

Human-Computer Interface Design

Human-Computer Interface
Design

Alistair Sutcliffe

Senior Lecturer
Centre for Business Systems Analysis

City University, London

Springer Science+Business Media, LLC

Apple, the Apple Logo, Maetinosh, MaeDraw, MaeWrite
and MaePaint are trademarks of Apple Computers, Ine.

SAS is registered trademark of SAS Institute, Inc., Cary, NC, USA.

SQL is a registered trademark of IBM.

Wordstar is a registered trademark of the MieroPro International Corporation.

Prestel is a registered trademark of British Telecom.

Xerox is a registered trademark of Xerox Corp.

© Alistair Sutcliffe 1989

Originally published by Springer-Verlag New York in 1989.

All rights reserved. No part of this
publication may be reproduced or transmitted,
in any form or by any means, without permission.

First published 1989
MACMILLAN EDUCATION LTD
London and Basingstoke

Sole distributors in the USA and its dependencies

Library of Congress Cataloguing-in-Publication Data

Sutcliffe, Alistair, 1951-
Human-computer interface design.

Bibliography: p.
Includes index.
1. Computer software-Human factors. 2. Computer

input-output equipment. I. Title.
QA76.76.H85S88 1988 004'.01'9 88-29456

ISBN 978-1-4899-6751-0 ISBN 978-1-4899-6749-7 (eBook)
DOI 10.1007/978-1-4899-6749-7

Contents

Preface viii
Acknowledgements xi

1 Introduction 1

1.1 What is Human-Computer Interface Design? 1
1.2 Why Design Interfaces? 2
1.3 Human-Computer Interface Design and Computer

Science 4

2 User Psychology 6

2.1 Understanding Users 6
2.2 Vision 11
2.3 Hearing 19
2.4 Learning and Memory 24
2.5 Thinking and Problem Solving 34
2.6 Control of Human Information Processing 42
2.7 Principles of Human-Computer Interaction 45
2.8 Summary 47

Further Reading 48

3 Interface Analysis and Specification 49

3.1 Task Analysis 49
3.2 Analysing User Characteristics 53
3.3 User Models and Views 56
3.4 Task and Job Design 59
3.5 System Environment and Support 64
3.6 Interface Design Styles 66
3.7 Review of the Type of Interaction 75
3.8 Selecting the Interface Design Style 76
3.9 Summary 79

Further Reading 80

vi Contents

4 Theoretical Approaches 81

4.1 Command Language Grammar 81
4.2 Other Grammatic Specifications 88
4.3 Diagrammatic Specifications 89
4.4 Cognitive Complexity Theory 90
4.5 Comparison of Specification Methods 94
4.6 Summary 96

Further Reading 96

5 Dialogue Design 97

5.1 Designing the Interface Structure 97
5.2 Principles of Good Design 101
5.3 Putting Principles into Practice 103
5.4 Checking the Design 106
5.5 Summary 106

Further Reading 107

6 Presentation Design 108

6.1 Screen Design Procedure 108
6.2 Detailed Display Design 111
6.3 Summary 117

Further Reading 118

7 Data Entry Interfaces 119

7.1 Data Entry Guidelines 119
7.2 Forms Design 121
7.3 Form-filling Interfaces 127
7.4 Alternative Data Entry Techniques 133
7.5 Summary 136

Further Reading 136

8 Data-Display and Data-Retrieval Interfaces 137

8.1 Data-display Guidelines 137
8.2 Character Data Displays 139
8.3 Data-query/Data-retrieval Displays 140
8.4 Graphical Displays 144
8.5 Reports 148
8.6 Summary 155

Further Reading 155

Contents

9 Computer Control Interfaces

9.1 Control Dialogue Guidelines
9.2 Simple Control Dialogues
9.3 Menu Interfaces
9.4 Function Keys
9.5 Icons
9.6 Direct Manipulation
9.7 Windows
9.8 Command Languages
9.9 Natural Language
9.10 Summary

Further Reading

10 Development of Human-Computer Interfaces

10.1 User-centred Design
10.2 Evaluation of Human-Computer Interfaces
10.3 Adaptive and Intelligent Interfaces
10.4 User Interface Managers
10.5 Formal Specification of Dialogues
10.6 Summary

Further Reading
10.7 Postscript

References and Further Reading

Index

vii

156

156
157
158
162
164
166
168
169
174
180
180

181

181
182
186
187
190
191
192
192

195

202

Preface

The motivation for this book started when I introduced a course on
Human-Computer Interaction in the BSc Computation degree at UMIST
and began to look for a course textbook. At the time (1984) there were few
books on the subject as a whole and no really suitable textbook for
undergraduate courses. Although that situation is now changing, I find my
motivation undiluted for another reason. Increasingly the human­
computer interface has become part of software development which
practitioners in industry and academia recognise as important, yet the
subject is taught in very few computer science courses. Unless we educate
the system developers of tomorrow-that is, the systems analysts and
programmers who are being trained now-about human--computer inter­
action, there is little chance of changing the current practice of poor
interface design. Accordingly my chief aim is to bring the message of
human--computer interaction to computer science students.

This perspective is worth so me comment because the whole field of
human--computer interaction is relatively young and a consensus about
what should be taught within the subject area has only recently become
clearer. I shall therefore explain my motives in writing this book in more
depth.

The primary aim is to give computer scientists knowledge of the issues
in human-computer interaction, and help develop the skills needed to
design better human-computer interfaces. As computer scientists are the
major creators of software and hence human-computer interfaces, it is vital
that they acquire knowledge and good practices of interface design. If this
part of their education is neglected poor interfaces will continue to be
foisted on users, making systems frustrating or unbearable, even though
the internal software might be a perfect example of good software
engineering practice.

I have attempted to place interface design into a framework of software
development by drawing on methods from systems analysis and design as
weIl as ideas in human-computer interaction. Interface design is ultimately
part of a wider design process for the whole system and should be
integrated with mainstream systems development. Accordingly I place
interface design and its components within the systems design life cycle.

viii

Preface ix

The objective of teaching interface design begs the question of wh at to
teach. Interface design is about designing human-computer interfaces for
people. It seems common sense for designers to be knowledgeable about
the subject of their designs, in this case people. The starting point
therefore was to provide some appreciation of human psychology which is
of importance to human-computer interaction: principally, perception and
cognition which cover how we see, hear, think, learn and remember. It was
not my intention to turn computer scientists into psychologists, hence the
treatment of psychological material has had to be brief and is presented
without extensive reference to background research.

Psychologists, being empirical scientists, are quite correctly guarded in
their assertions and conclusions. Computer scientists on the other hand
deal in a more finite world and are unaccustomed to unsure knowledge and
guarded assertions. This difference in view has caused some conflict in the
field of human-computer interaction, with computer scientists criticising
psychologists for not offering firm opinions; while psychologists criticise
the computer scientists' thirst for simplistic views in a subject which is
extremely complicated. To please both views is a task somewhat akin to
playing hop-scotch on amine field. At the risk of offending my psycholo­
gical colleagues, in this book I have taken the computer scientist's
viewpoint. In doing so I have had to gloss over the controversies which
surround some topics in cognition and perception.

In addition to providing psychological background to the subject, this
book aims to teach a methodical approach and practical skills in interface
design. The material is organised into four sections. Chapters 1 to 5 cover
the psychological background, establishing general principles of human­
computer interaction and describing a method of interface design. This is
followed by chapters 6 to 9 which give practical design advice for data
entry, data display, and command and control interfaces. Chapter 10
concludes with an examination of the pi ace of interface design within
systems analysis and design, and abrief survey of current research topics in
the subject.

Human-computer interaction is a large field of endeavour with ill
defined edges. In an undergraduate text it is impossible to cover the whole
field; I have therefore been selective in the topics for study. Many issues
which are more hardware in nature are not treated in depth; also system
environment issues, social consequences of computer systems, and exper­
imental practices for interface evaluation receive little space. These topics
are more than capably investigated by others whose works are cited in the
references.

It is a pleasure to acknowledge the help of Bill Black, Graham Hitch,
William Edmonson and Ken Eason who have commented on the contents
and various parts of the manuscript. Any inaccuracies which remain are of
my own making. Finally, my last motivation for taking up the author's pen

x Preface

my own making. I am also indebted to Gillian Martin for her efficient
proof reading and her tolerance and support during the creation of this
book. Finally, my last motivation for taking up the author's pen was
self-interest. This book was prepared on a variety of word processing
software with inadequate interfaces. If future authors have better tools, I
will have succeeded in my quest to stamp out user-vicious software.

AG. Sutcliffe
December 1987

Acknowledgements

The author and publishers wish to thank the following who have kindly given
permission for the use of copyright material.

Academic Press, Inc. for an illustration of a speech spectogram by Peter
Bailey from Fundamentals of Human Computer Interaction ed. A. Monk,
1985, Fig. 12.3. [Figure 2.10]

Academic Press (UK) Ltd for illustrations from 'An Approach to the
Formal Analysis of User Complexity' by D. Kieras and P. G. Polson,
International Journal of Man Machine Studies, 22, 1985, pp. 365-394,
Tables 2,3 and 4, and Figs 5 and 6; 'The Command Language Grammar:
A Representation for the User Interface of Interactive Computer
Systems' by T. P. Moran, International Journal of Man Machine Studies,
15,1981, pp. 3-50, Figs 5,6, 7,11,12,16 and 17. [Figures 4.1, 4.2, 4.3]

Terry Allen Designs for illustration of the Hermann grid. [Figure 2.5]

Apple Computer, Inc. for illustrations of MacDraw™, MacWrite™,
MacPaint™ and Hypercard™ screens. [Figures 3.7,3.10, 8.5b, 9.4, 9.7]

Association for Computing Machinery for illustration from
'Put-That-There: Voice and Gesture at the Graphics Interface' by
Richard A. Bolt, Computer Graphics, 14 (3). Copyright © 1980 by
Association for Computing Machinery, Inc. [Figure 8.1, top].

G. A. Fisher for illustrations of a duck/rabbit series from 'Materials for
Experimental Studies of Ambiguous and Embedded Figures' , Research
Bulletin of the Department of Psychology, U niversity of N ewcastle U pon
Tyne, No. 4. [Figure 2.7, part]

Glydendal for illustration of vase/faces from Synsoplevede Figurer by
Edgar Rubin. [Figure 2.7, part]

MicroPro International for illustration of the WordStarR and WordStarR

2000 products. [Figure 9.3]

Xl

Xli Acknowledgements

Oxford University Press for illustration of hawk/goose from The Study 0/
Instinct, by N. Tinbergen, The Clarendon Press, 1951 and part of
illustration of mach bands from Seeing: Illusion, Brain and Mind by John
P. Frisby, 1979, Fig. 158. [Figures 2.5, 2.7 part]

SASR Software Ltd for an illustration of SAS/GRAPH software.
[Figure 8.5a]

Van Nostrand Reinhold, Inc. for an illustration of the photograph of
a Dalmation by R. C. James. [Figure 2.8]

Every effort has been made to trace all the copyright holders but if any
have been inadvertently overlooked the publishers will be pleased to
make the necessary arrangement at the first opportunity.

1 I ntroduction

This chapter sets the scene for interface design by first placing interface
design within the context of human factors and human-computer inter­
action and then exploring some justifications for why it is necessary to
spend time and money designing human-computer interfaces.

1.1 What is Human-Computer Interface Design?

New areas of endeavour in any discipline have ill defined boundaries which
take so me time to become stable. During this process the important issues
in a subject become clear and the span of topics which properly constitute
the subject becomes defined. Unfortunately, interface design, because it is
relatively new, has ill defined boundaries, a variety of names and a great
number of topics which may be considered. Therefore, I shall begin by
drawing so me boundaries around the topics covered in this book and look
at the wider perspective of the subject as weIl.

Generally , human-computer interface design falls into the subject area
called Human-Computer Interaction or the Man-Machine Interface. This
spans the two older disciplines of computer science and psychology but also
draws on material from linguistics, ergonomics and sociology. Human­
computer interface design, in the sense of this book, is the process of
designing interface software so that computer systems are efficient,
pleasant, easy to use and do wh at people want them to. The human­
computer interface is more than just the software and concerns hardware,
the system environment and human organisation, but because this book is
aimed primarily at computer scientists, software is the prime focus.
Although this book concentrates on interface design from the computer
scientists' point of view, and within that contraint focuses on the design of
the software part of human-computer interfaces, it is important to realise
that this is only part of human-computer interaction.

One particular discipline, ergonomics, has made a considerable contri­
bution to interface design in both the broad and narrow perspectives over
many years. Ergonomics, which is called Human Factors in the USA, is a
branch of applied psychology wh ich aims to improve the design of
machines for people. In doing so, it is intimately involved with understand-

1

2 Human-Computer Interface Design

ing the process of human-computer interaction. While this book will draw
on some material from ergonomics, constraints of space mean that many
ergonomically oriented interface issues (such as workplace design and
hardware ergonomics) cannot be covered.

The importance of this area of research has been recognised in the
British Government's information technology research programme, the
Alvey initiative, which placed the Man-Machine Interface on equal terms
with three other branches of computer science: Software Engineering,
Intelligent Knowledge Based Systems, and Very Large Scale Integration.
As a result of the Alvey programme, a large amount of research is
currently under way into interface design problems. Emphasis has also
been placed on the subject in the research programmes of the EEC
(ESPRIT), the USA and Japan.

Human-computer interaction research covers a broad field from inter­
face hardware, the environment in which the interface is situated, and the
effect of the interface on people, both individuals and groups, to the
software issues of building interface software and tools to help construct
interface software itself. A broad classification of the field subdivides into
background issues, methodological issues, design practices and tool cons­
truction, giving the following topics:
• Understanding thc essential properties of people which affect their

interaction with computers
• Analysing wh at people do with computer systems and their interfaces;

understanding the user's task and requirements
• Methods of specifying how the interface should function, how it should

respond to the user, and how it should appear
• Design of computer interfaces so they fit the properties of people and

their objectives
• Design of tools to help designers build better interfaces
• Evaluating the properties of human-computer interfaces and the effect

of systems on people
These topics are naturally inter-related, so the theoretical background of
the subject, based on psychology, should have an impact on the methods
practised and on the tool environments constructed to help interface
developers. Likewise the process of analysis, specification and design are
necessarily interlinked.

1.2 Why Design Interfaces?

Before investing time, money and effort in any endeavour, the prudent will
always ask if it is worth the investment. Interface design will undoubtedly

Introduction 3

add to the cost and effort of developing computer systems, so it is worth
devoting a little space to the question of justification.

Interface design has been present in the computer science literature and
industry for a decade or more; see, for instance, the early text by Martin
(1973). People have realised and complained for a long time that computer
systems are difficult to use, obtuse and jargon-ridden. By and large, users
had to put up with this state of affairs because computer programmers took
no notice of their complaints. The rise of human-computer interaction as
an active discipline correlates weIl with the rise of the microcomputer. A
plausible explanation for this is that for the first time computers and their
software became mass circulation commodities for ordinary people. People
rejected the jargon-ridden, unreliable offerings of earlier systems because
they had a choice in an open market place. Early interfaces to micro­
computer software are user-vicious by today's standards, but compared
with their contemporary mainframe rivals they were way ahead, astate of
affairs which still generally applies at the present time.

Interface design became important because pleasant, attractive, easy-to­
use software seIls weIl. But interface design is important whether a system
is to be sold or not. The interface is the part of the system which the user
sees, hears and communicates with. Depending on his or her experience
with the interface, a computer system may succeed or fail. It is irrelevant
how weIl engineered the software code is and how sophisticated the
hardware is; a bad interface can ruin an otherwise excellent system. On the
other hand, a good interface can save poOf software and make a system
acceptable.

Computing systems are becoming increasingly interactive. As they do
so, the amount of code which is written for input and output (that is, the
interface) has risen. It is estimated that most commercial decision support
and information systems have beetween 70 and 80 per cent of their code
devoted to interface handling. In on-line systems it is the interface which is
not only the critical part but also physically the largest part. Good design is
vital.

The cost justification of interface design is not hard to argue, although
statistics are hard to find (as is the case with software reliability). Poor
interface design can have the following consequences:

• Increased mistakes in data entry and system operation. Mistakes cost
money to rectify and errors which go uncorrected can have very
damaging consequences if decisions are taken on the basis of incorrect
data

• User frustration. This may be manifest in low productivity, employee
stress, sabotage of the system or simple under-utilisation of the system.
All these consequences cost money

• Poor system performance. The system may not handle the volume of
throughput it was designed for, or the accuracy of output may not agree

4 Human-Computer Interface Design

with the specification. Poor interface design makes it too cumbersome
to use or too obscure to learn. Extra resources and money have to be
put into the system

• System lai/ure because 01 user rejection. This may seem to be an
extreme case considering the tolerance of users to appalling software,
but it happens. The US Dept of Defense ascribes its worst system
failures to a combination of poor interface design and inadequate
system requirements analysis

Good interface design is essential for good system performance. All the
above problems, inherent in poor designs, cost money either to fix or in
terms of operating costs. In addition to system performance considera­
tions, there is the question of user tolerance to poor interface design. In the
past, users have tolerated much poor interface software. This is unlikely to
be so in the future. Many people are becoming exposed to microcomputers
with attractive, pleasant-to-use software. Such software will become a
norm which cannot be ignored by developers of in-house mainframe
systems. Defending poor interface design is becoming harder to
justify. Both the pro gram and systems design communities have recognised
the vital importance of good design, and the application of design to
human-computer interfaces is long overdue.

Design is not an intuitive process. True, so me designers have a flair for
finding innovative and good designs, but most people do not. Design is a
process which has to be taught. It is a matter of applying knowledge to a
design problem. The knowledge may be guidelines and principles bound
up in a method which shows designers how to proceed; then as experience
and design practice mature, more formal procedures and specifications
may be introduced. In the case of interface design, the knowledge is in the
form of guidelines and principles derived from psychology, the science of
understanding the customers, that is, the people who are computer users.

1.3 Human-Computer Interface Design and Computer Science

The Human-Computer Interface (HCI) permeates many parts of com­
puter science and should be part of any system development which involves
people as users. However, within computer science the most closely
related areas are systems analysis and design, and artificial intelligence.
The methodological part of HCI is concerned with many issues familiar to
systems analysts. Wh at HCI workers call task analysis, systems analysts
call requirements and current logical system analysis. The approach,
methods and emphasis may be different but both disciplines are trying to
establish and specify wh at the users want the computer system to do for
them. Both system developers and HCI designers build software, the
difference being one of perspective; the HCI designer concentrates on the

Introduction 5

user whereas the system developer is more concerned with data and
functional analysis. In the future this distinction should disappear.

Artificial intelligence shares the HCI interest in human cognition. Both
disciplines construct models of reasoning and problem solving, although
again the approach and perspective may be different. In HCI design,
understanding human reasoning and memory is important so that systems
can be built to accord more closely with natural human properties and to
adapt to human individual differences. The artificial intelligence perspect­
ive is more motivated towards building machines with human-like think­
ing, memory and learning abilities in the long term, and finding efficient
problem-solving mechanisms in the short term. Both artificial intelligence
and HCI may come to use the emerging discipline of Cognitive Science as
their theoretical inspiration as this subject embraces computational
approach es for the study of human processes.

Human-computer interaction bridges, to an extent, the gap between
systems analysis and design, and knowledge-based systems, having a
methodological similarity with the former and a theoretical basis largely
shared with the latter. In addition, HCI specification shares commonalities
with software engineering. Interfaces have to be specified so that their
behaviour can be predicted and described in an exact manner; to do so
requires precise methods of specification, many of which have been
borrowed from software engineering. As the human-computer interface
will comprise a significant amount of the overall software in a system, it is
natural that computer scientists should wish to apply rigorous standards to
it, as they do to non-interactive software. These issues are returned to in
chapter 10.

Design of the human-computer interface is a necessary activity in nearly
every system wh ich is designed. The subject fits with more established
disciplines within computer science and should, as it matures, become
increasingly integrated within the kernel of computer science subjects.

2 User Psychology

This chapter gives an overview of cognitive psychology which is relevant to
human-computer interaction. It starts with how we perceive information
from the environment with the senses of sight and hearing and then
progresses to understanding the information we receive. Memory is then
investigated: how information is coded and possibly stored, with the
limitations of human memory. This leads on to mental activity and how we
reason and solve problems, and the control of mental activity as attention
is reviewed together with more general topics of stress and fatigue. The
chapter concludes with a summary of the principles of interaction based on
knowledge of human psychology.

2.1 Understanding Users

Throughout this chapter a metaphor of a human computer will be used,
with the objective, I hope, of making the workings of the human brain
easier to understand. Please note that this view is just a model· of how
things may operate in the human mind based on psychological study; it is
by no means a definitive statement of how the human brain is structured or
how it operates. Such topics are still active areas of psychological research.
Viewing the brain in terms of processors, memories and messages is a
convenient analogy, nothing more.

Basic anatomy of the human processor

The human brain is composed of a vast number of nerve cells, estimates
varying around 15 billion. Nerve cells are the basic elements of human
processing and memory. Each cell is a single small living unit (see figure
2.1) bounded by an envelope which keeps it all together called the cell
membrane. The important quality of nerve cells is that they are capable of
electrical activity. The electrical activity is not the same as in electrical
circuits; instead it is electrochemical activity caused by different concentra­
tions of metallic ions separated by the cell membrane. The electrical
activity is caused when ions are allowed to flow across the membrane to

6

User Psychology

Axon----

/synapse

I~
I \
I \
I \
I \
I \
I \
I \
I \
I \
I \
I \
I \ / t (\ Magnified view

I ~ \ of synapse

! ~ \

7

Figure 2.1 Microscopic view of a single nerve cell showing inter-cell
connections. Other nerve cells send impulses which either excite or inhibit

the receiving cell, making it more, or less, likely to fire.

re-adjust differences in concentrations. This causes a change in the
electrical potential across the membrane, called depolarisation.

Depolarisation signals astate change in the nerve cell, creating the
digitall/O states necessary for computation. Unlike transistors, nerve cells
do not retain astate change indefinitely. As soon as depolarisation has
occurred, the nerve cell tries to return to its previous resting state by
pumping metallic ions across the membrane to re-establish the concentra-

8 Human-Computer Interface Design

tion difference. Once the concentrations have been restored the nerve cell
can fire again; however, re-ad j ustment of concentrations takes a short
period, so continuous activity is not possible.

Nerve signals (called impulses) travel along nerve cells, but to transfer to
the next cell they must cross an inter-cell gap. This gap is very sm all (2-5
microns) but so is the electrical voltage, wh ich means it cannot jump the
gap. Inter-cell transmission is by chemical means. When an impulse
reaches the nerve end it triggers the release of a chemical which has to
diffuse across the gap. The chemical then stimulates electrical activity in
the next cell, causing it to depolarise. This electrochemical activity means
that the speed of nerve messages is slow compared with the speeds of
electrical signals in computers.

Electrical signals from nerve cells usually co me as aseries of blips, each
firing being a transient 010 state change as depicted in .figure 2.2. The

(a)

+60

+30

mVO

-30 0 o o
State changes

(b)

1.5 ms

Figure 2.2 View of a nerve cell impulse recorded as a cell fires. The
electrical potential changes from resting level of -10m V by about

60 m V, then overshoots to -5 mV before returning to the resting level.
The whole event, called a nerve impulse, forms the basis of a 010 state

change. (a) Electrical changes in a nerve cello (b) Typical recording from
a nerve cell showing aseries of impulses. Frequency of nerve impulses

can code analogue signals. The second recording shows aseries of nerve
impulses within a 1.5 ms time period.

User Psychology 9

coding of messages between nerve cells is different from that of electronic
circuits because nerve impulses are transient and on account of the effect
they have on receiving cells, either increasing or decreasing the tendency of
a receiving nerve to fire. Inter-nerve cell connections can therefore be
inhibitory and damp down a cell's activity, or exätatory and stimulate it.
Wh ether a nerve cell fires or not and its rate of firing depend on its innate
tendency to fire and the inhibitory and excitatory influences upon it. As
most nerve cells in the brain have an average of 150 connections, this
composite influence can be very complex and is capable of expressing
analogue effects as weIl as being very finely tuned. The complex signalling
permits much more complex coding than in digital electrical signals. As a
result a branch of computer science, neural computing, has developed to
build artificial versions of nervous processors. The essence of nerve cell
based communication is:

• An electrical change of the order of 30 mV can be detected in nerve
cells when they fire. This is called a nerve impulse. It lasts for a few
milliseconds

• The nerve cell restores itself to its original state a short time after firing
• The change can be repeated many times a second
• A single nerve cell signal is a transient 010 state change
• Nerve cell signals are a mixture of digital and analogue. Unlike

computer logic circuits the digital signal is very transient and analogue
signals can be generated by differences in frequency, that is, many or
few impulses per second

• Nerve cells can signal a change of state easily but continuous activity is
not possible; this creates problems for signalling steady-state conditions

• Nerve cell signals are slow in comparison with electrical circuits
(milliseconds compared with nanoseconds) because the signal is an
electrochemical change

The effect nerve cells have on each other is determined not only by the
quantity of impulses they receive from other nerve cells but also by the
sensitivity of their reaction. Some cells require a lot of impulses to excite
them sufficiently to fire, while others are tuned to hair-trigger levels. In
this way nerve cells can imitate AND and OR logic gates and other familiar
computer logic components, as iIIustrated in figure 2.3, as weIl as coding
analogue signals.

Nerve cells in the brain are highly interconnected in a very complex
network. Even if psychologists have not been able to unravel the wiring
diagram of the brain, we do know something of its higher-Ievel compo­
nents. Processing is divided into right and left halves. The right-hand side
of the brain is generally considered to be responsible for the more creative
and artistic functions while the left-hand side has the more logical
reasoning faculties. There are also discrete areas for sight, hearing, touch
and the other senses, memory and areas devoted to coordinating musdes;

10 Human-Computer Interface Design

e e

1: e
9 J..-

(cl

(b) (d)

Figure 2.3 Connections between nerve cells to form a human logic circuit.
The effect on the receiving cell depends on both the frequency of the

impulses received from sending cells and the type of connection which
may be excitatory or inhibitory. (a) and (b) show an AND gate, (c) and

(d) an OR, respectively in firing and non-firing conditions.

figure 2.4 illustrates the anatomical geography of these areas. Beyond a top
level functional division, little definite information can be given about the
microstructure of the human brain. The human wiring diagram is infinitely
more complex and subtle than the most advanced microprocessor and is
still poorly understood. Attempts to follow the real architecture of the
brain at lower levels are at present unrewarding; therefore to further our
understanding of the human machine we shall use an abstract model, that
is, an interpretation of how the logical processing units in the brain may
work.

Cognitive models

These models have been devised by psychologists to explain human mental
activity using an analogy of computer processing. It is important to
remember that models are only an abstraction; the final story of how the

Front

Coordination of
complicated
motor movements

Reasoning ---/----\
ami jlldgement

Speech
production --+,~-Ad-

Hearing _-:"?:.......;~==l-:-s:.
area

User Psychology

Back

.':7'-=--....,.;."-<---- - Sensory area
(touch and llIuscle
sense)

Memory

~+---I-i'+-- Speech
interpretation

Sight

11

~~==';:~T--- Cerebellum
(balance, coordina tion
and timing)

+-_ ______ Spinal

cord

Figure 2.4 Functional anatomy 01 the brain.

human machine works will be much more complex. Cognitive models,
however, are useful because they illustrate the advantages and limitations
of the human machine, qualities which can be inferred from experimental
evidence. In interface design we will need to take these qualities into
account.

In the following sections, perception and cognition will be explored
using an information processing model based on the work at Xerox by
Card et al. (1983). Perception is the process of receiving information from
the outside world, while cognition is the mental activity we describe in
everyday terms as reasoning, problem solving, thinking and learning. The
boundary between the two is blurred because as we receive information,
we also interpret it, and use it to problem-solve. We shall look at the
receptive processes first.

2.2 Vision

Vision is the dominant sense we use when interacting with computers,
which has implications for VDU screen design and other display devices.

Perception poses three problems for the human machine:

12 Human-Computer Interface Design

• Receiving an external stimulus, in this case the electromagnetic
radiation of light

• Translating the stimulus into nerve impulses in a manner faithful to the
stimulus

• Attaching meaning to the stimulus
To resolve the first problem, nerve cells have to be made sensitive to light.
Light is a form of electromagnetic radiation with a wavelength between 400
and 700 nanometres (nm). Other forms of radiation have longer wave­
lengths, for example, infra-red radiation or heat, 1000 nm, or shorter
wavelengths such as X-rays. Within visible light colour sub divisions are
defined by wavelength; at the longer wavelengths (650-700 nm) is red
light, progressing through the colours of the spectrum to blue light at short
wavelengths (300 nm).

The other physical property of light is its intensity, a measure of how
much energy it contains. Unfortunately, human perception of light rarely
bears a dose relationship to the actual physical properties, the disparity
being a testament to the pre-processing of physical light by the eye.
Consequently, brightness of light is not just its physical intensity but is also
conditioned by the difference between light intensities in an image and
what we have seen previously. The subjective judgement of brightness also
overlaps with measures of colour, as we see colours mixed with white as
brighter than darker ones.

Light has two objective measures, luminance and contrast, and one
subjective measure, brightness. Luminance is a measure of the light
reflected from a surface. This is a composite of the amount of light falling
upon a surface and the quantity reflected from the surface; in general, dark
surfaces absorb more light, light ones ab so rb less light. Luminance as
measured by photographic light meters is expressed in candelas per square
metre (cd/m2). Contrast measures the difference in luminance between two
surfaces and is expressed as the ratios

Lmax - Lmin {L(object) - L(background)}
Co nt rast = or -'---'---'---'------'-----'-----'-'-

L max + Lmin L(background)

The Lmaxlmin formula ratio gives a measure between 0 and 1 for low to high
contrast. Hence to make an object stand out in an image, a high overall
luminance is desirable (Lmax) and a large difference between the object and
background. This gives our intuitive feeling of high contrast in bright
sunlight.

Brightness, on the other hand, is a subjective measure; although it may
have a relationship to luminance this is not always reliable. Contrast can
play tricks with our judgement, with the result that figures of identical
luminance can be discriminated as having different brightnesses, as illus­
trated in the contrast bands and intersection contrast illusions in figure 2.5.

User Psychology 13

Figure 2.5 Perceptual illusions in contrast: Mach bands and the Hermann
grid. The bands do not have the sharp change inbrightness which we see

and the shadows in the grid intersections do not really exist.

Brightness is measured by discrimination tests on thresholds or just
noticeable differences. The limit of discrimination for human vision can be
summarised by a ratio:

dL

L = k

where dL = threshold luminance
L = background luminance
k = a constant, roughly 0.01 to 0.02 for VDU displays.

14 Human-Computer Interface Design

This gives a foreground/background ratio between 1: 100 and 1 :50, hence as
the background luminance is increased, objects become increasingly
difficult to see. Our visual acuity, however, is not just dependent on
luminance and contrast; other factors such as background lighting and
image composition are important.

Visual acuity and sensitivity

Visual acuity is influenced by several factors. There is the complexity of the
image itself, the intensity of the light, and image colour. Low light intensity
makes images difficult to resolve. If the object is illuminated on a VDU
screen, high background light intensity also makes resolution worse.

Absolute human visual sensitivity is remarkable, as the human eye can
see in almost complete darkness, although the threshold of vision, that is,
the smallest quantity of light that can be seen, increases with age. Even
though people can see light at low intensities, they can resolve little detail
and for normal working good illumination is required. This has implica­
tions for VDU displays. The advantages of good luminance in VDU
displays are:

• Acuity increases with better luminance
• Better luminance means a sm aller aperture in the eye which increases

the depth of field. In the eye, aperture is controlled by the iris; the
effect is the same as reducing the camera stop from F5.6 to F8, which
gives a better depth of focus

• Better luminance means reflected light is less noticeable and hence less
distracting

On the minus side, increased luminance makes VDU flicker more obvious
and direct glare may become uncomfortable. Visual flicker is caused by the
eye discriminating changes in an image over a short time period. If the
change happens quickly enough the eye assurnes a continuous state and
does not differentiate between each image; this quality, called the flicker
fusion frequency, happens at approximately 32 images/second, and the
continuous-state illusion is exploited in motion picture photography. At
slower rates of change the eye starts to notice the difference, which on a
VDU screen becomes an annoying flicker. VDU flickers depend on the
refresh rate, that is, the number of times a second the screen is scanned and
the image redrawn. Usually VDU monitors use rates around 50 Hz (scans
per second) which avoids flicker in most circumstances except for high
luminance displays.

Human visual acuity is quite remarkable but individually very variable.
Most people can resolve gaps of 2 mm at a distance of 2 metres but this
teIls us little about how people see meaningful shapes. Of more import an ce
for interface design is resolution of more complex shapes and letters. The
optician's test measures optimal visual ability as resolving letters 20 mm

User Psychology 15

high on the bottom row at 6 metres even though average ability is only
capable of resolving 40 mm letters. Few people have perfect vision, so
display design should ac((omm,odate average human abilities. One design
implication of acuity is the size of text characters.

The size of printed letters is measured in points, a point being roughly
1/72 of an inch; thus 10 point type has letters with an approximate height of
10/72 or 0.14 of an inch. Printed text usually ranges between 18 and 8
point; anything sm aller than 8 point is difficult to read for a long period of
time and letters sm aller than 6 point are alm ost impossible to resolve for
reading purposes.

Colour sensitivity varies between individuals and between colours. Most
people can see yellows better than reds, greens ahd blues; however, colour
blindness should also be considered. Approximately 9 per cent of the male
population have some colour blindness, and the inability to discriminate
reds and greens is most common. Discrimination between colours is best in
the mid range of the spectrum where the discriminable difference for
shades of colour in terms of wavelength is 1 nm; towards the edges of the
spectrum this rises to 20 nm. However, apart from simple images, discrimi­
nation also involves recognition. Behind the statistics of human vision lies a
complex apparatus of reception and image interpretation, which we shall
now consider.

Visual processing

Our eyes are sensitive to light because of photo sensitive pigments,
chemicals which change in response to light and create an electrical signal
for transmission by the optic nerves. The chemicals, rhodopsin for colour,
and iodopsin for black and white, are present in cells in the retina or back
of the eye. The receptive cells, rods for black and white and cones for
colour, have an irregular distribution in the retina. Rods are more
concentrated around the periphery while cones are concentrated at the
centre with the maximum cell density in the fovea which is the natural
point of focus on the retina.

Light enters the eye through the lens and is focused, upside down, on the
retina as illustrated in figure 2.6 which depicts the anatomy of the eye. The
retinal cells react to the patterns of light in the image, firing with a
frequency corresponding to the light intensity. The nerve cells are orga­
nised in a mosaic of small groups to cover the whole image. So far the
mechanism may appear to be similar to a photographic process but in fact
vision is very different.

Before images are transmitted to the brain, the eye does a considerable
amount of image enhancement. The human visual system is much better at
dealing with variation in light intensity than even the most sophisticated

16 Human-Computer Interface Design

Conjunctivo __ -+1

Ciliary body
and museie

Ir i s -,f---&=-{I

Lens-t--+----'O-f-_
Une of vision-

Pupil

AQueous humour_~--,<­

Transparent
cornea

Suspensory
ligament

Tendon to
eye museie

.,?----:::::::"""-<:::-----__ Sclera l whitel

~-~",<--__ Choroid

\1r-\r-\-__ Retina

lH--+-_Foveo or
yellow spot

~.,....,.,.----'...-_Blind spot

~/"'.~::-"'-~ Optic nerve
and blood
vessels

Vitreous humour

Figure 2.6 Anatomy of the eye. Images are focused by the Zens on to the
photoreceptive retina at the back of the eye.

cameras. This is because the eye has an automatie intensity adjustment
device which turns the nerve cell sensitivity up in dark conditions and down
in bright light. Another example of pre-processing is in the treatment of
boundaries. The retina has feedback circuits which enhance the effect of
boundaries in images; these work by adjacent cells either inhibiting or
stimulating each other to make the co nt rast between black and white stand
out more clearly. The result is that oUf eyes pick up edges and especiaHy
moving edges very weH indeed. This has implications for screen design,
making moving stimuli very noticeable, and for icon design in which clear
boundaries be co me important.

More abstraction of image qualities is carried out in the next stage,
image interpretation. The main point of image reception is that it is not just
a photographic process; even at this early stage certain qualities of the
physical image are being abstracted.

Image interpretation

Nerve impulses are transmitted from the eyes via the optic nerve to the
optic cortex in the brain. Here images are translated into what we see. The
whole process is still not completely understood; however, the basic

User Psychology 17

principles have been weIl investigated. Part of the optic cortex is organised
in columns of nerve ceIls, each column being linked to a group of receptive
cells in the retina. The cortex column cells have specialised roles for
detection. Each cell type responds to a different primitive component in
the image such as edges, corners, bars and gaps.

Depending on the pattern of nerve impulses coming from the retina cell
group, one particular column cell will fire, transmitting the message that
this part of the visual field has a particular shape (bar, edge, etc.) in it. By
combination of many thousands of retinal cell groups an image can be
built up as a composite of primitive features which define shapes, which in
turn make up the complex pictures that we see. To supplement the shape
outlines, the optical cortex gets more information from the retina. Retinal
nerve cells are specialised for different receptive duties; some respond to
colour, depending on its wavelength (red, blue and yeIlow), others detect
movement, while some respond to the texture (such as rough or smooth) of
surfaces in the image.

The optic cortex receives a mass of information coded in nerve impulses
about different qualities of the image. The cortex then lias to create visual
meaning, the image we see, out of this information. It fulfils this task by
referring to past records in memory, using an object-property matching
process and reasoning about the objects within the image; for further detail
the reader is referred to the work of the late David Marr (1982) who has
described visual perception in detail. Marr demonstrated that we under­
stand images by aseries of processing steps; first objects are identified in
terms of basic shape, then additional features are added ineIuding depth
and perspective in the image to give a 2.5D sketch; further processing may
then follow for a true perspective.

Object matching usually works very weIl but the result is that what we
see is not wh at is there, rather it is our brain's interpretation of what is
there based on memory and a mass of highly coded signals. Occasionally
the process makes amistake and we see a visual illusion.

Visual illusions use two tricks to fool the eye and brain; ambiguity and
suggestion. Ambiguous images are ones which are open to two or more
interpretations; different people will see different images because they
have attached their own meaning to the picture. Some weIl known
ambiguity illusions can be found in figure 2.7. Suggestion fools the eye by
giving it a false eIue in an image. The eye then supplies the missing
information from memory to fit the eIue, and creates an illusion of what is
there. Only on eIoser examination does a contradiction become apparent.
Suggestion can also work by supplying insufficient information in an image
and then giving an extra eIue verbaIly. People instantly see something in an
image which beforehand they could not see, as illustrated in the Dalmatian
illusion (figure 2.8). The implication of visual interpretation is that images
are open to misinterpretation, because each person attaches his or her own

a
Ib

Ic

~
~
i
;
~

d
e

F
ig

ur
e

2
.7

 A
m

b
ig

u
it

y
il

lu
si

on
s:

 (
a)

ha

w
k/

go
os

e;
 (

b)

va
se

/f
ac

es
;

(c
)

yo
u

n
g

 l
ad

y/
m

ot
he

r-
in

-l
aw

;
(d

),

(e
)

a
n

d
 (

f)

du
ck

/r
ab

bi
t

se
ri

es
.

I
-
'

0
0

 ? ~

!:
) T

~

~ :;::

~

.... S'

~

..;
,

!:
) ~ tl

~

~
.

;:

User Psychology 19

., __ .:c.:: ­
-,
. _~ .. ----..J'

_ J

---~ --
.~ -' .

-~
»!L ..

....,. ... II'_~ -

....... - ---..
~.

Figure 2.8 The power o[suggestion on interpretation. When prompted,
most people see a Dalmation dog in the picture, some however insist it is

a cow.

meaning to wh at is seen. As we shall see, icons, too, are open to many
interpretations by different people. Correct interpretation of an iconic
image can only be assured by testing its meaning.

2.3 Hearing

While vision is the dominant sense for human-computer communication at
present, it is probable that hearing will assume at least equal importance in
the future. Speech is the natural human communication medium and it
would seem to be an appropriate method for computer control. Hearing
involves the same set of problems as vision: reception of the stimulus,
translating its properties into nerve impulses, and then attaching meaning
to the nerve messages.

Sound is pressure waves in agas. The air surrounding us is composed of
gases, and sound is transmitted to us as aseries of pressure waves in air.
Sound waves have properties of frequency and intensity. Frequency is a
measure of how close the sound waves are together and is recorded as the

20 Human-Computer Interface Design

number of waves arriving at a point per second, expressed as cycles per
second or more often thousands of cycles per second--called kiloHerz.
Sound frequency is usually described as pitch; the high er the frequency the
higher the pitch of asound.

Sound intensity is a measure of the energy in the sound waves, roughly
how compressed the air molecules are in each wave. Intensity is related to
the amplitude of sound, which is a measure of the sound wave energy at a
particular frequency-see figure 2.9. We refer to intensity as loudness of a
sound but, as with vision, wh at we hear does not always correlate with the
physical measurements. Lower-frequency sound transmits more energy
and is therefore technically louder. People, however, will reliably describe
a high-pitch but physically low-intensity sound as being louder than a
low-pitch high-energy sound. We react to our interpretation of sound,
something quite different from the physics of wh at we receive.

Sounds are rarely composed of a single frequency; instead most sounds
are a composite of waves at many different frequencies. Even a simple
sound produced by a tuning fork has a main frequency and aseries of
extra, higher frequencies called harmonics. The tone of a sound, in the
musical sense of the word, is produced by complex combinations of these
harmonic frequencies. Complex wave forms can be resolved into aseries of
simpler waves by the process of Fourier analysis which describes the
mathematical relationships between a complex wave and its components.
The ear does a type of Fourier analysis on sounds and codes them as a
series of frequencies and amplitudes corresponding to the wave's complex
components.

As with the reception of light, considerable pre-processing occurs with
hearing. The human ear is adapted to analyse complex sounds, and in
particular speech. Speech is such a complex combination of sound waves
that a graphical representation as shown in a spectrogram recording,
illustrated in figure 2.10, looks like a complete blur. The ear has to detect
all the separate frequency and amplitude components in speech.

Auditory pre-processing

Receptors in the inner ear show a similar specialisation to the optical
system; some are tuned to fire for particular frequencies of sound, while
others respond to the amplitude at a particular frequency. The ear acts as a
se ries of semi-overlapping filters about a quarter of an octave wide. Nerve
cells in each filter res pond if part of the sound spectrum falls within their
band; so asound wh ich is a composite of many frequencies is converted
into a pattern of nerve impulses representing its various features. The
filters have narrower band widths at lower frequencies with progressively
wider bandwidths at higher frequencies, hence the ear is tuned to extract
more information from lower-frequency sound. The frequency range for

User Psychology

Frequency (kiloHerz)
(a)

Complex sound wave
(b)

21

Figure 2.9 The frequency and amplitude of sound waves: (a) a simple
sound wave showing the change of amplitude with frequency; (b) a

comp/ex wave decomposed into its harmonie components at different
frequencies.

22 Human-Computer Interface Design

Q t th e u 5 er n t er f Q ce

Figure 2.10 Sound spectrogram showing the continuous nature of speech,
recorded as frequency over time.

deciphering speech is from 260 to 5600 Hz; however, the region of2-3 kHz
is most important. Telephones only transmit from 300 to 3000 Hz, yet we
can he ar speech quite adequately.

The ear bas to extract certain sounds mixed in witb background noise.
Tbe relationsbip of sounds to background noise is expressed as decibels
(dB), a logaritbmic ratio of tbe power of tbe sound:background noise,
usually referred to as tbe signal/noise ratio. So not only does the ear bave to
be sensitive to tbe overall frequency range but it also bas to resolve
small-frequency components witbin tbe overall noise input. Tbe key
factors of auditory processing are:

• Frequency range for speecb interpretation 260-5600 Hz, overall hear­
ing range 200-10 000 Hz althougb tbis is individually variable

• Resolution capable of telling frequency components one-quarter of an
octave apart

• Temporal resolution of sounds separated by 5-15 milliseconds (ms)
• Amplitude resolution of 1 dB in peaks of sound

Interpretation of sound

Tbe most important aspect of sound from abuman point of view is
language. Sound interpretation is integrally linked with language un­
derstanding, both functions being carried out in the auditory cortex of the
brain. To interpret sound the auditory system has to classify the input into
three categories: noise and unimportant sounds which can be ignored;
significant noise, that is sounds which are important and have meaning

User Psychology 23

attached to them such as a dog's bark; and meaningful utterances
composing language.

The hearing system, like vision, makes use of past experience when
interpreting input. Spoken language is full of mispronounced words,
unfinished senten ces and interruptions; furthermore, it happens quickly so
the interpretation mechanism has to keep pace with the input. Speech rates
are in the range of 160-220 words per minute, so interpretation has to be
rapid.

Language recognition from speech has to start by discovering the basic
sound units of language called phonemes. These sounds can then be
matched to the basic units of written language, called morphemes which
correspond approximately to syllabies, suffixes, prefixes, etc. and thereby
words. Phonemes describe all the possible sounds in a language. Some
languages possess many sounds; for instance, Norwegian has 24 different
vowel sounds alone, while 40 phonemes make up all the vowel and
consonant sounds in English. Phonemes mayaiso differ considerably from
the written language, as in English plural nouns which, although written
with an 's/es' suffix have two different sounds, a 'z' as in hens, fens and 's'
as in books, locks.

Interpretation, however, does not use phonemes alone, it is a layered
and integrated approach in which the brain makes use of language syntax
(the grammar), semantics (the meaning of words and sentences), and
pragmatics (knowledge of the context of communication), to decipher
communication.

Speech does not appear as a sequence of conveniently separated
phoneme sounds but as a continuous band of sound throughout a phrase or
sentence. Our ears extract most information from the lower frequencies
where resolution is better, but temporal patterns in higher frequencies are
also important. Simple template matching of sound spectrograms to
phonemes is unsatisfactory because of the problem of finding word
boundaries; in addition, a wide variety of physical sounds can be generated
for one phoneme by different speeds of speech, different dialects and
speech inaccuracies. It is the knowledge of language syntax and semantics
which enables us to break the continuous speech into discrete phonemes
and words. People supply a significant amount of wh at they hear on the
basis of expectancy. This can be demonstrated by experiments asking
people to identify asound masked by a cough in the middle of a sentence.
Most subjects reply that no sound is missing. Further evidence of verbal
suggestion is demonstrated by an experiment in which one word 'eel' was
heard as four different words depending on the sentence context:

It was found that the eel was on the axle
It was found that the eel was on the shoe
It was found that the eel was on the table
It was found that the eel was on the orange

24 Human-Computer Interface Design

The sound 'eel' was heard as wheel, heel, eel and peel respectively in the
four sentences (Warren and Warren, 1970). Speech recognition also suffers
from illusions in a similar manner to the visual system. In speech the timing
of perception is more critical and as a result the tolerance of speech­
interpretation mistakes is higher; consequently illusions in speech are not
referred to as such.

Memory plays a crucial role in both vision and hearing; consequently the
role of perception, in the sense of receiving information, and cognition, in
the sense of understanding and using external information, cannot be
meaningfully separated. This leads to investigation of how memory works
and how it is used in the processes of understanding and reasoning.

2.4 Learning and Memory

Human memory comes in two varieties: short-term working memory and
long-term permanent storage. The information-processing model will be
used to place memory in the perspective of perception and cognition.

According to the model, each perceptual sense has a processor and
associated short-term memory. These memo ries form the input and
output buffers of the human system, storing abstract images in visual
short-term memory and sounds in auditory short-term memory. Each
memory is associated with a sensory processor. The sensory processors
analyse the contents of their memories and pass the resulting information
to the cognitive processor for identification of the sensory input. The
overall schema of the model human information processor is illustrated in
figure 2.11.

The capacity of sensory short-term memory is not dear, but for vision it
must be at least the contents of one visual field. The contents decay rapidly
in about 100 milliseconds and are continually overwritten by new input; for
an illustration, when you dose your eyes the visual image vanishes quickly.
The visual input buffer has to be overwritten because the quantity of data
in an image is vast and images change continually; consequently storing
even a few images would take a vast amount of memory. The auditory
input buffer, also referred to as echoic memory, may contain several
phonemes' worth of sound because no one millisecond of sound contains
enough information for correct language identification. The contents of
echoic memory probably last for up to 1 second before they are lost.

The contents of visual and auditory short-term memories are in an
abstract form after sensory processing, although no meaning has been
attached to the input at this stage. Meaning is generated when information
in the input short-term memories is passed on to the central cognitive
short-term memory for interpretation. The cognitive processor is thought
to be responsible for object identification. This is effected by matching the

Audial
processor

Interpreted
sounds

User Psychology

Lang
term
memory

~ r------'-------
Cognitive
processor

Motor short
term memory

Instructions
for movement

Motor
processor

Visual
processor

Figure 2.11 Information Processing Model of human perception and
cognition (after Card et al., 1983).

25

incoming information with past experience and then attaching semantic
meaning to the image or sound. To complete the model, the cognitive
processor has an associated short-term memory which is used for storing
temporary working information. The information may have come from the
sensory processors or may have been retrieved from long-term memory.

The cognitive processor performs most of the actions which are consi­
dered in everyday language to be thinking. The results of thinking are

26 Human-Computer Interface Design

either placed back in short-term memory, or may be stored in long-term
memory, or may be passed on to the motor processor to elicit behaviour by
operating musc1es. The motor processor is responsible for controlling
actions by musele movements which create human responses and behav­
iour, such as running, talking, pointing, etc. The motor processor has its
own short-term memory to store input from the cognitive processor. Its
output is sent down the peripheral nervous system, which forms the body's
data communications network to the musc1es. Speech output is a special
case which requires a separate output processor and buffer of its own.
Evidence indicates that approximately 2 seconds' worth of speech can be
held in the buffer which allows words to be assembled in a sequence for
rapid output.

The information-processing model provides an outline description of the
cognitive apparatus, although the whole system is known to be more
complex. At this point, the important distinction to make is between the
roles of short-term and long-term memory.

2.4.1 Short-term Memory

Short-term memory (STM) is the human equivalent of computer RAM
memory, in other words the working memory of the central processor. In
contrast to computers, human short-term memory loses its contents unless
it is refreshed every 200 ms; however, the readlwrite access time, about
70 ms, is quite quick so information can be held in STM by continual
rewriting.

According to the information processing model, short-term memory has
to store information from many sources, hence it may seem strange that
experimental evidence indicates that it has a very limited capacity . In an
influential paper, Miller (1956) summarised experiments which placed a
limit on short-term memory of seven items plus or minus two. Items were
not stored as in computer memory 'bytes' but in 'chunks' of information.
These can vary from simple characters and numerals to complex abstract
concepts and images. The secret of expanding the limited storage in STM is
to abstract qualities from the basic information and store the abstraction
instead.

This concept is best understood by example. Telephone codes may be
given in an unordered fashion, such as 0612363311; such large numbers are
difficult to assimilate and remember, but break the number up into smaller
units and memorisation is easier, for example, 061-236--3311. The effect is
to suggest a chunking strategy to the reader. Instead of storing ten separate
digits, the number groups can be stored as whole chunks, reducing the
storage required from ten chunks to three. The more order which can be
imposed on the raw data, the better the chunking. To convince yourself of
the point try to memorise the following quickly:

User Psychology

832751984221 - accurate recall would be unusual

061-236-3311 - should present no problems

246
357
81012
91113

should also be recalled without error
once the pattern has been seen

27

The second and third number sequences have order within them that
prornotes chunking. What has been stored is so me quality of the data
which can be used to reconstruct it: in the latter case, the algorithm of
evenlodd triplets in an ascending numeric series.

In summary, the important features of short-term memory are:
• Rapid read/write access time-70 ms
• Memory decays quickly-200 ms unless refreshed
• Capacity is Iimited to 7 ± 2 chunks
• Storage capacity can be increased by abstraction qualities of raw

information
More recent research has shown that the information-processing model is a
little simplistic (see Hitch, 1987). STM has at least two sub-systems; one
deals with language-based data while the other deals with visio-spatial
information. The linguistic sub-system functions as a list but access is like
a hybrid UFO (last in first out) queue. We tend to remember the last and
first few items in the list and forget the middle. Storage and retrieval are
generally sequential. The whole short-term system, called working
memory, is controlled by an executive, similar in concept to the cognitive
processor. This more elaborate model helps explain how temporary
memory for visual and textual information differs and how interference
during memorisation impairs retention of information. In the latter case
the executive appears to be distracted during the process of storing and
refreshing the contents of working memory.

Some key features of working memory are:
• Distraction causes forgetting of recently learned material. Even a sm all

number of simple chunks of information are lost within 20 seconds if
there is distraction during input

• Other inputs impair recall. Supplying irrelevant material during input
to working memory makes recall worse

• Very similar inputs impair recall. Supplying closely related items
during memorisation makes recall worse

• Immediate memory for details in complex images is poor
• Recall of items is better if both the word for and a picture of the item

are presented together, compared with the image or word in isolation
• People remember in the short term «30 s) by scanning back along the

input-thus last in first out
The consequences of working memory lead to some general
guidelines:

28 Human-Computer Interface Design

• Minimise distraction during tasks and memorisation
• Beware of overloading short-term memory, both in terms of quantity

of information and time span of retention
• Structuring (chunking) information helps memorisation
• Images are helpful but need to be accompanied by text

The central role that short-term memory plays within computer interface
operation will become apparent in chapter 3 on task design. Short-term
memory limits our ability to process information during tasks. Its counter­
part, long-term memory, is important in storing the knowledge which we
use to help us understand and perform tasks.

2.4.2 Long-term Memory

Long-term memory is the main file store of the human system. It has a near
infinite capa city as no-one has been able to demonstrate an upper limit on
wh at we can remember. Memory failure appears to be a problem of not
retrieving wh at is al ready inside our memory.

Retrieval of facts from memory can be remarkably fast, especially for
frequently used items and procedures. Retrieval time for information used
less frequently varies; it can be quick, but may be slow especially for older
people. Retrieval according to the information-processing model is a
function of the cognitive processor, but in reality the process must be more
complex. Often, remembering a fact is not instantaneous; instead it comes
back some minutes after the original effort to retrieve it. During the
intervening time attention will have been devoted to other matters, hence
it appears that a background memory processor must be invoked to effect
difficult long-term memory searches.

The basic organisation of this memory is thought to be semantic, that is,
data is stored in terms of linguistically based concepts linked together in a
highly developed network. An over-simplified analogy is to consider
long-term memory as a sophisticated network type of database with access
paths following a line of associative pointers to the information. A
semantic network model, as depicted in figure 2.12a, is not the whole
story. Memory also has categories which contain many related items, and
the network may act as a link to these categories. However, there are
probably two types of access, one chain of semantic associative pointers
and a more direct access mechanism via images. This gives rise to the
possibility of two types of human memory, associative and analogue, the
former storing concepts while the latter stores more concrete objects such
as images and sounds.

Memory mechanisms

How memory works in the physical dimension is still a subject of research.
One hypothesis predicts that it is a chemical process of making network

User Psychology

(a) Semantic network model of memory. Objects are associated in a network
of classification and attributes. The image of the object is not stored in a
photographic form, rather a representation is generated from the network
of interconnected labels which describe it.

~,,7"W'
CAT ---t"~ cat -----~.~ animal ------'.~ living

/ m;o,

mouse -----flMOUSE

~..--~
• /squeak/

(b) Category model. Objects are held within categories which have descriptive
tags for recall. Individual objects are not directly addressable, instead
they are recalled by list searching the category contents.

kiwis penguins

Category attributes -
used for recall

prototype
members

peripheral membcr

29

Figure 2.12 Organisation o[memory: semantic network and category
models.

links between nerve cells, and that the act of remembering re-creates the
links. Computer simulations of learning, which may be regarded as a form
of making new memories, have shown that within network models, human
learning can be mimicked by complex algorithms which contral how
associations are formed between nodes in the network. Certain algorithms
can form new network pathways from inputs to outputs by alte ring weights
on connections. These weights mimic the synaptic structure of nerves and
control whether the influence on the next node will be excitatory or
inhibitory. One such algorithm is Hebb association which states that if two

30 Human-Computer Interface Design

adjacent nodes are activated together then the weights should be changed
to increase their association. This creates associative learning as illustrated
in figure 2.13. Simultaneous firing by parts of input neurons has the effect
of strengthening their connections to the output neuron.

The models work by iterative cycling of the algorithms around the
network until a stable pattern of associations emerges. Interpretation of
these patterns requires a human observer , but in some ca ses it appears that
new meaningful associations can be generated. In one example a network
input representing royal family trees in a parent/children form created new
outputs which described kings and queens in terms of brothers and sisters.
This research, called parallel distributed processing (Rumelhart and
McClelland, 1987) may form a credible model of human memory as there
is some evidence that human nerve cell networks change their connective
properties during learning. So memorisation and learning may be by
formation of complex pathways in neural networks. Forgetting, on the

8
/
Input (shape
dc tcctors)

--------)---1----1-----+----+-_- _-_-__ -:::.::. Synapse

Figure 2.13 Memory schema: possible neural organisation in visual
perception. The input comes fram edge detectors; connections in the
matrix can then detect different firing patterns among the input nerve
cells. In the example the cell connected to all four inputs fires when a

square is found. Firing in adjacent cells could make the synaptic contacts
with output cells stranger.

User Psychology 31

other hand, happens when the links decay with age or were poorly formed
in the first place.

Memorisation is usually an effortful process. There are various methods
of memorisation, the simplest being rote learning in which information is
committed to memory as a list with few associations between individual
items. An example of rote learning is the practice of learning tables of
numbers by heart. However, most learning is by association, in which facts
are linked together to provide an access path. There is experimental
evidence that the greater the number of separate access paths, or the more
often an access path is used, the easier a fact is to remember. The depth of
processing in terms of elaborate reasoning carried out during memorisation
also helps recall in the future.

Organisation o[memory

The organisation of human memory is far from clear, although most
evidence favours the view that all storage is finally of the semantic
associative kind, with two different, linguistic and visual, access mechan­
isms. There are two types of knowledge of importance for human­
computer interaction. First is categorial knowledge, that is objects and
their associations. In this case memory may be organised in categories and
the access mechanism finds the category although, as indicated by exper­
imental evidence, not the members within a category. There is evidence
that we organise the world not into discrete non-overlapping categories but
in a more fuzzy manner, with co re and peripheral members. To illustrate,
most people have an idealised concept of a bird. A robin fits this core or
prototypical image, having the properties: round, feathered, sings, lays
eggs, etc. In contrast, a penguin is a more peripheral member of birds
because it does not share all the attributes of the prototype image and it has
additional non-standard attributes, for example, it swims and cannot fly.
The concept is illustrated in figure 2.12b. Retrieval is more rapid and
accurate for core items in categories and slower for peripheral items.

The second type is knowledge about actions and how to do things. This is
held in two different forms; declarative or rule based knowledge and
procedural knowledge. When we start out knowing little about a subject,
we acquire fragments of declarative knowledges as rules and mini­
procedures. This knowledge, however, is not organised, so to carry out a
task we have to reason with declarative knowledge fragments and compose
them into a plan of action. This process, often described as 'figuring it out' ,
involves considerable effort. That effort is the demand on short-term
memory as we organise the knowledge fragments. As people become more
familiar with a task, these fragments become compiled into procedures that
can then be run automatically. Hence when we know how to do a task we
simply call the procedural knowledge of how to perform it automatically.
This is easy because the short-term memory load has been avoided.

32 Human-Computer Interface Design

Another view of memory is based on how information is stored. One
type is episodic memory; here associations are made in a context. The
other type is semantic memory in which associations are stored in an
organised mann er. The former requires less effort, for example, we
remember objects on a desk which provides the context. Semantic
memory, however, requires understanding of wh at is being stored rather
than a loose association such as spatial proximity and temporal co­
occurrence. In spite of this, episodic memory has its uses. It is a powerful
me ans of recall especially when visual cues can be given. The icon-based
desktop metaphor of Apple and Xerox workstations uses episodic memory
to help us remember and understand the system as objects on a desktop.

Storing information in long-term memory is generally linked to under­
standing facts. This is demonstrated by the way people reconstruct
information from memory. Storage of data on every object of interest
would swamp even the large capacity of human memory, consequently
associations are stored with a limited amount of basic data. To illustrate
the point, try to find out in which compass direction you are facing while
you read this book. This may be an easy task if you know your room
faces a particular direction; a more likely scenario is that you will
establish the direction either by reasoning based on where the sun rises and
sets or by using geographic knowledge of landmarks wh ich you can see.
You can synthesise knowledge from associations between memorised facts
rather than storing each fact individually. By storing links between facts
we can memorise a large number of facts and reconstruct even more
information by processing those links in new situations. The reasoning
process which happened during memorisation is important for recall. For
instance, you may have established the direction from the link between
sunsets-west and the observation that you know where the sun sets in the
view from your window.

Memorisation techniques

Formation of access paths can be helped by memorisation techniques.
Perhaps the most famous of these was invented by Solomides, an ancient
Greek poet. His technique was to associate information with spatial
features of a house; so the first part of a speech was linked with the
entrance hall, the middle part with the living room, and the end with a
bedroom, etc. This technique formed more associative links during memo­
risation and possibly exploited the visual access path to memory. Other
techniques involve coding extra semantic cues in memory pathways by
learning additional associations with the object to be retrieved. Examples
are keywords, peg words, mnemonics, similes and acronyms.

Memorisation fails because an access path either decays through lack of
use or was poorly constructed in the first place. Similar facts can interfere

User Psychology 33

with recall, so weIl recognised access paths which are sufficiently distinct
from others are helpful in preventing recall errors. Distractions during the
memorisation process also cause recall errors as the access path is liable to
be incomplete. So if attention is diverted during memorisation, for instance
by a noisy environment, memory performance will suffer.

Memory is one of the critical limiting factors of human information
processing which affects interface design in many ways. Interface design
should strive to reduce the amount which has to be learned; and when
learning is inevitable, recall should be helped by memory cues. We deal
with the complexity of the world by ordering and classifying it. The
interface designer should support this process by imposing structure on a
design, one of the basic HCI principles. We understand and memorise
complex information by breaking the complexity down into simpler
components using a hierarchical approach. Complex objects are remem­
bered, and hence understood, by storing facts wh ich compose and describe
the object at various levels, in combination with the access path of
associations by which we analysed and understood the object in the first
place. The more structure and categorisation we can put into a body of
information, the easier it is to learn.

A second HCI principle wh ich is important for memorisation and
learning is consistency. The more consistent something is, the easier it is to
perceive patterns within it and hence to learn its structure and character­
istics. Humans are good pattern recognition and association machines;
anything which helps to establish a pattern will help to reduce the memory
burden. A summary of the important features of long-term memory are:

• Effectiveness of recall is correlated with the depth of processing on
input, that is, the effort put into memorisation

• Recall is helped by unique cues and the distinctiveness of the item in
memory in relation to other items stored in the same context

• Recall is hindered if distracting and irrelevant material is presented
during memorisation

• Recall suffers if one cue is used for many different objects (cue
overload)

• Recall is better for pictorially presented material and for text presented
with pictures than for text alone

• Recall is better if the context of remembering fits the context of
memorisation (episodic match)

• Similar items are more likely to be grouped in categories
• Within categories, prototypical items are easy to memorise and recall

General guidelines can be derived to help memorisation and recall;
however, as with short-term memory, care must be exercised in applying
these guidelines. General advice does not always fit into specific contexts.

• Memorisation can be helped by enriching the information during
learning. Reasoning and understanding what is being remembered
help

34 Human-Computer Interface Design

• Stmcturing information helps reasoning and creates extra links to
retrieve items

• Techniques can be used to add extra recall cues, for example,
keywords, spatial memorisation, etc.

• Visual presentation with text helps learning and recall
• Consistency of associations creates better contexts for memorisation

and recall

2.5 Thinking and Problem Solving

Thinking, reasoning, and problem solving are all human mental activities
wh ich process data derived from our senses and long-term memory.
Problem solving is something that we do every day of our lives when we
come up against something unexpected. It may be defined as 'the
combination of existing ideas to form a new combination of ideas'. An
alternative view focuses on the cause. Problems arise when there is a
discrepancy between a desired state of affairs and the current state of
affairs and there is no obvious method to change the state.

Problem solving progresses through several stages; the names of stages
vary between authorities on the subject, so the following scheme is a
generalisation:
(a) Preparation or formulation: the goal state is defined and necessary

information for a solution is gathered.
(b) Incubation or searching: anticipated solutions are developed, tested,

and possibly rejected, leading to more information gathering and
development of alternative hypotheses.

(c) Inspiration: the correct solution is realised.
(d) Verification: the solution is checked out to ensure it meets the goals

and is consistent with the information available.

To illustrate how problem solving may work, another model will be
employed. The Goals Operators Methods Selection mIes (GOMS) model
of Card et al. (1983) owes its heritage to the General Problem Solver model
of Newell and Simon (1972).

Problem-solving models

The GOMS model is composed of a set of goals and sub-goals organised in
a conceptual problem container, called the problem space. During the
problem-searching phase, goals are broken down into a sub-goal network;
searching then proceeds by traversing the network and testing hypotheses
at each node. At each sub-goal node data is read into short-term memory,

User Psychology 35

evaluated and then stored back into long-term memory as searching
progresses to the next sub-goal.

EventuaIly, if the search network has been weIl constructed and all the
facts are available to be evaluated, and the sub-goals pass the tests, the
final solution node is reached, resulting in the problem solution. This
operation is the familiar reasoning strategy of problem solving by steps,
namely if X is A, then Y is probably B, which me ans that Z must be
true . . . etc. However, not all problems can be approached in such a
sequential manner.

Other components of the model are operators which describe the
sequence of actions necessary to reach the goal and methods which control
the strategy or approach to the problem. Operators are controlled by
selection rules, that is, production systems which invoke an operation.
Facts are evaluated to give results either proving or disproving a sub-goal.
According to the results, the goal network may be re-organised as new
hypotheses are introduced and old ones discarded.

Methods describe how the network is formulated and traversed; essen­
tially they are the problem-solving strategy. Humans use a variety of
strategies, some of which they can articulate but some appear to be
unconscious as in solutions which 'come in a flash'. This leads to difficulties
when analysing human problem solving. The accepted method is protocol
analysis, basically thinking out aloud, by asking the subject to verbalise the
problem-solving steps and procedures. Unfortunately humans are often
unaware of their own procedures in detail, with the consequence that steps
are omitted. Reasoning analysis, therefore, poses problems for knowledge
acquisition and problem-solving analysis in expert systems.

There are different strategies or methods which can be applied to
reasoning. One is known as forward chaining, in which facts are known
allowing the 'IF(condition)' part of an If-condition-Then-action produc­
tion system to be evaluated. The chain progresses forward to an action or
the next IF test. The mirror image is backward chaining when we have facts
relating to the consequences (action) part and reasoning progresses
backwards to establish the IF condition which is consistent with the
observed facts. People use both methods interchangeably.

Another problem-solving method is inductive reasoning. This case is
similar to classification; by observation of facts we conclude a new fact
which describes the initial assertions. Faced with a menagerie full of cows,
Hons, giraffes and bears, the observation may be made that they all have
four legs, leading to the conclusion that animals are quadrupedal.

Various other strategies of problem solving are used by people, some of
which have been incorporated into the semantics of databases, for
example, aggregation of properties to define an object, inheritance of
properties in a classification scheme of objects. Success in problem solving

36 Human-Computer Interface Design

can often depend on using novel strategies, such as visualising the problem
in spatial terms or treating it mathematically, as shown in figure 2.14.
People are naturally conservative in their approach to problem solving,
and adopt the methods they are used to.

Mental models

Another common reasoning strategy is deduction. Deductive reasoning
starts with assertions and discovers new facts by logically examining the

(a)

(b)

Figure 2.14 Two methods of problem solving. (a) Visualisation of the
Buddhist monk problem. The problem is: a monk climbs a mountain

path starting at dawn, stopping for rests on the way up and arriving just
before sunset. The next day he descends by the same path, aga in stopping
tor rests but going [aster than on the way up. Demonstrate that there is a
point on the path which the monk will occupy at exactly the same time of
day on both the up and down journeys. (b) Visual mental model of the
problem to order 'the fork is on the left of the knife, the plate is to the

right of the cup, and the knife and plate are not adjacent.'

User Psychology 37

relationships or properties wh ich the assertions describe. This is associat­
ive, or syllogistic reasoning of the style:

All animals with wings can fly
Bats are an im als
Bats have wings

Therefore bats can fly
! propositions or known facts

a new conclusion based on
the propositions

The procedure is to pattern-match items and the truth conditions attached
to them, from which new combinations of facts can be made. Logicians
have formalised this process as propositional calculus and its more
sophisticated brother, predicate calculus. People, however, do not obey
these formalisms. While we reason weIl in terms of positive association,
when negative terms are introduced our reasoning becomes illogical. Take
the following problem, which is a classic in psychology:

You are given four cards: on one side there is a number and on the other
a letter. A rule states that if there is a vowel on one side then there must
be an even number on the other. Which cards should be turned over to
prove the rule true or false?

DDD[J
Most people go for card E and 4. Logically this is not correct because the
rule states a vowel-even number link and not the converse. Finding a
consonant on the reverse of 4 proves nothing. The correct answer is E
and 7.

However if the problem is restated in more concrete terms, performance
improves. Test yourself with the following. There are four invoices on a
desk. Invoices are marked pro-forma and normal payment. Pro-forma
invoices must be paid and stamped on the reverse side with 'Payment
Received' before goods can be dispatched. The four invoices are face-up
pro-forma, face-up normal payment, face-down unstamped, face-down
stamped. The question is the same as before: prove the rule that
pro-formas must be stamped. Performance this time should be better
(pro-forma and unstamped is the solution), although the underlying logical
properties of the problem are identical.

38 Human-Computer Interface Design

It appears that the content and context of a problem are more important
than underlying logical structure and that reasoning in abstract terms is
more difficult than in concrete examples. The important consequence of
this is that we transfer our knowledge about context and content between
problems rather than the underlying logical structure. This has implications
for task design because unfortunately knowing one task does not help
learning of another task with the same underlying logical structure.
Instead, context influences our decisions which may result in the wrong
method being applied to a problem because superficially it appears to be
similar to a previous one.

Human and machine deduction are very different. Human reasoning
uses logic loosely and backs it up with associations, that is, knowledge
about the objects in the problem. To illustrate the point, consider the
assertions:

Some animals with wings can fly
Birds have wings
Therefor~ birds can fly

The conclusion may b regarded as valid but it is not logically so because
the assertion does not state that all animals with wings can fly. We mayaiso
refute the argument from our knowledge that penguins have wings but
cannot fly. We appear to construct mental models of things in terms of
propositions or truths which we hold to be true on ,the basis of memory.
These truths are then used in reasoning rather than logical examination of
the problem in detail. The explanation of cognitive processes by mental
models has been advocated by 10hnson-Laird (1983) and this work has had
a wide influence on cognitive psychology.

Mental models help explain observable phenomena about human mental
abilities such as our in ability to reason logically in some situations. Human
ability to reason logically may be limited by working memory because to
solve problems several associations have to be held in working memory.
Consider reasoning about the following:

Some Artists are Brokers
All Brokers are Consultants

We form a model of the propositions symbolically

A=B
A=B
(A) (B)

B=C
B=C
B=C

where 0 denotes an independent
existence and = is a link equating
the objects

User Psychology

Reasoning then proceeds by substitution to create

A=B
(A) (B)
A=C
(A) (C)

We conclude that some artists are also consultants.

39

This is an easy example where the number of concepts does not exceed
working memory limits but, when the number of terms increases, more
than one mental model can be constructed for a set of propositions; and the
relationships to be held in working memory increase. Furthermore, when
negative terms are added this militates against the positive pattern­
matching process. Not surprisingly we reason poorly with complex logical
relationships involving negation. To prove the point, consider the follow­
mg:

No Brokers are Artists
Some Brokers are Consultants
Are any Artists also Consultants?

More than one conclusion appears to be possible because more than one
mental model can be constructed. In another case of No Aare Band
No Bare C, there are two conclusions:

There are three disjunct sets A, B, and C
Set A and C may however be related, even though A,B and B,C are
not

Mental models may be either physical or conceptual. Physical models
describe the relationships of objects in the real world in terms of spatial
distribution of events in time. Physical models may be visualised in a
spatial manner, especially if the problem involves spatial reasoning, such as
the fork is on the left of the knife; the plate is on the right-hand side of the
knife. Conceptual models come in different manifestations. There is the
surface linguistic expression, then an internal mental language which,
although linguistically based, represents a further abstraction. Conceptual
models are a type of internal mentallanguage representing truth values of
relationships with which we can reason. The form of mental models differs
between people and depends on individual cognitive styles. Mental models
are important in creating human-computer interfaces, and this theme is
revisited in chapter 3. The main point to note is that mental models should
be based on people's experience, that is, the truths wh ich they may be
expected to hold.

40 Human-Computer Interface Design

Skills and errors

We problem solve in two modes. If we know little about the problem we
use previous knowledge and general rules of thumb or heuristies. This
attentional reasoning is a diffieult proeess whieh makes heavy demands on
working memory, as we form the problem-solving network. After expe­
rienee, problem solutions are stored in memory and the eorreet ealling
eonditions then invoke automatie proeedures whieh eonsume less effort.
People tend to minimise mental effort whenever possible so there is a
natural tendeney to use automatie proeedures if possible and to automate
new proeedures with praetice. Use of automatie behaviour presents a
dilemma in matching ealling eonditions to the eorreet proeedures. In such
situations we make mistakes. Errors in problem-solving tasks ean be
classified as 'slips' which are errors in earrying out a eorreet sequenee of
aetions and 'mistakes' when the plan of action was miseoneeived in the first
plaee. Slips are probably eaused by a distraetion or failure in attention so
that a step is missed out or not eompleted. True mistakes, however, are a
failure in matching the eorreet proeedure to the problem.

People are generaHy good at heuristie reasoning and this ability marks us
apart from even the most sophistieated artifieial intelligenee maehine.
IronicaHy, however, when we are under press ure this ability often deserts
us; we revert to automatie proeedures which may weH be inappropriate.
There is evidenee to suggest that people seleet proeedures on the basis of
frequeney of use if environment cues do not identify the eorreet memory
exaetly. This frequeney gambling ean lead to unfortunate consequenees,
some of whieh have been manifest in aceidents in nuclear power stations.

Aequisition of skill is by learning, the proeess of acquiring new memories
for behavioural sequenees and mental proeedures of problem solving. Skill
learning is subjeet to a law of diminishing returns known as the power law
of praetiee; the time taken to eomplete a task plotted against the praetiee
time forms a straight line on a log-log plot. The effeet is that more praetiee
yields an inereasingly small improvement in performance. The power law
ean be formalised:

T = c + a(P + d)"b

where c = near maximum speed (asymptotie)
T = task eompletion time
a = initial speed
P = praetiee time
b = number of trials
d = possible number of trials before measurement.

Acquisition of skill is influenced by factors which also affected memorisa­
tion. Frequent, regular learning sessions help skill acquisition whereas gaps

User Psychology 41

without practice help forgetting; positive feedback during task perfor­
mance helps automation, as does presenting a clear model to the task and
making the task steps easily recognisable. Redundant feedback only
confuses. Skilllearning is improved by use of context-dependent learning;
this is also important in binding activation of the skilled procedure in the
correct circumstances. Speed and ease of automation of task sequences are
correlated with number of steps within a task.

Skills and automatie processing are important mechanisms for the
human machine. It enables parallel processing to occur by reducing the
need for attention to extern al stimuli and the load on short-term memory.
The penalty we pay is that sometimes our automatie procedures run in the
wrong circumstances, in the face of environmental cues which obviously
contradict the course of action.

The implications of human reasoning for interface designers are that
tasks should be structured to help users solve problems. This can be done
by constructing a clear mental model for the user which invokes
appropriate parts of the user's experience. The GOMS model may be used
as a framework for design; breaking the problem down into goals, enabling
operators to test the goals and providing an overall method for approach­
ing the problem. An over-rigid definition of problems in systems may be
counter-productive as humans use many different methods to solve pro­
blems. In spite of good analysis, the designer may not choose the correct
one. Hence in decision support tasks, making the goals and operators
explicit could be advisable, but choiee of the method should be left to the
user. In expert systems, the analyst is recording a problem domain and
strategies for finding solutions; in this ca se the goals, operators, rules and
methods have to be specified. Before moving on to the implications of
human problem solving for human-computer interaction, it is worth
summarising the salient features of human reasoning:

• We reason by applying procedures to memorised facts and environ­
mental information

• Problems are formulated as mental models of associations and truth
values, possibly organised into spatial terms

• There are a variety of different procedures which can be applied to
problem solving including backward and forward chaining, syllogistic
reasoning and classification

• Human reasoning is not strictly logieal, rather it is a comparison against
aseries of propositions which make up a mental model

• Reasoning is heuristie in situations where little is known about the
problem. Heuristic reasoning requires considerable effort

• Experience leads to the results of reasoning being stored as automatie
procedures

• Automatie procedures have calling conditions. Mismatch of calling
conditions and procedures can cause mistakes

42 Human-Computer Interface Design

So far, storage of data and processing, memory and reasoning in the
human machine have been examined. The next element of the human
machine is control; how all the conflicting demands of problem solving,
memorisation and recall, and sensory input are resolved. In computer
terms this is a scheduling problem; the human equivalent is attention.

2.6 Control of Human Information Processing

The information-processing model gives a picture of a sequential machine
with a bottleneck at the cognitive processor and its short-term memory.
Even though we may be sequential to an extent in our reasoning processes,
the human machine is capable of considerable multi-tasking. The control
of activity is partly automatie and therefore unconscious, although some
control is in the realm of our conscious. This we refer to as paying
attention.

2.6.1 Attention

From the information-processing model it should be apparent that there
are several input/output channels competing for the resources of the
cognitive processor and its short-term memory. Inputs from the visual and
auditory systems compete with other senses which have not been reviewed,
such as touch, smell and pain. In addition, the cognitive processor has to
find time to access memory and control output to the motor processor and
speech buffer.

The fact that we are basically sequential machines should be apparent
from our poor ability to do two or more mental tasks concurrently. Try
reading a newspaper and listening to the radio at the same time; either the
radio or the newsprint will be remembered but not both. Attention is
selective, the best we can do is to time-slice between channels so that we
remember part of what the radio announcer said and a few things from the
newspaper article. In spite of our sequential attention we do have con­
siderable capacity for concurrent processing. We have already encountered
background memory tasks, and parallel processing of input; in addition we
also do certain aetions automatically, for instanee driving a car while
holding a eonversation. These automatie aetions are more usually ealled
skills. Action sequenees for skills are stored in long-term memory and
subsequently aeeessed for output to the motor processor as instructions for
an activity.

To complete all its tasks the human machine must have more than one
processor running concurrently. When driving a car and talking, the motor
processor will be controlling the leg and arm muscles for steering and
braking; the speech proeessor will be controlling the larynx to form speech,

User Psychology 43

while the cognitive processor divides its attention between monitoring the
senses for road traffic and listening to what has been said. Such complexity
appears to strain the resources of the information-processing model to its
limits. Recently more complex and flexible models of human mental
activity have been proposed wh ich account for more concurrency in human
mental activity by envisaging a co operative system of parallel processors.
Attention in the form of a system monitor must still have a key role.

Although some parallel processing undoubtedly occurs, there is a
limiting sequential bottleneck in cognitive processing. Resource rationing
has to occur and like a computer this is controlled by scheduling with
interrupts for important events. If little of interest is happening in the
environment we pay little attention to sensory input, as may happen when
we are lost deep in thought. The instant something unexpected happens,
for example a loud noise, our attention is immediately switched to the
sensory input. The visual or auditory processors effectively put an interrupt
on the cognitive processor. The input processors are continually competing
for the cognitive processors' attention in this manner. In this battle our
attentional apparatus is finely tuned to ignore constant states and pick up
changes in the environment.

Unfortunately the human ability to ignore the steady state in the
environment can lead to poor performance in monitoring tasks. If we have
to concentrate on one channel containing input with little variation, there
is a natural tendency to ignore changes and for attention to wander as the
cognitive processor polIs other channels. Even worse, in long monitoring
tasks fatigue may set in, causing the cognitive processor to miss significant
events in environment. Distractions are very effective at diverting
attention, particularly if the information is irrelevant to the task in hand.
This probably occurs because the attention controller naturally polIs all
input and enforced attention tries to over-ride this mechanism with the
undesirable effect of making people more sensitive to distracting signals.

Attention is influenced by the difficulty of the task attention is being
paid to, by the distraction in the environment, and motivation of the
individual. More difficult tasks hold attention better th r lundane boring
ones, which explains why most people will read a g"Jd book without
degraded attention but watching a stationary blip on aradar screen soon
becomes boring and performance suffers. Motivation is the internal will of
an individual to do something, which can be influenced by physiological
factors (such as hunger), psychological factors (such as fear) and socio­
logical matters such as companionship and responsibility. Motivation is a
study in its own right which cannot be dealt with here; for further study the
reader is referred to Maslow (1987).

In interface and dialogue design, attention has to be directed to
important messages and actions which the user should take. Care has to be
exercised that the design does not produce too many competing demands

44 Human-Computer Interface Design

for attention at once, thereby overloading the cognitive processor's
ability to deal with events. Cognitive overload leads to malfunction and
breakdown of the human machine, the symptoms of which are manifest in
stress and task failure. While task overload is not the only cause of stress, it
is an important facet of interface design. Stress can be caused by many
factors such as worries about family life, social relationships, financial
insecurity, etc. It is the interface designer's task not to add computer
systems to this list.

2.6.2 Stress and Fatigue

Fatigue may result from continuous mental activity in over-Iong, monitor­
ing tasks and from intense concentration in tasks demanding difficult
mental activity. In either case, rest is required for the human mental
system to re-adjust itself.

Fatigue can be caused by repetitive tasks containing no break points.
Interface design should therefore ensure that long continuous tasks are
broken up by rest periods in wh ich the user is allowed to do amental reset.
These break points, called 'closure events', should be placed at natural
intervals during operation of an interface. These intervals could be at the
end of an operational sequence, such as entering a transaction record, or a
search and replace operation in a word processor. The more complex a
task, the more demanding and potentially fatiguing it may be. Break points
should be planned with task complexity in mind, with more frequent break
points provided to counter increased risk of fatigue.

Task complexity, however, does not always lead to increased fatigue.
People find stimulating but demanding tasks interesting. Complexity may
hold their attention and delay the onset of fatigue for some considerable
time, although highly demanding continuous activity should be avoided
because users may be unaware of their tiredness and make mistakes.
Mundane, non-stimulating tasks are liable to cause user fatigue precisely
because they do not stimulate interest and hence do not hold attention.
Such tasks should best be avoided but if they are necessary, a high
frequency of break points helps to combat the strain of enforced attention
to an uninteresting task.

Fatigue can also be caused by sensory factors. Strong stimuli, such as
bright colours, intense light and loud noise all cause sensory overload as
they bombard the perceptual system and demand attention. If exposure to
such stimuli continues for a long time, the cognitive system will try to
ignore the steady state in the environment; however, such strong signals
are not easily ignored. This sets up a conflict in the attentional process
wh ich can become fatiguing. Strong stimuli can also induce fatigue in
receptors as strong light can cause eye and head aches, and loud noises may
result in temporary deafness. Interface designers should avoid using too
many strong stimuli.

User Psychology 45

2.7 Principles of Human-Computer Interaction

Having examined components of the human machine, its operation as a
whole can now be described in a perspective of some of its limitations.
Consideration of human properties of information processing allows a set
of tentative principles to be drawn up, although care has to be taken in
applying principles in practice, because the context of design has a strong
effect on the validity of generalisations drawn from psychology.

Compared with computers, humans excel at heuristic, associative tasks
but are poor with high volumes of data and repetitive tasks. People deal
with complexity in the environment by imposing order on it and trying to
automate solutions to problems. Classification, structuring of information,
and skills are consequences of this propensity to organise and automate.
Both humans and computers can process algorithmic and logical problems
weIl, although computers produce much more reliable results. The great
advantage people have over machines is a vastly more complex knowledge
base even for things which we consider to be simple common sense and
everyday knowledge. This coupled with the ability to increase that
knowledge base by learning and reasoning heuristically gives humans an
advantage over machine systems which will take a very long time to erode.

The human system is an associative reasoning machine. It deals with vast
quantities of data from the environment by filtering it and abstracting
interesting qualities from basic data. The system has to deal with multiple
inputs, outputs and memory management as weIl as central processing
(reasoning) according to a schedule which shares the limited resources of
the system. The key point of designing for the human machine is to
prevent overloading of its processing facilities, in particular short-term
memory, and to harmonise design with human information processing.
Hence principles which help memory and human reasoning abilities are
important.

From knowledge of human psychology and the applied psychology of
human performance it should be possible to draw up basic principles to
guide the design of human--computer interfaces. Unfortunately psychology
does not lend itself to such a venture as many explanations of human
behaviour are still models and hypotheses, and in some areas little definite
proof exists. However, some principles can be derived in spite of this
limitation, although they have to be supplemented by justifications to
substantiate them based on general utility, interpretation in a context, as
weIl as empirical evidence.

Six basic principles are proposed:

Consistency: this is similarity of patterns which may be perceived in
tasks, in presentation of information and other facets of an interface
design. Consistency reduces the human learning load and increases
recognition by presenting a familiar pattern. As we are pattern-

46 Human-Computer Interface Design

recognition machines, the more consistent patterns are, the less we have
to learn, and the easier an interface will be to use.
Compatibility: between the user's expectation and the reality of an
interface design. This principle follows on from consistency to state that
new designs should be compatible with, and therefore based upon, the
user's previous experience. If this is followed, once again recognition is
enhanced, learning is reduced and the interface should be easier to use.
The essential compatibility is between the user's mental model of the
task and the task model embedded in the software by the designer.
Adaptability: interfaces should adapt to the user in several ways. The
user should be in control, not the computer; so the interface adapts to
the user's speed of work and does not enforce continuous attention. Also
the interface should adapt to individual user characteristics, skill levels
etc., as to do otherwise would offend the compatibility principle.
Adaptability, however, must not be overdone otherwise the consistency
of the interface is reduced.
Economy: this principle is based more on common sense than psycho­
logy. Interface designs should be economic in the sense that they achieve
an operation in the minimum number of steps necessary to support the
user and lessen the work of users whenever possible.
Guidance not control: interface designs should guide a user through a
task with prompts and feedback information. The interface should
function at the user's pace according to the user's command and should
not attempt to control the user. This principie):las two sub-components:
predictability-users should be able to forecast what to do next from a
system's current state; and reversibility-users should be able to back­
track at will when mistake~ are made.
Structure: interface designs should be structured to reduce complexity,
because humans process information by classifying and structuring it
within a framework of understanding. Structuring should be compatible
with the user's organisation of knowledge and not overburden memory.
This leads to a sub-component of simplicity and relevance; information
should be organised so that only relevant information is presented to the
user in a simple manner.

Principles are intended for overall guidance during design and as a set of
criteria against which interfaces may be evaluated. To apply principles in
the design process, they have to be translated into guidelines which pertain
to different aspects of a human-computer interface. Guidelines, in turn,
are modulated by the context of a particular application into design rules.
Unfortunately, systems and people are complex; so to issue a simple set of
guidelines for all situations may be appealing but in reality would only be
misleading.

User Psychology 47

Designs need to be considered in terms of the objectives of creating good
human--computer interfaces, which raises the question of assessment. The
effectiveness of interface designs is frequently measured with terms such as
usability, utility and efficiency. There are three basic concerns about the
quality of an interface design:

How weIl does it fulfil the users' objectives?
How easy is it to learn and use?
How much of it is used?

A design should aim to provide users with what they require in order to
fulfil their objectives. This concept is common to systems analysis and
interface design, that is, the matching of user requirements to the facilities
provided in the system. In human factors terms this is called task fit­
providing the appropriate tool to carry out a required task. A system may
be easy to use and learn but if it does not do wh at the user wants it will be
useless. Task fit is a consequence of the compatibility principle and mental
models-the user's expectation of reality and what he gets.

Efficiency is often measured in terms of how easy an interface is to learn
and use, combined with the inverse measure of how many mistakes are
made. Generally it may be thought that there is a trade off between ease of
use and ease of learning, but evidence points the other way; interfaces
should be easy to learn and easy to use. Efficiency is a consequence of the
economy, consistency and compatibility principles.

The concern for how much of an interface, and hence a system, is used is
often ignored. The concept of usability aims to tackle this factor which may
be caused by poor functionality in the task fit, by poor training, and by
poor interface design. Users may be ignorant of or cannot be bothered to
use a facility even though it may fulfil their task very weIl.

Compatibility relates to the concept of users' models, that is the users'
mental model of how a system should appear and should work. This will be
based on previous experience of computer and non-computer systems. It is
the analyst's task to capture that knowledge and build the new system to be
as compatible as possible with the users' expectations. Full compatibility
may be technically impossible because of improvements to the logical
design of the new system. Also user models differ on account of variations
in individual experience; one single model cannot be completely compa­
tible with each individual's view. The final design has to be a compromise
with inter-individual variation.

2.8 Summary

Perception is the process of seeing and hearing. Images and sounds are
received and coded in an abstract form as properties of the stimulus.

48 Human-Computer Interface Design

Interpretation is effected by comparing the input with long-term memory.
Memory may supply a considerable amount of what we see and hear which
creates illusions in some circumstances.

The human information processing machine is composed of sensory,
cognitive, and motor processors with associated short-term and long-term
memory. Short-term memory has limited capacity wh ich may be expanded
by increasing the level of abstraction of information. Information in
short-term memory is held in chunk form and has to be refreshed
frequently. Long-term memory has an infinite capacity and ean be thought
of as a highly networked database. Memory is essentially semantic,
although two access paths probably exist, one via a semantie network, the
other via abstract images.

Problem solving involves steps of formulating, searching and verifying
problem solutions. A model of the process is a network of goal solution
sub-steps, each of which has tests assoeiated with it. The network is
traversed by a strategy called a method. Various methods are used by
humans, some of which are similar to seareh strategies employed in expert
systems. Problem solutions are stored as skills and automatic processes
whieh are called by a eontext. Mismatch of calling eontext and automatie
behaviour ean eause errors.

Human information processing is essentially sequential although consi­
derable concurrent processing occurs. Sequential seheduling is eontrolled
by attention which directs the resources of the cognitive processor.
Attention has important eonsequences for task design. Fatigue affects
attention and sensory processes and should be considered in task design.

From knowledge of psychology, six general principles of interface design
can be drawn: consistency, compatibility, adaptability, economy, guidance
and structure. These principles should increase the effeetiveness of inter­
face design wh ich may be measured in terms of efficieney, task fit, and
usability.

Further Reading

For general texts on cognition, Glass et al. (1979) or Lindsay and Norman
(1977) give eomprehensive coverage of the field. For more detail on
perception Frisby (1979) gives a weIl illustrated description of vision, and
Fry (1977) is a good general introduction to speech and hearing. A very
readable account of memory, both working and long term, can be found in
Baddeley (1979). For more advanced study, Christie and Gardiner (1987)
contains chapters on most relevant topics in which the authors summarise
research in their field and give guideline summaries. Card et al. (1983),
besides being the source of the GOMS model, makes instructive reading,
although it does view cognition in a narrow perspective.

3 Interface Analysis and Specijication

This chapter covers the analysis phase of interface design in which
information is gathered about users and the job they do. This work can be
carried out and integrated with mainstream systems analysis. The steps
involved are analysis of user characteristics, analysis of the user's job
(calIed task analysis), recording user's perceptions and terminology relat­
ing to the system, followed by synthesising this information within the
constraints of available hardware and system requirements to decide on the
type of interface.

The steps involved in interface analysis are summarised in figure 3.1.
One approach based on structured systems analysis techniques is
described, followed by an overview of specification methods which have
been developed within the field of human-computer interaction.

Tasks may be performed either completely by a computer, or completely
by humans, or may be shared between man and machine. Computer tasks
become part of the systems design, while human tasks become part of the
human system job design. Shared tasks, however, require furt her analysis
because they will impinge on both the human and computer systems.

Interface design takes an interface specification and reviews the system
requirements in the light of human factors analysis. From this review a type
of interface design is chosen and the main components of a design
specified. The steps involved are task design to create the human system of
work modules, job descriptions and operating procedures; design of the
system support environment, that is, parts of the system to help the user;
and design of the interface modules.

Abrief survey of interface design types is given with the human factors
properties of each type as a background to choosing design types.

3.1 Task Analysis

Task analysis is the decomposition of the activities within the system. It is a
similar activity to requirements analysis as practised in systems analysis and
design, with the added proviso that in task analysis all the system tasks,
including human-related actions, are described and not just the functions
to be computerised.

49

50 Human-Computer Interface Design

Methods of task analysis in human-computer interaction have not been
weIl defined; in view of this and the dose relationship of task analysis to
systems analysis, it is appropriate to employ a method borrowed from the
latter discipline. A good method for this purpose is the techniques of
Structured Analysis as described by De Marco (1978) and Gane and Sarson
(1979). The method decomposes the system down into sm aller units called
functions; these are discrete pieces of work which achieve one goal.
Functions may be directly equated with tasks. Each function takes data in,
does something to it (transforms the data) and then passes it to the next
function. When aseries of functions are linked together they form a
description of how the system operates in terms of its components. By
linking functions with the data connections, called dataflows, a map of the
functions within a system can be buiIt up as can be seen in figure 3.2. This
approach, called functional decomposition by systems analysts, is the
essence of task analysis.

Functional decomposition segments systems into smaller units each of
wh ich is identified by a goal or purpose-in other words the function which
the system component carries out. By successive refinement during
analysis an increasingly detailed view of the system is obtained, first at the
sub-system level, then at sub-sub-system level and so on. When the units
are reasonably sm all their contents can be described as actions in a
procedural sequence. The procedure consists of the necessary steps for
carrying out the task. Tasks are composed of groups of actions which
achieve a purpose; combined together they either form the part of a
person's job within the system or, possibly, an automated activity.

Actions, described by verbs, are the primitive building blocks of tasks
which cannot be decomposed further without losing meaning. For
example, in an order-processing task, actions could be Check-Customer­
Credit -Limit, CaIculate-Order-Lead-Time, Determine-Order-Discount.
However, although Check-Invoice-Payment, Allocate-Stock-to-Order are
actions, Check-Days-not >31 in Estimate-Order-Date is probably too low
level to be an action in its own right. Although the level of decomposition
is a matter for the analyst's judgement, further decomposition would
specify the logical operators of the comparison or mathematics for a
caIculation, and this renders the description as a whole meaningless.

When to stop subdividing functions is a matter of judgement and
experience, but one heuristic method is to subdivide until each function
achieves a single purpose and procedural detail of how it works can be
described in roughly half a page of concise English (for example, 6 to 12
steps).

Connections between functions are by data flows. Other diagram
components are data stores or files (open-ended boxes) and extern al
entities (squares) which supply data to or receive data from the system.
The whole task structure of the system can be illustrated using data-flow

Interface Analysis and Specification 51

EJsers •
User system

~
data

User type
data

User
require
ments

Key

System
specif­
ication

j Task
details

User
profile

Task r requirements

Task
description

o A process or task

D
Source/sink, origin
and destination of inputs
and outputs

{
/ =ification

Interface
specification

To
detailed
design

To
job
design

Data flow, or data message

A datastore or file

Figure 3.1 Flow diagram showing steps in interface design.

52

Cust­
omcr

Key

Human-Computer Interface Design

~
orders

\ ~n~ \-

!:;~ /
7

bulk orders

Credit
control

o A process or task Data flow, or data message

D
Sourcelsink, origin
and destination of inputs
andoutputs

A datastore or file

Figure 3.2 Data-flow diagram of an order entry task. Orders are checked
against the customer's credit rating and then spUt according to the size of

the order. Small orders are satisfied from stock while [arge orders are
sub-contracted to other suppUers.

Interface Analysis and Specification 53

dia grams to show a map of sub-tasks communicating by data messages
which are passed between them. Further description of functional analysis
and data-flow diagramming techniques can be found in De Marco (1978) or
Gane and Sarson (1979).

Using structured analysis techniques, task detail can be described in
narrative or more formally as a sequence of actions in Structured English.
Structured English is a constrained sub-set of English composed of a set of
reserved words for expressing sequence contral (If, Then, Else, Repeat,
etc.), verbs which describe actions, nouns to describe data, and conjunc­
tions (see figure 3.3). It describes the pracedural detail of how a task is
carried out in terms of sequences of actions, alternatives and repetitions.
The reserved word set combined with indentation of the text show the
scope of contral.

Structured English describes the sequence in which the actions are
performed and any exceptions to that sequence. Once a task has been
described the next step is to allocate all or parts of it to either man or
machine. Task and action allocation is the first step of task design which is
dealt with in the section 3.4.1.

3.2 Analysing User Characteristics

Human-computer interfaces should be built to suit the needs of people,
consequently it is important to discover what types of people will be using

Task: Loan-Books

Repeat WHILE Borrowers
Reqllest reader-ID
Check reader-ID
IF Reader-ID Invalid

Pass to Membership-Check
ELSE

Continlle
END-IF
Repeat WHILE book-requests

Enter book-mark on borrawer-slip
Write reader-ID on borrawer-slip
Stamp book with return-date
Remove book-in-library-tag

END WHILE
END-WHILE.

Note the reserved words are in capitals. actions are verbs with the first letter in upper
case and data items are in lower case with hyphens to make the name continuous.
Indentation is used to show the scope of contral for IF-THEN-ELSE constructs. etc.

Figure 3.3 Structured English for book [oans within a library system.

54 Human-Computer Interface Design

the interface. Groups of users vary in their knowledge of computers,
general abilities and in a variety of factors which affect their ability to deal
with an interface. Therefore, the objective of user analysis is to obtain a
thorough knowledge of the skills and experience of all users in order to be
able to predict how they will react to different interface designs. This
enables sound judgements to be made when matching the sophistication of
the interface to users' abilities.

3.2.1 User Categories

Users have been categorised by many authors in a variety of schemas
intended to describe user c1asses which have important implications for
interface design. Four main categories of user are gene rally distinguished:

Naive: users who have not previously encountered computer systems.
They may show fear of computers, will be unfamiliar with their
operation, and will have little or no knowledge about the system.
Completely naive users are becoming rarer as computerisation spreads,
but this user c1ass will still be encountered when introducing computers
into a non-automated environment.
Novice: users with some experience of computers, although they may be
unfamiliar with a new system. They will probably have little knowledge
or experience with the system and are liable to make many mistakes,
consequently they need considerable support. Most users of new systems
start as novices and progress with experience to becoming skilled;
although if usage frequency varies they may regress to novice status after
aperiod of inactivity.
Skilled: users who have gained considerable experience with a system
and are proficient operators. Most frequent users become skilled with
time and require more economic, rapid-to-use interfaces with less
support than novices. Skilled users, however, do not have much
knowledge of the system structure so they are unable to repair unex­
pected errors or extend the system capabilities. Instead they are skilled
at operating one or more system tasks.
Expert: experts are distinguished from skilled users by their knowledge
of the internal system structure. Experts generally have some computer
software expertise, good knowledge of how the system operates and an
ability to maintain and modify the basic system. Experts need a
sophisticated interface which provides facilities that enable them to
modify and extend the capabilities of the system.

Although the above categories provide a workable framework for
analysis, user c1assification is rarely so simple. Within a user population
there may be a mix of people who have used the system for a long time,

Interface Analysis and Specification 55

that is, skilled users, and new recruits who will be novices. Variation occurs
even within individuals over time. Expert users may rotate jobs and not use
a system for several months, during which time they will forget their
knowledge and may regress to a novice state. In spite of these difficulties,
measuring user characteristics is worth while because it enables the
designer to choose an interface type and level of support which is
appropriate to most of the users.

3.2.2 Measuring User Characteristics

To start classifying users, so me basic metrics are required. These are a
mixture of anticipated usage patterns and observed abilities of the user
population. The critical factors are how often people use a system, how
much they already know about the system and how much they may be
prepared to learn.

The choice of these measures is linked to expected user performance
when operating the system. For instance, frequency of use will affect how
skilled users become, computer familiarity will indicate how much training
may be necessary to attain skills; system knowledge and experience with
computer software may be used to predict how much knowledge users may
acquire and their expectations of the sophistication of an interface, and
discretionary users are usually less tolerant of poor interfaces than users
who have no choice about using a system. The important measures are:

• Frequency of use: how often will the system be used? Frequent users
build up skills and become experienced quickly; if use is infrequent
then skill build up will be slower and a more supportive interface may
be necessary. The variation in usage frequency over time is also
important. If frequent users have gaps between using the system, then
they may forget key information and require help facilities

• Discretionary usage: use of a system may either be compulsory, that is,
part of someone's job, or it may be an option al extra, for instance, a
data entry clerk may have to use the sales-order-processing system as
part of the job duties, but it is up to a manager whether or not to use
VisiCalc for forecasting. All interface designs should be good, but
interfaces for discretionary users have to excel in ease of use and
attractiveness to users, otherwise the system may never be used

• Computer familiarity: most users have some experience of computers
but the degree of experience varies. This measure will have important
implications for user training

• .user knowledge: some users may have considerable knowledge of
computer programming and operation. These expert users have the
ability to extend the functions of a system and its interface; conse­
quently they will need a flexible programming or command language
type of interface to satisfy their aims

56 Human-Computer Interface Design

• User mental abilities: this is a measure of the general knowledge and
intelligence of users. It is necessary to judge the level of interface
sophistication which users can deal with and how much they may be
expected to leam about an interface

• User physical abilities and skills: the physical characteristics of user
populations and workplace design properly belong to the realm of
ergonomics. Information should be gathered at this stage especially if
new equipment and the workplace environment are being designed.
The objective of ergonomic analysis is to choose equipment which is
designed to meet human needs; however, such considerations are
beyond the scope of this book and the reader should consult Damoda­
ran et al. (1980) for further details. The relevant skills within the
context of design of interface software are experience of any interface­
related skills such as typing, use of a mouse, etc.

Using these measures, user populations may be scored on a simple scale
(such as 1 to 10 where 1 = low frequency, 10 = high frequency). It is
important not only to establish a picture of the average characteristics of
the population but also of the variation, as the interface will have to try to
satisfy different types of users. This information forms part of the
interface-human requirements specification which feeds through into the
strategie choice of interface type.

In the example shown in figure 3.4, librarians were expected to use the
system as part of their everyday job; therefore, their usage frequency was
high; however, so me of the librarians rotated jobs, and hence they had a
high range in frequency of use. Few librarians were familiar with com­
puters and likewise few had knowledge of automated library systems or
computer systems in general; most, however, were of above average
intelligence. The metric derived from this analysis points towards a
supportive dialogue which is not too sophisticated. The measures of user
characteristics are used in the selection of the dialogue type which is
appropriate for the user population.

3.3 User Models and Views

User models come in several varieties depending on the interest of the
authors. The terminology is further confused by ambiguity about who
constructs the model, and what is being modelIed. User models can be
inside the user's head (often called mental models), the designer's idea of
wh at is inside the user's head (conceptual models), and finally a piece of
software enshrining the designer's model. In this section we are concemed
with acquiring the user's mental model of a system in the form of a
designer's model which is used to help construct the interface. To put user

Interface Analysis and Specification

System ID : Automated Loan system
Population 10 : Assistant Librarians

Physical skills
Discretionary
Frecjuency
Computer Familiarity
User Knowledge
Mental Abilities
Population score

Median Range
typing (some)
No
8 2-10
2 1-4
1 1-3
6 4-8

17 8-25

This score can be summarised for the two most important variables using the following
table:

Knowledge
Abilities
Sophistication
Frequency
Familiarity
Support

Total score

20 - 15- 10 - 5 -- 0
+++ ++ +

20 - 15 - 10 - 5 - 0
+ ++ +++

In this ca se the librarians rate low on the sophistication scale (7 out of 20) and average
on the support measure (10 out of 20)

Figure 3.4 Sampie analysis of a user population.

57

models in perspective, the following types are current in the human­
computer interface literature:

• Theoretical cognitive models constructed by psychologists in order to
understand human mental processes. Information processing models,
as used in chapter 2, fall into this category

• Models of user knowledge. These models are inspired by CBT
(Computer Based Training) interests and adaptive interfaces. The
model attempts to capture the knowledge categories in a domain and
the inter-relationships between the categories. Models can then be
constructed of each user's knowledge to assess how users leam by
traversing the knowledge network. In adaptive interfaces the model
attempts to describe the user's knowledge in terms of plans and
procedures (see chapter 10 for more details). These models are
embedded in software

• Models of user characteristics. These models attempt to classify users in
broad terms of skill and ability, as described in section 3.2. They are
also called user profiles

• User task models. The user's concept of how a task is constructed in
terms of its functions and operation al sequence

58 Human-Computer Interface Design

• User views. The user's models of the system structure wh ich may be
expressed either in terms of visual metaphors (for example, an office
and its components) or in a verbal classification of system components.
They are also called the user-system image

In this section user task models, user views and models of user character­
istics are examined; theoretical models and models of user knowledge are
not discussed because they have less direct relevance to the standard
practice of interface design. User views are the way in wh ich users describe
and visualise the structure of the current system. User task models are an
attempt to discover how much users know ab out the system in terms of its
operation and wh at are their expectations about how it will work. The
importance of user models lies in the compatibility principle: the more an
interface conforms to users' pre-conceived notions of how it should appear
and operate, the easier it will be to learn.

Most users construct mental models of systems based on their past
experience of the system and similar computer systems. Experienced users
are more likely than novices to have well-formed models. When the system
is first encountered the user's model may be vague but it will grow as
experience increases. It is the interface designer's responsibility to make
the interface conform as far as possible to the user's previous model and, if
no previous model existed, to present a clear structure of the new system
and make assimilation of the new system model as easy as possible.

User models are discovered during task analysis and may be found in the
names people use for objects and functions in the system, the connections
they make between tasks, and the visual and verbal metaphors they use to
describe the system. User models may have varying degrees of accuracy;
for instance, there is the designer's model of wh at he thinks the user
expects, and the user's model of wh at he expects of the system. It is the
analyst's job to make sure that these models coincide.

Task models and user views have two dimensions: first, a static view of
the system structure in terms of objects and their relationships which may
be expressed in visual or linguistic terms. This will contribute towards
design of interface presentation. Second, there is an expectation of system
operations, or the dynamic behaviour of objects which is relevant to the
dialogue design. The models are made up of a structure, either in terms of
static objects and relationships, or pro ce dural sequences of activity and a
set of descriptive labels by which users identify objects and operations
within the system. For example, in banks, dealers see foreign exchange
dealing not as money but as 'deals' which co me in a variety of types, 'spot',
'forward' and 'overnight'; deals are not placed but 'struck'. The descriptive
labels form the semantic, language-based view of the system. In addition
users may have spatial metaphors for their system, expressing the physical

Interface Analysis and Specification 59

system layout and possibly a view of abstract objects described in visual­
spatial terms.

In a library, for instance, users may view the system as books which
reside on shelves which are organised in stacks which, in turn, occur in
subject areas; all of which may be visualised in terms of a hierarchy. There
may be other parts of the library wh ich serve specific purposes, such as a
reference section, temporary stacks, books to be reshelved and the issue
desk, which are seen in spatial terms as a network. Such system image
views can contain a rich description by which users organise their
knowledge about the current system in terms of a physical layout or map
(see figure 3.5).

User view analysis is important for presentation of the interface because
the users' terminology should be employed ifpossible. Furthermore, visual
metaphors of the system may be directly transferred into an iconic form as
demonstrated by the Xerox office-desktop layout in the Star workstation.
User views can also help in dialogue design because the view can also
reflect the functional organisation of systems components from the user's
angle. This can suggest ways in which components of the interface are put
together to ensure that the sequence of operations in the new system
matches the old.

3.4 Task and Job Design

The task specification resulting from analysis may not be weIl organised or
even achieve the user's objectives. Task design aims to re-organise the task
specification to produce a more logical organisation. Tasks are then
grouped into units of work which will be co me a job description. This
involves synthesising tasks with differing characteristics into a job suitable
for people, and planning the work so that the workload is matched to the
personnel resources available.

Tasks vary in complexity in physical and mental dimensions. Design
aims to create human tasks which are neither too demanding (that is,
composed completely of very complex steps) nor too simple which may
lead to the operator becoming bored. Variety is desirable in any task. Task
complexity also has to be matched to personnel ability, hence the
capabilities of the user have to be considered when designing tasks. It is no
use giving someone a stimulating yet over-demanding task in relation to his
or her abilities. A compromise has to be reached which ideally should give
people tasks wh ich stretch their abilities thereby encouraging them to
develop new skills and widen their experience, while not going beyond
their abilities, because that would cause despair and frustration.

60 Human-Computer Interface Design

Reserve shelf Public shelves

~"' of"'"

I---------jl ~ Re-,h,l"'o. tro~ 1--------1

'" 6 d reservation~ returns

Users

Biography

History

Book
Shelves

I

Other
non-fiction

Fiction

Geography

Issue desk

Biology

Sectors

I
Physical view Logical view

Sections

stock

(Archives J

Reservations

General Science

SObi"l cl", 1000-900)

SObi"1 h,"'io., ("0.1,0.01)

Author codes (***.***.xx)

Figure 3.5 User view in terms of a conceptual model describing a library
in physical terms of layout and book movements and in logical terms of

book classification.

Interface Analysis and Specification 61

3.4.1 Task Allocation

Within each task, actions are allocated to either the computer or the users,
or to both users and the computer. Generally users should receive tasks
which require initiative, judgement and heuristic reasoning. On the other
hand, computers should get repetitive checking, calculations and data­
handling tasks. Data entry, da ta retrieval and decision support are
examples of mixed tasks in wh ich human and computer interact to achieve
an objective. Mixed tasks require further refinement to specify the human
and computer components.

Allocation pro duces two task networks: one human task network and
one for the computer system. Both networks can be designed using
data-flow diagrams to illustrate the logical sequences of tasks. The human
network will form the basis of operating procedures and the user manual,
and the computer network will add to the system specification. Task
allocation could be done on the data-flow diagram at the level of a process/
task but this level obscures much of the interface operation al detail. Hence
it is preferable to allocate parts of the system to either human or computer
at the action level which is shown in Structured English. The steps are:

• Inspect the data-flow diagram and mark tasks as either for the
computer system, human system or joint tasks

• Take the joint tasks and allocate actions within each task to either
human or computer

• Construct new computer system and human system task networks
Cooperative actions involving both the user and computer require further
refinement to specify how the human and computer are to interact. In the
task sequence, illustrated in figure 3.6, most of the repetitive checking is
given to the computer with the human operator supplying the input;
however, in the Raise-Bulk-Order function there is a complex step which
involves a trade-off between delivery date and sourcing the stock from one
or more suppliers. This decision involves local knowledge of delivery dates
and heuristic judgement to find the best delivery date in relation to the
number of suppliers trade-off, and consequently this task is allocated to a
human. It may be possible to computerise this function with a sm aU expert
system, but the designer should preserve human interest and activity in a
system so this step is left uncomputerised.

The design elaborates separate human and computer actions in terms of
human actions and computer support for those actions, such as displaying
information, suggesting options, giving warnings etc. For instance, the
computer may be required to provide decision support for the human
operator. In the above example, finding the best suppliers involves
browsing down a list with different combinations of product categories and
suppliers. How the interaction for decision support will operate has to be
designed and agreed in consultation with the user.

62 Human-Computer Interface Design

H: = allocated to human operator
C: = allocated to computer

Function: Check Customer Order

Repeat while orders
H: Enter customer number
C: Check customer number
C: lf no number assume customer & Pass to accounts
C: Check customer against credit-control-list
C: If customer on list Send to credit control
H: Check order value against customer order credit limit
C: If over limit Send to credit control

Function: Enter Product Details

Repeat for products ordered
H: Enter product code
C: Check product code
C: lf in stock Tick ex-stock column
C: If not a stock item Tick direct column
C: Check product quantity
C: If less than minimum quantity Raise query note
H: If over delivery limit and not a stock item

Raise bulk order

Function: Raise Bulk Order

Repeat for High quantity products ordered
H: Enter stock category against product code
H: Create list of suppliers who have appropriate stock categories

H&C: Find minimal number of suppliers who can deliver all the categories ordered
H: Find suppliers who have quiekest delivery dates for ordered categories
C: Write out bulk order to suppliers

Function: Calculate Delivery Details

H: Enter estimated delivery date
C: Check delivery details present
C: If absent Raise query note
H: Stamp to authorise order

Figure 3.6 Task description in an order entry system.

Tasks within a system may not always fall into a weil defined network.
Some tasks naturally occur in sequences; in other systems task operation is
fragmented and each task may be performed independently. Processing a
sales order or a library book loan are examples of structured task
sequences composed of aseries of sub-tasks having to be carried out to
achieve the goal. On the other hand, many office tasks are unstructured; a
manager may write a memo, book a meeting, answer the phone or analyse
sales figures in an unpredictable sequence. In this case there will be no
human task network, just a set of unrelated tasks which the user needs to

Interface Analysis and Specification 63

access individually. The structure of task sequences is relevant to how tasks
are accessed by the human--computer interface.

A further consideration in task sequence design is to provide break or
rest points within the task. A continuous sequence of activity causes
physical and mental strain which can lead to loss of concentration and
errors. Careful design of tasks with break points at regular intervals allows
concentration to be refreshed by a closure event; this is a short period
during which the cognitive processor can be reset. Closure events should
be planned at logical end-points in a sequence, such as the end of arecord,
after each query, etc. If there are no natural break points in a sequence,
closure events will have to be imposed on long task sequences at intervals
of 2-5 minutes depending on complexity of the activity involved.

Finally the mental load on the user should be estimated. The objective
he re is to reduce overloading on short-term memory; so at each task step
the quantity of information required by the user should be calculated. The
design is then checked to establish if the information is readily available to
the user in a display or if it has to be held in short-term memory. Memory
loading is particularly important at decision points and error recovery
within tasks, and care should be taken that users do not have to hold too
many facts in working memory. Also users should have all the information
available for the action they are engaged in, and not have to remember
data displayed in previous task steps.

3.4.2 Work Module and Job Design

Task design in its fullest sense involves job design, wh ich aims to match
task demands to the operator's abilities and to provide jobs which give
people the correct amount of interest, responsibility and satisfaction. To
treat such matters in detail is beyond the scope of this book; so the aim of
task design within this limited context is to provide a better understanding
of the designer's problem when designing the human part of an interface.
The human side of the interface forms the basis of system operation
manuals, training documentation and user guides.

Tasks should be measured on a simple sc ale to establish their human
factors properties:

• Complexity-in terms of reasoning, judgements and decision making
• Concentration-attention to detail, and the monitoring activity necess­

ary to complete the task successfully
• Responsibility-importance of task in overall system; consequences of

task failure
• Variety-variability of task in one of the above measures

A small number of tasks are combined into one work module. A work
module is an identifiable piece of work wh ich will be performed by one
person to fulfil one system objective. An illustration is the tasks involved in

64 Human-Computer Interface Design

order entry: data input, customer credit clearance, resolution of errors and
credit queries. Another work module could be order progress chasing:
determining where orders are in the system, identifying key late orders,
investigating reasons for delays and proposing solutions.

Work modules should be balanced in terms of complexity and concentra­
tion. Too many repetitive undemanding tasks will cause attention to
wander; on the other hand, too many demanding tasks will cause fatigue.
The correct balance should provide stimulation and interest without
fatigue, ideally by a mixt ure of undemanding routines mixed with more
challenging decision making. Task flow within modules should be
examined to make sure task overload does not happen. Overload is caused
by too many things happening at the same time. Many tasks may require
the user's attention simultaneously, swamping the user's capacity with
conflicting and urgent demands; as a result nothing gets done, leading to
task failure.

Task overload may not be apparent within normal operating procedures
even if they are well planned; instead it occurs when errors or the
unexpected happen. If the demands of error processing are poorly or
incompletely specified, task overload may be the result. Expected frequen­
cies of errors should be calculated and work time allocated to the
resolution of such errors.

Another common cause of task overloading is peaks in workload. For
example, in many transaction-processing systems inputs come in bursts,
such as telephone orders at the end of a day or a peak of mail orders in the
morning. Calculations should be made for the time it will take to process
input at peak loading as well as at average input rates. Manpower has to be
allocated to deal with the load within the constraints of cost because peak
rates at one part of the day usually imply low rates at other times. It is
uneconomic to have staff employed for processing the peak load com­
pletely unoccupied at other times. Part of the task designer's job is to plan
the workload so it is as even as possible, allowing time for error processing.
Manpower is then allocated to carry out the planned work, matching the
skillieveis of individuals to the demands of the work.

3.5 System Environment and Support

Interfaces do not exist in isolation. The interface functions in an environ­
ment which influences the performance of the interface and may impose
constraints upon it. Design of the interface/task environment has two
considerations:

• Physical design of the workplace. This subject is within the realm of
ergonomics and readers are referred to Shackel (1974) for more details

Interface Analysis and Specification 65

• Design of interface support documentation. This consists of the user
manuals, technical documentation, training courses and training
manuals

Design of user documentation

User manuals can be based upon the human part of the task specification.
Two types of documentation are produced for most systems:

• User operations manual-this gives instructions on how to use the
system

• System technical documentation-this is intended to explain the struc­
ture and internal workings of the system and may be produced at
different levels of complexity for system support programmers and
skilled 'local expert' users

User manuals should be clear, concise and weH structured. It is a
weH known complaint that users never read the manuals, a symptom
usuaHy of poor manual design. Users have two broad requirements of
documentation:

• Education-to find out about the system and how to operate it in its
early stages of implementation

• Aide memoire-to access a specific piece of information quickly and
often in an emergency

These demands conflict. The first requires a weH structured guide which
leads the user systematicaHy through the system, while the second is for
direct access to a specific point. Add to this people's propensity not to read
massive amounts of documentation and the problem becomes apparent.

It may be solved by writing three separate documents:
• The training guide which introduces the user to the system, aimed

basicaHy at education
• The quick guide for users who are too lazy to read the whole training

guide and need only the bare minimum of information to start using the
system

• The reference guide for trouble shooting and aide memoire later on
The training guide should be weH structured to lead the user through
various facets of the system one at a time, allowing one area of knowledge
to be acquired before moving on to the next. Quick guides should contain
commonly used command sequences with minimal instructions for opera­
tion and exhortations to read the training manual if the user gets into
trouble. Reference guides should be laid out in an itemised manner with
indexes and clear access paths to data. More general guidelines to help user
assimilation of information, which can be applied to all guides, are:
• Structure information in a hierarchical manner: chapters, sections,

paragraphs, etc.

66 Human-Computer Interface Design

• Label sub-divisions with clear headings and codes to show the relation­
ship: 1, 1.2, 1.2.1, etc. Indentation can be used to further clarify
hierarchical classification

• Paragraphs and sentences should be short and to the point
• Instructions and text should be jargon free, unless the user's own

terminology is being used
• Procedures should be laid out sequentially and numbered to show the

steps
• Important steps should be highlighted using bold characters, different

fonts, colour or icons
• Use pictures, diagrams and visual methods to illustrate points if

possible
• Keywords should be placed in the margin to provide direct access to

specific topics
• Point by point summaries should be given at the end of chapters

Many of the above points are illustrated in figure 3.7 which shows part of a
weIl designed user manual.

3.6 Interface Design Styles

Having designed the tasks the next step is to decide the interface design
styles to be used. This is a trade-off decision, intended to match the users'
characteristics with a suitable design style within the constraints of the
system tasks and available hardware and software.

Several different types of design have been created for human-computer
interfaces. Each type has different qualities and capabilities; consequently,
when choosing the correct interface type or types for a particular set of
system and user requirements, designers have to be aware of the merits
and limitations of each particular type. This section surveys interface types
and their characteristics. The important criteria for judging a match of an
interface design to a user population relate to the qualities of the dialogue
style, that is, how many functions it can provide, how sophisticated it is,
and how easy or difficult it is to use. The capabilities and ease of use are
matched with system requirements before considering the effort and cost
of interface development and then making a final choice. Most interfaces
use more than one design style, each style being matched to the require­
ments of a task or group of tasks, while the overall design aims to provide
the correct level of sophistication and support for the user population. The
criteria which will be employed in the survey are:

• Ease of use: how easy to use is the interface for inexperienced users?
• Ease of learning: how easy are the interface commands and functions to

learn?

Interface Analysis and Specification

DEL imm & def

DEL linenuml , linenum2

DEL deletes the range of lines from linenuml to linenum2, inclusive. If
linenuml is not an existing program line number, the next greater line
number in the program is used in lieu of linenuml; if linenum2 is not an
existing program line number, the next smaller program line number is used.

If you don't follow the usual format, DEL's performance varies as indicated
below:

DEL ?SYNTAX ERROR

DEL , ?SYNTAX ERROR

DEL ,b ?SYNTAX ERROR

DEL -a[,bJ ?SYNTAX ERROR

DEL ~,b deletes line zero, regardless of the value
of b.

DEL l,-b ignored, even if the program's smallest line
number 1s zero.

DEL a,-b ?SYNTAX ERROR if a is greater than the
program's smallest line number, unless the
program's smallest line number is zero and
a 1s one.

DEL a,-b ignored if a 1s not zero and the only
program line is line number zero.

ignored if a is not zero and if a is less
than or equal to the program's smallest
line number.

~ DEL a(,J

~) DEL a,b
~

ignored.

ignored if a is not zero and a is greater
than b.

~
When used in deferred execution, DEL works as described above, then halts
execution. CONT will ~ work in this situation.

67

Figure 3.7 BASIC Programmer's User Manual for Apple II
Microcomputer. Note that the eye symbol is used to draw attention to

important features; the layout gives a dear link between cause and effect,
and capitals for emphasis .

• Speed of operation: how efficient is the interface in terms of opera­
tional steps, keystrokes and response time to achieve a particular
operation?

• Sophistication: what range of functions are provided and can functions
be combined in new ways to extend the power of the interface?

68 Human-Computer Interface Design

• Control: does the user or the computer initiate and control the
dialogue?

• Ease of development: how easy is the interface to design and how much
development effort will be required?

The dialogue types are ordered by approximate complexity in this over­
view. A more detailed analysis of dialogues is contained in later chapters.

(a) Question and ans wer

This is a simple type of human-<:omputer dialogue which is a sequence of
questions (or computer prompts) followed by answers (human replies), as
illustrated in figure 3.8. The human replies are usually restricted to a Yes
or No (YIN) in the simplest case; more complex versions allow numeric
and alphanumeric code replies. Replies are invariably restricted to a sm all
set of valid responses, therefore the sophistication of this dialogue type is
severely limited. Question and answer dialogues are easy to use and learn
because the prompts should give complete instructions to inform the user
wh at to do by listing the valid responses. This interface type is also easy to
pro gram as replies can be validated by simple conditional statements or
against a smalllook-up table.

Advantages

Easy to use
Easy to learn
Easy to pro gram

Disadvantages

Unsophisticated
Slow to use

Suitable for: naive and novice users, with simple conversational
systems. Computer-initiated and controlled dialogue.

(b) Menus

A menu is a simple dialogue type suitable for inexperienced users. All the
choices available are displayed as prompts on the screen; the user selects
one, usually by a single character or digit code, the code number or letter
being displayed beside the option description (see figure 3.9). Menus are
limited in the number of choices wh ich can be displayed on a screen at one
time. Ideally there should be up to nine choices; more than this overloads
short-term memory and increases the search time within menus. As a
result, systems with many options have menus organised in hierarchies to
provide a logical access path. This is simple to use for inexperienced users
but slow and tedious for expert users who have to page through many
menu levels to access the option that they want.

Menus are used most frequently as an access mechanism; however, they
can also be used for data entry when there is a choice between a limited

Interface Analysis and Specification

Patient Administration System

Enter Patient Code (or E to exit): >220345

Margaret Smith: admitted 12/12/87

Enter selection for patient history

>L

o for diagnosis
T for treatment
X for X ray results
L for laboratory tests
C for consultation list

There are no laboratory reports for this patient

00 you want another option for this patient? (YJN»N

00 you want to access another patient history ?(Y JN»N

Patient Administration System

Enter N to add a new patient

>

o to change or delete an existing patient record
E to exit

69

Figure 3.8 Example of a Question and Answer Dialogue .. The user is
prompted for either a simple Y/N ans wer or a small valid reply set in a

'mini menu'. The conversation proceeds in aseries of short question and
ans wer steps.

number of items. Onee again the limitation of menus is the number of
items whieh ean be displayed on one sereen.

Menus are simple to program and easy to make 'buHet proof' for the
users; that is, all possible invalid responses a user ean make are trapped by
the program and an appropriate error message is displayed. The user ean
seleet valid ehoiees, eseape and possibly a help option, but all other keys
invoke error responses. For the information they provide to the users,

70 Human-Computer Interface Design

Local Infonnation Database
Top level

1. News

2. Weather

3. Sports

4. Travel

5. Shopping

6. Markets

7. Education - courses

8. Libraries - reference services

9. Local authority services

o. Finish

Enter your choice:

(Type? for help on how to use the database)

Figure 3.9 An example of a menu dialogue. Options are chosen by
entering the number alongside the desired subject category.

menus are resource hungry because a whole VDU screen has to be
transmitted for every menu. Although some types of intelligent terminals
can minimise the transmission load, transmission of whole screens of
information for one reply can be a significant penalty in response times for
systems using remote terminals.

Advantages

Easy to use
Easy to leam
Easy to pro gram

Disadvantages

Slow to use in large systems
Limited choice per menu
Transmission overhead

Suitable for: novice users, with interfaces designed to access system
options. Computer-initiated dialogue.

Interface Analysis and Specification 71

(c) Icons

Pictures or icons are used to represent functions on a menu-like display.
Figure 3.10 illustrates the use of icons for a personal computer interface.
To select a function, users point at an icon with the cursor employing a
mouse pointing device. leons are a very effective technique if the icon­
pictures are realistic, because the learning time is reduced and operation
becomes very easy for inexperienced and experienced users. This techni­
que has been used extensively by Xerox and Apple and has the potential to
generate an international dialogue language which transcends language
barriers.

leons, however, have limitations of individual differences in interpreta­
tion and therefore usually have to have some clarifying text associated with
the image. Also icons take up a considerable amount of space on VDU
screens so the technique is no more economical than standard menus when
displaying a large number of choices. leons create meaning by being
realistic, which works weH for concrete objects such as files (a filing

33 Harns

MacAppl ica t ions

54542K in disk

MacProiect MaQinal I Mac~ 3.(Ras~ Edilor s~r
Currenl Werksheet

Cepy 11 Mac 3.0 -TracksT• Instal l. Backup Cl ickArt$ Ellects Clock DA Kijker

~ ~ CJ ~ ~
Install Workshee Keeper.appl Karmil Felder Lister Lecalizer MASINIT

~ ~ ~ ~ -
Mass Copy Menu Editor New Install Date Key new stf Pr

~ 8
~

o "- CJ unix' .1Iserd e--E:::J

Screen Maker Waystation Pascal LaserWriter Fants

Screll ing Menu Installer

PRAM

Non-standard Fants Font/DA I LaserWri ter Plus Fents

Figure 3.10 Use of icons to illustrate system facilities.

44424K availat

72 Human-Computer Interface Design

cabinet), messages incoming (an in-tray full of paper), but their descriptive
power is poor when more abstract concepts are being represented, such as
validating, linking and sorting. Finally, icons are useful as long as they are
individual and unambiguous. When icons are used to represent several
similar items, for instance entities in a database, the designer soon comes
up against the limitation of the number of discriminable and meaningful
pictures which can be created.

Advantages

Very easy to learn
Easy to use
Language independent
Relatively easy to program

Disadvantages

Not economic on space
Need some text backup
Require graphics hardware
N eed icon builder software

Suitable tor: novice users in system access and command interfaces.
Computer-initiated dialogue.

(d) Form tilling

Form filling is the most commonly used dialogue type for data entry but it
also has uses in data retrieval and editing. The essence of the method is
displaying a form on the VDU which is similar to the layout of a paper
form with which the user is familiar (see figure 3.11). The display has a
form title, prompts for the various fields, markers to show where the data
should be entered and messaging areas to guide the user. The cursor is
software controlled to move from one field to the next, either automa­
tically or by using the Tab or Carriage return key. Data can be retrieved,
displayed and edited after entry using the same display.

Forms have the advantage of a familiar layout, even if the form does not
exactly model a previous paper document which users are familiar with.
All the information is shown on the VDU and as long as the form is weIl
designed, the sequence of operation should be self-explanatory. In data
entry dialogues, form filling is accompanied by on-line validation and
editing of the data. With a few minor design changes form filling is a
suitable technique for data entry for both expert and novice users.

Advantages

Quick to use
Easy to use
Easy to learn

Disadvantages

Primarily suitable for data entry
U nsophisticated

Suitable tor: all user types, data entry, display and retrieval interfaces.
Computer-initiated dialogue with some user control.

Interface Analysis and Specification

Ready ORDER ENTRY Date 12/12/87

Customer code < ______ >

Name

Address

~--------------~
~--------------~

~--------------~

~--------------~

Posteode

Previous order <_ ~ __ / __ >

Catalog No Quantity Unitprice Sub-total

Item 1 ---- ---

Item2 ---- ---

Item3 ---- ---

Item4 ---- ---

Press TAB to move to next field

ENTER to save
E to exit
C to change record

Figure 3.1I Form-filling interface for a mailorder system.

(e) Command languages

73

This is a large and varied category which covers single word command
strings to complex command languages with a grammar. The common
feature of command languages is that little or no supportive information is
displayed for users who enter commands in locations indicated by prompts
which are often a cryptic $ or * symbol. The command then invokes a
system operation which the user requires; when the operation is complete
the command prompt returns. Because little information is displayed,
command languages are very economical in use of screen space and, by the
same token, in data transmission.

74 Human-Computer Interface Design

The great advantage of command languages is the sophistication and
flexibility of the interface. If a system has a large number of functions
which the user wants to access and, in addition, those functions may be
required in different combinations, then a command language is the ideal
interface. This is because various functions can be combined together in
sentences using a grammar. Once a gramm ar is present, complex sentences
can be constructed using the principle of nesting complex commands in
phrases and substituting complex commands as a sub-routine identified by
a simple name. In this manner the interface becomes a sophisticated and
extensible method for controlling a system.

The penalty of command languages is that users have to learn a code and
some form of grammar; this takes time and makes command languages
difficult to use for beginners. The user also has to have some knowledge
about wh at the system does because no information is displayed on the
screen.

A further disadvantage is the development effort required for command
language interfaces. Simple command interfaces can be implemented using
keywords or a code set in which ca se only lexical checking is required to
validate the command against a look-up table. As soon as the language has
a syntax, a parser has to be built to check and interpret input. This
becomes an increasingly demanding task which, taken to its logical
extension, be comes compiler writing for programming languages.
Command languages, however, come in various grades of complexity.
Command such as the page address system in Prestel (that is, typing 134
accesses page 134 in the database) are simple. Single keyword command
languages can also make a simple, easy-to-use interface. However, to
realise the power of a command language a grammar is required, which
makes this style more complicated for users.

Advantages

Quick to use
Sophisticated
Extensible

Disadvantages

Difficult to learn
Difficult to use for novices
Difficult to program

Suitable for: expert users with complicated command interfaces.
User-initiated and controlled dialogue.

(f) Naturallanguage

Naturallanguage should be the ideal human-computer interface because it
is the user's natural method of communication. Unfortunately it has
limitations from the user's viewpoint and poses considerable computa­
tional problems. Naturallanguage may be input either directly as speech or

Interface Analysis and Specification 75

via a keyboard. Spoken input is quick and should be ideal, but the
problems of deciphering speech are enormous and limit current speech
recognition systems to simple phrases and single words. Typed input is
verbose and time-consuming for the average user who is not an expert
typist and prone to make typographical errors.

The major problems for naturallanguage understanding is that meaning
is generated at several different levels. First there is syntax which dictates
how correct sentences should be formed; but to derive true meaning we
need a framework of knowledge ab out words, their meanings and relation­
ships. This information brings in the 'semantic' level of interpretation.
Unfortunately this is often not enough because the meaning of a word can
depend on the context in which it was uttered. To build a true natural
language interface necessitates making computers mirror this process; this
implies building a machine with artificial intelligence comparable to human
intelligence with a vast database of word meanings.

Not surprisingly, naturallanguage interfaces are currently practical only
in limited domain problems. By limiting the domain, the quantity and
complexity of knowledge required can be restricted to manageable propor­
tions. Some limited naturallanguage interfaces are practical for databases
in which the interface has knowledge ab out the data items and a restricted
set of linguistic terms which the user may employ to ask for. the data.

Advantages

Natural communication
No learning required

Disadvantages

Difficult to program
Needs knowledge base
Verbose input
Can be ambiguous

Suitable for: novice and naive users in a restricted problem domain.
User-initiated dialogue.

3.7 Review of the Type of Interaction

The input for this step comes partly from interface analysis and partly from
mainstream systems analysis as the functional specification of wh at data
and input messages have to pass across the system interface. In most
information and trans action processing systems this will be data and
control messages specified as data flows (if structured analysis is being
used) or data structures held in a data dictionary. Requirements analysis
provides specification of the volume of data, the frequency of input/output,
the timing (on demand or batch) and the validation constraints.

In some systems, r'equirements may have a more direct bearing on the
dialogue type. For instance, a VLSI circuit design system may require an

76 Human-Computer Interface Design

interactive graphic interface with an icon library of circuit components.
The functionality of a system can dictate the range of interface design types
that it is possible to employ; consequently, it is necessary to classify tasks
according to their type of interaction. Tasks can then be matched to
interface design styles, bearing the user characteristics in mind. The task
interaction type may or may not indieate a partieular interface design style.
A working classification of interaction types, which can be allocated to
tasks, is as folIows:

Data entry
Data display
Data retrieval (search and display)
Data editing
Command (user access to system facilities)
Conversation (series of questions and answers)

Although these categories are not mutually exclusive, they do give general
guidance towards design of the interface. A command type of interaction
may become a conversation if there is a long sequence of two-way dialogue
between user and computer rather than short dialogues in which the user
asks the computer to run a task. Menus or a command language are
suitable for the latter while question and answer style is better for
conversations. In a system with mixed types of interaction, a command
language could be used with question and answer dialogues.

In some cases the influence of requirements will be strong, for instance a
medical interrogation system which asks patients about their medical
history will probably have to be a conversation; while a business graphics
system will require a graphieal display. However, it is important to
remember that types of interaction do not pre-determine the dialogue style
absolutely; a data entry function could be implemented by form filling,
menus, touch panels or graphic-icon selection.

3.8 Selecting the Interface Design Style

This step aims to synthesise interface and systems analysis by taking the
task descriptions, interaction types and the user profile, and arriving at a
strategie decision about wh at style, or more likely styles, of interface are to
be employed.

Interfaces should serve people; therefore, when selecting the type,
human requirements come first, followed by system requirements. The
decision steps are:

• From the user profile, decide on the level of support and sophistication
wh ich the dialogue should provide

Interface Analysis and Specification 77

• Select one or more interface styles which are appropriate for the
support and sophistication required

• Match the interface tasks against the system requirements and
categorise the type of interaction

• Select appropriate interface design styles. If there is a dash between
user and system requirements, then trade-off decisions will have to be
taken

The user profile specifies the level of support needed and degree of
sophistication. These measures can be derived from a simple table in which
the familiarity, frequency of usage, general ability and user's knowledge of
computer operation are scored on a simple scale of + + + = good/frequent
to --- = poor/infrequent, and matched against the sophistication and
support wh ich are desirable:

User measures

Familiarity
Frequency
Ability
Knowledge

Familiarity
Frequency
Ability
Knowledge

Familiarity
Frequency
Ability
Knowledge

Familiarity
Frequency
Ability
Knowledge

Familiarity
Frequency
Ability
Knowledge

++
++
++
++

++
++
++

++

+
++

Interface characteristics

Sophistication
Support
(expert interface)

Sophistication
Support
(skilled user interface)

Sophistication
Support
(skilled novice)

Sophistication
Support
(dedicated unskilled)

Sophistication
Support
(naive user interface)

++

++
+

+
++

++

+++

Highly skilled expert users who use a system frequently will require a
sophisticated interface to fulfil the complicated functions which they wish

78 Human-Computer Interface Design

to undertake and to give them the ability to extend the system's properties
to suit their own needs. Users who are skilled and use the system
frequently but lack background knowledge about the system structure are
less likely to need the flexibility to extend the system's powers, even
though they will still require a quick-to-use and sophisticated interface.
High-frequency users who lack knowledge about the system structure and
have low to moderate ability are unlikely to be able to deal with
sophistication and need a supportive but quick-to-use interface. The
inverse user profile (high ability, low frequency) is suitable for a sophisti­
cated interface but will require a high level of support because the low
frequency of use will lead to the interface characteristics being forgotten.

An approximate guide to link user abilities to interface type is:

Type

Expert user Interface

Skilled user Interface

Skilled novice

Unskilled dedicated user

Naive user

User abilities

Programming language
Extensible command language

Command language
Code-keyword interfaces

Code-keyword interfaces
Menus

Menus
Page address

Question and answer
Simple menus

Inevitably, users in a population will rarely fit neatly into one category so
the eventual choice depends on trade-off decisions which try to satisfy as
many different types of user in the overall population as possible.

The level of sophistication can point strongly to a dialogue type; at this
stage the system requirements are introduced to home-in on a small
range of types. Support has a less direct bearing on the dialogue type:
Obviously a requirement for a very supportive dialogue should not be
implemented with command languages; however, a sophisticated dialogue
can be successful with fairly inexperienced users if good support is provided
in terms of help screens, tutorial guides, training and documentation.

Interface styles frequently have to be chosen within the limitations of the
available hardware which may constrain some more innovative solutions.
The usual hardware encountered is the ubiquitous VDU; in this case the
major constraint on interface design is provision of high-resolution screens;
although with the growth in high-resolution raster graphics, this constraint
should become less important in the future.

Interface Analysis and Specification 79

Finally, consideration of the user's views may have implications for the
choice if there is a strong structural metaphor in the view. If the user views
the system in terms of a map or a spatiallinked collection of objects, then
use of graphics and icons would be advisable.

Once all these factors have been considered and interface design styles
have been chosen, the way is open to the next step of interface design
wh ich is carried out using the properties, and within the limitations, of the
chosen interface style. This step takes the task design, now tagged with
design styles, and adds the dialogue to support the human use of the
computerised tasks.

Synthesis of the products of analysis into design decisions is in the end
dependent on experience. The above guidelines are intended to be a
framework within which to work, with the aim of ensuring that at least all
the factors pertaining to the decision have been examined.

3.9 Summary

Task analysis is similar to functional analysis as practised in systems
analysis and design. Top-down functional decomposition is used to break
tasks down into sm aller components which can then be specified in detail.
The techniques of Structured analysis, Data-flow diagrams and Structured
English may be used for this purpose.

Besides task analysis, analysis of user characteristics is important.
Qualities of frequency of use, general ability and computer experience
contribute towards measures of user sophistication and support. These
measures can then be used to plan the type of interfaces suitable for a user
population. Users can be approximately categorised as Naive, Novice,
Skilled and Expert, depending on their previous experience.

User models have several different objectives. User characteristics, user
task models and user views are the more important models for interface
design. User task models attempt to capture the user's knowledge about
how a system is expected to operate while user views capture the user's
perception of system structures. The closer an interface conforms to these
pre-conceptions, the easier it should be to use.

General interface design starts with task design. Allocation of actions
and tasks to either human or computer, or both, is the first step. Allocation
is best carried out at the detailed level of actions. Joint human-computer
tasks and actions may need further analysis. Task networks are drawn up
for the human and computer system.

Task design then re-organises the human task network to create designs
which allow for human limitations. The network is restructured to include
closure events. Tasks are combined into work modules and jobs. Task
combination aims to produce jobs which have the correct degree of

80 Human-Computer Interface Design

stimulation while not overloading the operator. Ca re must be taken to
avoid task overload, especially with processing transactions peaks and
error cycles.

System support design involves documentation and training manuals.
Structuring the information and simple clear layouts are vital. Manuals
have to support trouble shooting as well as education, and good access
paths should be provided to information.

Interface design has a basic se ries of styles wh ich consists of Question
and answer, Menus, Form filling, Command languages and Natural
language. System requirements constrain the choice of dialogue style to an
extent and have to be analysed by matching requirements against suitable
interface styles. User characteristics are the more important determinant
of which style is eventually selected. The interface design style is matched
against the projected user sophistication. The user support requirement
measure determines the level of environmental support which will be
necessary.

Further Reading

Further details of task analysis and job design can be found in Bailey
(1982) and Damodaran et al. (1980).

4 Theoretical Approaches

So far, a general method of interface design has been presented which is
based on the concepts of structured systems analysis and design. Other
methods of interface analysis and specification devised by workers in
human~omputer interaction are now presented for a comparison. Two
main groups of methods have evolved within human~omputer interaction:
grammatic and diagrammatic techniques. Of the grammatic school, the
best developed and weIl known method is the Command Language
Grammar (CLG) of Moran (1981).

4.1 Command Language Grammar

Like structured analysis, CLG employs top-down functional decomposi­
tion to analyse systems; however, CLG has severallevels which start from
an analysis perspective and progress towards a physical design. This
approach puts analysis in a framework of abstraction from the goals of
wh at the interface has to achieve through to the detail of how the interface
will opreate. CLG uses a semi-formal language of reserved words for
structure and sequencing, indentation to show the scope of control, verbs
for actions and nouns for data. The reserved word set is not completely
specified, making it open to extension by users. The CLG specification
levels are:

• Task level: this analyses user needs and how those needs should be
achieved in terms of goals and sub-goals. User tasks are described using
English narrative in terms of objectives and goals

• Semantic level: this level elaborates the system as a set of objects and
operations carried out on those objects. Tasks are formulated in terms
of conceptual entities, operations and methods which specify how
operations are organised

• Syntactic level: operations of the semantic level are refined into a
language composed of commands, user operations, contexts and state
variables. It describes how the user and system components interact
according to the gramm ar

• Interaction level: this level defines user operations and system com­
mands in terms of physical operations such as keystrokes, device
manipulation and displays

81

82 Human-Computer Interface Design

As CLG is a gramm ar , it is composed of expressions which obey certain
rules. The general format is:

Symbol (arbitrary name) = expression list

Three expression types are defined. First is a hierarchic expression used to
describe objects (for example, message = a memo); this expresses the
classification 'a memo', being an instance of the class message. Second is a
set or sequence membership expression (SET = x,y,z). The third is
ordinary English narrative. Expressions describe concepts and can be
represented by an identifier; in this way sub-expressions and hence
concepts can be embedded within other expressions in a hierarchical
manner.

At the task level CLG describes concepts in English. Tasks may be
divided into a hierarchy with sub-tasks and so on (see figure 4.1). Each task
and the entities upon which they act are described in a structured format
with notes on organisation and any constraints. The example is an E-Mail
system, described in full in Moran (1981):

SEND-MESSAGE = (AN ENTITY NAME = "Send Message")
(* this is a message sent by the SEND system
A SEND message has a he ader and a body
The he ader contains ...)

NEW-MAIL = (A TASK (* Check for new SEND MESSAGES and if any read
them. This is the most frequent task»
DO (SEQ: (CHECK-FOR-NEW-MAIL)

(READ-NEW -MAlL)

READ-NEW-MAIL = (A TASK (* Read all new SEND MESSAGES, de\eting all
those that are of no further interest»

The major difference with Structured English is the declaration of data
objects, called entities. These are data aggregates upon which actions
happen. The data is related to a common something for which no definition
is given; however, in practice entities can be thought of as objects of
interest in the system. Top-down decomposition continues until detailed
assumptions have to be made about the structure of entities and tasks; this
point is not clear, but it is closer to the action than the function concept in
structured analysis.

At the semantic level CLG defines conceptual entities and operations
wh ich will carry out the tasks. So me English narrative is still used but more
detail is included for entities and tasks. In the messaging system the
semantic statements may be:

Theoretical Approaches 83

NEW-MAIL + THlN-OUT

/
NEW-MAIL

(I) (2) /~ (4)
GET -INFORMA nON CHECK-FOR-NEW-MAIL READ-NEW-MAIL THlN-OUT -MESSAGES

(a)

S
(SHOW-MESSAGE)

~i------------- I

WP ~~ I

2

D S W

/1"'"
WAR

3 4 5

(OBJECT)

~I------W B I

6

(b)

I
F
I
S

(MESSAGE-NO)

~~
P B T R

7

I I
S A

(INTEGER)
I
B
I
A
I
8 9 10

11 12

Figure 4.1 The Command Language Grammar: (a) at the task level
showing a task hierarchy for an electronic mai! system; (b) at the
interaction level showing the tree of possible interactions for one

command, Show message.

84 Human-Computer Interface Design

MAlL-SYSTEM = (A SYSTEM NAME = "Email"
ENTITIES = (SET: MESSAGE SUMMARY MAILBOX

SCREEN DIRECTORY)
OPERATIONS = (SET: SHOW DELETE»

MESSAGE = (AN ENTITY REPRESENTS (A SEND MESSAGE)
NAME = Message

MAILBOX = (A LIST

(* narrative description ... message has a header and a
bodyetc. *»

REPRESENTS (A MESSAGE FILE)
OWNER = (A USER)
MEMBER = (A MESSAGE)
NAME = "Mailbox"
(* this contains all messages . . .»

Conceptual entities may be pure concepts, such as a Mailbox, or more
tangible objects such as a Message. Hierarchical structuring can be shown
in LIST Entities which group other entities; the system itself is composed
of a SET of entities. Entities are described in this manner with various
properties such as owners, membership of sets or name identifiers.
Operations are linked to objects and values which are necessary to satisfy
their function. Each operation may be described further in narrative or
may not require elaboration. The difference between operations and tasks
is not made explicit in the method. Operations, conceptually, happen to
objects within the system, while tasks are a more goal-oriented statement
of the user's intentions. In practice the two become merged as analysis
progresses. Operations are classified as User or System operations.

SHOW = (A SYSTEM OPERATION
OBJECT = (A PARAMETER VALUE = (AN ENTITY»
IN (A PARAMETER VALUE = A PLACE ON THE

SCREEN)
(* narrative description ... object may be a MESSAGE,
SUMMARY OR DIRECTORY *»

READ = (A USER OPERATION
OBJECT = (A PARAMETER

V ALUE = (AN ENTITY»
IN (A PARAMETER

VALUE = (A PLACE ON SCREEN)
DEFAULT-VALUE = (UNKNOWN)

(* The User reads an Object, which is in some place on the
Screen. The Object may be a MESSAGE, SUMMARY or
DIRECTORY»)

Theoretical Approaches 85

The last component of the semantic level is a method or pracedure for
achieving a task. Methods add control constructs to operations and entities
of the form 'Do while' and 'If then else'. If the reader perceives some
similarity with the GOMS model described earlier, that association is
correct; CLG owes much of its heritage to cognitive prablem-solving
models. An example of a method is:

SEM-MI - (A SEMANTIC METHOD FOR CHECK FOR NEW MAlL)
DO (SEQ: (START SYSTEM)

(SHOW DIRECTORY)
(LOOK AT DIRECTORY FOR

(A MESSAGE = NEW)))

SEM-M2 = (A SEMANTIC METHOD FOR READ-NEW-MAIL)
DO (REPEAT

BINDING M TO (EACH MESSAGE
AGE = NEW)
DOING (SEQ: (SHOW m)

(READ m)

(OPT DELETE m)))

The binding operation instantiates a variable in an entity. The method then
shows the pracedural sequence of operation in terms of the three basic
contral structures SEQuence, REPEAT and OPTional selections. At this
stage the rules governing selection and repetition are not detailed.

At the syntactic level, operations and methods are defined as commands
wh ich are issued by the user to the system. Commands are created for each
semantic operation. Syntactic commands refer to entities with arguments
and have contexts, that is, situations in wh ich they may and may not be
used. One or more contexts describe the whole system in terms of displays,
commands and state variables which hold values within a context and are
used for contral (such as Message numbers). The system Entities are
refined at the syntactic level into more physical objects which will
correspond to screen displays. This gives a more detailed description of
their praperties, for example, message layout, screen display· areas,
directory structure, etc. Also added at this level are the identifiers to be
used by the user to find conceptual entities, called Descriptors. In the Mail
system these are simple message numbers.

MAIL-CONTEXT = (A COMMAND-CONTEXT)
STATE VARIABLES = (SET: CURRENT MESSAGES)
DESCRIPTORS = (SET: MESSAGE NO)
DISPLAY AREAS = (SET: DIRECTORY AREA,

MESSAGE AREA, COMMAND AREA
COMMANDS = (SET: SHOW-MESSAGE SHOW-NEXT,

DELETE-MESSAGE EXIT)

86 Human-Computer Interface Design

MESSAGE NO = (A DESCRIPTOR
NAME = "Message number"
FORM = AN INTEGER
V ALUE = (A MESSAGE)
DEFAULT VALUE = (THE-CURRENT-MESSAGE))

MESSAGE AREAS = (A-DISPLA Y-AREA)
NAME = "Message Window"

Descriptive narrative mayaiso be included in the syntactic level to clarify
the links between display areas and the objects to be displayed. At the
syntactic level, conditions are added to repetitions and options in Methods.
The show command becomes:

SHOW MESSAGE = (A MAIL-COMMAND)
NAME = "message"
OBJECT = (AN ARGUMENT = (MESSAGE NO))
DOES (SET: (SHOW (SUMMARY OF (THE OBJECT)))

IN DIRECTORY AREA
(SHOW (MESSAGE NO OF (THE
OBJECT))) IN DIRECTORY AREA
(SHOW (THE OBJECT)
IN THE MESSAGE AREA))

DELETE-MESSAGE = (A MAIL-COMMAND)
NAME = "delete"
DOES (SEQ: (DELETE (THE CURRENT MESSAGE))

(IF (THERE-IS (A MESSAGE) IN
MAILBOX)
THEN (SHOW-NEXT-MESSAGE)
ELSE (SEQ: (DISPLAY (* No more
messages)) IN COMMAND AREA)))

The syntactic level brings the specification down to the detail of what
commands can be used in the system, the effects the commands have on
the objects in the system, the messages displayed and the screen layout of
displays for messages and objects that the user needs to see. Syntactic
methods are similar to the semantic level although the specification is
refined to include more detail of system operations, for example:

SYN-M2 = (A SYNTACTIC METHOD)
FOR READ-NEW-MAIL
DO (REPEAT UNTIL (* End of mailbox)
DOING (SEQ: (READ (THE-CURRENT-MESSAGE)

IN MESSAGE-AREA)
CHOICE: (SHOW-NEXT-MESSAGE)

(DELETE-CURRENT MESSAGE)))

Theoretical Approaches 87

The show command in the user's task can now be achieved by the system
commands which have been designed for it.

More detail is added at the interaction level which describes the dialogue
and presentation design. In this step CLG becomes atme gramm ar
composed of terminal symbols (wh ich are self-defining and cannot be
subdivided) and non-terminal symbols which are composed of terminal
symbols. The terminal symbols are:

W When is
P Prompt }
R Response
A Action

(temporal specification primitives-before, after)
primitive system action-display (x)

(primitive user action-a keystroke)

These can be combined into non-terminal stmctures. Interaction is
described as a tree for each command operation, the tree defining the
permissible sequences of prompts, responses and states. Inspect figure 4.1b
and cross-refer to the text below:

2 (P.S

4 (A.D.B.S

OF SHOW-MESSAGE-(DISPLA Y "Command")
{where S = the specification})

OF SHOW-MESSAGE-(KEY: "M")
{where D = "the designation of"

B = "the body of"
S = "the specification of"})

The interaction level also elaborates methods by adding validation of
interactive commands which may be used, actions to be taken in response
to commands, and specifying messages, for example:

MX = (AN INTERACTION METHOD FOR READ NEW MAlL)
DO (REPEAT UNTIL (* End of mail»
DOING (SEQ: (READ (THE CURRENT MESSAGE) IN

MESSAGE AREA»
(CHOICE: (KEY: "N")

(KEY: "D"»

Rules are added to link commands with states (When), prompts and
responses. The mIes are fairly simple for single commands but if com­
mands have arguments then further mIes are required and complexity
increases.

The above description is just an overview of CLG. For more detail the
reader is referred to Moran (1981), although the present description should
be sufficient to appreciate the essentials of CLG. First it is a hierarchical
analysis and specification from a conceptual dimension to the detailed level
of physical interaction. There are informal mapping mIes between the
levels, for instance:

88 Human-Computer Interface Design

Entities: Task conceptual entities-semantic system
entities-syntactic descriptors

Tasks: Tasks-semantic procedures and methods­
syntactic procedures and methods

Operations: Semantic operations-syntactic commands

Whether mapping is 1:1 or not is open to the analyst's discretion.
Task design occurs primarily at the lower levels as the detailed specifica­

tion is developed. The task level describes the user's requirements as a set
of goals and informal task descriptions; the semantic level follows this by
describing the functionality of the system; and the syntactic level adds
design detail of how the functions are evoked. Finally, the interaction level
specifies the physical form of the command language and dialogue to
support the tasks. Mapping between the levels is not always explicit and
considerable judgement has to be exercised by the analyst. Also, CLG's
critics may regard it as cumbersome and over-detailed especially at the
interaction level. Nevertheless, CLG does form a powerful specification
and design method.

4.2 Other Grammatic Specifications

One approach using Backus Naur Form (BNF) to notate a task-action
gramm ar has been pioneered by Reisner (1984). Her objective was to
create a predictive analysis of command languages by comparing the
complexity of languages in terms of a metric derived from the grammatic
specification. The metric is based on the number of command words and
grammatic mies as expressed in Backus Naur Form. As a result the scope
of Reisner's BNF specifications is not as comprehensive as CLG and expert
user knowledge of the command language syntax is assumed when
assessing the language. The basic method is to describe all valid commands
in grammatic terms composed of terminal and non-terminal symbols.

Terminal symbols are the basic words of command language; these are
combined into non-terminal symbols, alias phrases, clauses and sentences.
In addition there are a few special symbols for notation al purposes such as
:: = 'is composed of', + 'and',: 'or'. Complexity is built up by nesting
sm aller components within larger ones. In natural language this can be
seen in paragraphs which are composed of sentences wh ich in turn are
composed of phrases, etc.

Grammars of this sort can be used to specify interfaces at different
levels. To compare interface designs the word set is composed of verbs for
physical actions that the user can perform, such as point, enter keystroke,
position; and nouns describing the interface objects such as the cursor,
display, key. By comparing the complexity of the grammatic strings and

Theoretical Approaches 89

the number of terminal symbols, a judgement could be made about the
complexity of the command language. Generally the less complex a
command language the better.

Another extension of grammatic techniques is to tag the phrases as being
(1981) which uses GOMS as its basis and then adds set times for various
cognitive operations into which tasks are decomposed. Operations are
classified according to components of the information-processing model,
for example reads and writes to short-term memory, perceptual actions
and mental action cycles of the cognitive processor. The method works
by describing the task as sequences of these primitive cognitive actions,
assigning times to the actions and thereby deriving an estimated task
completion time. Unfortunately the method ass um es error-free perfor­
mance wh ich makes its use questionable.

Another extension of grammatic techniques is to tag the phrases as being
performed either by humans or computers (see Shneiderman, 1981). This
enables sequences of interaction between human and computer to be
described at the task level. An alternative approach has been to use a
generalised task-action grammar to describe conceptual objects and
actions thereon in specific task domains. This method, TAKD (Johnson,
1985), creates a generalised task model by abstracting from specific objects
in a domain (a letter in a word processor) to conceptual objects in the
system (documents). The generalised task model is then mapped on to a
generalised system model which specifies the system objects (which
become data structures) and actions (which become dialogue).

In conclusion, gramm ars have been used at different stages in interface
development with the motivation of either early evaluation by predicting
qualities of design or for describing and analysing interaction.

4.3 Diagrammatic Specifications

Diagram-based interface specifications have employed state event transi­
tion diagrams and occasionally data-flow diagrams for task and dialogue
description. The latter have already been described, so attention will be
focused on the use of state event transition diagrams.

State event transition diagrams , also known as finite state machine
diagrams , are familiar throughout computer science as a method of
describing sequences of events within a system. The components are a
state, represented as a circle, and a change of state, otherwise called an
event, shown as a connecting arc. The diagrams may show branching to
account for divergence in a sequence, and repetition of astate event cycle.
However, state transition diagrams are not suitable for showing concurren­
ey and hierarchical structures. These facets are necessary to specify
operations in eoncurrent windows within an interface and to control

90 Human-Computer Interface Design

complexity in specifications. Most authors have added extra features to
deal with the main defects. These diagrams are more useful for detailed
design of dialogues and are described further in chapter 5. The most
influential method in the diagrammatic camp is Cognitive Complexity
Theory of Kieras and Polson (1985). As its name implies, this theory
specifies interface complexity, besides creating a diagrammatic specifica­
tion of dialogues.

4.4 Cognitive Complexity Theory

Classifying CCT as a diagrammatic method is not tmly accurate. The
method uses two formalisms, production systems and generalised transi­
tion diagrams, to specify in turn the user's knowledge of the task and then
the user-system dialogue. The main focus of this method is analysis of task
complexity, so tasks and hence interfaces can be designed which do not
overload the users' capabilities. The task is analysed using production
systems to describe the user's model of the task in terms of wh at is known
about how to do the task. Production systems are mIes in the form 'IF
condition THEN do action' with associated working memory holding facts
to be evaluated in the condition.

The method aims to analyse the task fit between the user's concept of the
task and how the task model is formulated in the system. CCT dis­
tinguishes between device-dependent and device-independent (that is,
pure task) knowledge. Complexity is considered to be caused by:

• Complexity of the user task in terms of learning and memory load
• The number of device-dependent functions which have to be learned
• The ease with which 'how to work it' knowledge can be acquired

The better the task-system fit the smaller the number of device-dependent
functions should be, and the more natural a design will be to use.

The production systems are arranged in procedural sequences of task
actions and the human reasoning behind the task, which is expressed in a
GOMS-like goals network. Goals can be added, changed or deleted by the
productions and this allows a description of the travers al of a problem­
solving network to be made. Actions allow goals to be inserted and
deleted from working memory as weIl as performing manipulations on the
environment. The production systems proceed by alternate recognise (test
condition) and act modes.

Production system sequences form methods for achieving goals and
selection mIes test facts in working memory and control the execution of
methods and actions. Special conditions are added to evaluate the presence
and status of goals in working memory as TEST GOAL and ADD NOTE
(status variable). Finally there are variables notated with a % which can

Theoretical Approaches 91

become instantiated with values. The whole system has a hierarchical
organisation. An illustration of a production system for an editing task is:

(task edit article
IF(and(TEST-MSS manuseript is new article)

(TEST-GOAL type manuseript)
(TEST-GOAL seleet equipment)

THEN «ADD-NOTE many revisions will be done))))

This is a top-level goal establishing the nature of the task. Lower-Ievel
goals and the associated methods are:

(SET UP-UNIT-TASK
IF(AND(TEST-GOAL edit manuseript)

(NOT (TEST-GOAL perform unit task)))
THEN «GET-NEXT-UNIT-TASK)

(ADD-GOAL perform unit task)))

Unit tasks are selected in sequence to effect completion of sub-goals. In the
word-processor example, goals are broken down into editing operations of
decreasing complexity and finally into unitary simple operations such as
deletion, insertion, replace, etc.

Some selection and control rules for deletion:

(SELECf-CHARACTER-DELETION
IF(AND(TEST-GOAL perform unit task)

(TEST-MSS funetion is delete)
(TEST-MSS entity is character)
(NOT (TEST-GOAL delete character)
(NOT (TEST-NOTE executing character deletion)))

THEN «ADD-GOAL delete character)
(ADD-NOTE executing eharaeter deletion)
(LOOK-MSS task is at %UT-HP %UT-VP»)))

(CHARACTER-DELETION-DONE
IF(AND(TEST-GOAL perform unit task)

(TEST NOTE executing charaeter deletion)
(NOT (TEST-GOAL deleting character)))

THEN «DELETE-NOTE executing character deletion)
(DELETE-GOAL perform unit task)))

The method for deleting a single word, PDELWD1, is illustrated in the
following text. First the cursor is positioned, then the word is deleted and
finally the goal is removed from memory.

92 Human-Computer Interface Design

PDELWDl
IF(AND(TEST-GOAL delete word)

(NOT(TEST-GOAL move cursor to %UT-HP %UT-VP))
(NOT(TEST-CURSOR %UT-HP %UT-VP)))

THEN (ADD-GOAL move cursor to %UT-HP %UT-HP)

PDELWD2
IF(AND(TEST-GOAL delete word)

(TEST-CURSOR %UT-HP UT%-VP))
THEN «DO-KEYSTROKE DEL)

(DO-KEYSTROKE SPACE)
(DO-KEYSTROKE ENTER)
(WAIT)
(DELETE-GOAL delete word)
(UNBIND %UT-HP %UT-VP))

The production systems describe the goal manipulations necessary to
control operation of the task; the testing of extern al variables and the
update of status variables are operations progress. All these impose a load
on working memory wh ich can be quantified. The number of production
system rules can be counted; more rules make a system more difficult to
learn.

Another analysis is to examine the goal structure in the system. There
should be only one goal structure per task, any more will confuse the user
by presenting unnecessary complexity with many ways of doing one task.
Also the system goal structure can be compared with the user's model of
the task goal stucture to test for goodness of fit.

The second part of Kieras and Polson's method uses generalised
transition network (GTN) diagrams to model the device dialogue. GTNs
are derived from state transition dia grams augmented with a hierarchical
nesting feature to deal with complexity. Hence top-level diagrams call
sub-diagrams. The components of GTNs, illustrated in figure 4.2, are
states (prompts and computer displays) shown as circles, transitions
between states caused by human actions and replies, illustrated as arcs, and
conditions which control the transitions. Nesting can occur in conditions,
states or actions. Diagrams read from left to right, and conditions/action
arcs are positioned clockwise around a circle state in the order in which the
conditions are tested. Nesting is shown by sub-network calls and POP for
the return-exit point in the sub-network.

The nesting hierarchy of GTNs represents the system goal hierarchy.
Hence the user and system goals hierarchies can be compared to discover
the extent of task-tool fit. Drastic divergence in the two hierarchies
indicates that users will have problems using the device because of a poor
match with their conceptual model. An example of poor user goal-device
hierarchy matching is shown in figure 4.3.

Theoretical Approaches

(after Kieras and Polson 1985)

Cancel

Illegal action
Cursor Control

Delete

Find

Move

Other

Illegal action

Delete target

93

Figure 4.2 Generalised transition network diagrams used for dialogue
design in Cognitive Complexity Theory. The system illustrated is a word

processor.

As weIl as providing a method for examining complexity in tasks and the
mapping between user and system task models, the GTNs in cer are a
useful method of dialogue design which can be used to plan and verify good
practices of dialogue design. The method is used for this purpose in chapter
5.

94 Human-Computer Interface Design

Revise text

Move cursor

Move cursor

(after Kieras and Pols on 1985)

Figure 4.3 Mapping between the user conceptual model and the system
model. Some user goals have no corresponding match in the device

model, leading to poor task-tool mapping.

4.5 Comparison of Specification Methods

Ideally, human--computer interface specification and design methods
should cover all aspects of the interface development life cycle, be easy to
use and learn, have predictive qualities for evaluating designs, and cover
the diverse aspects of specification (cognitive load, task model, system

Theoretical Approaches 95

model, dialogue and presentation design). This is a tall order which no
method has so far addressed.

Some commonalities in approach, however, can be discerned. Many
methods make reference to levels of abstraction. Commonly used terms
are the Semantic (what to do), Syntactic (how to do it) and Lexical
(physical details) levels, for instance, see Foley and van Dam (1982) and
Shneiderman (1987). There is agreement that task-semantic specification
occurs first and is then mapped on to features in a design. Another theme is
conceptual modelling, in particular discovering the user's conceptual
model and then basing a design on it. Cognitive complexity theory and
Command language gramm ar provide a mechanism for this.

Both CLG and CCT have been criticised as being too complex for
practical use, although they have been used with a pragmatic reduction in
complexity of notation. CLG also presents problems in the mapping mIes
between levels, which even though they are stated in Moran's paper are
not sufficiently complete to guide the novice practitioner. Nearly all
methods omit coverage of the early stages of task analysis and assume that
the analyst has a clear picture of wh at the user wishes to do. As such, they
are methods for describing the system and then designing the interface,
and not complete analysis and design methods.

Another point of comparison is in the merits of notation; dogrammars
or diagrams make a clearer specification? UnfQrtunately there is no
complete standard within either approach. Grammatic methods have the
advantage of making the stmcture of a dialogue clear and specify per­
missible computer and human actions concisely. Grammars can be used in
different levels of specification from the conceptual to physical domains;
and they are flexible because word sets and grammatic mles can be
adapted to suit the application and needs of the investigator. But that
flexibility limits the utility of gramm ars as a general specification method.
Each institution has to create its own set of words and grammatic mIes;
also, the mapping between grammar-based specifications at different levels
is difficult to specify in a formal manner.

A dis advantage of grammars is the poor illustration of sequencing.
Although sequences may be specified by arranging phrases in approximate
order of occurrence or by tagging them in an interactive series, text-based
methods obscure any complex sequencing. As most dialogues are net­
works, sequence information may be important when planning human­
computer interaction.

Diagrams can be used in interface specifications as a recording medium
for time-ordered tasks and dialogue designs. Whereas gramm ars are good
for stmcture, diagrams are good for sequences and network specifications.
However, when dialogue networks become complex with high connectiv­
ity, diagrams be co me more difficult to understand, and maintaining
diagrams without automated support can be arduous.

96 Human-Computer Interface Design

4.6 Summary

Many methods of interface specification have been proposed by research­
ers in human-computer interaction. Two main groups are discernible,
diagrammatic and grammatic approaches, of which Cognitive Complexity
Theory and Command Language Grammar are the most influential
examples in each category.

HCI specification methods use concepts of levels of abstraction to
describe the user's conceptual model at the semantic level, and then refine
it into design of interaction at the syntactic and lexical levels. CLG is
probablythe most complete method although it suffers from over­
complexity in notation. Diagrammatic methods can give clearer represen­
tations of task and dialogue as long as the connectivity is not too complex.
CCT uses GTN dia grams to illustrate the user's task and the user-system
dialogue. In addition it employs production systems to analyse complexity.

Both diagrammatic and grammatic techniques have their merits;
however, current HCI specification methods tend to be focused on a
particular concern rather than covering all the issues in the lifecycle of
development.

Further Reading

In addition to the references cited in the text, the INTERACT and CHI
conference proceedings are a good source of HCI specification and design
methods.

5 Dialogue Design

This chapter takes interface design from the strategie to the tacticallevel.
The interface is designed first as a set of logical modules using input from
task design, and then the modules are organised into an interface structure
by addition of an access mechanism. Access mechanisms are the way in
wh ich users address data or functions provided by the system, and can be
hierarchie, network or direct. The type of mechanism will be dictated
mainly by the task structure and to an ex te nt by the interface design
style. For structured task systems, menus present a hierarchical organisa­
tion, while command languages provide for network and direct access, and
icons are a direct access mechanism which mayaIso have a hierarchie al
structure. The logical modules are then mapped on to physical screens,
windows and overlays, depending on the target hardware and software
environment.

Each module is decomposed into discrete steps, each step being a single
question and answer between man and machine. The steps are then
re-assembled into a detailed dialogue design which describes how the
interface communicates with the user. The detailed design aims to incor­
porate good practices of dialogue design and provides some means of
verifying that the design adheres to those practices. The steps involved are
first designing the structure, then the access paths, followed by either
prototyping the design with interface design tools (4th generation
languages, screen generators) or detailed design of each step before
implementation. The steps are summarised in figure 5.1 Which route is
followed will depend on the complexity of the interface. More complex
interaction in which the dialogue is critical should be designed in detail.

5.1 Designing the Interface Structure

So far the interface specification is composed of a set of task descriptions,
system requirements and a strategie choice about the style of dialogue
design which is going to be used. The next task is to add the access
mechanism and then subdivide the whole interface into modules wh ich can
be mapped on to physical structures and then programmed as parts of the
system interface, such as data entry screens, help and error overlays,
reports, menus and command lines.

97

98 Human-Computer Interface Design

Task design

descriptions

~ 'd::;;~

Verified
design

I Prowaml design

modules

Rejecred
interface

conccptual
model

Design
guidelines

Acrepted
design

Figure 5.1 Flow diagram showing the steps of detailed interface design.

5.1.1 Adding User Access and Control

As user access is not part of the task description, it has to be added as part
of the new system. The aim is to synthesise the user's view and the task
structure. With luck these will agree, but sometimes the analyst may
perceive a network of linked tasks which the user sees as a set of
independent tasks. When in doubt the user usually knows best.

Interface modules will rarely be ordered in a simple sequence. The user's
view or the user requirements for system operation may state that certain
modules must be available on demand while others should be organised in
sequences to achieve a particular task. Organising interface modules into a
system depends on user characteristics, which influences the choice of
interface style, the system-task structure, and the user view of the
interface. Access paths may be hierarchie, network or direct. A menu style

Dialogue Design 99

will tend to create a hierarchie organisation for the interface, whereas
command languages can provide either direct access or network associa­
ti on between interface modules. Depending on the type of interface
chosen, the modules will be linked together either as a hierarchy or as a
network, which can be shown diagrammatically, as in figure 5.2.

If hierarchie al access is being used, how the modules are grouped
together will be influenced by the user's view of the system as weil as by the

I. Order processing, showing a hierarchical structure which may be implemented
using menus.

2. Library system. This system has a network task structure

Figure 5.2 Interface structure diagram, showing modules and access paths
for an order processing and library system.

100 Human-Computer Interface Design

functions which the system provides. Users may have several views which
relate to different parts of the system. There may be a physicallayout view
and a logical classification view, the former expressed as a type of map and
the latter as an abstract hierarchy. Views of a classification of objects are
often expressed in terms of hierarchy while views of task sequence are
more likely to be conceived of as networks. Access paths should reflect the
way users currently view their system, a view which should have been
discussed and agreed with the users.

For instance, librarians may view a library system as a hierarchy of
rooms, racks, shelves and then books for a physical layout part of the
system. In contrast, for retrieval and cataloguing, the view may be
one based on a current book classification system, such as Dewey or
Library of Congress. But the issue desk may be conceived as a network of
tasks such as checking the borrower's library ticket, recording the loan and
date-stamping the book.

5.1.2 Mapping Logical to Physical Modules

To do this, interface design will use some of the principles of Structured
System Design. As many system designers use these methods, their
application to interface design is nothing new. For those who are unac­
quainted with the method, the basic idea is to divide up the system (or
interface) into parts, called modules. The content of a module is deter­
mined by the axiom 'one module one purpose' or in interface terms 'one
interface module does one, and only one, thing' (for example, a data entry
screen accepts data but does not have editing operations mixed up with it;
editing is done by another screen or overlay). This idea is called 'cohesion'
in systems design. It aims to produce modules which carry out activities
wh ich are functionally related or in plain English 'serve one purpose' .

This notion is similar to the goal-oriented functional decomposition
carried out in task analysis, therefore most tasks should show good
cohesion. However, as the logical system is translated into the physical
system within the constraints of available hardware and system software, it
is necessary to preserve the cohesion of tasks as far as possible. The
justification for introducing this criterion into interface design is identical
to that employed in system design, namely cohesive modules are easier to
identify, understand and maintain. An interface has to be maintained more
often, probably, than other parts of the system, therefore it is important
that it is easy to change. Dividing the interface into logically distinct
modules makes identification of the location of change within the system
easy, and minimises the spread of undesirable changes within the system.
The combined effect of structured design of the pro gram modules which
implement the interface is to help system maintenance and to make the
interface easier to understand for the user.

Dialogue Design 101

How logical interface modules map on to physical programs and
sub-routines is a program design problem and will not be considered
further. The interface design problem is to construct an interface wh ich
makes it easy for users to locate, understand and use its various functions.
Thus although an edit screen and the data entry screen may call the same
sub-routine to displayaform, the two parts of the interface should be
logically different to the user. This difference should be designed explicitly
to prevent users being confused about which part of the system they are in.

Mapping of logical to physical modules may be 1: 1, but if this is not so
then defining interface modules presents the same problems as defining
modules in system design: where are the boundaries and how big/small
should a module be? Interface design, fortunately, has a starting point to
guide these decisions in task analysis. The task sequence should be
examined and the break points noted. Break points occur at the end of any
series of sequentially related operational steps; in reality this means when
there is a pause, for instance, at the end of arecord during data entry, or
when one life has been lost in aspace invader game. The sequence between
break points should form one cohesive sub-task which becomes one logical
interface module. Close mapping of tasks to interface structures may not
always be possible, especially when error and exception sequences may
interrupt tasks.

Design continues by elaborating the dialogue within the modules. More
actions are added to increase user control of the system and to provide
support as help screens, etc. Before proceeding to detailed design, the
principles upon which dialogue design is based are reviewed.

5.2 Principles of Good Design

Guidelines for good design features have been proposed by several authors
in the human-computer interface literature. While no definitive set exists,
there is a certain consensus and the following features are a distillation of
recommendations by several authors. The principles relate only to control
of the dialogue; separate guidelines are necessary for presentation of
information and these are dealt with in the next chapter.

• Feedback: always provide users with messages to inform them wh at is
going on, especially if there is going to be any significant delay in
response time. Failure to do so leaves users wondering if they or the
machine are at fault, and often causes them to press Control-C to find
out what has happened

• Status: provide a message informing users which part of the system they
are in. In large systems users may forget which facility they are using,

102 Human-Computer Interface Design

resulting in them issuing the right command in the wrong context. This
can have unfortunate consequences

• Escape: allow users a method of terminating an operation and escaping
from options. Many operations are selected accidently and one of the
most frustrating features of a bad interface design is being locked into
an option you do not want

• Minimal work: try to save users' effort when operating the interface.
This can be effected by using the minimal number of dialogue steps
necessary (for example, do not use two question and answer steps
where one will do) and by reducing the amount of typing for users with
abbreviations and codes. Long-winded dialogues may be supportive at
first but users quickly learn dialogue steps and slow, multi-step
dialogues soon become frustrating

• Default: set default replies where there is a predictable answer; this
again saves the user work

• Help: provide on-line help whenever possible. Help has two functions:
first as a learning aid for users who are too lazy to read manuals, and
se co nd as an aide memoire for experienced users who need confirma­
tion of so me detailed aspect of an operation. Help should be layered or
nested so the information pertains directly to the option or facility
which the user wants to know about

• Undo: mistakes will be made and users will want to backtrack in a
dialogue sequence and start again. The interface should provide the
ability to go back and recover a previous state;' for example, in word
processing the previous version of the paragraph being edited

• Consistency: the format and execution of commands should be consi­
stent throughout the interface. For instance, the escape command
should use the same code (E to exit) at all levels and should have the
same effect (for example, terminate the operation and return up one
level in the interface hierarchy). Consistency reduces the amount users
have to learn about an interface

Guidelines, however, are only useful if they are applied, but their
application will often require compromises between two or more conflict­
ing factors (for example, should feedback and acknowledgement be given
at every step of the dialogue or will over-attentive messaging merely annoy
the user?). Design decisions will remain human value judgements involv­
ing trade-offs between contradictory demands of a design; however,
guidance can be given as to where during a dialogue guidelines should be
employed to ensure the design process is methodical, if not perfect.

Dialogue Design 103

5.3 Putting Principles into Practice

At this stage the dialogue consists of aseries of steps organised into
modules which correspond to the user's task. While the basic sequence of
the dialogue steps is taken from the Structured English task description,
the steps within each module need organising into a coherent order and
supplementing with additional steps so that the dialogue provides the
correct choices for users at the correct time, gives appropriate messages
and allows the user control over the interaction.

This could be done intuitively using the guidelines of good design, but
improvements can be made, if not guaranteed, by planning the dialogue
using network diagrams to show the interconnection between each ques­
tion and answer step. The ability to trace pathways through a dialogue has
two advantages. First it enables designs to be verified to ensure that bad
practices are eliminated, such as answers which cause the system to crash
and leave the user in limbo without a message; and secondly, guidelines
can methodically incorporate good practices into a dialogue.

Interface designers have used two main methods of detailed design:
dialogue specification languages and dialogue network diagrams (see
chapter 4). The form of diagram and specification varies from author to
author but most diagrammatic methods owe their heritage to State-Event
transition diagrams. These map the progress of sequences of events within
a system and have two basic components: astate which is an object or
entity at rest, and an event which is something causing one state to finish
and an object to change from one state into another.

Translated into dialogue terms, astate will be the computer awaiting a
user's reply and there will usually be a message associated with this state
either as a prompt or a feedback message relating to the last reply. The
user's reply is an event which the interface has to deal with; it changes the
interface from one state into another as the computer reacts to the user,
issuing messages and performing actions until it requires more human
interaction. In this way the whole question and answer sequence in a
dialogue can be described and planned.

Dialogue network diagrams

In dialogue network diagrams, astate (or question) is represented as a
circle, which is a resting state in the human-computer dialogue when the
computer requires human intervention before proceeding to an event (or
answer). This is represented by an arc, which shows the change between
two states, each arc being dependent on the characteristics of the user's
reply (such as valid data, invalid data, escape command). Each arc is
annotated with the conditions which cause it to be invoked. These

104 Human-Computer Interface Design

conditions can then be cross-referenced to systems and pro gram design
documentation to ensure correct programming of the interface.

Diagrams read from top to bottom and concurrency can be expressed by
two parallel sequences of circles and lines in one diagram, each showing,
for instance, activity in separate screen windows. In so me cases concurren­
cy will need to be expressed within one sequence; for example, when a
long-Iasting status message is displayed it is useful to illustrate its presence
throughout the dialogue. In this case a circle is used for a message state and
a dotted li ne indicates its presence during the dialogue although there is no
state-event change.

The transition between states may involve several events from the
computer viewpoint, but these can safely be ignored if there are no
implications for the user-system dialogue. However, if there is going to be
a significant delay in response time before the computer can accept the
next command, then this is a significant dialogue event which is shown as a
bar on the event arc representing a delay in the dialogue due to computer
processing time.

Other features illustrated are default settings of replies, and timeouts
when the computer controls transition between states after a certain time
period if it has nor received a human reply. These are shown as an arc

8
~
~
©

[eR]

AState, the computer displays a message or
menu, etc.,and awaits the user's reply

Transition, caused by a computer response
to user's input, in this case a menu reply 1

Transition to a sub-dialogue sequence, referenced in
diagram 5

Start state

Default setting [in brackets] in which the reply is
actioned by carriage return

Time-out on a reply state, showing
-----' • .-.. automatie transition initiated by the

computer

Figure 5.3 Dialogue network diagram components (adapted from Kieras
and Polson, 1985).

Dialogue Design 105

marked with a double arrow head. Diagram components are illustrated in
figure 5.3.

Network diagrams can be nested hierarchically to deal with complex
sequences. A square is used to represent a call to a sub-dialogue sequence.
Sub-dialogue sequences are labelled on the top-level diagram. For
instance, in a command language the interpreter will be called when a
command string has been entered, the parse sequence may be shown as a
sub-dialogue (possibly using a different notation such as a parse tree); and
in data entry, overlays may be called to deal with exception cases in an
input sequence. A sampIe sequence is illustrated in figure 5.4.

Dialogue dia grams are not suitable for the design of complex command
languages, where other techniques such as syntax graphs and gramm ars
have to be used; but for dialogues of simple to moderate complexity,
network diagrams work weil .

Escape

Customer
enquiries

... _---ss----@

Sales
orders

Bad
password

Order
dispatch

r ~~.

Invoice
processing

Figure 5.4 Dialogue network diagram showing the main menu in an
information processing system.

106 Human-Computer Interface Design

5.4 Checking the Design

One of the advantages of network diagrams is that they provide a quick
visual cross-check to ensure that principles of good design have been
employed. This can be carried out by checking the destinations of arcs.
Most circles should have at least three arcs leading from them: anormal
reply, the invalid reply leading to an error message state followed by return
to the previous dialogue step for re-input, and an escape route to exit from
the step to a previous break point in the dialogue.

More sophisticated implementations may have five arcs from each data
entry state: the three above plus a help arc which leads to a message state
and waits before returning to the previous dialogue step, and an undo arc
which will form aseparate dialogue sub-sequence of its own.

Dialogue networks can be verified in two ways: first to ensure that the
connections make sense, for example, error pathways terminate with a
request for further input, escape routes take the user out of an operation at
a sensible place, and second by checking that the appropriate number of
arcs is present at each step to ensure that design guidelines have been
adhered to. For instance, menu-selection dialogue steps can be checked to
ensure an error pathway is present, an escape route is provided, all options
are present and, optionally, help and backtracking facilities are present.

Network diagrams can also check the efficiency of a design. The number
of dialogue steps should be examined; a large number of steps with only
two branching arcs following simple questions (of the Yes/No type) should
be viewed with suspicion. Such a dialogue is likely to be too long-winded
for all but the naive user.

Sequences can be examined for defaults; if there are none, each step
should be examined to determine whether pre-set replies could be
included. Back-up information, such as status messages, should be
included if not already present. By following through the dialogue se­
quence on a diagram, good design principles can be incorporated, although
it should be remembered that good designs cannot be guaranteed, and are
finally dependent on experience.

5.5 Summary

Detailed design starts by mapping the task design to interface modules
employing the principle of cohesion as a guideline. The access mechanism,
modelled on the user's view and choice of interface type, is added to the
design to provide user control, and the overall design expressed in an
interface structure diagram. Access also depends on the task structure,
which may suggest a hierarchy, network or, in an unstructured domain,
direct access to task fragments.

Dialogue Design 107

Dialogues are based on task sequences, but additions are made to
incorporate good design practices for user guidance and support, such as
undo, help, escape, default and feedback. Dialogue sequences are
designed using network diagrams which show all the possible pathways
through a dialogue as aseries of state-event transitions. Nodes represent
states which are computer messages and displays, arcs are transitions and
annotated with the human reply wh ich triggers the transition. Network
diagrams can be verified by visual inspection to ensure that good design
practices are adhered to. Escape, help and undo arcs are expected at most
dialogue steps, and pathways should contain messages giving relevant
feedback.

Further Reading

For details of GTNs, see Kieras and Polson (1985). Dialogue design
guidelines can be found in Gaines and Shaw (1984) as a set of general
'proverbs'; for more detail consult Smith and Mosier (1984) or Rubenstein
and Hersh (1985).

6 Presentation Design

This chapter gives general principles and guidelines for the display of data.
Presentation design for most interfaces involves screen design although
other media, such as voice, will play an increasingly important role in the
future. This section concentrates on the general approach for VDU screen
design; detailed guidelines for different types of screen and use of graphics
are given in later chapters.

Presentation design aims to display information as efficiently as possible
for human perception and to structure the display in such a way as to draw
attention to important items of information. Presentation design is
concerned with general structuring of the display and detailed design of
field formats. The following guidelines apply primarily to VDU screen
displays, although most of the principles may be applied to hardcopy
reports as weIl. The designer should be aware that reading VDU screens
and printouts does differ. Procedures for screen design are described first,
followed by investigation of general topics of presentation design:
attention and highlighting, use of colour, messaging, abbreviations and
codes, and screen layout.

6.1 Screen Design Procedure

Information can be displayed in text form or by using graphics. Text has to
be displayed using characters but figures may be shown either in tabular
format or qualities of the values can be expressed using graphs. Generally,
the more information which can be shown in a graphical form the better,
because information is assimilated more easily in picture form. However,
to present information graphically requires interpretation, wh ich may lead
to users perceiving different facts from those that would be apparent from
reading the raw data itself. Graphs are useful for showing trends in data
and creating impressions of differences, but they are not so useful for
accurate and detailed analysis of values.

The choice of whether to use graphics or character displays will be
determined by the user in conjunction with advice from the analyst. A
general guideline is that if figures are to be used for detailed analysis in
wh ich values are important or if data values are going to be abstracted from

108

Presentation Design 109

the display, then character display should be used. In contrast, if overall
qualities of the data need to be communicated, and values are not critical
in the analysis, then graphics is a more effective medium.

To be effective, displays need to be structured. Overcrowded displays
cause mistakes in reading and eyestrain. Effective presentation has to solve
a dilemma of displaying the maximum amount of information on the small
space of a VDU screen, while at the same time not overcrowding the
screen with too much data. If too little data is displayed, the users will have
to page through endless screens to find the data that they need; display too
much and users have the problem of not seeing the wood for the trees.

Display design should start with design of the display structure. First
information has to be grouped into blocks and the blocks ordered in a
manner most useful to the users. Ordering and grouping of data will
depend on the usage, and the dialogue specification may be taken as a
starting point for screen design. Dialogue modules may map directly on to
screens and detail within screens can be specified by inspecting dialogue
network diagrams and segmenting sequences according to closure events
imposed during task design. The dialogue segments can then be mapped
on to screens, overlays and windows. Dialogue diagrams also give a
specification of the message types that will have to be displayed.

Screen display specifications at this stage will consist of a sketch of
screen areas, windows and overlays with lists of data items and messages to
be displayed in each area. This specification is reviewed to structure and
organise the display further. The objective of grouping data is to pi ace data
items which will be used together in the same place and make it easier for
the user to find discrete data items. These two objectives may weIl be in
conflict. The better known the data usage, the easier is the analyst's task of
displaying data relevant to a task, and data items can be effectively
grouped by a variety of user-defined criteria. However, when data usage
requirements are ill-defined or the usage needs produce conflicting group­
ings, dialogues for data retrieval and dynamic configuration of displays
have to be designed.

Examples of grouping by usage are placing figures for comparison
together, such as planned budgets and actual spend. GrOlipings by
category uses the identity of some object that the data belongs to, such as
branch, district, regional sales figures, or some quality inherent within the
data items, for instance, all counties with above average rainfall. If the
usage cannot be anticipated then a compromise is to group data belonging
to entities using the results of data analysis to determine display contents.

Once the contents and overall structure of the display have been
decided, more detailed design is carried out to create a mock-up of the
display. The display sampies or prototypes are tested with users for
acceptability. Early user testing of interfaces is a good way of obtaining
feedback, not only on screen designs but also on the functionality of the

110 Human-Computer Interface Design

system itself. When users see part of the system they invariably venture
opinions, whereas written specifications may be accepted without any
feedback. In summary, the steps in screen design are:

• Identify system inputs and outputs. These will be part of the systems
analysis documentation

• Segment the dialogue specification into screens, overlays and windows,
using closure events to determine boundaries of sub-dialogues

• Identify user requirements and user characteristics. This will form part
of the user analysis which determines the appropriate level of support,
prompting and messaging in a screen

• Describe in detail the format of data items and messages to appear on
the screen

• Design screen structure, starting with the general layout of the screen,
then adding headings, titles, prompts and error messages

• Test screens with users: re design if necessary
Systems inputs and outputs will be described in the data dictionary

created during systems analysis. The important factors for screen design
are to identify data flows across the system boundary, list their contents
from the data dictionary and describe the screen function, that is, data
entry, data display or conversational (a mixture of both). The dialogue
network specification refines design to areas within a screen. Different
functional pathways within a dialogue should be mapped on to screen areas
reserved for their purpose, such as working, command, help and error­
processing areas.

User characteristics have a bearing on the amount of support informa­
tion which should be provided. Screens for naive users will require
complete prompts and detailed explanatory instructions, although the
amount of instructional and prompting material necessary will decrease as
user expertise increases. Abbreviations and short prompts should only be
used with skilled users or with novice users who may be expected to
acquire skills quickly through frequent use.

Description of data items amplifies the amount of information already
present in data dictionary entries by adding information needed for screen
design, such as data item relationships, field size and format. A typical data
item description may be:

Data name Size Type Req'dlOpt Validation Prompt
Customer Name 30 X R LUT Cust. name
Address 30 X 0 Address
City 20 X 0 City/Town
Post Code 7 X 0 Posteode

Vehicle type 15 X R LUT Vehicle
CC 4 9 R Range Engine ce
Cover 1 X R LUT Ins. cover

Period
Start date
Driver age
Years exp.
Other drivers

2
6
2
2

20

Presentation Design

9
D
9
9
X

R
R
R
o
o

Data grouping in order by:

Driver details
Policy sought
Driver experience

Range
DD/MMlYY
Range
Range

111

Cover. dur.
Start date
Driver age
Driver yrs
Ex. drivers

Validation may be look-up table (LUT), reference list, range check, check
digit etc. An extra column may be added to specify the effects of validation
failure (fatal, warning) and the error message issued to the user.

Supporting data has to be added to the basic requirements for:

Screen title
Status information: screen page, file display, current system function
Section headings
Messages and prompts
Instructions and help

The basic display and supporting data are mapped, together with space
to separate blocks of information, in the display area provided by the VDU
hardware being used. General screen design allocates areas of the screen
layout to data display/data entry, control, error messages, titles and
headings. A screen sketch is prepared showing the approximate layout, as
depicted in figure 6.1. The sketch is then refined using detailed guidelines
to create a screen layout specification on a VDU layout chart. Design
guidelines for messaging, use of colour and general formatting are necess­
ary for detailed formatting of screens. The following sections ex amine
these issues.

6.2 Detailed Display Design

Issues covered are highlighting important information to attract user
attention, use of colour, messaging and abbreviations.

Attention and highlighting

One of the most important effects which has to be achieved when
presenting information is to draw users' attention to important items. This

112 Human-Computer Interface Design

AMEND PURCHASE o R 0 ER
Requisition numher [] Supplier's nale []

Order number (] & Address (]

Order date!DD/MM/YY) [I I] (]

NOli nal codelb digits) (] Dept-staff-nale []

Ihm nUlber IJuantity Product description Price(x.xx)

PA6E 1 [] [] [] []

[] [] [] []

[] [] (] []

[] [] [] []

[] [] [] []

Total itels [] Total []

Narrati ve (]

Ulpdate this purehase order, R)enter alend facilities
Eixit without updating Enter option:[]

IERROR MESSli6ES DISPlAYED HERE)

Figure 6.1 Screen sketch for an order entry system.

is effected by highlighting information, which must be approached with
care. Overdoing highlighting can make screens tiring to read and cause
physical discomfort if too many attention-seeking stimuli are used. Also, if
too much information is highlighted then the user cannot possibly attend to
it all, a situation which can lead to task overload and poor performance.
The objective is to highlight only when strict1y necessary, and even then to
use the techniques judiciously so as not to overdo the overall effect.

Data can be highlighted by many different visual attributes:
• Movement (blinking or change of position)
• Brightness
• Colour
• Shape (character font, shape of symbols)
• Size (text size, increased size of symbols)
• Shading (different texture of objects)
• Surroundings (underline, borders, inverse video)

In the above list, movement is by far the most effective stimulus for gaining
attention. People are very sensitive to movement as the eye has specific
detectors for that purpose. After movement, size and colour are probably
the most effective, but the scale of the effect depends on how the attributes

Presentation Design 113

are used. Brightness is not so effective. People can only distinguish a few
levels of brightness so it should be used sparingly. Over-bright images are
unpleasant to read and should be avoided.

Shading is effective for drawing attention to part of the screen and does
not run a high risk of presenting too strong a stimulus. Surrounding screen
areas or drawing explicit boundaries can be used effectively in many ways.
Text may be underlined or surrounded by a box, the background can be
shaded or coloured, and in inverse video, the complete contrast to the
normal image makes a very effective stimulus. Colour is a complex subject
in its own right, and is reviewed in the following section. As weIl as using
attributes of the displayed item and its immediate surroundings, highlight­
ing and attention markers can be designed as indicators or warning icons.
Care has to be taken that the user population interpret the warning icon as
the designer expects.

The design should achieve a pie asant display which guides the user to
important data items but does not present too many conflicting stimuli. In
figure 6.2 the screen has been overloaded with attention-seeking stimuli.

DRIVE: A I WORD PROCESSING OPERATIONS I DATE: 12/1/88

FILES**

TEST.DOC
CHAPTER2
MEMO

CHAPTER3
FIGURES
LETTER.PRN

CHAPTER4
CHAPTER5
REF.LST

CONTROL *** ** **** ****************** ****** * ***** **** ** * *** ** ** *

SELECT FILE

THEN lJSE

EITHER".

CNTRL KEY$ OR

FUNCTION KEYS

Figure 6.2 Example of too many stimuli on an overcrawded screen. The
use of highlighting in several different parts of the screen results in too

many strang stimuli competing for attention.

114 Human-Computer Interface Design

This screen would fail to achieve its objective and be unpleasant to the
user. A better design is illustrated in figure 6.3 in which an attention­
seeking display has been limited to the minimum necessary items.

WORD PROCESSING OPERATIONS
Drive: A Date: 25/1/88

Editing: FIGURES

TEST.DOC SALES.M3 SALES.M4
SALES.M2 FIGURES SALES.M5
MEMO LETTER.PRN REF.LST

Order delivery dates

5/1/88 Order lead times
6/1/88
8/1/88
11/1/88 J anuary week
1111/88
15/1/88 1 2 3 4
16/1/88
18/1/88
19/1/88 3 4 3 0
20/1/88

1 PRINT 11 SEARCH IIREPLACE 11 CUT 11 PASTE 1

1 HELP 11 TAB 11 MARGIN 11 FORMAT 11 INSERT 1

Figure 6.3 Example of beUer screen design. The use of highlighting has
been restricted to the minimum necessary and the screen is less crowded.

Use of colour

Colour is a very effective technique for highlighting and mayaiso be used
for grouping information, differentiating between information, and coding
simple messages (red = danger). Colour also has aesthetic qualities and
properly used colour displays may appear more pleasing and restful than
black and white. Visual resolution of detail is better in monochrome so
there is a trade-off between the impression made by colour and the amount
of detail to be displayed. Colour is a strong stimulus which it is easy to
overuse.

Presentation Design 115

Colour has three qualities:

(1) Wavelength: this determines the basic colour spectrum from red to
blue.

(2) Saturation: the amount of white mixed with a colour. A low saturation
colour has a lot of white in it, hence a low saturated red is a pink or
rose colour.

(3) Brightness or hue: this is the measure of the colour luminance.

All three qualities interact to give subject impressions which are poorly
understood, and further discussion of this topic is beyond the scope of this
book. Despite imperfect information on the effects of colour, so me
guidelines may be given:

• Limit the number of colours in one display to a maximum of 5 or 6
• Display unhighlighted information in low-saturation, low-hue colours,

such as unobtrusive pale colours
• If colour is being used to code information, make sure the user

understands the code
Most terminals support 6 or 7 colours (namely green, yellow, red, blue,

turquoise, pink and white) and possibly shades in between to give an
overall range of 16 colours. The guidelines for colour co ding and use are:

• To show status: red = danger/stop, green = normaVproceed, yellow =
caution

• To draw attention: white, yellow and red are the most effective
• To order data: follow the spectrum (red, orange, yellow, green, blue,

violet)
• To separate data: choose colours from different parts of the spectrum

(red/green, blue/yellOW, any colour/white)
• To group or show similarity: use colours which are dose neighbours in

the spectrum (orange/yellow, blue/violet)
Note that colours have different qualities of subjective brightness and

that colour affects shape resolution. Characters and detail which require
good visual acuity should be displayed in yellow or white; background
material is best displayed in blue wh ich appears most restful. The common
colours have visibility characteristics:

Red: low symbolluminance-poor visual acuity.
Yellow: good visibility over a wide range of luminance, best visual
acuity.
Green: good visibility over intermediate range of luminance.
Blue: good visibility at low luminance, poor acuity.

A final note of caution when using colour is to remember that 9 per cent
of the population is colour blind, with red/green blindness being most

116 Human-Computer Interface Design

common. Although colour blind people can discriminate colours using
black and white shades, the designer should check that use of colour is not
going to impair performance of these users.

Messages, abbreviations and codes

Presentation of text occurs in design of titles, headings, prompts, error
messages and control instructions. A few simple guidelines should be
adhered to whenever text is being used:

• Keep the wording simple: avoid computer jargon, although use of user
jargon words may be necessary

• Be concise: do not inc1ude any words and phrase which are not strictly
necessary

• State the positive rather than the negative
• Use a polite but not over-familiar tone: use of 'please' always helps but

too many 'have a nice day' or 'hello I'm your friendly XX computer'
messages irritate after a few days

• Use the active voice of verbs rather than the passive voice: for example,
to Cancel order-press C, and not Orders are cancelled by pressing C

Messages should always be given in full unless the constraints of space
are unavoidable, in which case abbreviations will be necessary. Codes may
be necessary as a further form of abbreviation, if spate or keystrokes are at
a premium. Such circumstances may be found in data entry dialogues with
keywords and command language dialogues.

When using abbreviations adopt a consistent approach and try to avoid
exceptions to the rule. Abbreviations should be of the same length, the
number of characters being a trade-off between typing time and abbrevia­
tion eIarity. One approach is to abbreviate either by truncation or by
compression, thereby producing a mnemonic code, that is a meaningful
code in which the abbreviated word contains some eIue to the identity of
the whole word. Truncation removes trailing characters from a word,
leaving the front few characters to convey the meaning, such as DIRectory.
Generally , truncation is the easiest and most effective technique but it does
run into problems of duplicates. With larger code sets, truncation becomes
a less viable technique and compression has to be used.

Compression techniques aim to preserve something of the word struc­
ture while reducing the number of letters. Words are composed of syllables
and one effective technique uses letters that represent the sound stressed in
the syllables as the word is spoken. An example is the airline airport codes;
for example, London-HeathRow becomes LHR, New York-Kennedy
becomes NYK. Simpler techniques such as eliminating either vowels or
consonants are not as effective; for example, compare Mnchstr, Mancetr
and MCR for Manchester.

Presentation Design 117

Sometimes simple abbreviation will not suffice and a more complex
coded representation is required. Codes are used for uniquely identifying
many objects within systems and including information within the code can
be helpful in the design of system processing. However, the human factors
objectives in code design are to make the code as easy to understand as
possible.

Basic code types are:

Hierarchieal: codes in which each digit represents an object in a
particular part of a classification hierarchy from super-group to group to
sub-group, etc. An example is Vehicle class = 456, where 4 = Commer­
cial vehicles, 5 = under 20 tons, 6 = Ford.
Faceted: in these codes each digit has meaning independently of the next
and categorises one property of an object. For example, Manufacturer's
code 9742, where 9 = mild steel, 7 = 7 mm diameter of the head, 4 =
4 cm length, 2 = product type, a screw.
Mnemonic: must be letter-based codes which contain some meaning
within them.
Signijicant: these are derived from some measure related to the object
wh ich they describe; for example, in a matrix, 1735 refers to location row
17 column 35.
Derived: the code is produced by an algorithm which converts the
original word or character into the code letter. All secret ciphers are
derived codes; a simple example is letter to number conversion, 0126
representing AZ. More complex ciphers use conversion tables and
mathematical conversion algorithms.

From the human factors point of view, a code structure should be made
explicit to help chunking, thus for faceted and hierarchical codes:

124577659 is bad; 124-577-659 is better

In faceted and hierarchical codes the interdependencies between digit
location should be kept to aminimum; the more constraints of the type 'if
you have a 9 in column 1 then you can't have a 4 in column 2', the worse a
code wilJ be to use.

6.3 Summary

Presentation design takes the system input-output requirements and the
dialogue specification as a starting point. Dialogue modules may map
directly on to screens; however, segmentation of the dialogue according to

118 Human-Computer Interface Design

function may be necessary. Dialogue segments are then mapped on to
screen areas, overlays and windows, depending on the target interface
hardware and software.

Detailed design needs to consider use of highlighting; too many strong
stimuli can create unpleasant designs. The range of attention-seeking
stimuli in approximate order of potency is: movement, shape, size, colour,
brightness and texture. Colour should be used sparingly and care is
required when attempting to colour-code information; although as a
method of improving the overall appeal of design, colour can be very
effective. Messages should be concise and relevant with no jargon.
Abbreviations may be necessary whenever there are constraints of display
space and economy. Truncation abbreviations are usually favoured, al­
though compression techniques can also be effective. Mnemonic codes
which preserve meaning should be used whenever possible, but numeric
codes may be required for processing efficency. In this case the code
should be easy to understand.

Further Reading

Galitz (1981) is one of the most comprehensive sources of screen design
guidelines, but see also Huckle (1981).

7 Data Entry Interfaces

Data entry concerns input of any data items for computer processing. Data
entry interfaces are the part of computer systems with wh ich end users
spend most of their time. These interfaces are also one of the most
error-prone parts of computer systems and have given rise to the acronym
GIGO (Garbage In Garbage Out). The design of good data entry
interfaces should aim to prevent GIGO and make data entry as efficient
and pleasant as possible for the user.

General data entry guidelines are described and then different types of
data entry interface designs are examined.

7.1 Data Entry Guidelines

The general objectives for data entry are to save the user work, and to
make entry error rates as low as possible. This is achieved by keeping
users' memory load as low as possible, making the interface predictable
and consistent, protecting the user from making mistakes, and automating
as much of the data entry as possible. Data entry guidelines aim to give the
user freedom to control entry as efficiently as possible. One method of
automating data entry is to use specialist hardware reading equipment,
such as O})tical character recognition, Bar code readers, and Magnetic ink
character recognition, as detailed in section 7.4.

Within the constraints of software design, reduction of the users'
workload can be achieved by:

• Setting defaults for commonly ente red items
• Using codes and abbreviations
• Automatically filling-in previously entered items, such as customer

name and address, from file
• Using pointing responses and selection from a list, if entry is from a

limited set of choices
Data entry screens should be designed to model the input form as closely

as possible. If no input form exists or the old input form is poorly designed
and difficult to use, a new screen layout will have to be designed.

Data items should be grouped together either according to their
frequency of use, or their importance, or sequence of entry. The choice of

119

120 Human-Computer Interface Design

which grouping criterion to use should be made in consultation with the
user. Most data entry tasks involve a transaction. Transactions in most
information systems are described by a paper document-a distinct
document which is created and then processed by the system (for example,
customer order, hospital admittance record, export shipping document).
When entering transactions, data grouping is usually by sequence of entry;
however, further guidelines are given in the section on form filling, the
data entry dialogue wh ich is suitable for transactions.

Data entry dialogues should be designed to give the user positive control
over the sequence of communication rather than attempting to help the
user with design tricks such as automatic skip to next field, and automatic
ente ring of default replies before the user has had time to give a command.
Such dialogue features will cause frustration when they are not required,
but more importantly they conflict with wh at people normally expect. Most
people expect data entry to be like filling in a paper form by hand, in which
case you have to explicitly move to the next field. Computer interfaces
should conform to users' expectations even though autotabbing between
fields may appear to be saving the user work.

However, autotabbing may be justified for ski lIed users with high
transaction volumes, in which case speed and efficiency considerations are
more important. The trade-off judgement illustrates how context affects
the formulation of guidelines. General guidelines for data entry dialogues
are as folIows, but the influence of the design context should be considered
when putting these into practice:

• Explicit Enter: validation and entry only occurs when the user presses
the enter key; this allows checking within the entry for errors

• Explicit movement: autoskip/autotab between fields is not usually
advisable, as unskilled users find the unexpected movement distract­
ing. Use TAB or CR to move between fields

• Explicit Cancel: if the user interrupts an entry sequence, the data
already entered, even in the current field, should not be deleted. This
allows reconsideration of a cancel action which may have been a
mi stake

• Explicit Delete: make deletion an obvious action which is not easy to
take without an extra confirming step-Delete Order: are you sure?
(Y/N)

• Provide feedback: users should be able to see wh at they have entered.
If several entries can be placed on one screen, the previous transactions
should still be displayed. Feedback messages should be given to users
to inform them of the next action which is expected

• Allow editing: editing, ideally, should be allowed within a transaction
and after it has been completed; hence users should be able to edit a
field that they are currently entering and to go back and change fields
entered previously. A consistent method of editing should be adopted

Data Entry Interfaces 121

• Provide Undo: allow users to backtrack to the previous 'before' state.
This is often useful in edit and command sequences to correct mi staken
courses of action

• Auto format: users should not have to enter redundant digits and
characters such as leading zeros, for example 79 not 0079 to fit a PIe
9(4). Entry should not be space sensitive, for example, both A. Name
and A Name should be acceptable

• Show valid entry responses or values in prompt: either the range or
valid replies in a set should be shown, for example, enter discount
value in the range of 1 to 10

• Entry at user's pace: users should be able to control the speed of data
entry because forced work schedules will be resented.

These general guidelines are applied in specific data entry dialogues. The
most common type is form filling in which data is initially captured on a
paper document. Systems analysts and interface designers often have to
design paper-based interaction for data entry as well as computer
dialogues, as elaborated in the next section.

7.2 Forms Design

The data to be ente red into computer systems may come directly from the
source, which may be aperson, or a measuring device, or another
computer system. Alternatively, data may have already been captured on a
paper document-a form. Forms design as a result tends to be an integral
part of data entry design for many computer systems.

Forms play an important part in most peoples' lives and are the source of
most data entered into computers. Data is entered on to forms by people
using the dialogue of instructions provided by the form. This can be an
error-prone process because people may mistake instructions, skip fields,
give information in the wrong format, make transposition errors or write
illegibly. Good form design can reduce these problems.

Data entry, whether on to a form or into a computer, is proceded by data
capture. When designing data-capture procedures, the following guidelines
should be considered:

• Data should be collected at source as far as possible
• Data should be entered on to the data-capture document (a form) by

the originator of the data
• A void transcription of data from one form to another. Transcription is

an error-prone process wh ich should be avoided if possible.
Forms should be designed for ease of data collection rather than

extraneous factors such as fitting into envelopes or saving on printing costs.
Data collection is an expensive running cost, so if savings can be achieved
by quicker, and more accurate data collection, these will far outweigh

122 Human-Computer Interface Design

capital costs incurred in good forms and data entry design. Forms should
have a consistent design as far as possible within a system and an
organisation. The more consistent designs are, the more uniform users'
expectations become, and consequently their learning burden is reduced.

Forms have to be designed to capture option al as well as essential
information. The design of information capture needs to identify the
individuals who will fill in the form and strike a balance between having
one form which tries to suit all people and many different forms with each
one tailored to a particular user. The all-purpose form suffers from errors
of people filling in irrelevant information and completing the wrong
sections. Tailored forms, on the other hand, suffer from people having
difficulty getting the right form for their needs and accidentally filling in
the wrong one. How many individual data sources to target on one form is
a trade-off decision. Generally one form should have one purpose and the
number of alternative form types should be kept to aminimum. If there is a
sizable population which can be identified as aseparate data source then a
specially designed form should be constructed for them. This has to be
weighed against the problem of making sure the correct people get the
right form.

User analysis should be carried out for forms design as with other
interfaces. User characteristics can help to decide on form design for both
majority and special cases, and determine the level of instructions and
prompts which will be necessary.

Forms consist of three main components:
• Data entry areas
• Supporting information, and instructions
• Titles and headings
Data fields within the form need to be ordered and grouped according to

frequency of use, importance, functional relatedness or sequence of use,
whichever is most important for the user. Within each group, fields are
ordered in sequence of entry. In transaction-related forms fields will
generally be grouped in functionally related blocks; for example, in an
order form: customer details, order date and delivery details, and products
ordered. Data groups should be separated by clear boundaries and the
complete form should not have a surface area more than 40 per cent full of
data fields and printed messages. Forms more than 40 per cent full have a
cluttered appearance and impair visual searching for information. The
consequences of poor design resulting from overcrowding and poor
structure can be seen in figure 7.1, and the effect of remedies described
above are shown in figure 7.2.

Three types of form layout are most common; caption before, caption
above, and caption and box designs-see figure 7.3. The caption and box
design is favoured because it gives the best visuallink between the caption

LJata lSntry Interfaces 123

Name: Arthur Brown Application Ref 1787286CB2

Address: 12 The Avenue, Milton Keynes MK21 3RZ

Date of birth : 12.12.50 Area code B

Vehicle type: Ford Make Escort Model GL
CC 1600 Year of Manufacture 1986

Type of Cover: C Ins cIass 3

Extras: Mary Brown 1.1.56
: Windscreen option

No claims 40% Prev Ins GRE
Disqual N
Details

Figure 7.1 Illustration of paar data entry forms design.

and the data entry area, encourages readable input, and gives a more
visible structure to the form.

Guidelines for general form design are:
(a) Make selections explicit. If there are alternatives within a form of the

type 'If A fill in section 1, else fill in section 2', make sure that
separate sections are clearly marked and the deciding condition is
stated in the positive, for example, 'If extra cover is required pie ase
complete Section B', and not 'If no extra cover is required omit
section B'. The else condition should give clear navigational instruc­
tions to the next place in the form with arrows and Goto instructions
as depicted in figure 7.4.

124 Human-Computer Interface Design

MOTOR INSURANCE POLICY APPLICATION

New Policy Date 25/1/88

Driver details

Sumame : Brown Initials : A.T.

Title : Mr (Mr, Mrs, Ms, Dr, Oth) Date of birth :

Address : 12, Any Avenue ________ _

: Milton Keynes, ________ _

Posteode :

Vehicle Details

Manufacturer : Ford ___ 1 Make: Escorl __ 1 Model: GL_I

Year of manufacture : 19861 Engine: 1600 (ce)

Policy Details

Policy type: CO [;] 3P D FT D
Named drivers: Mary Brown __ _ Date of birth

Options : Windscreen ___ _

Figure 7.2 Illustration of beUer forms design. The information has
structured headings, and more prompts and instructions have been added.

(b) The effort of form filling should be kept to aminimum. Use tick
boxes, circle the code, or cross out the alternative when replies come
in limited sets. This makes replies neater and less effort is demanded
from the user. On the whole, tick boxes are the best method because
a single tick is the most economical movement.

(c) Many forms are filled in by two or more people. Typical of these are
the 'For office use only' sections on forms. Sections for different
people should be clearly separated, and if any transcription from one
entry to another is necessary, align related fields as closely as
possible.

I>ata ~ntry Inte~aces 125

1. Caption before

MOTOR INSURANCE POLICY

Name

Initials Title ---------------- (Mr, Mrs, Ms, Dr, Other)

Address

Post Code --------------------

2. Caption within fill-in area

MOTOR INSURANCE POLICY

Name \ Initials

Address

Posteode I Town/city

3. Caption above

MOTOR INSURANCE POLICY

Name Initials

Address

Figure 7.3 Forms design showing three types of prompt and fill-in layout.

Form layout

Slightly more printed information can be put on a form than a VDU
screen, so more use can be made of delimiters to break up the form into
distinct areas. Placing groups of information into boxes is an effective
technique, and background colour can also be used to differentiate
information. Fill-in areas should be lightly coloured, while more stimulating

126 Human-Computer Interface Design

MAJIC WTDGIT COMPANY

V
SALESORDER

Customer code Order Date

I I I I I I ITJITJI I I
V

D D M M Y Y

Order type ~ Shipping details

D (P pro forma, I normal terms) D (Hl home E export)

V ~
IPaymrt details Export

(CH cheque CA cash) Country agent B Required delivery date
Shipping agent

ITJITJ·ITJ CCfclass I I I I I
V .~ ~

Product Code Quantitv Unit Cost Total Cost

Continuation sheet 1 1 <:

Figure 7.4 Forms design illustrating use of tick boxes and navigational
instructions.

colours should be reserved for titles and instructions. When designing
more detailed layout it is important to bear in mind the following points:
(a) Captions and prompts should either precede the fill-in area or be

left-justified above the box
(b) Data entry fields should be aligned left-justified, and if possible with

a justified right margin. However, as entry fields are invariably of
different lengths, right-justified margins are difficult to attain; so
to create a more balanced design, it is better to aim for one row with
one answer if space permits.

(c) The filling-in area will depend on whether hand writing or typewriter
completion is anticipated. For hand writing, allow !-inch width per

Data Entry Interfaces 127

character with extra space for separation, and a height of ~ inch. For
typewriters this can be reduced to -lo inch by g inch. Separating the
fill-in area into character boxes can help legibility but runs into
problems when replies over-run the number of boxes printed on the
form.

(d) When the number of characters in a reply is known, the data entry
area should be subdivided to format the reply field. Character
delimiters should not be too obvious or they will interfere with the
reading process and make filling in slower.

(e) If units of measure are being requested, the unit should be specified
on the left-hand side of the fill-in box unless so me multiple is being
requested; for example, if thousands, trailing OOOs are used.

(f) Highlighting should be used for titles, mandatory fields, important
prompts and instructions for filling in.

Prompts, titles and instructions

Wording on forms is vital to success. Three rules apply to a11 wording:
• Keep it simple
• Be explicit
• Exdude anything not directly relevant

Titles must describe concisely the purpose of a form and should be centred
at the top of a document.

Completion instructions must be dear, brief and use easily understood
words, especia11y for public use forms. Brief instructions may be located
before the entry field to which they pertain, while more complex instruc­
tions should be placed at the top or bottom of the form. However, if
instructions cover 50 per cent or more of the form's area then aseparate
instruction sheet should be used. Such detailed instructions should be put
on a separate page with the order of instructions kept in pace with
questions on the form. Once the form has been designed it can be used for
the basis of data entry screen design, but further design is necessary for
dialogue control when using form filling as a data entry interface.

7.3 Form-filling Interfaces

Form-filling dialogues are the most common data entry interface for
information systems. The principal aim is to model the computer interface
on the data entry document as far as possible; thus the user is familiar with
the interface layout and transcription from paper to computer fo11ows a
sequence that the user knows.

Many of the guidelines for forms design also apply to the design of
form-filling screens, but form-filling interfaces are a true human-computer

128 Human-Computer Interface Design

dialogue and the dynamic part of error messaging, data validation and
computer control are extra features not found in forms design.

Data validation

Data entry is notoriously error prone. Errors may be caused by omission of
a field, incorrect data being entered in a field, and number/letter transposi­
tions. Data validation attempts to check that all mandatory fields are filled
in, and that the data entered is correct, or at least reasonable. Some
commonly used methods for data validation are as follows:

• Lists, look-up tables and reference files; all synonyms for checking data
entry values against a list of all possible valid values held on the
computer. The most common type of validation used is checking
against a set of values, such as Customer numbers, Account codes, Part
types, etc.

• Type check, picture check: simple check that the data is of the correct
basic type, that is, numeric data was entered when expected

• Sub-range: the value ente red is compared against a range of expected
values. This is similar to list checks but simpler, for example, number
check replies within the 0--99, character check A-Z

• Check digit: useful for numeric codes when the input values are known
and faster than list checking when the code set is large. The idea is to
use an extra digit which is added to the code number, having been
calculated from the code itself:

Reference number 1 2 0 3 4
Weighted by 6 5 4 3 2
Product 6 10 0 9 8
Sum of products 33
Divided by prime number 11 = 3, remainder 0

Number plus check digit 1 2 0 3 4 0

When the code number is re-entered it is checked by recalculating the
check digit. The above example uses the modulus 11 technique; there
are numerous other hashing algorithms for this purpose

• Comparison check: a comparison check assesses the reasonableness of
one value by comparing it with another related value. A typical
example is heightlweight ratio for people. These measures follow an
approximate relationship, hence if the weight was entered as 70 kg and
a height as 1 m 20 cm, it is a reasonable guess that something is wrong
unless, exceptionally, there is a very fat dwarf in the sampie

• Probability check: this adds more sophistication to the reasonableness
check by setting limits in the form of a range around a norm. Thus in

l)ata ~ntry Interfaces 129

the weight sampie a deviation of 20 per cent from the norm would be
flagged with a warning error. More accuracy can be attained by using a
statistically calculated standard deviation

Validation errors may be classified into three categories and different
error correction actions specified for each.

• Fatal errors: errors which make a nonsense of further processing, such
as invalid account codes, customer names. In this case the user must
either re-enter a correct value or abort the entry; no other action must
be allowed

• Warning: errors which are caused by highly unlikely values. Processing
should be halted, and the user invited to re-input. However, an
over-ride should be given so that the user can input the original value
which may be the exception to the reasonability rule

• Advisory: errors wh ich are caused by unlikely values. Processing may
not necessarily be halted but a warning message should be given so the
user can halt either immediately or at the end of the transaction to
check and possibly edit the data

Validation messages are placed in a consistent part of the screen reserved
for error control. This leads into the question of screen design for
form-filling interfaces. General design was covered in chapter 6; consider­
ations specific to data entry are now examined further.

Screen design

The screen area should be partitioned into data entry, command and
error-processing areas as illustrated in figure 7.5. Alignment of data entry
fields with error messages is desirable but this may not be possible if an
over-riding priority is to make the working area resemble the source
document which consequently fills the whole screen area.

Guidelines and a procedure for grouping information and formatting the
screen were given in chapter 6 (section 6.1). A complication of many VDU
terminals is the capability for local data entry and limited validation in
intelligent terminals. The terminal and not the application program
performs simple checks such as numbers entered into numeric fields. These
features are found in IBM 327X terminals and similar products from other
manufacturers. The major difference is that data is only entered into the
main computer, and hence the application program, when the ENTER key
is pressed at the end of a screen rather than after a eR per field. As a result
a whole screenful of information is validated at once, and error messages
have to be linked to appropriate fields.

This linking can be achieved by highlighting incorrect fields and cons­
tructing an error-recovery dialogue for the user to step through errors one
at a time, or linking fields to error messages with a code. The advantage of
3270-type terminals is the range of screen design features not available on

130 Human-Computer Interface Design

15/12/87
ACCOUNIS CONIROL

15:23

Errors - Ready Iransaction entry

Monthly expenses

Enter Account Code <00435>

Expenses: Lrave1

Cost Centre Code < 145> Etrd{ 4 digit \<6J1e I;eq.

Date of Expenditure <12/11/87>
Errot current month
onll - Dec

Enler Amount f: < __ 89:50:>

Receipl Checked (Y) < Y>

Press ENTER 10 edit TAB 10 move to next field
S and ENIER to save and exil
ESCAPE 10 exil and abandon

Figure 7.5 Screen layout on intelligent terminals (IBM 327X variety).
Error messages are aligned to entry fields because validation occurs only

after the whole record has been entered.

ordinary VDUs. Fields can be located anywhere on the screen and
properties associated with fields by 'attribute bytes', which tell the host
program what the field type is and control simple terminal operations on
the field, for example:

masked field-no display for passwords
display only field
data entry and edit field
message field
simple type checking

Other display qualities can be coded in attribute bytes such as highlighting,
colour and inverse video. Many of these display properties are used to
improve messaging, a vital component of user-system communication,
only too often neglected.

LJata lSntry Interfaces 131

Messaging

Messaging is important for conveying the type of errors and for giving users
instructions to control the input sequence and error correction. As with all
computer messages, the wording should be clear, simple, concise and
relevant.

Error messages have often been one of the most user-vicious parts of
interfaces. There is no excuse for 'Syntax error' or 'Invalid field'. Error
messages must be informative, jargon free and attempt to tell the user not
only wh at is wrong but also why, with an explanation of the correct course
of action to put it right. For example:

Start date
Maturity date

1/10/86
12/9/86

Error: Maturity date before Start date: PIe ase re-enter either date.

Messaging in prompts should be positive and active voice. In other
words express the Dos rather than the Don'ts and use the active voice
'press Return to Continue' rather than the passive voice 'This sequence
may be terminated by pressing the Break key'.

Handling edits and errors is one of the most complicated parts of
data entry interfaces, which often necessitates creating new dialogue
sequences for these tasks. Dialogue control for data entry aims to prevent
errors happening, and when they do to make correction a simple matter for
the user.

LJata entry dialogue control

Part of the dialogue will be specificed in the task design, but data entry
dialogues invariably require elaboration to deal with editing and correcting
errors. The dialogue should be planned with break points within the
sequence to allow closure events: rest and reset points for attention. Break
points for closure be co me more important the longer a sequence iso In a
short trans action with 5-7 entries, a break after each record may be
permissible, although longer transactions will need break points within a
record sequence. The break points should be planned to match the blocks
of information and grouping on the screen layout.

Data entry invariably requires data editing. The pace of data entry and
editing should be determined by the user. Data editing screens should
allow the user to check entered fields to ensure that errors not trapped by
validation are found and corrected, as weIl as guiding the user to correct
those errors detected by validation. There are several different methods of
implementing editing, for instance:

132 Human-Computer Interface Design

(a) Prompt errored field and re-enter, for example:

Delivery date error: month out of range :
Pie ase enter in DD/MM/YY format

12/13/86
-/-/-

This method ean be used effeetively with overlays when a long
sequenee of data is being entered. The incorreet entry should always
be shown to prompt the user. The main disadvantage is that the
prompt for re-entry may obseure data al ready on the sereen so that not
all the data on the sereen is visible for eheeking.

(b) Address errored field to re-enter, for example:

1 Customer number
2 Customer name
3 Customer address
4 Vehicle type
5 Poliey period
6 Poliey type

13045
J. Smith
Sunnydale Av, Milton Keynes
Ford
18
C

Errors: 5 Poliey period too long-12 months max.
6 Unknown poliey type-valid reply eodes CMP 3RD

3FT TMP

Type field number to edit
(1-6 or 0 to eseape)

This method may be useful in long sequenees of entry fields, espeeially
when errors are not deteeted immediately as with 327X terminals.

(e) Edit/skip eorreet fields, for example:

Customer name:
Address:
Address:
Address:

Vehicle Type:
Poliey:

J. Smith
The Willows
Sunnydale Avenue
Milton Keynes

Ford
C

Make: Eseort CC:
Durn: 12 mths

Press Tab to skip to next field
or Enter to save

1300

Editlskip field editors are quiek to use and display the whole of the
entry for eheeking as weIl as error messages from validation. The user
moves between fields using the TAB or CR key whieh is easy to
remember, and then types over the ineorreet data. The disadvantage

l)ata ~ntry Interfaces 133

with this technique is tabbing past the errored field by mistake and the
tabbing time taken in long entry sequences.

While form filling is probably the most popular of current data entry
interface techniques, it is time-consuming to operate and inappropriate if
the set of replies is limited and predictable. In these cases other entry
techniques can be applied.

7.4 Alternative Data Entry Techniques

These fall into two groups; other software designs, using menus and
keywords; and hardware techniques which automate all or part of the data
entry task.

~ntry by menu selection

If data entry involves selecting items from a fixed list of alternatives, menu
techniques can be used. The principle is simple. All valid choices are
displayed on a screen and the user is invited to select one or more by
entering a code number displayed alongside the item, as illustrated in figure
7.6. More sophisticated designs use picking techniques with light pens or
mouse devices for users to select items displayed either as text menus or as
icons.

The main design consideration for picking displays is to group items
together in a logical scheme to guide the user towards the item required.

Keyword data entry

Keywords can be used as an alternative to menus when a quicker, more
efficient dialogue is required. Keyword codes have the advantage of
selecting an item directly by its identifer, whereas with menus, users may
have to page through several layers of access hierarchy in large systems.
Keywords are more flexible than menus and may be entered in different
sequences, allowing for more complex transactions to be input. Keyword
codes are suitable for skilled users when the data entry set is restricted. A
typical example is airport codes in airline reservation systems. Keyword
codes identify the starting pi ace and destination required as mnemonics
such as LGW, LHR for London GatWick, HeathRow.

Optical mark/recognition (OMR)

Optical marks can be used on forms as an extension of the tick box
method. The user marks an area of the form which is then passed under

134 Human-Computer Interface Design

ON UNE GREEN GROCER

Order number 1024 Enter order Date 26/1/88

Enter the code number for
fruit and then the quantity required Or enter vegetable code and

+ pick th. weight required

Fruit Vegetables

1. Apples 6. Potatoes
2. Oranges 7. Cauliflower
3. Bananas 8. Brussels sprouts
4. Pears 9. Cabbage

5. r'''pp", 10. Leeks

Quantity ~
Enter the number

Pick quantity (CR to pick

of items up to 10 Space bar to move)

Half kilo
One kilo
One and half kilos
Twokilos

Order so far
Enter another item >

1/2 kilo Leeks (0 to finish)

2 kilos Potatoes

Figure 7.6 Using menus for data entry.

light-sensitive reading equipment which interprets a dark mark as yes and
light marks (that is, unmarked) as no. Data suitable for entry by menu
techniques can be used with OMR. The main advantages of OMR are that
the source document can be used as the data entry document and entry is
quick. Against this must be weighed the cost of equipment and the
problems of errors due to smudges on the form. OMR techniques are
useful when data entry volumes are high and direct access to computer
terminals cannot be provided.

Bar codes

These are a special case of optical marks in which goods are labelIed with a
unique combination of vertical stripes wh ich code a number by the

l)ata ~ntry Inte~aces 135

presence or absence of bars in certain positions. Bar codes are now a
ubiquitous feature of supermarket packaging. The code is read by a special
light-sensitive wand or bar code reader which picks up the dark bands as it
is traversed across the coded area and translates the sequence of bars into a
code according to the presence or absence of a dark band at position
x, X+ 1, etc. The computer compares the bar code sequence against a
look-up table and computes the number of the stock item.

Bar codes are a good example of considerable investment by computer
manufacturers on behalf of the users (the supermarkets) to help them
automate data entry. This form of hardware-dependent data entry is
expensive.

Magnetic ink character recognition (MICR)

This is one of the first techniques introduced to speed up data entry. MI CR
printing is familiar as the odd-shaped characters used for account numbers
and sort codes on bank cheques. The compter-readable bit is encoded in
magnetic material inside the number and has little to do with its shape.
MICR recognition requires a specialised magnetic reader which is sensitive
to the pattern of magnetic code within the print.

Optical character recognition (OCR)

Computers have trouble reading printed text because, somewhat surpris­
ingly, it is very variable. An attempt to cut down the variability was the
introduction of standardised computer readable codes by the European
Computer Manufacturers Association (ECMA). This stylised print
enabled computers to read characters by pattern matching; however, this
approach was of limited use because of the expensive printing requirement
for the ECMA character set.

More recently, OCR systems have been able to deal with printed text in
a number of different fonts and sizes by making character recognition
systems learn the characteristics of a type face. After a few trials the
computer system learns the mIes for a typeface and incorporates the mIes
in its pattern-matching algorithms. Machines such as the Kurzweil reader
can read ordinary books and newspapers more quickly than humans can.
OCR equipment is expensive but costs are falling and applications
involving large volumes of text are good candidates for automation, hence
OCR systems have an obvious application in libraries and archives. OCR
of handwriting remains a problem; some systems can recognise capitals but
continuous script still defeats most machines, probably because human
handwriting is variable and, only too often, illegible.

136 Human-Computer Interface Design

Voice data entry

Voice is still in its infancy as a data entry method but it has so me appealing
advantages. It is quick and can be used in environments where paper is
inconvenient, such as on the shop floor where a keyboard would be
unsuitable. No transcription is required and the users' own communication
medium is employed. Voice data entry encompasses all the problems of
voice and naturallanguage dialogues (see chapter 9, section 9.8). At the
present state of the art, limited data entry of single keywords is possible
with vocabularies of 200-3000 words. Talking typewriters will soon be
marke ted with vocabularies of 8000 words, which is approximately the size
of the human everyday spoken vocabulary.

7.5 Summary

Data entry interface design should aim to make tasks easy for the user and
to minimise the input workload. The user should be in control of data entry
sequences and actions should be made explicit. Forms design is important
for data-capture documents. Logical layout and formatting are the most
important factors of forms design, although clear prompts and instructions
are also important.

Data entry can be achieved using a number of dialogue design techni­
ques. The most common interface style is form filling, which mimics the
paper operation. Form-filling dialogues are useful for complex and open­
end data in which the reply set cannot be predicted. When the reply set is
better known, picking menus or keyword command input may be used.
Where possible, data entry should be automated. This can be achieved
using optical character recognition, bar codes, magnetic characters or
voice. All these methods are in li mi ted use at present; however, voice in
particular may increase for remote data entry and in environments where
keyboards may be inappropriate.

Further Reading

See general references.

8 Data-Display and Data-Retrieval
Interfaces

Data-display interfaces consist of query screens, file browsers, display
graphics and reports. Guidelines are given for composition and layout of
displays, followed by advice on more detailed formatting of data. Data­
retrieval dialogues form an integral part of data-display interfaces,
consequently a section is included on this topic. Graphical displays merit a
section on their own; this deals with graphic display design, shape and
colour, concentrating on business graphics. The chapter concludes by
considering report design.

8.1 Data-display Guidelines

The inputs to display design co me from the information display require­
ments and analysis of the users' knowledge about displays and documents
in the current system. If there is an existing document which the user is
likely to expect to see as part of the system, such as paper reports and
summaries, then the computer display should follow the document layout
if possible.

Display design has to resolve wh at data to display and then how much
information to place on a screen. Display too little and users have to page
through many screens to find the data they need, display too much and
users cannot see the wood for the trees. The general aim is to display
information which is appropriate for the user's task without overcrowding
the screen.

To decide what to display, the following guidelines may be employed:
• Display only necessary data. Anything which is not directly related to

the users' requirements should be omitted
• Data which is to be used together should be displayed together
• The data on display should be related to the task that the user performs

with the data
• The quantity of data per screen, including titles, headings, etc., should

not cover more than 30 per cent of the total area
Using these criteria and the users' requirements, the next step is to

divide data into groups and then to structure items within a data group.

137

138 Human-Computer Interface Design

The objective is to make the data as easy to use as possible. People make
sense of data by imposing structure on it; if the designer can anticipate this
step it should save the user work. Users have two main problems with
displays: first finding relevant data, and then finding two or more related
data items. Interface design can help finding data by providing a weIl
ordered structure for displays and by placing related data together,
although the latter aim depends on establishing the anticipated usage
exactly, which may not always be possible. To help wayfinding through
data, the following methods may be used to structure displays:

(a) Group data in a logical manner. This will usually be data relating to
the same object (for example, a customer order), or grouping items
which share the same attributes (all orders processed this month).
Grouping can be by frequency of use, sequence of operations or
function according to the users' views.

(b) Order data according to criteria which are meaningful to the user.
Key fields and identifiers should be placed at the top left-hand side of
displays; other data may be ordered by importance, frequency of use,
sequence of normal usage, mandatory then discretionary items, etc.

(c) Structure data within lists. Sort items by one or more keys, group
items belonging to the same class.

(d) Show abstract qualities of the data if required, and use graphics to
illustrate those qualities (trends, associations, differences).

The display is designed in groups of related information which are
controlled by the user-system dialogue. Depending on the overall screen
size, each screen may consist of a few or several sub-sections, each
containing different information, unless overlay techniques have been
employed. Inclusion of too many different sections impairs visual searching
and locating data, as multi-purpose screens become too complex for users
to assimilate. Screens should have only a few sub-sections of data, with
each section separated from the next by spaces. Use of delimiters, such as
&&&& ****** $$$$$$$, should be avoided as these only increase screen
crowding and add no extra information.

While screen layout is being planned, there are other general display
guidelines which should be considered:

• Codes and abbreviations should be kept to aminimum. Data displays
should be immediately comprehensible to the reader without having to
translate codes

• If s((veral displays are being planned, try to establish a consistent
format. If users know where to expect information and how it will be
presented, they have less to learn

• Provide clear headings, titles and other wayfinding information to help
user navigation within and between displays

Data-Display and Data-Retrieval Interfaces 139

• Use the user's conventions. Follow any user model of the data
discovered during analysis and keep to the user's terminology. A
typical example is use of either UK or US date conventions, which are
DD/MMlYY and MMlDD/YY format respectively

• Highlight important data with colour, text size, underlining or by a
different font

After the display structure has been designed, detailed design depends on
whether graphics or character displays are being used.

8.2 Character Data Displays

The presentation problems of character data displays are how to layout
screens and format the data items so that they are easy to find and pleasant
to read. Displays may be either pure text, or tables and lists, and more
frequently a mixture of both.

Character size is under software control in many displays, and while the
default character size may be suitable for ordinary usage, large character
sizes should be used for projection and if the reader is more than 0.5 met re
away from the screen. Displays for projection as overheads should use
18-24 point characters while 10-12 point serves for normal work.

Pure text displays

Continuous capitals for text should be avoided because reading rates for
capitals are slower than those for mixed text. Capitalisation should be used
as in printed text and occasionally for emphasis.

Text in English should be left-justified and the right margin may be
ragged as this does not impair readability. If both right and left margins are
justified, equal spacing between words is preferred as unequal odd-shaped
gaps distract the eye precisely because they are une qual.

Lists and tables

Numeric lists should be presented down rather than across, principally
because this helps addition of totals, and because most people expect to
scan a list going down rather than across.

Captions should be placed above columns:

Branch Total New Major Losses
sales accounts accounlJ

London 31,234 23 123 12
East Anglia 12,124 4 65 5
East Midlands 13,433 12 59 3

140 Human-Computer Interface Design

Leading captions and prompts should be placed before the data and
separated by aspace or delimiter:

City: Manchester Population: 1,546,000

Data fields should be left-justified for text, and either justified on the
decimal point for real numbers, or right-justified for integers:

Compiler System time Number of
(minutes) users

COBOL 161.68 123
FORTRAN 23.1 12
APL 54.56 21
RPG III 0.75 1

Displays should not have one static format; often the contents of a
display need to be under user control, consequently a display-control
dialogue is required. Simple dialogues provide users with access to a set of
pre-designed displays; more flexible dialogues support user-control of the
display by browsing and data retrieval.

Controlling displays

Users should be given a flexible means of accessing different displays.
Some users may want to browse through a large amount of data while
others need to find detailed items quickly. Without going into the level of
control necessary for data retrieval, data-display dialogues should allow the
user to page and scroll display screens. In page control, part of the previous
display should still be visible at the top/bottom of the new page to provide
the user with continuity. When using scrolling the speed should be under
user control so that unwanted data can be skipped with a fast scroll and
more interesting data can be inspected with a slow scroll.

In more structured databases, complex access mechanisms can be
provided to control not only the display sequence but also the information
content of displays by data retrieval dialogues, as described in the next
section.

8.3 Data-query/Data-retrieval Displays

These displays give users more choice in what data is to be displayed.
Simple data retrieval is by access to a pre-determined frame of data such as
aPrestel page. Access can be provided by a menu system or by a direct

Data-Display and Data-Retrieval Interfaces 141

address, for example, the page address in Prestel. Frames of data or
objects in a database can also be represented visually as icons. This
approach was used in the Spatial Data Management System developed at
MIT in which the interface was organised as a hierarchical se ries of iconic
menus. By using joystick controls, the user could fly over the icon screens
pointing at objects and navigate through a three-dimensional data space as
illustrated in figure 8.l.

Most data-retrieval systems, however, aim to provide the user with
choice about wh at is to be displayed from a database. To achieve this,
data-retrieval command languages have been developed to formulate
queries. These command languages are English-like, but the user has to
learn a syntax and identifiers for data entities and their attributes. The
usual form is as folIows:

Search Entity with Attributes = X and Display Attributes, X Y and Z

A typical query in IBM's SQL query language is illustrated in figure 8.2.
The basic syntax is to Select (variables/attribute values) from a set where
(conditions).

People often have difficulty using data-retrieval languages. Most pro­
blems stern from poorly designed syntax and confusion about logical
operators, such as AND, OR, >, <=, etc. Many users confuse logical
quantifiers such as Greater Than with Greater Than or Equal To; also,
compound conditions cause further problems with AND and OR condi­
tions being mixed up because English does not distinguish the exdusive­
OR from OR but may be Both conditions. Most databases have a built-in
query language which is beyond the interface designer's influence;
however, if a data-retrieval dialogue is being designed, the following points
should be considered:

(a) Users have to find the entities in a da tab ase which they can ask
questions about. They will have to remember the names of entities,
which therefore should be concise and descriptive and not terse and
obscure.

(b) Users will also have to remember the attributes of entities if they wish
to select the values of attributes. Attribute names should be dear and
meaningful, and attribute lists should be displayed on pop-up menus
or help screens.

(c) The syntax of a query language should follow the model of English as
far as possible, because people will naturally formulate queries in a
linguistic manner. Thus the query command should be like an
imperative English sentence: verb, object, qualifying dause, for
example:

FIND CUSTOMERS WITH ACCOUNT > 10,000

142 Human-Computer Interface Design

Figure 8.1 Representation of a database by a combination of icons and
spatial position in the Spatial Data Management System [Source of

bottom half of figure: US Naval Deptj.

Data-Display and Data-Retrieval Interfaces

SELECT TITLE
FROM BOOKREFS
WHERE S$ INPUT

Result

(SELECTS$
FROM PUB LIST
WHERE T$ INPUT

(SELECTT$
FROMAUTII
WHERE NAME = "Jones"»

Software development: A rigorous approach
Jones C.B.

Practical systems analysis
Jones A.N.O.

The basic syntax is Select (variable/attribute name) from (entities/relations/sets)
where (boolean expression). SQL can use nested syntax to express successive
selections from entity sets, in this case titles, publishers, and authors. Matching
conditions for attributes are specified in WHERE c1auses.

143

Figure 8.2 Examp/e oJ a data retrieval query in SQL (Structured Query
Language). In English the query is 'Find the titles Jor books in the

publication list where the author's name is Jones'.

(d) Many searches proceed in steps as the user selects a set of likely
records and then chooses from among the first set. An output file
should be provided with search results, and this file should then be
the input file for the next search. This method is better than complex
nested search syntax because it reduces errors due to incorrect syntax
and the mistyping of long command strings.

(e) Logical operators should be clearly specified on help screens with
examples of their impact. Clarifying sentences in English may be
given after a query has been formulated as user feedback, for
example:

This search will find customers with accounts over no,ooo and
customers with accounts equal to no,ooo.

(f) Finally, data retrieval is a task suitable for decomposition into a
logical sequence. Most data retrieval involves three or four steps:

• Finding which parts (or entities) of the database to query
• Formulating the query logic and syntax
• Refining the search if it is iterative
• Formatting the results for printing or display

144 Human-Computer Interface Design

Data retrieval should make the task steps explicit and provide
support for each step in turn. Too many data-retrievallanguages try
to do everything at once, which may benefit the expert but is of little
use to the vast majority of inexpert users.

8.4 Graphical Displays

Graphics are effective because they abstract qualities from a set of data and
present information in a more 'chunked form'. But that process of analysis
can introduce bias into interpretation of data and designers should exercise
care when choosing graph types and in the design of layouts.

The choice of graph type is limited, to an extent, by the type of data.
Data sets for graphics co me in three basic forms. Values can be:

Ordinal:
Nominal:
Decimal:

boolean, that is present/absent
integers
reals

Data sets can be categorised according to the type of plot, which may be
derived from a particular data value:

(1) Grid data: measured values on one axis are plotted against fixed
intervals on the other. It is used to show the number of members per
category, or a measure per object/population on the fixed axis, such as
rainfall per month or numbers of cars by type.

(2) Named data: measures of the number of data items making up a set,
such as government expenditure by sector.

(3) Point data: measures with values for the x and y coordinates for each
object. Point data may be decimal or integer for both coordinates, or
decimal on one axis only.

The first two categories have a single value for each object in a
measurement population; point data has two values related to an indi­
vidual object, such as the height and weight of aperson. Three va lues per
object necessitate x, y, z axes in a three-dimensional plot. The other
design consideration when choosing graphs is the type of analysis which is
required. Users may want to show a particular quality of the data for
demonstration purposes, for instance, trends, grouping, differences. With­
out going into complexities of statistical analysis (see Siegel, 1956 for
details), the more simple treatments of data which are usually encountered
in information systems are:

(a) Association: the graph is to show how two measures or classes of

Data-Display and Data-Retrievallnterfaces 145

objects are related in absolute terms (same value) or co-vary in some
manner.

(b) Difference: the antithesis of association; here the aim is to show how
items differ by an absolute magnitude or show opposite patterns in
variation.

(c) Exception : this is a special case of difference related to a set of items.
The objectiv.e is to show the 'odd man out' in a set.

(d) Trend: aims to show a pattern in a set of values over a range, usually
an increasing or decreasing trend.

(e) Grouping: this is a special case of association which aims to show
relationships between many objects in a population. The inverse
effect to clustering is a measure of scatter. An example is the
clustering of weight and height measures around the average values
of 70 kg and 1.7 m.

(f) Distribution about a norm: the graph is to show how a group of data
items are spread around the average value for the population.
Normal distributions are balanced with an equal number of items
above and below average, with most values clustering around the
average. Other distributions may show skew, more points above or
below the average, or kurtosis (more points spread away from
the average than expected by statistical definition of anormal
distribution) .

Four graph types are available in most commercially available graphics
packages.
Histograms. These are also called bar charts. Histograms are suitable for
ordinal and nominal data, and give a good impression of difference,
exceptions and possibly trends for fairly crude measures. However,
histograms waste the accuracy of decimal data and are poor at showing
complex trends and small differences in measures. Histograms are suitable
for grid type data, when the plot has values on one axis at fixed intervals
for a measure on the other, for example, rainfall per month or as named
measures (numbers of cars sold, Ford, BL, etc). The values in integers or
reals are plotted on the y axis.
Pie charts. Pie charts are suitable for showing exceptions. The data items
have to be members of a set which becomes the pie. This technique is
effective for displaying comparisons and has a high visual impact which can
be enhanced with pie and slice design, as shown in figure 8.3. Segments
correspond to the value of a measure; the first segment should start at 12
o'clock and the pie is read clockwise from that point.
Line graphs. Line graphs are suitable for decimal data. The extra resolu­
tion of decimal measures is shown better in line graphs, although designers
should still be aware of distortion. For instance, stretching the x axis can
reduce the visual impact of difference between values on the y axis. Line

146

40

Sales 30
value

20
fOOO

10

Monthly
sales

value

f.000

40

Sales
30

value
20

[000

10

0

Human-Computer Interface Design

Monthly sales return

lan Feb Mar Apr May lune July Aug Sep Oct

May
34

lan

Monthly sales return

Feb Mar Apr May June July Aug Sep Oct

Figure 8.3 Business graphics: example of a histogram, pie chart and line
graph.

graphs have the further advantage that they can show more than one
measure on achart, therefore they can be compared; also, associations and
differences between populations can be depicted. Generally , the data
value is plotted on the vertical x axis, and the range or time dimension on
the y axis. Care must be taken with scaling to avoid spikey graphs which
hinder comparison and impair the visual impression of trends.
Scatter diagrams . These are used for decimal and integer data on both x
and y measures when grouping of items needs to be shown. Items are

Height
metres

40

millions

Data-Display and Data-Retrieval Interfaces

2-

-

1-

-

Tokyo

Height - weight distribution adults

• • •••• • •••• • . ,.-..
•

2b 40 60 80 90 100 1~0 1~0
Weight (kilograms)

(a)

Population growth

D

London l akarta

(b)

147

Figure 8.4 Other types of chart and graphical presentations: (a) scatter
diagram of height-weight distribution; (b) three-dimensional

techniques-Manhattan diagram.

plotted as points, clustering being apparent from the density of points
thereby suggesting a grouping, as illustrated in figure 8.4(a) which plots
height and weight measures for a human population.

Three-dimensional displays

When there are three measures per object (x, y and z axes) , three­
dimensional graphical techniques can be used. Three-dimensional histo­
grams, called Manhattan diagrams (as depicted in figure 8.4(b)) , are of
limited use even though they can create a striking visual impression. The

148 Human-Computer Interface Design

problems of scaling and comparison of values shown in perspective means
that little meaningful information can be shown unless there is a very
marked effect. Multi-variate pie charts can be used by adding more pies to
the display to represent the z dimension, but the eye is poor at tracking
between pies, making inter-pie comparison poor. Visual short-term
memory probably limits attention to one pie at a time.

Three-dimensionalline graphs are more effective, especially if grouping
measures need to be shown. Supplementary analysis can be added by
ta king slices through a perspective diagram to show contours on the z axis.
Where measures become multi-variate and exceed three values per object,
then statistical techniques of factor analysis have to be used to reduce the
dimensions to a visual effect which can be plotted, unless the data is
expressible in more complex images. These can combine graphics with
maps and diagrams.

Other visual representations

Graphs are not the only method of visually displaying information.
Hierarchy diagrams are useful for showing categorisation and hierarchical
relationships. Sequences, precedence and multi-linked dependencies can
be illustrated by network diagrams, and finally use of symbols and icons for
simple measures should not be underestimated. Use of icons, chart design
and maps can give a distinctive visual impression, as illustrated in figure 8.5
which depicts the capabilities of modern business graphics. Use of symbol
size to illustrate a measure can also be effective.

Directions of movement or a trend can be shown by arrows, and
association may be represented by proximity in spatial layout or by
connecting links. In complex graphs, however, the user will have to expend
more effort in interpretation. Wayfinding guidelines should be given to
guide the eye through the image; and documentation, supported by help
facilities may be necessary to explain complex images.

8.5 Reports

Computer output may in graphical or text form on a variety of media, such
as film, paper or VDU displays. This section examines a sub-set of such
computer output: printed character-based reports.

During analysis, reports can be classified according to their function and
general layout. First the type, function and expected usage of areport
should be established. A report's function may be either to convey
information from one system to another, for example, an invoice, or to
summarise information about a system as in a management summary, or a
historical record, simple listing, etc. Whatever the function, most reports

Data-Display and Data-Retrieval Interfaces

Harrison Oil Company
Petroleum Exports

(a)

Metr"ic Equiv . Sta tioMry GuidiE" Ba:blJ sittiP't"' liniE" .art Offie.

I Click on smoll cord piclur. 1090 10 th.t c.rd.1

(b)

US Timt> z::one-s

Figure 8.5 Use of icons, maps and graphical design in the Apple
Hypercards system.

149

150 Human-Computer Interface Design

fall into one of three categories: transaction, information and listing
reports. The function of areport may influence its layout, however, and
general formatting guidelines can be given for all types:

(1) Transaction reports. These contain the results of input data which has
been processed and is now being passed out of the system, possibly to
be processed further elsewhere. Transaction reports often carry infor­
mation between systems and contain information about the objects
being processed. Examples are order forms, delivery notes, invoices,
purchase orders and pay slips.

(2) Information reports. These carry information about the system over
the system boundary, and contain data describing system processes and
their activity. The information is consumed by managers and system
operators to monitor, control and modify the system's behaviour.
Exception, monitoring, analysing reports and management summaries
all fall into this category.

(3) History and archive reports. These are a special case of information
reports when a large quantity of information is needed to describe the
state of a system at a point in time (the archive) or information is
needed over a long time period to describe a system's history.
Processed data wh ich may possibly be required in the future is also
held in archive reports.

(4) Browsing reports. These are the simplest report type and are the
hardcopy equivalent of the query screen or file listing. Information is
gene rally presented in an unsophisticated form so t,hat users can sift
through it in a variety of ways. In the simplest case, these reports are
formatted listings of computer files.

Transaction and information reports require most design, although some
structure should be given even to archive reports and simple listings.
Transaction reports often have similar contents to input forms, and forms
design guidelines can be applied. For other reports, general layout
guidelines apply as they do to screens and other presentation media. In
addition, the following factors should be considered.

Analysis of report usage

The contents required in areport will be specified in output dataflows of
the system and in the user's requirements. However the grouping of
information into one report can also be affected by other factors which the
analyst should be aware of:

(a) Frequency of production: Is the report required on demand or at a
specific time, such as daily, weekly or monthly? Is all the information

Data-Display and Data-Retrieval Interfaces 151

required at the same time? Timing requirements may lead to so me
information being placed in an on-demand report while other items
may only be required at weekly intervals.

(b) Volume of production: How many copies of areport are required,
and will the same number be produced each run? Reports with
different volumes may have to be run separately; hence a long print
run will require operations staff to set up printers, whereas a single
copy report could be printed without any operator intervention.

(c) Timing and accuracy of information: When areport is produced can
be influenced by how up to date the data has to be and the value to
users of information which is not completely up to date. If slightly
inaccurate information is permissible (for example, dose of business
yesterday) then overnight printing of reports is tolerable; on the other
hand, information may have to be totally up to date, in which case an
on-demand report is necessary. Accuracy also applies to numeric
values. Calculation to five decimal pi aces may be needed in an
engineering report; in contrast, a cost forecast may be acceptable
with an accuracy to the nearest noo.

(d) Security: This concerns how sensitive the information is and what
precautions have to be taken to ensure that it is not seen by
unauthorised personnel. This influences the devices on which it is
printed and arrangements for distribution.

Layout design

Reports fall into three types of layout designs:

Listings: simple iterations of records, browsing and archive reports use
this layout.
Block structure: more order is imposed on the information by rows,
columns and totals; information reports are usually block structured.
Group structure: more complex layout with groups of information
organised in blocks; trans action reports usually fall into this category.

The steps in report design echo many principles already stated for screen
display design:

• First establish the purpose of the report. This should suggest a dear
and concise title

• Decide on the report contents in consultation with the user. The
contents will be based on the system output specification, bearing in
mind the factors listed above under Report usage

• Structure the information into groups and blocks of related items.
Grouping may be by data related to an entity in transaction reports, or

152 Human-Computer Interface Design

by the principle of functional cohesion, that is, data related to one topic
or purpose according to the user's criteria

• Order the groups and blocks according to the user's needs and reading
sequence, for example, group by importance, cost, frequency of use,
sequence of use

Too many reports contain too much data. Overcrowded reports cause
longer search times as the reader has to track data items down in amorass
of print. High print densities also increase transcription error rates, as
figures dose together can be mistaken. Areport with more than 50 per
cent of its area covered by print, induding headings and any format
characters (such as $$$$), is overcrowded. Aim for an upper limit of 40 per
cent of the total area in print.

Report crowding does pose a dilemma when several pieces of informa­
tion are required together. If the information is se para ted on to different
pages then the user has to turn pages to find all the data, burdening
short-term memory while doing so. PI ace information on one page and
overcrowding may result. There is no ideal answer to this trade-off
judgement but, on balance, excessive crowding (50 per cent plus print
space occupied) should be avoided.

Listing reports

These are the simplest to design. Data is usually presented in re cord format
as rows organised in columns of information reading down the page. Pages
should be numbered and, if the data is ordered in some way, blank rows
should be left between sorted groups to help structure the list. Any sorting
or order wh ich can be added to the list will help the user to browse through
the data. Data fields should be separated into columns and given headings.
If all the fields do not fit on to one page width, paginate the report across
two consecutive pages to fit in all the fields.

Block-structured reports

Blocks should be ordered using the general design guidelines. Totals
should be placed dose to and following the data that they relate to. If there
is aseries of hierarchical totals, a separate summary page should be
added showing the progressive aggregation of totals. Variable items are
best placed in columns on the right-hand side of the report to prevent a
ragged appearance. Many of these design features are illustrated in figure
8.6.

Information blocks should be separated by spaces rather than delimiter
characters such as - - - - - * * * * * etc., which only increase the overall
crowding of the report. Blocks of information should be labelIed with a
heading on the top left-hand side of the data. This is the location which the

Data-Display and Data-Retrieval Interfaces 153

Branch Sales Performance Analysis

Incentive League Table

Orders/ Salesperson OrderValue

Bmnches Target Actual % Perf Target Actual %Perf

Scotland 36.47 35.17 96.44 455530 482939 94.27

North E. 38.01 42.1 110.76 499284 397941 125.47

North W. 38.21 38.43 100.58 545536 530368 102.8

E.Mids 37.06 36.66 98.93 274212 287683 95.32

W.Mids 36.04 35.30 97.92 484105 495872 97.63

West Eng 38.33 35.15 91.72 395938 372924 106.17

W.Lond 32.8 30.4 92.7 436562 485032 90.01

C. Lond 32.7 27.56 84.27 287607 358853 80.15

City 27.66 25.11 90.77 241328 260550 92.62

Anglia 34.81 33.25 95.50 418087 426168 98.1

S.E. Eng 34.12 31.33 91.81 450161 442584 101.71

S. Eng 34.22 31.97 93.44 423471 435733 97.19

U.K. 35.42 33.05 95.58 4980549 5066002 98.27

Figure 8.6 Report layout showing structuring of information by grouping,
headings, titles and summaries.

eye first tracks to when reading a continuous text block. Within a system,
the report layout should be kept as consistent as possible so that users
become accustomed to familiar layouts and learn where to search for
information within areport.

Group-structured reports

Transaction reports are the most common group-structured report. The
whole report may have a format based on an existing form. If not, the
group content and sequencing of data is designed using the general report

154 Human-Computer Interface Design

design guidelines. Transactions are generally indexed by a unique code
which should be clearly marked and placed in the top right-hand corner of
the report; this helps leafing through a pile of reports to find the reterence
number. The report title should be centred and groups of information
separated, preferably by space, and ordered according to the criteria cited
previously.

Alternatively, separation of information groups may be achieved by
using boxes for emphasis or by employing background colour. Excessive
use of delimiter characters should be avoided as with block-structured
reports. These reports often use pre-printed stationery, in which case it is
advisable to print a dummy page first to check on printer alignment of the
print fields on the pre-printed template.

Detailed layout

The guidelines are similar to those followed in screen displays:

(1) The type and format of data items should be examined to determine
the number of print character positions required. For example, in
COBOL a PIC 9(6) will require 6 positions with one, possibly, for the
plus/minus sign. PIC S9V99 will require 5, a mandatory ± sign, three
digits and one decimal point.

(2) Characters are aligned to the left, numerals to the right, and decimals
are aligned on the point. Use of an optional minus sign can give a
ragged leading edge on a column of figures. One solution is to make
the minus sign trailing; another is to bracket negatives, although this
convention must be explained.

(3) Columns should be separated by at least three blank spaces.
(4) Headings should be aligned to the centre of columns. Do not adjust

column width just to accommodate a heading.
(5) Highlight important fields, with bold type, different fonts, underlining

or colour.
(6) Number pages and title each one. An unnumbered page which has

become detached from areport can be very irritating.
(7) Date and Time stamp the report at each run. Sooner or later the fact

that it was the weekly report before Christmas will be important.
(8) FinaIly, when the detailed report layout has been designed, the users'

opinions should not be forgotten. As with most aspects of the human­
computer interface, users should be consulted about designs and
changes made to accommodate their views. In display and report
design, early consultation is advisable before the detailed layout is
planned, as weIl as final acceptance testing.

Data-Display and Data-Retrieval Interfaces 155

8.6 Summary

Display design involves structuring information to help people read and
understand it. Data items should be grouped and groups ordered according
to usage. Important data should be highlighted to ensure attention is drawn
to it.

Data displays may be either textual or graphie. Text displays should not
be overcrowded and space should be used to separate information.
Display-control dialogues are designed to help users progress through a
body of data according to their needs. In simple cases this will be by
scrolling; more advanced access is by data-retrieval/query languages. The
syntax and structure of such languages has to be designed with care.
Graphical displays make use of human chunking abilities by abstracting the
qualities of data. Designers have to choose achart type according to
the data set being analysed and the type of analysis treatment. Common
chart types are histograms, pie charts and line graphs. More complex visual
representation can be achieved with diagrams, maps and complex images.

Reports should be analysed to determine their function. This may
dictate the structure of areport and should suggest its title. Reports have
trans action , information, listing or archive functions. Information is
ordered and grouped to optimise efficient access. Detailed formatting of
columns, text and number has to be designed to make the appearance of a
report consistent and pleasing to the eye.

Further Reading

Consult the general references.

9 Computer Control Interfaces

This chapter covers interfaces which control computer operation. These
are the familiar menu and command language interfaces of operating
systems and any interface which is provided for users to gain access to the
system. Following the usual format, general guidelines are given and then
control interface types are examined in turn, starting with simple and
familiar styles before migrating to more advanced direct manipulation
interfaces which are becoming increasingly popular in modern systems.

9.1 Control Dialogue Guidelines

The objective in computer control dialogues is to give users the maximum
amount of control concomitanf with their abilities, in a manner that keeps
the initiative for control with the user and protects the user against making
mistakes.

Computer control dialogues fulful two purposes:
• They give people access to facilities in computer systems
• They allow people to interact with a computer facility, that is, to hold a

conversation with the computer to gain information and complete a
task

All systems have a first type of control interface; the se co nd is for
conversational interfaces in which user and computer interact in simulating
behaviour of a system or controlling an external system. Examples of the
latter are air traffic control, decision support, chemical plant process
control and battle-field simulation systems. This chapter focuses primarily
on computer access and conversational control interfaces. A further type
of computer control interface allows users to build systems aild change the
way in which computers respond. These are complex control dialogues of
programming languages which also merit separate study in HCI terms and
cannot be dealt with within the scope of this book.

To start designing control interfaces we need some basic guidelines.
Initiative in control should be given to users; the more initiative provided,
the more sophisticated and potentially more difficult a dialogue will be to
use. Initiative, therefore, has to be constrained for unskilled users with
simple dialogues that present only a few choices. A general rule is that

156

Computer Control Interfaces 157

computer systems should not seize the initiative and force users to perform
actions according to the computer's command. In practical terms this
means that a dialogue should proceed only when the user wants it to; users
should not be locked into options without an escape route, and users
should rarely be forced to give replies within pre-set time constraints.

Computer control should be by explicit action on behalf of the user and
computer. Implicit actions and 'built in' short cuts in a dialogue may
appear to save time but such implicit changes are unlikely to match users'
expectations and hence can cause confusion.

Messaging is important in control. Users need to know where they are
within the system, so status messages are essential. Users also require
feedback from commands they issue to the computer, otherwise doubt sets
in about whether the computer has received the command or if it was the
correct command to give. The conversation between human and computer
should be continuous, like human communication, so that a message from
one party is followed by a reply from the other. Gaps in conversation lead
to uncertainty and attention being diverted from the task.

Computer control dialogue should be modelled on the user's tasks as far
as possible. Although it may be a dialogue which did not exist in the
previous manual system, it may have been implicitly present in the way
users performed their tasks. They will carry the model of the system in
their memory and will expect to see tasks in groupings and sequences with
which they are familiar. Failure to model the users' perception of system
organisation may result in users hunting for an option in the wrong menu,
forgetting a command sequence or getting totally lost within a command
interface. Clearly these are scenarios to be avoided.

Commands should always be linked to a single function. Multiple
commands for one function only serve to confuse the user and are
redundant anyway. As far as possible, commands should be unique and
have a good direct link to the function they evoke.

In summary the guidelines are:
• Explicit action by computer and user
• Communicate with the user, give feedback and status messages
• Dialogue at user's pace and initiative
• Dialogue based on user's model if possible
• Single commands for each function

9.2 Simple Control Dialogues

The most simple type of control uses question and answer dialogues in
which the computer asks whether a particular option is required or not and
the user simply gives a Y/N reply. Slightly more complex examples can
move towards a menu-based system. These dialogues, although easy to

158 Human-Computer Interface Design

use, are tedious after experience has been gained and slow to operate.
Because each step has to be answered each time, users can quickly become
frustrated with repetitions which they know are just wasted effort.
Consequently these dialogues should only be used with naive users or
novices who are likely to remain that way.

When using these dialogues, some guidelines to folIoware:
• Only one question at a time. Asking multiple questions may seem to be

quicker, but the question-answer link will burden the user's short-term
memory

• When linked answers are necessary, redisplay the previous answer. If
the previous answer is needed later in a sequence, re display it,
otherwise errors are caused by short-term memory problems

• Keep sequences compatible with the source document or user model.
If there is a precedent for the sequence of questioning, keep to it

9.3 Menu Interfaces

Menus are the ubiquitous computer interface, yet sufficient attention is
rarely given to their design. Menus work by users associating a reply code
with an option displayed on a screen. Reply codes may be either numeric
or characters. Character codes can be mnemonic and suggest the meaning
of an option; however, this method has the problem of running out of
letters to represent options, for example, the E for edit and E for exit prob­
lem. The solution to duplicates is to use a longer code but this hinders the
advantage of giving a response in a single keystroke. Numeric codes,
although they contain no meaning, are not a hindrance to efficient menu
operation.

An alternative to using a reply code from the keyboard is to use a
pointing response with a mouse, or to have a revolving band type of menu
in which the space bar controls selection by progressively highlighting
menu options going down the menu and then back up the top again. The
user picks the currently highlighted option with the Return key. The latter
method runs the risk of overshoot as users hold the space bar down and
miss their options by going too far.

In most systems there are more options than can be easily placed on one
menu. This enforces hierarchical organisation of menus. It is important
that the organisation conforms to the user's model of how options and
functions within a system should be grouped, otherwise the task of learning
the menu hierarchy is made more difficult. Navigation in menu hierarchies
presents two problems for users:

• Keeping track within the hierarchy-the 'where am I?' question
• Tracing a path through the hierarchy-the 'where have I been?'

question

Computer Control Interfaces 159

To help users navigate, status information about the hierarchicallevel and
part of the sub-system being accessed should be displayed on the top of the
menu screen. To improve pathway tracing, a backtrack facility is helpful so
that users can page back to the last menu with a single keystroke. A further
extension of user control in the hierarchy is to give users 'escape to the top'
commands. These design features in a poor menu design, and a better
alternative, are illustrated in figures 9.1 and 9.2.

How many options to display on a menu has been the topic of
considerable research. There is a trade-off between depth and breadth in a
menu hierarchy. Making the hierarchy broad by placing many options on
one menu me ans that users have to spend longer searching through the list
of options; however, there are fewer levels of hierarchy to descend. If the
hierarchy is made deep with many levels and fewer options per menu then
the search time per menu is shorter although the menu level descent time is
increased. Intuition suggests there must be an optimal compromise and
some studies indicated that this is so, with menus containing 7-9 options
being best.

C = Create a new document

D = De1ete a document

E = Edit an existing document

F = Finished and exit

I = Index of documents

DS = Display document

CF = Change format

P = Print document

S = Spelling check

CM = Change margins

CT = Change tabs

L = List processing

T = Transfer documents

Select option»

Figure 9.1 Illustration of poor menu screen design. How many more poor
design features are there in this menu?

160 Human-Computer Interface Design

WORD PROCESSING MENU ? for help

No document selected
General options Office>WP

Editing Commands Formatting Commands

C = Create a new document M = Margins change or set

E = Edit an existing document T = Tabs change or set

x = Exit F = Font size and type

File Comrnands Sub Menus

I = Index of documents
L = List processing

v = View document
T = Document transfer

P = Print document

D = Delete document

R = Rename document

S = Spelling check

Select option »

Figure 9.2 Illustration of better menu design.

However, the efficiency of broad menus can be increased by structuring
the options into groups as exemplified by the WordStar menu (see figure
9.3). In sm aller systems the breadth first design may be advantageous
because it cuts out traversal time of a menu hierarchy; but for large systems
a clear hierarchical structure may be required to help the user comprehend
the system, in which case the depth style may be better.

A problem with all hierarchical menu structures is that users soon leam
part of the tree and wish to traverse from one option to another without
going up and down the hierarchy. To accommodate this desire a menu
bypass facility can be designed to give direct access to options. If numeric
reply codes have been used, options can be addressed using a page number
principle, with the numbers being derived from the menu responses at

Computer Control Interfaces 161

C:TEST.DOC POl Ll3 COI Insert Align
E 0 I T M E N U

II CURSOR SCROLL ERASE OTHER MENUS
P AE up AW up AG char AJ help ~O onscreen format
" AX down AZ down AT word AI tab AK block , save
II AS left AR up sereen AY line "'v turn insert off Ap print controls
~ AO right AC down DeI char AB a1ign paragraph AQ quick functions
II AA ward left screen ... u unerase AN split the line Esc shorthand
" AF ward right AL find/replace again

L----�----�----�----�----�----�----�----�----�----�----I--------R
HUMAN COMPUTER INTERACTION LECTURE

The objective of this course is to introduce students to the
subject of human computer interaction and give ski11s in the
analysis, specification and design of human computer interface
software and supporting materials such as user guides and
training manuals.

The course is designed to integrate with Systems Analysis and
Design so that systems development is seen and practiced in the
wider perspective which inc1udes hardware, software and peop1e.

Olsplay!Center !ChkRest!ChkWord!Oe1 B1k!HideBl~!MOVeB1k!CopyBlkIBeg B1klEnd B
lHelp fundo jUndrlinjB01d joelLinetoelwordIAlign lRuler jsave, ~oone

Figure 9.3 Grouping of options on WordStar menu. Although the total
number of options exceeds short-term memory, the grouping of options

into menu blocks makes the information accessible.

successive levels, for example, option X has an address of 134 and used to
be accessed by typing 1 at the top menu, 3 at the second level menu, etc.

A disadvantage of menus is that the whole screen is usually consumed by
the menu, leaving no space for a work area. If menu choices are required at
several points in a dialogue, the necessity to replace a work area with a
menu screen can be co me disruptive. This problem can be solved by using
pop-up/pull-down menus on systems with more modern interface software
supporting such facilities. The menu is only present when it is being used
and does not obscure the work area. After the choice has been made the
menu is removed. Pu li-down menus also allow menus in different levels of
an access hierarchy to be called directly from a single command line, as in
the Apple Macintosh™ shown in figure 9.4.

In summary, the guidelines for menu design are:
• Group logically related options together either as menu blocks or in

separate menu screens
• Order menu options by the usual criteria, such as operational

sequence, frequency of use, importance, etc.
• Indicate the reply expected and associate it with the option
• Title the menu according to its function
• Give the user feedback about menu levels, errors, etc.
• Provide escape routes and bypasses

162 Human-Computer Interface Design

_0
XI
;ll;U
XO F-"='-'

:ltS
:JtH
:ltl

Th1$ evoluotlon form hos b~en L....;;;;..;,..:...="--_
Ilelpful mformollon for selectmg courses ond teochers It IS 0150 InlenOec:l
10 OSSIS! professors in evoluolmg lhelr performonce os IMcMrs

The form , divlded Inl,O 1'110 ports , consl sls cf Port A wtl1(

Figure 9.4 Pul/-down menu on the Apple Macintosh MacWrite™
program. The menu enables the user to select various character fonts at

any step during word processing .

• Bullet-proof the replies, for example if 1 to 7 are options and 0 is
es cape , make sure any other keystroke is followed by an error message
and not a program failure

9.4 Function Keys

Function keys are a hardware equivalent of menus with options allocated
to special keys on the keyboard to save screen space and alleviate the reply
co ding problem. Function keys can either be hard-coded or soft-coded.
Hard-coded function keys have an operation permanently allocated to a
particular key. The key is c1early labelIed with the operation which the user
can read; see figure 9.5. This approach is excellent with a single application
on dedicated hardware, such as a word processor, when functions are not
going to change. For most systems, function keys are soft-coded.

With soft-coded keys the command call is allocated to the function key
by the application program. One or more commands can be allocated to
each key; but as more commands are linked to a single key, user confusion
will mount because of the problem of keeping track of which mode the
system is in. In one context F2 key may me an delete a word, in another
context it may me an save a file. To help users a partial menu has to be

Computer Contral Interfaces

Editing PROGRAM DEVELOPMENT SYSTEM

TEST.COB File editor

FILE-CONTROL.

Top
Level

SELECT ORDERS ASSIGN TO ORD.DAT.

DATA-DIVISION.
FILE-SECTION.
F-D CUSTOMER-ORDERS LABEL RECORDS STANDARD.

01 CUST-ORDER.
03 CUST-NAME PIC X(15).
03 CUST-ADDRESS.

05 ADDR-LINE-I PIC X(20).
05 ADDR-LINE-2 PIC X(20).
05 ADDR-LINE-3 PIC X(20).
05 POSTCODE PIC X(7).

03 DEL-DETAILS.
05 DEL-DA TE PIC 9(6).
05 DEL-AREA PIC xx.

dynamically
replaces edit
keys on exit

163

Figure 9.5 Use of function keys for computer contral. The screen display
mimics the function key positions on the keyboard. Functions may be

dynamically allocated by changing the displayas the user progresses up
and down a menu-like hierarchy.

displayed on the screen showing the allocation of options to keys, mapping
the keyboard layout on to the screen.

Even so, function keys can become limited by mode changes. Most
computer hardware suppliers provide 10-12 function keys. Important keys
should have a constant function in any context (for example, F1 is always

164 Human-Computer Interface Design

help, F2 is always escape). The remaining keys can be dynamically
allocated to 2 or 3 functions each before user confusion mounts. Hence the
overall options in a system wh ich can be usefully implemented with
function keys are limited.

9.5 IeoDs

Icons are becoming increasingly popular for representing objects and
commands in control interfaces. To be useful, an icon has to be realistic so
that a user can recognise the picture and hence the object or command
which is being represented. The great advantage of icons is that they are
realistic, so we do not have to learn what they represent, and instead can
immediately make an informed judgement about their significance.
Symbols mayaiso be used; however, symbols initially are meaningless
shapes, consequently to be useful they have to be associated with an
object. That association has to be learned.

An absolute boundary between symbols and icons is illusory because as
soon as a symbol's meaning has been learned it will become a meaningful
image. On the other hand, an icon may be ambiguous or have no
immediate meaning even though it is a complex and apparently realistic
image. Pictorial communication is essentially bound to the interpretation
of images made by individual users.

Icons were pioneered by Xerox in the Star system and later by Apple in
the Lisa and Macintosh interfaces. A key idea in these designs was that
pictures of objects in the system could be used to create a visual impression
modelling the user's everyday experience. In this way the Xerox Star
system has icons for objects in the office, such as in-trays, filing cabinets,
folders, calculators and waste paper baskets. Operation of the system is by
picking objects and moving them with the cursor. For example, to delete a
file you move a folder into the waste paper bin, following the metaphor of
everyday life of throwing waste paper into a bin.

Icons, however, present some problems when functional operations
need to be displayed; for instance, cut and paste operations in a word
processor, or global find and replace, or check spelling. Some iconic
representations can be found such as scissors and a paste brush for the cut
and paste metaphor in word processing; but as concepts become more
abstract the expressive power of icons wanes. Icons also suffer from
problems of ambiguity. One picture may be interpreted in different ways
by different people; for instance, the waste paper basket can be
misinterpreted as a message basket or as a secure place by novice users. As
a precaution against ambiguity, most iconic systems have so me text
explanation associated with the icons. The problem of ambiguity in icons
can be seen in figure 9.6. Poorly designed icons can lead to incorrect

Computer Contral Interfaces

(a) The Xerox Star in and out tray icons, a clear visual metaphor for messages
with text back-up in case of any doubt.

Inbasket

(b) Ambiguous icon designs

~
............. _- __ ._--_ __ __

I I

~
I Outbasket I

is this a communications link

or an electrical danger ?

a printer or a letter box ?

flight arrivals or a crash?

Figure 9.6 Design of icons.

165

interpretation and sometimes to undesirable emotional reactions even
though the message is interpreted correctly.

Ambiguity becomes worse when a large number of similar objects have
to be represented, or abstract objects and commands have to be illustrated.
Try designing an icon for a sort command and the problem should be co me
apparent. As a consequence, the application of icons is not universal,
although they have been very successful in creating some interfaces which
are very leasy to leam and use for both novice and expert users (leaming
times of 2 hours were claimed by Apple for the Lisa system).

166 Human-Computer Interface Design

There is a dearth of guidelines on the design of good icons; however,
some advice to follow is:

• Test the representation of the icons with users
• Make icons as realistic as possible
• Give the icon a clear outline to help visual discrimination
• When showing commands give a concrete representation of the object

being opera ted upon
• Avoid symbols unless their meaning is al ready known

The size of icons is a matter of compromise. If the image is too small then
visual discrimination suffers; too large an image, however, consumes
valuable screen space. As icons are not a particularly space-efficient means
of representation, they run into similar problems as menus with hier­
archies. Consequently there is a premium in keeping icons reasonably
small. Size is integrally related to complexity of the icon image. Simple
icons can be effective in dimensions of 0.5 cm square (for example, the
Apple Macintosh window expand/contract symbol); more complex images
need to have dimensions in the order of 1 cm.

9.6 Direct Manipulation (DM)

This term was coined by Shneiderman (1983) to refer to interfaces which
include icons, pointing and features which have now become associated
with WIMP (Windows, Icons, Mouse, Pop-up menu) interfaces such as the
Apple Macintosh. The central idea of such interfaces is that the user sees
and directly manipulates representations of objects in the system, rather
than addressing the objects through an intervening code as in command
languages or menus.

Objects are shown as icons which can be addressed by pointing at them
with a mouse or another similar cursor control device. Pointing allows
objects to be selected. Pointing and selection then invokes a system
operation, for example, calls an option as if in a menu or selects a file.
Direct manipulation goes further by allowing objects to be moved around
the screen using a dragging operation. In this way new associations
between objects can be formed, for instance, a file can be placed in a folder
(a sub-directory in non-DM interfaces); and operations can be performed
on objects, for example, a message is placed in themail tray. The
advantage of direct manipulation is that the computer system models
everyday operations more directly than older styles of interfaces; the more
direct1y an interface models reality, the easier it is to learn. This has been
proven by the now weIl established office/desktop metaphor used by Xerox
and Apple; see figure 9.7.

The essential features of direct manipulation interfaces can be summa­
rised in a set of principles:

Computer Control Interfaces 167

• File Edit Uiew Specilll

~ CJ CJ ~~
Mf9aBoot S~.ttm Fn .. Utilitit. Foldoc Serun 0

CJ CJ CJ CJ CJ
HF tHa9,.aMS P.a9' l.a'J out H~ptrC.rd f PTR Cours. Pow.r point GUIDE

CJ CJ ~ CJ CJ
8;1:$ II AM MacP4iint CORE Shits

Figure 9.7 Apple Macintosh workstation showing the desktop metaphor.

• Explicit action-the user points at and manipulates objects on the
screen

• Immediate feedback-the results of the user's actions are immediately
visible, such as when an icon is selected it is highlighted

• Incremental effect-user actions have an analogue/sequential dimen­
sion, for example as an icon is dragged across a screen display it moves
continuously, following the user's movement of the mouse rather than
suddenly jumping to a new position

• Intuitive interaction-interaction matches the user's conceptual model
of how the system should operate and the display shows pictures of
familiar objects

• Learning by onion peeling-the complexity of the system is gradually
revealed in layers as the user explores system facilities

• Reversible actions-all actions can be undone by reversing the
sequence of manipulations

• Pre-validation-only valid interactions have an effect, so if the user
points at an object and this makes no sense in terms of the current task,
nothing happens on the display

The interface supports the user's task by portraying a realistic 'virtual
world' on the screen. Operation is supposed to be immediately obvious and
no error messages are required because invalid interaction has no effect on
the interface image. Although such interfaces have undoubtedly been
successful and have had a major impact in some products, they do pose

168 Human-Computer Interface Design

problems for designers and users. In many systems the 'virtual world' has
no readily available concrete metaphor to help the designer; also the
intuitive model of interaction may be absent if the user is new to the task.
The lack of error messages can be frustrating for some users and lead to
uncertainty; in addition, learning can be hindered by the lack of explicit
representation of all the system facilities. In spite of this, direct manipula­
tion does create usable and, probably of more importance, appealing user
interfaces.

The DM idea has given rise to another acronym, WYSIWYG (What
You See Is Wh at You Get), which was initially applied to word processors.
This refers primarily to the output in which the results of the user's actions
are immediately apparent in the display. Old-fashioned text editors have
embedded format commands which control the layout of the text, such as
'.PP' for a new paragraph. WYSIWYG editors use direct manipulation to
format text, delivering the exact image of what the user sees, and hence
eliminating the necessity to remember format control commands.

9.7 Windows

Another facet of direct manipulation interfaces is the ability to have
several different interfaces at once and more than one view on a single
object. Such features are supported by windows. Windows subdivide the
screen space so that different operations can be taking pi ace on the screen
at the same time. Windows come in two basic types:
• Tiled: the screen is divided up in a regular manner into sub-screens

with no overlap
• Overlapping: windows can be nested on top of each other to give a

depth illusion. Complete or partial overlapping is possible and windows
can be dynamically created and deleted

Windows have many uses. Screen areas can be separated for error
messages, control menus, working area and help. If there are phases in a
dialogue when computer control or a sub-dialogue is needed, a control
window can be opened and two or more processes can be run at once in
different windows. In this manner, windows allow multi-task processing in
a suspend-and-resume manner. There is evidence that people work
concurrently on several tasks in offices, so windows may be suitable for
support of office activities. Windows are also useful for monitoring
information. The status of background or suspended tasks can be held in a
window so the user can periodically monitor wh at is going on.

Although windows are very useful they have some disadvantages. If too
many windows are created the screen becomes cluttered and mistakes will
be made as attention is distracted by something happening in a window not

Computer Control Interfaces 169

being worked on. Increased window clutter also incurs the penalty of an
unstructured display, and search times increase with complexity.

Use of windows is still a matter of active research, so few definite
guidelines can be given for their use. The following tentative advice may
prove useful:

• For novice users, simple tiled windows usually suffice; overlapping
windows create unnecessary complexity

• Use windows for task swapping (for example, from editing to file
management and back again) but keep multi-tasking to a minimum

• Avoid frequent change of the image in windows not being worked on.
The changed image will distract the eye and attention from the task in
hand

• Delete old windows which are not directly related to the current task.
Old windows create clutter

Windows and direct manipulation interfaces require advanced interface
software to control the screen display and a high-resolution VDU. Such
software acts as interpreter between the application software and the
user, managing all the interaction and communication. Interface software
of this nature has been termed 'user interface managers' and will be
described in more depth in chapter 10.

9.8 Command Languages

Command languages are potentially the most powerful command inter­
face, but more power brings with it the penalty of difficulty of learning.
The main advantages of command languages are the economy of screen
space, the direct addressing of objects and functions by name (so the need
to provide an access hierarchy disappears) and the flexibility of system
function which a combination of commands can provide.

All command languages have a word set, called a lexicon, and rules
which state how words may be combined, which is a grammar. The lexical
structure of a command is the method of co ding meaning into the
command words to help recognition and remembering of commands.

Command language lexicons

Command languages need words to identify objects and operations.
Objects will be devices, files, etc. which the commands of the language
operate on. Objects will usually be described by nouns and operations by
verbs. Both word sets should be as meaningful as possible; however, one
objective of command languages is brevity of input, hence co ding of
identifiers is usually necessary. The basic choice when shortening a word is
to truncate or abbreviate.

170 Human-Computer Interface Design

Truncation removes the latter part of a word, leaving a few characters at
the front, for example:

DIRectory CATalogue DELete DISplay DEVice

This is an effective technique if the front of a word communicates its
meaning. Another advantage is that truncation can be used in two modes.
A full version of the word is provided for novices, while experts can use the
short form. It is not difficult to write interfaces which can accept both
versions. The problem with truncation comes from duplicates between
words sharing common leading characters:

DELete DELay DISplay DISconnect

When this happens a further character may have to be added to remove the
ambiguity. Unfortunately this violates the consistency rule as users may
have to type in either 3 or 4 characters depending on the word. There is a
trade-off between risking ambiguity in a command word set and the effort
a user has to expend entering commands. Ideally, users should be able to
invoke commands with a single economical keystroke; however, single
letter commands are more likely to create aliases as the command word set
grows. Most operating systems use three-Ietter commands to prevent
ambiguity. Longer commands also improve ease of memorisation.

The alternative to truncation is compression. This uses strategies of code
design described in Chapter 6. Characters are removed at various points in
the word, leaving sufficient letters to convey the meaning. The resulting
compressed words should, as with all codes, be the same length. Simple
elimination of vowels or consonants rarely produce good code words;
instead, mnemonic techniques of front-middle-back compression using
syllabic emphasis give the best results. The main dis advantage of compres­
sion techniques is that they cannot be used in a long and short form within
one system; also the memorability may not be any better than a truncated
code. Consequently command langages have tended to favour truncation
coding. Compression codes become more advantageous in large systems
with extensive word sets in which truncation is no longer a viable option.

Command language syntax

The rules which govern how command words may be combined vary from
simple association rules to very complex grammars. Generally , three
gradations in command language complexity can be described:

• Keyword: simple command languages which use a single keyword to
invoke an operation

Computer Control Interfaces 171

• Keyword and parameter: a qualifying argument or condition is added to
the keyword to make the language more flexible

• Grammar-based languages: these are the most complex, in which a full
syntactic structure allows very complex commands to be written

These command categories have the following characteristics, although
there is no rigid boundary to each category:

(a) Keyword. Command languages which use single nouns and verbs to
identify objects and invoke commands. Examples are DIR or CAT to
show the directory. Command keywords may be used in very simple
combinations, such as the Command/Object construct of a verb/noun
pair, for example, TYPE FILENAME, PRINT FILE. No complex
grammatic rules are present, consequently the word combinations are
limited. The expressive power of the language is dependent on the
size of its word set. Early microcomputer operating systems used the
keyword method (for example, Apple DOS).

(b) Keyword and parameter. In these languages the basic word may be
qualified by added parameters to enhance the behaviour of the basic
commands, for example DIRISIZE, DIRIOWNER, DIRIPROT.
This gives more flexibility to the language as one command can now
be used to do several different things depending on the parameter.
Rules are introduced to govern the set of permissible parameters per
command and how they are combined. Unfortunately many com­
mand languages add punctuation which is totally redundant and
confusing, just to govern the parameter position, for example:

COPY SYS$STAFFDEVICE:[CNS3013.SYSDIR.LEX]FILENAME.DOC
(The copy command in early versions of DEC's VMS operating
system; a bad example of cluttering with delimiters, now
reformed)

lpr-Pdiablo myfile (a printer command in UNIX, in which the
printer type is the parameter)

Keyword and parameter command languages still have relatively
simple rules for combinations of words. The command strings input
can be validated by using look-up tables for the command words and
valid parameters for each command. The expressive power of the
language is greater than a simple keyword language.

(c) Grammatic. A set of ruIes is introduced to formulate a set of phrases
wh ich may be derived by combinations of command words. The rules
dictate which word types may occur in sequence within a command
word string, just as English gramm ar constrains the way sentences are

172 Human-Computer Interface Design

formed. Many command language grammars mimic naturallanguage
grammars to help learning, although the types of sentences are simple
when compared with naturallanguage.

The types of grammatic constructs required can be grouped in functional
categories:
• Assignment-this associates two objects, or an object with an attribute

or value. For instance, to give a device some property, or to set
read-only protection on a file. Command phrases of this type are
constructed in the form Verb-Object to Object, for example:

SET UNE-PRINTER TO CHANNEL-2

Assign DiscA = USERfred

• Imperative-this command invokes system operations and may be
qualified by objects for the destination of results using the Verb­
Qualifier-Object paradigm, for example:

nroff -TLp -ms myfile: Lpr -Plp&
(the UNIX command for formatting a file and then printing it in
batch mode)

stop ws 4
(the concurrent CP/M command for stopping WordStar in par­
tition 4)

• Locate---commands which search or find a data item within a list or
file. Locate commands are common in data-retrieval command langu­
ages and take the form Verb(find)Object with Qualifying conditions,
for example:

FIND CUSTOMER WHERE CSTATUS=NEW
(find new customer records)

• Accept Input~ommands which get input from the user and use that
input in an operation, for example:

CREATE BACKUP[FILENAME=******]
(create a back-up file with a 6 character name entered by the user)

Analysis of command functions can help selection of more natural syntactic
forms for the command. Command languages become much more complex
if simple phrases can be built up into more complex expressions. This is
effected by a set of rewriting rules which control the nesting of simple

Computer Control Interfaces 173

phrases within larger units. In the case of English the grammar dictates the
way in which phrases are composed into sentences. The rewriting rules of a
gramm ar can allow many layers of nesting using a recursive principle, so
very complex expressions can be constructed. As a result command strings
have to be parsed using recursive techniques, familiar to compiler writers,
to analyse the segments of a command language sentence.

Command languages with a hierarchical grammatic syntax have the
complexity of programming languages and are indistinguishable from
them. The other property required for full programm ability is the ability to
store several command strings together in a file which can then be invoked
by its name. Most operating systems provide this facility, allowing users to
extend the system's functions by producing new combinations of co m­
mands in programs. Examples are COM, EXEC files and shell programs
within UNIX. Full syntactic command languages are powerful and flexible,
but they impose a considerable learning burden on the user.

Analysis and design of command languages

The functions which a command language has to support should be
identified and linked to command names and syntactic structures. Single
commands should be provided for each function, as duplicate commands
will only confuse users. The level of sophistication of the language should
be matched to the users' profile. Generally , full syntactic command
languages should be reserved for sophisticated users; however, many users
can use complex command languages provided good training and support
are provided. If users have a considerable amount to learn, then a layered
approach to the language complexity should be adopted. Release a
restricted simple set first, then let users progress to the full command set
when they feel confident with the simple version.

Command language specification concerns drawing up the command
word lexicon and syntax, adding error messages and the help sub-system.
Command languages with gramm ars require specification using the tools
employed by compiler designers, that is, BNF formalisation of the
grammar or use of syntax diagrams for specification of syntactic sequenc­
ing. Error messages should be planned with care. Errors should be
anticipated at several levels: lexical mis-spellings, syntactic errors,
semantic misunderstanding about usage of a command and run-time errors
from the underlying software. The error interpreter should aim to give
informative messages wh ich relate to the type of error which has occurred,
with an explanation of the most probable source of the error.

Command language design involves design of an input parser, error
message interpreter and run-time system. These are systems and compiler
design issues which will not be treated further here. In summary, interface
design guidelines which should be addressed are:

174 Human-Computer Interface Design

• Command word codes should be consistent. If EXIT has been used for
the escape command, do not use QUIT in another part of the system

• Punctuation and use of delimiters should be minimised
• Entry should be flexible and forgiving. Double spaces between words

should be ignored and mis-spellings corrected if possible
• Command language words and syntax should be economical. Use of

the smaHest combination of words for a function should be traded-off
with word clarity for ease of learning and remembering

• Command words and syntactic sequences should be natural and
familiar; for example, use COPY from fileA to fileB, and not PIP
destinationfile=sourcefile

• Limit unnecessary complexity. The larger the lexicon and the greater
the number of grammatic mIes, the harder the language will be to
learn. Eliminate duplicate mIes and synonyms

• Allow editing of the command string rather than requiring the user to
retypeit

9.9 Natural Language

Natural language has been heralded as the ultimate type of human­
computer dialogue. Although language is undeniably the most natural way
to communicate with a machine, in practice naturallanguage appears to
create some problems in interaction. Furthermore,.machine understanding
of natural language is one of the most significant chaHenges of computer
science research, and consequently practical natural language interfaces
are still in their infancy.

Naturallanguage, like command languages, consists of a lexicon and a
gramm ar. Unlike command and programming languages, naturallanguage
has many more mIes for syntactic composition which allows more flexible
expression and ambiguous interpretation. This section does not aim to
cover the complexity of naturallanguage understanding in depth; instead,
the aim is to give an impression of the complexity of the problem and then
guidelines for use of naturallanguage interfaces in view of those problems.

Syntax

Language is composed of words (calIed 'lexemes' in linguistic jargon),
wh ich can be classified into nouns, verbs, adjectives, etc. Grammatic mIes
state how word classes can be combined to make weH formed sentences,
for example, 'He must go to the station to catch the train' is correct
English, whereas the equivalent in German is 'He must to the station the
train to catch go'-'Er muss nach dem Bahnhof den Zug erreichen gehen'.
The mIes state the composition of sentences in terms of sub-components,

Computer Control Interfaces 175

noun and verb phrases, which in turn are composed of word classes. The
composition rules vary between languages and can be very complex.
English has approximately 20 000 rules and grammarians estimate that the
known rule set is not complete.

Sentences can be decomposed using parsing strategies which test a
sequence of words against the permissible combinations. Parse trees are a
commonly used representation of the syntactic structure of sentences.
Syntax, however, can only tell the listener wh ether a sentence conforms to
the grammatic rules of a language. To generate meaning from language
another dimension is needed, called semantics. To illustrate the point,
syntactically correct phrases can be constructed which are obvious non­
sense; for instance, 'the square triangles taste nice' is clearly meaningless
yet the sentence parses correctly:

__ Det The
NP

S/ ~NP Adj ---Square

\ ~ NO""---Triangles

VP Verb Taste

~Adj Nice

Semantics

Semantics is concerned with generating meaning from knowledge about
words and the associations of words. It forms the link between language,
memory and experience. Semantic rules can be built into gramm ars in an
attempt to eliminate non sense sentences; however, not all semantic rules
and classifications are exact and building a complete semantic gramm ar is
very difficult. Many words are lexically identical yet have different
meanings, such as Bank (as in 'put money into') and Bank (as in
'embankment by the river'). Semantic ambiguity forms the basis of puns in
which two meanings can be applied to the same sentence, as in the
following example from an encyclopaedia entry for NeU Gwynne, one of
King Charles II's mistresses:

Gwynne, Nell-see under Charles 11

Semantic ambiguity can be compounded further by inadequacies of
syntactic rules. An example of syntactic incompleteness is the lack of any

176 Human-Computer Interface Design

scope mIes in naturallanguage grammars. Programming languages are full
of such mIes which define the stmcture of programs in terms of control
constmcts, for example, While ... End-While, If ... End-If. Natural
language has few scope mIes. Consider the sentence:

Jane's mother put the birthday cake on the special jubilee plate
because she knew J ane would like it.

Did Jane like the cake or the plate? The sentence is ambiguous because the
pronoun reference has no scope mIes about how far back it can refer.

Semantic meanings can be analysed using network diagrams (see figure
9.8) which constrain the types of words which should naturally be placed
together. Semantic networks are rarely complete so it is impossible to
specify exactly the meaning in the variety of sentences possible in natural

(a) The boy hit the dog

P 0
Boy <]1====:=::jC> hit f-----==---- dog

(b) The boy hit his little dog yesterday

P
Boy <]===1C> hit

i
o

(his)
yesterday

boy

Verbs and nouns are related aeeording to a set of semantie primitive forms
denoted on the eonneeting ares, e.g. P = Ptrans, a transitive verb with physieal
eontaet, 0 = objeet ofverb, Poss-by shows a possessive clause (after Sehank
and Abelson, 1977)

Figure 9.8 Conceptual dependency network showing relationships between
components of a sentence in terms of their meaning.

Computer Control Interfaces 177

language. However, to understand language people do not rely on
semantics and syntax alone. To generate more complex understanding, the
context of the speaker and listener is required. This is called the pragmatics
of language understanding.

Pragmatics

Consider the statement 'He is supporting the reds'. This could have a very
different meaning depending on whether the reader was aware that the
speaker was referring to a communist party meeting or a support of
Liverpool football club. Pragmatics is the application of knowledge about
the speaker, the surroundings in which communication took place, with
other factors such as gestures made by the speaker and past experiences of
interactions between speaker and listener.

From the above discourse it should be apparent that language under­
standing is a very complex matter which is inextricably linked to knowledge
about the world and the meaning of words. While computer systems can be
built to parse sentences successfully, constructing a true understanding
machine is more difficult. One approach is to equip the computer system
with a lexicon of words and associated facts, so the parser can resolve
ambiguity and avoid errors of misinterpretation. The power of such
systems is dependent on the size and complexity of their lexicon, which
rapidly becomes a vast knowledge base, unless the domain of knowledge
can be restricted. Therefore, most practical natural language systems
restrict understanding to a small specialised area of knowledge, so the
lexicaVsemantic knowledge base can be constructed with a fair expectation
that it will be reasonably complete.

Problems with natural language interfaces

People are over-ambitious in their assumptions about machine intelli­
gence. They tend to expect computer systems to understand complex
sentences, incomplete and ambiguous utterances as they would use with
their fellows. This projection of human qualities of understanding on to
computers means that users quickly reach the limits of the system's abilities
and misunderstandings occur.

Apart from the inadequacies of language understanding systems, there
are further problems caused by the inaccurate way in which we use
language. Consider the statement attributed to a nameless judge: 'It takes
no training to distinguish between the false and that which is untrue'. Many
people would automatically correct the error and restore the sense of the
statement by altering untrue to true, probably unconsciously. Computer
programs have great trouble in making such inferences. Other inaccuracies
and ambiguities are frequently found in the following constructs:

178 Human-Computer Interface Design

• Statements o[time-the ordering of events is often unclear, for
example, read the following instructions:

Please sign the list for a taxi.
Registration forms should be handed in at the desk.
Please fill up the seats in the centre of each row first.
Before entering the dining room please wash your hands.

It is not clear how long the time interval should be between the actions
and which instructions should be executed first if the sentences are in a
list. Knowledge that one has to register before ente ring the conference
may help. Likewise statements such as pie ase telephone immediately,
as soon as possible, or soon, all have different meanings for individual
people

• Quanti[iers-words such as many, some, often, sometimes, are all
vague. Their meaning is derived from the reader's knowledge about the
subject being discussed. Two readers may ascribe very different values
to the same quantifier in the same context; for example, 'Some
students are lazy'-is it 0.1, 1, 15 per cent or more in your opinion?

• Logical operators-English and most other languages do not distingu­
ish between the computer inclusive/exc1usive OR, consequently people
use 'or' when they mean 'and' and vice versa. Consider the statement:

A large vehicle is one considered to be over 32 feet long or 9 feet 6
inches wide or 38 tons laden weight and not licensed to carry
passengers.

Does the large vehic1e possess all three initial properties, or only one,
and does the not condition have to be true?

• Numeric comparisons-Iogical operators of the type 'greater than' are
confused with 'greater than or equal to', for example:

Find all staff with salaries more than ;(20 000. Most people would
include staff with salaries of exactly ;(20 000 as weIl

Design o[natural language interfaces

In view of the substantial problems of natural language processing, the
main guideline is restrict interaction to a small domain of knowledge. With
current technology, successful natural language interfaces can be cons­
tructed using single word recognition, as this does not have the problems of
syntax and largely ignores semantics. Understanding sentences is more
difficult but possible in restricted circumstances. A successful natural
language database interface product, called InteIlect, builds knowledge of

Computer Control Interfaces 179

the database entities, attributes and synonyms into the interface, enabling
natural conversations to be held.

With the current state of the art of language understanding systems, it is
advisable to:
• 'Back translate' the user's input so that meaning can be clarified by a

further dialogue. This is helpful in reducing ambiguity in statements
• Design dialogues to obtain values for linguistic quantifiers such as

'sorne, many, more'
• Interrogate users about new terms so that they can be incorporated

into the knowledge base
• Avoid giving the impression of understanding too much, or outputting

statements which imply reasoning

Speech

If naturallanguage is input by a keyboard it loses much of its advantage as
an interface technique because it is too verbose. Users spend too long
typing in a sentence and make mistakes. Speech understanding is therefore
a natural extension of language understanding which harnesses the full
power of natural language interfaces.

Unfortunately, speech introduces the further problem of deciphering
words from a nearly continuous physical sound (see chapter 2, section 2.3).
People are often ungrammatical in written communication; and in speech
they are even more lax with the use of language. Spoken communication is
full of unfinished phrases, ungrammatical sentences and mispronounced
words. Furthermore, words are spoken in a variety of dialects and speakers
use intonation in the voice to convey meaning, for instance:

Find the glass-this can be a question with a meaning 'have you found
the glass?', or it can be an order with a different intonation.

Speech recognition systems have to deal with all of these problems. Simple
systems have been available for single word recognition for a number of
years. Initially systems could only recognise non-dialect speakers but more
recent systems can learn the tonal qualities of a speaker. Continuous
speech is more problematic. The translation of some words from phoneme
(sound) to lexeme (written word) is unfortunately dependent on under­
standing meaning, either because one word sounds the same as another, as
in boar and bore, or because of mispronunciation, or because one word is
used with different meanings, such as Bank. Speech is transient and if the
meaning cannot be deciphered quickly the system rapidly be comes over­
whelmed with more input. With current technology, real-time language
understanding with speech is not possible. However, experimental systems

180 Human-Computer Interface Design

can demonstrate continuous speech understanding of simple sentences,
and complex ones in limited areas of knowledge.

9.10 Summary

Command interfaces are designed to give people access to system facilities
and to control the computer's operations. Basic guidelines are concerned
with giving the user the correct control and helping navigation in systems.

Simple command interfaces use question and answer dialogues or
menus. Menus need a hierarchy in large systems which makes access slow.
Bypass techniques can be helpful for experts. Breadth-depth trade-offs can
be made and menu formats designed to optimise recognition. Function
keys are a hardware-assisted menu design which economise on screen
space but are limited by the number of keys provided.

Icons, windows and pop-up menus are all part of direct manipulation
interfaces which work by users picking and interacting directly with objects
via a screen image metaphor instead of an identifying code. The screen
presents a virtual world based on the users' view which contains an
intuitive metaphor to guide interaction. leons have limitations of realism
and ambiguity in large systems. Windows provide multiple views on tasks
but may be distracting if ovemsed.

Complex command interfaces use command languages or naturallangu­
age. Both consist of words and composition mIes for sentences, called a
grammar. Command languages have relatively few gramm ar mIes but can
provide a powerful and flexible interface. Care has to be exercised in
choosing abbreviations for command words. Naturallanguage has a vast
number of composition mIes, but in spite of this, it is still inherently
ambiguous. People decipher meaning using semantic and pragmatic
knowledge. The inability of machine systems to store sufficient knowledge
for sophisticated understanding means that users expect too much of
language interfaces and te nd to exceed the system's capabilities. Limited
naturallanguage interfaces can be used for dialogues about restricted areas
of knowledge.

Further Reading

Shneiderman (1987) gives a good survey of command and contro}
interfaces and deals with direct manipulation in more detail.

10 Development of Human-Computer
Interfaces

This chapter covers aseries of topics wh ich relate to research issues in
interface design. First interface design is reviewed within the wider
context of system design and prototyping, which is followed by examina­
tion of the evaluation of human-computer interfaces. Some approaches to
the problem of interface design for different types of users are reviewed,
that is, the concept of adaptive and intelligent interfaces. Within this topic,
user interface software (gene rally termed 'user interface managers') is
reviewed. Finally, formal specification methods for interface design are
described, concluding with a discussion on future developments in human­
computer interface design.

10.1 User-centred Design

It has already been emphasised that interface design is part of the system
design process and should be integrated with current system development
methods. Unfortunately system development methods have paid little or
no attention to the problems of interface design and, so their critics would
maintain, to the users themselves. A common theme within interface
design is concern and involvement with users. A group of methods have
been developed, partly within the human-computer interaction commun­
ity and partly within the area of systems science, wh ich aim to improve the
human involvement in systems development. These methods advocate the
following approach es to the design process:

(a) User-participative design: Users should be actively engaged with the
process of design and should be assigned to the design team to share
in decision making. This is intended to narrow the gap between
computer specialists and computer users and to help eliminate errors
in communication wh ich result in poar requirements definition.
Critics point out that in practice 'user experts' get themselves elected
on to the design team and become part of the system design
community, thus perpetuating the user-specialist division.

181

182 Human-Computer Interface Design

(b) User-centred design: The system design should be driven by the needs
of the users and not by functional processing requirements, limits of
hardware, etc. All good methods of systems analysis should focus on
the user's requirements. Emphasis on task analysis and design helps
user-centred design; however, beyond exhortation for good practice,
there is no prescriptive method one can apply to ensure user-centred
design.

(c) Iterative design: The concept of prototyping and cycIes of refinement
during design is frequently urged in the human-computer interaction
literature. Early design stages are described as formative when the
broad design features are specified and prototyped; the product then
goes through stages of summative design in which details are added
and improved upon. While prototyping works weil when interface
operation is not complicated and prototyping tools are available, it is
more difficuIt for complex interface designs which stretch or exceed
the resources of prototyping tools. It is in just such systems that the
interface is likely to be critical.

Prototyping is undoubtedly helpful but there are practical limita­
tions to its applicability. In many cases it is essential to build a
complete system to create the necessary interaction be fore judging a
prototype. Also prototyping can lead to poor specification in which
problems are deliberately avoided with the excuse that the answers
will be found during prototype trials.

Each approach undoubtedly has something to offer in improving systems
and interface design. User support can encourage 'better user-centred
design by involving users with system operation as weIl as in the design
process. Local experts can be recruited from the user community to act as
semi-expert advisors on the system after training has been completed and
the implementation team has departed. Local experts can increase commit­
ment to the system as weil as providing a human help system, aIthough
developers should beware of demanding too much from a single local
expert.

10.2 Evaluation of Human-Computer Interfaces

Evaluation of human-computer interfaces should be carried out in
conjunction with prototyping development and on complete products
produced within the more traditional analysis-design implementation life
cycIe. Interface evaluations vary considerably in the approach taken, the
method of data recording and the treatment of results. Broadly three
approaches may be followed:

Development of Human-Computer Interfaces 183

(a) Diagnostic analysis: This aims to pin-point the poor design features in
an interface design in an intuitive manner by examining recordings of
dialogue sessions. These are usually videoed and then inspected for
signs of user frustration, users' errors and misconceptions.

(b) Monitoring: Interfaces may be evaluated by monitoring one or more
features of their usage such as error rates, frequency of command
use and duration of usage. Monitoring may be carried out by logging
system commands and terminal input-output signals with operating
system facilities or by specialised line monitors.

(c) Experimental analysis: Experiments are designed to test empirically
two different interface designs or two different features of a design.
Experiments control the context of interface operation carefully to
give precise results about the design under test. Data may be
recorded by a variety of techniques.

Measures of evaluation may be either objective, that is, derived from
controlled collection of data, or subjective, that is, based on intuitive
judgements and opinions gathered from users. Diagnostic analyses, while
pin-pointing critical features of an interface design, are a subjective
approach. Monitoring is more objective although lack of knowledge about
the context in which the measures were collected may lead to difficulties in
objective interpretation. Experiments which control the context and use
empirical measures are the most objective measure but pay a penalty in the
sm all number of features which can be measured in any one experiment.
Objectivity, however, does not just depend on the approach but also on
the method of data recording. The following techniques may be used to
gather evaluation data:

(1) System logging: Recording the input-output traffic between user and
computer. This is non-intrusive in the sense that the user is not
disturbed by the measuring and it yields data for objective analysis.

(2) Video recording: An interactive session is videoed and subsequently
analysed by playback for intuitive diagnosis or by collecting more
objective behavioural data from the recorded film. Video recording
may be unobtrusive if the camera is hidden behind a one-way screen.

(3) Direct observation: The observer sits beside the users and records
what they do by a tape-recorded commentary or writing interaction
details on check sheets. This type of recording intrudes on the users
because it is difficult to ignore the observer's presence and this can lead
to bias if the user is distracted.

(4) Protocol analysis: Users are asked to think aloud about what they are
doing in terms of mental activity, decisions and reasons for decisions.
While this method is intrusive, it is one of the few ways of getting a
record of the user's mental activity during interface operation. Data is

184 Human-Computer Interface Design

open to the user's subjective interpretation about what was happening.
(5) Questionnaires: Questionnaires are useful for collecting subjective

data and some semi-objective data about user characteristics. This
technique is necessary to discover users' attitudes and opinions.
Questionnaires can be augmented by interviews to gain further under­
standing about particular points such as misunderstandings about a
dialogue and difficulties in using an interface.

Analysis of data can either be intuitive or quantitative. If quantitat­
ive measures have been collected, a variety of statistical techniques
exists to help the evaluator assess the results. For further details the
reader is referred to Robson (1973).

The above approaches to evaluation have assumed that a product, or at
least, a prototype exists. However, sometimes it may be advantageous to
evaluate a design before it is built. Predictive evaluations of this kind
specify an interface dialogue in terms of a gramm ar and then analyse the
grammar phrases for the number of words (that is, commands) and
grammatic rules (combinations of commands). The more words and rules a
dialogue has, the more complex it is and the more difficult it may be to
learn. The best developed of these techniques is the action grammar of
Reisner (1984).

The selection of recording techniques, approach and analysis techniques
depends on what the evaluator wants to measure. There is no ideal
measure of a good interface but some ideas are beginning to emerge about
what are the important qualities of an interface from the users' point of
view. These qualities have been christened with terms such as 'accept­
ability' and 'usability' and have the following components (after Shackel,
1986):

(a) Utility. This is a measure of how weIl an interface (and the system)
helps the user to perform one or more tasks. It is linked to the
functionality of the system (what you can do with it) and the task fit,
for example, how weIl does the interface facility provided match what
the users want to do and their perception of how to do it (the task).

This is difficult to measure. Attitude data from questionnaires can
give some feel for task fit, but more comprehensive analysis requires
elucidation of a user task model.

(b) Effectiveness. This is a measure of how weIl the interface, and hence
system, performs in achieving what the user wants to do. This can be
measured in terms of:

Error rates lower than a target level.
Task completion time within a set target time.
Usage of system facilities above a minimum target frequency.

Development of Human-Computer Interfaces 185

(c) Learnability. This measures how easy to learn a system is, and how
well it is remembered after aperiod of disuse. Learnability can be
quantified with measures of:

Decreased error rates over time from the start of system usage.
Decrease in task completion time from the start of system usage.
Correct recall of system facilities, operational procedures or
command names.
Increase in user knowledge about system facilities over time.

(d) Coverage. Coverage is the quantity of system facilities that are used.
While not all users can be expected to use all parts of the system all
the time, if some facilities are never used by any users there may be
design problems. Coverage is measured as:

Facility usage by x per cent of users within a set time period.

(e) Attitude. Attitude is the subjective part of usability which quantifies
user satisfaction with the system.

User satisfaction exceeds a target rating.
User-perceived problems are kept below a set level.
User motivation to use the system exceeds a set baseline level.

All these measures require goals to be set based on reasonable expecta­
tions for the system before the evaluation is carried out. Most evaluations
have concentrated on a sm all number of measures, typically task comple­
tion time and error rates. While these measures can give an overall
impression of an interface's usability, finding out why an interface has
usability problems is often more complicated. For instance, it may be
found that help screens in a system are rarely used. There are five possible
interpretations for this observation:

Users found the help screens so good that they only needed to use
them once or twice.
Users found the system so easy to use that they rarely needed to refer
to the help screens.
Users found the help screens so bad that they gave up using them after
an initial attempt.
Most users did not know that help screens were in the system.
Users found the command to access help screens difficult to use.

To find out the answer to this question, data collected from logs would
have to be combined with questionnaire data, and even an experiment may
be necessary to quantify how useful the help information was.

186 Human-Computer Interface Design

Evaluations, in conclusion, can be done simply to get an overall
impression of how good an interface is, and recordings can be inspected
intuitively to diagnose problems; but teasing apart the reasons why an
interface design is poor is more difficult.

10.3 Adaptive and Intelligent Interfaces

One of the central dilemmas of interface design is how to satisfy the
conflicting demands of different users, in particular, novices and experts.
Novices require easy-to-use, supportive dialogues; experts on the other
hand need quick, efficient dialogues with less support. However, with
practice most novices become experts. The choice is to adapt or not to
adapt.

Adaptability in interfaces unfortunately implies change to so me part of
an interface design. Change offends the consistency principle and makes
the user less sure of the interface, to say nothing of having to relearn parts
of it as it changes. The quest to solve this problem led to the notion of
adaptive interfaces. The problem is threefold:

• Measuring the user in order to determine when to change; the interface
must monitor the user so that it can determine that the novice is now an
expert, etc.

• Adapting the dialogue so that it responds to changes in the user's needs
• Making sure the quantity and type of change does not cause too much

inconsistency in the interface design.
One simple approach to the first problem is to let users decide about their
needs. Users are good judges of their skills; therefore, if an interface has a
level switch built-in to change the sophistication of the interface design,
then users can elect to switch the interface into expert mode if they so wish.
Unfortunately switches of style tend to create considerable inconsistency
because a new dialogue style is suddenly presented to the user. The new
style has to be learned which discourages people from chan ging levels.

If adaptation is not user-driven then the problem is how to measure the
user's abilities. This presents the same problems as any evaluation (see
section 10.2) compounded by the limitation that the interface can only
collect data by system logging. The intelligent interface has to try and
figure out how sophisticated a user is, based on simple measures such as
error counts, command usage and task completion time. Task operation,
however, can be affected by mistakes at the lexical, syntactic or semantic
level. A user may make amistake in a command string either because of a
simple syntactic error of mis-spelling a reserved word, or a syntactic error
in word order, or a semantic error of entering a correct command for the
wrong task or in the wrong context. Deciphering these possibilities
requires subtle evaluation.

Development of Human-Computer Interfaces 187

To make decisions about the user, the system has to have a model of the
user. This model may be a general model in terms of user skill, driven from
error rates and task completion time. Also included may be a knowledge
model of how much a user knows about a system which is determined by
command usage statistics. As user exploration of the system increases, so
the model assumes more knowledge, and this triggers the adaptive
interface into providing the user with more facilities. The problem lies in
trying to find the correct level of triggering and then the link between
monitored data and inferences ab out the user. For instance, a user may use
an advanced command once or twice out of curiosity but subsequently
never use it again. A frequency monitor may pick up the user's experimen­
tation and decide that the user therefore has expertise.

Even when the interface has deduced how skilled its user is, the problem
has not been solved. The next question is wh at part of the interface to
change. Change of the dialogue style can present problems of consistency;
although if different styles of task operation can be detected then it may be
possible to match user type to the task style; for example, experts often
take short cuts to complete a task whereas novices will go through each
step. This approach implies the system has a task model to match different
levels of expertise. A safer part of the interface to chance is the support
components. Messages, prompts and help screens can be very detailed,
providing long explanations for novices or concise messages for expert
users. Skilled users often ignore over-verbose messages in dialogues;
consequently adaptive interfaces should be able to match the messaging to
the users' abilities. This adaptation does not change the dialogue style so
there is little inconsistency in the change.

Adaptation remains an issue of contention and is the subject of
considerable research activity. How much adaptation is a good thing and
how well adaptation can be linked to the user's abilities are problems still
to be solved.

10.4 User Interface Managers

Adaptive and intelligent interfaces are one type of user interface manager
(UIM). Such systems are a self-contained piece of software which takes
over all the functions of managing the user interface, leaving the applica­
tions software to get on with the job of processing. The motivation for
UIMs is simple. Given that most software is now written for interactive
systems and that a large proportion of code is written to implement the
user interface (up to 80 per cent in so me estimates), it follows that the same
thing is being rewritten thousands of times, usually with no improvement.
A UIM intends to be a flexible, re-usable interface module which

188 Human-Computer Interface Design

communicates with the applications software on one side and with the user
on the other side, as depicted in figure 10.1.

The UIM is responsible for all interface presentation and dialogue
management, such as displaying screens, accepting and validating input,
issuing error messages, providing help and tutoring systems. When the
applications software requires data from the users for either adecision or
in the form of transaction data, it sends arequest to the UIM which then
communicates with the user to obtain the data. When the data transfer has
been completed the UIM returns the data to the applications software.
Although simple requests can be passed between UIM and applications

(a) Modular view, in which the presentation manager handles low level interaction
at the interface, while the dialogue manager takes strategie decisions about dialogue
content and conversational contro!.

(Users J Taskand

(b) UIM link module concept. All interface tasks are handled by the UIM and parameters
are passed via link modules which have no knowledge of the underlying software.

UIM knows about users
and interaction

Link module
knows about
system structure
and task

Application
software

Figure 10.1 Schematic diagrams of User Interface Management systems
(UIMs).

Development of Human-Computer Interfaces 189

software by parameters, many operations require the UIM tö have
knowledge of the applications software and the task. In validation, for
instance, the UIM must know what range of data is valid from the
application software point of view, and in a complex task (such as air traffic
control) the UIM has to keep track of the interaction. This creates
problems in trying to separate the application from the interface.

Separation can be increased by a linkage module which knows about the
application on one side and the user on the other. Change to the dialogue
can thus be isolated in the UIM and linkage modules, leaving the
application unchanged. There are levels of complexity which UIMs have to
deal with in human-computer interactions; at the lexical level of key­
strokes, separation is simple. Validation of lexically correct replies can be
effected by look-up tables. The next level of complexity is the dialogue
syntax; separability can still be maintained because input and error­
handling sequences are low-Ievel features common to nearly all
applications. At the task or semantic level, separability becomes more
problematic because the UIM has to have an embedded user task model to
be able to react appropriately to the user requests. It is debatable whether
the model belongs in the UIM or the applications software.

The power of UIMs depends on their flexibility to accommodate
different types of applications software and their port ability between
different system environments without substantial modification. To fulfil
the objectives the UIM has to be as independent as possible from the
applications software. The problem becomes a little harder when direct
manipulation is used. The interface knows only about mouse movements
and icons on a screen. To make sense of pointing responses, the software­
either the UIM or the application software-has to interpret the pointing
coordinates against a physical screen layout and a logical screen definition
file to decide wh at action to take. If a UIM is to be responsible for
interface management it has to know all the operation al pathways through
the applications software which the interface may have to represent.

This necessitates that the UIM has to have a specification of the
application software behaviour. Furthermore, considering one objective of
UIMs is to improve interface design, it has to know about good methods of
interacting with the user. The UIM needs a constrained set of inter action
possibilities based on good human factors principles, so bad interface
designs cannot be implemented. Both of these concerns lead towards the
need to specify formally and perhaps standardise interaction, a topic
covered in section 10.5

The all-embracing UIM is still a research topic and much debate centres
around how separable application software is from the interface (see
Cockton, 1987). An alternative to the complete UIM is to provide
interface building and managing tools which help the applications pro­
grammer to construct interfaces quickly and evaluate the designs within a

190 Human-Computer Interface Design

prototype development cycle. Simple tools, such as screen painters, allow
quick development of menus, form-filling screens, data display screens (for
example, DEC's FMS-forms management system-{)r dBASE III screen
generator). Most 4th generation languages include screen design facilities.

Advanced workstations require user interface management software to
interpret pointing responses and handle window displays. Such interface
systems generally allow definition of a logical object file for screen images,
drawing physical images such as icons and symbols, combined with window
and pop-up menu management. However, it is still possible to design bad
interfaces using tools. More active tools are required which encourage
good design practice and help the system designer to achieve usable and
efficient interfaces. Some systems are available that go some way towards
that end, for example, ZOG (Akscyn and McCracken, 1983) and USE
(Wasserman, 1984).

10.5 Formal Specification of Dialogues

Software designers have been interested in formal specification to help
improve the reliability of designs by being able to prove facts about
software behaviour. In human-computer interaction the quest has been to
formalise dialogue behaviour in similar terms. If the interaction can be
formally described, two benefits can arise. Firstly, the software which
implements the interface can be designed with similar formalism and
thereby, it is hoped that it should be more reliable. Secondly, if basic
principles of human-computer interaction can be f9rmalised, then soft­
ware modules can be built to implement them. This would be like freezing
good dialogue guidelines in re-usable software modules wh ich can then be
in corpora ted into any number of interface designs.

Several methods of formalism have been adopted. Languages already
used by computer scientists, such as Z, may be used to formalise interface
behaviour (Sufrin, 1986). Other approaches have used path algebras (Alty,
1984) to describe dialogue sequences and algebraic formalisms to describe
a set of interactions for a system (Dix and Runciman, 1985). The
techniques of formalism differ in their expressive power and flexibility; but
all aim to demonstrate a finite description of dialogue behaviour. Besides
the debate about the power of the formalism, the critical point is what to
formalise. Many of the guidelines derived from psychology are heuristic
and dependent on context for interpretation. This makes formalisation in
their current state of precision practically impossible.

One answer to this has been to look for generalised principles of
interaction which may be reliable enough and context free to allow
formalisation. Rules could then be generated for each context of a design
rather than a large rule set wh ich tries to account for all the different

Development of Human-Computer Interfaces 191

contexts of interface designs. Generative User Engineering Principles
(GUEPS, Harrison and Thimbleby, 1985) have attempted to progress in
this direction. GUEPS are derived from general human factors principles,
such as 'interfaces should exhibit wh at you see is what you get'. This
concept can be refined into statements of cause and effect, and from there
to a set of state constraints which describe how the interface can and
cannot behave, for example, taken from the WYSIWYG principle:
• Any operation provided by the system will have an equivalent effect on

the screen as in the data
• No hidden side effects may occur (data may not be modified without a

corresponding screen display to inform the user)
• It is always possible to generate a visible description of the data which

is available to the current toolset
Once the general statements have been refined to express permissible
states for the system and its interface, and conditions for transitions
between these states, the principles can be formalised in an abstract model.
While GUEPS have the potential to improve interface design, their
application would need to be evaluated in practice. Also because GUEPS
are dependent on improvements in psychological knowledge for the
production of general principles which may be formalisable, it is impossible
to say how complete, or even sufficient, a set of GUEPS would have to be
to ensure a good interface design.

Formal methods in interface design face the same problems as they do in
software engineering. Many formalisms become cumbersome, not to say
unworkable, with large systems; in addition, formalisation creates a
learning problem for the average designer. Hence formal methods have an
interface design problem all of their own-how to hide the mathematical
formalism from those who wish to use it but do not want the learning
burden of a formallanguage. Formalism of human-computer interaction
will probably make slow progress in the short term because of the
variability of possible interactions between people and computers, and
because of the context dependency of current knowledge. But formalism
will continue to be a necessary aim to link interface design with advances in
the formal design of software and eventually to specify types of interaction
in more rigorous terms. This pre-supposes that we shall eventually succeed
in understanding the cognition of interaction.

10.6 Summary

Interface design is part of a larger process of software development, and
user involvement in the whole process is essential for good design. Besides
user participation in design teams, prototyping approaches can be helpful
in obtaining feedback on designs. Designs should be evaluated as early as

192 Human-Computer Interface Design

possible in the development life cyde and later when implemented.
Evaluation can take several forms depending on the evaluators' objectives
however, goals for usability should be set induding utility, effectiveness,
learnability and attitude.

Adaptive interfaces are a potential solution to the mixed user population
dilemma, although the consistency of the interface has to be maintained as
it adapts. The quest for adaptive interfaces is related to separating all
interface software as user interface managers. UIMs can be built indepen­
dently of applications software for basic handling of interaction but the
problem of separability becomes more difficult at the task level. Another
quest in interface design has been to apply software engineering principles
to interaction and to derive a set of context-independent rules for design.
Formal specification of dialogues is difficult because of the variability in
users, the context of interaction, and the incomplete knowledge of the
psychology of interaction.

Further Reading

For further discussion on human involvement in the design of systems,
induding humans as an essential part of that design, see Mumford et al.
(1978) and Checkland (1981). References to the issues of evaluation,
adaptation, UIMs and formalisation have been cited in the text; more
material can be found in the conference proceedings in the INTERACT,
CHI and HCI series.

10.7 Postscript

In a subject which is so new it is probably unwise to speculate about its
future, so these remarks will be confined to a few possible directions in
which the subject may develop.

Little has been said in this book about the effect of computers on people.
The introduction of computerised systems changes our model of the world
and the way in which we work in several ways. We may do jobs in a
different manner, reflecting changes in our task model; either because
current systems force changes upon us, or less frequently, because a
computer system allows us to do a new task more creatively. Our
interaction with other people is also changed by human-computer interac­
tion. Consider how we exchange messages by telephone, face to face, and
by an electronic mail system. Face to face we use facial expressions,
gestures and movements to help regulate speech and communication; by
telephone none of these is available although we can use intonation of the

Development of Human-Computer Interfaces 193

voice to help communication. When faced with electronic mail there is
nothing but the message itself.

Psychologists and builders of computer-based messaging systems have
yet to decide what communication devices should do to help message
passing, what types of interaction are possible and wh at impact computers
may make on group behaviour. Human-computer interaction go es beyond
psychology into the study of group interaction, that is, sociology. How
groups of people interact electronically is currently poorly understood, yet
electronic communication is increasing rapidly in many spheres. Com­
puters have and will continue to change our work patterns. The Xerox
Corporation introduced the idea of horne workers, giving each manager a
workstation connected to the office so he or she could work remotely at
horne. Some authors have anticipated that the office may become redun­
dant as all office communication becomes mediated by computers. On the
other hand, people may still need the social stimulus of meeting their
friends in the office. Sociologists have yet to answer this question.
Speculation on future trends is a nearly boundless topic; many interesting
ideas can be found in a good survey by Nickerson (1986) and aseries of
concept papers in Norman and Draper (1986).

Interface design has progressed through two discernible generations.
The first generation used text-based interaction and was either difficult to
use or inflexible, such as the familiar menus, form-filling and command
language dialogues which still implement many human-computer inter­
faces. The second generation of direct manipulation interfaces introduced
more naturalistic interaction with visual communication. The next genera­
tion of interfaces will need to integrate methods of interaction, making
considerable use of voice and natural language with advanced graphics.
Other interaction media, such as eye movement and gesture, mayaiso be
used, and images will be in three dimensions with animation to guide and
explain interaction and tasks. A good glimpse of some of the future can be
found in Bolt (1984).

Human-computer interaction can be considered to be a dose relative of
artificial intelligence. Many of the issues a.re common, such as user
modelling, goal-directed processing and knowledge models; and interface
design uses some of the practices of artificial intelligence in adaptive
interfaces. Within previous chapters there has been no discussion about
interfaces to intelligent systems, and their more applied counterparts,
expert systems. The reason is that little is yet known about these interfaces.
A variety of dialogue styles can be employed from question and answer
sessions, typically found in early systems (such as MYCIN- see Rich
(1984) for a description of AI systems) to more sophisticated command
language dialogues. The problem is more complicated with expert systems
because there are two interfaces; an end user interface and the ex-

194 Human-Computer Interface Design

pert--expert system interface. The latter, in particular, presents consider­
able challenges in the design of interfaces which allow for the display and
editing of complicated knowledge bases. Early styles of interaction left the
initiative primarily with the expert computer system; more recently,
co operative expert systems have been developed which have mixed
initiative dialogues. Planning and controlling such dialogues presents a
considerable challenge.

Human-computer interaction will become more involved with artificial
intelligence both in the implementation of more sophisticated UIMs and as
a topic within the development of intelligent knowledge-based systems. As
HCI progresses more deeply into the psychology of cognition it mayaiso
be expected to spread out into group and inter-personal communication
within the realms of sociology. Future directions should, however, not
obscure the fact that much of the basics of interface design need to be
defined and the foundations of the subject underpinned with firm theory.
More empirical research is required to resolve contradictory guidelines;
more general and predictive theories of cognition are required to model
interaction; and design guidelines should be formalised into methods.
Formalisation eventually needs to converge with the approach of software
engineering to create specifications, and hence designs, which can be
verified to ensure that good interfaces are constructed. Clearly there is
much work, and plenty of problems, in the present, with many challenges
for researchers and designers in the future.

References and Further Reading

The references are organised in two sections; first in chapter order
and then a general reference section for further reading. The chapter
references are cited in the main text.

Chapter 1

Martin, J (1973). Design of Man Computer Dialogues, Prentice-Hall,
Englewood Cliffs, NJ.

Chapter 2

Baddeley, A. S. (1979). Your Memory: A Users Guide, Pelican, London.
An excellent and readable guide to human memory and associated
cognitive phenomena.

Card, S. K., Moran, T. P. and Newell, A. A. (1983). The Psychology of
Human Computer Interaction, Lawrence Erlbaum Associates, Hillsdale,
NJ.
Description of the GOMS model, model human processor and work at
Xerox on HCI. Useful intermediate level reading.

Christie, B. and Gardiner, M. M. (1987). Applying Cognitive Psychology
to User Interface Design, Wiley, London.
An in-depth review of recent research in psychological topies which are
relevant to HCI. End of ehapter summaries give HCI guidelines derived
from psychologie al research.

Frisby, J. P. (1979). Seeing: Illusion, Brain and Mind. Oxford University
Press.
A readable and well illustrated discourse on visual pereeption.

Fry, D. B. (1977). Homo Loquens, Cambridge University Press.
General introduction to speech pereeption.

195

196 Human-Computer Interface Design

Glass, A. L., Holyoak, K. J. and Santa, J. L. (1979). Cognition,
Addison-Wesley, Reading, MA.
A good textbook covering all aspects of cognition for those who wish to
explore the psychological background further. Now in a second edition.

Hitch, G. J. (1987). 'Working memory', in B. Christie and M. M. Gardiner
(eds), Applying Cognitive Psychology to User Interface Design, Wiley,
New York.

Johnson-Laird, P. N. (1983). Mental Models, Cambridge University Press.
A highly influential text on cognition. Advanced reading for aspiring
cognitive scientists.

Linsday, P. H. and Norman, D. A. (1977). Human Information Process­
ing, Academic Press, London.
An alternative general text on cognition written more explicitly from a
'computational' view. Also in a second edition (1987).

Marr, D. (1982). Vision, Oxford University Press.
Definitive account of vision from Marr's important research. Advanced
reading.

Maslow, A. H. (1987). Motivation and Personality, 3rd edition, Harper
and Row, New York.
Aseries of papers on motivation by Maslow and updated by others in the
field since the original publication date.

Miller, G. A. (1956). 'The magical number seven, plus or minus two: some
limits on our capacity for processing information', Psychological Review,
63:81-97.

Newell, A. and Simon, H. (1972). Human Problem Solving. Prentice-Hall,
Englewood Cliffs, NJ.

Rumelhart, D. E. and McClelland, J. L. (1987). Parallel Distributed
Processing, Vols 1 and 2, MIT Press, Cambridge, MA.
Advanced reading on memory and computer modelling.

Warren, R. M. and Warren, R. P. (1970). 'Auditory illusions and
confusions', Scientific American, 223:30--36.

References and Further Reading 197

Chapter 3

Bailey, R. W. (1982). Human Performance Engineering: A Guide for
System Designers, Prentice-Hall, Englewood Cliffs, NJ.
A comprehensive text covering all ergonomies; good background read­
ing on human factors.

Damodaran, L., Simpson, A. and Wilson, P. (1980). Designing Systems for
People, NCC Press/University of Loughborough.

De Marco, T. (1978). Structured Systems Analysis and System Specifica­
tion, Yourdon Press, New York.

Gane, C. and Sarson, T. (1979). Structured Systems Analysis: Tools and
Techniques, Prentice-Hall, Englewood Cliffs, NJ.

Shackel, B. (ed.) (1974). Applied Ergonomics Handbook, Butterworth,
Guildford.
Covers ergonomie issues which affect HCI.

Chapter 4

Card, S. K., Moran, T. P. and Newell, A. (1981). 'The keystroke level
model for user performance time with interactive computer systems',
Communications of the ACM, 23:396-410.

Foley, J. D. and van Dam, A. (1982). Fundamentals of Interactive
Computer Graphics, Addison-Wesley, Reading, MA.

Johnson, P. (1985). 'Towards a task model of messaging: an example of the
application of TAKD to user interface design, in P. Johnson and S.
Cook (eds), People and Computers: Designing the Interface (HCI-85),
Cambridge University Press.

Kieras, D. and Polson, P. G. (1985). 'An approach to the formal analysis
of user complexity', Int. J. Man Machine Studies, 22:365-394.

Moran, T. P. (1981). 'The Command Language Grammar: a representa­
tion scheme for the user interface of interactive systems', Int. J. Man
Machine Studies, 15:3-50.

198 Human-Computer Interface Design

Reisner, P. (1984). 'Formal grammar as a tool for analysing ease of use:
some fundamental concepts, in J. C. Thomas and M. L. Schneider (eds),
Human Factors in Computing Systems, Ablex, Norwood, NJ.

Shneiderman, B. (1981). 'Multi party gramm ars and related features for
defining interactive systems' IEEE Transaction on Systems, Machines
and Cybernetics, 12:148-154.

Shneiderman, B. (1987). Designing the User Interface, Addison-Wesley,
Reading, MA.

Chapter 5

Kieras, D. and Polson, P. G. (1985). 'An approach to the formal analysis
of user complexity', Int. J. Man Machine Studies, 22:365-394.

Chapter 6

Galitz, A. O. (1981). Handbook of Screen Format Design. QED Informa­
tion Sciences, Wellesley, MA.

Huckle, B. (1981). The Man Machine Interface: Guidelines for the User
System Conversation, Savant Institute, Camforth, Lancs.

Chapter 7

See General references.

Chapter 8

Siegel, S. (1956). Non Parametric Statistics for the Behavioural Sciences,
McGraw-Hill, New York.

See also General references.

Chapter 9

Schank, R. C. and Abelson, R. P. (1977). Scripts, Plans, Goals and
Understanding, Lawrence Erlbaum, Newark, NJ.

References and Further Reading 199

Shneiderman, B. (1983). 'Direct manipulation: a step beyond programm­
ing languages', IEEE Computer, 16(8):57-65.

See also General references.

Chapter 10

Akscyn, R. M. and McCracken, D. L. (1983). ZOG and the USS Carl
Vinson: Lessons in System Development, Computer Science Depart­
me nt. Report No. CMU CS 84127, Carnegie Mellon University, USA.

Alty, J. L. (1984). 'Use of path algebras in an interactive adaptive dialogue
system', in B. Shackel (ed.), Proceedings of IFIP conference 'Interact
84', Vol. 1, North-Holland, Amsterdam, pp. 321-324.

Bolt, R. A. (1984). The Human Interface, Lifetime Learning Series,
Wadsworth, London.

Checkland, P. (1981). Systems Thinking, Systems Practice, Wiley, New
York.

Cockton, G. (1987). 'A new model for separable interactive systems' in
H-J. Bullinger and B. Shackel (eds) , Proceedings Interact-87, North­
Holland, Amsterdam, pp. 1033-1040.

Dix, A. and Runciman, C. (1985). 'Abstract models of interactive
systems', in P. Johnson and S. Cook (eds), People and Computers:
Designing the Interface (HCI-85) , Cambridge University Press, pp.
13-22.

Harrison, M. D. and Thimbleby, H. W. (1985). 'Formalising guidelines for
the design of interactive systems', in P. Johnson and S. Cook (eds) ,
People and Computers: Designing the Interface (HCI-85) , Cambridge
University Press, pp. 161-171.

Mumford, E. et al. (1978). 'A participative approach to the design of
computer systems', Impact of Science on Society, 28(3).

Nickerson, R. S. (1986). Using Computers: The Human Factors of
Information Systems, MIT Press, Cambridge, MA.

Norman, D. A. and Draper, S. W. (eds) (1986). User Centered System
Design, Lawrence Erlbaum, Newark, NJ.

200 Human-Computer Interface Design

Reisner, P. (1984). 'Formal grammar as a tool for analysing ease of use:
some fundamental concepts', in J. C. Thomas and M. L. Schneider
(eds), Human Factors in Computing Systems, Ablex, Norwood, NJ.

Rieh, E. (1983). Artificial Intelligence, McGraw-Hill, New York.

Robson, C. (1973). Experimental Design and Statistics in Psychology,
Penguin, Harmonsworth, Middlesex.

Shackel, B. (1986). 'Ergonomies in design for usability', in M. D. Harrison
and A. F. Monk (eds), People and Computers: Designing for Usability
(HCI-86), Cambridge University Press, pp. 44--64.

Sufrin, B. (1986). 'Formal methods and interface design,' in M. D.
Harrison and A. F. Monk (eds), People and Computers: Designing for
Usability (HCI-86), Cambridge University Press, pp. 23-43.

Wasserman, A. I. (1984). 'Developing interactive information systems
with the user software engineering me.thodology', in B. Shackel (ed.),
Proceedings of IFIP conference 'Interact 84', Vol. 1, North-Holland,
Amsterdam, pp. 321-324.

General References and Further Reading

Bailey, R. W. (1982). Human Performance Engineering: A Guide for
System Designers, Prentice-Hall, Englewood Cliffs, NJ.
A comprehensive text covering all ergonomies; good background read­
ing on human factors.

Gaines, B. R. and Shaw, M. L. G. (1984). The Art of Computer
Conversation, Prentiee-Hall, Englewood Cliffs, NJ.
Principles of HCI as a set of proverbs for designers.

Galitz, A. O. (1981). Handbook of Screen Format Design, QED Informa­
tion Sciences, Wellesley, MA.
Good source of practical screen design guidelines.

Green, T. R. G., Payne, S. J. and Van der Veer, G. C. (1983). The
Psychology of Computer Use, Academic Press, London.
Collection of papers on human--computer interaction.

Huckle, B. (1981). The Man Machine Interface: Guidelines for the User
System Conversation, Savant Institute, Carnforth, Lancs.
Guidelines for screen design and form filling dialogues.

References and Further Reading 201

Monk, A. (ed.) (1985). Fundamentals of Human Computer Interaction,
Academic Press, London.
A collection of papers on many aspects of human--computer interaction.
A good source for additional material on psychological background and
interface design.

Rubenstein, R. and Hersh, H. (1985). The Human Factor: Designing
Computer Systems for People, Digital Press.
Good description of process of interface design illustrated with mini case
study; includes guidelines for presentation and dialogue.

Shneiderman, B. (1987). Designing the User Interface, Addison-Wesley,
Reading, MA.
A complete and up-to-date text on HCI with many references and topics
on researchers' agenda.

Sime, M. E. and Coombs, M. J. (1983). Designing for Human Computer
Interaction, Academic Press, London.

Smith, S. L. and Mosier, J. N. (1984). Designer Guidelines for the User
System Software Interface, Mitre Corporation Report, Mitre Corpora­
tion, Bedford, MA.
An extensive collection of HCI guidelines (500+ and increasing each
year). The source, in abridged form, of many of the guidelines in
chapters 7-9.

For those wishing to explore the literature further , two journals are
recommended:

International Journal of Man Machine Studies
Behaviour and Information Technology

In addition, there are three series of conference papers weIl worth
consulting:

CHI series, Proceedings of the ACM Conferences on Computer
Human Interaction, ACM Press, 1983 onwards.

HCI series, Proceedings of the BCS Conferences on Human
Computer Interaction, Cambridge University Press, 1985 onwards.

INTERACT series, Proceedings of the IEEE/IFIP Conferences on
Human Computer Interaction, North-Holland, Amsterdam, 1984
and 1987

Index

Abbreviations 116-17,119,170,
see also Command languages

compression 116, 170
truncation 116, 170

Animation 193
Artificial intelligence 5, 193
Attention 40,42-3,44,48, 111,

112, 131

Backtracking see Undo
Bar codes 135
Brain 10

anatomy of 11
Break points see Closure events

Card, S. K., Moran, T. P. and
Newell, A. 11,25,34,89

CCT (Cognitive Complexity
Theory) 91-4, 95

CLG (Command Language
Grammar) 81-8, 95

Closure events 43, 44, 63, 131
Codes 117, 170
Cognition see cognitive

psychology under Psychology
Cognitive overload 44
Colour 12,15,17,112,113,

114-16
blindness 15, 115
brightness 13, 115
guidelines 115
hue 115
saturation 115

guidelines 115, 125
Command languages 73-4, 141,

169-74
design of 173
grammar 143, 171-2
guidelines 174
lexicon 169

Conceptual dependency 176

202

Context (of dialogue,
interface) 46, 64, 85

Data
capture 121-2
display 137-55

guidelines 137
editing 131-3
entry 72, 119-36

guidelines 119, 120, 121
grauping and ordering of 109,

122, 138, 151
retrieval 72, 140-4

guidelines 143
Databases 28,35,140,141, 178
De Marco, T. 50, 53
Decibel 22
Defaults 102, 119, 120
Diagrams

data flow 50--3
generalised transition

network 90-4
network 103-6
state transition 89, 103

Dialogue 97-107, 188
command and

contra I 156-80
design 87,97-105
formal specification

of 190--1
guidelines 101-2, 157, 158,

161,169
Direct manipulation 166-8, 169,

189, 193
principles of 167

Entities, conceptual entities 82,
84,88, 141

Ergonomics 1, 56
Errar messages 129, 131, 173, 188

Errors 40, 129, 173
mistakes 40, 41
slips 40

Escape 102, 106, 159
Evaluation 2, 182-6, see also

Usability
analysis of 183
data recording for 183
goals 184, 185
types of 183

Expert systems 35, 193, 194
co-operative 194

Fatigue 44, 64
Form-filling dialogues 72-3,

127-33
Forms design 121-7

guidelines 123-7
instructions 127
layout 122-3, 125-7
prompts 127

Fourier analysis 20
Function keys 162--4
Functional decomposition 50, 100

GIGO (Garbage In Garbage
Out) 119

GOMS (Goals, Operators,
model) 34,41,85,89,90,
see also Card, S. K., Moran,
T. P. and Newell, A.

Grammar see CLG (Command
Language Grammar)

command languages 87, 88-9,
95

language 23, 174-5
Graphics 108, 144-8, 193
Graphs 144-8

complex 147-8
guidelines 144-5
histograms 145
line graphs 145
pie charts 145
scattergrams 146

Group behaviour 193
GUEPs (Generative User

Engineering Principles) 191
Guidelines see under appropriate

topic

Index

Hearing 19-24
Help 102, 185, 187
Heuristics 40, 41, 45, 61
Human factors see Ergonomics

Icons 16,59, 71-2, 164-6, 167,
168

ambiguity of 164, 165
design of 164
guidelines 166

Intelligent interface see adaptive
under Interfaces

Interfaces
adaptive 18&-7
analysis of 49-59
design styles 6&-75, 78-9, 98-9
efficiency of 47, 106, 184
justification for design of 3
sophistication 77-8
support 77-8
usability 47, 184, 185
utility 46, 47

Iterative design see Prototyping

Job design 63--4, 192
Johnson-Laird, P. N. 38

Kieras, D. and Polson, P. G. 90,
92

Knowledge 31, 177
declarative 31
procedural 31

Knowledge base 177

Language 23, 74-5, 174-9
ambiguity of 175, 177, 179, 193
interface design for 178-9

guidelines 179
lexicon 174, 177
phonemes 23, 179
pragmatics 23, 176, 177
semantics 23,175
syntax 23, 174, 175

Learning 24,27,30-1,41,47
Light 11-14

brightness 12-14
contrast 12-14
luminance 12-14

Local experts 181, 182

Memorisation 27-8, 32
cue overload 33
recall 27, 28, 33

203

204

Memorisation (cont' d)
techniques for 32-4

Memory 24-34
access mechanisms 27-30
associative 28-9, 33
categories 29,31,33
chunking 26--7, 144
design guidelines for 27-8, 33-4
episodic 32, 41
long-term 24, 28-32
models of 24-32, 36--9
short-term 24-8,31,46,63,69

auditory 24-7,41
cognitive 26--7
visuaI 24, 148

structure of 27, 29-32
working 27,38,39,90,92

Mental models see mental under
Models

Menus 68-9, 133, 158-62, see
also design styles under
Interfaces

guidelines 161
hierarchy of 159, 160
options 159, 160
pull-down/pop-up 161, 190

Metaphors 58, 79, 166, 168
Methods 85-6, 91, see also CLG

(Command Language
Grammar), Structured analysis,
and analysis under Task

user-centred 181-2
user-participative 181

MICR (Magnetic Ink Character
Recognition) 135

Mode/modeless interaction 163-4
Models 56

cognitive 10-11,57
conceptual 56,57,59,95, 167
information processing 24,

25-6, 28, 42-3
mental 36--9, 41, 47
user 47, 56--9, 157

Modules
interface 100, 109, 187
logical 101
physical 101

Moran, T. P. 81, 82, 87
Motivation 43, 59
Mouse 133, 166
Mnemonics 32, 116, 168
Multi-tasking 42, 169

Index

Natural language see Language
Nerve cells 6--8
Nerve impulses 8-9
Neural computing 9-10, 30

OCR (Optical Character
Recognition) 135

OMR (Optical Mark
Recognition) 133-4

Operations 84-6, 88
Optical cortex 16--17

Parallel distributed processing 30
Path algebras 190
Pointing 119, 166, 167, 189, 190
Presentation 87, 108-18, 188, see

also Screen design
Principles 45, 101-2, 106, 189,

190,191
adaptability 46, 186
compatibility 46, 47, 58
consistency 34, 45, 102, 186,

187
economy 46, 102
guidance 46, 102
predictability 46
reversibility 46
structure 34, 46

Print 15, 139-40, 154
font 139
format of 139-40, 154
point 15, 139

Problem solving 34-9
goals of 35, 41
logical form of 37-8
models of 34-9
strategies for 35

Processors 24, 27-8, 42
cognitive 24, 27, 28, 42, 43
motor 25,42
sensory 24, 42

Protocol analysis 183
Prototyping 97,98, 182
Psychology 1, 4, 6-44

cognitive psychology 11-44, 194

Ouestion and answer
dialogues 68, 157, see also
command and control under
Dialogue

Ouestionnaires 184

Reasoning 35-8,41,45 see also
Problem solving

backward chaining 35
forward chaining 35
guidelines for 41
inductive 35
strategies of 35-8
syllogistic 37

Reisner, P. 88
Reports 148-54

analysis for 150--1
guidelines 151, 154
types of 150

Response time 104

Screen design 108-18, 129-31
crowding 109, 137
guidelines 110, 115, 116, 137,

138
highlighting 111-13, 130
messages 116--17, 131, 187

Scrolling 140
Semantic networks 29, 31
Shneiderman, B. 89, 95, 166
Skills 40--2, 55, 187

power law of 40
Software engineering 5, 191, 194
Sound 19-23

amplitude 20, 22
frequency 20, 22, 23
harmonics 20, 22
pitch 20

Spatial data management 141
Speech 19,20,23, 179-80

generation 23
recognition 23-4, 136, 179

SQL (Structured Query
Language) 141, 143

Stress 44
Structured analysis 50--3

data flow diagrams 50, 52-3
structured English 53, 61, 103

Structured design 100
cohesion 100, 152

Systems
documentation 65
environment 64-6
guidelines 66
support 64

Systems analysis 4, 49-50

Index

Task 2,38,43,81,88,89,98
allocation 61-3
analysis 4, 49-53, 58, 100, 101
design 38, 43, 59-63, 88
fit 47, 92-3
models 58, 88-9
network 61,62,98
specification 61, 62

Text, display of see Print
Trade-off decisions 46, 102, 120,

122
Training 65, 173
Transactions 120, 122, 149, 154

UIMs (User Interface Management
systems) 169, 187-90, 194

separability 189
Undo 102, 121, 159
Usability 47, 184, 185
User manuals 65-6
Users

analysis of 53,55-6, 77-8, 110,
122

categories 54
expert 54,55,74,173,186
naive 54, 68, 75, 158
novice 54, 68, 70, 72, 75, 186
skilIed 54

characteristics 53-4, 98, 110,
122

modelling 57-8
navigation 138, 158
terminology 139
testing 109, 154, 166
views 56--8, 98-9, 100

Validation 111, 128-9
VDU displays 14,109,111

flicker 14
Vision 11-19

acuity 14-15
illusions 13, 17-19
pre-processing 14-15
sensitivity 14
threshold 15-17

WIMP (Windows, Icons, Mouse,
Pu li-down menus) 166

Windows 168-9, 190
WYSIWYG 168, 191

Z 190

205

