, help and error overlays, 
reports, menus and command lines. 

97 
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Figure 5.1 Flow diagram showing the steps of detailed interface design. 

5.1.1 Adding User Access and Control 

As user access is not part of the task description, it has to be added as part 
of the new system. The aim is to synthesise the user's view and the task 
structure. With luck these will agree, but sometimes the analyst may 
perceive a network of linked tasks which the user sees as a set of 
independent tasks. When in doubt the user usually knows best. 

Interface modules will rarely be ordered in a simple sequence. The user's 
view or the user requirements for system operation may state that certain 
modules must be available on demand while others should be organised in 
sequences to achieve a particular task. Organising interface modules into a 
system depends on user characteristics, which influences the choice of 
interface style, the system-task structure, and the user view of the 
interface. Access paths may be hierarchie, network or direct. A menu style 
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will tend to create a hierarchie organisation for the interface, whereas 
command languages can provide either direct access or network associa­
ti on between interface modules. Depending on the type of interface 
chosen, the modules will be linked together either as a hierarchy or as a 
network, which can be shown diagrammatically, as in figure 5.2. 

If hierarchie al access is being used, how the modules are grouped 
together will be influenced by the user's view of the system as weil as by the 

I. Order processing, showing a hierarchical structure which may be implemented 
using menus. 

2. Library system. This system has a network task structure 

Figure 5.2 Interface structure diagram, showing modules and access paths 
for an order processing and library system. 
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functions which the system provides. Users may have several views which 
relate to different parts of the system. There may be a physicallayout view 
and a logical classification view, the former expressed as a type of map and 
the latter as an abstract hierarchy. Views of a classification of objects are 
often expressed in terms of hierarchy while views of task sequence are 
more likely to be conceived of as networks. Access paths should reflect the 
way users currently view their system, a view which should have been 
discussed and agreed with the users. 

For instance, librarians may view a library system as a hierarchy of 
rooms, racks, shelves and then books for a physical layout part of the 
system. In contrast, for retrieval and cataloguing, the view may be 
one based on a current book classification system, such as Dewey or 
Library of Congress. But the issue desk may be conceived as a network of 
tasks such as checking the borrower's library ticket, recording the loan and 
date-stamping the book. 

5.1.2 Mapping Logical to Physical Modules 

To do this, interface design will use some of the principles of Structured 
System Design. As many system designers use these methods, their 
application to interface design is nothing new. For those who are unac­
quainted with the method, the basic idea is to divide up the system (or 
interface) into parts, called modules. The content of a module is deter­
mined by the axiom 'one module one purpose' or in interface terms 'one 
interface module does one, and only one, thing' (for example, a data entry 
screen accepts data but does not have editing operations mixed up with it; 
editing is done by another screen or overlay). This idea is called 'cohesion' 
in systems design. It aims to produce modules which carry out activities 
wh ich are functionally related or in plain English 'serve one purpose' . 

This notion is similar to the goal-oriented functional decomposition 
carried out in task analysis, therefore most tasks should show good 
cohesion. However, as the logical system is translated into the physical 
system within the constraints of available hardware and system software, it 
is necessary to preserve the cohesion of tasks as far as possible. The 
justification for introducing this criterion into interface design is identical 
to that employed in system design, namely cohesive modules are easier to 
identify, understand and maintain. An interface has to be maintained more 
often, probably, than other parts of the system, therefore it is important 
that it is easy to change. Dividing the interface into logically distinct 
modules makes identification of the location of change within the system 
easy, and minimises the spread of undesirable changes within the system. 
The combined effect of structured design of the pro gram modules which 
implement the interface is to help system maintenance and to make the 
interface easier to understand for the user. 
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How logical interface modules map on to physical programs and 
sub-routines is a program design problem and will not be considered 
further. The interface design problem is to construct an interface wh ich 
makes it easy for users to locate, understand and use its various functions. 
Thus although an edit screen and the data entry screen may call the same 
sub-routine to displayaform, the two parts of the interface should be 
logically different to the user. This difference should be designed explicitly 
to prevent users being confused about which part of the system they are in. 

Mapping of logical to physical modules may be 1: 1, but if this is not so 
then defining interface modules presents the same problems as defining 
modules in system design: where are the boundaries and how big/small 
should a module be? Interface design, fortunately, has a starting point to 
guide these decisions in task analysis. The task sequence should be 
examined and the break points noted. Break points occur at the end of any 
series of sequentially related operational steps; in reality this means when 
there is a pause, for instance, at the end of arecord during data entry, or 
when one life has been lost in aspace invader game. The sequence between 
break points should form one cohesive sub-task which becomes one logical 
interface module. Close mapping of tasks to interface structures may not 
always be possible, especially when error and exception sequences may 
interrupt tasks. 

Design continues by elaborating the dialogue within the modules. More 
actions are added to increase user control of the system and to provide 
support as help screens, etc. Before proceeding to detailed design, the 
principles upon which dialogue design is based are reviewed. 

5.2 Principles of Good Design 

Guidelines for good design features have been proposed by several authors 
in the human-computer interface literature. While no definitive set exists, 
there is a certain consensus and the following features are a distillation of 
recommendations by several authors. The principles relate only to control 
of the dialogue; separate guidelines are necessary for presentation of 
information and these are dealt with in the next chapter. 

• Feedback: always provide users with messages to inform them wh at is 
going on, especially if there is going to be any significant delay in 
response time. Failure to do so leaves users wondering if they or the 
machine are at fault, and often causes them to press Control-C to find 
out what has happened 

• Status: provide a message informing users which part of the system they 
are in. In large systems users may forget which facility they are using, 
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resulting in them issuing the right command in the wrong context. This 
can have unfortunate consequences 

• Escape: allow users a method of terminating an operation and escaping 
from options. Many operations are selected accidently and one of the 
most frustrating features of a bad interface design is being locked into 
an option you do not want 

• Minimal work: try to save users' effort when operating the interface. 
This can be effected by using the minimal number of dialogue steps 
necessary (for example, do not use two question and answer steps 
where one will do) and by reducing the amount of typing for users with 
abbreviations and codes. Long-winded dialogues may be supportive at 
first but users quickly learn dialogue steps and slow, multi-step 
dialogues soon become frustrating 

• Default: set default replies where there is a predictable answer; this 
again saves the user work 

• Help: provide on-line help whenever possible. Help has two functions: 
first as a learning aid for users who are too lazy to read manuals, and 
se co nd as an aide memoire for experienced users who need confirma­
tion of so me detailed aspect of an operation. Help should be layered or 
nested so the information pertains directly to the option or facility 
which the user wants to know about 

• Undo: mistakes will be made and users will want to backtrack in a 
dialogue sequence and start again. The interface should provide the 
ability to go back and recover a previous state;' for example, in word 
processing the previous version of the paragraph being edited 

• Consistency: the format and execution of commands should be consi­
stent throughout the interface. For instance, the escape command 
should use the same code (E to exit) at all levels and should have the 
same effect (for example, terminate the operation and return up one 
level in the interface hierarchy). Consistency reduces the amount users 
have to learn about an interface 

Guidelines, however, are only useful if they are applied, but their 
application will often require compromises between two or more conflict­
ing factors (for example, should feedback and acknowledgement be given 
at every step of the dialogue or will over-attentive messaging merely annoy 
the user?). Design decisions will remain human value judgements involv­
ing trade-offs between contradictory demands of a design; however, 
guidance can be given as to where during a dialogue guidelines should be 
employed to ensure the design process is methodical, if not perfect. 
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5.3 Putting Principles into Practice 

At this stage the dialogue consists of aseries of steps organised into 
modules which correspond to the user's task. While the basic sequence of 
the dialogue steps is taken from the Structured English task description, 
the steps within each module need organising into a coherent order and 
supplementing with additional steps so that the dialogue provides the 
correct choices for users at the correct time, gives appropriate messages 
and allows the user control over the interaction. 

This could be done intuitively using the guidelines of good design, but 
improvements can be made, if not guaranteed, by planning the dialogue 
using network diagrams to show the interconnection between each ques­
tion and answer step. The ability to trace pathways through a dialogue has 
two advantages. First it enables designs to be verified to ensure that bad 
practices are eliminated, such as answers which cause the system to crash 
and leave the user in limbo without a message; and secondly, guidelines 
can methodically incorporate good practices into a dialogue. 

Interface designers have used two main methods of detailed design: 
dialogue specification languages and dialogue network diagrams (see 
chapter 4). The form of diagram and specification varies from author to 
author but most diagrammatic methods owe their heritage to State-Event 
transition diagrams. These map the progress of sequences of events within 
a system and have two basic components: astate which is an object or 
entity at rest, and an event which is something causing one state to finish 
and an object to change from one state into another. 

Translated into dialogue terms, astate will be the computer awaiting a 
user's reply and there will usually be a message associated with this state 
either as a prompt or a feedback message relating to the last reply. The 
user's reply is an event which the interface has to deal with; it changes the 
interface from one state into another as the computer reacts to the user, 
issuing messages and performing actions until it requires more human 
interaction. In this way the whole question and answer sequence in a 
dialogue can be described and planned. 

Dialogue network diagrams 

In dialogue network diagrams, astate (or question) is represented as a 
circle, which is a resting state in the human-computer dialogue when the 
computer requires human intervention before proceeding to an event (or 
answer). This is represented by an arc, which shows the change between 
two states, each arc being dependent on the characteristics of the user's 
reply (such as valid data, invalid data, escape command). Each arc is 
annotated with the conditions which cause it to be invoked. These 
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conditions can then be cross-referenced to systems and pro gram design 
documentation to ensure correct programming of the interface. 

Diagrams read from top to bottom and concurrency can be expressed by 
two parallel sequences of circles and lines in one diagram, each showing, 
for instance, activity in separate screen windows. In so me cases concurren­
cy will need to be expressed within one sequence; for example, when a 
long-Iasting status message is displayed it is useful to illustrate its presence 
throughout the dialogue. In this case a circle is used for a message state and 
a dotted li ne indicates its presence during the dialogue although there is no 
state-event change. 

The transition between states may involve several events from the 
computer viewpoint, but these can safely be ignored if there are no 
implications for the user-system dialogue. However, if there is going to be 
a significant delay in response time before the computer can accept the 
next command, then this is a significant dialogue event which is shown as a 
bar on the event arc representing a delay in the dialogue due to computer 
processing time. 

Other features illustrated are default settings of replies, and timeouts 
when the computer controls transition between states after a certain time 
period if it has nor received a human reply. These are shown as an arc 

8 
~ 
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AState, the computer displays a message or 
menu, etc.,and awaits the user's reply 

Transition, caused by a computer response 
to user's input, in this case a menu reply 1 

Transition to a sub-dialogue sequence, referenced in 
diagram 5 

Start state 

Default setting [in brackets] in which the reply is 
actioned by carriage return 

Time-out on a reply state, showing 
-----' • .-.. automatie transition initiated by the 

computer 

Figure 5.3 Dialogue network diagram components (adapted from Kieras 
and Polson, 1985). 
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marked with a double arrow head. Diagram components are illustrated in 
figure 5.3. 

Network diagrams can be nested hierarchically to deal with complex 
sequences. A square is used to represent a call to a sub-dialogue sequence. 
Sub-dialogue sequences are labelled on the top-level diagram. For 
instance, in a command language the interpreter will be called when a 
command string has been entered, the parse sequence may be shown as a 
sub-dialogue (possibly using a different notation such as a parse tree); and 
in data entry, overlays may be called to deal with exception cases in an 
input sequence. A sampIe sequence is illustrated in figure 5.4. 

Dialogue dia grams are not suitable for the design of complex command 
languages, where other techniques such as syntax graphs and gramm ars 
have to be used; but for dialogues of simple to moderate complexity, 
network diagrams work weil . 

Escape 

Customer 
enquiries 

... _---ss----@ 

Sales 
orders 

Bad 
password 

Order 
dispatch 

r ~~. 

Invoice 
processing 

Figure 5.4 Dialogue network diagram showing the main menu in an 
information processing system. 
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5.4 Checking the Design 

One of the advantages of network diagrams is that they provide a quick 
visual cross-check to ensure that principles of good design have been 
employed. This can be carried out by checking the destinations of arcs. 
Most circles should have at least three arcs leading from them: anormal 
reply, the invalid reply leading to an error message state followed by return 
to the previous dialogue step for re-input, and an escape route to exit from 
the step to a previous break point in the dialogue. 

More sophisticated implementations may have five arcs from each data 
entry state: the three above plus a help arc which leads to a message state 
and waits before returning to the previous dialogue step, and an undo arc 
which will form aseparate dialogue sub-sequence of its own. 

Dialogue networks can be verified in two ways: first to ensure that the 
connections make sense, for example, error pathways terminate with a 
request for further input, escape routes take the user out of an operation at 
a sensible place, and second by checking that the appropriate number of 
arcs is present at each step to ensure that design guidelines have been 
adhered to. For instance, menu-selection dialogue steps can be checked to 
ensure an error pathway is present, an escape route is provided, all options 
are present and, optionally, help and backtracking facilities are present. 

Network diagrams can also check the efficiency of a design. The number 
of dialogue steps should be examined; a large number of steps with only 
two branching arcs following simple questions (of the Yes/No type) should 
be viewed with suspicion. Such a dialogue is likely to be too long-winded 
for all but the naive user. 

Sequences can be examined for defaults; if there are none, each step 
should be examined to determine whether pre-set replies could be 
included. Back-up information, such as status messages, should be 
included if not already present. By following through the dialogue se­
quence on a diagram, good design principles can be incorporated, although 
it should be remembered that good designs cannot be guaranteed, and are 
finally dependent on experience. 

5.5 Summary 

Detailed design starts by mapping the task design to interface modules 
employing the principle of cohesion as a guideline. The access mechanism, 
modelled on the user's view and choice of interface type, is added to the 
design to provide user control, and the overall design expressed in an 
interface structure diagram. Access also depends on the task structure, 
which may suggest a hierarchy, network or, in an unstructured domain, 
direct access to task fragments. 
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Dialogues are based on task sequences, but additions are made to 
incorporate good design practices for user guidance and support, such as 
undo, help, escape, default and feedback. Dialogue sequences are 
designed using network diagrams which show all the possible pathways 
through a dialogue as aseries of state-event transitions. Nodes represent 
states which are computer messages and displays, arcs are transitions and 
annotated with the human reply wh ich triggers the transition. Network 
diagrams can be verified by visual inspection to ensure that good design 
practices are adhered to. Escape, help and undo arcs are expected at most 
dialogue steps, and pathways should contain messages giving relevant 
feedback. 

Further Reading 

For details of GTNs, see Kieras and Polson (1985). Dialogue design 
guidelines can be found in Gaines and Shaw (1984) as a set of general 
'proverbs'; for more detail consult Smith and Mosier (1984) or Rubenstein 
and Hersh (1985). 



6 Presentation Design 

This chapter gives general principles and guidelines for the display of data. 
Presentation design for most interfaces involves screen design although 
other media, such as voice, will play an increasingly important role in the 
future. This section concentrates on the general approach for VDU screen 
design; detailed guidelines for different types of screen and use of graphics 
are given in later chapters. 

Presentation design aims to display information as efficiently as possible 
for human perception and to structure the display in such a way as to draw 
attention to important items of information. Presentation design is 
concerned with general structuring of the display and detailed design of 
field formats. The following guidelines apply primarily to VDU screen 
displays, although most of the principles may be applied to hardcopy 
reports as weIl. The designer should be aware that reading VDU screens 
and printouts does differ. Procedures for screen design are described first, 
followed by investigation of general topics of presentation design: 
attention and highlighting, use of colour, messaging, abbreviations and 
codes, and screen layout. 

6.1 Screen Design Procedure 

Information can be displayed in text form or by using graphics. Text has to 
be displayed using characters but figures may be shown either in tabular 
format or qualities of the values can be expressed using graphs. Generally, 
the more information which can be shown in a graphical form the better, 
because information is assimilated more easily in picture form. However, 
to present information graphically requires interpretation, wh ich may lead 
to users perceiving different facts from those that would be apparent from 
reading the raw data itself. Graphs are useful for showing trends in data 
and creating impressions of differences, but they are not so useful for 
accurate and detailed analysis of values. 

The choice of whether to use graphics or character displays will be 
determined by the user in conjunction with advice from the analyst. A 
general guideline is that if figures are to be used for detailed analysis in 
wh ich values are important or if data values are going to be abstracted from 
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the display, then character display should be used. In contrast, if overall 
qualities of the data need to be communicated, and values are not critical 
in the analysis, then graphics is a more effective medium. 

To be effective, displays need to be structured. Overcrowded displays 
cause mistakes in reading and eyestrain. Effective presentation has to solve 
a dilemma of displaying the maximum amount of information on the small 
space of a VDU screen, while at the same time not overcrowding the 
screen with too much data. If too little data is displayed, the users will have 
to page through endless screens to find the data that they need; display too 
much and users have the problem of not seeing the wood for the trees. 

Display design should start with design of the display structure. First 
information has to be grouped into blocks and the blocks ordered in a 
manner most useful to the users. Ordering and grouping of data will 
depend on the usage, and the dialogue specification may be taken as a 
starting point for screen design. Dialogue modules may map directly on to 
screens and detail within screens can be specified by inspecting dialogue 
network diagrams and segmenting sequences according to closure events 
imposed during task design. The dialogue segments can then be mapped 
on to screens, overlays and windows. Dialogue diagrams also give a 
specification of the message types that will have to be displayed. 

Screen display specifications at this stage will consist of a sketch of 
screen areas, windows and overlays with lists of data items and messages to 
be displayed in each area. This specification is reviewed to structure and 
organise the display further. The objective of grouping data is to pi ace data 
items which will be used together in the same place and make it easier for 
the user to find discrete data items. These two objectives may weIl be in 
conflict. The better known the data usage, the easier is the analyst's task of 
displaying data relevant to a task, and data items can be effectively 
grouped by a variety of user-defined criteria. However, when data usage 
requirements are ill-defined or the usage needs produce conflicting group­
ings, dialogues for data retrieval and dynamic configuration of displays 
have to be designed. 

Examples of grouping by usage are placing figures for comparison 
together, such as planned budgets and actual spend. GrOlipings by 
category uses the identity of some object that the data belongs to, such as 
branch, district, regional sales figures, or some quality inherent within the 
data items, for instance, all counties with above average rainfall. If the 
usage cannot be anticipated then a compromise is to group data belonging 
to entities using the results of data analysis to determine display contents. 

Once the contents and overall structure of the display have been 
decided, more detailed design is carried out to create a mock-up of the 
display. The display sampies or prototypes are tested with users for 
acceptability. Early user testing of interfaces is a good way of obtaining 
feedback, not only on screen designs but also on the functionality of the 
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system itself. When users see part of the system they invariably venture 
opinions, whereas written specifications may be accepted without any 
feedback. In summary, the steps in screen design are: 

• Identify system inputs and outputs. These will be part of the systems 
analysis documentation 

• Segment the dialogue specification into screens, overlays and windows, 
using closure events to determine boundaries of sub-dialogues 

• Identify user requirements and user characteristics. This will form part 
of the user analysis which determines the appropriate level of support, 
prompting and messaging in a screen 

• Describe in detail the format of data items and messages to appear on 
the screen 

• Design screen structure, starting with the general layout of the screen, 
then adding headings, titles, prompts and error messages 

• Test screens with users: re design if necessary 
Systems inputs and outputs will be described in the data dictionary 

created during systems analysis. The important factors for screen design 
are to identify data flows across the system boundary, list their contents 
from the data dictionary and describe the screen function, that is, data 
entry, data display or conversational (a mixture of both). The dialogue 
network specification refines design to areas within a screen. Different 
functional pathways within a dialogue should be mapped on to screen areas 
reserved for their purpose, such as working, command, help and error­
processing areas. 

User characteristics have a bearing on the amount of support informa­
tion which should be provided. Screens for naive users will require 
complete prompts and detailed explanatory instructions, although the 
amount of instructional and prompting material necessary will decrease as 
user expertise increases. Abbreviations and short prompts should only be 
used with skilled users or with novice users who may be expected to 
acquire skills quickly through frequent use. 

Description of data items amplifies the amount of information already 
present in data dictionary entries by adding information needed for screen 
design, such as data item relationships, field size and format. A typical data 
item description may be: 

Data name Size Type Req'dlOpt Validation Prompt 
Customer Name 30 X R LUT Cust. name 
Address 30 X 0 Address 
City 20 X 0 City/Town 
Post Code 7 X 0 Posteode 

Vehicle type 15 X R LUT Vehicle 
CC 4 9 R Range Engine ce 
Cover 1 X R LUT Ins. cover 



Period 
Start date 
Driver age 
Years exp. 
Other drivers 

2 
6 
2 
2 
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9 
D 
9 
9 
X 

R 
R 
R 
o 
o 

Data grouping in order by: 

Driver details 
Policy sought 
Driver experience 

Range 
DD/MMlYY 
Range 
Range 
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Cover. dur. 
Start date 
Driver age 
Driver yrs 
Ex. drivers 

Validation may be look-up table (LUT), reference list, range check, check 
digit etc. An extra column may be added to specify the effects of validation 
failure (fatal, warning) and the error message issued to the user. 

Supporting data has to be added to the basic requirements for: 

Screen title 
Status information: screen page, file display, current system function 
Section headings 
Messages and prompts 
Instructions and help 

The basic display and supporting data are mapped, together with space 
to separate blocks of information, in the display area provided by the VDU 
hardware being used. General screen design allocates areas of the screen 
layout to data display/data entry, control, error messages, titles and 
headings. A screen sketch is prepared showing the approximate layout, as 
depicted in figure 6.1. The sketch is then refined using detailed guidelines 
to create a screen layout specification on a VDU layout chart. Design 
guidelines for messaging, use of colour and general formatting are necess­
ary for detailed formatting of screens. The following sections ex amine 
these issues. 

6.2 Detailed Display Design 

Issues covered are highlighting important information to attract user 
attention, use of colour, messaging and abbreviations. 

Attention and highlighting 

One of the most important effects which has to be achieved when 
presenting information is to draw users' attention to important items. This 
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AMEND PURCHASE o R 0 ER 
Requisition numher [ ] Supplier's nale [ ] 

Order number ( ] & Address ( ] 

Order date!DD/MM/YY) [ I I ] ( ] 

NOli nal codelb digits) ( ] Dept-staff-nale [ ] 

Ihm nUlber IJuantity Product description Price(x.xx) 

PA6E 1 [ ] [ ] [ ] [ ] 

[ ] [ ] [ ] [ ] 

[ ] [ ] ( ] [ ] 

[ ] [ ] [ ] [ ] 

[ ] [ ] [ ] [ ] 

Total itels [ ] Total [ ] 

Narrati ve ( ] 

Ulpdate this purehase order, R)enter alend facilities 
Eixit without updating Enter option:[ ] 

IERROR MESSli6ES DISPlAYED HERE) 

Figure 6.1 Screen sketch for an order entry system. 

is effected by highlighting information, which must be approached with 
care. Overdoing highlighting can make screens tiring to read and cause 
physical discomfort if too many attention-seeking stimuli are used. Also, if 
too much information is highlighted then the user cannot possibly attend to 
it all, a situation which can lead to task overload and poor performance. 
The objective is to highlight only when strict1y necessary, and even then to 
use the techniques judiciously so as not to overdo the overall effect. 

Data can be highlighted by many different visual attributes: 
• Movement (blinking or change of position) 
• Brightness 
• Colour 
• Shape (character font, shape of symbols) 
• Size (text size, increased size of symbols) 
• Shading (different texture of objects) 
• Surroundings (underline, borders, inverse video) 

In the above list, movement is by far the most effective stimulus for gaining 
attention. People are very sensitive to movement as the eye has specific 
detectors for that purpose. After movement, size and colour are probably 
the most effective, but the scale of the effect depends on how the attributes 
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are used. Brightness is not so effective. People can only distinguish a few 
levels of brightness so it should be used sparingly. Over-bright images are 
unpleasant to read and should be avoided. 

Shading is effective for drawing attention to part of the screen and does 
not run a high risk of presenting too strong a stimulus. Surrounding screen 
areas or drawing explicit boundaries can be used effectively in many ways. 
Text may be underlined or surrounded by a box, the background can be 
shaded or coloured, and in inverse video, the complete contrast to the 
normal image makes a very effective stimulus. Colour is a complex subject 
in its own right, and is reviewed in the following section. As weIl as using 
attributes of the displayed item and its immediate surroundings, highlight­
ing and attention markers can be designed as indicators or warning icons. 
Care has to be taken that the user population interpret the warning icon as 
the designer expects. 

The design should achieve a pie asant display which guides the user to 
important data items but does not present too many conflicting stimuli. In 
figure 6.2 the screen has been overloaded with attention-seeking stimuli. 

DRIVE: A I WORD PROCESSING OPERATIONS I DATE: 12/1/88 

FILES********************************************************** 

TEST.DOC 
CHAPTER2 
MEMO 

CHAPTER3 
FIGURES 
LETTER.PRN 

CHAPTER4 
CHAPTER5 
REF.LST 

CONTROL *** ** **** ****************** ****** * ***** **** ** * *** ** ** * 

SELECT FILE 

THEN lJSE 

EITHER". 

CNTRL KEY$ OR 

FUNCTION KEYS 

Figure 6.2 Example of too many stimuli on an overcrawded screen. The 
use of highlighting in several different parts of the screen results in too 

many strang stimuli competing for attention. 
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This screen would fail to achieve its objective and be unpleasant to the 
user. A better design is illustrated in figure 6.3 in which an attention­
seeking display has been limited to the minimum necessary items. 

WORD PROCESSING OPERATIONS 
Drive: A Date: 25/1/88 

Editing: FIGURES 

TEST.DOC SALES.M3 SALES.M4 
SALES.M2 FIGURES SALES.M5 
MEMO LETTER.PRN REF.LST 

Order delivery dates 

5/1/88 Order lead times 
6/1/88 
8/1/88 
11/1/88 J anuary week 
1111/88 
15/1/88 1 2 3 4 
16/1/88 
18/1/88 
19/1/88 3 4 3 0 
20/1/88 

1 PRINT 11 SEARCH IIREPLACE 11 CUT 11 PASTE 1 

1 HELP 11 TAB 11 MARGIN 11 FORMAT 11 INSERT 1 

Figure 6.3 Example of beUer screen design. The use of highlighting has 
been restricted to the minimum necessary and the screen is less crowded. 

Use of colour 

Colour is a very effective technique for highlighting and mayaiso be used 
for grouping information, differentiating between information, and coding 
simple messages (red = danger). Colour also has aesthetic qualities and 
properly used colour displays may appear more pleasing and restful than 
black and white. Visual resolution of detail is better in monochrome so 
there is a trade-off between the impression made by colour and the amount 
of detail to be displayed. Colour is a strong stimulus which it is easy to 
overuse. 
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Colour has three qualities: 

(1) Wavelength: this determines the basic colour spectrum from red to 
blue. 

(2) Saturation: the amount of white mixed with a colour. A low saturation 
colour has a lot of white in it, hence a low saturated red is a pink or 
rose colour. 

(3) Brightness or hue: this is the measure of the colour luminance. 

All three qualities interact to give subject impressions which are poorly 
understood, and further discussion of this topic is beyond the scope of this 
book. Despite imperfect information on the effects of colour, so me 
guidelines may be given: 

• Limit the number of colours in one display to a maximum of 5 or 6 
• Display unhighlighted information in low-saturation, low-hue colours, 

such as unobtrusive pale colours 
• If colour is being used to code information, make sure the user 

understands the code 
Most terminals support 6 or 7 colours (namely green, yellow, red, blue, 

turquoise, pink and white) and possibly shades in between to give an 
overall range of 16 colours. The guidelines for colour co ding and use are: 

• To show status: red = danger/stop, green = normaVproceed, yellow = 
caution 

• To draw attention: white, yellow and red are the most effective 
• To order data: follow the spectrum (red, orange, yellow, green, blue, 

violet) 
• To separate data: choose colours from different parts of the spectrum 

(red/green, blue/yellOW, any colour/white) 
• To group or show similarity: use colours which are dose neighbours in 

the spectrum (orange/yellow, blue/violet) 
Note that colours have different qualities of subjective brightness and 

that colour affects shape resolution. Characters and detail which require 
good visual acuity should be displayed in yellow or white; background 
material is best displayed in blue wh ich appears most restful. The common 
colours have visibility characteristics: 

Red: low symbolluminance-poor visual acuity. 
Yellow: good visibility over a wide range of luminance, best visual 
acuity. 
Green: good visibility over intermediate range of luminance. 
Blue: good visibility at low luminance, poor acuity. 

A final note of caution when using colour is to remember that 9 per cent 
of the population is colour blind, with red/green blindness being most 
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common. Although colour blind people can discriminate colours using 
black and white shades, the designer should check that use of colour is not 
going to impair performance of these users. 

Messages, abbreviations and codes 

Presentation of text occurs in design of titles, headings, prompts, error 
messages and control instructions. A few simple guidelines should be 
adhered to whenever text is being used: 

• Keep the wording simple: avoid computer jargon, although use of user 
jargon words may be necessary 

• Be concise: do not inc1ude any words and phrase which are not strictly 
necessary 

• State the positive rather than the negative 
• Use a polite but not over-familiar tone: use of 'please' always helps but 

too many 'have a nice day' or 'hello I'm your friendly XX computer' 
messages irritate after a few days 

• Use the active voice of verbs rather than the passive voice: for example, 
to Cancel order-press C, and not Orders are cancelled by pressing C 

Messages should always be given in full unless the constraints of space 
are unavoidable, in which case abbreviations will be necessary. Codes may 
be necessary as a further form of abbreviation, if spate or keystrokes are at 
a premium. Such circumstances may be found in data entry dialogues with 
keywords and command language dialogues. 

When using abbreviations adopt a consistent approach and try to avoid 
exceptions to the rule. Abbreviations should be of the same length, the 
number of characters being a trade-off between typing time and abbrevia­
tion eIarity. One approach is to abbreviate either by truncation or by 
compression, thereby producing a mnemonic code, that is a meaningful 
code in which the abbreviated word contains some eIue to the identity of 
the whole word. Truncation removes trailing characters from a word, 
leaving the front few characters to convey the meaning, such as DIRectory. 
Generally , truncation is the easiest and most effective technique but it does 
run into problems of duplicates. With larger code sets, truncation becomes 
a less viable technique and compression has to be used. 

Compression techniques aim to preserve something of the word struc­
ture while reducing the number of letters. Words are composed of syllables 
and one effective technique uses letters that represent the sound stressed in 
the syllables as the word is spoken. An example is the airline airport codes; 
for example, London-HeathRow becomes LHR, New York-Kennedy 
becomes NYK. Simpler techniques such as eliminating either vowels or 
consonants are not as effective; for example, compare Mnchstr, Mancetr 
and MCR for Manchester. 
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Sometimes simple abbreviation will not suffice and a more complex 
coded representation is required. Codes are used for uniquely identifying 
many objects within systems and including information within the code can 
be helpful in the design of system processing. However, the human factors 
objectives in code design are to make the code as easy to understand as 
possible. 

Basic code types are: 

Hierarchieal: codes in which each digit represents an object in a 
particular part of a classification hierarchy from super-group to group to 
sub-group, etc. An example is Vehicle class = 456, where 4 = Commer­
cial vehicles, 5 = under 20 tons, 6 = Ford. 
Faceted: in these codes each digit has meaning independently of the next 
and categorises one property of an object. For example, Manufacturer's 
code 9742, where 9 = mild steel, 7 = 7 mm diameter of the head, 4 = 
4 cm length, 2 = product type, a screw. 
Mnemonic: must be letter-based codes which contain some meaning 
within them. 
Signijicant: these are derived from some measure related to the object 
wh ich they describe; for example, in a matrix, 1735 refers to location row 
17 column 35. 
Derived: the code is produced by an algorithm which converts the 
original word or character into the code letter. All secret ciphers are 
derived codes; a simple example is letter to number conversion, 0126 
representing AZ. More complex ciphers use conversion tables and 
mathematical conversion algorithms. 

From the human factors point of view, a code structure should be made 
explicit to help chunking, thus for faceted and hierarchical codes: 

124577659 is bad; 124-577-659 is better 

In faceted and hierarchical codes the interdependencies between digit 
location should be kept to aminimum; the more constraints of the type 'if 
you have a 9 in column 1 then you can't have a 4 in column 2', the worse a 
code wilJ be to use. 

6.3 Summary 

Presentation design takes the system input-output requirements and the 
dialogue specification as a starting point. Dialogue modules may map 
directly on to screens; however, segmentation of the dialogue according to 
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function may be necessary. Dialogue segments are then mapped on to 
screen areas, overlays and windows, depending on the target interface 
hardware and software. 

Detailed design needs to consider use of highlighting; too many strong 
stimuli can create unpleasant designs. The range of attention-seeking 
stimuli in approximate order of potency is: movement, shape, size, colour, 
brightness and texture. Colour should be used sparingly and care is 
required when attempting to colour-code information; although as a 
method of improving the overall appeal of design, colour can be very 
effective. Messages should be concise and relevant with no jargon. 
Abbreviations may be necessary whenever there are constraints of display 
space and economy. Truncation abbreviations are usually favoured, al­
though compression techniques can also be effective. Mnemonic codes 
which preserve meaning should be used whenever possible, but numeric 
codes may be required for processing efficency. In this case the code 
should be easy to understand. 

Further Reading 

Galitz (1981) is one of the most comprehensive sources of screen design 
guidelines, but see also Huckle (1981). 



7 Data Entry Interfaces 

Data entry concerns input of any data items for computer processing. Data 
entry interfaces are the part of computer systems with wh ich end users 
spend most of their time. These interfaces are also one of the most 
error-prone parts of computer systems and have given rise to the acronym 
GIGO (Garbage In Garbage Out). The design of good data entry 
interfaces should aim to prevent GIGO and make data entry as efficient 
and pleasant as possible for the user. 

General data entry guidelines are described and then different types of 
data entry interface designs are examined. 

7.1 Data Entry Guidelines 

The general objectives for data entry are to save the user work, and to 
make entry error rates as low as possible. This is achieved by keeping 
users' memory load as low as possible, making the interface predictable 
and consistent, protecting the user from making mistakes, and automating 
as much of the data entry as possible. Data entry guidelines aim to give the 
user freedom to control entry as efficiently as possible. One method of 
automating data entry is to use specialist hardware reading equipment, 
such as O})tical character recognition, Bar code readers, and Magnetic ink 
character recognition, as detailed in section 7.4. 

Within the constraints of software design, reduction of the users' 
workload can be achieved by: 

• Setting defaults for commonly ente red items 
• Using codes and abbreviations 
• Automatically filling-in previously entered items, such as customer 

name and address, from file 
• Using pointing responses and selection from a list, if entry is from a 

limited set of choices 
Data entry screens should be designed to model the input form as closely 

as possible. If no input form exists or the old input form is poorly designed 
and difficult to use, a new screen layout will have to be designed. 

Data items should be grouped together either according to their 
frequency of use, or their importance, or sequence of entry. The choice of 
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which grouping criterion to use should be made in consultation with the 
user. Most data entry tasks involve a transaction. Transactions in most 
information systems are described by a paper document-a distinct 
document which is created and then processed by the system (for example, 
customer order, hospital admittance record, export shipping document). 
When entering transactions, data grouping is usually by sequence of entry; 
however, further guidelines are given in the section on form filling, the 
data entry dialogue wh ich is suitable for transactions. 

Data entry dialogues should be designed to give the user positive control 
over the sequence of communication rather than attempting to help the 
user with design tricks such as automatic skip to next field, and automatic 
ente ring of default replies before the user has had time to give a command. 
Such dialogue features will cause frustration when they are not required, 
but more importantly they conflict with wh at people normally expect. Most 
people expect data entry to be like filling in a paper form by hand, in which 
case you have to explicitly move to the next field. Computer interfaces 
should conform to users' expectations even though autotabbing between 
fields may appear to be saving the user work. 

However, autotabbing may be justified for ski lIed users with high 
transaction volumes, in which case speed and efficiency considerations are 
more important. The trade-off judgement illustrates how context affects 
the formulation of guidelines. General guidelines for data entry dialogues 
are as folIows, but the influence of the design context should be considered 
when putting these into practice: 

• Explicit Enter: validation and entry only occurs when the user presses 
the enter key; this allows checking within the entry for errors 

• Explicit movement: autoskip/autotab between fields is not usually 
advisable, as unskilled users find the unexpected movement distract­
ing. Use TAB or CR to move between fields 

• Explicit Cancel: if the user interrupts an entry sequence, the data 
already entered, even in the current field, should not be deleted. This 
allows reconsideration of a cancel action which may have been a 
mi stake 

• Explicit Delete: make deletion an obvious action which is not easy to 
take without an extra confirming step-Delete Order: are you sure? 
(Y/N) 

• Provide feedback: users should be able to see wh at they have entered. 
If several entries can be placed on one screen, the previous transactions 
should still be displayed. Feedback messages should be given to users 
to inform them of the next action which is expected 

• Allow editing: editing, ideally, should be allowed within a transaction 
and after it has been completed; hence users should be able to edit a 
field that they are currently entering and to go back and change fields 
entered previously. A consistent method of editing should be adopted 
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• Provide Undo: allow users to backtrack to the previous 'before' state. 
This is often useful in edit and command sequences to correct mi staken 
courses of action 

• Auto format: users should not have to enter redundant digits and 
characters such as leading zeros, for example 79 not 0079 to fit a PIe 
9(4). Entry should not be space sensitive, for example, both A. Name 
and A Name should be acceptable 

• Show valid entry responses or values in prompt: either the range or 
valid replies in a set should be shown, for example, enter discount 
value in the range of 1 to 10 

• Entry at user's pace: users should be able to control the speed of data 
entry because forced work schedules will be resented. 

These general guidelines are applied in specific data entry dialogues. The 
most common type is form filling in which data is initially captured on a 
paper document. Systems analysts and interface designers often have to 
design paper-based interaction for data entry as well as computer 
dialogues, as elaborated in the next section. 

7.2 Forms Design 

The data to be ente red into computer systems may come directly from the 
source, which may be aperson, or a measuring device, or another 
computer system. Alternatively, data may have already been captured on a 
paper document-a form. Forms design as a result tends to be an integral 
part of data entry design for many computer systems. 

Forms play an important part in most peoples' lives and are the source of 
most data entered into computers. Data is entered on to forms by people 
using the dialogue of instructions provided by the form. This can be an 
error-prone process because people may mistake instructions, skip fields, 
give information in the wrong format, make transposition errors or write 
illegibly. Good form design can reduce these problems. 

Data entry, whether on to a form or into a computer, is proceded by data 
capture. When designing data-capture procedures, the following guidelines 
should be considered: 

• Data should be collected at source as far as possible 
• Data should be entered on to the data-capture document (a form) by 

the originator of the data 
• A void transcription of data from one form to another. Transcription is 

an error-prone process wh ich should be avoided if possible. 
Forms should be designed for ease of data collection rather than 

extraneous factors such as fitting into envelopes or saving on printing costs. 
Data collection is an expensive running cost, so if savings can be achieved 
by quicker, and more accurate data collection, these will far outweigh 
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capital costs incurred in good forms and data entry design. Forms should 
have a consistent design as far as possible within a system and an 
organisation. The more consistent designs are, the more uniform users' 
expectations become, and consequently their learning burden is reduced. 

Forms have to be designed to capture option al as well as essential 
information. The design of information capture needs to identify the 
individuals who will fill in the form and strike a balance between having 
one form which tries to suit all people and many different forms with each 
one tailored to a particular user. The all-purpose form suffers from errors 
of people filling in irrelevant information and completing the wrong 
sections. Tailored forms, on the other hand, suffer from people having 
difficulty getting the right form for their needs and accidentally filling in 
the wrong one. How many individual data sources to target on one form is 
a trade-off decision. Generally one form should have one purpose and the 
number of alternative form types should be kept to aminimum. If there is a 
sizable population which can be identified as aseparate data source then a 
specially designed form should be constructed for them. This has to be 
weighed against the problem of making sure the correct people get the 
right form. 

User analysis should be carried out for forms design as with other 
interfaces. User characteristics can help to decide on form design for both 
majority and special cases, and determine the level of instructions and 
prompts which will be necessary. 

Forms consist of three main components: 
• Data entry areas 
• Supporting information, and instructions 
• Titles and headings 
Data fields within the form need to be ordered and grouped according to 

frequency of use, importance, functional relatedness or sequence of use, 
whichever is most important for the user. Within each group, fields are 
ordered in sequence of entry. In transaction-related forms fields will 
generally be grouped in functionally related blocks; for example, in an 
order form: customer details, order date and delivery details, and products 
ordered. Data groups should be separated by clear boundaries and the 
complete form should not have a surface area more than 40 per cent full of 
data fields and printed messages. Forms more than 40 per cent full have a 
cluttered appearance and impair visual searching for information. The 
consequences of poor design resulting from overcrowding and poor 
structure can be seen in figure 7.1, and the effect of remedies described 
above are shown in figure 7.2. 

Three types of form layout are most common; caption before, caption 
above, and caption and box designs-see figure 7.3. The caption and box 
design is favoured because it gives the best visuallink between the caption 
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Name: Arthur Brown Application Ref 1787286CB2 

Address: 12 The Avenue, Milton Keynes MK21 3RZ 

Date of birth : 12.12.50 Area code B 

Vehicle type: Ford Make Escort Model GL 
CC 1600 Year of Manufacture 1986 

Type of Cover: C Ins cIass 3 

Extras: Mary Brown 1.1.56 
: Windscreen option 

No claims 40% Prev Ins GRE 
Disqual N 
Details 

Figure 7.1 Illustration of paar data entry forms design. 

and the data entry area, encourages readable input, and gives a more 
visible structure to the form. 

Guidelines for general form design are: 
(a) Make selections explicit. If there are alternatives within a form of the 

type 'If A fill in section 1, else fill in section 2', make sure that 
separate sections are clearly marked and the deciding condition is 
stated in the positive, for example, 'If extra cover is required pie ase 
complete Section B', and not 'If no extra cover is required omit 
section B'. The else condition should give clear navigational instruc­
tions to the next place in the form with arrows and Goto instructions 
as depicted in figure 7.4. 
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MOTOR INSURANCE POLICY APPLICATION 

New Policy Date 25/1/88 

Driver details 

Sumame : Brown Initials : A.T. 

Title : Mr (Mr, Mrs, Ms, Dr, Oth) Date of birth : 

Address : 12, Any Avenue ________ _ 

: Milton Keynes, ________ _ 

Posteode : 

Vehicle Details 

Manufacturer : Ford ___ 1 Make: Escorl __ 1 Model: GL_I 

Year of manufacture : 19861 Engine: 1600 (ce) 

Policy Details 

Policy type: CO [;] 3P D FT D 
Named drivers: Mary Brown __ _ Date of birth 

Options : Windscreen ___ _ 

Figure 7.2 Illustration of beUer forms design. The information has 
structured headings, and more prompts and instructions have been added. 

(b) The effort of form filling should be kept to aminimum. Use tick 
boxes, circle the code, or cross out the alternative when replies come 
in limited sets. This makes replies neater and less effort is demanded 
from the user. On the whole, tick boxes are the best method because 
a single tick is the most economical movement. 

(c) Many forms are filled in by two or more people. Typical of these are 
the 'For office use only' sections on forms. Sections for different 
people should be clearly separated, and if any transcription from one 
entry to another is necessary, align related fields as closely as 
possible. 
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1. Caption before 

MOTOR INSURANCE POLICY 

Name 

Initials Title ---------------- (Mr, Mrs, Ms, Dr, Other) 

Address 

Post Code --------------------

2. Caption within fill-in area 

MOTOR INSURANCE POLICY 

Name \ Initials 

Address 

Posteode I Town/city 

3. Caption above 

MOTOR INSURANCE POLICY 

Name Initials 

Address 

Figure 7.3 Forms design showing three types of prompt and fill-in layout. 

Form layout 

Slightly more printed information can be put on a form than a VDU 
screen, so more use can be made of delimiters to break up the form into 
distinct areas. Placing groups of information into boxes is an effective 
technique, and background colour can also be used to differentiate 
information. Fill-in areas should be lightly coloured, while more stimulating 
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MAJIC WTDGIT COMPANY 

V 
SALESORDER 

Customer code Order Date 

I I I I I I ITJITJI I I 
V 

D D M M Y Y 

Order type ~ Shipping details 

D (P pro forma, I normal terms) D (Hl home E export) 

V ~ 
IPaymrt details Export 

(CH cheque CA cash) Country agent B Required delivery date 
Shipping agent 

ITJITJ·ITJ CCfclass I I I I I 
V .~ ~ 

Product Code Quantitv Unit Cost Total Cost 

Continuation sheet 1 1 <: 

Figure 7.4 Forms design illustrating use of tick boxes and navigational 
instructions. 

colours should be reserved for titles and instructions. When designing 
more detailed layout it is important to bear in mind the following points: 
(a) Captions and prompts should either precede the fill-in area or be 

left-justified above the box 
(b) Data entry fields should be aligned left-justified, and if possible with 

a justified right margin. However, as entry fields are invariably of 
different lengths, right-justified margins are difficult to attain; so 
to create a more balanced design, it is better to aim for one row with 
one answer if space permits. 

(c) The filling-in area will depend on whether hand writing or typewriter 
completion is anticipated. For hand writing, allow !-inch width per 
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character with extra space for separation, and a height of ~ inch. For 
typewriters this can be reduced to -lo inch by g inch. Separating the 
fill-in area into character boxes can help legibility but runs into 
problems when replies over-run the number of boxes printed on the 
form. 

(d) When the number of characters in a reply is known, the data entry 
area should be subdivided to format the reply field. Character 
delimiters should not be too obvious or they will interfere with the 
reading process and make filling in slower. 

(e) If units of measure are being requested, the unit should be specified 
on the left-hand side of the fill-in box unless so me multiple is being 
requested; for example, if thousands, trailing OOOs are used. 

(f) Highlighting should be used for titles, mandatory fields, important 
prompts and instructions for filling in. 

Prompts, titles and instructions 

Wording on forms is vital to success. Three rules apply to a11 wording: 
• Keep it simple 
• Be explicit 
• Exdude anything not directly relevant 

Titles must describe concisely the purpose of a form and should be centred 
at the top of a document. 

Completion instructions must be dear, brief and use easily understood 
words, especia11y for public use forms. Brief instructions may be located 
before the entry field to which they pertain, while more complex instruc­
tions should be placed at the top or bottom of the form. However, if 
instructions cover 50 per cent or more of the form's area then aseparate 
instruction sheet should be used. Such detailed instructions should be put 
on a separate page with the order of instructions kept in pace with 
questions on the form. Once the form has been designed it can be used for 
the basis of data entry screen design, but further design is necessary for 
dialogue control when using form filling as a data entry interface. 

7.3 Form-filling Interfaces 

Form-filling dialogues are the most common data entry interface for 
information systems. The principal aim is to model the computer interface 
on the data entry document as far as possible; thus the user is familiar with 
the interface layout and transcription from paper to computer fo11ows a 
sequence that the user knows. 

Many of the guidelines for forms design also apply to the design of 
form-filling screens, but form-filling interfaces are a true human-computer 
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dialogue and the dynamic part of error messaging, data validation and 
computer control are extra features not found in forms design. 

Data validation 

Data entry is notoriously error prone. Errors may be caused by omission of 
a field, incorrect data being entered in a field, and number/letter transposi­
tions. Data validation attempts to check that all mandatory fields are filled 
in, and that the data entered is correct, or at least reasonable. Some 
commonly used methods for data validation are as follows: 

• Lists, look-up tables and reference files; all synonyms for checking data 
entry values against a list of all possible valid values held on the 
computer. The most common type of validation used is checking 
against a set of values, such as Customer numbers, Account codes, Part 
types, etc. 

• Type check, picture check: simple check that the data is of the correct 
basic type, that is, numeric data was entered when expected 

• Sub-range: the value ente red is compared against a range of expected 
values. This is similar to list checks but simpler, for example, number 
check replies within the 0--99, character check A-Z 

• Check digit: useful for numeric codes when the input values are known 
and faster than list checking when the code set is large. The idea is to 
use an extra digit which is added to the code number, having been 
calculated from the code itself: 

Reference number 1 2 0 3 4 
Weighted by 6 5 4 3 2 
Product 6 10 0 9 8 
Sum of products 33 
Divided by prime number 11 = 3, remainder 0 

Number plus check digit 1 2 0 3 4 0 

When the code number is re-entered it is checked by recalculating the 
check digit. The above example uses the modulus 11 technique; there 
are numerous other hashing algorithms for this purpose 

• Comparison check: a comparison check assesses the reasonableness of 
one value by comparing it with another related value. A typical 
example is heightlweight ratio for people. These measures follow an 
approximate relationship, hence if the weight was entered as 70 kg and 
a height as 1 m 20 cm, it is a reasonable guess that something is wrong 
unless, exceptionally, there is a very fat dwarf in the sampie 

• Probability check: this adds more sophistication to the reasonableness 
check by setting limits in the form of a range around a norm. Thus in 
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the weight sampie a deviation of 20 per cent from the norm would be 
flagged with a warning error. More accuracy can be attained by using a 
statistically calculated standard deviation 

Validation errors may be classified into three categories and different 
error correction actions specified for each. 

• Fatal errors: errors which make a nonsense of further processing, such 
as invalid account codes, customer names. In this case the user must 
either re-enter a correct value or abort the entry; no other action must 
be allowed 

• Warning: errors which are caused by highly unlikely values. Processing 
should be halted, and the user invited to re-input. However, an 
over-ride should be given so that the user can input the original value 
which may be the exception to the reasonability rule 

• Advisory: errors wh ich are caused by unlikely values. Processing may 
not necessarily be halted but a warning message should be given so the 
user can halt either immediately or at the end of the transaction to 
check and possibly edit the data 

Validation messages are placed in a consistent part of the screen reserved 
for error control. This leads into the question of screen design for 
form-filling interfaces. General design was covered in chapter 6; consider­
ations specific to data entry are now examined further. 

Screen design 

The screen area should be partitioned into data entry, command and 
error-processing areas as illustrated in figure 7.5. Alignment of data entry 
fields with error messages is desirable but this may not be possible if an 
over-riding priority is to make the working area resemble the source 
document which consequently fills the whole screen area. 

Guidelines and a procedure for grouping information and formatting the 
screen were given in chapter 6 (section 6.1). A complication of many VDU 
terminals is the capability for local data entry and limited validation in 
intelligent terminals. The terminal and not the application program 
performs simple checks such as numbers entered into numeric fields. These 
features are found in IBM 327X terminals and similar products from other 
manufacturers. The major difference is that data is only entered into the 
main computer, and hence the application program, when the ENTER key 
is pressed at the end of a screen rather than after a eR per field. As a result 
a whole screenful of information is validated at once, and error messages 
have to be linked to appropriate fields. 

This linking can be achieved by highlighting incorrect fields and cons­
tructing an error-recovery dialogue for the user to step through errors one 
at a time, or linking fields to error messages with a code. The advantage of 
3270-type terminals is the range of screen design features not available on 
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15/12/87 
ACCOUNIS CONIROL 

15:23 

Errors - Ready Iransaction entry 

Monthly expenses 

Enter Account Code <00435> 

Expenses: Lrave1 

Cost Centre Code < 145> Etrd{ 4 digit \<6J1e I;eq. 

Date of Expenditure <12/11/87> 
Errot current month 
onll - Dec 

Enler Amount f: < __ 89:50:> 

Receipl Checked (Y) < Y> 

Press ENTER 10 edit TAB 10 move to next field 
S and ENIER to save and exil 
ESCAPE 10 exil and abandon 

Figure 7.5 Screen layout on intelligent terminals (IBM 327X variety). 
Error messages are aligned to entry fields because validation occurs only 

after the whole record has been entered. 

ordinary VDUs. Fields can be located anywhere on the screen and 
properties associated with fields by 'attribute bytes', which tell the host 
program what the field type is and control simple terminal operations on 
the field, for example: 

masked field-no display for passwords 
display only field 
data entry and edit field 
message field 
simple type checking 

Other display qualities can be coded in attribute bytes such as highlighting, 
colour and inverse video. Many of these display properties are used to 
improve messaging, a vital component of user-system communication, 
only too often neglected. 
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Messaging 

Messaging is important for conveying the type of errors and for giving users 
instructions to control the input sequence and error correction. As with all 
computer messages, the wording should be clear, simple, concise and 
relevant. 

Error messages have often been one of the most user-vicious parts of 
interfaces. There is no excuse for 'Syntax error' or 'Invalid field'. Error 
messages must be informative, jargon free and attempt to tell the user not 
only wh at is wrong but also why, with an explanation of the correct course 
of action to put it right. For example: 

Start date 
Maturity date 

1/10/86 
12/9/86 

Error: Maturity date before Start date: PIe ase re-enter either date. 

Messaging in prompts should be positive and active voice. In other 
words express the Dos rather than the Don'ts and use the active voice 
'press Return to Continue' rather than the passive voice 'This sequence 
may be terminated by pressing the Break key'. 

Handling edits and errors is one of the most complicated parts of 
data entry interfaces, which often necessitates creating new dialogue 
sequences for these tasks. Dialogue control for data entry aims to prevent 
errors happening, and when they do to make correction a simple matter for 
the user. 

LJata entry dialogue control 

Part of the dialogue will be specificed in the task design, but data entry 
dialogues invariably require elaboration to deal with editing and correcting 
errors. The dialogue should be planned with break points within the 
sequence to allow closure events: rest and reset points for attention. Break 
points for closure be co me more important the longer a sequence iso In a 
short trans action with 5-7 entries, a break after each record may be 
permissible, although longer transactions will need break points within a 
record sequence. The break points should be planned to match the blocks 
of information and grouping on the screen layout. 

Data entry invariably requires data editing. The pace of data entry and 
editing should be determined by the user. Data editing screens should 
allow the user to check entered fields to ensure that errors not trapped by 
validation are found and corrected, as weIl as guiding the user to correct 
those errors detected by validation. There are several different methods of 
implementing editing, for instance: 
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(a) Prompt errored field and re-enter, for example: 

Delivery date error: month out of range : 
Pie ase enter in DD/MM/YY format 

12/13/86 
-/-/-

This method ean be used effeetively with overlays when a long 
sequenee of data is being entered. The incorreet entry should always 
be shown to prompt the user. The main disadvantage is that the 
prompt for re-entry may obseure data al ready on the sereen so that not 
all the data on the sereen is visible for eheeking. 

(b) Address errored field to re-enter, for example: 

1 Customer number 
2 Customer name 
3 Customer address 
4 Vehicle type 
5 Poliey period 
6 Poliey type 

13045 
J. Smith 
Sunnydale Av, Milton Keynes 
Ford 
18 
C 

Errors: 5 Poliey period too long-12 months max. 
6 Unknown poliey type-valid reply eodes CMP 3RD 

3FT TMP 

Type field number to edit 
(1-6 or 0 to eseape) 

This method may be useful in long sequenees of entry fields, espeeially 
when errors are not deteeted immediately as with 327X terminals. 

(e) Edit/skip eorreet fields, for example: 

Customer name: 
Address: 
Address: 
Address: 

Vehicle Type: 
Poliey: 

J. Smith 
The Willows 
Sunnydale Avenue 
Milton Keynes 

Ford 
C 

Make: Eseort CC: 
Durn: 12 mths 

Press Tab to skip to next field 
or Enter to save 

1300 

Editlskip field editors are quiek to use and display the whole of the 
entry for eheeking as weIl as error messages from validation. The user 
moves between fields using the TAB or CR key whieh is easy to 
remember, and then types over the ineorreet data. The disadvantage 
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with this technique is tabbing past the errored field by mistake and the 
tabbing time taken in long entry sequences. 

While form filling is probably the most popular of current data entry 
interface techniques, it is time-consuming to operate and inappropriate if 
the set of replies is limited and predictable. In these cases other entry 
techniques can be applied. 

7.4 Alternative Data Entry Techniques 

These fall into two groups; other software designs, using menus and 
keywords; and hardware techniques which automate all or part of the data 
entry task. 

~ntry by menu selection 

If data entry involves selecting items from a fixed list of alternatives, menu 
techniques can be used. The principle is simple. All valid choices are 
displayed on a screen and the user is invited to select one or more by 
entering a code number displayed alongside the item, as illustrated in figure 
7.6. More sophisticated designs use picking techniques with light pens or 
mouse devices for users to select items displayed either as text menus or as 
icons. 

The main design consideration for picking displays is to group items 
together in a logical scheme to guide the user towards the item required. 

Keyword data entry 

Keywords can be used as an alternative to menus when a quicker, more 
efficient dialogue is required. Keyword codes have the advantage of 
selecting an item directly by its identifer, whereas with menus, users may 
have to page through several layers of access hierarchy in large systems. 
Keywords are more flexible than menus and may be entered in different 
sequences, allowing for more complex transactions to be input. Keyword 
codes are suitable for skilled users when the data entry set is restricted. A 
typical example is airport codes in airline reservation systems. Keyword 
codes identify the starting pi ace and destination required as mnemonics 
such as LGW, LHR for London GatWick, HeathRow. 

Optical mark/recognition (OMR) 

Optical marks can be used on forms as an extension of the tick box 
method. The user marks an area of the form which is then passed under 
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ON UNE GREEN GROCER 

Order number 1024 Enter order Date 26/1/88 

Enter the code number for 
fruit and then the quantity required Or enter vegetable code and 

+ pick th. weight required 

Fruit Vegetables 

1. Apples 6. Potatoes 
2. Oranges 7. Cauliflower 
3. Bananas 8. Brussels sprouts 
4. Pears 9. Cabbage 

5. r'''pp", 10. Leeks 

Quantity ~ 
Enter the number 

Pick quantity (CR to pick 

of items up to 10 Space bar to move ) 

Half kilo 
One kilo 
One and half kilos 
Twokilos 

Order so far 
Enter another item > 

1/2 kilo Leeks (0 to finish) 

2 kilos Potatoes 

Figure 7.6 Using menus for data entry. 

light-sensitive reading equipment which interprets a dark mark as yes and 
light marks (that is, unmarked) as no. Data suitable for entry by menu 
techniques can be used with OMR. The main advantages of OMR are that 
the source document can be used as the data entry document and entry is 
quick. Against this must be weighed the cost of equipment and the 
problems of errors due to smudges on the form. OMR techniques are 
useful when data entry volumes are high and direct access to computer 
terminals cannot be provided. 

Bar codes 

These are a special case of optical marks in which goods are labelIed with a 
unique combination of vertical stripes wh ich code a number by the 
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presence or absence of bars in certain positions. Bar codes are now a 
ubiquitous feature of supermarket packaging. The code is read by a special 
light-sensitive wand or bar code reader which picks up the dark bands as it 
is traversed across the coded area and translates the sequence of bars into a 
code according to the presence or absence of a dark band at position 
x, X+ 1, etc. The computer compares the bar code sequence against a 
look-up table and computes the number of the stock item. 

Bar codes are a good example of considerable investment by computer 
manufacturers on behalf of the users (the supermarkets) to help them 
automate data entry. This form of hardware-dependent data entry is 
expensive. 

Magnetic ink character recognition (MICR) 

This is one of the first techniques introduced to speed up data entry. MI CR 
printing is familiar as the odd-shaped characters used for account numbers 
and sort codes on bank cheques. The compter-readable bit is encoded in 
magnetic material inside the number and has little to do with its shape. 
MICR recognition requires a specialised magnetic reader which is sensitive 
to the pattern of magnetic code within the print. 

Optical character recognition (OCR) 

Computers have trouble reading printed text because, somewhat surpris­
ingly, it is very variable. An attempt to cut down the variability was the 
introduction of standardised computer readable codes by the European 
Computer Manufacturers Association (ECMA). This stylised print 
enabled computers to read characters by pattern matching; however, this 
approach was of limited use because of the expensive printing requirement 
for the ECMA character set. 

More recently, OCR systems have been able to deal with printed text in 
a number of different fonts and sizes by making character recognition 
systems learn the characteristics of a type face. After a few trials the 
computer system learns the mIes for a typeface and incorporates the mIes 
in its pattern-matching algorithms. Machines such as the Kurzweil reader 
can read ordinary books and newspapers more quickly than humans can. 
OCR equipment is expensive but costs are falling and applications 
involving large volumes of text are good candidates for automation, hence 
OCR systems have an obvious application in libraries and archives. OCR 
of handwriting remains a problem; some systems can recognise capitals but 
continuous script still defeats most machines, probably because human 
handwriting is variable and, only too often, illegible. 
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Voice data entry 

Voice is still in its infancy as a data entry method but it has so me appealing 
advantages. It is quick and can be used in environments where paper is 
inconvenient, such as on the shop floor where a keyboard would be 
unsuitable. No transcription is required and the users' own communication 
medium is employed. Voice data entry encompasses all the problems of 
voice and naturallanguage dialogues (see chapter 9, section 9.8). At the 
present state of the art, limited data entry of single keywords is possible 
with vocabularies of 200-3000 words. Talking typewriters will soon be 
marke ted with vocabularies of 8000 words, which is approximately the size 
of the human everyday spoken vocabulary. 

7.5 Summary 

Data entry interface design should aim to make tasks easy for the user and 
to minimise the input workload. The user should be in control of data entry 
sequences and actions should be made explicit. Forms design is important 
for data-capture documents. Logical layout and formatting are the most 
important factors of forms design, although clear prompts and instructions 
are also important. 

Data entry can be achieved using a number of dialogue design techni­
ques. The most common interface style is form filling, which mimics the 
paper operation. Form-filling dialogues are useful for complex and open­
end data in which the reply set cannot be predicted. When the reply set is 
better known, picking menus or keyword command input may be used. 
Where possible, data entry should be automated. This can be achieved 
using optical character recognition, bar codes, magnetic characters or 
voice. All these methods are in li mi ted use at present; however, voice in 
particular may increase for remote data entry and in environments where 
keyboards may be inappropriate. 

Further Reading 

See general references. 



8 Data-Display and Data-Retrieval 
Interfaces 

Data-display interfaces consist of query screens, file browsers, display 
graphics and reports. Guidelines are given for composition and layout of 
displays, followed by advice on more detailed formatting of data. Data­
retrieval dialogues form an integral part of data-display interfaces, 
consequently a section is included on this topic. Graphical displays merit a 
section on their own; this deals with graphic display design, shape and 
colour, concentrating on business graphics. The chapter concludes by 
considering report design. 

8.1 Data-display Guidelines 

The inputs to display design co me from the information display require­
ments and analysis of the users' knowledge about displays and documents 
in the current system. If there is an existing document which the user is 
likely to expect to see as part of the system, such as paper reports and 
summaries, then the computer display should follow the document layout 
if possible. 

Display design has to resolve wh at data to display and then how much 
information to place on a screen. Display too little and users have to page 
through many screens to find the data they need, display too much and 
users cannot see the wood for the trees. The general aim is to display 
information which is appropriate for the user's task without overcrowding 
the screen. 

To decide what to display, the following guidelines may be employed: 
• Display only necessary data. Anything which is not directly related to 

the users' requirements should be omitted 
• Data which is to be used together should be displayed together 
• The data on display should be related to the task that the user performs 

with the data 
• The quantity of data per screen, including titles, headings, etc., should 

not cover more than 30 per cent of the total area 
Using these criteria and the users' requirements, the next step is to 

divide data into groups and then to structure items within a data group. 

137 
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The objective is to make the data as easy to use as possible. People make 
sense of data by imposing structure on it; if the designer can anticipate this 
step it should save the user work. Users have two main problems with 
displays: first finding relevant data, and then finding two or more related 
data items. Interface design can help finding data by providing a weIl 
ordered structure for displays and by placing related data together, 
although the latter aim depends on establishing the anticipated usage 
exactly, which may not always be possible. To help wayfinding through 
data, the following methods may be used to structure displays: 

(a) Group data in a logical manner. This will usually be data relating to 
the same object (for example, a customer order), or grouping items 
which share the same attributes (all orders processed this month). 
Grouping can be by frequency of use, sequence of operations or 
function according to the users' views. 

(b) Order data according to criteria which are meaningful to the user. 
Key fields and identifiers should be placed at the top left-hand side of 
displays; other data may be ordered by importance, frequency of use, 
sequence of normal usage, mandatory then discretionary items, etc. 

(c) Structure data within lists. Sort items by one or more keys, group 
items belonging to the same class. 

(d) Show abstract qualities of the data if required, and use graphics to 
illustrate those qualities (trends, associations, differences). 

The display is designed in groups of related information which are 
controlled by the user-system dialogue. Depending on the overall screen 
size, each screen may consist of a few or several sub-sections, each 
containing different information, unless overlay techniques have been 
employed. Inclusion of too many different sections impairs visual searching 
and locating data, as multi-purpose screens become too complex for users 
to assimilate. Screens should have only a few sub-sections of data, with 
each section separated from the next by spaces. Use of delimiters, such as 
&&&& ****** $$$$$$$, should be avoided as these only increase screen 
crowding and add no extra information. 

While screen layout is being planned, there are other general display 
guidelines which should be considered: 

• Codes and abbreviations should be kept to aminimum. Data displays 
should be immediately comprehensible to the reader without having to 
translate codes 

• If s((veral displays are being planned, try to establish a consistent 
format. If users know where to expect information and how it will be 
presented, they have less to learn 

• Provide clear headings, titles and other wayfinding information to help 
user navigation within and between displays 
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• Use the user's conventions. Follow any user model of the data 
discovered during analysis and keep to the user's terminology. A 
typical example is use of either UK or US date conventions, which are 
DD/MMlYY and MMlDD/YY format respectively 

• Highlight important data with colour, text size, underlining or by a 
different font 

After the display structure has been designed, detailed design depends on 
whether graphics or character displays are being used. 

8.2 Character Data Displays 

The presentation problems of character data displays are how to layout 
screens and format the data items so that they are easy to find and pleasant 
to read. Displays may be either pure text, or tables and lists, and more 
frequently a mixture of both. 

Character size is under software control in many displays, and while the 
default character size may be suitable for ordinary usage, large character 
sizes should be used for projection and if the reader is more than 0.5 met re 
away from the screen. Displays for projection as overheads should use 
18-24 point characters while 10-12 point serves for normal work. 

Pure text displays 

Continuous capitals for text should be avoided because reading rates for 
capitals are slower than those for mixed text. Capitalisation should be used 
as in printed text and occasionally for emphasis. 

Text in English should be left-justified and the right margin may be 
ragged as this does not impair readability. If both right and left margins are 
justified, equal spacing between words is preferred as unequal odd-shaped 
gaps distract the eye precisely because they are une qual. 

Lists and tables 

Numeric lists should be presented down rather than across, principally 
because this helps addition of totals, and because most people expect to 
scan a list going down rather than across. 

Captions should be placed above columns: 

Branch Total New Major Losses 
sales accounts accounlJ 

London 31,234 23 123 12 
East Anglia 12,124 4 65 5 
East Midlands 13,433 12 59 3 
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Leading captions and prompts should be placed before the data and 
separated by aspace or delimiter: 

City: Manchester Population: 1,546,000 

Data fields should be left-justified for text, and either justified on the 
decimal point for real numbers, or right-justified for integers: 

Compiler System time Number of 
(minutes) users 

COBOL 161.68 123 
FORTRAN 23.1 12 
APL 54.56 21 
RPG III 0.75 1 

Displays should not have one static format; often the contents of a 
display need to be under user control, consequently a display-control 
dialogue is required. Simple dialogues provide users with access to a set of 
pre-designed displays; more flexible dialogues support user-control of the 
display by browsing and data retrieval. 

Controlling displays 

Users should be given a flexible means of accessing different displays. 
Some users may want to browse through a large amount of data while 
others need to find detailed items quickly. Without going into the level of 
control necessary for data retrieval, data-display dialogues should allow the 
user to page and scroll display screens. In page control, part of the previous 
display should still be visible at the top/bottom of the new page to provide 
the user with continuity. When using scrolling the speed should be under 
user control so that unwanted data can be skipped with a fast scroll and 
more interesting data can be inspected with a slow scroll. 

In more structured databases, complex access mechanisms can be 
provided to control not only the display sequence but also the information 
content of displays by data retrieval dialogues, as described in the next 
section. 

8.3 Data-query/Data-retrieval Displays 

These displays give users more choice in what data is to be displayed. 
Simple data retrieval is by access to a pre-determined frame of data such as 
aPrestel page. Access can be provided by a menu system or by a direct 
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address, for example, the page address in Prestel. Frames of data or 
objects in a database can also be represented visually as icons. This 
approach was used in the Spatial Data Management System developed at 
MIT in which the interface was organised as a hierarchical se ries of iconic 
menus. By using joystick controls, the user could fly over the icon screens 
pointing at objects and navigate through a three-dimensional data space as 
illustrated in figure 8.l. 

Most data-retrieval systems, however, aim to provide the user with 
choice about wh at is to be displayed from a database. To achieve this, 
data-retrieval command languages have been developed to formulate 
queries. These command languages are English-like, but the user has to 
learn a syntax and identifiers for data entities and their attributes. The 
usual form is as folIows: 

Search Entity with Attributes = X and Display Attributes, X Y and Z 

A typical query in IBM's SQL query language is illustrated in figure 8.2. 
The basic syntax is to Select (variables/attribute values) from a set where 
(conditions). 

People often have difficulty using data-retrieval languages. Most pro­
blems stern from poorly designed syntax and confusion about logical 
operators, such as AND, OR, >, <=, etc. Many users confuse logical 
quantifiers such as Greater Than with Greater Than or Equal To; also, 
compound conditions cause further problems with AND and OR condi­
tions being mixed up because English does not distinguish the exdusive­
OR from OR but may be Both conditions. Most databases have a built-in 
query language which is beyond the interface designer's influence; 
however, if a data-retrieval dialogue is being designed, the following points 
should be considered: 

(a) Users have to find the entities in a da tab ase which they can ask 
questions about. They will have to remember the names of entities, 
which therefore should be concise and descriptive and not terse and 
obscure. 

(b) Users will also have to remember the attributes of entities if they wish 
to select the values of attributes. Attribute names should be dear and 
meaningful, and attribute lists should be displayed on pop-up menus 
or help screens. 

(c) The syntax of a query language should follow the model of English as 
far as possible, because people will naturally formulate queries in a 
linguistic manner. Thus the query command should be like an 
imperative English sentence: verb, object, qualifying dause, for 
example: 

FIND CUSTOMERS WITH ACCOUNT > 10,000 
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Figure 8.1 Representation of a database by a combination of icons and 
spatial position in the Spatial Data Management System [Source of 

bottom half of figure: US Naval Deptj. 
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SELECT TITLE 
FROM BOOKREFS 
WHERE S$ INPUT 

Result 

(SELECTS$ 
FROM PUB LIST 
WHERE T$ INPUT 

(SELECTT$ 
FROMAUTII 
WHERE NAME = "Jones"» 

Software development: A rigorous approach 
Jones C.B. 

Practical systems analysis 
Jones A.N.O. 

The basic syntax is Select (variable/attribute name) from (entities/relations/sets) 
where (boolean expression). SQL can use nested syntax to express successive 
selections from entity sets, in this case titles, publishers, and authors. Matching 
conditions for attributes are specified in WHERE c1auses. 
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Figure 8.2 Examp/e oJ a data retrieval query in SQL (Structured Query 
Language). In English the query is 'Find the titles Jor books in the 

publication list where the author's name is Jones'. 

(d) Many searches proceed in steps as the user selects a set of likely 
records and then chooses from among the first set. An output file 
should be provided with search results, and this file should then be 
the input file for the next search. This method is better than complex 
nested search syntax because it reduces errors due to incorrect syntax 
and the mistyping of long command strings. 

(e) Logical operators should be clearly specified on help screens with 
examples of their impact. Clarifying sentences in English may be 
given after a query has been formulated as user feedback, for 
example: 

This search will find customers with accounts over no,ooo and 
customers with accounts equal to no,ooo. 

(f) Finally, data retrieval is a task suitable for decomposition into a 
logical sequence. Most data retrieval involves three or four steps: 

• Finding which parts (or entities) of the database to query 
• Formulating the query logic and syntax 
• Refining the search if it is iterative 
• Formatting the results for printing or display 
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Data retrieval should make the task steps explicit and provide 
support for each step in turn. Too many data-retrievallanguages try 
to do everything at once, which may benefit the expert but is of little 
use to the vast majority of inexpert users. 

8.4 Graphical Displays 

Graphics are effective because they abstract qualities from a set of data and 
present information in a more 'chunked form'. But that process of analysis 
can introduce bias into interpretation of data and designers should exercise 
care when choosing graph types and in the design of layouts. 

The choice of graph type is limited, to an extent, by the type of data. 
Data sets for graphics co me in three basic forms. Values can be: 

Ordinal: 
Nominal: 
Decimal: 

boolean, that is present/absent 
integers 
reals 

Data sets can be categorised according to the type of plot, which may be 
derived from a particular data value: 

(1) Grid data: measured values on one axis are plotted against fixed 
intervals on the other. It is used to show the number of members per 
category, or a measure per object/population on the fixed axis, such as 
rainfall per month or numbers of cars by type. 

(2) Named data: measures of the number of data items making up a set, 
such as government expenditure by sector. 

(3) Point data: measures with values for the x and y coordinates for each 
object. Point data may be decimal or integer for both coordinates, or 
decimal on one axis only. 

The first two categories have a single value for each object in a 
measurement population; point data has two values related to an indi­
vidual object, such as the height and weight of aperson. Three va lues per 
object necessitate x, y, z axes in a three-dimensional plot. The other 
design consideration when choosing graphs is the type of analysis which is 
required. Users may want to show a particular quality of the data for 
demonstration purposes, for instance, trends, grouping, differences. With­
out going into complexities of statistical analysis (see Siegel, 1956 for 
details), the more simple treatments of data which are usually encountered 
in information systems are: 

(a) Association: the graph is to show how two measures or classes of 
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objects are related in absolute terms (same value) or co-vary in some 
manner. 

(b) Difference: the antithesis of association; here the aim is to show how 
items differ by an absolute magnitude or show opposite patterns in 
variation. 

(c) Exception : this is a special case of difference related to a set of items. 
The objectiv.e is to show the 'odd man out' in a set. 

(d) Trend: aims to show a pattern in a set of values over a range, usually 
an increasing or decreasing trend. 

(e) Grouping: this is a special case of association which aims to show 
relationships between many objects in a population. The inverse 
effect to clustering is a measure of scatter. An example is the 
clustering of weight and height measures around the average values 
of 70 kg and 1.7 m. 

(f) Distribution about a norm: the graph is to show how a group of data 
items are spread around the average value for the population. 
Normal distributions are balanced with an equal number of items 
above and below average, with most values clustering around the 
average. Other distributions may show skew, more points above or 
below the average, or kurtosis (more points spread away from 
the average than expected by statistical definition of anormal 
distribution) . 

Four graph types are available in most commercially available graphics 
packages. 
Histograms. These are also called bar charts. Histograms are suitable for 
ordinal and nominal data, and give a good impression of difference, 
exceptions and possibly trends for fairly crude measures. However, 
histograms waste the accuracy of decimal data and are poor at showing 
complex trends and small differences in measures. Histograms are suitable 
for grid type data, when the plot has values on one axis at fixed intervals 
for a measure on the other, for example, rainfall per month or as named 
measures (numbers of cars sold, Ford, BL, etc). The values in integers or 
reals are plotted on the y axis. 
Pie charts. Pie charts are suitable for showing exceptions. The data items 
have to be members of a set which becomes the pie. This technique is 
effective for displaying comparisons and has a high visual impact which can 
be enhanced with pie and slice design, as shown in figure 8.3. Segments 
correspond to the value of a measure; the first segment should start at 12 
o'clock and the pie is read clockwise from that point. 
Line graphs. Line graphs are suitable for decimal data. The extra resolu­
tion of decimal measures is shown better in line graphs, although designers 
should still be aware of distortion. For instance, stretching the x axis can 
reduce the visual impact of difference between values on the y axis. Line 
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Figure 8.3 Business graphics: example of a histogram, pie chart and line 
graph. 

graphs have the further advantage that they can show more than one 
measure on achart, therefore they can be compared; also, associations and 
differences between populations can be depicted. Generally , the data 
value is plotted on the vertical x axis, and the range or time dimension on 
the y axis. Care must be taken with scaling to avoid spikey graphs which 
hinder comparison and impair the visual impression of trends. 
Scatter diagrams . These are used for decimal and integer data on both x 
and y measures when grouping of items needs to be shown. Items are 
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Figure 8.4 Other types of chart and graphical presentations: (a) scatter 
diagram of height-weight distribution; (b) three-dimensional 

techniques-Manhattan diagram. 

plotted as points, clustering being apparent from the density of points 
thereby suggesting a grouping, as illustrated in figure 8.4(a) which plots 
height and weight measures for a human population. 

Three-dimensional displays 

When there are three measures per object (x, y and z axes) , three­
dimensional graphical techniques can be used. Three-dimensional histo­
grams, called Manhattan diagrams (as depicted in figure 8.4(b)) , are of 
limited use even though they can create a striking visual impression. The 
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problems of scaling and comparison of values shown in perspective means 
that little meaningful information can be shown unless there is a very 
marked effect. Multi-variate pie charts can be used by adding more pies to 
the display to represent the z dimension, but the eye is poor at tracking 
between pies, making inter-pie comparison poor. Visual short-term 
memory probably limits attention to one pie at a time. 

Three-dimensionalline graphs are more effective, especially if grouping 
measures need to be shown. Supplementary analysis can be added by 
ta king slices through a perspective diagram to show contours on the z axis. 
Where measures become multi-variate and exceed three values per object, 
then statistical techniques of factor analysis have to be used to reduce the 
dimensions to a visual effect which can be plotted, unless the data is 
expressible in more complex images. These can combine graphics with 
maps and diagrams. 

Other visual representations 

Graphs are not the only method of visually displaying information. 
Hierarchy diagrams are useful for showing categorisation and hierarchical 
relationships. Sequences, precedence and multi-linked dependencies can 
be illustrated by network diagrams, and finally use of symbols and icons for 
simple measures should not be underestimated. Use of icons, chart design 
and maps can give a distinctive visual impression, as illustrated in figure 8.5 
which depicts the capabilities of modern business graphics. Use of symbol 
size to illustrate a measure can also be effective. 

Directions of movement or a trend can be shown by arrows, and 
association may be represented by proximity in spatial layout or by 
connecting links. In complex graphs, however, the user will have to expend 
more effort in interpretation. Wayfinding guidelines should be given to 
guide the eye through the image; and documentation, supported by help 
facilities may be necessary to explain complex images. 

8.5 Reports 

Computer output may in graphical or text form on a variety of media, such 
as film, paper or VDU displays. This section examines a sub-set of such 
computer output: printed character-based reports. 

During analysis, reports can be classified according to their function and 
general layout. First the type, function and expected usage of areport 
should be established. A report's function may be either to convey 
information from one system to another, for example, an invoice, or to 
summarise information about a system as in a management summary, or a 
historical record, simple listing, etc. Whatever the function, most reports 
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Figure 8.5 Use of icons, maps and graphical design in the Apple 
Hypercards system. 
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fall into one of three categories: transaction, information and listing 
reports. The function of areport may influence its layout, however, and 
general formatting guidelines can be given for all types: 

(1) Transaction reports. These contain the results of input data which has 
been processed and is now being passed out of the system, possibly to 
be processed further elsewhere. Transaction reports often carry infor­
mation between systems and contain information about the objects 
being processed. Examples are order forms, delivery notes, invoices, 
purchase orders and pay slips. 

(2) Information reports. These carry information about the system over 
the system boundary, and contain data describing system processes and 
their activity. The information is consumed by managers and system 
operators to monitor, control and modify the system's behaviour. 
Exception, monitoring, analysing reports and management summaries 
all fall into this category. 

(3) History and archive reports. These are a special case of information 
reports when a large quantity of information is needed to describe the 
state of a system at a point in time (the archive) or information is 
needed over a long time period to describe a system's history. 
Processed data wh ich may possibly be required in the future is also 
held in archive reports. 

(4) Browsing reports. These are the simplest report type and are the 
hardcopy equivalent of the query screen or file listing. Information is 
gene rally presented in an unsophisticated form so t,hat users can sift 
through it in a variety of ways. In the simplest case, these reports are 
formatted listings of computer files. 

Transaction and information reports require most design, although some 
structure should be given even to archive reports and simple listings. 
Transaction reports often have similar contents to input forms, and forms 
design guidelines can be applied. For other reports, general layout 
guidelines apply as they do to screens and other presentation media. In 
addition, the following factors should be considered. 

Analysis of report usage 

The contents required in areport will be specified in output dataflows of 
the system and in the user's requirements. However the grouping of 
information into one report can also be affected by other factors which the 
analyst should be aware of: 

(a) Frequency of production: Is the report required on demand or at a 
specific time, such as daily, weekly or monthly? Is all the information 
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required at the same time? Timing requirements may lead to so me 
information being placed in an on-demand report while other items 
may only be required at weekly intervals. 

(b) Volume of production: How many copies of areport are required, 
and will the same number be produced each run? Reports with 
different volumes may have to be run separately; hence a long print 
run will require operations staff to set up printers, whereas a single 
copy report could be printed without any operator intervention. 

(c) Timing and accuracy of information: When areport is produced can 
be influenced by how up to date the data has to be and the value to 
users of information which is not completely up to date. If slightly 
inaccurate information is permissible (for example, dose of business 
yesterday) then overnight printing of reports is tolerable; on the other 
hand, information may have to be totally up to date, in which case an 
on-demand report is necessary. Accuracy also applies to numeric 
values. Calculation to five decimal pi aces may be needed in an 
engineering report; in contrast, a cost forecast may be acceptable 
with an accuracy to the nearest noo. 

(d) Security: This concerns how sensitive the information is and what 
precautions have to be taken to ensure that it is not seen by 
unauthorised personnel. This influences the devices on which it is 
printed and arrangements for distribution. 

Layout design 

Reports fall into three types of layout designs: 

Listings: simple iterations of records, browsing and archive reports use 
this layout. 
Block structure: more order is imposed on the information by rows, 
columns and totals; information reports are usually block structured. 
Group structure: more complex layout with groups of information 
organised in blocks; trans action reports usually fall into this category. 

The steps in report design echo many principles already stated for screen 
display design: 

• First establish the purpose of the report. This should suggest a dear 
and concise title 

• Decide on the report contents in consultation with the user. The 
contents will be based on the system output specification, bearing in 
mind the factors listed above under Report usage 

• Structure the information into groups and blocks of related items. 
Grouping may be by data related to an entity in transaction reports, or 



152 Human-Computer Interface Design 

by the principle of functional cohesion, that is, data related to one topic 
or purpose according to the user's criteria 

• Order the groups and blocks according to the user's needs and reading 
sequence, for example, group by importance, cost, frequency of use, 
sequence of use 

Too many reports contain too much data. Overcrowded reports cause 
longer search times as the reader has to track data items down in amorass 
of print. High print densities also increase transcription error rates, as 
figures dose together can be mistaken. Areport with more than 50 per 
cent of its area covered by print, induding headings and any format 
characters (such as $$$$), is overcrowded. Aim for an upper limit of 40 per 
cent of the total area in print. 

Report crowding does pose a dilemma when several pieces of informa­
tion are required together. If the information is se para ted on to different 
pages then the user has to turn pages to find all the data, burdening 
short-term memory while doing so. PI ace information on one page and 
overcrowding may result. There is no ideal answer to this trade-off 
judgement but, on balance, excessive crowding (50 per cent plus print 
space occupied) should be avoided. 

Listing reports 

These are the simplest to design. Data is usually presented in re cord format 
as rows organised in columns of information reading down the page. Pages 
should be numbered and, if the data is ordered in some way, blank rows 
should be left between sorted groups to help structure the list. Any sorting 
or order wh ich can be added to the list will help the user to browse through 
the data. Data fields should be separated into columns and given headings. 
If all the fields do not fit on to one page width, paginate the report across 
two consecutive pages to fit in all the fields. 

Block-structured reports 

Blocks should be ordered using the general design guidelines. Totals 
should be placed dose to and following the data that they relate to. If there 
is aseries of hierarchical totals, a separate summary page should be 
added showing the progressive aggregation of totals. Variable items are 
best placed in columns on the right-hand side of the report to prevent a 
ragged appearance. Many of these design features are illustrated in figure 
8.6. 

Information blocks should be separated by spaces rather than delimiter 
characters such as - - - - - ..... * * * * * etc., which only increase the overall 
crowding of the report. Blocks of information should be labelIed with a 
heading on the top left-hand side of the data. This is the location which the 
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Branch Sales Performance Analysis 

Incentive League Table 

Orders/ Salesperson OrderValue 

Bmnches Target Actual % Perf Target Actual %Perf 

Scotland 36.47 35.17 96.44 455530 482939 94.27 

North E. 38.01 42.1 110.76 499284 397941 125.47 

North W. 38.21 38.43 100.58 545536 530368 102.8 

E.Mids 37.06 36.66 98.93 274212 287683 95.32 

W.Mids 36.04 35.30 97.92 484105 495872 97.63 

West Eng 38.33 35.15 91.72 395938 372924 106.17 

W.Lond 32.8 30.4 92.7 436562 485032 90.01 

C. Lond 32.7 27.56 84.27 287607 358853 80.15 

City 27.66 25.11 90.77 241328 260550 92.62 

Anglia 34.81 33.25 95.50 418087 426168 98.1 

S.E. Eng 34.12 31.33 91.81 450161 442584 101.71 

S. Eng 34.22 31.97 93.44 423471 435733 97.19 

U.K. 35.42 33.05 95.58 4980549 5066002 98.27 

Figure 8.6 Report layout showing structuring of information by grouping, 
headings, titles and summaries. 

eye first tracks to when reading a continuous text block. Within a system, 
the report layout should be kept as consistent as possible so that users 
become accustomed to familiar layouts and learn where to search for 
information within areport. 

Group-structured reports 

Transaction reports are the most common group-structured report. The 
whole report may have a format based on an existing form. If not, the 
group content and sequencing of data is designed using the general report 
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design guidelines. Transactions are generally indexed by a unique code 
which should be clearly marked and placed in the top right-hand corner of 
the report; this helps leafing through a pile of reports to find the reterence 
number. The report title should be centred and groups of information 
separated, preferably by space, and ordered according to the criteria cited 
previously. 

Alternatively, separation of information groups may be achieved by 
using boxes for emphasis or by employing background colour. Excessive 
use of delimiter characters should be avoided as with block-structured 
reports. These reports often use pre-printed stationery, in which case it is 
advisable to print a dummy page first to check on printer alignment of the 
print fields on the pre-printed template. 

Detailed layout 

The guidelines are similar to those followed in screen displays: 

(1) The type and format of data items should be examined to determine 
the number of print character positions required. For example, in 
COBOL a PIC 9(6) will require 6 positions with one, possibly, for the 
plus/minus sign. PIC S9V99 will require 5, a mandatory ± sign, three 
digits and one decimal point. 

(2) Characters are aligned to the left, numerals to the right, and decimals 
are aligned on the point. Use of an optional minus sign can give a 
ragged leading edge on a column of figures. One solution is to make 
the minus sign trailing; another is to bracket negatives, although this 
convention must be explained. 

(3) Columns should be separated by at least three blank spaces. 
(4) Headings should be aligned to the centre of columns. Do not adjust 

column width just to accommodate a heading. 
(5) Highlight important fields, with bold type, different fonts, underlining 

or colour. 
(6) Number pages and title each one. An unnumbered page which has 

become detached from areport can be very irritating. 
(7) Date and Time stamp the report at each run. Sooner or later the fact 

that it was the weekly report before Christmas will be important. 
(8) FinaIly, when the detailed report layout has been designed, the users' 

opinions should not be forgotten. As with most aspects of the human­
computer interface, users should be consulted about designs and 
changes made to accommodate their views. In display and report 
design, early consultation is advisable before the detailed layout is 
planned, as weIl as final acceptance testing. 
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8.6 Summary 

Display design involves structuring information to help people read and 
understand it. Data items should be grouped and groups ordered according 
to usage. Important data should be highlighted to ensure attention is drawn 
to it. 

Data displays may be either textual or graphie. Text displays should not 
be overcrowded and space should be used to separate information. 
Display-control dialogues are designed to help users progress through a 
body of data according to their needs. In simple cases this will be by 
scrolling; more advanced access is by data-retrieval/query languages. The 
syntax and structure of such languages has to be designed with care. 
Graphical displays make use of human chunking abilities by abstracting the 
qualities of data. Designers have to choose achart type according to 
the data set being analysed and the type of analysis treatment. Common 
chart types are histograms, pie charts and line graphs. More complex visual 
representation can be achieved with diagrams, maps and complex images. 

Reports should be analysed to determine their function. This may 
dictate the structure of areport and should suggest its title. Reports have 
trans action , information, listing or archive functions. Information is 
ordered and grouped to optimise efficient access. Detailed formatting of 
columns, text and number has to be designed to make the appearance of a 
report consistent and pleasing to the eye. 

Further Reading 

Consult the general references. 



9 Computer Control Interfaces 

This chapter covers interfaces which control computer operation. These 
are the familiar menu and command language interfaces of operating 
systems and any interface which is provided for users to gain access to the 
system. Following the usual format, general guidelines are given and then 
control interface types are examined in turn, starting with simple and 
familiar styles before migrating to more advanced direct manipulation 
interfaces which are becoming increasingly popular in modern systems. 

9.1 Control Dialogue Guidelines 

The objective in computer control dialogues is to give users the maximum 
amount of control concomitanf with their abilities, in a manner that keeps 
the initiative for control with the user and protects the user against making 
mistakes. 

Computer control dialogues fulful two purposes: 
• They give people access to facilities in computer systems 
• They allow people to interact with a computer facility, that is, to hold a 

conversation with the computer to gain information and complete a 
task 

All systems have a first type of control interface; the se co nd is for 
conversational interfaces in which user and computer interact in simulating 
behaviour of a system or controlling an external system. Examples of the 
latter are air traffic control, decision support, chemical plant process 
control and battle-field simulation systems. This chapter focuses primarily 
on computer access and conversational control interfaces. A further type 
of computer control interface allows users to build systems aild change the 
way in which computers respond. These are complex control dialogues of 
programming languages which also merit separate study in HCI terms and 
cannot be dealt with within the scope of this book. 

To start designing control interfaces we need some basic guidelines. 
Initiative in control should be given to users; the more initiative provided, 
the more sophisticated and potentially more difficult a dialogue will be to 
use. Initiative, therefore, has to be constrained for unskilled users with 
simple dialogues that present only a few choices. A general rule is that 
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computer systems should not seize the initiative and force users to perform 
actions according to the computer's command. In practical terms this 
means that a dialogue should proceed only when the user wants it to; users 
should not be locked into options without an escape route, and users 
should rarely be forced to give replies within pre-set time constraints. 

Computer control should be by explicit action on behalf of the user and 
computer. Implicit actions and 'built in' short cuts in a dialogue may 
appear to save time but such implicit changes are unlikely to match users' 
expectations and hence can cause confusion. 

Messaging is important in control. Users need to know where they are 
within the system, so status messages are essential. Users also require 
feedback from commands they issue to the computer, otherwise doubt sets 
in about whether the computer has received the command or if it was the 
correct command to give. The conversation between human and computer 
should be continuous, like human communication, so that a message from 
one party is followed by a reply from the other. Gaps in conversation lead 
to uncertainty and attention being diverted from the task. 

Computer control dialogue should be modelled on the user's tasks as far 
as possible. Although it may be a dialogue which did not exist in the 
previous manual system, it may have been implicitly present in the way 
users performed their tasks. They will carry the model of the system in 
their memory and will expect to see tasks in groupings and sequences with 
which they are familiar. Failure to model the users' perception of system 
organisation may result in users hunting for an option in the wrong menu, 
forgetting a command sequence or getting totally lost within a command 
interface. Clearly these are scenarios to be avoided. 

Commands should always be linked to a single function. Multiple 
commands for one function only serve to confuse the user and are 
redundant anyway. As far as possible, commands should be unique and 
have a good direct link to the function they evoke. 

In summary the guidelines are: 
• Explicit action by computer and user 
• Communicate with the user, give feedback and status messages 
• Dialogue at user's pace and initiative 
• Dialogue based on user's model if possible 
• Single commands for each function 

9.2 Simple Control Dialogues 

The most simple type of control uses question and answer dialogues in 
which the computer asks whether a particular option is required or not and 
the user simply gives a Y/N reply. Slightly more complex examples can 
move towards a menu-based system. These dialogues, although easy to 
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use, are tedious after experience has been gained and slow to operate. 
Because each step has to be answered each time, users can quickly become 
frustrated with repetitions which they know are just wasted effort. 
Consequently these dialogues should only be used with naive users or 
novices who are likely to remain that way. 

When using these dialogues, some guidelines to folIoware: 
• Only one question at a time. Asking multiple questions may seem to be 

quicker, but the question-answer link will burden the user's short-term 
memory 

• When linked answers are necessary, redisplay the previous answer. If 
the previous answer is needed later in a sequence, re display it, 
otherwise errors are caused by short-term memory problems 

• Keep sequences compatible with the source document or user model. 
If there is a precedent for the sequence of questioning, keep to it 

9.3 Menu Interfaces 

Menus are the ubiquitous computer interface, yet sufficient attention is 
rarely given to their design. Menus work by users associating a reply code 
with an option displayed on a screen. Reply codes may be either numeric 
or characters. Character codes can be mnemonic and suggest the meaning 
of an option; however, this method has the problem of running out of 
letters to represent options, for example, the E for edit and E for exit prob­
lem. The solution to duplicates is to use a longer code but this hinders the 
advantage of giving a response in a single keystroke. Numeric codes, 
although they contain no meaning, are not a hindrance to efficient menu 
operation. 

An alternative to using a reply code from the keyboard is to use a 
pointing response with a mouse, or to have a revolving band type of menu 
in which the space bar controls selection by progressively highlighting 
menu options going down the menu and then back up the top again. The 
user picks the currently highlighted option with the Return key. The latter 
method runs the risk of overshoot as users hold the space bar down and 
miss their options by going too far. 

In most systems there are more options than can be easily placed on one 
menu. This enforces hierarchical organisation of menus. It is important 
that the organisation conforms to the user's model of how options and 
functions within a system should be grouped, otherwise the task of learning 
the menu hierarchy is made more difficult. Navigation in menu hierarchies 
presents two problems for users: 

• Keeping track within the hierarchy-the 'where am I?' question 
• Tracing a path through the hierarchy-the 'where have I been?' 

question 
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To help users navigate, status information about the hierarchicallevel and 
part of the sub-system being accessed should be displayed on the top of the 
menu screen. To improve pathway tracing, a backtrack facility is helpful so 
that users can page back to the last menu with a single keystroke. A further 
extension of user control in the hierarchy is to give users 'escape to the top' 
commands. These design features in a poor menu design, and a better 
alternative, are illustrated in figures 9.1 and 9.2. 

How many options to display on a menu has been the topic of 
considerable research. There is a trade-off between depth and breadth in a 
menu hierarchy. Making the hierarchy broad by placing many options on 
one menu me ans that users have to spend longer searching through the list 
of options; however, there are fewer levels of hierarchy to descend. If the 
hierarchy is made deep with many levels and fewer options per menu then 
the search time per menu is shorter although the menu level descent time is 
increased. Intuition suggests there must be an optimal compromise and 
some studies indicated that this is so, with menus containing 7-9 options 
being best. 

C = Create a new document 

D = De1ete a document 

E = Edit an existing document 

F = Finished and exit 

I = Index of documents 

DS = Display document 

CF = Change format 

P = Print document 

S = Spelling check 

CM = Change margins 

CT = Change tabs 

L = List processing 

T = Transfer documents 

Select option» 

Figure 9.1 Illustration of poor menu screen design. How many more poor 
design features are there in this menu? 
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WORD PROCESSING MENU ? for help 

No document selected 
General options Office>WP 

Editing Commands Formatting Commands 

C = Create a new document M = Margins change or set 

E = Edit an existing document T = Tabs change or set 

x = Exit F = Font size and type 

File Comrnands Sub Menus 

I = Index of documents 
L = List processing 

v = View document 
T = Document transfer 

P = Print document 

D = Delete document 

R = Rename document 

S = Spelling check 

Select option » 

Figure 9.2 Illustration of better menu design. 

However, the efficiency of broad menus can be increased by structuring 
the options into groups as exemplified by the WordStar menu (see figure 
9.3). In sm aller systems the breadth first design may be advantageous 
because it cuts out traversal time of a menu hierarchy; but for large systems 
a clear hierarchical structure may be required to help the user comprehend 
the system, in which case the depth style may be better. 

A problem with all hierarchical menu structures is that users soon leam 
part of the tree and wish to traverse from one option to another without 
going up and down the hierarchy. To accommodate this desire a menu 
bypass facility can be designed to give direct access to options. If numeric 
reply codes have been used, options can be addressed using a page number 
principle, with the numbers being derived from the menu responses at 
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HUMAN COMPUTER INTERACTION LECTURE 

The objective of this course is to introduce students to the 
subject of human computer interaction and give ski11s in the 
analysis, specification and design of human computer interface 
software and supporting materials such as user guides and 
training manuals. 

The course is designed to integrate with Systems Analysis and 
Design so that systems development is seen and practiced in the 
wider perspective which inc1udes hardware, software and peop1e. 

Olsplay!Center !ChkRest!ChkWord!Oe1 B1k!HideBl~!MOVeB1k!CopyBlkIBeg B1klEnd B 
lHelp fundo jUndrlinjB01d joelLinetoelwordIAlign lRuler jsave, ~oone 

Figure 9.3 Grouping of options on WordStar menu. Although the total 
number of options exceeds short-term memory, the grouping of options 

into menu blocks makes the information accessible. 

successive levels, for example, option X has an address of 134 and used to 
be accessed by typing 1 at the top menu, 3 at the second level menu, etc. 

A disadvantage of menus is that the whole screen is usually consumed by 
the menu, leaving no space for a work area. If menu choices are required at 
several points in a dialogue, the necessity to replace a work area with a 
menu screen can be co me disruptive. This problem can be solved by using 
pop-up/pull-down menus on systems with more modern interface software 
supporting such facilities. The menu is only present when it is being used 
and does not obscure the work area. After the choice has been made the 
menu is removed. Pu li-down menus also allow menus in different levels of 
an access hierarchy to be called directly from a single command line, as in 
the Apple Macintosh™ shown in figure 9.4. 

In summary, the guidelines for menu design are: 
• Group logically related options together either as menu blocks or in 

separate menu screens 
• Order menu options by the usual criteria, such as operational 

sequence, frequency of use, importance, etc. 
• Indicate the reply expected and associate it with the option 
• Title the menu according to its function 
• Give the user feedback about menu levels, errors, etc. 
• Provide escape routes and bypasses 
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Figure 9.4 Pul/-down menu on the Apple Macintosh MacWrite™ 
program. The menu enables the user to select various character fonts at 

any step during word processing . 

• Bullet-proof the replies, for example if 1 to 7 are options and 0 is 
es cape , make sure any other keystroke is followed by an error message 
and not a program failure 

9.4 Function Keys 

Function keys are a hardware equivalent of menus with options allocated 
to special keys on the keyboard to save screen space and alleviate the reply 
co ding problem. Function keys can either be hard-coded or soft-coded. 
Hard-coded function keys have an operation permanently allocated to a 
particular key. The key is c1early labelIed with the operation which the user 
can read; see figure 9.5. This approach is excellent with a single application 
on dedicated hardware, such as a word processor, when functions are not 
going to change. For most systems, function keys are soft-coded. 

With soft-coded keys the command call is allocated to the function key 
by the application program. One or more commands can be allocated to 
each key; but as more commands are linked to a single key, user confusion 
will mount because of the problem of keeping track of which mode the 
system is in. In one context F2 key may me an delete a word, in another 
context it may me an save a file. To help users a partial menu has to be 
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Editing PROGRAM DEVELOPMENT SYSTEM 

TEST.COB File editor 

FILE-CONTROL. 

Top 
Level 

SELECT ORDERS ASSIGN TO ORD.DAT. 

DATA-DIVISION. 
FILE-SECTION. 
F-D CUSTOMER-ORDERS LABEL RECORDS STANDARD. 

01 CUST-ORDER. 
03 CUST-NAME PIC X(15). 
03 CUST-ADDRESS. 

05 ADDR-LINE-I PIC X(20). 
05 ADDR-LINE-2 PIC X(20). 
05 ADDR-LINE-3 PIC X(20). 
05 POSTCODE PIC X(7). 

03 DEL-DETAILS. 
05 DEL-DA TE PIC 9(6). 
05 DEL-AREA PIC xx. 

dynamically 
replaces edit 
keys on exit 
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Figure 9.5 Use of function keys for computer contral. The screen display 
mimics the function key positions on the keyboard. Functions may be 

dynamically allocated by changing the displayas the user progresses up 
and down a menu-like hierarchy. 

displayed on the screen showing the allocation of options to keys, mapping 
the keyboard layout on to the screen. 

Even so, function keys can become limited by mode changes. Most 
computer hardware suppliers provide 10-12 function keys. Important keys 
should have a constant function in any context (for example, F1 is always 
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help, F2 is always escape). The remaining keys can be dynamically 
allocated to 2 or 3 functions each before user confusion mounts. Hence the 
overall options in a system wh ich can be usefully implemented with 
function keys are limited. 

9.5 IeoDs 

Icons are becoming increasingly popular for representing objects and 
commands in control interfaces. To be useful, an icon has to be realistic so 
that a user can recognise the picture and hence the object or command 
which is being represented. The great advantage of icons is that they are 
realistic, so we do not have to learn what they represent, and instead can 
immediately make an informed judgement about their significance. 
Symbols mayaiso be used; however, symbols initially are meaningless 
shapes, consequently to be useful they have to be associated with an 
object. That association has to be learned. 

An absolute boundary between symbols and icons is illusory because as 
soon as a symbol's meaning has been learned it will become a meaningful 
image. On the other hand, an icon may be ambiguous or have no 
immediate meaning even though it is a complex and apparently realistic 
image. Pictorial communication is essentially bound to the interpretation 
of images made by individual users. 

Icons were pioneered by Xerox in the Star system and later by Apple in 
the Lisa and Macintosh interfaces. A key idea in these designs was that 
pictures of objects in the system could be used to create a visual impression 
modelling the user's everyday experience. In this way the Xerox Star 
system has icons for objects in the office, such as in-trays, filing cabinets, 
folders, calculators and waste paper baskets. Operation of the system is by 
picking objects and moving them with the cursor. For example, to delete a 
file you move a folder into the waste paper bin, following the metaphor of 
everyday life of throwing waste paper into a bin. 

Icons, however, present some problems when functional operations 
need to be displayed; for instance, cut and paste operations in a word 
processor, or global find and replace, or check spelling. Some iconic 
representations can be found such as scissors and a paste brush for the cut 
and paste metaphor in word processing; but as concepts become more 
abstract the expressive power of icons wanes. Icons also suffer from 
problems of ambiguity. One picture may be interpreted in different ways 
by different people; for instance, the waste paper basket can be 
misinterpreted as a message basket or as a secure place by novice users. As 
a precaution against ambiguity, most iconic systems have so me text 
explanation associated with the icons. The problem of ambiguity in icons 
can be seen in figure 9.6. Poorly designed icons can lead to incorrect 
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(a) The Xerox Star in and out tray icons, a clear visual metaphor for messages 
with text back-up in case of any doubt. 

Inbasket 

(b) Ambiguous icon designs 

~ 
............. . ................ ............... ................ .... _- ......... . . __ ._--_ ........ . . __ ....... __ ... . ................. 

I I 

~ 
I Outbasket I 

is this a communications link 

or an electrical danger ? 

a printer or a letter box ? 

flight arrivals or a crash? 

Figure 9.6 Design of icons. 
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interpretation and sometimes to undesirable emotional reactions even 
though the message is interpreted correctly. 

Ambiguity becomes worse when a large number of similar objects have 
to be represented, or abstract objects and commands have to be illustrated. 
Try designing an icon for a sort command and the problem should be co me 
apparent. As a consequence, the application of icons is not universal, 
although they have been very successful in creating some interfaces which 
are very leasy to leam and use for both novice and expert users (leaming 
times of 2 hours were claimed by Apple for the Lisa system). 
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There is a dearth of guidelines on the design of good icons; however, 
some advice to follow is: 

• Test the representation of the icons with users 
• Make icons as realistic as possible 
• Give the icon a clear outline to help visual discrimination 
• When showing commands give a concrete representation of the object 

being opera ted upon 
• Avoid symbols unless their meaning is al ready known 

The size of icons is a matter of compromise. If the image is too small then 
visual discrimination suffers; too large an image, however, consumes 
valuable screen space. As icons are not a particularly space-efficient means 
of representation, they run into similar problems as menus with hier­
archies. Consequently there is a premium in keeping icons reasonably 
small. Size is integrally related to complexity of the icon image. Simple 
icons can be effective in dimensions of 0.5 cm square (for example, the 
Apple Macintosh window expand/contract symbol); more complex images 
need to have dimensions in the order of 1 cm. 

9.6 Direct Manipulation (DM) 

This term was coined by Shneiderman (1983) to refer to interfaces which 
include icons, pointing and features which have now become associated 
with WIMP (Windows, Icons, Mouse, Pop-up menu) interfaces such as the 
Apple Macintosh. The central idea of such interfaces is that the user sees 
and directly manipulates representations of objects in the system, rather 
than addressing the objects through an intervening code as in command 
languages or menus. 

Objects are shown as icons which can be addressed by pointing at them 
with a mouse or another similar cursor control device. Pointing allows 
objects to be selected. Pointing and selection then invokes a system 
operation, for example, calls an option as if in a menu or selects a file. 
Direct manipulation goes further by allowing objects to be moved around 
the screen using a dragging operation. In this way new associations 
between objects can be formed, for instance, a file can be placed in a folder 
(a sub-directory in non-DM interfaces); and operations can be performed 
on objects, for example, a message is placed in themail tray. The 
advantage of direct manipulation is that the computer system models 
everyday operations more directly than older styles of interfaces; the more 
direct1y an interface models reality, the easier it is to learn. This has been 
proven by the now weIl established office/desktop metaphor used by Xerox 
and Apple; see figure 9.7. 

The essential features of direct manipulation interfaces can be summa­
rised in a set of principles: 
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Figure 9.7 Apple Macintosh workstation showing the desktop metaphor. 

• Explicit action-the user points at and manipulates objects on the 
screen 

• Immediate feedback-the results of the user's actions are immediately 
visible, such as when an icon is selected it is highlighted 

• Incremental effect-user actions have an analogue/sequential dimen­
sion, for example as an icon is dragged across a screen display it moves 
continuously, following the user's movement of the mouse rather than 
suddenly jumping to a new position 

• Intuitive interaction-interaction matches the user's conceptual model 
of how the system should operate and the display shows pictures of 
familiar objects 

• Learning by onion peeling-the complexity of the system is gradually 
revealed in layers as the user explores system facilities 

• Reversible actions-all actions can be undone by reversing the 
sequence of manipulations 

• Pre-validation-only valid interactions have an effect, so if the user 
points at an object and this makes no sense in terms of the current task, 
nothing happens on the display 

The interface supports the user's task by portraying a realistic 'virtual 
world' on the screen. Operation is supposed to be immediately obvious and 
no error messages are required because invalid interaction has no effect on 
the interface image. Although such interfaces have undoubtedly been 
successful and have had a major impact in some products, they do pose 
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problems for designers and users. In many systems the 'virtual world' has 
no readily available concrete metaphor to help the designer; also the 
intuitive model of interaction may be absent if the user is new to the task. 
The lack of error messages can be frustrating for some users and lead to 
uncertainty; in addition, learning can be hindered by the lack of explicit 
representation of all the system facilities. In spite of this, direct manipula­
tion does create usable and, probably of more importance, appealing user 
interfaces. 

The DM idea has given rise to another acronym, WYSIWYG (What 
You See Is Wh at You Get), which was initially applied to word processors. 
This refers primarily to the output in which the results of the user's actions 
are immediately apparent in the display. Old-fashioned text editors have 
embedded format commands which control the layout of the text, such as 
'.PP' for a new paragraph. WYSIWYG editors use direct manipulation to 
format text, delivering the exact image of what the user sees, and hence 
eliminating the necessity to remember format control commands. 

9.7 Windows 

Another facet of direct manipulation interfaces is the ability to have 
several different interfaces at once and more than one view on a single 
object. Such features are supported by windows. Windows subdivide the 
screen space so that different operations can be taking pi ace on the screen 
at the same time. Windows come in two basic types: 
• Tiled: the screen is divided up in a regular manner into sub-screens 

with no overlap 
• Overlapping: windows can be nested on top of each other to give a 

depth illusion. Complete or partial overlapping is possible and windows 
can be dynamically created and deleted 

Windows have many uses. Screen areas can be separated for error 
messages, control menus, working area and help. If there are phases in a 
dialogue when computer control or a sub-dialogue is needed, a control 
window can be opened and two or more processes can be run at once in 
different windows. In this manner, windows allow multi-task processing in 
a suspend-and-resume manner. There is evidence that people work 
concurrently on several tasks in offices, so windows may be suitable for 
support of office activities. Windows are also useful for monitoring 
information. The status of background or suspended tasks can be held in a 
window so the user can periodically monitor wh at is going on. 

Although windows are very useful they have some disadvantages. If too 
many windows are created the screen becomes cluttered and mistakes will 
be made as attention is distracted by something happening in a window not 
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being worked on. Increased window clutter also incurs the penalty of an 
unstructured display, and search times increase with complexity. 

Use of windows is still a matter of active research, so few definite 
guidelines can be given for their use. The following tentative advice may 
prove useful: 

• For novice users, simple tiled windows usually suffice; overlapping 
windows create unnecessary complexity 

• Use windows for task swapping (for example, from editing to file 
management and back again) but keep multi-tasking to a minimum 

• Avoid frequent change of the image in windows not being worked on. 
The changed image will distract the eye and attention from the task in 
hand 

• Delete old windows which are not directly related to the current task. 
Old windows create clutter 

Windows and direct manipulation interfaces require advanced interface 
software to control the screen display and a high-resolution VDU. Such 
software acts as interpreter between the application software and the 
user, managing all the interaction and communication. Interface software 
of this nature has been termed 'user interface managers' and will be 
described in more depth in chapter 10. 

9.8 Command Languages 

Command languages are potentially the most powerful command inter­
face, but more power brings with it the penalty of difficulty of learning. 
The main advantages of command languages are the economy of screen 
space, the direct addressing of objects and functions by name (so the need 
to provide an access hierarchy disappears) and the flexibility of system 
function which a combination of commands can provide. 

All command languages have a word set, called a lexicon, and rules 
which state how words may be combined, which is a grammar. The lexical 
structure of a command is the method of co ding meaning into the 
command words to help recognition and remembering of commands. 

Command language lexicons 

Command languages need words to identify objects and operations. 
Objects will be devices, files, etc. which the commands of the language 
operate on. Objects will usually be described by nouns and operations by 
verbs. Both word sets should be as meaningful as possible; however, one 
objective of command languages is brevity of input, hence co ding of 
identifiers is usually necessary. The basic choice when shortening a word is 
to truncate or abbreviate. 
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Truncation removes the latter part of a word, leaving a few characters at 
the front, for example: 

DIRectory CATalogue DELete DISplay DEVice 

This is an effective technique if the front of a word communicates its 
meaning. Another advantage is that truncation can be used in two modes. 
A full version of the word is provided for novices, while experts can use the 
short form. It is not difficult to write interfaces which can accept both 
versions. The problem with truncation comes from duplicates between 
words sharing common leading characters: 

DELete DELay DISplay DISconnect 

When this happens a further character may have to be added to remove the 
ambiguity. Unfortunately this violates the consistency rule as users may 
have to type in either 3 or 4 characters depending on the word. There is a 
trade-off between risking ambiguity in a command word set and the effort 
a user has to expend entering commands. Ideally, users should be able to 
invoke commands with a single economical keystroke; however, single 
letter commands are more likely to create aliases as the command word set 
grows. Most operating systems use three-Ietter commands to prevent 
ambiguity. Longer commands also improve ease of memorisation. 

The alternative to truncation is compression. This uses strategies of code 
design described in Chapter 6. Characters are removed at various points in 
the word, leaving sufficient letters to convey the meaning. The resulting 
compressed words should, as with all codes, be the same length. Simple 
elimination of vowels or consonants rarely produce good code words; 
instead, mnemonic techniques of front-middle-back compression using 
syllabic emphasis give the best results. The main dis advantage of compres­
sion techniques is that they cannot be used in a long and short form within 
one system; also the memorability may not be any better than a truncated 
code. Consequently command langages have tended to favour truncation 
coding. Compression codes become more advantageous in large systems 
with extensive word sets in which truncation is no longer a viable option. 

Command language syntax 

The rules which govern how command words may be combined vary from 
simple association rules to very complex grammars. Generally , three 
gradations in command language complexity can be described: 

• Keyword: simple command languages which use a single keyword to 
invoke an operation 
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• Keyword and parameter: a qualifying argument or condition is added to 
the keyword to make the language more flexible 

• Grammar-based languages: these are the most complex, in which a full 
syntactic structure allows very complex commands to be written 

These command categories have the following characteristics, although 
there is no rigid boundary to each category: 

(a) Keyword. Command languages which use single nouns and verbs to 
identify objects and invoke commands. Examples are DIR or CAT to 
show the directory. Command keywords may be used in very simple 
combinations, such as the Command/Object construct of a verb/noun 
pair, for example, TYPE FILENAME, PRINT FILE. No complex 
grammatic rules are present, consequently the word combinations are 
limited. The expressive power of the language is dependent on the 
size of its word set. Early microcomputer operating systems used the 
keyword method (for example, Apple DOS). 

(b) Keyword and parameter. In these languages the basic word may be 
qualified by added parameters to enhance the behaviour of the basic 
commands, for example DIRISIZE, DIRIOWNER, DIRIPROT. 
This gives more flexibility to the language as one command can now 
be used to do several different things depending on the parameter. 
Rules are introduced to govern the set of permissible parameters per 
command and how they are combined. Unfortunately many com­
mand languages add punctuation which is totally redundant and 
confusing, just to govern the parameter position, for example: 

COPY SYS$STAFFDEVICE:[CNS3013.SYSDIR.LEX]FILENAME.DOC 
(The copy command in early versions of DEC's VMS operating 
system; a bad example of cluttering with delimiters, now 
reformed) 

lpr-Pdiablo myfile (a printer command in UNIX, in which the 
printer type is the parameter) 

Keyword and parameter command languages still have relatively 
simple rules for combinations of words. The command strings input 
can be validated by using look-up tables for the command words and 
valid parameters for each command. The expressive power of the 
language is greater than a simple keyword language. 

(c) Grammatic. A set of ruIes is introduced to formulate a set of phrases 
wh ich may be derived by combinations of command words. The rules 
dictate which word types may occur in sequence within a command 
word string, just as English gramm ar constrains the way sentences are 
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formed. Many command language grammars mimic naturallanguage 
grammars to help learning, although the types of sentences are simple 
when compared with naturallanguage. 

The types of grammatic constructs required can be grouped in functional 
categories: 
• Assignment-this associates two objects, or an object with an attribute 

or value. For instance, to give a device some property, or to set 
read-only protection on a file. Command phrases of this type are 
constructed in the form Verb-Object to Object, for example: 

SET UNE-PRINTER TO CHANNEL-2 

Assign DiscA = USERfred 

• Imperative-this command invokes system operations and may be 
qualified by objects for the destination of results using the Verb­
Qualifier-Object paradigm, for example: 

nroff -TLp -ms myfile: Lpr -Plp& 
(the UNIX command for formatting a file and then printing it in 
batch mode) 

stop ws 4 
(the concurrent CP/M command for stopping WordStar in par­
tition 4) 

• Locate---commands which search or find a data item within a list or 
file. Locate commands are common in data-retrieval command langu­
ages and take the form Verb(find)Object with Qualifying conditions, 
for example: 

FIND CUSTOMER WHERE CSTATUS=NEW 
(find new customer records) 

• Accept Input~ommands which get input from the user and use that 
input in an operation, for example: 

CREATE BACKUP[FILENAME=******] 
(create a back-up file with a 6 character name entered by the user) 

Analysis of command functions can help selection of more natural syntactic 
forms for the command. Command languages become much more complex 
if simple phrases can be built up into more complex expressions. This is 
effected by a set of rewriting rules which control the nesting of simple 
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phrases within larger units. In the case of English the grammar dictates the 
way in which phrases are composed into sentences. The rewriting rules of a 
gramm ar can allow many layers of nesting using a recursive principle, so 
very complex expressions can be constructed. As a result command strings 
have to be parsed using recursive techniques, familiar to compiler writers, 
to analyse the segments of a command language sentence. 

Command languages with a hierarchical grammatic syntax have the 
complexity of programming languages and are indistinguishable from 
them. The other property required for full programm ability is the ability to 
store several command strings together in a file which can then be invoked 
by its name. Most operating systems provide this facility, allowing users to 
extend the system's functions by producing new combinations of co m­
mands in programs. Examples are COM, EXEC files and shell programs 
within UNIX. Full syntactic command languages are powerful and flexible, 
but they impose a considerable learning burden on the user. 

Analysis and design of command languages 

The functions which a command language has to support should be 
identified and linked to command names and syntactic structures. Single 
commands should be provided for each function, as duplicate commands 
will only confuse users. The level of sophistication of the language should 
be matched to the users' profile. Generally , full syntactic command 
languages should be reserved for sophisticated users; however, many users 
can use complex command languages provided good training and support 
are provided. If users have a considerable amount to learn, then a layered 
approach to the language complexity should be adopted. Release a 
restricted simple set first, then let users progress to the full command set 
when they feel confident with the simple version. 

Command language specification concerns drawing up the command 
word lexicon and syntax, adding error messages and the help sub-system. 
Command languages with gramm ars require specification using the tools 
employed by compiler designers, that is, BNF formalisation of the 
grammar or use of syntax diagrams for specification of syntactic sequenc­
ing. Error messages should be planned with care. Errors should be 
anticipated at several levels: lexical mis-spellings, syntactic errors, 
semantic misunderstanding about usage of a command and run-time errors 
from the underlying software. The error interpreter should aim to give 
informative messages wh ich relate to the type of error which has occurred, 
with an explanation of the most probable source of the error. 

Command language design involves design of an input parser, error 
message interpreter and run-time system. These are systems and compiler 
design issues which will not be treated further here. In summary, interface 
design guidelines which should be addressed are: 
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• Command word codes should be consistent. If EXIT has been used for 
the escape command, do not use QUIT in another part of the system 

• Punctuation and use of delimiters should be minimised 
• Entry should be flexible and forgiving. Double spaces between words 

should be ignored and mis-spellings corrected if possible 
• Command language words and syntax should be economical. Use of 

the smaHest combination of words for a function should be traded-off 
with word clarity for ease of learning and remembering 

• Command words and syntactic sequences should be natural and 
familiar; for example, use COPY from fileA to fileB, and not PIP 
destinationfile=sourcefile 

• Limit unnecessary complexity. The larger the lexicon and the greater 
the number of grammatic mIes, the harder the language will be to 
learn. Eliminate duplicate mIes and synonyms 

• Allow editing of the command string rather than requiring the user to 
retypeit 

9.9 Natural Language 

Natural language has been heralded as the ultimate type of human­
computer dialogue. Although language is undeniably the most natural way 
to communicate with a machine, in practice naturallanguage appears to 
create some problems in interaction. Furthermore,.machine understanding 
of natural language is one of the most significant chaHenges of computer 
science research, and consequently practical natural language interfaces 
are still in their infancy. 

Naturallanguage, like command languages, consists of a lexicon and a 
gramm ar. Unlike command and programming languages, naturallanguage 
has many more mIes for syntactic composition which allows more flexible 
expression and ambiguous interpretation. This section does not aim to 
cover the complexity of naturallanguage understanding in depth; instead, 
the aim is to give an impression of the complexity of the problem and then 
guidelines for use of naturallanguage interfaces in view of those problems. 

Syntax 

Language is composed of words (calIed 'lexemes' in linguistic jargon), 
wh ich can be classified into nouns, verbs, adjectives, etc. Grammatic mIes 
state how word classes can be combined to make weH formed sentences, 
for example, 'He must go to the station to catch the train' is correct 
English, whereas the equivalent in German is 'He must to the station the 
train to catch go'-'Er muss nach dem Bahnhof den Zug erreichen gehen'. 
The mIes state the composition of sentences in terms of sub-components, 
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noun and verb phrases, which in turn are composed of word classes. The 
composition rules vary between languages and can be very complex. 
English has approximately 20 000 rules and grammarians estimate that the 
known rule set is not complete. 

Sentences can be decomposed using parsing strategies which test a 
sequence of words against the permissible combinations. Parse trees are a 
commonly used representation of the syntactic structure of sentences. 
Syntax, however, can only tell the listener wh ether a sentence conforms to 
the grammatic rules of a language. To generate meaning from language 
another dimension is needed, called semantics. To illustrate the point, 
syntactically correct phrases can be constructed which are obvious non­
sense; for instance, 'the square triangles taste nice' is clearly meaningless 
yet the sentence parses correctly: 

__ Det The 
NP 

S/ ~NP Adj ---Square 

\ ~ NO""---Triangles 

VP Verb Taste 

~Adj Nice 

Semantics 

Semantics is concerned with generating meaning from knowledge about 
words and the associations of words. It forms the link between language, 
memory and experience. Semantic rules can be built into gramm ars in an 
attempt to eliminate non sense sentences; however, not all semantic rules 
and classifications are exact and building a complete semantic gramm ar is 
very difficult. Many words are lexically identical yet have different 
meanings, such as Bank (as in 'put money into') and Bank (as in 
'embankment by the river'). Semantic ambiguity forms the basis of puns in 
which two meanings can be applied to the same sentence, as in the 
following example from an encyclopaedia entry for NeU Gwynne, one of 
King Charles II's mistresses: 

Gwynne, Nell-see under Charles 11 

Semantic ambiguity can be compounded further by inadequacies of 
syntactic rules. An example of syntactic incompleteness is the lack of any 
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scope mIes in naturallanguage grammars. Programming languages are full 
of such mIes which define the stmcture of programs in terms of control 
constmcts, for example, While ... End-While, If ... End-If. Natural 
language has few scope mIes. Consider the sentence: 

Jane's mother put the birthday cake on the special jubilee plate 
because she knew J ane would like it. 

Did Jane like the cake or the plate? The sentence is ambiguous because the 
pronoun reference has no scope mIes about how far back it can refer. 

Semantic meanings can be analysed using network diagrams (see figure 
9.8) which constrain the types of words which should naturally be placed 
together. Semantic networks are rarely complete so it is impossible to 
specify exactly the meaning in the variety of sentences possible in natural 

(a) The boy hit the dog 

P 0 
Boy <]1====:=::jC> hit ..... f-----==---- dog 

(b) The boy hit his little dog yesterday 

P 
Boy <]===1C> hit 

i 
o 

(his) 
yesterday 

boy 

Verbs and nouns are related aeeording to a set of semantie primitive forms 
denoted on the eonneeting ares, e.g. P = Ptrans, a transitive verb with physieal 
eontaet, 0 = objeet ofverb, Poss-by shows a possessive clause (after Sehank 
and Abelson, 1977) 

Figure 9.8 Conceptual dependency network showing relationships between 
components of a sentence in terms of their meaning. 
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language. However, to understand language people do not rely on 
semantics and syntax alone. To generate more complex understanding, the 
context of the speaker and listener is required. This is called the pragmatics 
of language understanding. 

Pragmatics 

Consider the statement 'He is supporting the reds'. This could have a very 
different meaning depending on whether the reader was aware that the 
speaker was referring to a communist party meeting or a support of 
Liverpool football club. Pragmatics is the application of knowledge about 
the speaker, the surroundings in which communication took place, with 
other factors such as gestures made by the speaker and past experiences of 
interactions between speaker and listener. 

From the above discourse it should be apparent that language under­
standing is a very complex matter which is inextricably linked to knowledge 
about the world and the meaning of words. While computer systems can be 
built to parse sentences successfully, constructing a true understanding 
machine is more difficult. One approach is to equip the computer system 
with a lexicon of words and associated facts, so the parser can resolve 
ambiguity and avoid errors of misinterpretation. The power of such 
systems is dependent on the size and complexity of their lexicon, which 
rapidly becomes a vast knowledge base, unless the domain of knowledge 
can be restricted. Therefore, most practical natural language systems 
restrict understanding to a small specialised area of knowledge, so the 
lexicaVsemantic knowledge base can be constructed with a fair expectation 
that it will be reasonably complete. 

Problems with natural language interfaces 

People are over-ambitious in their assumptions about machine intelli­
gence. They tend to expect computer systems to understand complex 
sentences, incomplete and ambiguous utterances as they would use with 
their fellows. This projection of human qualities of understanding on to 
computers means that users quickly reach the limits of the system's abilities 
and misunderstandings occur. 

Apart from the inadequacies of language understanding systems, there 
are further problems caused by the inaccurate way in which we use 
language. Consider the statement attributed to a nameless judge: 'It takes 
no training to distinguish between the false and that which is untrue'. Many 
people would automatically correct the error and restore the sense of the 
statement by altering untrue to true, probably unconsciously. Computer 
programs have great trouble in making such inferences. Other inaccuracies 
and ambiguities are frequently found in the following constructs: 
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• Statements o[ time-the ordering of events is often unclear, for 
example, read the following instructions: 

Please sign the list for a taxi. 
Registration forms should be handed in at the desk. 
Please fill up the seats in the centre of each row first. 
Before entering the dining room please wash your hands. 

It is not clear how long the time interval should be between the actions 
and which instructions should be executed first if the sentences are in a 
list. Knowledge that one has to register before ente ring the conference 
may help. Likewise statements such as pie ase telephone immediately, 
as soon as possible, or soon, all have different meanings for individual 
people 

• Quanti[iers-words such as many, some, often, sometimes, are all 
vague. Their meaning is derived from the reader's knowledge about the 
subject being discussed. Two readers may ascribe very different values 
to the same quantifier in the same context; for example, 'Some 
students are lazy'-is it 0.1, 1, 15 per cent or more in your opinion? 

• Logical operators-English and most other languages do not distingu­
ish between the computer inclusive/exc1usive OR, consequently people 
use 'or' when they mean 'and' and vice versa. Consider the statement: 

A large vehicle is one considered to be over 32 feet long or 9 feet 6 
inches wide or 38 tons laden weight and not licensed to carry 
passengers. 

Does the large vehic1e possess all three initial properties, or only one, 
and does the not condition have to be true? 

• Numeric comparisons-Iogical operators of the type 'greater than' are 
confused with 'greater than or equal to', for example: 

Find all staff with salaries more than ;(20 000. Most people would 
include staff with salaries of exactly ;(20 000 as weIl 

Design o[ natural language interfaces 

In view of the substantial problems of natural language processing, the 
main guideline is restrict interaction to a small domain of knowledge. With 
current technology, successful natural language interfaces can be cons­
tructed using single word recognition, as this does not have the problems of 
syntax and largely ignores semantics. Understanding sentences is more 
difficult but possible in restricted circumstances. A successful natural 
language database interface product, called InteIlect, builds knowledge of 
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the database entities, attributes and synonyms into the interface, enabling 
natural conversations to be held. 

With the current state of the art of language understanding systems, it is 
advisable to: 
• 'Back translate' the user's input so that meaning can be clarified by a 

further dialogue. This is helpful in reducing ambiguity in statements 
• Design dialogues to obtain values for linguistic quantifiers such as 

'sorne, many, more' 
• Interrogate users about new terms so that they can be incorporated 

into the knowledge base 
• Avoid giving the impression of understanding too much, or outputting 

statements which imply reasoning 

Speech 

If naturallanguage is input by a keyboard it loses much of its advantage as 
an interface technique because it is too verbose. Users spend too long 
typing in a sentence and make mistakes. Speech understanding is therefore 
a natural extension of language understanding which harnesses the full 
power of natural language interfaces. 

Unfortunately, speech introduces the further problem of deciphering 
words from a nearly continuous physical sound (see chapter 2, section 2.3). 
People are often ungrammatical in written communication; and in speech 
they are even more lax with the use of language. Spoken communication is 
full of unfinished phrases, ungrammatical sentences and mispronounced 
words. Furthermore, words are spoken in a variety of dialects and speakers 
use intonation in the voice to convey meaning, for instance: 

Find the glass-this can be a question with a meaning 'have you found 
the glass?', or it can be an order with a different intonation. 

Speech recognition systems have to deal with all of these problems. Simple 
systems have been available for single word recognition for a number of 
years. Initially systems could only recognise non-dialect speakers but more 
recent systems can learn the tonal qualities of a speaker. Continuous 
speech is more problematic. The translation of some words from phoneme 
(sound) to lexeme (written word) is unfortunately dependent on under­
standing meaning, either because one word sounds the same as another, as 
in boar and bore, or because of mispronunciation, or because one word is 
used with different meanings, such as Bank. Speech is transient and if the 
meaning cannot be deciphered quickly the system rapidly be comes over­
whelmed with more input. With current technology, real-time language 
understanding with speech is not possible. However, experimental systems 
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can demonstrate continuous speech understanding of simple sentences, 
and complex ones in limited areas of knowledge. 

9.10 Summary 

Command interfaces are designed to give people access to system facilities 
and to control the computer's operations. Basic guidelines are concerned 
with giving the user the correct control and helping navigation in systems. 

Simple command interfaces use question and answer dialogues or 
menus. Menus need a hierarchy in large systems which makes access slow. 
Bypass techniques can be helpful for experts. Breadth-depth trade-offs can 
be made and menu formats designed to optimise recognition. Function 
keys are a hardware-assisted menu design which economise on screen 
space but are limited by the number of keys provided. 

Icons, windows and pop-up menus are all part of direct manipulation 
interfaces which work by users picking and interacting directly with objects 
via a screen image metaphor instead of an identifying code. The screen 
presents a virtual world based on the users' view which contains an 
intuitive metaphor to guide interaction. leons have limitations of realism 
and ambiguity in large systems. Windows provide multiple views on tasks 
but may be distracting if ovemsed. 

Complex command interfaces use command languages or naturallangu­
age. Both consist of words and composition mIes for sentences, called a 
grammar. Command languages have relatively few gramm ar mIes but can 
provide a powerful and flexible interface. Care has to be exercised in 
choosing abbreviations for command words. Naturallanguage has a vast 
number of composition mIes, but in spite of this, it is still inherently 
ambiguous. People decipher meaning using semantic and pragmatic 
knowledge. The inability of machine systems to store sufficient knowledge 
for sophisticated understanding means that users expect too much of 
language interfaces and te nd to exceed the system's capabilities. Limited 
naturallanguage interfaces can be used for dialogues about restricted areas 
of knowledge. 

Further Reading 

Shneiderman (1987) gives a good survey of command and contro} 
interfaces and deals with direct manipulation in more detail. 



10 Development of Human-Computer 
Interfaces 

This chapter covers aseries of topics wh ich relate to research issues in 
interface design. First interface design is reviewed within the wider 
context of system design and prototyping, which is followed by examina­
tion of the evaluation of human-computer interfaces. Some approaches to 
the problem of interface design for different types of users are reviewed, 
that is, the concept of adaptive and intelligent interfaces. Within this topic, 
user interface software (gene rally termed 'user interface managers') is 
reviewed. Finally, formal specification methods for interface design are 
described, concluding with a discussion on future developments in human­
computer interface design. 

10.1 User-centred Design 

It has already been emphasised that interface design is part of the system 
design process and should be integrated with current system development 
methods. Unfortunately system development methods have paid little or 
no attention to the problems of interface design and, so their critics would 
maintain, to the users themselves. A common theme within interface 
design is concern and involvement with users. A group of methods have 
been developed, partly within the human-computer interaction commun­
ity and partly within the area of systems science, wh ich aim to improve the 
human involvement in systems development. These methods advocate the 
following approach es to the design process: 

(a) User-participative design: Users should be actively engaged with the 
process of design and should be assigned to the design team to share 
in decision making. This is intended to narrow the gap between 
computer specialists and computer users and to help eliminate errors 
in communication wh ich result in poar requirements definition. 
Critics point out that in practice 'user experts' get themselves elected 
on to the design team and become part of the system design 
community, thus perpetuating the user-specialist division. 

181 
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(b) User-centred design: The system design should be driven by the needs 
of the users and not by functional processing requirements, limits of 
hardware, etc. All good methods of systems analysis should focus on 
the user's requirements. Emphasis on task analysis and design helps 
user-centred design; however, beyond exhortation for good practice, 
there is no prescriptive method one can apply to ensure user-centred 
design. 

(c) Iterative design: The concept of prototyping and cycIes of refinement 
during design is frequently urged in the human-computer interaction 
literature. Early design stages are described as formative when the 
broad design features are specified and prototyped; the product then 
goes through stages of summative design in which details are added 
and improved upon. While prototyping works weil when interface 
operation is not complicated and prototyping tools are available, it is 
more difficuIt for complex interface designs which stretch or exceed 
the resources of prototyping tools. It is in just such systems that the 
interface is likely to be critical. 

Prototyping is undoubtedly helpful but there are practical limita­
tions to its applicability. In many cases it is essential to build a 
complete system to create the necessary interaction be fore judging a 
prototype. Also prototyping can lead to poor specification in which 
problems are deliberately avoided with the excuse that the answers 
will be found during prototype trials. 

Each approach undoubtedly has something to offer in improving systems 
and interface design. User support can encourage 'better user-centred 
design by involving users with system operation as weIl as in the design 
process. Local experts can be recruited from the user community to act as 
semi-expert advisors on the system after training has been completed and 
the implementation team has departed. Local experts can increase commit­
ment to the system as weil as providing a human help system, aIthough 
developers should beware of demanding too much from a single local 
expert. 

10.2 Evaluation of Human-Computer Interfaces 

Evaluation of human-computer interfaces should be carried out in 
conjunction with prototyping development and on complete products 
produced within the more traditional analysis-design implementation life 
cycIe. Interface evaluations vary considerably in the approach taken, the 
method of data recording and the treatment of results. Broadly three 
approaches may be followed: 
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(a) Diagnostic analysis: This aims to pin-point the poor design features in 
an interface design in an intuitive manner by examining recordings of 
dialogue sessions. These are usually videoed and then inspected for 
signs of user frustration, users' errors and misconceptions. 

(b) Monitoring: Interfaces may be evaluated by monitoring one or more 
features of their usage such as error rates, frequency of command 
use and duration of usage. Monitoring may be carried out by logging 
system commands and terminal input-output signals with operating 
system facilities or by specialised line monitors. 

(c) Experimental analysis: Experiments are designed to test empirically 
two different interface designs or two different features of a design. 
Experiments control the context of interface operation carefully to 
give precise results about the design under test. Data may be 
recorded by a variety of techniques. 

Measures of evaluation may be either objective, that is, derived from 
controlled collection of data, or subjective, that is, based on intuitive 
judgements and opinions gathered from users. Diagnostic analyses, while 
pin-pointing critical features of an interface design, are a subjective 
approach. Monitoring is more objective although lack of knowledge about 
the context in which the measures were collected may lead to difficulties in 
objective interpretation. Experiments which control the context and use 
empirical measures are the most objective measure but pay a penalty in the 
sm all number of features which can be measured in any one experiment. 
Objectivity, however, does not just depend on the approach but also on 
the method of data recording. The following techniques may be used to 
gather evaluation data: 

(1) System logging: Recording the input-output traffic between user and 
computer. This is non-intrusive in the sense that the user is not 
disturbed by the measuring and it yields data for objective analysis. 

(2) Video recording: An interactive session is videoed and subsequently 
analysed by playback for intuitive diagnosis or by collecting more 
objective behavioural data from the recorded film. Video recording 
may be unobtrusive if the camera is hidden behind a one-way screen. 

(3) Direct observation: The observer sits beside the users and records 
what they do by a tape-recorded commentary or writing interaction 
details on check sheets. This type of recording intrudes on the users 
because it is difficult to ignore the observer's presence and this can lead 
to bias if the user is distracted. 

(4) Protocol analysis: Users are asked to think aloud about what they are 
doing in terms of mental activity, decisions and reasons for decisions. 
While this method is intrusive, it is one of the few ways of getting a 
record of the user's mental activity during interface operation. Data is 
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open to the user's subjective interpretation about what was happening. 
(5) Questionnaires: Questionnaires are useful for collecting subjective 

data and some semi-objective data about user characteristics. This 
technique is necessary to discover users' attitudes and opinions. 
Questionnaires can be augmented by interviews to gain further under­
standing about particular points such as misunderstandings about a 
dialogue and difficulties in using an interface. 

Analysis of data can either be intuitive or quantitative. If quantitat­
ive measures have been collected, a variety of statistical techniques 
exists to help the evaluator assess the results. For further details the 
reader is referred to Robson (1973). 

The above approaches to evaluation have assumed that a product, or at 
least, a prototype exists. However, sometimes it may be advantageous to 
evaluate a design before it is built. Predictive evaluations of this kind 
specify an interface dialogue in terms of a gramm ar and then analyse the 
grammar phrases for the number of words (that is, commands) and 
grammatic rules (combinations of commands). The more words and rules a 
dialogue has, the more complex it is and the more difficult it may be to 
learn. The best developed of these techniques is the action grammar of 
Reisner (1984). 

The selection of recording techniques, approach and analysis techniques 
depends on what the evaluator wants to measure. There is no ideal 
measure of a good interface but some ideas are beginning to emerge about 
what are the important qualities of an interface from the users' point of 
view. These qualities have been christened with terms such as 'accept­
ability' and 'usability' and have the following components (after Shackel, 
1986): 

(a) Utility. This is a measure of how weIl an interface (and the system) 
helps the user to perform one or more tasks. It is linked to the 
functionality of the system (what you can do with it) and the task fit, 
for example, how weIl does the interface facility provided match what 
the users want to do and their perception of how to do it (the task). 

This is difficult to measure. Attitude data from questionnaires can 
give some feel for task fit, but more comprehensive analysis requires 
elucidation of a user task model. 

(b) Effectiveness. This is a measure of how weIl the interface, and hence 
system, performs in achieving what the user wants to do. This can be 
measured in terms of: 

Error rates lower than a target level. 
Task completion time within a set target time. 
Usage of system facilities above a minimum target frequency. 



Development of Human-Computer Interfaces 185 

(c) Learnability. This measures how easy to learn a system is, and how 
well it is remembered after aperiod of disuse. Learnability can be 
quantified with measures of: 

Decreased error rates over time from the start of system usage. 
Decrease in task completion time from the start of system usage. 
Correct recall of system facilities, operational procedures or 
command names. 
Increase in user knowledge about system facilities over time. 

(d) Coverage. Coverage is the quantity of system facilities that are used. 
While not all users can be expected to use all parts of the system all 
the time, if some facilities are never used by any users there may be 
design problems. Coverage is measured as: 

Facility usage by x per cent of users within a set time period. 

(e) Attitude. Attitude is the subjective part of usability which quantifies 
user satisfaction with the system. 

User satisfaction exceeds a target rating. 
User-perceived problems are kept below a set level. 
User motivation to use the system exceeds a set baseline level. 

All these measures require goals to be set based on reasonable expecta­
tions for the system before the evaluation is carried out. Most evaluations 
have concentrated on a sm all number of measures, typically task comple­
tion time and error rates. While these measures can give an overall 
impression of an interface's usability, finding out why an interface has 
usability problems is often more complicated. For instance, it may be 
found that help screens in a system are rarely used. There are five possible 
interpretations for this observation: 

Users found the help screens so good that they only needed to use 
them once or twice. 
Users found the system so easy to use that they rarely needed to refer 
to the help screens. 
Users found the help screens so bad that they gave up using them after 
an initial attempt. 
Most users did not know that help screens were in the system. 
Users found the command to access help screens difficult to use. 

To find out the answer to this question, data collected from logs would 
have to be combined with questionnaire data, and even an experiment may 
be necessary to quantify how useful the help information was. 
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Evaluations, in conclusion, can be done simply to get an overall 
impression of how good an interface is, and recordings can be inspected 
intuitively to diagnose problems; but teasing apart the reasons why an 
interface design is poor is more difficult. 

10.3 Adaptive and Intelligent Interfaces 

One of the central dilemmas of interface design is how to satisfy the 
conflicting demands of different users, in particular, novices and experts. 
Novices require easy-to-use, supportive dialogues; experts on the other 
hand need quick, efficient dialogues with less support. However, with 
practice most novices become experts. The choice is to adapt or not to 
adapt. 

Adaptability in interfaces unfortunately implies change to so me part of 
an interface design. Change offends the consistency principle and makes 
the user less sure of the interface, to say nothing of having to relearn parts 
of it as it changes. The quest to solve this problem led to the notion of 
adaptive interfaces. The problem is threefold: 

• Measuring the user in order to determine when to change; the interface 
must monitor the user so that it can determine that the novice is now an 
expert, etc. 

• Adapting the dialogue so that it responds to changes in the user's needs 
• Making sure the quantity and type of change does not cause too much 

inconsistency in the interface design. 
One simple approach to the first problem is to let users decide about their 
needs. Users are good judges of their skills; therefore, if an interface has a 
level switch built-in to change the sophistication of the interface design, 
then users can elect to switch the interface into expert mode if they so wish. 
Unfortunately switches of style tend to create considerable inconsistency 
because a new dialogue style is suddenly presented to the user. The new 
style has to be learned which discourages people from chan ging levels. 

If adaptation is not user-driven then the problem is how to measure the 
user's abilities. This presents the same problems as any evaluation (see 
section 10.2) compounded by the limitation that the interface can only 
collect data by system logging. The intelligent interface has to try and 
figure out how sophisticated a user is, based on simple measures such as 
error counts, command usage and task completion time. Task operation, 
however, can be affected by mistakes at the lexical, syntactic or semantic 
level. A user may make amistake in a command string either because of a 
simple syntactic error of mis-spelling a reserved word, or a syntactic error 
in word order, or a semantic error of entering a correct command for the 
wrong task or in the wrong context. Deciphering these possibilities 
requires subtle evaluation. 
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To make decisions about the user, the system has to have a model of the 
user. This model may be a general model in terms of user skill, driven from 
error rates and task completion time. Also included may be a knowledge 
model of how much a user knows about a system which is determined by 
command usage statistics. As user exploration of the system increases, so 
the model assumes more knowledge, and this triggers the adaptive 
interface into providing the user with more facilities. The problem lies in 
trying to find the correct level of triggering and then the link between 
monitored data and inferences ab out the user. For instance, a user may use 
an advanced command once or twice out of curiosity but subsequently 
never use it again. A frequency monitor may pick up the user's experimen­
tation and decide that the user therefore has expertise. 

Even when the interface has deduced how skilled its user is, the problem 
has not been solved. The next question is wh at part of the interface to 
change. Change of the dialogue style can present problems of consistency; 
although if different styles of task operation can be detected then it may be 
possible to match user type to the task style; for example, experts often 
take short cuts to complete a task whereas novices will go through each 
step. This approach implies the system has a task model to match different 
levels of expertise. A safer part of the interface to chance is the support 
components. Messages, prompts and help screens can be very detailed, 
providing long explanations for novices or concise messages for expert 
users. Skilled users often ignore over-verbose messages in dialogues; 
consequently adaptive interfaces should be able to match the messaging to 
the users' abilities. This adaptation does not change the dialogue style so 
there is little inconsistency in the change. 

Adaptation remains an issue of contention and is the subject of 
considerable research activity. How much adaptation is a good thing and 
how well adaptation can be linked to the user's abilities are problems still 
to be solved. 

10.4 User Interface Managers 

Adaptive and intelligent interfaces are one type of user interface manager 
(UIM). Such systems are a self-contained piece of software which takes 
over all the functions of managing the user interface, leaving the applica­
tions software to get on with the job of processing. The motivation for 
UIMs is simple. Given that most software is now written for interactive 
systems and that a large proportion of code is written to implement the 
user interface (up to 80 per cent in so me estimates), it follows that the same 
thing is being rewritten thousands of times, usually with no improvement. 
A UIM intends to be a flexible, re-usable interface module which 
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communicates with the applications software on one side and with the user 
on the other side, as depicted in figure 10.1. 

The UIM is responsible for all interface presentation and dialogue 
management, such as displaying screens, accepting and validating input, 
issuing error messages, providing help and tutoring systems. When the 
applications software requires data from the users for either adecision or 
in the form of transaction data, it sends arequest to the UIM which then 
communicates with the user to obtain the data. When the data transfer has 
been completed the UIM returns the data to the applications software. 
Although simple requests can be passed between UIM and applications 

(a) Modular view, in which the presentation manager handles low level interaction 
at the interface, while the dialogue manager takes strategie decisions about dialogue 
content and conversational contro!. 

( Users J Taskand 

(b) UIM link module concept. All interface tasks are handled by the UIM and parameters 
are passed via link modules which have no knowledge of the underlying software. 

UIM knows about users 
and interaction 

Link module 
knows about 
system structure 
and task 

Application 
software 

Figure 10.1 Schematic diagrams of User Interface Management systems 
(UIMs). 
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software by parameters, many operations require the UIM tö have 
knowledge of the applications software and the task. In validation, for 
instance, the UIM must know what range of data is valid from the 
application software point of view, and in a complex task (such as air traffic 
control) the UIM has to keep track of the interaction. This creates 
problems in trying to separate the application from the interface. 

Separation can be increased by a linkage module which knows about the 
application on one side and the user on the other. Change to the dialogue 
can thus be isolated in the UIM and linkage modules, leaving the 
application unchanged. There are levels of complexity which UIMs have to 
deal with in human-computer interactions; at the lexical level of key­
strokes, separation is simple. Validation of lexically correct replies can be 
effected by look-up tables. The next level of complexity is the dialogue 
syntax; separability can still be maintained because input and error­
handling sequences are low-Ievel features common to nearly all 
applications. At the task or semantic level, separability becomes more 
problematic because the UIM has to have an embedded user task model to 
be able to react appropriately to the user requests. It is debatable whether 
the model belongs in the UIM or the applications software. 

The power of UIMs depends on their flexibility to accommodate 
different types of applications software and their port ability between 
different system environments without substantial modification. To fulfil 
the objectives the UIM has to be as independent as possible from the 
applications software. The problem becomes a little harder when direct 
manipulation is used. The interface knows only about mouse movements 
and icons on a screen. To make sense of pointing responses, the software­
either the UIM or the application software-has to interpret the pointing 
coordinates against a physical screen layout and a logical screen definition 
file to decide wh at action to take. If a UIM is to be responsible for 
interface management it has to know all the operation al pathways through 
the applications software which the interface may have to represent. 

This necessitates that the UIM has to have a specification of the 
application software behaviour. Furthermore, considering one objective of 
UIMs is to improve interface design, it has to know about good methods of 
interacting with the user. The UIM needs a constrained set of inter action 
possibilities based on good human factors principles, so bad interface 
designs cannot be implemented. Both of these concerns lead towards the 
need to specify formally and perhaps standardise interaction, a topic 
covered in section 10.5 

The all-embracing UIM is still a research topic and much debate centres 
around how separable application software is from the interface (see 
Cockton, 1987). An alternative to the complete UIM is to provide 
interface building and managing tools which help the applications pro­
grammer to construct interfaces quickly and evaluate the designs within a 
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prototype development cycle. Simple tools, such as screen painters, allow 
quick development of menus, form-filling screens, data display screens (for 
example, DEC's FMS-forms management system-{)r dBASE III screen 
generator). Most 4th generation languages include screen design facilities. 

Advanced workstations require user interface management software to 
interpret pointing responses and handle window displays. Such interface 
systems generally allow definition of a logical object file for screen images, 
drawing physical images such as icons and symbols, combined with window 
and pop-up menu management. However, it is still possible to design bad 
interfaces using tools. More active tools are required which encourage 
good design practice and help the system designer to achieve usable and 
efficient interfaces. Some systems are available that go some way towards 
that end, for example, ZOG (Akscyn and McCracken, 1983) and USE 
(Wasserman, 1984). 

10.5 Formal Specification of Dialogues 

Software designers have been interested in formal specification to help 
improve the reliability of designs by being able to prove facts about 
software behaviour. In human-computer interaction the quest has been to 
formalise dialogue behaviour in similar terms. If the interaction can be 
formally described, two benefits can arise. Firstly, the software which 
implements the interface can be designed with similar formalism and 
thereby, it is hoped that it should be more reliable. Secondly, if basic 
principles of human-computer interaction can be f9rmalised, then soft­
ware modules can be built to implement them. This would be like freezing 
good dialogue guidelines in re-usable software modules wh ich can then be 
in corpora ted into any number of interface designs. 

Several methods of formalism have been adopted. Languages already 
used by computer scientists, such as Z, may be used to formalise interface 
behaviour (Sufrin, 1986). Other approaches have used path algebras (Alty, 
1984) to describe dialogue sequences and algebraic formalisms to describe 
a set of interactions for a system (Dix and Runciman, 1985). The 
techniques of formalism differ in their expressive power and flexibility; but 
all aim to demonstrate a finite description of dialogue behaviour. Besides 
the debate about the power of the formalism, the critical point is what to 
formalise. Many of the guidelines derived from psychology are heuristic 
and dependent on context for interpretation. This makes formalisation in 
their current state of precision practically impossible. 

One answer to this has been to look for generalised principles of 
interaction which may be reliable enough and context free to allow 
formalisation. Rules could then be generated for each context of a design 
rather than a large rule set wh ich tries to account for all the different 
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contexts of interface designs. Generative User Engineering Principles 
(GUEPS, Harrison and Thimbleby, 1985) have attempted to progress in 
this direction. GUEPS are derived from general human factors principles, 
such as 'interfaces should exhibit wh at you see is what you get'. This 
concept can be refined into statements of cause and effect, and from there 
to a set of state constraints which describe how the interface can and 
cannot behave, for example, taken from the WYSIWYG principle: 
• Any operation provided by the system will have an equivalent effect on 

the screen as in the data 
• No hidden side effects may occur (data may not be modified without a 

corresponding screen display to inform the user) 
• It is always possible to generate a visible description of the data which 

is available to the current toolset 
Once the general statements have been refined to express permissible 
states for the system and its interface, and conditions for transitions 
between these states, the principles can be formalised in an abstract model. 
While GUEPS have the potential to improve interface design, their 
application would need to be evaluated in practice. Also because GUEPS 
are dependent on improvements in psychological knowledge for the 
production of general principles which may be formalisable, it is impossible 
to say how complete, or even sufficient, a set of GUEPS would have to be 
to ensure a good interface design. 

Formal methods in interface design face the same problems as they do in 
software engineering. Many formalisms become cumbersome, not to say 
unworkable, with large systems; in addition, formalisation creates a 
learning problem for the average designer. Hence formal methods have an 
interface design problem all of their own-how to hide the mathematical 
formalism from those who wish to use it but do not want the learning 
burden of a formallanguage. Formalism of human-computer interaction 
will probably make slow progress in the short term because of the 
variability of possible interactions between people and computers, and 
because of the context dependency of current knowledge. But formalism 
will continue to be a necessary aim to link interface design with advances in 
the formal design of software and eventually to specify types of interaction 
in more rigorous terms. This pre-supposes that we shall eventually succeed 
in understanding the cognition of interaction. 

10.6 Summary 

Interface design is part of a larger process of software development, and 
user involvement in the whole process is essential for good design. Besides 
user participation in design teams, prototyping approaches can be helpful 
in obtaining feedback on designs. Designs should be evaluated as early as 



192 Human-Computer Interface Design 

possible in the development life cyde and later when implemented. 
Evaluation can take several forms depending on the evaluators' objectives 
however, goals for usability should be set induding utility, effectiveness, 
learnability and attitude. 

Adaptive interfaces are a potential solution to the mixed user population 
dilemma, although the consistency of the interface has to be maintained as 
it adapts. The quest for adaptive interfaces is related to separating all 
interface software as user interface managers. UIMs can be built indepen­
dently of applications software for basic handling of interaction but the 
problem of separability becomes more difficult at the task level. Another 
quest in interface design has been to apply software engineering principles 
to interaction and to derive a set of context-independent rules for design. 
Formal specification of dialogues is difficult because of the variability in 
users, the context of interaction, and the incomplete knowledge of the 
psychology of interaction. 

Further Reading 

For further discussion on human involvement in the design of systems, 
induding humans as an essential part of that design, see Mumford et al. 
(1978) and Checkland (1981). References to the issues of evaluation, 
adaptation, UIMs and formalisation have been cited in the text; more 
material can be found in the conference proceedings in the INTERACT, 
CHI and HCI series. 

10.7 Postscript 

In a subject which is so new it is probably unwise to speculate about its 
future, so these remarks will be confined to a few possible directions in 
which the subject may develop. 

Little has been said in this book about the effect of computers on people. 
The introduction of computerised systems changes our model of the world 
and the way in which we work in several ways. We may do jobs in a 
different manner, reflecting changes in our task model; either because 
current systems force changes upon us, or less frequently, because a 
computer system allows us to do a new task more creatively. Our 
interaction with other people is also changed by human-computer interac­
tion. Consider how we exchange messages by telephone, face to face, and 
by an electronic mail system. Face to face we use facial expressions, 
gestures and movements to help regulate speech and communication; by 
telephone none of these is available although we can use intonation of the 
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voice to help communication. When faced with electronic mail there is 
nothing but the message itself. 

Psychologists and builders of computer-based messaging systems have 
yet to decide what communication devices should do to help message 
passing, what types of interaction are possible and wh at impact computers 
may make on group behaviour. Human-computer interaction go es beyond 
psychology into the study of group interaction, that is, sociology. How 
groups of people interact electronically is currently poorly understood, yet 
electronic communication is increasing rapidly in many spheres. Com­
puters have and will continue to change our work patterns. The Xerox 
Corporation introduced the idea of horne workers, giving each manager a 
workstation connected to the office so he or she could work remotely at 
horne. Some authors have anticipated that the office may become redun­
dant as all office communication becomes mediated by computers. On the 
other hand, people may still need the social stimulus of meeting their 
friends in the office. Sociologists have yet to answer this question. 
Speculation on future trends is a nearly boundless topic; many interesting 
ideas can be found in a good survey by Nickerson (1986) and aseries of 
concept papers in Norman and Draper (1986). 

Interface design has progressed through two discernible generations. 
The first generation used text-based interaction and was either difficult to 
use or inflexible, such as the familiar menus, form-filling and command 
language dialogues which still implement many human-computer inter­
faces. The second generation of direct manipulation interfaces introduced 
more naturalistic interaction with visual communication. The next genera­
tion of interfaces will need to integrate methods of interaction, making 
considerable use of voice and natural language with advanced graphics. 
Other interaction media, such as eye movement and gesture, mayaiso be 
used, and images will be in three dimensions with animation to guide and 
explain interaction and tasks. A good glimpse of some of the future can be 
found in Bolt (1984). 

Human-computer interaction can be considered to be a dose relative of 
artificial intelligence. Many of the issues a.re common, such as user 
modelling, goal-directed processing and knowledge models; and interface 
design uses some of the practices of artificial intelligence in adaptive 
interfaces. Within previous chapters there has been no discussion about 
interfaces to intelligent systems, and their more applied counterparts, 
expert systems. The reason is that little is yet known about these interfaces. 
A variety of dialogue styles can be employed from question and answer 
sessions, typically found in early systems (such as MYCIN- see Rich 
(1984) for a description of AI systems) to more sophisticated command 
language dialogues. The problem is more complicated with expert systems 
because there are two interfaces; an end user interface and the ex-
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pert--expert system interface. The latter, in particular, presents consider­
able challenges in the design of interfaces which allow for the display and 
editing of complicated knowledge bases. Early styles of interaction left the 
initiative primarily with the expert computer system; more recently, 
co operative expert systems have been developed which have mixed 
initiative dialogues. Planning and controlling such dialogues presents a 
considerable challenge. 

Human-computer interaction will become more involved with artificial 
intelligence both in the implementation of more sophisticated UIMs and as 
a topic within the development of intelligent knowledge-based systems. As 
HCI progresses more deeply into the psychology of cognition it mayaiso 
be expected to spread out into group and inter-personal communication 
within the realms of sociology. Future directions should, however, not 
obscure the fact that much of the basics of interface design need to be 
defined and the foundations of the subject underpinned with firm theory. 
More empirical research is required to resolve contradictory guidelines; 
more general and predictive theories of cognition are required to model 
interaction; and design guidelines should be formalised into methods. 
Formalisation eventually needs to converge with the approach of software 
engineering to create specifications, and hence designs, which can be 
verified to ensure that good interfaces are constructed. Clearly there is 
much work, and plenty of problems, in the present, with many challenges 
for researchers and designers in the future. 
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