FAST
SIMULATION

OF COMPUTER
ARCHITECTURES

edited by
THOMAS M. CONTE
CHARLES E. GIMARC

SPRINGER SCIENCE+BUSINESS MEDIA, LLC

FAST SIMULATION OF
COMPUTER
ARCHITECTURES

FAST SIMULATION OF
COMPUTER

ARCHITECTURES

EDITED BY

Thomas M. Conte
University of South Carolina

Columbia, South Carolina
H

Charles E. Gimarc
AT&T Global Information Solutions

West Columbia, South Carolina

v
W

SPRINGER SCIENCE+BUSINESS MEDIA, LLC

Library of Congress Cataloging-in-Publication Data

Fast simulation of computer architectures / edited by Thomas M. Conte,
Charles E. Gimarc.
p. cm.
Includes bibliographical references and index.
ISBN 978-1-4613-6002-5 ISBN 978-1-4615-2361-1 (eBook)
DOI 10.1007/978-1-4615-2361-1
1. Computer architecture--Evaluation. 2. Digital computer

simulation. 1. Conte, Thomas M., 1964- . II. Gimarc, Charles
E., 1953-

QA76.9.A73F28 1995 95-19087
004.2°4°011--dc20 CIP

Copyright © 1995 by Springer Science+Business Media New York

Originally published by Kluwer Academic Publishers in 1995

Softcover reprint of the hardcover 1st edition 1995

All rights reserved. No part of this publication may be reproduced, stored in
a retrieval system or transmitted in any form or by any means, mechanical,
photocopying, recording, or otherwise, without the prior written permission of
the publisher, Springer Science+Business Media, LLC.

Printed on acid-free paper.

CONTENTS

INTRODUCTION
Thomas M. Conte and Charles E. Gimarc

SHADE: A FAST INSTRUCTION-SET
SIMULATOR FOR EXECUTION PROFILING
Bob Cmelik, David Keppel

O I O O W N

Introduction
Related Work
Analyzer Interface
Implementation
Cross Shades
Performance
Conclusions
Acknowledgements

INSTRUMENTATION TOOLS
Jim Pierce, Michael D. Smith, Trevor Mudge

1

2
3
4

Introduction

When To Instrument Code

How Late Code Modification Tools are Built
Current Instrumentation Tools

STACK-BASED SINGLE-PASS CACHE
SIMULATION
Thomas M. Conte

1
2

Introduction
Single-Pass Cache Simulation

-~ Ot Ot

16
17
28
30
35
35

47
47
51
56
68

87
87
88

FAST SIMULATION OF COMPUTER ARCHITECTURES

3 Extensions to Single-Pass Techniques
4 Concluding remarks

NON-STACK SINGLE-PASS SIMULATION
Rabin A. Sugumar, Santosh G. Abraham

1 Introduction

2 Fully-associative Cache Simulation
3 Binomial Forest Simulation

4 Write-buffer Simulation

5 Directions for future work

EXECUTION DRIVEN SIMULATION OF
SHARED MEMORY MULTIPROCESSORS

Bob Boothe

1 Introduction

2 Implementation Decisions

3 Example Simulators

4 Code Augmentations

5 The Simulator Half

6 Performance Characteristics
7 Summary

SAMPLING FOR CACHE AND PROCESSOR
SIMULATION

Kishore N. Menezes

—

Introduction
Statistical Sampling
An Example

SR)

Concluding Remarks

PERFORMANCE BOUNDS FOR RAPID
COMPUTER SYSTEM EVALUATION
Bill Mangione-Smith

1 Introduction

2 Outline of Approach

3 Simple Bounds Model

96
103

109
109
111
117
128
139

145
145
147
152
154
160
162
166

171
171
172
184
199

205
205
207
211

Contents

4
5
6

INDEX

Data Dependence And Scalar CPUs
MACS: A Hierarchical Performance Model

Conclusion

vil

217
226
234

239

CONTRIBUTORS

Santosh G. Abraham Rabin A. Sugumar
Hewlett-Packard Laboratories Cray Research Inc. .
Palo Alto, California Chippewa. Falls, Wisconsin
Bob Boothe

University of Southern Maine
Portland, Maine

Bob Cmelik
Sun Microsystems, Incorporated
Mountain View, California

David Keppel
University of Washington
Seattle, Washington

Bill Mangione-Smith
University of California at Los Angeles
Los Angeles, California

Kishore N. Menezes
University of South Carolina
Columbia, South Carolina

Trevor N. Mudge
University of Michigan
Ann Arbor, Michigan

Jim Pierce
University of Michigan
Ann Arbor, Michigan

Michael Smith
Harvard University
Cambridge, Massachusetts

1

INTRODUCTION

This is a book about sophisticated techniques for simulating computer archi-
tectures. It is intended for two groups of readers: the practicing computer
architect who is looking for good solutions to tough evaluation problems, and
the computer architecture student who would like to augment knowledge ob-
tained from more traditional architecture textbooks. It can also be used as a
second textbook for first- or second-semester architecture courses. To this end,
each chapter includes 10 to 20 exercises useful as class assignments or as study
aids.

It has often been said that computer architecture is not a quantitative, sys-
tematic design process, rather it is an art form. There is some truth to this
observation. Engineering design involves several steps: (1) innovating potential
designs, (2) evaluating the performance of the designs, and (3) selecting the best
design. The initial innovation (step (1)) involves creativity. The later evalua-
tion and construction steps can largely be expressed as optimization problems,
which are often solved systematically (although tremendous creativity is often
applied to devising optimization techniques).

Unfortunately, there is no general theory for systematic computer architecture
evaluation and selection. This is partly due to the complexity of the prob-
lem: successful general-purpose computer systems must have the capacity for
a very diverse set of applications. The workloads used in the design process
must capture this diversity. (The field of workload characterization addresses
this problem.) Once a workload has been determined, one must face another,
more pressing problem. The number of potential designs is large. Consider
a uniprocessor workstation. The design of the memory system must be de-
termined. So must the capacity of the network, the disk, any interconnecting

2 CHAPTER 1

channels, and the processor itself. If the processor is also being designed, the
number of variables increases dramatically: the processor pipeline, the branch
handling scheme, the role of the compiler, etc. The fact that the workload must
be large in order to capture diversity further frustrates the evaluation problem.
Fast, efficient, and accurate evaluation techniques are essential for systematic,
quantitative computer architecture design.

This book presents several powerful techniques to evaluate the performance of
common design tradeoffs. We have attempted to collect what are the most-
common and useful of these approaches. We have also included two chapters
on how to collect the workload trace itself, since this problem is inextricably
intertwined with the evaluation problem.

In Chapter 2, Cmelik and Keppel discuss the basic concepts of instruction-
level computer system simulation. This introduction includes a summary and
comparison of over 45 modern simulators, virtual machines, and tracing tools.
Simulators run target system programs on a host machine. The authors note
that simulation is useful for analysis, design, and tuning of HW and SW sys-
tems, permitting feedback to improve the design before implementation of ideas.
Shade is given as an example of tracing and simulation tools. Shade combines
tracing, simulation, and analysis capabilities in a single tool, eliminating the
need for multiple tools, and providing high performance. Various levels of
functionality are implemented in the variety of tools available. Some features
such as tracing signals, self-modifying code, dynamic links, system mode, data
references, and tracing speculative execution are typical of most tracing envi-
ronments. Shade provides some of these features along with the capability for
cross-compilation, and several tracing and simulation speed enhancements.

The ability to gather run-time information of executing programs is central
to the simulation and analysis of computer architectures and the optimization
of applications. In Chapter 3, Pierce, Smith and Mudge present a survey of
methods for collecting trace and run-time information. These instrumentation
tools typically modify the program under study, either at the compiler level
or at the object module level. Once the altered program is run, it generates
traces or profile statistics, at some cost in program performance. Examples
of source-code, link-time, and executable modification are given. Late-code
modification techniques are treated in detail, as they are widely used, and typ-
ically the most challenging to implement. Eight of these tools are described
and compared. Since instrumentation of multitasking applications and oper-
ating system kernels have their own set of unique problems, two of these tools
are discussed separately. Instrumentation tools are typically tied to a specific

Introduction 3

ISA. This chapter contains examples of tools useful on MIPS, ALPHA, ix86,
RS/6000, PA-RISC, 68000, and SPARC architectures.

Cache and memory system analysis can be either analytical or trace driven.
The analytical techniques have the advantage of speed - permitting analysis
of a large design space. Their disadvantage is relatively poor accuracy. High
accuracy is very important in cache performance analysis since the absolute
hit rates are typically very close to 100%. Fast simulation techniques are often
required.

In Chapter 4, one of the editors (Conte) describes the single-pass, stack-based
cache simulation technique. Stack-based simulation is desirable for several rea-
sons. First, since it is a single-pass method, its speed permits performance
measurement of a large number of cache and memory system designs in one
step. Second, since many caches can be evaluated simultaneously, its speed
permits use of traces of long-running benchmarks. Chapter 4 explains a spe-
cific stack-based approach, the recurrence/conflict method. Many extensions
to stack-based techniques have been proposed. The chapter discusses one in
detail: an extension to capture the effects of multiprogramming. Algorithm
psuedo code and examples are used to present the technique.

Alternatives to the stack-based simulation algorithms of Chapter 4 are pre-
sented in Chapter 5 by Sugumar and Abraham. These non-stack-based single-
pass methods rely on m-ary trees. The theory of these techniques are used to
develop new simulation algorithms for caches and write buffers.

One of the highest performance simulation methodologies is execution-driven
simulation. Of these, the highest-performance execution-driven simulators do
only the work that is required to obtain the desired results. Additional un-
interesting events are not simulated, but are accounted for in other ways. In
Chapter 6, Boothe presents three multiprocessor execution-driven simulators
and explains their fundamental design choices. Simulation design decisions
include techniques for preprocessing (insertion of probe instructions in the ap-
plication), and execution of select application instructions on a model of the
target system while gathering statistics of that execution. Details are given
for one simulator in particular, the author’s FAST simulator. FAST runs on a
uniprocessor host and simulates shared memory multiprocessors.

Simulation is often performed to capture a few, key performance metrics. These
metrics are summary statistics. In Chapter 7, Menezes explores techniques
to speed up simulation by using statistical sampling theory to approximate
the summary statistics. The general theory of sampling is presented, followed

4 CHAPTER 1

by a literature review of cache and processor statistical sampling methods.
Menezes then develops a new method for processor sampling and discusses its
applications.

In Chapter 8, Mangione-Smith prevents research in establishing performance
upper bounds. Bounds are an attractive alternative to simulation for either tun-
ing existing systems or designing new systems. In the context of the research,
these bounds are computed for well-behaving scientific kernels. Examples eval-
uate performance of a subset of the Livermore Fortran Kernels executing on
a wide range of computers (Cray-1, Cray X-MP, Cray-2, Convex C-240, As-
tronautics ZS-1, RS/6000 and MIPS R2000). A hierarchical methodology of
computing these bounds is presented. Each level provides a more detailed anal-
ysis, yielding tighter, more accurate bounds. Of course, the tradeoff is in anal-
ysis effort versus results accuracy. In its current state, this analysis is useful
for comparing expected performance with achievable performance with mea-
sured performance of applications on specific system implementations. Such
comparison could point to optimization opportunities.

Instructors using this book for can teach largely in the order of occurance of
the chapters in the text. However, for specific focus on tracing, Chapters 2 and
3 are recommended, with partial coverage of Chapter 6. A treatment of cache
and memory hierarchy simulation should include Chapters 4, 5 and 7. A course
that focuses on supercomputer architecture should include special attention to
Chapters 6 and 8, in addition to the above chapters.

This book has been constructed with close interaction between the authors and
editors. We would like to thank the chapter authors for adjusting their texts
when we saw conflicts, and working above and beyond the call of duty to help
us deliver a coherent, cohesive volume on fast architectural simulation.

This book would not have been possible without the patient and helpful aid
of our editor, Alexander Greene. The preliminary work for this book was mo-
tivated by a successful session we organized at the Hawaii International Con-
ference on System Sciences. The crowd that attended was lively and provided
all with a high-quality discussion. In addition to the chapter authors who at-
tended that session, we would also like to thank: Si-En Chang (Chung Yuan
University), Gary Lauterbach (Sun Laboratories), Mario Nemirovsky (Univer-
sity of California, Santa Barbara), Jim Smith (University of Wisconsin), Pa-
tricia Teller (New Mexico State University), and Larry Wittie (SUNY-Stony
Brook).

~TMC and CEG

2

SHADE: A FAST
INSTRUCTION-SET SIMULATOR
FOR EXECUTION PROFILING
Bob Cmelik’, David Keppelf

*Sun Microsystems, Incorporated, Mountain View, California
]LUm'versity of Washington, Seattle, Washington

1 INTRODUCTION

Simulation and tracing tools help in the analysis, design, and tuning of both
hardware and software systems. Simulators can execute code for hardware that
does not yet exist, can provide access to internal state that may be invisible
on real hardware, can give deterministic execution in the face of races, and
can produce “stress test” situations that are hard to produce on the real hard-
ware [4]. Tracing tools can provide detailed information about the behavior of
a program; that information is uset to drive an analyzer that analyzes or pre-
dicts the behavior of a particular system component. That, in turn, provides
feedback that is used to improve the design and implementation of everything
from architectures to compilers to applications. Analyzers consume many kinds
of trace information; for example, address traces are used for studies of memory
hierarchies, opcode and operand usage for superscalar and pipelined processor
design, instruction counts for optimization studies, operand values for memo-
izing studies, and branch behavior for branch prediction.

Simulators and tracing tools appear at first to perform very different tasks.
Simulators allow a kost machine to run programs written for some target ma-
chine, while tracing tools collect run-time information about a program’s ex-
ecution. In practice, though, simulators and tracing tools do much the same
work: both are concerned with machine-level details of a program’s run-time
behavior. For example, simulators and tracing tools often both capture the
application’s program counter. Likewise, simulation and tracing are often im-
plemented using similar techniques. For example, simulators and tracing tools
often work by analyzing the original program instructions and cross-compiling
them to sequences of instructions that simulate or trace the original code.

6 CHAPTER 2

For the purposes of this chapter, then, we can consider simulation and tracing as
two facilities provided by a single tool. Several features can improve the utility
of such a tool. First, the tool should be easy to use and avoid dependencies
on particular languages and compilers. Ideally it should also avoid potentially
cumbersome preprocessing steps. Second, it should operate on a wide variety
of applications including those that use signals, exceptions and dynamically-
linked libraries. Third, trace generation should be fast, both so that traces
can be recreated on demand, instead of being archived on bulk storage, and so
that it is possible to study realistic workloads, since partial workloads may not
provide representative information [6, 7]. Fourth, a tracing tool should provide
arbitrarily detailed trace information so that it is useful for a wide variety of
analyzers; in general, this means that it must be extensible [58, 59] so that it
can be programmed to collect specialized information. Finally, it should be
possible to run and trace applications for machines that do not yet exist.

These features are often at odds with each other. For example, static cross-
compilation can produce fast code, but purely static translators cannot simulate
and trace all details of dynamically-linked code. Also, improved tracing flexi-
bility generally means reduced performance. An interpreter that saves address
trace information may be reasonably fast, but adding control over whether it
saves an address trace will slow the simulation, if at every instruction the sim-
ulator must check whether to save trace information. Providing finer control
over where to save trace data slows simulation even more; adding the flexibility
to save other kinds of trace information slows simulation yet further.

Because of the conflict between generality and performance, most tools pro-
vide only a subset of the features listed above. Shade is a simulation and
tracing tool that provides the features together in one tool and uses five gen-
eral techniques to achieve the needed flexibility and performance. First, Shade
dynamically cross-compiles executable code for the target machine into exe-
cutable code that runs directly on the host machine. Second, the host code is
cached for reuse so that the cost of cross-compiling can be amortized. Third,
simulation and tracing code are integrated so that the host code saves trace
information directly as it runs. Fourth, Shade gives the analyzer detailed con-
trol over what is traced: the tracing strategy can be varied dynamically by
opcode and address range. Shade then saves just the information requested by
the analyzer, so clients that need little trace information pay little overhead.
Finally, Shade is eztensible: it can call special-purpose, analyzer-supplied code
to extend Shade’s default data-collection capabilities.

Shade: A Fast Simulator for Profiling 7

Shade uses these techniques together to perform many useful tasks in combina-
tion. Shade performs cross-architecture simulation, collects many kinds of trace
information, allows fine control over the tracing, is extensible, and simulates
and traces the target machine in detail, including tricky things like signals and
self-modifying code. Despite its flexibility, Shade has performance competitive
with tools that just cross-simulate without tracing, with tools that do only
simple tracing, and even with those that omit details to improve simulation
and tracing efficiency. Thus, this study of Shade shows how a general-purpose
tool can be made efficient enough to effectively replace many other tools. This
chapter also presents a framework for describing simulation and tracing tools.

2 RELATED WORK

This section describes related work and summarizes the capabilities and imple-
mentation techniques of some other simulators, virtual machines and tracing
tools. In most cases we try to evaluate the capabilities of each tool’s technology,
but as we are evaluating particular tools, we sometimes (necessarily) evaluate
limits of a specific implementation.

2.1 Capabilities and Implementation

Table 1 summarizes the capabilities and implementations of a number of tools.
The columns show various features of each tool and are grouped in three sec-
tions. The first group, Purpose and Input Rep. describe the purpose of the
tool and how a user prepares a program in order to use the tool. The second
group Detail, MD, MP, Sig.and SMC OK, shows the level of detail of the sim-
ulation and tracing, and thus the kinds of programs that can be processed by
the tool. The third group Technology, and Bugs OK show the implementation
technology used and the tool’s robustness in the face of application errors.

Purpose describes how the tool is used: for cross-architecture simulation
(sim); debugging (db); for address tracing or memory hierarchy analysis
(atr); or for other, more detailed kinds of tracing (otr). Tools marked tbc are
tool-building tools that provide analyzers with access to arbitrary state of the
simulated target machine; the subscript C indicates that they usually use C as
the extension language [58, 59].

A 20p A X tx] & psn axo 1ye/qp/uits [g9] mavEsy
N Sue N S =x | N n urse 1e [ez] FOVHLIIN
N 208 N A N N n xo s [e1] sxopy
A optipd | N | A | A | N n axa 1ye [£8] INIY
N 2op N N N N n %o s [gg] oruntiy
N 1D+4134nurd N N N N n axa 170/19% [,9] suriy
A nura+4-20s A A N A n 9X> uIts [89] yueISty
A ol X | A | XA]| & psu X3 | 0qy/130/1ye/qp/uIis [¢] sgBu
N PP A N | A | N n oxd 1ye/qp/urts (61] 219e W
A PP A A | N| X psn oxd 1j0/qp/ws [re] oT%3
A nure A A N A n 9X3 ws (6€] ST
N Sne N S N N n B & 1% [09]e0cena(q
A DI+1pp A N N N n 9X%3 qp/uns || [6z ‘TT] s1ore[nutig NND
A ol A | A | N | A psn axa qp/uns (v] 888
N 998 S A N N n X9 wis (8] 31oduserd
N Sne N N X N n uIse e [8] 1sva
A 20p+1pd A A N N n axa wirs [¥5 ‘Lg] 109mO9xY
A PP || A S | N | N n axa no/1ye/qp [12] 11-°dooseud(q
A pd | A S | N | N n m 10/1ye/qp [0L] adodseudq
N 208 N N N N n wse 1ye/unts [LZ] uni4pourtsip
A oyl X N | N | N n oxa qp/uats [og] snu34p
A 18+00s A N A N n m 1o [o1] sn10q12)
A wee A | A | TA| A sn axa aye /uxs (1l wnav
N 3ne S A | N N su || ,9x9 oq [92 ‘sL ‘92] WOLV
A 1pp+00s S A N A sn aXa urts [2] 101RI2pPO0Y
(o) p: (0] day
sSng | ASopouyoay, OIS | 815 | AW | alW | meleq || andug ssoding aure N

(36vd 173w panunuoy) ‘surajsAs pajelal swlos jo Arewrwng [S|qEL

[N bl A [A [N[N[o] o] Oq/no/ze/us [11 ‘91] opeys |
A PP A A | N | N (s)n oxd s (e] nwosz
A | Pp+Snetnun || N A | A | & n oxa no/1ye [e9) IMMm
N Sne N S =x A sn urse 17e [8L ‘LL) saaavy],
N Sue N A N X sn '€ 1R [‘9] weny,
A nure A A N A sn 9Xa 1 [18] 11 wiomade],
N Sne S N 158 N n || wse Iye [z¢ ‘0g] @3] oBuey,
X opll X | A | N | N n oxd s [12] 08-1S
A pd | N K| N|N n ax® 1ye /uxs [ve] WIdS
N wp || A S | N | N n | exe 1ye [07] =ds
A 2p || A A | N | N | p®n axd s (28] OdWos
N Sne N N N N n wse 1e [92] uourtg
A 20p+13 || & A | &R | A psn axa | oqi/no/ne/qp/uus || [gg ‘2§ ‘I ‘08] SOIMIS
A 2P | A A| N | N n oxa s [e¢ ‘z1] 4138
N Sue || N N | 'A | N n m 1ye (81] Ldd¥
N Sne N N N N n oXa 1j0/190 [6%] 1db/db
A Swe |l N [A | N | N nfexe qp eg] Apung
N Sne S N 154 N n m 1e [6] snajorg
N s || g Al N | A sn || ,oxe qp/130/13e [27] 11-o™1g
N Sne N A N A n ,OXo 1ye [e1] amx1g
A Btoos || A | A | A | N n %2 s [69] ¥5°A/XIN

p:(0) 310 doy
séng £3ojouyoay, OIS | S1is | dIW | aw | 1rereq || andug ssoding aure N

‘swa9sAs paje[al awIos Jo Aremrumg (panuuod) T a|qe],

10 CHAPTER 2

Input Rep. describes the input to the tool. Each tool is a translator that
processes an input form; the input affects the tool’s portability and also the per-
formance and accuracy (faithfulness) of the resulting code. Processing a high-
level language input (hll) can have the best portability and best optimization
but the tool can only be used for source programs written in the supported
languages [83] and cannot generally analyze the effects of other translation
tools (compilers, etc.). Consuming assembly code (asm) is less portable than
a high-level language but can provide more detailed information and allows
processing of output from a variety of compilers. To the extent that assembly
languages are similar, such tools may be relatively easy to retarget, though
detailed information may still be obscured. Finally, using executable code as
input (ere) eliminates the need for access to the source and the (possibly
complex) build process. However, information is usually reported in machine
units, not source constructs. Some tools use symbol table information to re-
port information symbolically. Others need symbolic information in order to
perform translation (eze*).

Detail describes how much of the machine is simulated. Most tools work with
only user-level code (u); some also run system-level code (s); and system-mode
simulation generally requires device emulation (d). Some target machines have
no system mode, so simulation can avoid the costs of address translation and
protection checks; these machines have the system mode marked in parenthesis.

MD reports whether the tool supports multiple protection domains and multi-
tasking (multiple processes per target processor). This usually implies support
for system-mode operation and address translation. Target systems that mul-
titask in a single protection domain are listed as N. MP tells whether the tool
supports multiple processor execution; Y7 indicates that the tool uses a single
host processor, Y- indicates that the tool runs as many target processors as
host processors, and Y, that it uses multiple host processors and simulates
more target processors than host processors. Simulating a multiprocessor gen-
erally introduces additional slowdown at least as big as the number of target
processors divided by the number of host processors.

Supporting signals is often difficult since execution can be interrupted at any
instruction and resumed at any other instruction, yet analysis and instrumen-
tation may use groups of instructions to improve simulation efficiency. The Sig.
column is Y for tools that can handle asynchronous and exceptional events.
S indicates that the tool is able to deal with some but not all aspects; for
example, signals may be processed so the program’s results are correct, but no
address trace information is generated.

Shade: A Fast Simulator for Profiling 11

SMC OK describes whether the tool is able to operate on programs where the
instruction space changes dynamically. Dynamic linking is the most common
reason, but there are a number of other uses [45]. Static rewrite tools can some-
times (5) dynamically link to statically-rewritten code, but the dynamically-
formed link cannot be rewritten statically and thus may go untraced.

Technology describes the general implementation techniques used in each tool
[61]. An “obvious” implementation executes programs by fetching, decoding,
and then interpreting each instruction in isolation. Most of the implementations
optimize by predecoding and then caching the decoded result; by translating to
host code to make direct use of the host’s prefetch and decode hardware [21];
and by executing target instructions in the context of their neighbors so that
target state (e.g. simulated registers) can be accessed efficiently (e.g. from host
registers) across target instruction boundaries. The implementations are:

O Hardware emulation, including dedicated hardware and microcode (emu).
O The “obvious” implementation, a decode and dispatch interpreter (ddi).

O Predecode interpreters (pdi) that pre-convert to a quick-to-decode inter-
mediate represeniation or IR. The IR can take many forms; a particularly
fast, simple, and common form is threaded code (tci).

D Static cross-compilation (scc) which decodes and dispatches during cross-
compilation, avoiding essentially all run-time dispatch costs. Note that
conversion is limited by what the tool can see statically. For example,
dynamic linking may be hard to instrument statically. Limited static in-
formation also limits optimization. For example, a given instruction may
in practice never be a branch target. Proving that is often hard [49, 55],
so the static compiler may be forced to produce overly-conservative code.
As a special case, where the host and target are the same, the static com-
piler merely annotates or augments (aug) the original program with code
to save trace data or emulate missing instructions.

O Dynamic cross-compilation (dcc) is performed at run time and thus can
work with any code including dynamically-linked libraries. Also, dynamic
cross-compilers can perform optimistic optimizations and recompile if the
assumptions were too strong [16, 35, 36, 42, 55, 52, 66]. However, since
the compiler is used at run time, translation must be fast enough that
the improved performance more than pays for the overhead of dynamic
compilation [16]; in addition, code quality may be worse than that of a
static cross-compiler [2, 36, 69] since dynamic code analysis may need to
“cut corners” in order to minimize the compiler’s running time.

12 CHAPTER 2

Where interpreter specifics are unavailable the tool is listed as using a general
interpreter (g¢). Tools listed as aug and emu execute most target instructions
using host hardware. Checkpointing and rollback (cr) can be used to simulate
speculative execution, in order to trace it’s effects [67].

Note that input forms lacking symbolic information — eze especially — can be
hard to process statically because static tools have trouble determining what
is code and what is data and also have trouble optimizing over multiple host
instructions [49, 55]. By contrast, tools that perform dynamic analysis (includ-
ing both interpreters and dynamic cross-compilers) can discover the program’s
structure during execution. Translation techniques can be mixed by using one
technique optimistically for good performance and another as a fallback when
the first fails. However, such implementations have added complexity because
they rely on having two translators [2, 51, 52, 69, 82, 83].

Bugs OK describes whether the tool is robust in the face of application er-
rors such as memory addressing errors or divide-by-zero errors. For example,
application stores to random addresses may clobber Shade data structures.
Typically, checking for addressing errors requires extra checks for every in-
struction that writes memory. In some systems the checks are simple range
checks; tools that support multiple address spaces and sparse address spaces
generally require full address translation [4, 53, 65]. Y* indicates that checking
can be turned on but performance is worse.

2.2 Cross-Architecture Simulation

Table 2 summarizes features of cross-architecture simulation tools that use dif-
ferent host and target instruction sets. The Translation Units column shows
translation-time tradeoffs between analysis complexity and performance. As-
sumptions shows assumptions about the relationship between the host and tar-
get machines; these assumptions are usually used to simplify and speed up the
simulator. Perf. shows the approximate performance as the slowdown of each
tool compared to native execution. Notes shows special or missing features of
each simulator. The columns are described in detail below.

Translation Units shows the number of (target) instructions that are analyzed
and translated at a time. Using bigger chunks reduces dispatching costs and
increases opportunities for optimization between target instructions. Larger
translation units also typically require better analysis or dynamic flexibility
in order to ensure that the program jumps always take a valid path or can

Shade: A Fast Stmulator for Profiling

13

Table 2 Summary of some systems that perform cross-architecture simula-

tion.
Name Translation Host/Target Perf. Notes
Units Assumptions | (est.)
Accelerator [2] proc-ip/proc nr, bo, pg., 1.5 | targ. pg.
... ph, regs .. mixed
Cerberus [10] /i 100
Cygnus [30] /i nr 10 | same
20 | different
dis+mod-+run [27] bb-bb/bb nr 10
Executor [37, 54] proc-proc/bb nr 3-10 | targ. pg.
FlashPort [28] ip-ip/ip 1 | hand
g88 [4] i-bb/i nr, bo 30 | targ. pg.
GNU Simulators i-i/i 40
[11, 29]
IMS [39] iifi 1
Kx10 [31] /i 200 | targ. pg., ws.
Mable [19] /i 20-80
mg88 [5] i-bb/i nr, bo 80 | targ. pg.
Migrant [68] ebb-ip/ebb nr, bo -
Mimic [55] ebb-ib/ib nr, bo, regs 4 | |fp, |lalign,
<o Fdcc
Moxie [13] bb-bb/bb nr 2
MSHADE [65] bb-ebb/ebb nr, bo 5-10 | same, targ. pg.
MX/Vest [69] ip-ip/ip bo 2 | mixed
SELF {12] ip-ip/ip none N/A | VM
SmMICS i-bb/i nr, bo 15-30 | targ. pg.
[50, 51, 52, 53]
SoftPC [57] -
SPIM [34] YA ur, bo 25
ST-80 [21] proc-proc/proc none N/A | VM
Z80MU [3] /i nr, bo, regs - | mixed
Shade [16, 17] ebb-ib/ebb nr, bo 1.9-4.9 | same
3.3-13.0 | different

(tracing off)

14 CHAPTER 2

gracefully handle unexpected cases that arise from unwarranted optimism (16,
55, 49, 69]. Many tools use larger units for analysis than for translation. This
keeps much of the simplicity of smaller translation units but enables optimiza-
tions that require broader analysis. Translation units are thus reported as
typ.—-maz./gen., where typ. is the typical unit of analysis, maz. is the largest
unit of analysis, and gen. is the largest target unit for which host code is gen-
erated. For example, Shade mostly uses small units, but analyzes larger units
for condition codes, which otherwise become a simulation bottleneck. Shade
then uses the results of the sophisticated analysis to generate one of two simple
translations: either do or do not save condition codes at the end of a simulated
basic block. Translation units include: individual instructions (), basic blocks
(bb), extended basic blocks with a single entry but many exits (ebb), inter-block
(ib), procedural (proc), or interprocedural (ip).

Host/Target Assumptions describes assumptions that a tool makes about the
similarity of the host and target machines. Assumptions can be used to re-
duce both the complexity of analysis and the detail of rewriting (translation)
and thus the run-time cost. Assumptions include byte ordering (40); numeric
representation (nr), including size and format; the number of registers on the
host and target machines (regs), and access to the host machine’s privileged
hardware (ph) in order to implement system-level simulation.

Perf. is a performance estimate, expressed as the number of (simple) instruc-
tions executed per (simple) simulated or traced instruction. A variety of other
metrics, such as run-time dilation, might be reasonable, but are typically more
dependent on the host and target machine implementations and are thus harder
to use when comparing tools [50, 52]. The performance estimates here are nec-
essarily inexact, as they are based on values reported using various metrics and
target applications. Note that performance also depends on simulation detail;
for example, Shade would be slower if it simulated both user and kernel address
spaces. The entry N/A indicates “not applicable” because the target is a vir-
tual machine. A dash (-) indicates unknown or unreported performance. Shade
figures are the minimum and maximum over the SPEC92 [22] benchmarks.

Notes describes particular features of the tools: targ. pg. for detailed memory
simulation including simulation of target machine pages; ws. for simulation
between machines with incompatible word sizes (e.g. simulating a machine
with 9-bit bytes on a machine with 8-bit bytes); |fp for simulation that omits
floating-point numbers; fp+ for simulation that can be set either to run fast or
to faithfully emulate the target machine; | align for tools that omit simulation
of unaligned accesses; +dcc for dynamic compilers where compile time is not
included in the performance but where it would likely have a large effect; VM

Shade: A Fast Simulator for Profiling 15

for emulation of a virtual machine that has been designed carefully to improve
portability and simulation speed; mized for simulators that can call between
host and target code so that the application can, e.g., dynamically link to fast-
running host-code libraries; same for figures reported on the same host and
target; different for figures reported for cross-execution; and hand for tools
that require some human intervention to perform cross-execution.

2.3 Comparison to Shade

Shade improves over many other tools by providing their individual features
together in one tool, and by providing both detailed control and efficiency that
is competitive with the other tools.

Most tools avoid cross-architecture execution or omit some machine features.
These choices improve execution efficiency but limit the tool’s applicability.
Some exceptions are g88 and it’s derivatives [4, 5, 50, 51, 52] and SimOS’s
MSHADE [65], which are somewhat less efficient than Shade and less flexible
at tracing, and also Accelerator [2] and MX/Vest [69] which do not perform
tracing and which use two translators, one optimistic and one conservative, to
achieve high efficiency. Shade supports cross-architecture execution, and faith-
fully executes important machine features such as signals and self-modifying
code (and thus dynamic linking), so it can be used on a wide variety of appli-
cations.

Simulators that use dynamic compilation are typically flexible and the com-
piled code performs well. However, many previous dynamic compilation sys-
tems have imposed limitations that Shade eliminates. For example, Mimic’s
compiler [55] produces high-quality code, but at such expense that overall per-
formance is worse than Shade; Shade reduces compilation overhead by allowing
multiple implementations of each application instruction, only optimizing the
most common branches, and using a different data structure to minimize the
space overhead of branches. MINT [83] is unable to simulate changing code
and never reclaims space used by inactive code.

Tracing tools typically produce only address traces, and often run only on the
machine for which the trace is desired. Even tools that allow cross-architecture
simulation tend to limit the generality of the machine simulation or of the
tracing facilities in order to maintain efficiency [27, 34]. Shade supports cross-
architecture tracing and simulates user-mode operation in detail. It currently
lacks system-mode tracing facilities provided by some other tools though some

16 CHAPTER 2

of these tools limit machine features and/or require hand-instrumentation of
key kernel code. Shade collects more trace information than most other tools,
though it lacks the timing-level simulation of mg88 [5] and the simulation and
tracing of speculative execution provided by Mime [67]. With Shade, analyzers
select the amount of trace data that Shade collects, and analyzers that consume
little trace data pay little tracing overhead. Thus, it is typically the analysis
tools that limit overall performance.

All of the listed tool building tools permit extended tracing. Shade provides
the most efficient yet variable extensibility, and only Shade also inlines common
trace operations. Shade analyzers have used both C and C++ as the exten-
sion language [58, 59]. We note also that although Shade is not designed for
debugging, ShadeV9.V8 has been used as the back end of a debugger [25].

Shade’s flexibility and performance does come at a penalty. For example, Shade
performs inter-instruction analysis and host code generation; this makes Shade
more complex and less portable than, e.g., g88. Shade does not presently
simulate multiprocessors or system-mode operation. Though both are limits of
the implementation not of the technique, supporting them would make Shade
slower since they complicate simulation and enlarge the translated code size in
order to, e.g., translate addresses on loads, stores, and so on [4, 53, 65].

3 ANALYZER INTERFACE

The remainder of this chapter focuses on Shade. This section describes the
interface that an analyzer uses to manipulate Shade and the program being
traced. Shade can also be used for pure simulation, which is simply a degenerate
case where the analyzer asks for no trace data and does no work.

A Shade analyzer is a program (or that part of a program) which utilizes the
simulation and tracing capabilities provided by Shade. Analyzers typically
use Shade to collect raw trace data and then summarize that data to pro-
vide specific performance metrics. Shade analyzers have been used for pure
simulation (no tracing), to generate memory address traces for use by other
tools, provide a debugger interface to a simulated target machine for com-
piler cross-development [25], observe instruction operand values [64], analyze
memory cache performance, analyze microprocessor pipeline performance, and
analyze Shade’s own performance.

Shade: A Fast Simulator for Profiling 17

Analyzers use Shade as a collection of library functions [14, 15]. Analyzers call
these functions to identify the application program to be simulated, specify the
level of tracing detail, and simulate one or more application instructions while
collecting the specified trace information.

Shade “knows” how to efficiently collect common trace information such as
the instruction address and text, data addresses for memory operations, and
the contents of registers used by an instruction. Other information may be
collected by analyzer-supplied trace functions. These functions have access to
the application’s simulated registers and memory and may thus collect arbitrary
state information. Shade arranges for the analyzer-supplied functions to be
called before and/or after simulating an application instruction.

Analyzers may specify what trace information to collect and what trace func-
tions to call on a per-opcode or per-instruction-address basis. For example,
an analyzer which wishes to analyze memory systems might request tracing of
just instruction and data addresses. Tracing selections may change during the
course of the simulation. Thus, an analyzer can skip tracing during application
initialization, or can trace only in particularly interesting application or library
code. The less trace data the analyzer requests, the faster Shade runs.

4 IMPLEMENTATION

This section describes the basic implementation techniques used in Shade. Sec-
tion 4.1 first describes the overall structure of Shade. Section 4.2 describes
dynamic compilation of {ranslations that directly simulate and trace the appli-
cation program. Sections 4.3 through 4.7 discuss a variety of details: caching
and reusing translations to reduce compilation overhead, reducing the cost
of dispatching between translations, the handling of condition codes and sig-
nals, and the translation of application references into references into simulated
memory. Finally, Section 4.8 concludes with some special problems and con-
siderations and the general techniques used in Shade.

4.1 Simulating and Tracing

The heart of Shade is a small main loop that repeatedly maps the current tar-
get (application) PC to a corresponding fragment of Shade host (simulator)
code, called a translation. Each translation simulates one or more target in-

18 CHAPTER 2

VMEM ™ TC
\ _ __
Text .
Data : :
VS
int regs
fp regs
cond codes
Stack

Figure 1 Shade data structures (not to scale).

structions, optionally saves trace data, updates the target PC and returns to
the main loop. Shade builds translations by cross-compiling target instructions
into host machine code. Shade translates application memory references to
refer to simulated memory and, similarly, translates updates of target registers
into updates of simulated registers. Figure 1 summarizes the primary data
structures used by Shade.

The main loop, translations, and most utility functions called by translations
all share a common register window and stack frame. Several host registers are
reserved for special purposes. Register vs is a pointer to the application’s virtual
state structure which holds the simulated registers; vpc is the application’s
virtual program counter (this is part of the virtual state, but is used enough
to warrant its own host register); vmem is the base address of the application’s
memory; tr points to the current trace buffer entry; ntr is the number of
unused trace buffer entries; and tm points to the translation map, described
below.

Shade maps the target PC to its corresponding translation using a data struc-
ture called the translation map (TM). The main loop does a fast, partial TM
lookup. If that fails, a function is called to do a slower, full TM lookup. If that
fails, the translation compiler is invoked to generate a new translation in the
translation cache (TC) and update the TM.

Shade: A Fast Simulator for Profiling 19

4.2 Translations

Shade cross-compiles groups of target instructions to groups of host instructions
called translations. Application instructions are typically translated in chunks
which extend from the current instruction through the next control transfer
instruction and accompanying delay slot. Translation also stops at tricky in-
structions such as software trap and memory synchronization instructions.
Shade arbitrarily limits the number of application instructions per translation
in order to simplify storage allocation, and the user’s trace buffer size also lim-
its translation size. Therefore, a translation may represent more or less than
one basic block of application code. A given straight-line code fragment may
have several entry points, and Shade generates separate translations for each
entry point. Thus one fragment of application code may be simultaneously rep-
resented by more than one translation. Each translation consists of a prologue,
a body with a fragment for each application instruction, and an epilogue.

Translation Prologue

The translation prologue (see Figure 2) allocates trace buffer space for the
translation. If there is not enough space, the translation returns control to
the main loop, which then returns to the analyzer, which consumes trace data
and thus empties the buffer. Prologues are generated only for translations that
collect trace information for at least one target instruction.

prologue:
subcc Yntr, count, Y%ntr t alloc., check trace space
bge body ! if enough space, run body
add Y%ntr, count, Yntr ! dealloc. trace space
return to main loop ! return full buffer

body:

Figure 2 Translation prologue.

The trace space requirements for each translation could be stored in a data
structure and tested by the main loop. That would save the code space now used
for translation prologues, but would require executing additional instructions
to address and load count, and would be inconsistent with translation chaining
(see below, Section 4.4) in which translations branch directly to each other,
bypassing the main simulator loop.

Translation Body

20 CHAPTER 2

The translation body contains code to simulate and optionally trace application
instructions. Simulation consists of updating the virtual state (registers plus
memory) of the application program. Tracing consists of filling in the current
trace buffer entry and advancing to the next.

add %ri, %r2, %r3

Figure 3 Sample application code.

Figure 3 shows a sample application instruction, and Figure 4 shows code that
simulates it. The translation body first loads the contents of application regis-
ters r1 and r2 from the application’s virtual state structure into host scratch
registers s1 and s2. Next, the translation performs the add operation. Then,
the translation writes the result in host scratch register s3 back to the vir-
tual state structure location for application register r3. Finally, the translation
updates the application’s virtual PC.

1d [4vs + vs_r1], Y%si
1d [%vs + vs_r2], %s2
add %si, %s2, %s3

st %s3, [Uvs + vs_r3]

Figure 4 Translation body (no tracing).

The target code that is generated to actually perform the application operation
is very often the same as the host code, but with different register numbers.
Where the host machine is a poor match to the virtual target machine, or where
we wish to virtualize the target machine operations, several instructions or a
call to a simulation function may be used. At the other extreme, no instructions
need be generated to simulate useless application instructions (e.g. nop).

Shade allocates host registers to represent target registers; allocation is on a per-
translation basis and can thus span several target instructions. Host registers
can thus hold (cache) values from one translated application instruction to the
next in order to reduce memory traffic to and from the virtual state structure.
Host registers are lazily loaded from the virtual state structure, then later lazily
stored back, but no later than the translation epilogue.

Conceptually, Shade updates the virtual PC for each application instruction.
In practice, the virtual PC is only updated in the translation epilogue, or as
needed in the translation body for tracing application instruction addresses.

Shade: A Fast Simulator for Profiling 21

st %vpe, [htr + tr_pc] ! +trace instr addr
set 0x86004002, %00

st %00, [tr + tr_iw] ! trace instr text
1ld [hvs + vs_r1], %s1 ! 1load 1st src reg
14 [Yvs + vs_r2], %s2 ! 1load 2nd src reg
st “s1, [htr + tr_rs1] ! trace 1st src reg
st %s2, [htr + tr_rs2] ! trace 2nd src reg
mov %tr, %o0 ! argl: trace buf
mov %vs, Yol ! arg2: virt. state

call pre-instruction trace function

add s1, %s2, %s3 ! simulate add

st %s3, [fvs + vs_r3] ! save dst reg

st %s3, [htr + trrd] ! trace dst reg
mov %tr, %o0 ! argl: trace buf
mov %vs, %ol | arg2: virt. state

call post-instruction trace function

Figure 5 Translation body (some tracing).

Tracing

Since saving trace data is typically expensive, Shade minimizes the amount
of tracing code by giving analyzers precise control over which application in-
structions should be traced and what information should be collected for each
instruction. For example, when an analyzer requests tracing for only data ad-
dresses of load instructions in a particular library (an address range), then
Shade translates the library’s load instructions to directly save the memory
address in the trace record. No other trace information is saved for load in-
structions, and no trace information is saved for other instructions or for load
instructions outside of the library.

Shade compiles the simulation and tracing code together. For example, Figure 5
shows code that simulates the sample application code, and, as instructed by the
analyzer, traces the instruction address, instruction text, source and destination
registers, and calls both pre- and post-instruction trace functions supplied by
the analyzer. Whenever a translation calls an analyzer-supplied trace function,
it first returns live application state to the virtual state structure for use by
the trace function.

22 CHAPTER 2

epilogue:
update virtual state structure
update virtual PC
inc count X irsize, htr
set pred and go to main loop, or go to next translation

Figure 6 Translation epilogue.

Translation Epilogue

The translation epilogue (see Figure 6) returns cached values to the virtual state
structure, including the virtual condition codes, if they have been modified. The
epilogue also updates the trace buffer registers tr and ntr if necessary. The
virtual PC remains in a host register across translation calls. Upon leaving a
translation, it contains the address of the next application instruction to be
executed. Finally, the epilogue either returns control to the main simulator
loop or jumps directly to the next translation.

4.3 'Translation Caching

The translation cache (TC) is the memory where translations are stored. Shade
simply compiles translations into the TC one after the other, and the transla-
tion map ('TM) associates application code addresses with the corresponding
translations (see Figure 1, pg. 18).

When more TC space is needed than is available, Shade frees all entries in
the TC and clears the TM. Full flushing is used because translation chaining
makes most other freeing strategies tedious [16]. Since full flushing deletes
useful translations, the TC is made large so that freeing is rare [16]. Shade
also flushes the TC and TM when the analyzer changes the tracing strategy
(typically rare), since tracing is hardcoded into the translations.

If an application uses self-modifying code, the TC and TM entries for the
modified code become invalid and must be flushed. SPARC systems provide
the flush instruction to identify code that has changed; many other systems
provide equivalent primitives [44]. When the application executes the modified
instructions, Shade compiles new translations for the changed code.

The TM is implemented as an array of lists of <farget, host> address pairs.
Each pair associates an application instruction address with the corresponding

Shade: A Fast Simulator for Profiling 23

translation. To find a translation, Shade hashes the vpc to produce a TM array
index, then searches the address pair list for the given target address. If the
search fails, a translation is generated, and a new address pair is placed at the
head of the list.

Lists are actually implemented as fixed-length arrays, which makes the TM
simply a two-dimensional array of address pairs. The TM may also be thought
of as N-way set associative, where N is the list length. TM references have
good locality, so each TM hit is moved to the front of the list to reduce the
average search length and so that a fast, partial lookup typically hits [16]. Thus,
inlining the first iteration of the TM lookup into the main loop is particularly
effective, yielding good performance for common cases.

Since address pair lists are of fixed length, address pairs can be pushed off the
end of a list and lost, which makes the corresponding translations inaccessible
via the TM. The TM is large enough that this is not usually a problem [16].
In addition, translations are also likely to still be accessible via chaining from
other translations, as described below.

4.4 'Translation Chaining

If a target basic block ends with an unconditional branch to a second block,
then any time that Shade executes a translation for the first block, it will always
follow that by executing a translation for the second block. In such situations,
the two translations, predecessor and successor, can be directly connected or
chained so that the predecessor translation jumps directly to the successor, thus
saving a pass through the main simulator loop.!

The predecessor and successor can be compiled in any order. If the successor
is compiled first, the predecessor is compiled to branch directly to the succes-
sor. If the predecessor is compiled first, then at the time it returns to the main
simulator loop, the return is overwritten with a branch to the successor. Trans-
lations for conditional branches are compiled with two separate exits instead
of a single common exit, so that both legs may be chained.

Not all translations are chainable: register indirect jumps and software traps
(which can cause control transfers) cannot be chained since the successor trans-
lation may vary. For efficiency, the main loop (Figure 7) has two entry points,

1Put another way, all translations end with a jump to code that dispatches to the next
translation. Where dispatching is particularly simple, it is simply inlined in the translation.

24 CHAPTER 2

unchainable:
succ = fast_lookup (vpe); ! check first tm entry
if (succ) ! if fast lookup succeeds ..
goto run; ! . run the successor
pred = dummy; ! do not chain predecessor
chainable:
succ = shade_trans (vpc); ! find or compile successor
pred->chain = succ; ! chain predecessor or dummy
run:
if (pending.signals) ! if signal got queued ..
succ = signal_vpc; ! .. run instead of succ
jump (succ); ! run successor translation

Figure 7 Simulator main loop.

chainable and unchainable. Translations with statically-known branch tar-
gets, such as most branch instructions, are compiled to jump to chainable,
while translations with register-indirect jumps, traps, and so forth use the
unchainable entry point. Using two entry points avoids a test in the main
loop to see if the predecessor should be chained, and is similar in philosophy to
compiling in the trace space check in the translation prologue (see Section 2).

Every time an unchainable translation is executed, it ends with a jump to the
main loop. In contrast, a chainable translation’s exit jumps to the main loop
only once, to get chained. Thus, most invocations of the main loop are from
unchainable translations [16].

4.5 Condition Codes

Simulating target machine condition codes can be difficult because there are
several condition code bits and each bit can be a complex function of an in-
struction and its operands. Instead of simulating each condition code bit explic-
itly [27, 52], Shade uses the host machine hardware to set many host condition
codes, all at once. Shade then simulates target conditional branches by execut-
ing host branches that read the target condition codes directly from the host
condition code register. Since the host condition codes are also used by Shade
and the analyzer, Shade also saves the host condition codes to the condition
code region in the virtual state structure.

Shade: A Fast Simulator for Profiling 25

Unfortunately, Version 8 SPARC hosts cannot directly read and write the in-
teger condition codes. Shade uses multi-instruction sequences to interpolate
condition code values [16], at an added cost of several instructions each time
the condition codes are saved to or restored from the virtual state structure.

Shade saves and restores condition codes across calls to analyzer-supplied trace
functions, which may either read the target condition codes or set the host con-
dition codes. Shade must also save the condition codes at the end of each block
because it does not “know” whether they will be used in a subsequent block.
However, condition codes are usually set and used together in one block and
reset in a subsequent block before being used again. Shade analyzes condition
codes across block boundaries and omits the condition code save whenever it
can show that doing so is safe [16]. In practice, Shade cannot perform such
analysis across, e.g., register-indirect jumps, but still on average’? needs to save
condition codes for only 7% of the integer benchmark instructions that set them
and only 0.4% of the floating-point benchmark instructions that set them.

Although a variety of other techniques can reduce the cost of condition code
saves [16, 69], reducing the number of saves via inter-block analysis eliminates
most of the overhead of even expensive save/restore schemes.

4.6 Signals and Traps

A signal changes the program counter and thus the program’s control flow, but
without an explicit control transfer instruction. Asynchronous signals arise
from external events such as timer expiration and keystrokes; synchronous sig-
nals, also known as traps, arise from internal events such as arithmetic overflow
or invalid memory references.

Asynchronous signals can arise for a variety of reasons, and may arrive at any
time, during execution of Shade, the translations, or the analyzer. Shade does
not directly use or reserve any signals, but applications and analyzers may
contend for signals. For example, both the analyzer and the application may
wish to make use of signals for hangup, user interrupt and alarm clock. Shade
resolves the contention by delivering signals according to ownership, rather
than time of delivery. Shade also prevents applications from interfering with
the analyzer’s signal handling [16].

2In this chapter, “on average” means the geometric mean of dynamically weighted values
over the SPEC92 benchmarks. For Shade-MIPS.V8 (below), “on average” is the geometric
mean over the SPEC89 benchmarks.

26 CHAPTER 2

Asynchronous signals for the application may actually arrive during execution
of Shade or the analyzer. These signals are queued and Shade then returns
to the interrupted instruction. Eventually, control returns to the main loop
(Figure 7, pg. 24), which checks for pending signals. When the main loop
detects a signal, it invokes the first instruction of the signal handler instead
of the next instruction; simulation and tracing proceed as normal. Chaining
may cause cycles that never invoke the main loop. A run-time option disables
chaining [16], but pure simulation runs 57% slower on average and traced code
is slowed some, as well.

Synchronous signals, e.g., from loading or storing unaligned data or from di-
vision by zero, arise only during execution of the application. Synchronous
signals are handled by queuing the signal, aborting the translation, and re-
turning to the main simulator loop for handling as above. Note that abortable
translations are more expensive to execute. For example, aborting an instruc-
tion in a branch delay slot requires that Shade maintain an additional next
program counier [16]. Most applications run without synchronous signals, so
Shade generates abortable translations only in response to a run-time option.

4.7 Address Translation

Shade manipulates two kinds of addresses: target addresses, used by the appli-
cation, and host addresses, used by Shade and the analyzer. When the appli-
cation issues an address, say, 53, it refers to application memory. Since Shade
or the analyzer may have something at host memory location 53, Shade trans-
lates application addresses to reference memory that is set aside specifically for
simulating target (application) memory.

Shade allocates memory that it uses to simulate the target memory. A base
address within the region is defined as target address zero. Shade then forms
host addresses by adding the base address to each target address. For example,
suppose the base address is 4096 and the application loads from 53; then the
load is simulated by performing a load from 4096+53. Code starts near address
zero, data is beyond that and grows towards high memory, and stack data starts
at high memory and grows down (Figure 1, pg. 18). Asshown in Figure 8, Shade
treats application addresses as signed so that references to high memory are
translated to host memory below the base address.

Shade: A Fast Simulator for Profiling 27

Host Memory

Host “537——*

VMEM

Stack
Base Simulated “0”
Address Code <t Simulated “53”

Data

Figure 8 Address translation in Shade (not to scale).

As a special case (-benchmem=0), Shade can eliminate address translation over-
head by loading the application code and data at their intended addresses, pro-
vided Shade and the analyzer are linked to avoid those addresses [16, 55, 69].
Eliminating address translation makes performance better than is reported here
(Section 6), but special-case addressing conflicts may arise, and for some host
operating systems, building and debugging analyzers may be harder.

Address translation is also necessary when the target address space is larger
than the host address space or when multiple target address spaces or protection
domains are multiplexed into fewer host domains [4, 53, 65]. Shade currently
implements 64-bit addressing by ignoring the upper 32 bits of all addresses
(see Section 9). More general translation would be slower but would prevent
application addressing errors from clobbering Shade or analyzer data outside
of VMEM [4, 53, 65].

28 CHAPTER 2

4.8 Other Considerations

Simulating, tracing, and running the analyzer all in the same process improves
Shade’s efficiency but leads to conflicts over the use of per-process state and
resources. Conflicts arise between the application program (e.g. the code gen-
erated by Shade to simulate the application), the analyzer, and Shade (trans-
lation compiler, etc.). The conflicts are resolved in various ways. For example,
the host’s memory is partitioned between Shade and the application, so that
Shade uses one part of the memory, and the application another. Resource
conflicts can also arise from sharing outside of the process. For example, Shade
and the application use the same file system so files written by one can acci-
dentally clobber files written by the other. In general, conflicts are resolved
by partitioning the resource, by time-multiplexing it between contenders, or by
simulating (virtualizing) the resource. Some conflicts are unresolved, usually
due to an incomplete implementation [16].

Shade’s target code parser is ad hoc, though machine code parsers can be built
automatically [62]. Shade uses an ad hoc code generator which generates code
in roughly one pass. Some minor backpatching is later performed to chain
translations and replace nops in delay slots. The resulting code could no doubt
be improved, but the time spent in the user-supplied analyzer usually dwarfs
the time spent in Shade’s code generation, simulation, and tracing combined.

Many of the implementation issues and choices, as well as some of the imple-
mentation alternatives, are described elsewhere [16], as are details of the signal
and exception handling and implementation of the system call interface.

5 CROSS SHADES

The previous section focused on the Shade (subsequently referred to as Shade-
V8.V8) for which the host and target architectures were both Version 8 SPARC,
and for which the host and target operating systems were both SunOS 4.x [79].
Other Shades have been developed. The first, Shade-MIPS.V8, runs UMIPS-
V [56], MIPS I [43] binaries. The second, ShadeV9.V8, runs SunOS 4.x, Version
9 SPARC (73] binaries. The host system for both is SunOS 4.x, Version 8
SPARC. There are also versions of ShadeV8.V8 and ShadeV9.V8 where both
the host and target operating systems are Solaris 2.x [80]. All of these Shades
are complete to the extent that they can at least run SPEC92 [22] binaries
(SPEC89 [74] for Shade-MIPS.V8) compiled for the respective target systems.

Shade: A Fast Simulator for Profiling 29

5.1 Shade-MIPS.VS8

Shade-MIPS.V8 provides Shade’s custom tracing capabilities for MIPS bina-
ries. Given Shade-V8.V8 and ready access to SPARC systems, SPARC was the
natural choice for the host architecture. Most MIPS instructions are straight-
forward to simulate with just a few SPARC instructions, because both are RISC
architectures, both support IEEE arithmetic, and the MIPS architecture lacks
integer condition codes.

Little attention was paid to simulation efficiency, beyond the efficient simulation
techniques already used in Shade. On average, Shade-MIPS.V8 executes about
10 SPARC instructions to simulate a MIPS instruction.

Some host/target differences make Shade-MIPS.V8 less faithful, slower, or more
complicated. For example, MIPS systems support both big-endian and little-
endian byte ordering [41}, but V8 SPARC only supports the former. Shade-
MIPS.V8 currently runs only code that has been compiled for MIPS systems
running in big-endian mode. Shade thus avoids the more complicated sim-
ulation of little-endian access. Similarly, Shade-MIPS.V8 does not check for
overflows that would cause exceptions on MIPS systems. Several MIPS fea-
tures such as unaligned memory access instructions and details of floating-point
rounding have no direct V8 SPARC counterparts, so Shade-MIPS.V8 simulates
them, albeit more slowly. Many immediate fields are 16 bits on the MIPS and
13 bits on the SPARC; where target immediates do not fit in 13 bits, extra
SPARC instructions are used to place the immediate value in a host scratch
register. This difference complicates the translation compiler.

Some host/target differences help rather than hurt Shade-MIPS.V8 ’s efficiency.
In particular, the MIPS architecture employs values stored in general purpose
integer registers in place of integer condition codes. This reduces contention
for the host condition codes [16].

5.2 Shade-V9.V8

ShadeV9.V8 simulates a V9 SPARC target and runs on a V8 SPARC host.
The principal problems of simulating V9 applications on V8 hosts are wider
integer registers and additional condition codes. Simulating a 64-bit address
space would be a problem, but so far it has been avoided.

30 CHAPTER 2

1ldd [Yvs + vs_r1], %s0 ! s0/s1: virt. ri
ldd [Yvs + vs_r2], Y%s2 ! s2/s3: virt. r2
addcc Y%s1, %s3, Y%s5 ! add lower 32 bits
addx %s0, %s2, %s4 ! add upper 32 bits
std %s4, [hvs + vs_r3] ! virt. r3: s4/s5

Figure 9 ShadeV9.V8 translation body.

The new V9 instructions present few new problems, but there are many new
instructions. As a rough measure of relative simulation complexity, consider
that, given Shade-V8.V8, it took about 3 weeks to develop Shade-MIPS.V8 and
about 3 months to develop Shade-V9.V8 to the point where each ran SPEC89.

Shade usually generates a short sequence of V8 instructions for each V9 in-
struction. For example, Figure 9 shows the translation body fragment for a V9
add. Complicated instructions are compiled as calls to simulation functions.

The V9 target’s 64-bit registers are simulated with register pairs on the V8 host.
This doubles memory traffic for each register moved between the virtual state
structure and the host registers. It also increases the number of such moves,
since only half as many target registers can be cached in the host’s registers.

V9 SPARC has two sets of condition codes. One set is based on the low 32 bits
of the result, just as in V8; the other is set on the full 64 bits of the result. The
host integer condition codes are often required to simulate 64-bit operations
which themselves do not involve condition codes, as in the add example above.
This increases the number of contenders for the host condition codes [16].

Shade-V9.V8 ’s performance is likely to degrade as compilers take advantage
of more V9 features. For example, V9 supports more floating point registers
and floating point condition codes than V8. V9 compilers that make better use
of these registers will increase register pressure on the V8 host. Also, under
Shade-V9.V8, applications are only allowed access to the lower 4GB of virtual
memory. Thus, although programs manipulate 64-bit pointers, Shade-V9.V8
ignores the upper 32-bits of addresses during the actual accesses (load, store,
register indirect jump, system call). ShadeV9.V8 will run slower if and when
it needs to simulate a full 64-bit address space.

6 PERFORMANCE

Shade: A Fast Simulator for Profiling 31

This section reports on the performance of Shade. For ShadeV8.V8, perfor-
mance is reported relative to native execution. Since SPARC V9 platforms are
not available at the time of this writing, ShadeV9.V8 figures do not include
relative performance. The standard-Shade configuration used in these tests is
a 4MB TC that holds 22° host instructions, and a 256KB TM that holds 2!3
(8K) lines, each with 4 address pairs.

This section reports Shade’s performance when running the 008.espresso and
015.doduc SPEC92 [22] benchmarks.® These benchmarks are among the inte-
ger and floating-point benchmarks with the worst Shade performance. Shade-
V8.V8 benchmarks are compiled for SuperSPARC and Solaris 2.3 using SPARC-
compilers 3.0.1; native and profiled times are for execution on a SPARCcenter
2000. For ShadeV9.V8, the benchmarks are compiled for UltraSPARC and
SunOS 4.x with a preliminary compiler that emits V9-only predicted branches
and references to the V9-only floating-point registers and condition codes.

The measurements use six Shade analyzers, each performing a different amount
of tracing. The analyzers use Shade to record varying amounts of information,
but everything Shade records is then ignored. This “null analysis” was done to
show the breakdown of time in Shade. With real analyzers, analysis typically
dominates the run time and Shade is not the bottleneck. The analyzers are:

icountO: no tracing, just application simulation.

icount1: no tracing, just update the traced instruction counter (ntr) to permit
instruction counting.

icount2: trace PC for all instructions (including annulled); trace effective
memory address for non-annulled loads and stores. This corresponds to the
tracing required for cache simulation.

icount3: same as icount?2 plus imstruction text, decoded opcode value, and,
where appropriate, annulled instruction flag and taken branch flag.

icount4: same as icount3 plus values of all integer and floating point registers
used in instruction.

3 Instruction counts were gathered by running Shade on itself: the superior Shades ran the
icount1 analyzer while the subordinate Shades ran the indicated analyzers and benchmarks.
Percentage time distributions were measured using conventional profiling with cc -p and
prof. Overall running times were collected by running each program ten times, adding
reported user and system times, discarding results more than 1.96 sigma from the mean, and
then averaging the remainder.

32 CHAPTER 2

icount5: same as icount4 plus call an empty user trace function before and
after each application instruction.

Table 4 shows how much slower applications run under Shade compared to
native execution. The inst column shows the average number of instructions
that were executed per application instruction. The #ime column shows the
CPU (user + system) time; for Shade-V8.V8 as a ratio to native time, for
Shade-V9.V8 as absolute time in seconds. N/A indicates “not applicable”. On
average, Shade-V8.V8 simulates SPECint92 3.9 times slower than native and
SPECfp92 1.9 times slower.

Shade is usually more efficient on floating-point code (doduc) than on integer
code (espresso). There are various factors. For example, floating-point code
has larger basic blocks, which improves host register allocation, including the
condition code register, and also reduces the number of branches and thus
the number of lookup operations to map the target PC to the corresponding
translation. Floating-point benchmarks other than doduc typically have yet
longer basic blocks and better performance under Shade. Floating-point code
also uses more expensive operations, so relatively more time is spent doing
useful work. The relative costs are closer for higher levels of tracing, since the
overhead of tracing is nearly independent of the instruction type.

ShadeV9.V8 is less efficient than Shade-V8.V8, and less efficient for integer than
floating point applications. The wider V9 words cause more memory traffic and
more contention for host registers. V9 also has more condition codes and is thus
more work to simulate. On average, ShadeV9.V8 simulates SPECint92 for V8
(sic) 11.0 times slower than they run native, and SPECfp92 benchmarks for
V8 3.5 times slower. Shade-V8.V8 simulates these same benchmarks 3.9 and
1.9 times slower than they run native, respectively.

Table 3 shows how much larger a translation is than the application code it
represents. Input size is the dynamically-weighted average size of a target basic
block. Output size is the dynamically-weighted average number of instructions
in a translation and the code space expansion over the input size. Qutput sizes
do not directly correlate to instruction counts, since portions of most trans-
lations are conditionally executed, and since some instructions are executed
outside of the T'C in the translation compiler, simulation functions, and the
analyzer.

XLE LOV|XGPT 191 (XC'CT 9ET |XT'8 06 |XT'9 89{XL'G €9 (¢TIl npop

X1y 63C | XLLT 66 |XG'GT L8 |XL0T 09|X.8 6% |X8L ¥P|9°G ossa1dss QA'6A

Xpg T10% | XGG1 9P1 [X€0T O0CT|XT'9 CL|XT'E 8¢ |XLC TE|L'T1 onpop

XLE 661 |XC¥1 8L [XGCl L9 [X9L T¥|XL¥ GZ|X9€ 0G|¥9 0ssa1dss gA'SA

Gyunodt | Hunodt | gjunodl | gjunodt | [yunodl | gunoodr | ozis
szis dinQ ndug ‘ddy opeys

‘BA'BAOPRYS I0] SPUO0das Ul 91Ul 3INjosqe
PpUe UOIJR[Ip JUNOD UCIINIISUL ‘AR A-OPERYS J0J UOIe[Ip suIl} JO PUR JUNOD UOHONIJSUL [UMOPMO[S ¥ B[R],

MOZ 968069 ST |06V €aI|0Ge 98 |02z L9 |015 G9 |V/N 0T |onpop
Mg'¢ €Ty |[MET 98T |[MOT 191|008 T3I{03L %01[089 O00T|V/N QT |o0sse1dss gA'6A

v9G GLE|08T ¥el|eel 86 (&L 09 |6 T¢€ |8¢ 0¢ |0T 071 |2npop
L09 88¢lg0z ¥erjgel TTII|S8 L9 |6F T¥% |€F 9€¢ [0T 07T |[osserdss GA'SA

SWII} JSUI | 9WUI} 9SUI | QUNI} JSUI (SWII) 9SUI | SUAI} 9SUL [SUILY JSUL |OWIl} 9SUL
gJunodl FIunoot £3Unoo1 ZHunoot 11Uno91 (3uUnoot aarjeu | -ddy apeys

‘paIyStem L[reorureudip ‘uoisuedxs uoije[suel} 3po)) ¢ d[qeL,

34 CHAPTER 2

For both espresso and doduc, and for all tracing levels, both versions of Shade
spend most of their time executing code from the TC and simulation libraries.
For pure simulation and low levels of tracing, Shade-V8.V8 typically spends 65-
80% of the execution in the TC and 20-30% in library code that is called from
the TC to help with the simulation; most of the time in the library is spent
saving and restoring host condition codes (Section 4.5), with the rest spent
simulating save and restore instructions and executing the main loop, etc.
Shade-V9.V8 spends relatively more time saving and restoring condition codes
and simulating instructions, so it typically spends only 55-70% of the running
time in the TC, with 30-45% of the time spent in the simulation library. For
higher levels of tracing, both versions of Shade spend more time in the TC,
executing code that saves trace data, as much as 95% for ShadeV8.V8 and as
much as 90% for ShadeV9.V8. For icount5 tracing, the analyzer-supplied pre-
and post-instruction tracing routines take 5-9% of the execution time, even
though they are empty; for icount4 and below, the (null) analyzer is less than
1% of the of the execution time. Shade also spends less than 1% of its running
time in the compiler. Better optimization would take longer and produce faster
code, both of which would increase the percentage of time spent in the compiler.

A small TC increases the frequency with which useful translations are dis-
carded. A small or ineffective TM increases the frequency with which useful
translations are lost. Translations that collect a lot of information take longer
to run, and thus reduce the percentage of time spent in simulation functions,
even though their absolute running time is unchanged. All of the analyzers used
in these tests are trivial; icount5 uses null functions that are called before and
after each application instruction.

Table 5 shows the average number of instructions that are executed by the
code generator to translate one host instruction. The number of instructions
executed by the code generator is a function of the instruction set architecture
of the host and target machines and the level of tracing. Note that without
translation caching, the compiler would be invoked every time a target instruc-
tion was run and applications would run hundreds or thousands of times slower.
Measurements of the TC and TM effectiveness are reported elsewhere {16].

Shade: A Fast Simulator for Profiling 35

Table 5 Code generator instructions per application instruction translated.

[Shade App. [icount0 [icountl [icount2 [icount3 [icount4 |icounts]
V8.V8 espresso 745 | 949 | 1581 | 1762 | 3958 | 4514
doduc 632 813 | 1549 | 1720 | 4550 | 5100
VO.V8 espresso | 1045 | 1244 | 1883 | 2030 | 4903 | 5494
doduc 769 939 | 1669 | 1818 | 5597 | 6327

7 CONCLUSIONS

Shade is a custom trace generator that is both fast and flexible, providing the
individual features of other tracing tools together in one tool. Shade achieves
its flexibility by using dynamic compilation and caching, and by giving ana-
lyzers detailed control over data collection. Thus analyzers pay for only the
data they use. Since Shade is fast, analyzers can recreate traces on demand
instead of using large stored traces. Shade’s speed also enables the collection
and analysis of realistically long traces. Finally, Shade simulates many ma-
chine details including dynamic linking, asynchronous signals and synchronous
exceptions. By providing a detailed simulation and by freeing the user from
preprocessing steps that require source code and complicated build procedures,
Shade satisfies a wide variety of analysis needs in a single tool.

8 ACKNOWLEDGEMENTS

Shade owes much to its predecessors, particularly its immediate predecessor
Shadow, which was created by Peter Hsu [38]. Robert Cmelik developed Shade,
with numerous suggestions from David Keppel. Steve Richardson, Malcolm
Wing, and other members of the Shade user community provided useful user
interface feedback and helped debug Shade. Robert Bedichek, Alex Klaiber,
Peter Magnusson and the anonymous SIGMETRICS referees gave helpful com-
ments on previous papers about Shade, and Tom Conte, Peter Magnusson and
Rich Uhlig helped improve drafts of this chapter. Finally, authors of many
of the systems in the related work section went out of their way to help us
understand their tools; we apologize for errors and omissions. This work was
supported by Sun Microsystems, NSF #CDA-8619-663 and NSF PYI #MIP-
9058-439.

36

CHAPTER 2

Exercises

2.1

2.2

2.3

24

25

2.6

2.7

Shade includes a dynamic compiler.

(a) What source language do the lexer and parser recognize?
(b) What target language does the code generator emit?

(¢) What operations does Shade perform that are performed by a con-
ventional compiler?

(d) What operations does Shade perform that aren’t performed by a con-
ventional compiler?

(e) What operations does a conventional compiler perform that aren’t
performed by Shade?

Shade examines and translates application instructions whenever the trans-
lation compiler is invoked at run time (on each translation cache miss). In
principle, Shade can also analyze instructions statically, before the program
is run. Could Shade perform all instruction analysis statically? Would it
help if the tracing level was set statically and never changed? Why or why
not?

Shade creates translations only for straight-line code sequences. Shade
could instead analyze larger input units and generate larger translations
for, e.g., loops, conditionals, etc. Why does Shade stop translating at
branches? Why might it be good to use larger input units?

Suppose the tracing level can change dynamically and that instrumentation
is dispatched (selected) every time an instruction is executed, instead of
being hard-coded into translations. What extra overhead would there be?

Translations always invoke user-supplied tracing routines using procedure
calls. Other tracing code, however, is simply inlined in the translations.
For example, the code that traces the destination register for each in-
struction appears in each translation, instead of being called as a separate
routine. Why doesn’t Shade inline user-supplied routines?

The threaded-code simulator SIMICS [50, 51, 52, 53] checks after every
instruction whether there are any interrupts that need service. In contrast,
Shade checks only occasionally, when the main loop is invoked. What are
the advantages and disadvantages of each approach?

Currently, Shade implements (simulates) the exec system call (“use the
current process to run a new program”) so that the new program is ex-
ecuted directly by the host. What are advantages and disadvantages of

Shade: A Fast Simulator for Profiling 37

2.8

2.9

2.10

2.11

2.12

running the new program native vs. “following” exec and having the new
program run under Shade as well?

Shade currently implements (simulates) a fork system call (“duplicate
the parent process, give the new child process a new process identifier”)
by executing a host machine fork. Thus, after a target fork, both the
parent and child processes are being simulated and traced. Where does
trace data go? What are some alternatives?

In Shade, all cached target registers are saved back to the simulated register
file (virtual state structure) before calling per-instruction, user-supplied
tracing routines. Why? What change would make this unnecessary?

When the translation cache (TC) is full and Shade needs space for new
translations, Shade simply clears the TC. The text of this chapter mentions
only that other methods are “tedious.” What are some other methods, why
would they be better, and why are they “tedious”? Hint: consider deleting
a translation that is chained to by another translation.

Applications that modify instructions use the flush instruction to invali-
date the target machine’s instruction cache; Shade uses the target’s flush
to invalidate the corresponding translations from the TC and TM.

(a) TM entries are tagged with just the address of the first target instruc-
tion in the block. When the flushed address is in the middle of a
block, the TM tag may not match. How does Shade determine what
blocks to flush?

(b) Deleting translations from the TM still leaves some translations ac-
cessible via chaining. How does Shade find translations that are ac-
cessible only via chaining?

Shade currently supports a wide variety of options for controlling applica-
tion execution. One option is a “breakpoint” mechanism that causes the
application to halt and return control to the analyzer, so that, for example,
the analyzer can change the tracing level after a particular instruction is
executed.

(a) Describe how tracing control TC_STOPA could be implemented, where
TC_STOPA stops the application and restarts the analyzer immediately
after a particular instruction is executed.

(b) Describe how TC_STOPB could be implemented, where TC_STOPB halts
the application before the TC_STOPB’d instruction is executed. When
the application is restarted at that same instruction, the TC_STOPB
must be skipped once, or else the application will never execute past

38

2.13

2.14

2.15

2.16

CHAPTER 2

the TC_STOPB’d instruction. In addition, when execution halts at
one TC_STOPB’d instruction, the application may be restarted at some
other instruction. Execution should then halt at the next TC_STOPB’d
instruction, whether or not that instruction is the one that caused
the last halt.

Some systems, including most of Shade’s targets, support shared memory
between processes. Shade’s host system also supports shared memory, so
most of the target machine’s shared memory operations are implemented
simply as host machine operations.

(a) What extra work does Shade need to do to simulate shared memory?

(b) Does it matter if the other processes that share memory are being
run under Shade?

(c) What if the shared memory contains code?

Hint: the basic shared memory operations create a shared segment, map
it into the application’s address space at either an application-selected
address or at a system-selected address, and unmap a shared segment.

Shade emulates condition codes exactly and saves them away in the virtual
state structure if necessary. Shade could instead save the data values and
operation code that would set the condition codes, and create the condition
code bits lazily. For example, Shade currently saves the condition codes
produced by “addcc r3,#7, r0”, but it could instead save r3, #7, and the
addcc opcode value, then perform an “addcc” to set the condition codes
only when necessary. What factors increase or decrease the profitability of
setting the condition codes lazily?

Suppose that the host supported segmented addressing, where each refer-
ence to a virtual address is converted to a “long address” by concatenating
with a segment base address (a contemporary example of this is the Intel
80x86, which uses both paging and segmentation). How could Shade take
advantage of segmentation?

Shade currently supports a fixed operating system interface. For example,
one version of Shade-V9.V8 emulates the Solaris ABI (Application Binary
Interface). Sometimes it would be useful to experiment with new system
calls without rewriting Shade. One way to make Shade extensible this way
is to allow the analyzer to dynamically bind kernel emulation code that
Shade would call when the application executes a system call instruction.
Would this be simple or hard? What parts of Shade would need to be
changed?

Shade: A Fast Simulator for Profiling 39

217

2.18

2.19

2.20

2.21

Shade currently executes only user-mode code. What are some implemen-
tation issues in extending Shade to execute system-mode code?

Shade currently simulates only uniprocessor applications. What are some
implementation issues in extending Shade to execute multiprocessor appli-
cations with concurrent access to shared data?

If Shade is extended to trace multiprocessors, should there be separate
trace data streams, one per processor, or interleaved traces such that traces
from all processors appear in a single stream?

Shade translates application references by simply adding an offset. Al-
though simple translation usually works well, application errors that cause
stray memory references can clobber values in both Shade and the ana-
lyzer. What changes would be needed to have Shade detect such erroneous
memory references? How would performance be affected?

What if the address checking mechanism described above:is also used to
enforce protection so that a target address space cannot, e.g., read from
another target address space?

40

CHAPTER 2

REFERENCES

[1]

(3]

[4]

[5]

[9]

[10]

Anant Agarwal, Richard L. Sites and Mark Horowitz, “ATUM: A New
Technique for Capturing Address Traces Using Microcode,” Proceedings
of the 13th International Symposium on Computer Architecture (ISCA-
14), June 1986, pp. 119-127.

Kristy Andrews and Duane Sand, “Migrating a CISC Computer Family
onto RISC via Object Code Translation,” Proceedings of the Fifth Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS-V), October 1992, pp. 213-222.

Robert A. Baumann, “Z80MU,” Byte Magazine, October 1986, pp. 203-
216.

Robert Bedichek, “Some Efficient Architecture Simulation Techniques,”
Winter 1990 USENIX Conference, January 1990, pp. 53-63.

Robert Bedichek, “The Meerkat Multicomputer: Tradeoffs in Multicom-
puter Architecture,” Doctoral Dissertation, University of Washington De-
partment of Computer Science and Engineering technical report 94-06-06,
1994.

Anita Borg, R. E. Kessler, Georgia Lazana and David W. Wall, “Long
Address Traces from RISC Machines: Generation and Analysis,” Digital
Equipment Western Research Laboratory Research Report 89/14, (ap-
pears in shorter form as [7]) September 1989.

Anita Borg, R. E. Kessler and David W. Wall, “Generation and Analysis of
Very Long Address Traces,” Proceedings of the 17th Annual Symposium
on Computer Architecture (ISCA-17), May 1990, pp. 270-279.

Bob Boothe, “Fast Accurate Simulation of Large Shared Memory Multi-
processors,” technical report UCB/CSD 92/682, University of California,
Berkeley, Computer Science Division, April 1992.

Eric A. Brewer, Chrysanthos N. Dellarocas, Adrian Colbrook and
William E. Weihl, “PrRoTEUS: A High-Performance Parallel-Architecture

Simulator,” Massachusetts Institute of Technology technical report
MIT/LCS/TR-516, 1991.

Eugene D. Brooks III, Timothy S. Axelrod and Gregory A. Darmohray,
“The Cerberus Multiprocessor,” Lawrence Livermore National Laboratory
technical report, Preprint UCRL-94914, 1987.

Shade: A Fast Stmulator for Profiling 41

[11] Steve Chamberlain, Personal communication, 1994.

[12] Craig Chambers, David Ungar and Elgin Lee, “An Efficient Implementa-
tion of SELF, a Dynamically-Typed Object-Oriented Language Based on
Prototypes,” OOPSLA ’89 Proceedings, October 1989, pp. 49-70.

[13] Fred Chow, A. M. Himelstein, Earl Killian and L. Weber, “Engineering a
RISC Compiler System,” IEEE COMPCON, March 1986.

[14] Robert F. Cmelik, “Introduction to Shade,” Sun Microsystems Laborato-
ries, Incorporated, February 1993.

[15] Robert F. Cmelik, “The Shade User’s Manual,” Sun Microsystems Labo-
ratories, Incorporated, February 1993.

[16] Robert F. Cmelik and David Keppel, “Shade: A Fast Instruction-Set Sim-
ulator for Execution Profiling,” Sun Microsystems Laboratories, Incorpo-
rated, and the University of Washington, technical report SMLI 93-12 and
UWCSE 93-06-06, 1993.

[17] Robert F. Cmelik and David Keppel, “Shade: A Fast Instruction-Set Sim-
ulator for Execution Profiling,” Proceedings of the 1994 ACM SIGMET-
RICS Conference on Measurement and Modeling of Computer Systems
May 1994, pp. 128-137.

[18] R. C. Covington, S. Madala, V. Mehta, J. R. Jump and J. B. Sinclair,
“The Rice Parallel Processing Testbed,” Proceedings of the 1988 ACM
SIGMETRICS Conference on Measurement and Modeling of Computer
Systems, 1988, pp. 4-11.

[19] Peter Davies, Philippe LaCroute, John Heinlein and Mark Horowitz,
“Mable: A Technique for Efficient Machine Simulation,” Quantum Effect
Design, Incorporated, and Stanford University technical report CSL-TR-
94-636, 1994.

[20] Helen Davis, Stephen R. Goldschmidt and John Hennessy, “Multiprocessor
Simulation and Tracing Using Tango,” Proceedings of the 1991 Interna-
tional Conference on Parallel Processing (ICPP, Vol. II, Software), August
1991, pp. II 99-107.

[21] Peter Deutsch and Alan M. Schiffman, “Efficient Implementation of the
Smalltalk-80 System,” 11th Annual Symposium on Principles of Program-
ming Languages (POPL-11), January 1984, pp. 297-302.

[22] K. M. Dixit, “New CPU Benchmark Suites from SPEC,” Digest of Papers,
COMPCON February 1992, pp. 305-310.

42 CHAPTER 2

[23] Susan J. Eggers, David Keppel, Eric J. Koldinger and Henry M. Levy,
“Techniques for Efficient Inline Tracing on a Shared-Memory Multiproces-
sor,” Proceedings of the 1990 ACM SIGMETRICS Conference on Mea-
surement and Modeling of Computer Systems, May 1990, pp. 37-47.

[24] Alan Eustace and Amitabh Srivastava, “ATOM: A Flexible Interface for
Building High Performance Program Analysis Tools,” Proceedings of the
USENIX 1995 Technical Conference on UNIX and Advanced Computing
Systems, New Orleans, Louisiana, January 16-20, 1995, pp. 303-314.

[25] Doug Evans, Personal communications, December 1992.

[26] Richard M. Fujimoto, “Simon: A Simulator of Multicomputer Networks”
technical report UCB/CSD 83/137, ERL, University of California, Berke-
ley, 1983. ’

[27] Richard M. Fujimoto and William B. Campbell, “Efficient Instruction
Level Simulation of Computers,” Transactions of The Society for Com-
puter Simulation 5(2), April 1988, pp. 109-123.

[28] FlashPort product literature, AT&T Bell Laboratories, August 1994.

[29] GNU debugger and simulator, Internet Universal Resource Locator
ftp://prep.ai.mit.edu/pub/gnu, GDB distribution, sim subdirectory.

[30] Torbjorn Granlund, “The Cygnus Simulator Proposal,” Cygnus Support,
Mountain View, California, March 1994.

[31] Stu Grossman, Personal communication, November 1994.

[32] Stephen R. Goldschmidt and John L. Hennessy, “The Accuracy of Trace-
Driven Simulations of Multiprocessors,” Stanford University Computer
Systems Laboratory, technical report CSL-TR-92-546, Septemeber 1992.

[33] Reed Hastings and Bob Joyce, “Purify: Fast Detection of Memory Leaks
and Access Errors,” Proceedings of the Winter USENIX Conference, Jan-
uary 1992, pp. 125-136.

[34] John Hennessy and David Patterson, “Computer Organization and De-
sign: The Hardware-Software Interface” (Appendix A, by James R. Larus),
Morgan Kaufman, 1993.

[35] Urs Holzle, Craig Chambers and David Ungar, “Optimizing Dynamically-
Typed Object-Oriented Languages With Polymorphic Inline Caches,” Pro-
ceedings of the European Conference on Object-Oriented Programming
(ECOOP), July 1991, pp. 21-38.

Shade: A Fast Simulator for Profiling 43

[36] Urs Holzle and David Ungar, “Optimizing Dynamically-Dispatched Calls
with Run-Time Type Feedback,” Proceedings of the 1994 ACM Confer-
ence on Programming Language Design and Implementation (PLDI), June,
1994, pp. 326-335.

[37] Mat Hostetter, Personal communication, July 1993.

[38] Peter Hsu, “Introduction to Shadow,” Sun Microsystems, Incorporated,
July 1989.

[39] “IMS Demonstrates x86 Emulation Chip,” Microprocessor Report, 9 May
1994, pp. 5 and 15.

[40] Gordon Irlam, Personal communication, February 1993.

[41] David James, “Multiplexed Busses: The Endian Wars Continue,” IEEE
Micro Magazine, June 1990, pp. 9-22.

[42] Ronald L. Johnston, “The Dynamic Incremental Compiler of APL\3000,”
APL Quote Quad 9(4), Association for Computing Machinery (ACM),
June 1979, pp. 82-87.

[43] Gerry Kane, “MIPS R2000 RISC Architecture,” Prentice-Hall, Englewood
Cliffs, New Jersey, 1987.

[44] David Keppel, “A Portable Interface for On-The-Fly Instruction Space
Modification,” Proceedings of the 1991 Symposium on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS-IV),
April 1991, pp. 86-95.

[45] David Keppel, Susan J. Eggers and Robert R. Henry, “A Case for Run-
time Code Generation,” University of Washington Computer Science and
Engineering technical report UWCSE TR 91-11-04, November 1991.

[46] David Keppel, Susan J. Eggers and Robert R. Henry, “Evaluating
Runtime-Compiled Value-Specific Optimizations,” University of Washing-
ton Computer Science and Engineering technical report 93-11-02, Novem-
ber 1993.

[47] Earl Killian, Personal communication, February 1994.

[48] James R. Larus, “Efficient Program Tracing,” IEEE Computer 26(5), May
1993, pp. 52-61.

[49] James R. Larus and Thomas Ball, “Rewriting Executable Files to Measure
Program Behavior,” Software — Practice and Experience 24(1), February
1994, pp. 197-218.

44 CHAPTER 2

[60] Peter S. Magnusson, “A Design For Efficient Simulation of a Multipro-
cessor,” Proceedings of the First International Workshop on Modeling,
Analysis, and Simulation of Computer and Telecommunication Systems
(MASCOTS), La Jolla, California, January 1993, pp. 69-78.

[61] Peter Magnusson, “Partial Translation,” Swedish Institute for Computer
Science technical report T93:05, 1993.

[62] Peter S. Magnusson and David Samuelsson, “A Compact Intermediate For-
mat for SIMICS,” Swedish Institute of Computer Science technical report
R94:17, September 1994.

[63] Peter Magnusson and Bengt Werner, “Some Efficient Techniques for Sim-
ulating Memory,” Swedish Institute of Computer Science technical report
R94:16, September 1994.

[64] Clifford T. Matthews, “680x0 emulation on x86 (ARDI’s syn68k used in
Executor)” USENET comp.emulators.misc posting, 3 November, 1994.

[55] Cathy May, “Mimic: A Fast S/370 Simulator,” Proceedings of the ACM
SIGPLAN 1987 Symposium on Interpreters and Interpretive Techniques;
SIGPLAN Notices 22(6), June 1987, pp. 1-13.

[56] “UMIPS-V Reference Manual,” MIPS Computer Systems, Incorporated,
1990.

[57] Robert D. Nielsen, “DOS on the Dock,” NeXTWorld, March/April 1991,
pp. 50-51.

(58] David Notkin and William G. Griswold, “Enhancement through Exten-
sion: The Extension Interpreter,” Proceedings of the ACM SIGPLAN ’87

Symposium on Interpreters and Interpretive Techniques, June 1987, pp. 45-
55.

[59] David Notkin and William G. Griswold, “Extension and Software Devel-
opment,” Proceedings of the 10th International Conference on Software
Engineering, Singapore, April 1988, pp. 274-283.

[60] Jim Pierce and Trevor Mudge, “IDtrace — A Tracing Tool for 1486 Simu-
lation,” Proceedings of the International Workshop on Modeling, Analy-
sis and Simulation of Computer and Telecommunication Systems (MAS-
COTS), January 1994.

[61] Thomas Pittman, “Two-Level Hybrid Interpreter/Native Code Execution
for Combined Space-Time Program Efficiency,” Proceedings of the 1987
ACM SIGPLAN Symposium on Interpreters and Interpretive Techniques,
June 1987, pp. 150-152.

Shade: A Fast Simulator for Profiling 45

[62] Norman Ramsey and Mary F. Fernandez, “The New Jersey Machine-Code
Toolkit,” Proceedings of the Winter 1995 USENIX Conference, New Or-
leans, Louisiana, January, 1995.

[63] Steven K. Reinhardt, Mark D. Hill, James R. Larus, A. R. Lebeck, J. C.
Lewis and David A. Wood, “The Wisconsin Wind Tunnel: Virtual Proto-
typing of Parallel Computers,” Proceedings of the 1993 ACM SIGMET-
RICS Conference on Measurement and Modeling of Computer Systems,
June 1993 pp. 48-60.

(64] Stephen E. Richardson, “Caching Function Results: Faster Arithmetic by
Avoiding Unnecessary Computation,” Sun Microsystems Laboratories, In-
corporated technical report SMLI TR92-1, Septemeber 1992.

[65] Mendel Rosenblum and Emmett Witchel, “SimOS: A Platform for Com-
plete Workload Studies,” Personal communication (submitted for publica-
tion), November 1994. ‘

[66] H. J. Saal and Z. Weiss, “A Software High Performance APL Interpreter,”
APL Quote Quad 9(4), June 1979, pp. 74-81.

(67) Sumedh W. Sathaye, “Mime: A Tool for Random Emulation and Feed-
back Trace Collection,” Masters thesis, Department of Electrical and Com-
puter Engineering, University of South Carolina, Columbia, South Car-
olina, 1994.

[68] Gabriel M. Silberman and Kemal Ebcioglu “An Architectural Framework
for Supporting Heterogeneous Instruction-Set Architectures,” IEEE Com-
puter, June 1993, pp. 39-56.

[69] Richard L. Sites, Anton Chernoff, Matthew B. Kerk, Maurice P. Marks and
Scott G. Robinson, “Binary Translation,” Communications of The ACM
(CACM) 36(2), February 1993, pp. 69-81.

[70] Rok Sosi¢, “Dynascope: A Tool for Program Directing,” Proceedings of
the 1992 ACM Conference on Programming Language Design and Imple-
mentation (PLDI), June 1992, pp. 12-21.

[71] Rok Sosi¢. “Design and Implementation of Dynascope, a Directing Plat-
form for Compiled Programs,” technical report CIT-94-7, School of Com-
puting and Information Technology, Griffith University, 1994.

[72] The SPARC Architecture Manual, Version Eight, SPARC International,
Incorporated. 1992.

46

(73]

[74]
(75]
[76]

[77]

[78]

(79]
(80]
[81]

[82]

[83]

CHAPTER 2

The SPARC Architecture Manual, Version Nine, SPARC International,
Incorporated, 1992.

“SPEC Newsletter,” Standard Performance Evaluation Corporation.
Amitabh Srivastava, Personal communication, January 1995.

Amitabh Srivastava and Alan Eustace, “ATOM: A System for Building
Customized Program Analysis Tools,” Proceedings of the 1994 ACM Con-
ference on Programming Language Design and Implementation (PLDI),
June 1994, pp. 196-205.

Craig B. Stunkel and W. Kent Fuchs, “TRAPEDS: Producing Traces for
Multicomputers via Execution Driven Simulation,” ACM Performance
Evaluation Review, May 1989, pp. 70-78.

Craig B. Stunkel, Bob Janssens and W. Kent Fuchs, “Address Tracing for
Parallel Machines,” IEEE Computer 24(1), January 1991, pp. 31-38.

“SunOS Reference Manual,” Sun Microsystems, Incorporated, March 1990.
“SunOS 5.0 Reference Manual,” SunSoft, Incorporated, June 1992.

Richard Uhlig, David Nagle, Trevor Mudge and Stuart Sechrest, “Trap-
driven Simulation with Tapeworm II,” Sixth International Conference on
Architectural Support for Programming Languages and Operating Sys-
tems (ASPLOS-VI), San Jose, California, October 5-7, 1994.

Jack E. Veenstra, “Mint Tutorial and User Manual,” University of
Rochester Computer Science Department, technical report 452, May 1993.

Jack E. Veenstra and Robert J. Fowler, “MINT: A Front End for Effi-
cient Simulation of Shared-Memory Multiprocessors,” Proceedings of the
Second International Workshop on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems (MASCOTS), January 1994,
pp. 201-207.

3

INSTRUMENTATION TOOLS
Jim Pierce*, Michael D. Smithf, Trevor Mudge*

* Department of Electrical Engineering and Computer Science
University of Michigan, Ann Arbor

t Division of Applied Sciences
Harvard University, Massachusettls

1 INTRODUCTION

The instrumentation of applications to generate run-time information and
statistics is an important enabling technology for the development of tools that
support the fast and accurate simulation of computer architectures. In addi-
tion, instrumentation tools play an equally important role in the optimization
of applications, in the evaluation of new compilation algorithms, and in the
analysis of operating system overhead. An instrumentation tool is capable of
modifying a program under study so that essential dynamic information of in-
terest is recorded while the program executes. The instrumentation process
should not affect the original functionality of the test program, although it will
slow down its operation. In a typical situation, a computer architect uses an
instrumentation tool to produce an instruction or data trace of an application.
The architect then feeds that trace to a trace-driven simulation program. The
usefulness of instrumentation tools is obvious from a quick glance at current
research publications in the area, where a significant number of authors use
traces generated by two of the most popular instrumentation tools: pixie
[23] and spixtools [6]. These tools are popular because of their applicability
to many architectures and programs, their relatively low overhead, and their
simplicity of use.

This chapter’s focus is the design of instrumentation tools. Section 1 describes
how instrumentation tools fit into the broad range of techniques available for the
collection of run-time information. Section 2 lists the points in the compilation
process at which we can instrument an application. It goes on to discuss the
advantages and disadvantages of performing instrumentation at these points,
noting that the basic structure of an instrumentation tool and the problems

48 CHAPTER 3

faced are common to all of the approaches. Section 3 then discusses the specifics
of instrumentation tool design, and Section 4 presents the important character-
istics of some existing instrumentation tools. Finally, an appendix is included
to illustrate the use of two existing instrumentation tools.

1.1 Methods for collecting run-time
information

Before we discuss the design of instrumentation tools in detail, we first de-
scribe other approaches that provide the ability to collect run-time informa-
tion. In general, we can classify a run-time data collection method as either a
hardware-assisted or a software-only collection scheme. Each type of approach
has advantages and disadvantages to consider.

A hardware-assisted collection scheme involves the use of hardware devices that
are added to a system solely for the purpose of data collection. These mon-
ltoring devices are not necessary for the proper functioning of the computer
system under test. Many different hardware methods exist for unobtrusively
monitoring system-wide events. They include: 1) specially designed hardware
boards, such as the BACH system [9], which observe and record bus activity;
2) off-computer logic analyzers, such as the University of Michigan’s Monster
system [21], that monitor the activity of the system bus; and 3) special on-
chip logic, such as the performance monitoring counters on the DEC ALPHA
21064 microprocessor chip, which summarize specific run- time events [7]. The
two main advantages of a hardware-assisted collection scheme are that one can
build hardware to capture almost any type of event and that a hardware mon-
itor can theoretically collect dynamic information without slowing down the
application under test. Unfortunately, there are a number of disadvantages to
these schemes too. First, since a huge amount of data can be gathered in a
short time, the monitoring hardware is built either to summarize events (e.g.,
a counter that only counts the number of cache misses and not their addresses)
or to record disjoint segments of program operation (e.g., a hardware monitor
with a large memory that accepts the run-time information at the full execution
rate and then later dumps this data to a backing store). In either case, less
than the full amount of information is gathered which could lead to a distorted
picture. To minimize the amount of unwanted data collected, researchers have
combined hardware-assisted approaches with software instrumentation of ap-
plications to signal when the hardware should start and stop monitoring [21]-
another compelling reason to understand software instrumentation methods.
Finally, hardware-assisted collection schemes are costly and highly dependent

Instrumentation Tools 49

upon the characteristics of the monitored machine; thus, they are not a prac-
tical alternative for many users.

Software-only collection schemes, on the other hand, are relatively inexpensive
and more portable than hardware-assisted collection schemes because the soft-
ware schemes use only the existing hardware to gather the desired run-time
information. In general, we can divide the software-only schemes into two ap-
proaches: 1) those which simulate, emulate, or translate the application code
and 2) those which instrument the application code. Chapter 2 presented a
detailed description of the first approach. Briefly, a code emulation tool is a
program that simulates the hardware execution of the test program by fetching,
decoding, and emulating the operation of each instruction in the test program.
SPIM [12] and Shade [5] are examples of tools in this category. One of the
major advantages of emulation tools is that they support cross-simulation and
the ability to execute code on hardware that may not yet exist. Compared
to instrumentation tools though, an emulated binary, even with sophisticated
techniques such as dynamic cross-compilation [5], is noticeably slower than an
instrumented binary when capturing the same run-time information.

An instrumentation tool works by rewriting the program that is the target of
the study so that the desired run-time information is collected during its execu-~
tion. The logical behavior of the target program is the same as it was without
instrumentation, and the native hardware of the original application still exe-
cutes the program, but data collection routines are invoked at the appropriate
points in the target program’s execution to record run-time information. Over-
all, researchers have proposed the following three distinct mechanisms to invoke
the run-time data collection routines: microcode instrumentation, operating
system (OS) trapping, and code instrumentation.

Agarwal, Sites, and Horowitz [1] describe a microcode-instrumentation tech-
nique called ATUM (Address Tracing Using Microcode) that supports the cap-
ture of application, operating system, interrupt routine, and multiprogram-
ming address activity. Instead of instrumenting the individual applications,
their technique “instruments” the microcode of the underlying machine so that
the microcode routines record, in a reserved portion of main memory, each
memory address touched by the processor. This approach is effective because,
typically, only a small number of the microcode routines are responsible for
the generation of all memory references. This approach is general because it
is independent of the compiler, object code format, and operating system- as
Agarwal states [2], ATUM is “tracing below the operating system.” In fact,
any information visible to the microcode can be instrumented. Agarwal, Sites,
and Horowitz report that the overhead of this approach causes applications to

50 CHAPTER 3

run about ten times slower than normal when used to collect address traces [1].
Of course, microcode instrumentation is only applicable to hardware platforms
using microcode and even then the user must have the ability to modify the
code. Furthermore, since most processors today have hardwired control, this
approach has limited applicability.

A more widely applicable approach is to collect run-time information using OS
traps. For instance, data address traces can be collected by replacing each
memory operation in the target program with a breakpoint instruction which
traps to a routine that records the effective address. A disadvantage of using
OS traps is that, if many events must be recorded, the cumulative OS over-
head of handling all the traps is significant. However, there are a number of
exception mechanisms in operating systems that can be utilized to improve
the efficiency of this method. Tapeworm II [28] is an example of an efficient
software-based tool that drives cache and TLB simulations using information
from kernel traps. It utilizes low-overhead exceptions and traps of relatively
few events. The applicability and efficiency of the OS-trap approach depends
upon the accessibility of certain OS primitives. With proprietary operating
systems, this can be a problem.

The most generally applicable approach is the direct modification of the pro-
gram’s code. This approach, called instrumentation, inserts extra instructions
into the target program to collect the desired run-time information. Data col-
lection occurs with minimal overhead because the application runs in native
mode with, at most, the overhead of a procedure call to invoke a data collec-
tion routine. Most instrumentation tools can create instrumented binaries that
run at less than a ten-times slowdown in execution time when collecting an ad-
dress trace. Some instrumentation tools such as QPT [18] rely on sophisticated
analysis routines and post-processing tools to reduce this overhead even more.
This approach is generally applicable because it is independent of the operating
system and underlying hardware, it has been implemented on systems ranging
from Intel architectures [22] to the DEC ALPHA architecture [18][24]. Fur-
thermore, most code instrumentation tools require only the executables, not
the sources files, so a user can instrument a wide range of programs.

There are a number of shortcomings to code instrumentation, however. It is
most suited to the instrumentation of application programs. Furthermore, most
code instrumentation tools only instrument single-process programs; kernel
code references and multiple process interactions are not typically included.
Therefore, address traces generated by these tools are often incomplete and
of limited utility for TLB or cache simulations that require the monitoring of

Instrumentation Tools 51

system-wide events. Recently however, there have been tools written that do
instrument kernel code and multitasking applications [4][8][19].

Overall, software-only collection schemes are less expensive to implement and
easier to port from system to system than hardware-assisted schemes. Software-
only schemes, however, do impose some overhead on the system under test and
often are restricted in the type of runtime information that they can gather.
Even so, the robustness and simplicity of code instrumentation tools makes
them a popular choice by today’s computer architects. The remainder of this
chapter focuses on the design of code instrumentation tools.

2 WHEN TO INSTRUMENT CODE

Code instrumentation can be performed at any one of three points in the compi-
lation process: after the executable is generated, during object linking, or dur-
ing some stage of the source compilation process. Although different problems
arise depending upon when the code is instrumented, the general procedure
of instrumentation is the same at all levels. In general, code instrumentation
involves four steps:

1. preparing the code for instrumentation - code extraction, disassembly,
and/or structure analysis,

2. adding instrumentation code - selecting instrumentation points and insert-
ing code to perform the run-time data collection,

3. updating the original code to reflect new code addition - reassembly, relo-
cation information update, or control instruction target translation,

4. constructing the new executable.

We now turn to the issues involved in instrumenting code at the different stages
in the compilation process.

2.1 Executable instrumentation

Instrumenting the executable or late code modification is of the greatest util-
ity to the user. However, it is also the most difficult for the instrumentation

52 CHAPTER 3

tool since code structure information is not available. The tool is responsible
for recognizing and disassembling the code sections, instrumenting the code,
and then relocating the code while rebuilding the executable. The missing in-
formation affects the tool’s ability to perform all three actions. Without the
structure information, the tool must invoke compiler knowledge or code struc-
ture heuristics to accomplish the tasks which can result in both performance
and reliability problems. When the tool cannot accurately predict code be-
havior statically, runtime overhead is incurred to adjust the behavior during
execution. In addition, instrumentation can fail or worse, produce incorrect
code, due to invalid code structure assumptions. These issues will be discussed
more fully in the next section.

Sophisticated tools which can overcome these obstacles present many advan-
tages to the user such as the following:

0O Source code independence - This makes to a wide range of programs avail-
able for tracing.

O Program generation independence - Binaries produced by different com-
pilers of various languages can be instrumented.

O Automatic library module instrumentation - Full tracing of user-level ex-
ecution is easy since statically linked library code is included in the exe-
cutable.

O Fast and efficient - No source code recompilation or assembly is required.
The user is not required to maintain instrumented library modules.

O Code creation details hidden - The user need not be familiar with the
compile-assembly-link process needed to create the application. In partic-
ular, details such as the necessary library modules or flags, non-standard
linking directives, or intermediate assembly code generation are of no con-
cern.

Late code modification tools have various requirements for the information
necessary in the binary file. The most general tools can instrument a stripped
binary- a binary without a symbol table. At the other extreme are tools which
require the compiler to include additional symbol table information. These
tools usually require the source to have been compiled with the -g option
which includes profile and debugging information in the symbol table. Late
code modification tools exist for many microprocessors and several of them are
discussed in Section 4.

Instrumentation Tools 53

2.2 Link-time instrumentation

If one is willing to give up source code independence, a convenient time to
instrument a program is after the objects have been compiled but before the
single executable has been created and the relocation and module information
has been removed. Instrumentation can be done by a sophisticated linker which
includes an object rewriter. During the linking process each object is passed to
the rewriter which performs the necessary code modifications. It handles code
and data relocation by just noting location changes in the object’s relocation
dictionary and symbol table. The modified objects are then passed back to
the linker proper and are combined into one executable in the normal manner.
Recompilation of the source code is unnecessary. The presence of the relocation
information and the symbol table make relocation straightforward. Postponing
modification until the executable stage when this information is missing makes
relocation much more difficult and sometimes impossible.

There are several tools which perform link-time modification. Mahler is a back-
end code generator and linker for Titan, a DECWRL experimental workstation
[30]. The module rewrite linker can perform intermodule register allocation,
instruction pipeline scheduling, and the insertion of code for basic block count-
ing and address trace generation. Code and data relocation is done as described
above. Another tool, epoxie, relies on incremental linking which produces an
executable containing a combined relocation dictionary and symbol table [29].
Its advantages over Mahler are that the standard linker can be used and data
sections remain fixed so data relocation is not necessary. Epoxie produces
address traces and block statistics. An extension of epoxie has been created by
Chen which can instrument kernel-level code [4]. It is described in Section 4.8.

Link-time instrumentation is not automatic like late code modification and
requires input from the user. The user must have the application object files
and know the application’s linking requirements. In addition, the source files
are probably necessary to generate the object files.

2.3 Source code modification

The earliest time to instrument the code is while it is being compiled. This is
also perhaps the most straightforward time since the tool has maximal knowl-
edge about the code. Unfortunately, it has several drawbacks from the user
perspective:

54 CHAPTER 3

O Source files are required.

O Compiler limited - Most tools are either incorporated into one compiler or
based upon a particular language or intermediate level generated by one
compiler. This further restricts the traceable applications.

O Instrumentation speed - Each time the application is instrumented the
source must be recompiled. This also implies that the user must be familiar
with the application’s compilation procedure.

O Limited code instrumentation - Library modules are not instrumented au-
tomatically because they are not included in the source files. It is possible
to create separate instrumented copies of all library modules and link them
to the instrumented source objects but this requires obtaining the module
source code and maintaining multiple versions of modules. Kernel code is
difficult if not impossible to instrument with this method.

A major advantage of source-level instrumentation is that the binary creation
phase of the instrumentation is greatly simplified. Often the unmodified system
assembler and linker can be used to create the binary. Furthermore, the large
amount of information available at this stage permits types of instrumentation
to be done which are not feasible at later times. For instance, most source-level
tools take advantage of compiler control-flow knowledge to reduce the amount
of instrumentation code. This reduces both the execution time and resulting
trace size.

AE (Abstract Execution) is a tracing system developed by Larus and Ball which
is incorporated as part of the Gnu C compiler [3]. Its goal is to generate very
small traces which can be saved and then reused for multiple simulation runs.
The modified compiler actually produces two executable programs. The first is
the modified application. In addition to normal compilation, the compiler uses
the notion of abstract execution to insert tracing code in the application code.
Abstract execution is based upon control-flow tracing to reduce the amount
of trace code necessary. The resulting trace produced by the modified appli-
cation is only a tiny part of the full trace. This allows traces representing
long execution runs to be saved on disk. The compiler also produces an ap-
plication specific trace regeneration program. The regeneration program is a
post-processing tool which accepts the compacted trace and outputs the full
execution trace. The tracing overhead, including the cost of saving the com-

pacted trace to disk, is 1-12 times the unmodified program’s execution time
[17].

Instrumentation Tools 55

MPtrace is a source-level instrumentation tool developed by Eggers et al. to
generate shared-memory multiprocessor traces [8]. Their goals were to develop
a tool which was highly portable, caused minimal trace dilation, and generated
accurate traces, i.e., complete traces which closely resemble those gathered us-
ing non-intrusive techniques. Dilation describes the increases in execution time
that result from code expansion due to instrumentation. Minimizing program
dilation is critical in multiprocessor tracing since a change in execution time
effects the coordination of multiple processes and thus the overall execution be-
havior of the program. Source-level instrumentation allows MPtrace to achieve
those goals. MPtrace is more closely tied to a parallel C compiler than to
an architecture. Thus, its portability depends upon the compiler’s portability.
MPtrace was initially created for Sequent ix86-based shared-memory systems
and only twenty five percent of the tracing system was machine dependent,
most of that being a description of the instruction set.

MPtrace attempts to limit execution time dilation by employing compiler flow
analysis techniques to reduce the amount of added instrumentation code. It
instruments the code by adding assembly instructions to the assembly-level
output of the compiler which will produce a skeletal trace. At the same time,
program details are encoded in a roadmap file used for later trace expansion.
The modified assembly-level sources are assembled and linked using the respec-
tive unmodified system tools. A compacted trace is produced upon the execu-
tion of the instrumented application. Using a post-processing program and the
roadmap file, the full multiprocessor trace can later be generated. MPtrace can
achieve a time dilation of less than a factor of 3 but the usual execution time
increase is around a factor of 10 [8]. Library module code is not traced.

In summary, there are three times at which code instrumentation can take
place. Late code modification does not require source files, library code is
automatically instrumented, and the binary creation details are hidden from
the user. However, due to the lack of information available in the binary file,
late code modification tools are the most complex and the resulting binaries
can suffer performance and reliability problems. Link-time modification takes
advantage of some code information to simplify binary creation. It retains use
of the system linker, can instrument module code, but the application source is
likely to be required. Finally, source-level instrumentation utilizes substantial
code information to simplify the code instrumentation process and to produce
complex traces. It requires application sources and usually more information
from the user. Library module code is not easily instrumented. The remainder
of the chapter will focus on late code modification tools.

56 CHAPTER 3

3 HOW LATE CODE MODIFICATION
TOOLS ARE BUILT

An instrumentation tool must insert tracing instructions into the executable
without altering the logical behavior of the program. At no point can the
added instructions change the program state. For trace generation, the events
which need to be recorded are the execution of basic blocks and all data mem-
ory references. With this information, an execution profile, memory reference,
or full execution trace can efficiently be produced. The usual way these events
are recorded is by adding code segments prior to each event. The code stores
the information in a trace buffer which is periodically checked during program
execution and flushed to backing store when full. The four tasks of the instru-
mentation tool are to:

1. Find the section(s) of the executable file which contain code and disassem-
ble them to obtain program structure information,

2. Insert instructions to record events thereby expanding the original code
section,

3. Translate all addresses which were changed because of the code expansion,

4. Put parts back together to make a new executable.

The next four subsections describe the problems faced and the specific actions
required of the tool during each of the above stages. The final subsection
discusses some architectural properties which facilitate or frustrate late code
instrumentation. To assist in describing problems and the methods used to
overcome them, we use several existing instrumentation tools as examples: ID-
trace for the Intel architecture, pixie for the MIPS architecture, and QPT for
both MIPS and SPARC architectures. These tools will be discussed in detail
in Section 4. IDtrace is used most often as an example due to the authors’
familiarity with the tool. However, it should be noted that all late code in-
strumentation tools encounter similar instrumentation problems and rely on
similar solutions.

3.1 Code extraction and disassembly

The first steps of the instrumentation tool are to locate and then disassemble
the code sections of the executable. Unix executables come in a variety of

Instrumentation Tools 57

flavors: ELF, COFF, ECOFF and the BSD a.out format [10][14], but
their structure is basically the same. They all begin with tables containing
information such as the number, type and location of sections in the file, if and
where the sections are to be loaded into memory, and where to begin program
execution. Most executables contain one text section, one data section, and
one BSS section. The text section contains code. The BSS section allocates
space for uninitiated data and is actually empty in the file. Once the text
section is located, it must be disassembled. During disassembly the code is split
into basic blocks and a relocation table is created which stores the locations
of these blocks. This table will be needed later to instrument the code and
update the target addresses of control instructions. Since instructions will be
inserted into the code, almost all instructions will have their location shifted in
memory and so the branch and jump instruction targets must be translated to
reflect this. For most instructions this is straightforward since the targets are
known at instrumentation time. For data objects, however, address translation
is difficult, and without the symbol table, impossible. It is important that
all data locations remain unchanged during instrumentation. Therefore, data
sections are not modified and are loaded into memory in their original positions.

In some cases, data can be found within the code segment, and this can present
several problems for disassembly. There are two reasons a compiler might put
non-instruction bytes in the text section. One is to insure constant data can-
not be written and to allow the data to be shared by multiple processes. The
other source of non-instruction bytes are in-lined indirect jump tables which
are created by the compiler for switch or case statements. The obvious problem
associated with data in the text section is that, without additional information,
the disassembler treats the data words as instructions and tries to disassem-
ble them. These “non-instructions” could mistakenly define basic blocks, be
instrumented, or even be modified. Even if the data were not mistakenly mod-
ified by instrumentation, earlier code expansion would cause it to be moved
within the section. As stated before, data addresses cannot be relocated so
this cannot be allowed to happen. The solution is to create a new text section
which contains the instrumented code and to treat the complete original text
section as a data section. It might be thought that modifying or adding er-
roneous instructions would lead to incorrect execution. This will not happen
because these “bogus” instructions will never be executed. Since control was
never passed to data in the text section in the original program, control will
not pass to the instrumented data in the new program.

Another, more subtle, problem is more serious and affects ISAs with variable-
length instruction. It is highly likely that after a disassembler blindly disas-
sembles through non-instruction bytes, it will be out of alignment with the

58 , CHAPTER 3

following real instruction bytes. For instance, suppose a disassembler creates
meaningless instructions from a block of constant data and it needs one byte
past the end of the data block to complete the last instruction. Again, these
bogus instructions are of no concern because they will never get executed. How-
ever, because of the one byte used earlier, disassembly will be out of alignment
with the beginning of the true instruction bytes after the constant data and
will continue to generate meaningless instructions. To combat this problem, the
disassembler must know where non-instruction bytes are located in the text sec-
tion and skip over them. Constant data locations can be found in the symbol
table but locations and sizes of jump tables can only be deduced by knowing
compiler code generation behavior. Thus, instrumentation tools like IDtrace
which run on ISAs with variable-length instruction must be compiler depen-
dent and could require the executable to contain the symbol table to assist in
disassembly. Fortunately for IDtrace, most compilers for the Intel architecture
put constant data in the data section and the symbol table is not necessary.
However, IDtrace’s disassembler is compiler dependent and will not properly
instrument programs with unrecognizable jump table code.

3.2 Code insertion

Once the code is disassembled, the instrumentation code is added in binary form
since there is no later assembly phase. Actual code insertion is not difficult.
The only requirement is that the added code cannot alter the functionality of
the program. Most instrumentation tools add short code sequences at the be-
ginning of each basic block. If a memory reference trace is required, instruction
sequences are also added prior to each memory referencing instruction.

For instance, during profile instrumentation, IDtrace labels each basic block
with a unique number. Instrumentation produces two new files: the new exe-
cutable and a .blk file. The latter holds information about each block such as
its size, beginning address, and label number. During runtime, an array exists
in memory which holds the execution count of each block. A code sequence is
inserted before each basic block which will increment the proper array position
for that block. When the program exits, this array is dumped to the .cnt file.
Figure 1 is an example of IDtrace basic block instrumentation code. The block
count array variable that is incremented is checked for overflow, and the trace
buffer is checked and emptied if close to full. Even though each count array en-
try is a 32-bit unsigned integer value, it could still overflow if the program were
sufficiently long. Using a command line option, IDtrace adds code to check for

Instrumentation Tools

END:

push status_flag_reg
push temp_reg
temp_reg <- block_number
MIctab+(4*temp_reg)]
<- M{ctab+(4*temp_reg)] + 1
temp_reg <- tbuf_ptr
(temp_reg > tbuf_near_full)
if not goto END
call flush_buffer

pop temp_reg
pop status_flag_reg

59

; save status flag register

; save temp register

; put block label in register
; update basic block execution

count table

; check if trace buffer is

nearly full

; if full, flush trace buffer

; restore temp register
; restore status flag register

Figure 1 Instrumentation code inserted before each basic block by IDtrace

in profile mode.

overflow and do sequential saves to the .cnt file. This adds extra instructions
to each basic block sequence and will slow execution.

Original Instruction

regl <- regl + M{reg2+100]

Instrumented Instruction

push status_flag_reg

push temp_regl

push temp_reg?2

temp_regl <- reg2+100
temp_reg2 <- trc_buf_ptr
M[temp_reg2] <- load_tag
M{temp_reg2+1] <- temp_regl
trc_buf_ptr <- trc_buf_ptr + 5
pop temp_reg?2

pop temp_regl

pop status_flag_reg

regl <- regl + M[reg2+100]

; save status flag register
; save temp registers

; compute effective address
; load trace buffer pointer
; record reference type tag
; record reference address
; step trace buffer pointer
; restore registers

; restore status flag register
; original instruction

Figure 2 Instrumentation code inserted before a data reference instruction

by IDtrace in memory reference mode.

60 CHAPTER 3

Memory reference code is similar. It calculates the effective address of the data
reference and sends it to a trace buffer. Figure 2 shows the code added by
IDtrace to record a data reference.

3.3 Address translation

As the new code is added to the instrumented text section, the control in-
struction targets must be translated. This is easy for conditional branches
and most jump and call instructions because they contain either the absolute
target address or its relative offset. Most tools create a relocation table to per-
form address translations during instrumentation. The table holds the original
and corresponding new addresses of all control instructions and their targets.
IDtrace accomplishes address translation using two code passes. During the
first pass through the code, the original locations of all control instructions
and their targets are entered into the table. During the second pass, instru-
mentation instructions are inserted in the code and the new addresses of the
targets are added in the table. When a control instruction is encountered and
the new location of target is already in the table (this would occur for a back-
ward branch), the new relative distance can be calculated and entered in the
instrumented code immediately. When a forward branch is encountered the
new location of the target will not be in the table and the new location of
the branch must be noted in the table. Later, when the target instruction is
instrumented and its new location is known, the relative offset in the earlier
branch instruction is adjusted.

Unfortunately, there are some control instructions for which the target cannot
be calculated at instrumentation time. The most difficult ones to handle are
indirect call instructions where the target address is found in a register or
memory location. Since the data values are unknown during instrumentation,
the target cannot be calculated. Furthermore, instrumentation does not affect
data values, so execution of the unaltered instruction will produce the original
target address rather than the new address. To maintain correct program
behavior the address translation must be performed at runtime. As the code is
being instrumented, a translation table is created which is a list of original and
new address pairs corresponding to the beginning of each procedure. This table
is included in the instrumented file and is loaded into memory at runtime. Each
indirect call instruction is replaced by a group of instructions that computes
the original target address and then passes this address to a call-handling
routine. This routine performs a translation table lookup using the original
target address to find the associated new address. If a target translation is

Instrumentation Tools 61

found, control is passed to the translated address and the indirect call works
as intended. If, however, the target is not found, an error message is reported
and execution halts.

Without the use of the symbol table, some heuristic is necessary to detect
procedure beginnings. For example, IDtrace marks all instructions following a
return or nop instruction as potential procedure beginnings. If the code con-
tains procedures with other instructions endings or if the target of an indirect
call is the middle of a procedure, the table lookup scheme will fail. Even if ex-
ecution progresses correctly, this method incurs substantial runtime overhead
for each indirect call executed and significant memory space is required to hold
the table.

Indirect jump instructions also pose a translation problem but can be handled
in a similar manner to indirect calls. The jump instruction is replaced by
code which computes the original target address and passes the address to
the runtime lookup routine. This scheme has two drawbacks however. One
disadvantage is the increase in overhead due to more runtime translations. The
other is that the translation table requires more entries. Not only procedure
beginning addresses but all basic block beginning addresses must be included in
the table. This increased table size requires more space and increases address
lookup time.

If instrumentation can be based upon compiler code generation knowledge, in-
direct jumps can be handled in a more efficient manner. In compiled code,
indirect jumps are used in two situations. One is in conjunction with a jump
table produced for switch or case statements. A jump table is a list of absolute
addresses and the target of the indirect jump is found by using a register value
as an index into the table. If the jump table can be identified, the absolute
addresses can be translated at instrumentation time and the unaltered indirect
jump instruction will work correctly at runtime. IDtrace translates the jump
table addresses during instrumentation since it can find the location and size
of the jump tables during disassembly. The other use of indirect jumps is for
procedure returns in many RISC processors, such as the MIPS and ALPHA
architectures. These too can be translated during instrumentation if assump-
tions about the compiler are utilized. The discussion of nixie in Section 4.2
describes how this can be done.

QPT cleverly stores the translation table in the location of the original text
section [18]. Instead of being an opcode, the word at the original instruc-
tion address is the translated address. This allows QPT to load a complete
translation table, one which holds the translation for every original instruction

62 CHAPTER 3

address, without using any additional memory or file space. This succeeds only
because 1) there is not constant data in the text section, and 2) instructions
are a fixed 4-byte length.

A final issue in branch translation is branch target distances. Some ISAs such
as the Intel architecture, include both short and long target length branch
instructions. Usually, code expansion moves the targets out of range of the
original short branch instructions. The simplest solution is to convert all short
branches to long branches. In MIPS code, all branches targets are 24 bit long
but it is still possible for code expansion to push target distances beyond this
distance. Pixie can adjust for this if ~branchcounts is given as a command-
line option.

3.4 Rebuilding the executable

After the code has been instrumented and target translation is completed, the
file sections must be combined to make a new executable. There are now the
original text, data, and BSS sections, a new text section, and some tables
and buffer space. The original sections must be loaded into memory in their
original locations since they contain data. The optimal solution would be to
either extend the text section to include the new text and translation table
or to create a new text section. Space would be added to the BSS section to
include the trace and block count buffers. The executable file format tables
would be updated to reflect these changes and to point to the new text section
as the location to begin execution. For various reasons, the optimal solution is
not possible on many platforms.

The main problem encountered is that many OS loaders do not make full use
of the information found in the load format tables. Most formats allow the
user to specify the number of text and data sections, the location of where
they are to be loaded into memory, and at what address execution is to begin.
Unfortunately, to facilitate faster loading, most OS loaders load an application’s
sections into memory in the same positions in which they reside in the file,
ignoring the position information in the format tables. Furthermore, Unix
System V loaders only accept one file structure. It must contain one text
section, one data section, and one BSS section, in that order. Execution must
begin at a fixed address in the text section. The data section must immediately
follow the text section. Obviously, special tricks are required to create the new,
instrumented binary.

Instrumentation Tools 63

Original memory configuration

New memory configuration

m:[m Original Text |:’ Original Data ﬁ Original BSS
% New Text H New Data

Figure 3 Original and new binary file configuration.

New BSS

The solution used by IDtrace is illustrated in Figure 3. It combines the original
data and the zero-filled BSS sections along with the new text section, trace
buffer, and other tables into one big data section. Execution must begin in the
original text section so the first few instructions there are modified to transfer
control to the beginning of the new code found in the middle of the expanded
data section. Another dummy BSS section is added to the end to satisfy the
loader’s requirement of one BSS section. Note that if the first instructions of
the text section were not changed the program would run exactly as before
since the original text and data sections are unmodified.

QPT has similar problems on SPARC processors because the text and data
sections abut one another leaving no room to expand the text section. In this
case, the QPT designers had two choices: add a new text section after the BSS
section, which would require explicitly represent zero-filled data in the binary
file; or, add a new text section between the data and BSS sections, which
would create relocation problems with BSS data since the addresses of BSS
data would then point to new text code. They compromised. The new text
section is added between the data and BSS sections. Then, immediately upon
execution, the new text copies itself to a location above the BSS data and zero
fills the uninitialized memory space.

64 CHAPTER 3

Rebuilding methods which expand the data space must allow for correct dy-
namic memory allocation (i.e., malloc). For example, on Intel platforms, the
last address of the data space is stored in the _curbrk variable found in the
application program. It is accessed by sbrk, a routine called by C’s malloc
function to position dynamically allocated memory. The _curbrk value must
be updated with the last address of the expanded data space so that memory
will not be allocated over top of the new code. IDtrace must know the loca-
tion of _curbrk to make this change. Since IDtrace does not depend upon
the symbol table, it finds the location of _curbrk by pattern matching disas-
sembled instructions with the known sbrk instruction sequence. From those
instructions, it extracts the location and updates _curbrk to reflect the data
section’s expanded size. If IDtrace cannot find _curbrk a warning message is
produced. This is not always an error, however, since _curbrk is not included
in all programs.

There are several other small issues which must be handled before the new
binary will run correctly. First, the exit call must be modified so that the
trace and basic block count buffers can be dumped to a file before control is
returned to the OS. Most instrumentation tools modify the exit routine to
call a new routine which performs these cleanup functions and then exits. The
address of the exit procedure can be found in several ways:

O Lookup up the address in the symbol table. This method, of course, re-
quires the binary to contain the symbol table.

O Pattern matching the disassembled code for the known sequence of exit
procedure instructions. This method relies upon code knowledge.

O Knowing the location of a call to the exit procedure in the program and
extracting the address from the instruction bytes. This is not too difficult
because the initialization library code, crt0.o, contains an exit call and
this code is always positioned at the beginning of the text section. This
method also relies upon code knowledge.

The start code must also be modified to initialize instrumentation buffers and
perhaps open trace files. If the OS loader cannot be told to begin execution at
a non-default location, the original start code must also jump to the beginning
of the new code section.

As the above sections have described, many problems are encountered when
trying to modify an application at the executable stage. Actually inserting the

Instrumentation Tools 65

trace code is not nearly as difficult as translating control instruction targets
and rebuilding the binary. Some tools rely on compiler-based assumptions to
overcome these problems. Others require significant information in the symbol
table. Still other tools, such as pixie, sacrifice execution efficiency in order to
be almost compiler independent.

3.5 ISA properties

Some inherent architectural features simplify instrumentation. Others pose
difficulties or add complexity to the resulting code. Some of these properties are
discussed below. In general, RISC processor code is more easily instrumented
and the resulting code is shorter and faster. However, some instrumentation
problems are unique to RISC code.

Load-store vs. Memory-to-memory architectures

The major factor in the size and consequently the execution time of a program
instrumented to trace memory references is the number of instructions requir-
ing tracing code. Thus an instruction set that includes memory-to-memory
operations such as the Intel architecture will have many more instructions to
instrument than does a load-store architecture which usually retrieves operands
from the register file. Memory-to-memory architectures often have a smaller
register set which forces local variables to be stored in memory locations. Fur-
thermore, memory operands can often be used as a source and destination in
the same instruction thereby generating two trace entries from one instruction.
All of these properties of memory-to-memory architectures contribute to the
large size and runtime dilation of instrumented code. The 1486 has approxi-
mately 180 instructions which can address memory. In addition, many of these
instructions can perform both a load and a store and some non-string instruc-
tions reference two different addresses [13]. In contrast, the MIPS R3000 has
only 14 instructions which can reference memory. Each can only perform a sin-
gle read or write and no instruction can access more than one memory address

[15].

Multi-reference instructions

Some processor instruction sets such as the 1486 and the RS/6000 include string
operations which can perform an indeterminate number of references per in-
struction. One example in the 1486 ISA is the rep instruction prefix which can

66 CHAPTER 3

cause one string instruction to repeatedly access sequential memory addresses
until a condition is satisfied. It is impossible to ascertain the number of it-
erations at instrumentation time. To record an accurate reference trace, the
single instruction must be replaced by a sequence of instructions which out-
put the reference, perform the string operation, check the condition, and loop
back if the condition is not satisfied. This emulation code adds to the size and
execution time of the instrumented binary.

Register allocation

As seen in the sample code in Figure 1 and Figure 2, registers used in the trace
code segments must be first saved and then restored so that the inserted trace
code will not alter the current state of the application. If the processor has a
large register set, tricks can be performed to eliminate these time consuming
operations. For instance, pixie scans the original code prior to instrumentation
and utilizes the three least referenced registers as dedicated instrumentation
registers. The original code instructions which referenced these registers are
replaced with memory referencing instructions. Pixie then uses the registers
exclusively as instrumentation registers holding buffer pointers and effective ad-
dress calculations. They are used in instrumentation segments throughout the
program without having to continually save and restore their values [29]. QPT
relies on the caller-save procedure register convention to scavenge instrumenta-
tion registers. QPT finds registers which were saved by the calling procedure
but unused in the current procedure. This assumes that the program obeys
the calling convention, and QPT tries to use symbol table information and
optional command-line arguments to verify this. If it cannot be assured, the
register values are saved and restored as described earlier. Because their target
processors have 32 registers, pixie and QPT are able to contain code expansion.

Condition codes

Condition code values are part of the state of the computer and so should not
be altered by actions in the tracing code. The Intel architecture has special
instructions which push and pop the status flag register and these instructions
are used by IDtrace to hide any effect the tracing code might have on the flags.
The SPARC processor has four condition code registers. While the processor
does not have user mode instructions which save and restore the registers, two
types of arithmetic instructions are implemented: one which affects condition
codes and one which does not. QPT’s tracing code uses the non-affecting
arithmetic instructions in all places except for the trace buffer overflow check.

Instrumentation Tools 67

In this case, it either inserts the check instructions where the condition codes
are not live or performs the check with a more expensive code sequence which
does not affect the codes.

Variable instruction lengths

Variable length instructions in combination with data located within the text
section can wreak havoc with code disassembly. The disassembler must use
information in the symbol table to skip constant data and use compiler specific
knowledge to recognize and pass over jump tables. This was an unexpected
and serious problem with IDtrace. Instruction length also affects the length of
the output trace. When instructions are of uniform length, the trace need not
contain the address of each instruction in order to quickly derive an execution
trace. It is sufficient only to output each executed basic block beginning and
data reference addresses. The position of data references relative to instruction
references can be denoted using only a small integer offset. The offset represents
the number of instructions executed since the last basic block beginning or data
reference.

Delayed branches

Delayed branches in some RISC processors necessitate careful instrumentation.
An instruction in a delayed branch slot succeeds a branch instruction in assem-
bly code order but will get executed regardless of the branch direction. It is
important that no instrumentation code get inserted between the branch and
the delay slot instruction. The easiest way to handle this situation is to move
any delay slot instruction which requires instrumentation to a location prior to
the branch. It must be verified that this movement does not affect the outcome
of the branch.

Indirect addressing

Finally, ISAs with heavy dependence upon indirect addressing will suffer from
the overhead caused by the runtime address translation. In the MIPS architec-
ture for instance, procedure returns are done with the jump register instruction
(jr). The call instruction stores the return address in a general purpose register
(usually r31) and jr indirectly finds the return address in that register. Thus,
every return causes an address table lookup thereby adding to the execution
time of the instrumented program. A method to avoid this overhead which is
based upon compiler knowledge is described in Section 4.2.

68 CHAPTER 3

4 CURRENT INSTRUMENTATION
TOOLS

Late code instrumentation tools can be found for most of the popular current
microprocessor. The following is a description of a selection of tools for use on
various platforms.

4.1 IDtrace

IDtrace is an instrumentation tool for Intel architecture Unix platforms [22]. It
instruments SysV R4 ELF binaries compiled using Intel/AT&T C, USL CCS
C, and gcc compilers. Currently, it cannot automatically process code compiled
by Intel’s Proton compiler developed for the Pentium. IDtrace can produce a
variety of trace types including profile, memory reference, and full execution
traces. Primitive post-processing tools which read output files, view traces, and
compute basic profile data are included in the IDtrace package. IDtrace can
instrument stripped binaries, i.e., the symbol table is not needed. However, the
executable must be statically linked and kernel code references are not included
in the trace. Using full execution trace instrumentation, IDtrace will produce
a executable which is about 5 times larger and runs 10-12 times slower than
the original.

Primarily due to the need to recognize jump table code for disassembly pur-
poses, IDtrace is compiler-dependent. To help alleviate problems due to non-
compiler generated code, IDtrace can accept hints from the user on how to
instrument a binary. The location or size of a jump table or the location of the
beginning of a procedure are examples of such hints. IDtrace reads the hint
information from an input file and uses it to assist in disassembling the code
and translating addresses. As an example, execution of an instrumented pro-
gram might abort with a message stating that a particular indirect call target
address could not be translated at runtime. This could occur if IDtrace did
not recognize the address as a procedure beginning and add it to the runtime
transition table. The user could add this address to the hint file and reinstru-
ment the program. IDtrace will then include the address and its translation
in the translation table so that runtime lookup can occur during re-execution.
While this process is tedious, it does allow the execution of handwritten or
other non-compiled assembly code.

Instrumentation Tools 69

4.2 pixie and nixie

Pixie was the first binary instrumentation tool which received widespread use.
Pixie is a full execution trace generation tool which runs on MIPS R2000,
R3000 and R4000 based systems [23]. The tool is included in the perfor-
mance/debugging software package of most systems based upon the MIPS ar-
chitecture. Versions are available which instrument ECOFF and ELF file for-
mats. With newer versions of pixie, if pixified dynamic libraries exist, they can
be linked into the instrumented application to generate traces of dynamically-
linked as well as statically linked code. Pixie does not, however, record kernel
activity.

The default instrumentation option is to record only basic block execution
counts. An informative post-processing tool, pixstats, can interpret the output
to present a wide-array of runtime statistics. Using command line arguments,
pixie will also instrument the application to produce an instruction and/or data
trace. The reference trace output is written to a file descriptor. Using another
tool called makepipe, the trace can be piped directory to a trace consumer
program such as a memory simulator. Program expansion and time dilation
depend upon the type of instrumentation used. When tracing both instruction
and data references, the new executable is roughly 3 times larger and 4 to 5
times slower. The time dilation does not count the time required to save or
pipe the trace.

Pixie is virtually compiler-independent. Constant data in the text section does
not cause disassembly problems because the MIPS architecture has fixed-length
instructions. It avoids having to recognize and decipher jump tables by perform-
ing all indirect jump address translations at runtime. Thus, switch generated
indirect jumps, procedure returns effected by jump-to-register-value instruc-
tions, and indirect calls, all incur the overhead of a runtime table lookup to
perform the target address translation. While pixie is not as restrictive as ID-
trace, it does have some limitations. Like, IDtrace, it must use some heuristic
to decide upon basic block separation. These heuristics are based upon MIPS
compiler generated code. Hand assembled code could cause errors in separation
and lead to inaccurate results. In addition, pixie cannot trace past fork calls
and will fail on some special library routines.

In an attempt to lower the runtime overhead of pixie, another tool called nixie
was created [29]. At the cost of becoming compiler-dependent and operating
on a smaller set of application binaries, it makes assumptions about the bi-
nary code structure in order reduce runtime address translations. One of the

70 CHAPTER 3

main sources of these translations is the use of indirect jump instruction, jr,
to perform procedure returns in MIPS code. The compiler convention for a
procedure call is to use jal or jalr and put the return address in r31. The
return code convention is to use jr r31. Nixie avoids the runtime translation
for the return by translating during instrumentation the return address found
in the jal instruction. Then, nixie assumes that jr via r31 is a return and the
value in r31 has already been translated. The jalr instructions are treated
as indirect calls and are translated using the runtime lookup table as before.
When the new address is found, the new return address is put in r31. The
remaining jr instructions (the ones not using r31) are assumed to be indi-
rect jumps produced by case or switch statements. Nixie recognizes the code
patterns the compiler uses to begin a jump table and deciphers the size and
memory location of the jump table. The entries in the table are translated at
instrumentation time so they do not require runtime translation. The devel-
opers found about two dozen places in standard library code where the above
assumptions were incorrect. Fixes for these exceptions were built into nixie so
that most code can be instrumented without error.

Because nixie makes compiler-based assumptions about code structure, it can
only instrument a subset of the pixie instrumentable applications. However,
results from benchmark tests showed that the runtime of nixie instrumented
binaries were up to 30% faster than pixie-instrumented ones [29].

4.3 Goblin

Goblin is a trace generation tool which instruments IBM RS/6000 applications
[26]. It annotates code on the basic block level, i.e., code is added prior to each
basic block to report block execution. Goblin has characteristics of both a late
code and link-time modification tool. It accepts as input an executable with a
detailed symbol table yet performs instrumentation separately on each object.
The instrumented objects are reassembled and linked into a new executable
by the system’s assembler and linker programs. Goblin’s first step is to use
the descriptive symbol table to separate and disassemble the executable into
assembly code objects. It then annotates the assembly code, records static data
about the blocks in the objects, and updates the symbol table to reflect the in-
strumentation changes in each object. The regular system assembler and linker
are then used to create an instrumented executable from the instrumented ob-
Jjects. The profile routines are introduced at the link stage as a profile library
to be included in the image. The user can select different kinds output traces
by linking in different trace libraries. Several libraries exist. One generates a

Instrumentation Tools 71

complete basic block trace. Another allows the generation of a full memory
reference trace. Finally, since storage of large traces is difficult, there is library
which performs on-the-fly basic block statistic calculations so that the whole
trace need not be saved.

4.4 SpixTools

SpixTools comprises several programs that implement late-code modification of
SPARC application binaries to produce instruction-level statistics [6]. The two
main tools in the SpixTools distribution are spix and spixstats. Spix accepts
an executable program and generates an instrumented executable. When run,
this instrumented executable produces, in addition to its normal output, in-
formation indicating the number of times that each basic block in the original
program was executed. By default, this information is directed to file descrip-
tor 3, but the user can change this default through the use of the ~fd option
in spix. Unlike pixie, spix does not generate instruction or data traces; it only
generates basic block counts!

Spixstats uses the basic block counts to summarize the behavior of the in-
strumented program. This tool creates tables of (static and dynamic) opcode
usage, branch and delay slot statistics, register and addressing mode usage,
distribution of constants in immediate and displacement fields, and gprof-like
per-function information. The ranking of functions is based on the total num-
ber of instructions executed in that function and not on the total number of
cycles spent in that function. Exact cycle counts would require specific pipeline
and memory system information which is not available to spixstats.

Spix handles the problems with executable instrumentation in similar fash-
ion to the tools already discussed. For instance, when spix cannot correctly
identify the targets of a register-indirect jump instruction, it simply has the in-
strumented executable print a diagnostic message indicating the address of the
undiscovered target instruction and then terminate abnormally. Through the
use of the -jaddr option in spix, the user then re-instruments the executable
with this extra piece of information. This method is not unlike the hint in-
formation in the IDtrace approach. Furthermore, like the previous tools, spix
works only with static code (no support for self-modifying code or dynamic
libraries), and it is not capable of instrumenting the kernel.

1Older versions of spix were capable of generating instruction and data traces. These
capabilities have been removed since other SPARC tools (such as Shade) replaced them.

72 CHAPTER 3

For the SPEC89 benchmarks, spix roughly quadruples the size of the executa-
bles. For the integer benchmarks where the average basic block size is small,
the spix-instrumented executables run approximately 2.5-times slower. On the
floating-point intensive benchmarks where instrumentation code execution can
be overlapped with long latency floating-point operations and the basic block
size is larger, the spix-instrumented executables run anywhere from 5% to 50%
slower [6].

4.5 QPT

Like its predecessor AE [16], the design goal of QPT is to produce compact
traces which can be stored for later simulations [18]. The difference between
the two tools is that QPT instruments the executable while AE is part of a C
compiler. This allows QPT to be applicable to many applications created by
various compilers. As noted in the last section, QPT must overcome the dis-
assembly and relocation obstacles common to all late code modification tools.
In addition, QPT performs control flow analysis to reduce the amount of in-
serted tracing code. Therefore, it must rely heavily on symbol table information
and code structure knowledge in order to reconstruct the exact code structure.
QPT processes the code on a procedure basis. The address of each procedure
is found in the symbol table and a control flow graph (CFG) is constructed
with a basic block at each node. Using heuristics to decide the likeliest execu-
tion path, optimal code insertion points are located on CFG edges rather than
nodes (blocks) and trace instructions are added to the original code.

The trace regeneration process is another unique feature of QPT. The trace
output by the instrumented program is a compact trace which needs expansion
before it can be used by a trace consumer program. Most tools supply stati-
cally created information files which can be read by a post-processor program
to expand the trace. The AE system creates an application-dependent trace
regeneration tool for each instrumented application. In both these cases the
expanded trace would then be piped to the consumer program. QPT instead
creates a regeneration program object file which can be linked into the com-
piled consumer program. Thus, the consumer program can read the compacted
trace directly from disk [17].

The performance of the abstract execution instrumentation depends upon the
regularity of the program’s control flow and memory reference patterns. Nu-
meric programs with sequential access patterns and few conditional branches
require less instrumentation and therefore produce a more compact trace than

Instrumentation Tools 73

do non-numeric programs with more irregular behavior. Statistics reported by
Larus in [17] show that the runtime of traced programs ranges from 1.4 to 12.3
times that of the non-traced program. These numbers include the time to store
the trace to disk. The compact traces are between 13 and 250 times smaller
than the expanded full execution trace. Larus states that regeneration costs
are insignificant since the regeneration routine can produce the full trace at a
rate of 200,000 to 500,000 addresses per second while most memory simulators
consume addresses at the rate of tens of thousands per second. QPT does not
currently instrument dynamically-linked shared libraries but could be modified
to do so.

4.6 ATOM

ATOM [24] is a tool that allows the user to build his/her own customized in-
strumentation and analysis tools. For example, using ATOM, a few small C
routines can be written to emulate the functionality of pixie and pixstats on
a DEC ALPHA machine. On the other hand, if the trace information gener-
ated by pixie is not adequate, ATOM can be directed to gather and analyze a
customized set of trace information.

Within ATOM, the authors have defined a set of instrumentation primitives
common to all instrumentation programs. These primitives separate the tool-
specific part of an instrumentation program from the common infrastructure
required by all instrumentation tools. As a user, you write C routines using
ATOM’s instrumentation library which indicate the parts of the application
program that interest you. For instance, ATOM provides library routines that
allow you to have access to each procedure in an application, each basic block
in that procedure, and each instruction in that basic block. By appropriately
indicating where instrumentation code should go (e.g., before or after a partic-
ular set of program structures) and by indicating the particular information to
be gathered at this instrumentation point, you can use ATOM to access all of
the dynamic information in an application.

In addition to instrumentation routines, an ATOM user can also write analy-
sis routines (e.g., cache simulation routines that use the instrumentation data)
that become part of instrumented program. In this way, both the instrumented
code and the analysis code run in the same address space and thus experience
lower communication overhead of a simple procedure call rather necessitating
context switching, file piping, or inter-process communication. The ATOM
system guarantees correct operation by ensuring that the instrumented rou-

74 CHAPTER 3

tines and the analysis routines do not share library procedures or data. Still,
incorporation of the analysis routines into a single executable with the instru-
mented application program can perturb the output trace. For instance, if an
analysis routine dynamically allocates memory, the trace of the heap addresses
in an instrumented application will be different from the addresses used in the
uninstrumented version of that application. ATOM employs several techniques
and urges the user to avoid certain programming constructs to make certain
that the behavior of the application is unchanged by the instrumentation and
analysis routines.

ATOM is implemented on top of a link-time modification system called OM [25].
ATOM works by translating an ALPHA executable into OM’s RISC-like sym-
bolic intermediate representation. Through some extensions to OM, ATOM
inserts instrumentation procedure calls at the appropriate points in the applica-
tion code, optimizes the instrumentation interface, and translates the symbolic
intermediate representation back into an ALPHA executable.

Since ATOM starts with an executable file, it can be considered a late-code
modification tool. It, however, is not as robust an approach as a tool such
as pixie, since ATOM requires relocation information in the executable image
in order to work. This relocation information simplifies the work required to
adjust branch targets due to the insertion of instrumentation code.

Another advantage of the ATOM approach is that the underlying OM system
can efficiently support an approach that does not steal registers from the ap-
plication program. ATOM (like QPT and unlike pixie) uses the typical register
save and restore mechanisms of a procedure call at each instrumentation site.
This approach is desirable because it means that ATOM works on programs
that use signals and setjmp-program features which are difficult to correctly
handle under an approach that steals registers. The downside of a procedure
call approach is that it incurs a greater overhead for each instrumentation ac-
tion, especially if one does not have exact information on the register require-
ments of the instrumentation routines. Since the instrumentation routines can
be quite complex in the ATOM system (remember that ATOM allows the user
to use the instrumentation information immediately in an analysis routine),
ATOM relies on sophisticated heuristics and techniques to reduce the proce-
dure call overhead.

The performance of ATOM is related to the granularity of instrumentation
and the complexity of the analysis routines. Srivastava and Eustace [24] report
performance numbers for several different analysis tools built with ATOM. To
summarize, for an analysis tool that instruments each memory reference and

Instrumentation Tools 75

simulates a direct-mapped 8 kilobyte cache, Srivastava and Eustace found that
it took an average of approximately 120 seconds to instrument each program
in the SPEC92 benchmark suite and that each instrumented program ran an
average of nearly 12-times slower than the uninstrumented version. On the
other hand, for an analysis tool that simply instrumented each system call
site and summarized this information, they found that it still took only 120
seconds on average to instrument the SPEC92 suite but each instrumented
program now ran only 1.01-times slower. Overall, ATOM is a powerful tool for
building customized analysis programs.

4.7 Spike

Spike is an instrumentation tool which, like AE, was built into a compiler (GNU
CC) [11]. Unlike AE, it is optimized for on-the-fly trace consumption rather
than trace storage. This is performed by linking the original program with an
instrumentation library. The library contains a procedure that is invoked for
every trace event. This procedure can implement any kind of simulator or trace
collector. In many ways, this is similar to ATOM.

Spike can trace data, instruction addresses, and an instruction behavior trace
used for processor simulation. This last kind of trace is a dynamic list of abstract
machine architecture instructions, or amai. Each ama: is described by a type
(e.g., integer add, floating-point multiply), and a list of source and destination
operands. Any memory accessing instruction includes the memory address as
well. The format and content of the amai are based on the RTL intermediate
code language of the GNU C compiler.

Spike causes execution time dilation from a factor of 3-9 times. Because Spike
operates on the compiler’s intermediate representation of a program, it is largely
machine-independent. Spike has been implemented for the Motorola 68000
family, the SPARC, and the HP PA-RISC instruction set architectures.

4.8 Multitasking and kernel tracing tools

Most code instrumentation tools simply record user-level events within a sin-
gle thread of control. Recently though, researchers have implemented tracing
systems that extend existing code instrumentation tools so that they are able
to capture multitasking traces and kernel actions. We briefly describe two such
systems that illustrate the key issues related to the gathering of an accurate

76 CHAPTER 3

interleaving of application and operating system reference traces within a mul-
titasking environment. As will be seen, one could further extend these tools so
that they could record other types of dynamic information.

The basic action of any multitasking tool is the sequenced collection of trace
data from each instrumented application into a single global trace buffer. Recall
that the act of instrumenting an individual application involves the placement
of instrumentation code around the points of interest in the program and the
inclusion of extra support routines which provide initialization, trace buffer
management, and other support functions. In general, the instrumentation of
each program in a multitasking workload is identical to the instrumentation of
a single program except that the support routines change to reflect the manage-
ment of the shared trace buffer. On the other hand, the trace of a multitasking
workload is slightly different than the trace produced by a single application
because the multitasking trace must include extra process information to distin-
guish the trace items of one process from the trace items of another process. For
efficiency and practicality reasons, the existing multitasking tracing tools add
extra support code into the operating system kernel to help gather this process
information and ensure the consistent writing of the global trace buffer.

For the most part, the operating system is just another instrumented applica-
tion. However, the portions of the operating system that are required to support
the tracing system must be runnable with tracing turned off. The dumping of
the global trace buffer to disk, for instance, is not part of the normal operation
of the system and thus should not be traced. Furthermore, several portions
of the operating system are too delicate to instrument automatically. For ex-
ample, standard basic block instrumentation techniques will fail to instrument
properly an operating system routine which flushes the CPU write buffer.

Chen [4] describes one such multitasking tracing tool based on the epoxie instru-
mentation tool [29] that modifies executables prior to linking. Chen’s modified
epoxie tool instruments code written for the MIPS instruction set architecture
and thus, like pixie [23], uses register scavenging to select registers for use by
the instrumentation code. Ideally, one would like to share the pointer into the
global trace buffer indicating where the last trace item was written among all
of the instrumented applications. Unfortunately, register scavenging precludes
the direct mapping of a single global buffer into each application, since it is
impossible to guarantee that one single register is available in all instrumented
applications at all times. As a result, Chen’s system maintains a trace buffer
for each traced process, and at every entry into the kernel, the kernel copies
the contents of the current process’s trace buffer into the global trace buffer.

Instrumentation Tools 7

The tracing of system activity is more sensitive to software trace distortion
than the user-level tracing of a single application. Chen’s tool illustrates how
one can minimize the problems of memory and time dilation. Even though
epoxie creates instrumented executables with very little code expansion due to
its link-time optimizations, these instrumented executables are approximately
2-times larger and run approximately 15-times slower than the uninstrumented
versions of the executables [4].

Compensation for memory dilation in epixie is accomplished in two ways. First,
traces are collected on a system with a large amount of physical memory so
that page misses due to limited memory capacity do not occur, and second, the
traces are used to simulate the TLB behavior of an uninstrumented system.
Time dilation is only partially compensated for; in particular, the rate of the
system clock interrupt is reduced by 1/15, and the idle activity— the time spent
in the operating system idle loop— is scaled by a factor of 15. These rough
compensations are adequate because the research focus is on memory system
behavior, and Chen claims that memory system behavior is largely unaffected
by errors in these areas. The other operating system entity affected by time
dilation is the process scheduler, and the effects of time dilation on scheduler
policy is minimized by focusing on single-process and client-server workloads
where context switches are driven by the applications and not by the scheduler
policy. Similar techniques were employed by Agarwal [2] and Mogul and Borg
[20].

Mazieres and Smith [19] describe another multitasking tracing tool based on
the QPT instrumentation tool [18] that performs late code modification. Un-
like Chen [4], their research is interested in the analysis and evaluation of
I/O-bound applications such as network applications. Therefore, they orga-
nized their multitasking tool to reduce the effects of time dilation. Essentially,
Mazieres and Smith attack the problem of time dilation in two ways. First, they
chose QPT as their base instrumentation tools since it uses abstract execution
[3] to minimize the amount of instrumentation overhead that occurs during the
execution of an instrumented application. Second, they implemented their tool
on a SPARC architecture where they could take advantage of several unused
registers that are reserved by the SPARC ABI [27]. They use one of these
reserved registers as the single, global, register-based, trace-buffer pointer that
is shared by all instrumented executables. This decision removes the need for
the copying of the per-process trace buffers into the global trace buffer as seen
in Chen’s system. They also describe a few other optimizations that have the
potential to further reduce instrumentation overhead.

78 CHAPTER 3

Overall, the systems by Chen and by Mazieres and Smith prove that it is possi-
ble to gather useful multitasking traces using code instrumentation techniques.
However, there are several problems that make the gathering of accurate mul-
titasking traces significantly more difficult that the gathering of a single appli-
cation trace.

Instrumentation Tools 79

Exercises

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Different computer architectures will schedule the same event at differ-
ing times. One goal of simulation is to determine the bottlenecks in this
schedule. Based on this observation, consider the following statement:
hardware-collected traces are more valuable than software-collected traces
for simulation. Is this correct? Why or why not?

Many architectures provide a “block move” multi-reference instruction that
copies one block of memory to another. An example would be:

copy.w R1, R2, R3 ; copy R3 words from M[R1] to M[R2]

This instruction poses a serious problem when creating a data trace (as
described in Section 3.5: Multi-reference instructions). Only the starting
addresses are found in the registers specified by the copy instruction, but
this single instruction accesses the data cache many times. This chapter
proposed changing the copy into a small loop to solve the problem.

Suggest an instrumentation method that does not require replacing the
copy instruction. Put your answer in the form of pseudo code, such as
Figures 1 and 2. (Hint: You may consider assigning some of the work to
the simulator, instead of the instrumentation tool.)

Instrumented code runs slower than non-instrumented code. The slow-
down is due to many factors. One is the execution time of the additional
instructions. Explain two other, additional reasons for slowdown.

There are many solutions to the _curbrk dynamic memory allocation prob-
lem that IDtrace must face. Describe another solution besides the one that
the designers of IDtrace developed. Compare your solution with theirs.

There are several reasons that gathering a trace in a multitasking envi-
ronment is more difficult than in a normal, single-threaded environment.
List two such reasons. Give an example for each where the normal, single-
threaded approach breaks down.

Should compiler-based tools such as AE and Spike use the same solution
to the address translation problem (see Section 3.3) as do late code modi-
fication tools? Explain why or why not.

IDtrace labels each basic block with a unique number. Explain how these
numbers can be used to generate a trace of instruction addresses.

80 CHAPTER 3

3.8 Operating system calls reveal much about a program: its I/O behavior, its
use of system resources, etc. One method to obtain a system call trace is
by use of OS traps. It is also possible to use software techniques alone.

(a) Develop a software-only instrumentation technique to record system
call events. (One detail that may help: Unix I/O system calls re-
turn the number of bytes read/written by the call in a pre-specified
register.)

(b) Using the trace obtained in part (a), along with a trace of data and
instruction address references, describe a technique to measure all
I/0 activity generated by a program. Be sure to consider all activity.
(For simplicity, you may assume that only one process is executing
on the system at a given time.)

3.9 Obtaining a trace of a real-time application, such as an interactive database
or the kernel, is difficult with late code modification instrumentation tech-
niques. One reason is the slowdown that these techniques incur interferes
with the time-critical nature of the application. Explain how trace sam-
pling can be incorporated to solve these problems (see Chapter 6: Sampling
for cache and processor simulation). Be specific about the modifications
to inserted instrumentation code that are required to implement sampling.

3.10 This chapter concerns itself with tracing compiled languages such as C
and FORTRAN. Interpreted languages such as LISP or BASIC can also
be traced by instrumenting the interpreter. Unfortunately, the same pro-
gram will have considerably different traces when used with different in-
terpreters. Develop an instrumentation technique that measures the data
references due to the interpreted-language program itself, without measur-
ing the extra data references generated by the interpreter.

Instrumentation Tools 81

REFERENCES

[1]

2]

[3]

(4]

[9]

[10]

(11]

A. Agarwal, R. Sites, and M. Horowitz, “ATUM: A new technique for
capturing address traces using microcode,” Proceedings of 13th Annual
Symposium on Computer Architecture, (Tokyo, Japan), Jun. 1986, pp.
119-127.

A. Agarwal, Analysis of Cache Performance for Operating Systems and
Multiprogramming. Kluwer Academic Publishers: Norwell, MA, 1989.

T. Ball and J. Larus, “Optimally profiling and tracing programs,” Pro-
ceedings of the 19th Annual Symposium on Principles of Programming
Languages, Jan. 1992.

J. Chen, “The Impact of Software Structure and Policy on CPU and Mem-
ory System Performance,” Technical Report CMU-CS-94-145, School of
Computer Science, Carnegie Mellon University, Pittsburgh, PA, May 1994.

B. Cmelik and D. Keppel, “Shade: A fast instruction-set simulator for
execution profiling,” Proceedings of 1994 SIGMETRICS Conference on
Measurement and Modeling of Computer Systems, (Nashville, TN), May
1994, pp. 128-137.

B. Cmelik, “SpixTools Introduction and User’s Manual,” Technical Report
SMLI TR-93-6, Sun Microsystems Laboratory, Mountain View, CA, Feb.
1993.

Digital Equipment Corp., Alpha Architecture Handbook, 1992.

S. Eggers, D. Keppel, E. Koldinger, and H. Levy, “Techniques for efficient
inline tracing on a shared-memory multiprocessor,” Proceedings of 1990
SIGMETRICS Conference on Measurement and Modeling of Computer
Systems, (Boulder, CO), May 1990, pp. 37-47.

K. Flanagan, K. Grimsrud, J. Archibald, B. Nelson, “BACH: BYU Address
Collection Hardware,” Technical Report TR-A150-92.1, Department of
Electrical and Computer Engineering, Brigham Young University, Provo,
UT, Jan. 1992.

G. Gircys, Understanding and Using COFF, O'Reilly & Associates, Se-
bastopol, CA.

M. Golden, “Issues in Trace Collection Through Program Instrumenta-
tion,” MS Thesis, Department of Electrical and Computer Engineering,
The University of Illinois, Urbana-Champaign, 1991.

82 CHAPTER 3

[12] J. Hennessy and D. Patterson, Computer Organization and Design: The
Hardware/Software Interface, Morgan Kaufmann Publishers: San Mateo,
CA, 1993.

[13] Intel Corp., 1486 Microprocessor Programmer’s Reference Manual, 1990.

[14] Intel Corp., UNIX System V Rel. 4.0 Programmer’s Guide, Order
#465800-001, 1990.

(15] Kane, Gerry, MIPS R2000 RISC Architecture, Prentice Hall: Englewood
Cliffs, NJ, 1987.

[16] J. Larus, “Abstract execution: A technique for efficiently tracing pro-
grams,” Software Practice and Ezperience, Volume 20, Number 12, Dec.
1990, pp. 1241-1258.

[17] J. Larus, “Efficient program tracing,” IEEE Computer, Volume 26, Num-
ber 5, May 1993, pp. 52-60.

[18] J. Larus and T. Ball, “Rewriting executable files to measure program be-
havior,” Software Practice and Ezperience, Volume 24, Number 2, Feb.
1994, pp. 197-218.

[19] D. Mazieres and M. Smith, “Abstract Execution in a Multitasking En-
vironment,” Technical Report 31-94, Center for Research in Computing
Technology, Harvard University, Cambridge, MA, Nov. 1994.

[20] J. C. Mogul and A. Borg, “The effect of context switches on cache perfor-
mance,” Proceedings of the International Conference on Architectural Sup-

port for Programming Languages and Operating Systems, (Santa Clara,
CA), 1991, pp. 75-84.

[21] R. Uhlig, D. Nagle, T. Stanley, T. Mudge, S. Sechrest and R. Brown, “De-
sign tradeoff for software-managed TLBs,” ACM Transactions on Com-
puter Systems, Volume 12, Number 3, Aug. 1995, pp. 206-235.

[22] J. Pierce and T. Mudge, “IDtrace: A Tracing Tool for 1486 Simulation,”
Technical Report CSE-TR-203-94, Dept. of Electrical Engineering. and
Computer Science, University of Michigan, Jan. 1994.

[23] M. Smith, “Tracing with Pixie,” Technical Report CSL-TR-91-497, Center
for Integrated Systems, Stanford University, Nov. 1991.

[24] A. Srivastava and A. Eustace. “ATOM: A system for building customized
program analysis tools,” Proceedings of the SIGPLAN 1994 Conference on
Programming Language Design and Implementation, (Orlando, FL), Jun.
1994, pp. 196-205.

Instrumentation Tools 83

[25] A. Srivastava and D. Wall, “A Practical System for Intermodular Code Op-
timization at Link-Time,” Research Report 92/6, DEC Western Research
Laboratory, Palo Alto, CA, Dec. 1992.

[26] C. Stephens, B. Cogswell, J. Heinlein, G. Palmer, and J. Shen, “Instruction
level profiling and evaluation of the IBM RS/6000,” Proceedings of 18th
Annual International Symposium on Computer Architecture, (Toronto,
Canada), May 1991, pp. 180-189.

[27] Sun Microsystems, The Sparc Architecture Manual, 1989.

[28] R. Uhlig, D. Nagle, T. Mudge, and S. Sechrest, “Trap-driven simulation
with Tapeworm II,” Proceedings of the 6th International Conference on
Architectural Support for. Programming Languages and Operating Sys-
tems, (San Jose, CA), Oct. 1994.

[29] D. Wall, “Systems for late code modification,” In Code Generation-
Concepts, Tools, Techniques, Springer-Verlag, 1992, pp. 275-293.

[30] D. Wall, “Link-Time Code Modification,” Research Report 89/17, DEC
Western Research Laboratory, Palo Alto, CA, Sept. 1989.

84 CHAPTER 3

Appendix: Instrumentation Tool Use Examples
This appendix gives two examples of how late code modification tools can be

used to gather dynamic information. We assume that the user is familiar with
Unix and can create a statically-linked executable on a Unix system.

Runtime statistics

vtrace / simulators

bench.idt

I bench H idt

Figure 4 IDtrace programs and files — Rectangles are executables, ovals are
data files produced by IDtrace, boldface names are IDtrace tools.

Suppose one wanted to compare to frequency of usage of certain instructions
between several architectures. In particular, suppose one wanted to compare
the most frequently used instructions in a typical RISC processor (R3000) with
that of a CISC-like processor (i486). This could easily be done using two in-
strumentation tools: pixie on a MIPS R3000-based DECstation running Ultrix
and IDtrace on a i486-based SysV Unix system. Suppose ccl, the major part
of the C compiler gcc, is used as a benchmark program. The program ccl must
be statically linked but neither the symbol table in the binary nor the sources
are necessary. The steps required to use IDtrace are show in Figure 4. The use
of pixie is similar. First, we instrument the 1486 version of ccl by typing

idt ccl

The will produce the instrumented binary cc1.idt, and the basic block infor-
mation file cc1.blk. Then typing

ccl.idt stmt.i

Instrumentation Tools 85

will execute the instrumented version of ccl and also produce the basic block
execution count file cc1.cnt. The post-processing tool vcount can then be run,

vcount ccil

to produce some basic runtime statistics. Part of the list of statistics is shown
in Table 1.

Table 1 1486 profile information gathered using IDtrace and vcount.

Instruction Usage Percentage Other Information

mov 19,306,218 29.7% Dynamic instruction count: 65,081,680
cmp 9,642,978 14.8% Dunamic block count: 17,257,218
push 4,211,418 6.5% Average inst. per block: 3.8
je 4,166,722 6.4% Static block count: 41,807
jne 3,309,404 5.1% Largest block (# of inst.): 95

Pixie works in a similar manner. First the executable is instrumented by typing
pixie ccl

which creates the files cc1.pixie and cc1.Addrs. Then the new program is
run,

ccl.pixie stmt.i
to produce the cci.Counts file. Finally, pixstats reads the output files to

calculate an extensive list of runtime information part of which is shown in

Table 2.

Memory simulation trace
Now suppose one needs memory reference traces for some type of memory sys-
tem simulation. The method to generate the trace is similar to that explained

above. To create a reference trace using pixie, type

pixie -idtrace cci

86 CHAPTER 3

Table 2 MIPS R3000 profile information gathered using pixie and pixstats

on ccl.
Instruction Usage Percentage Other Information
spec 27,615,307 33.19% 84,450,624 (1.015) cycles (3.38s @ 25.0MHz)
Iw 13,027,613 15.66% 83,199,619 (1.000) instructions
addu 7,676,940 9.23% 17,272,839 (0.208) basic blocks
addiu 7,363,426 8.85% 13,217,812 (0.159) branches
sw 7,357,767 8.84% 4.8 instructions per basic block

6.3 instructions per branch

which modifies the binary to record both instruction and data references. Using
-itrace or ~dtrace will give just instructions or just data respectively. Typing

idt -c cci

will instrument an Intel architecture binary to record a cache line trace. In
this trace, all data references will be output, but only one instruction reference
will be output per cache line. This reduces the number of instruction reference
entries which must be recorded. The cache line size can be adjusted using the
-1 option. When cc1.pixie is executed, the trace is sent to a file descriptor.
Using a program called makepipe, the trace can be piped directly to a cache
simulator. IDtrace will send the output trace to a file, in this case ccl.trc.
The trace can be send directly to a simulator by using standard csh pipe com-
mands. Technical reports for both tools give trace format descriptions as well
as complete descriptions of command-line options and trace piping methods

[22][23].

4

STACK-BASED SINGLE-PASS
CACHE SIMULATION
Thomas M. Conte

Department of Electrical and Computer Engineering
University of South Carolina, Columbia, South Carolina

1 INTRODUCTION

Memory systems composed of cache memories are so crucial to high-performance
computer architecture design that performance evaluation of cache memories
has received phenomenal attention. In 1991, Smith catalogued 487 technical
papers and reports that dealt with some aspect of caching [11]. This chapter
and the following chapter address the problem of simulating cache-based mem-
ory systems. To do this optimally requires measurement of the performance of
a large number of cache designs. This process is called memory system proto-
typing here, since this process uses software to construct a prototype memory
system. The performance of the prototype is then tested for a set of bench-
marks. This software performance evaluation process must be fast yet accurate.
A fast method is important so that memory address traces from long-running
benchmarks can be used to explore a large design space of potential prototypes.

Researchers have devised analytic models and novel simulation approaches to
measure cache performance [9],[1],[6]. Analytic cache models achieve mod-
erate accuracy and are useful for qualitative comparisons. Of the simula-
tion approaches, the direct approach is to simulate the cache at the register-
transfer level. This approach is called the traditional cache simulation approach
throughout this chapter. Prototyping demands simulation of a large number of
cache designs, limiting the usefulness of traditional cache simulation. To elimi-
nate the number of required simulations, single-pass cache simulation is often
used. Such methods simulate multiple cache designs in a single pass through
the benchmark traces by exploiting the inclusion property of stacking replace-
ment algorithms (least-recently used is the most common member of this class
of replacement algorithms [9]). This method has been extended to include rigid

88 CHAPTER 4

placement/replacement algorithms used in direct-mapped caches [13]. Single-
pass cache simulation is ideally suited for prototyping.

This chapter focuses on single-pass cache simulation. The key concepts are in-
troduced using the recurrence/conflict single-pass variation, described in [6],[7].
Several extensions to the basic single-pass technique are discussed. One tech-
nique, an extension to capture multiprogramming effects, is discussed in de-
tail. Multiprogramming degrades memory system performance since context
switching reduces the effectiveness of cache memories. For the memory system
prototypes to be correct, multiprogramming effects must be taken into account.

2 SINGLE-PASS CACHE SIMULATION

A traditional cache simulator uses a data structure that is a replica of the tag
store of the cache being simulated. The simulation involves updating this data
structure at each reference. When an address in the trace is not present in the
tag store structure, the corresponding cache miss is recorded. The advantages
of such a technique are its efficiency and simplicity. A simple array can be used
for the tag store of a direct-mapped cache. The time complexity for such an
algorithm is O(N) in N inputs. Since the tag store does not change in size
during simulation, the space complexity is O(1).

The disadvantage of the traditional cache simulator is its lack of generality.
A simulation must be performed for each configuration of cache under study.
Hence the term multiple-pass cache simulator can be used to describe the tra-
ditional simulator since it requires multiple passes over the trace.

Single-pass cache simulation relies on the inclusion property of stacking replace-
ment algorithms. Exploitation of this property allows this class of simulators
to find the miss ratios for an entire design space of cache dimensions with one
pass over the trace. The space complexity of these algorithms is directly pro-
portional to the static program size. Hence, it is O(1). The disadvantage of
these approaches is their time complexity, which is O(N x d), where d is the
average stack depth [6]. However, this asymptotic complexity can be mislead-
ing. If there are K designs to simulate, the single-pass technique can capture
all K designs in one run, whereas the traditional simulator required K runs.
Due to this, there exist many situations where the single-pass technique is more
effective.

Stack-Based Single-Pass Cache Simulation 89

The particular single-pass simulation approach presented in this paper is based
on the recurrence/conflict model of the miss ratio. The model is introduced
below followed by a description of the simulation method.

2.1 Recurrences and conflicts

The metric used in many memory system studies is the miss ratio. This is
the ratio of the number of references that are not satisfied (i.e., that miss) for
a cache at a level of the memory system hierarchy over the total number of
references made at that level. The miss ratio has served as a good metric for
memory systems since it is a characteristic of the workload (e.g., the memory
trace) yet independent of the access time of the memory elements. A given
miss ratio can be used to decide whether a potential memory element tech-
nology will meet the required access time for the memory system [8]. The
recurrence/conflict model of the miss ratio is best illustrated with an example.
Consider the trace of Figure 1. The recurrences in the trace are accesses e, f, g
and h. In the ideal case of an infinite cache, the miss ratio, p, may be expressed

Reference | a b ¢
Address [0 1 2

d e f g h]
31 2 1 0|

Figure 1 An example trace of addresses.

Reference: a b c d
Address: 0 miss 1 miss 2 * miss 3 * miss
block 0: 0 0 2 2
block 1: 1 1 3

e f g h
1 miss 2 1 0 miss
2 2 2 0
1 1 1 1

* Dimensional conflict

Figure 2 An example two-block direct-mapped cache behavior.

90 CHAPTER 4

N —
miss ratio = p = ———N—-}E, (4.1)

where R is the total number of recurrences and N is the total number of
references. Non-ideal cache behavior occurs due to conflicts. A dimensional
conflict is defined as an event which converts a recurrence into a miss due to
limited cache capacity or mapping inflexibility.

For illustration, consider a direct-mapped cache composed of two, one-byte
blocks. The behavior of this “toy” cache for the example trace (Figure 1) is
shown in Figure 2. A miss occurs for the recurring reference e because reference
d purges address 1 from the cache due to insufficient cache capacity. Similarly,
a miss occurs for recurring reference h due to reference c. References d and
¢ represent a dimensional conflict for the recurrences e and h, respectively.
The other misses, a,b,c and d, occur because these are the first references to
addresses 0,1,2 and 3, respectively.

The following formula can be used for deriving cache miss ratio, p, for a given
trace, a given cache dimension:

N-(R-D
~N-(B-D) (4.2)
where D the total number of dimensional conflicts. (For the example, p =
(8—(4—2))/8 = 0.75.) This is a general model and can be extended to account
for other effects, such as conflicts due to multiprocessor cache coherence [12]
and context switching (explained in Section 3.1).

2.2 Reference streams and cache dimensions

For memory system design, the behavior of a benchmark (or any program) can
be captured by tracing the memory accesses during the benchmark’s execution.
A formal abstraction of a benchmark’s trace is termed a reference stream. This
is a sequence of references to addresses, w(k), of length N (0 < k < N). When
required, the addresses are represented by lower-case Greek letters, such as
a, 8,7. The reference stream is assumed to be generated by a single process in
a multiprogramming system. Note that a reference at w(k) occurs later than
w(k + 1) in time, but the parameter k does not represent parameterized time
since it does not take into account the difference in service times between cache
hits and cache misses. For this reason, k is referred to as the reference count.
The trace also contains information about voluntary context switching. A ref-

Stack-Based Single-Pass Cache Simulation 91

erence is called a wvoluntary context switch event if the benchmark relinquished
the CPU after the reference (e.g., a system call was performed).

The dimension of a cache is expressed using the notation, (C, B, S), for a cache
of size 2€ bytes, with block size 28 bytes, and 25 blocks contained in each
associativity set. The term set size is used to mean associativity level, or the
number of blocks per set. Cache size is the total number of bytes per cache.
Block size has been called line size elsewhere [10]. Note that C' > B+ S. The
notation (C, B, o) is an abbreviation for the dimension of a fully associative
cache (S = C — B). For example, a cache of dimension (10,6,0) is a 1KB
direct-mapped cache with a block size of 64 bytes; and, a cache of dimension
(21,10,11) (alternately, (21, 10, 00)) is of size 2MB with 1KB-length blocks and
it is fully associative. For the purposes of the discussions that follow, caches
are assumed to use LRU replacement and map addresses into sets using bit
selection [6].

It is useful to partition the reference stream by setting the block offset portion
of all addresses in the stream to zero. This produces a block reference stream,
wp(k), which is defined such that

wp(k) = 2B l-“;(—ﬁlj .

In binary, this is equivalent to setting the least-significant B bits to zero.

2.3 Least-recently used (LRU) stack
operation

Least-recently used (LRU) stacks were first introduced by Mattson et al. in [9]
as a way to model the behavior of paging systems. An LRU stack operates
as follows: when an address, wg(k) = ¢, is encountered in the block reference
stream, the LRU stack is checked to see if a is present on the stack. If o is
not present, it is pushed onto the stack. However, if o is present (e.g, it is
a recurring reference), it is removed from the stack, then repushed onto the
stack. This is illustrated in Figure 3 for the example reference stream at the
beginning of this section (Figure 1).

A stack is represented as Sp(k), maintained for a block size B at time k. The
ith ordered item of Sp(k) is expressed as, Sp(k)[]. The stack may also be ex-
pressed as an ordered list, such that Sg(k) = {Sg(k)[0], Sp(k)[1], ..., SB(k)[m]}
where m is the depth of the stack. The following operations are defined for

CHAPTER 4

92
Reference: 0 1
[o 1
0
Reference: 1 2
1 2
/ 3 / 1
) 2 3
0 0
Figure 3 An example of LRU stack operation.
a stack:

the push(-) function,

3
2 3
1 2
0 1
0

0
1 0
2 1
3 2
0 3

push(Sp(k), @) = {a, Sp(k){0], Sp(k)[1], ., Sp(k)[m]},

the A(-) function,

A(SB(k)» 0‘) =1,

and, the repush(-) function,

if Sp(k)[t] = «,

repush(Sg(k),a) = {a,SB(k)[O],SB(k')[l],...,S’B(k')[A(SB(Ic),a)-—1],
Sp(k)[A(S(k), @) + 1], .. .,SB(Ic)[m]}.

A(Sg(k),«) and repush(Sp(k),«) are undefined when o ¢ Sp(k). When
Sp(k) and a are understood, it is convenient to use A = A(Sp(k),). Note
that push(-) and repush(-) are defined as side-effect-free functions rather than
procedures. This is to remove dependence on the time variable, k.

The least-recently used management policy for a stack is shown in Figure 4 for
an address @ = wg(k). In Step 1.1, the references between the top of stack and
the recurring reference are denoted by the set T' = {8; | 8; = Sp(k — 1)[¢],0 <
i < A}. Figure 4 is applied to o = wg(k) for all k. The LRU policy is
essentially a definition for calculating Sp(k) from Sp(k — 1) and «. In most

Stack-Based Single-Pass Cache Simulation 93

1. if « € Sp(k — 1) then

1.1 do_recurrence(w,T’)

1.2 Sp(k) — repush(Sg(k —1),a),
2. else Sp(k) — push(Sp(k — 1), a)

3. N—~N+1

Figure 4 The least-recently used management policy for a stack, Sp(k)
(adapted from Mattson et al.).

situations, Sp(k) is calculated in order to obtain other statistics, such as the
stack depth distribution.

The complexity of the algorithm of Figure 4 depends on the complexity of
the do_recurrence() procedure. Assume for the moment that the complexity
of this procedure is O(d) on average, where d is the average stack depth (the
validity of this assumption is justified below). The outer algorithm’s complexity
is also dependent on the efficiency of the set (stack) existence operator in Step 1.
In Mattson et al. [9], the set-existence operation was determined by scanning
the entire stack. This has an average complexity O(d) for the set existence [6].
This results in a complexity of O(N x d) for the entire algorithm. This approach
to calculating set existence can be replaced by using a hash table lookup, where
each entry of the new table contains a pointer to the stack frame. Hash table
lookup also has complexity of O(d) on average [3]. However, there is a practical
advantage to using hash table lookup. For the hash table implementation, only
the hash conflict set for the block needs to be searched to determine whether
the reference is first-time. This is a constant-time improvement and does not
change the asymptotic behavior.

2.4 Recurrence/conflict-based single-pass
simulation

The single-pass cache simulation algorithm for limited associativities (S <
C— B) is created by expanding the do_recurrence procedure of Figure 4 [6],[6].
A single-pass algorithm that uses the recurrence/conflict model is presented in
Figure 5 (notation used in Figure 5 is summarized in Table 1). This algorithm

94 CHAPTER 4

is similar to the original algorithm of Traiger and Slutz [13]. However, where
Traiger and Slutz recorded temporal localities, this algorithm records recur-
rences and conflicts. Since temporal locality functions can occupy considerable
space, using recurrences and conflicts is an advantage. In this respect, the
recurrence/conflict approach is similar to the algorithm of Hill and Smith [6].

do_recurrence(a,I'):

1 R[B] — R[B] +1

2 for 5; €T do

2.1 u—u+1

2.2 d—|Bi — o

2.3 z «— ctz(d)

2.4 plz] — pl2] +1

2.5 Zmax “— max(z, zmax)

3 Coo « [logau]| + B

4 for ¢ — B to C,

4.1 D[C,B,oo]e—D[c,B,OO]-%l
5 2 & Zmax

6 Starget —1

7 nss «— 0

8 for s — 0 to Smax

8.1 Cmc — B

8.2 while z > 0 and nss < Sygrget
8.2.1 nss «— p|z]

8.2.2 ze—z-1

8.3 if nss > Sygrges then

8.3.1 Cuc —2z+s+1

8.4 for ¢ — B + s to Cyc
8.4.1 Die, B, s} « D¢, B, s] + 1
8.5 Starget —2x Starget

Figure 5 The recurrence/conflict single-pass cache simulation algorithm.

Whenever a reference is found on the stack in Figure 5, its presence indicates
that it is a recurrence. The number of times this event occurs in Step 1 of
Figure 5 is used to keep a count of the number of recurrences (R[B]). The
remainder of the algorithm is devoted to calculating the dimensional conflicts

(DIC, B, S]).

Stack-Based Single-Pass Cache Simulation 95

Table 1 Notation used in Figure 5.

Symbol Definition

a Current reference

Bi Intervening references from I’

U Number of unique references

d Address distance

ctz(d) Counts trailing zeros (in binary) for d

z Count of trailing zeros

plz] Histogram of counts of trailing zeros
Zmax Maximum trailing zeros number

Coo largest fully-associative cache with a dimensional conflict
Starget Target set size

nss Number of references in the same set
Cumc Largest cache with a dimensional conflict
N Total number of references

The for statement that iterates for all intervening references in Step 2 of Fig-
ure 5 calculates the raw information for determining two classes of cache orga-
nizations. The maintenance of the number of unique references (u) in Step 2.1
is used to calculate the largest-sized fully associative cache with a dimensional
conflict (C;nfty). This calculation is done in Steps 3 and 4 by finding the log,
of this count. Unlike the algorithm of Mattson, et al., only cache sizes that are
multiples of powers of 2 are considered [9]. The remainder of Step 2 calculates a
histogram, p[z], of a function of the current reference («) and each intervening
reference (f;) (Step 2.4). This function is the lowest power of two factor of
the arithmetic difference between the two references (Steps 2.2 and 2.3). For a
range of direct-mapped caches, this function is equivalent to the largest cache
size in which a miss will still occur for o due to the intervening reference to
B;. (Mattson, et al. refer to ctz(|3; — a|) as the right-match function, since
it counts the maximum right-most bits that match between 3; and «.) The
remainder of the procedure uses this information to calculate this cache size for
all associativities (Steps 5-8).

The histogram (p{z]) is processed for all associativities by scanning the his-
togram from largest to smallest potential conflicting cache size. A set size can
be thought of as a conflict tolerance. A conflict between « and f; for a direct-

96 CHAPTER 4

mapped cache of dimension (C, B, 0) is equivalent to « and f; occupying the
same set in caches (C, B, S) for C — B > S > 0. The larger the set size, .S, is,
the more numerous are the allowed same-set mappings between references to «
before these mappings result in a miss.

In Steps 6 to 8, the set sizes are considered in increasing order to determine
how many same-set mappings are tolerable. For each set, the largest cache size
in which a miss will occur, Cpr¢c, (MC = mazimum conflict) is the product of
the same cache size for a direct-mapped cache times the set size (Step 8.3.1,
note that addition of these exponents of base 2 implies multiplication). If no
same-set mappings remain in the histogram, the only conflicts accounted for
are those that occur in caches containing a single block (Step 8.1).

The complexity of the inner-most while statement of Steps 8.2-8.2.2 is de-
pendent on Starget and 2. The initial value of z is zpayx, which is bounded
by the word size of the trace (e.g., 32 bits) since zmax is an indirect result
of the ctz(d) function of Step 2.3. Therefore, z has a constant upper bound.
The other determiner of the while statement’s execution is Starget Which is 2°
due to Steps 6, and 8.5. Therefore, Starget also has a constant upper bound

of 25max. The while statement therefore has a worst-case execution time of
max(Zmax, 2Smax), which results in a complexity of O(1). The surrounding for
statement also has a complexity of O(1), resulting in a total complexity for
Step 8 and all of its subsieps of O(1).

The complexity of the do_recurrence() procedure is O(d) in the worst case due
to the scanning of the stack in Steps 2.1-2.5. An input that elicits worst-case
behavior is a cyclic referencing pattern of addresses, such as

a;:@a7)6aa)/3a7’6)ay--')

where each cycle consists of o, 3,7,6. Consider a trace of such a pattern of
length N having K cycles. In such a trace, any recurrence must traverse d =
N/K references in Steps 2.1-2.5. Hence, the complexity of this is O(N/K), or
simply O(d).

3 EXTENSIONS TO SINGLE-PASS
TECHNIQUES

This section discusses extensions to single-pass algorithms in detail. Several
extensions have been proposed, including:

Stack-Based Single-Pass Cache Simulation 97

O Multiprogramming: In his Ph.D. thesis, Thompson extended fully-
associative, stack-based, single-pass techniques to measure conflicts due
to multiprogramming [12]. These extensions are valid for any MOESI
cache coherence protocol. Thompson includes specific algorithms for the
Berkeley, Dragon, Illinois, and Firefly protocols (see [2] for an overview of
these protocols).

O Write-back caches: Thompson also studied the correct simulation of
write-back traffic in a fully-associative cache using a stack-based, single-
pass technique. Wang and Baer extended this work to caches with limited
associativity [14]. Both schemes relie on keeping the dirty level for an entry
in the stack: the smallest cache for which the block is still dirty (not yet
written back).

0 Load-forwarding: Sectored cache design (sometimes called sub-
blocking is a common technique to reduce the traffic for a miss while main-
taining a small cache tag store. Chen, et al has developed a single-pass
technique for measuring the effects of load-forwarding when used with a
sectored instruction cache [15].

3.1 An example extension: Context switching

Single-pass algorithms have been extended to context switching by the au-
thor [7]. Context switching occurs due to two distinct events: (1) a voluntary
context switch, where the benchmark relinquishes the processor, and, (2) an
involuntary context switch, where the benchmark’s execution is suspended due
to external interrupts. Voluntary context switches are a characteristic of the
benchmark application. They occur at the same place in the execution between
different benchmark runs. On the other hand, involuntary context switches are
determined by the I/O system behavior (device interrupts), clock frequency
(timer interrupts), etc. They do not occur at the same place between runs of
the benchmark, and are not characteristic of the benchmark. Page faults are
treated as involuntary context switches because page faults depend on the in-
teraction of processes in the system, whose interaction is assumed to be pseudo-
random in nature.

Since involuntary context switches occur at random, it is assumed that invol-
untary context switches can occur with equal probability for each reference
in the reference stream [5]. This probability is denoted, ¢, and termed the
involuntary context switching intensity. Separation of the system’s character-
istics from the characteristics of the benchmark allows many different systems

98 CHAPTER 4

to be considered without re-simulating the benchmark’s behavior. This is the
main goal of single-pass techniques in general [13]. Although the occurrence
of involuntary context switches is not a characteristic of the benchmark, the
benchmark’s susceptibility to their occurrence is. This susceptibility can be
measured as the expected number of multiprogramming conflicts due to ran-
dom involuntary context switching. A method to measure this susceptibility
is presented below that records the benchmark’s susceptibility to all context-
switching intensities in a single-pass through the trace. The empirical results
discussed in [7] demonstrate the validity of this approach.

The working set of a process/benchmark may have been flushed from the cache
before it re-enters the run state after a context switch. Let fcs represent the
fraction of the cache’s contents flushed between context switches. The number of
processes executed before a process returns from a context switch is a function
of the system load and the operating system scheduling policy. Furthermore,
the particular cache blocks flushed due to a context switch also depends on the
reference patterns of the processes executing on the system. This makes fcs
highly dependent on several volatile variables and therefore difficult to measure.
(Several empirical estimates of fcg are presented in [7].) Some virtual memory
system implementations force a cache flush to eliminate problems with page
sharing of writable pages. Also, it has been shown that for small cache sizes, a
context switch effectively flushes the cache, therefore fcs = 1 [10]. For larger
caches, this provides an upper bound for the effects of context switching.

The components of multiprogramming conflicts

Multiprogramming conflicts are defined in terms of potential victims. A re-
curring reference that is not removed from a cache by a dimensional conflict,
yet that may be removed by a context switch, is a potential victim of the
context switch. The numbers of each type of potential victims are defined
as Xv[C, B, S] and X[[C, B, S,q], for all voluntary and involuntary context
switches, respectively. Xy [C, B, S] is the total number of potential victims due
to voluntary context switching for caches of dimension (C, B, S). X[[C, B, S, q]
1s the expected number of potential victims due to involuntary context switch-
ing of intensity ¢. The multiprogramming conflicts are expressed in terms of
victims as,

M[C,B,S,Q]Efcs (Xv[C,B,S]-l-XI[C,B,S,qD. (43)

Stack-Based Single-Pass Cache Simulation 99

The equation for the miss ratio (Equation 4.2) can be modified to take into
account the new conflicts,
_ N_(R_D_M) - N _(R'—D—fCS(XV[C,B,S]+X}[C,B,S,Q]))
= ¥ = N .

(4.4)

Determining the multiprogramming conflicts involves measuring Xy and X;

“from the reference stream. The measurement can be done by extending the

recurrence/conflict single-pass technique. The miss ratio is then calculated by

first calculating M[C, B, S, ¢] using Equation 4.3 for a value of fcs, then using
the result to complete Equation 4.4.

Multiprogramming extensions to LRU stack operation

The extensions required to the recurrence/conflict single-pass technique mea-
sure Xy and X are shown in Figure 7. The procedure for determining Xy
is illustrated in Figure 6. The procedure operates as follows: When o is pro-
cessed, if it is not a recurring reference (i.e., the test of Step 1 of Figure 7
fails), then it cannot be a victim since it cannot produce a hit. However, if « is
a voluntary context switch event, it is marked as such when it is pushed on the
stack in Step 2 (marked references are shown using asterisks in Figure 6). If o
is a recurring reference, Xy is conditionally incremented if a marked reference
is encountered when the dimensional conflicts are calculated. Xy is only in-
cremented for all dimensions in which o does not have a dimensional conflict.
If Xy were incremented for all dimensions, a reference might be counted more
than once as a conflict, once as a multiprogramming conflict and once as a
dimensional conflict. Notice that the references immediately below a marked
reference being repushed inherit the marking in Figure 6 (Step 1.6 and its sub-
steps of Figure 7). This is done to insure all subsequent recurring references
that cross the context switch event are subject to a voluntary context switch.

The procedure for determining X;[C, B, S, q] using an LRU stack is somewhat
more complicated than that for determining Xv [C, B, S]. Recall that an invol-
untary context switch may occur between every reference. Let L, the context
switch distance, be the number of potential involuntary context switch events
for the recurring reference o at reference count k (i.e., « = wp(k — L) and
wp(k — L) = wp(k)). Let pr be the probability that at least one involuntary
context switch occurs between times k — L and k. Then,

pr, = i (f) 71— gt (4.5)

100 CHAPTER 4

voluntary context switch

Reference: 0 1 2 ‘ 3
0 1 2%
0 1
0
Reference: 1 2 1 0
1 2 1 0
/ 3 / P 1
, 2 3 3 2
0 0O O* 3

potential miss potential miss potential miss

(* marked stack position)

Figure 6 An example for voluntary context switch of the modified LRU stack
operation.

Define ni[C, B, S] to be the number of recurrences not subject to dimensional
conflicts that have a context switch distance of L. Therefore,

X1[C, B, S,q] = E[nL[C, B, S]] =Y penilC, B, S). (4.6)
L

Equation 4.6 expresses the expected number of potential victims due to involun-
tary context switching. The equation fits naturally into a stack-based method.
The new metric ni[C, B,S] can be recorded by annotating the references on
the stack. Figure 8 shows an example of calculating X;[C, B,S]. The fig-
ure shows that a counter of the number of context switch events affecting o
is kept, defined as cy(a). Initially and after a recurring reference is repushed,
cr(a) « 1 (Step 2.1 and 1.8 of Figure 7). In Step 1.3, its substeps, and Step
1.4, L is computed from one plus the sum of the counters of entries above o
on the stack. (Notice that cy(a) is not part of the calculation of L, Figure 8
illustrates this). In Step 1.5 and its substeps, nr[C, B, S] is incremented for all
caches in which there are no dimensional conflicts. Let Sp(k — 1)[A — 1] = fo,
the address that is directly above « in the stack Sp(k — 1). As a bookkeeping
step, ¢r(Bo) is incremented by cy(a) (Step 1.7). In this way, all the references

Stack-Based Single-Pass Cache Simulation 101

1.1
1.2
1.3
1.3.1
1.3.2
1.3.2.1
1.3.3
1.4
1.5
1.5.1
1.5.2
1.5.2.1
1.6
1.6.1
1.6.2
1.7
1.8
1.9

2.1
2.2

if o € Sp(k — 1) then

vol_cs — false
L—~1
for i — 0 to A do
Bi — Sp(k — 1)[d]
if B; marked as a voluntary context switch event then
vol.cs — true
L —L+ci(Bi)
L—L+1
for all (C, B, S) without a dimensional conflict do
ni[C,B,S] —n,[C,B,S]+1
if vol_cs then
Xv[C, B, S] — Xv[C, B, S] +1
if o marked as a voluntary context switch event then
mark Sp(k — 1)[A + 1]
unmark o
cr(Ba-1) — cr(Ba-1) + cr(a)
er(a) «— 1
Sp(k) — repush(Sp(k — 1), @),

er(a) —1
Sp(k) «— push(Sp(k — 1),)

Figure 7 An LRU stack method modified for context switching.

102 CHAPTER 4

Reference: 0 1 i 2 3
[0 ¢ -1 c -1 2 ¢ -1 3¢ -1
0 c -1 c, =1 2. ¢ =a
0 ¢ -1 L o
0 C,:l

Reference: 1 2 1 0
lC=1 2C=l 1C=1 0C=1

L . L L

/3C,=2/1c1=1/2c,=2 1c,=1
1 2c,=1 3CL=3 3c,=3 2c,=2
OCI=1 0CI=1 0C,=1 3C'=4

L=3 L=3 L=2 L=7

(Cy is stack counter-- see text)

Figure 8 An example for involuntary context switching of the modified LRU
stack operation.

deeper in the stack than « in Sp(k—1) will arrive at the correct context switch
distance.

The algorithm shows nr[C, B, S] being maintained for all values of L. Not all
values of L must be recorded using nr[C, B, S]. Rather, power-of-two sized cat-
egories can be retained. The scheme used for the simulations that is presented
below uses 14 categories. The first category contains ni[C, B, S]for 1 < L < 4,
following this, the ith category contains nz[C, B, S] for 2042 < I < 2i+3_ This
quantization scheme is based on observations of the distribution of ny[C, B, S]
vs. L. The scheme does however produce error for small ¢, and this is com-
mented on in the following section.

Notice that the calculation of ni[C, B, S] is independent of the context switch-
ing intensity distribution assumptions. The function used to calculate py in
Equation 4.6 need not be Equation 4.5. It is possible to substitute other con-
text switching iritensity distributions into Equation 4.6 without altering the pre-
sented single-pass method. The impact of this observation is that the method is
more general than the assumption of uniformly-distributed involuntary context
switching of Equation 4.5. Empirical results of the method are presented in [7].

Stack-Based Single-Pass Cache Simulation 103

4 CONCLUDING REMARKS

This chapter has discussed techniques for capturing the performance of an en-
tire space of cache designs in one run. These single-pass techniques have proven
to be powerful methods for cache simulation. Their success is due to the inclu-
sion property of cache replacement algorithms. Unfortunately, there has been
little success in finding anologies to inclusion for processor and interconnection
simulation.

The recurrence/conflict-based version of single-pass cache simulation has been
implemented in the recon tool by the author and his students. Contact the
author to obtain a copy.

104

CHAPTER 4

Exercises

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

Show the LRU stack operation for the following block reference trace:

1,2,3,4,5,1,3,4,5,2,1,7,1,3,4,5

How many recurrences occur? How many dimensional conflicts occur for a
four-block fully-associative cache? For a six-block fully-associative cache?

Least frequently used (LFU) is a replacement algorithm that selects a block
for replacement that has the lowest usage count of any block in the cache.
Explain the operation of a single-pass algorithm for caches managed by
LFU replacement.

FIFO is a replacement algorithm that selects the oldest block in the cache
for replacement. Can FIFO be simulated using a stack? Explain why or
why not using an example.

This chapter has talked about several kinds of conflicts: dimensional, and
multiprogramming, for example. List two kinds of conflicts not discussed
here. Determine the expression for the miss ratio, p(C, B, S), taking these
new conflict types into account.

Memory systems are often built in hierarchies of multiple levels of caches.
Develop a single-pass technique to record the misses of a two-level cache
hierarchy. Assume that the dimensions, (C, B, S), of the first-level cache
are fixed.

Locality of reference is a common concept in cache analysis. There are two
classes of locality, temporal and spatial. Temporal locality is the charac-
teristic that an address referenced at time ¢ has a high probability of being
re-referenced at time ¢ + 7, for small values of 7. Although this definition
captures the concept of temporal locality, it does not explain how to mea-
sure the amount of temporal locality in the reference stream. Explain how
n[C, B, S], developed for measuring involuntary context switching, can
also be used to quantify the temporal locality of a reference stream.

An alternative to the context switching algorithm presented here is to
empty the stack when a context switch event occurs in the reference stream
(i.e., in the trace). Give two reasons why the algorithm presented in this
chapter is superior to this “stack-emptying” approach.

The algorithm of Figure 5 uses one stack per block size. It is possible to
use a unified stack across all block sizes as well. Develop a scheme for this

Stack-Based Single-Pass Cache Simulation 105

that processes the input stream w(t) instead of wp(t). (Hint: Consider a
variation of ctz(]3 — «|) that finds the smallest block size shared by address
references « and f3.)

4.9 The for loop of Figure 5 (Step 8.4) can be converted to a single
D[Cumc, B, s] < D[Cmc, B,s]+1

if the user is willing to post-process the D[C, B, S] array. (The same is
true for Step 4 as well.) Explain the required post-processing.

106 CHAPTER 4

REFERENCES

[1] A. Agarwal, M. Horowitz, and J. Hennessy, “An analytical cache model,”
ACM Trans. Computer Systems, vol. 7, pp. 184-215, May 1989.

[2] J. Archibald and J.-L. Baer, “Cache coherence protocols: Evaluation using
a multiprocessor simulation model,” ACM Trans. Comput. Sys., vol. 4,
pp. 273-298, Nov. 1986.

[3] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algo-
rithms. Cambridge, MA: McGraw-Hill (MIT Press), 1990.

[4] T. M. Conte, “Systematic computer archiecture prototyping,” Ph.D. dis-
sertation, Department of Electrical and Computer Engineering, University
of Illinois, Urbana, 1L, 1992.

[5] I. J. Haikala, “Cache hit ratios with geometric task switch intervals,” in
Proc. 11th Ann. Int’l Symp. Computer Architecture, (Ann Arbor, MI),
pp- 364-371, June 1984.

[6] M. D. Hill and A. J. Smith, “Evaluating associativity in CPU caches,”
IEEE Trans. Comput., vol. C-38, pp. 1612-1630, Dec. 1989.

[7] W. W. Hwu and T. M. Conte, “The susceptibility of programs to context

switching,” IEEE Transactions on Computers, vol. C-43, no. 9, pp. 993-
1003, Sep. 1994.

[8] K. R. Kaplan and R. O. Winder, “Cache-based computer systems,” Com-
puter, vol. 6, pp. 30-36, Mar. 1973.

[9] R. L. Mattson, J. Gercsei, D. R. Slutz, and I. L. Traiger, “Evaluation
techniques for storage hierarchies,” IBM Syst. J., vol. 9, no. 2, pp. 78-117,
1970.

[10] A. J. Smith, “Cache memories,” ACM Computing Surveys, vol. 14, no. 3,
pp. 473-530, 1982.

[11] A.J. Smith, “A second bibliography on cache memories,” Comput. Archi-
tecture News, vol. 19, pp. 138-153, June 1991.

[12] J. G. Thompson, Efficient analysis of caching systems, Ph.D. dissertation,
Computer Science Division, University of California, Berkeley, CA, Oct.
1987. Report No. UCB/CSD 87/374.

[13]) I. L. Traiger and D. R. Slutz, “One-pass techniques for the evaluation of
memory hierarchies,” IBM Research Report RJ 892, IBM, San Jose, CA,
July 1971.

Stack-Based Single-Pass Cache Simulation 107

[14] W.-H. Wang and J .-L. Baer, “Efficient trace-driven simulation methods for
cache performance analysis,” ACM Trans. Comput. Sys., vol. 9, pp. 222—
241, Aug. 1991.

[15] W.Y. Chen, P. P. Chang, T. M. Conte and W. W. Hwu, “The effect of code
expanding optimizations on instruction cache design,” IEEE Transactions
on Computers, vol. C-42, no. 9, pp. 1045-1057, Sep. 1993.

3

NON-STACK SINGLE-PASS
SIMULATION
Rabin A. Sugumar, Santosh G. Abraham*

Cray Research Inc., Chippewa Falls, Wisconsin, USA

Hewleti-Packard Laboratories, Palo Alto, California, USA

1 INTRODUCTION

The previous chapter dealt with stack-based single-pass simulation. Stack-
based single-pass simulation permits the simulation of a range of cache con-
figurations in a time and space efficient manner. All stack-based simulation
algorithms maintain multiple caches in a stack, exploiting inclusion properties
between caches. During simulation they do a sequential search down the stack
examining, modifying and moving entries as appropriate. Stack-based single-
pass simulation is elegant and efficient relative to performing the simulations
one at a time. However, taking a step back we see that the essential idea ex-
ploited in stack-based single-pass simulation is one of reducing simulation effort
by simulating multiple configurations together and exploiting relations between
the configurations to reduce simulation effort. This idea may be exploited to
develop efficient single-pass algorithms in situations where stack simulation is
not applicable. Even in situations where stack simulation is applicable non-
stack single-pass simulation algorithms can be more efficient by avoiding the
sequential search of the stack. In this chapter we discuss single-pass simulation
algorithms that are not stack-based.

We illustrate some of the general principles of single-pass simulation using the
algorithm presented in Section 4 that simulates multiple write buffers in a
single-pass through a trace of time-stamped write addresses and generates the
stall cycles for each simulated write buffer [13]. This algorithm is based on
the inclusion property stating that a write buffer ‘stalls only when a smaller
write buffer stalls. Therefore, when a write does not stall one write buffer,
it also does not stall all larger write buffers. The state of a write buffer is
represented by the number of cycles to write out and retire all the current

110 CHAPTER 5

entries to memory. The write buffer algorithm exploits the additional property
that between stalls, the state of a larger buffer may be derived from that of a
smaller buffer. These properties hold under certain assumptions described in
detail in Section 4. Write buffer simulation works as follows: The smallest write
buffer is simulated for each write. When the write does not stall the buffer,
no other buffer is examined. When a write does stall the buffer, larger write
buffers are examined successively until the write does not stall a write buffer,
or all the buffers are examined.

The goal of all architectural simulation is to measure performance metrics such
as stall cycles or miss ratio of the simulated system. In order to determine
performance metrics for several configurations efficiently in a single-pass simu-
lation algorithm, conditions for no change or a regular change in the metric for a
large fraction of the configurations need to be derived. In the running example
of write buffer simulation, the metric, stall cycles, for any of the configurations
changes only on a stall in the smallest buffer. The metric has to be updated
only on a stall in the smallest buffer, which is not a frequent occurrence in most
cases. In order to maintain metrics, state changes of the simulated system need
to be tracked. In single-pass simulation, to maintain the state of several con-
figurations efficiently, situations where there is no change or a regular change
in the difference in state between two configurations need to be identified. As
long as such conditions hold, the state of just one configuration is updated.
Later, when the other configurations need to be examined, their states are de-
rived and updated. In the running example, it is possible to accumulate the
change in state of larger buffers between stalls of the smallest buffer, and to
derive their state on a stall of the smallest buffer. In many cases, the efficiency
with which state and metric values may be maintained depends on the data
structure used to represent the configurations. For instance, in Mattson, et al.’s
stack simulation algorithm a single stack is used to represent a range of fully-
associative caches, and the states of all caches are implicitly updated through
operations on the stack data structure. Some other novel data structures for
state maintenance are presented in this chapter.

In the rest of the chapter several algorithms that exploit the general principles
of single-pass simulation are presented. The algorithms are for the efficient
simulation of important architectural features such as fully associative and set
associative caches and write buffers, and are useful as such. In addition, each
algorithm uses different kinds of properties to do single-pass simulation effi-
ciently, and the methods used should prove helpful in the development of other
single-pass algorithms. The chapter has four sections following this introduc-
tion. In Section 2 we go back to fully-associative cache simulation. We describe
simulation algorithms that examine a range of cache sizes at each step in con-

Non-stack Single-pass Simulation 111

trast to regular stack simulation, and are thus faster than stack simulation by
an order of magnitude. In a similar vein, Section 3 deals with set-associative
cache simulation, presenting algorithms that search the space of caches sim-
ulated more efficiently than the stack based algorithm. Section 4 deals with
multi-configuration simulation of write-buffers; it is an example of the appli-
cation of single-pass simulation ideas to something other than caches. In the
concluding section, we discuss areas for future development and extension of
single-pass simulation ideas.

Most of the algorithms described in this chapter have been implemented. Im-
plementations of the algorithms are available either as part of the Cheetah
tool available by anonymous ftp from ftp.eecs.umich.edu or directly from
the authors. We also present experimental and theoretical performance com-
parisons between algorithms wherever possible. In addition to describing the
theoretical foundations of the algorithms, we also present techniques for efficient
implementation where they are not obvious.

This chapter is based on material that has appeared earlier in [12, 11, 13, 14].

2 FULLY-ASSOCIATIVE CACHE
SIMULATION

In stack-based fully-associative cache simulation described in an earlier chapter,
during the stack search each cache size starting at the smallest is examined until
there is a hit. It would be more efficient to skip a bunch of cache sizes after
each examination, and quickly identify the minimum cache size that is hit. This
chapter describes some such algorithms that simulate fully-associative caches
by examining a range of cache sizes at each step. All the algorithms share a
common theme — the lines in the cache are maintained in an efficient search
structure (e.g.) binary trees. A hash table is used to obtain information about
when the current line was last accessed previously, and this information is used
to look up the data structure. During the lookup the minimum cache that
contains the line is determined. All the algorithms make use of the inclusion
property used in stack simulation, and in fact maintain the stack implicitly;
so they are applicable only for replacement policies that are stack algorithms.
In addition, the algorithms work best with LRU, the most commonly used
replacement policy, and we will assume LRU in most of the section.

112 CHAPTER 5

We will describe three algorithms. The first one uses a binary tree as the
search structure, the second uses m-ary trees and the last is a simple algorithm
which uses a list and a hash table to determine miss-ratios for a few cache sizes
of interest. As in stack simulation the input to the simulation is a trace of
addresses, and the output of the simulation is the miss ratio for each cache size
in the range of cache sizes simulated.

2.1 Binary Tree Algorithm

All the lines in the in the fully-associative caches simulated are maintained as
a balanced binary tree. The key used is the most recent time of arrival (arrival
time) of an address. The tree is formed such that an inorder traversal yields
addresses in increasing order of their arrival time; i.e., it generates the stack
of the conventional stack-based algorithm. Each node in the tree contains an
address, its arrival time and the number of nodes in its right subtree (we assume
arbitrarily that nodes in right subtrees have higher arrival times).

To process an address, its arrival time is obtained from a search structure such
as a hash table. A path is traced in the binary tree from the root node to the
node with that arrival time as follows. Starting from the root node, the arrival
time of the address z; is compared to the arrival time of the node in the tree. If
the arrival time of z; is greater, the right child is inspected next. If the arrival
time of z; is less, the current node and all nodes in its right subtree also have
an arrival time that is greater. So these lines have displaced the searched for
node from smaller caches (i.e. these lines are above the searched for line in the
stack). Therefore the number of nodes to the right plus one for the node itself
is added to a count and the left child is inspected. If the arrival time is equal,
the node is found. The number of nodes to the right of the node is added to
the count and the count now gives the number of lines in the smallest cache
containing the line searched for (i.e. the stack depth). The node where the
match occurs is deleted from the tree and is put back with the current time as
the arrival time.

To ensure logarithmic time lookup the binary tree has to be kept balanced.
Several algorithms are available for balancing binary trees; ideally we would
like the balancing technique to keep addresses that were referenced recently
near the top of the tree to exploit locality characteristics of traces. A splay
tree [10] is a binary tree that has this property. In a splay tree, the referenced
node is moved to the top of the stack by a series of operations (left and right
rotations), which are collectively called a splay. The splay procedure achieves

Non-stack Single-pass Simulation 113

two objectives: first, it brings the referenced node to the top of the tree, and
since recently referenced nodes are more likely to be accessed in the future this
makes subsequent searches faster. Second, it reduces the distance to the root of
other nodes in the path traversed, and as a result has a logarithmic search time
in the worst case also. The tendency of a splay tree to keep recently accessed
nodes close to the root makes it well suited for stack simulation. In contrast, in
an AVL tree [1] (another commonly used balanced binary tree), the referenced
nodes tends to get added to the bottom of the tree. In addition, the splay tree
is a robust structure in that we can take any binary tree, and apply splays to
it to obtain the desired properties. This robustness permits skipping the splay
procedure for a fraction of trace references to reduce the cost of restructuring
operations.

Techniques for doing a lookup, insertion or deletion on a splay tree are given
in {10]. In this application the node that is looked up is always deleted and
inserted back at the top. Owing to this specific pattern of lookup, delete and
insert, a combination operation that does all three with just one splay step may
be used. The referenced node is looked up and deleted as in an ordinary binary
tree. The node that replaces the referenced node in deletion is then splayed to
the top. A new node is created for the line referenced and the entire tree is
made the left subtree of the new node.

An example illustrating the operation of the tree algorithm is shown in Fig 1.
The most recent arrival time of the addresses are stored in the nodes. The
number in the parenthesis is the number of nodes in the right subtree. Note
that the referenced node goes to the top of the tree, with its arrival time set to
the current time.

2.2 M-ary Tree Algorithm

The m-ary tree algorithm exploits the property that under LRU replacement
the minimum cache size that is hit (i.e. the depth of reference in the LRU stack)
is the number of distinct lines referenced since the last reference to the line.
Here a bit vector containing a bit for every reference in the trace is maintained.
A bit is set to one if the trace reference corresponding to it is the last reference
to a line, and is set to zero otherwise. This bit vector constitutes the zeroth
level array. At the first level array, sums of the number of ones in m-entry
blocks of the zeroth level array are maintained; the zeroth level array thus
has m bits for each entry in the first level array. Similarly, at the second level
array, sums of m-entry blocks of the first level array are maintained, and higher

114

Search Structure

Address Arr. Time
10 808
07 812
28 787
19 803
15 825
33 835
25 799
a1 847
23 850
21 831
Search Structure
Address Arr. Time
10 808
07 812
28 787
19 803
15 825
33 835
25 799
3 847
850
831

CHAPTER 5

Stack

850 (0)

793 (0) 808 (1) 840 (1)
787 (0) 803 (0) 812 (0) 835 (0) 847 (0)

Stack Depth = (0+1)+(4+1)+(3+1)+1
=11

Stack

851 (0)

799 (9)
%0 Es)
..-—-"'"H- --—-‘--__""'———..
808 (1) 850 (0)
803 (0) 812 (0) 831 (3)
840 (1)

835 (0) 847 (0)

Figure 1 Example illustrating operation of the splay tree algorithm.

Non-stack Single-pass Simulation 115

level arrays are similarly maintained until the number of entries at a level is less
than m. For each reference read in during simulation, the bit in the zeroth level
array corresponding to the previous reference to the same address is located
(using a hash table). This bit is then set to zero since a later reference to
this address has now occurred, and the location in the array corresponding to
the current reference is set to one. The number of ones separating the current
location and the previous location of the address is then determined efficiently
by traversing the m-ary tree structure. The m-ary tree structure is updated
during this traversal.

The memory required for the m-ary tree algorithm is proportional to the num-
ber of trace references. For long traces, therefore, a periodic packing step is
needed to keep memory requirements within limits.

2.3 Few Cache Sizes Algorithm

As the name indicates this algorithm is oriented towards situations where miss-
ratios are required for only a few fully associative cache sizes. Quite often
miss-ratios are desired only for some types of cache sizes (e.g. power-of-two),
and this simple algorithm is effective in such situations. Here the stack is
maintained as a doubly linked list, and each entry of the stack is annotated
with the smallest cache size of interest that contains this entry. An array of
pointers to stack entries that are at cache boundaries (i.e. the entries with the
least priority in each of the caches of interest) is also maintained. For each trace
reference the stack element that the address maps to is determined through a
hash lookup and from the stack element the smallest cache containing it is
determined. Stack update is accomplished by first moving the entry that is hit
to the top of the stack. Entries that are of lowest priority in their caches and
that are between the top of the stack and the location of hit drop out of their
caches. Such entries are located using the array of boundary pointers and their
cache residency status is updated. Along with this step the boundary pointers
are also moved up the stack by one entry.

2.4 Complexity

The complexity of basic stack simulation, binary tree simulation with splay
trees and AVL trees, and the m-ary tree algorithm are given in Table 1. These
expressions are derived assuming the fractal model of trace characteristics [16].
Ny i1s the number of distinct entries and C, is the working set size (loosely,

116 CHAPTER 5

Stack form Lines examined

Hit depth = x Mean
List z O(CP*! + N2-%)
Splay O(logz) O(CPlogC,)
AVL O(log Ny) O(log Ny)
m-ary O(log) O(CPlog C.)

Table 1 Search complexity

the point where a knee occurs in the cache size versus miss-ratio curve). 6 is a
measure of the locality of the trace (loosely, the slope of the cache size versus
miss-ratio curve) and § is another model parameter. The first column is of
greatest interest. We see that complexity is proportional to log of the stack
depth of hit for splay tree and m-ary tree. For AVL trees it is proportional to
log of the number of entries in the stack, i.e., AVL trees do not exploit trace
locality. The few cache sizes algorithm does not fit in this table since it obtains
the miss ratio for only a few cache sizes. Its complexity is proportional to the
number of cache sizes simulated.

Empirical performance evaluations support these analytical complexities. Splay
tree and m-ary tree algorithms perform best with the m-ary tree algorithm
(without the compression step) running faster than the splay tree algorithm by
about 15% on the average. The m-ary tree algorithm is easier to implement,
and for doing LRU simulations it is probably the best choice. Binary tree
methods may be used for some other replacement policies and for simulating
multiple line sizes also; so if this wider range of capabilities is of interest the
splay tree algorithm would be a good choice.

2.5 Literature Review

The m-ary tree algorithm was proposed by Bennett and Kruskal [2]. That
paper is also the first to publish the idea of using a hash table to locate previous
references to an address. Such lookup helps basic list-based stack simulation
too, since it avoids the stack lookup on the first reference to an address. The
binary tree algorithm was first proposed by Olken [8] who proposed storing the
stack as an in-order AVL tree. Thompson [17] proposed an improvement to the
AVL tree algorithm which uses a list for references that hit close to to the top

Non-stack Single-pass Simulation 117

of the stack and an AVL tree for references that hit further down. Sugumar
and Abraham [11] investigated the use of splay trees. They also generalized
binary tree algorithms to work with other replacement policies (OPT [12] and
PCOR!), and extended the binary tree algorithms to simulate multiple line
sizes along the lines of Slutz and Traiger [18]. Sugumar and Abraham also
present analytical and empirical comparisons of the list algorithm, the AVL
tree algorithm, the splay tree algorithm and the m-ary tree algorithm, and
empirical evaluations of a tree based algorithm for OPT replacement.

3 BINOMIAL FOREST SIMULATION

In this section, we describe cache simulation algorithms for the single-pass sim-
ulation of a group of set-associative caches with fixed line size, least recently
used (LRU) replacement, bit-selection?, but varying associativities and vary-
ing number of sets. As before the input is a trace of addresses generated by
the CPU, and the simulation algorithm outputs the miss-ratio of each cache
configuration.

Three algorithms have been proposed to simulate this group of caches — All-
associativity simulation {7, 5] (called AA in the following), a generalization
of forest simulation [5] (called FS+ in the following), and an algorithm using
generalized binomial trees [14] (called GBF_LS in the following). AA is a stack-
based simulation algorithm that has been described in an earlier chapter. In
this chapter we will describe FS+ and GBF_LS.

In order to develop an intuitive understanding for the algorithms, consider the
simulation of caches with one and two sets, and of maximum associativity n.
The data structures maintained by AA, FS+ and GBF_LS are shown in Fig. 2
(n = 4 in the figure). AA maintains one list of length at least 2n, and searches
the list till the referenced line is found or the end of the list is reached. FS+
maintains three lists of length n, one representing the caches with one set, and
two more representing each of the two sets in the caches with two sets. For
each trace reference, FS+ first searches the list of the one-set caches. If the
referenced line is not found at the top of the list, one of the lists of the two-set
caches is searched. GBF_LS maintains the first list of n entries representing
the one-set caches similar to AA; after that, however, GBF_LS maintains two
separate lists, one of some length n; (< n) consisting of lines in set-0 of the

1Priority Change on Reference
2 A bit-field of the address determines the set

118 CHAPTER 5

One-set Caches Two-set Caches

X - Lines in one-set caches

Y - Lines in set-0 of two-set caches
but not in one-set caches

Z - Linesin set-1 of two-set caches
but not in one-set caches

Figure 2 Data structures used in FS+, AA and GBF_LS

two-set caches but not in the one-set caches (n; = 3 in the figure), and the
other of length (n — ny) consisting of the lines in set-1 but not in the one-set
caches. On a reference the first list is searched; if the referenced line is not
found, the set that the line maps to is determined and the corresponding list
is searched.

AA is a stack algorithm, and maintains all lines in a single list. This causes
lines that belong to the “wrong set” to be examined; e.g. lines that are only in
set-1 of the two-set caches while searching for a line that maps to set-0. FS+,
on the other hand, splits the lists and avoids unnecessary examination of lines
in wrong sets. However, in FS+ the n entries in the list for one-set caches are
repeated in the lists for two-set caches, and so the same line may be examined
twice — once in the list for the one-set caches, and then again in one of the
lists for the two-set caches. GBF_LS splits the lists similar to FS+, but keeps
just entries that are not in the one-set cache list in the new lists.

In the next two subsections we describe FS+ and GBF_LS in greater detail, and
in the subsection following that we discuss the complexity of the algorithms and
some implementation issues. The following notation is used: a set-associative
cache with 25 sets, line size 2L and associativity n is denoted as C%(n) (S is

Non-stack Single-pass Simulation 119

the width of the set field and L is the width of the line field). [X]ines denotes
the lines contained in X where X may be a set, a group of sets or a cache.
The input to the simulation is a trace i, zs,...,zrr of addresses. For any
address, set number or line number y, y[i : j] denotes the bit field between bits
i and j (inclusive) in the binary representation of y. The least significant bit
is numbered 0. The number of bits in an address is denoted by W.

3.1 FS+

FS+ is based on the inclusion property stated in the following lemma.

Lemma 1 For each set p in C%(n) there are ezactly 2% (k > 0) sets, P, in
C§'+k(") such that [p}lines - [P]Iines and ([P]Iines - [p]lz'nes)n[cg(n)}lines = ¢.

Proof :

k extra bits are used for selecting a set in C%, ;(n) than in C%(n). So lines
mapping to a single set, p, in C%(n) map to one of 2* sets in C§'+k (n), given by
P = {ss.t. s[S—1:0] = p}. Only n of the n2* lines of P are present in C%(n)
and those are the n lines that arrived most recently. That is, [pliines consists
of the n lines that arrived most recently in P.

Conversely, lines mapping to one of the sets in P in C&,;(n) can only map to p

in Ck(n). So CE(n) does not have any of the contents of P apart from [pliines-
a

The following two corollaries follow from the lemma and the proof.
Corollary 1

The least significant S bits of the set numbers of the sets in P are identical,
and give the set number of p.

Corollary 2
[CE (n))iines C [CE (n2))tines, if S1 < Sz and ny < n.

Let the caches to be simulated be C§’+i(j), i=0,..M, j=1,...,n A
separate two-dimensional array is maintained for each of the caches C'&,;(n),

120 CHAPTER 5

1 =0,..., M, with sets along one dimension and the n lines mapping to the
set in LRU order along the other. From the inclusion property the contents of
CE,.(j) for j < n is the first j lines in each set in C&,;(n). For each incoming
line, the appropriate set in each array is searched, starting at the array with the
minimum number of sets. If the reference hits at depth m in cache C§, ;(n),
the reference hits in caches C£+k(j), j = m,...,n by the inclusion property.
Hit information for these caches is updated, and the referenced line is moved to
the top of its set. Also when m = 1 the line is known to hit in all the remaining
caches by the inclusion property, and the simulation moves on to the next trace
reference.

Fig. 3 shows an example illustrating FS+ and AA. Here the number of sets
ranges from one to four and the associativities are one and two. The state of
the data structures after line 1011 is processed are shown. If the next reference
is to line 0101, it is found at the top only in C£(2) and FS+ requires five
comparisons, whereas it is at the second position in the AA stack and AA
requires just two comparisons. FS+ requires more comparisons in this case,
because it reexamines lines that it has seen in earlier caches. However, if the
next reference is to line 0011, AA requires eight comparisons, whereas FS+
requires only six comparisons. FS+ is better in this case because the LRU
stack for CE(2) contains lines that are not in the set 0011 maps to in any of
the caches, C¥(2), CE(2) or C£(2).

3.2 GBF_LS

Understanding GBF_LS requires some knowledge of the generalized binomial
tree (gbt) data structure which we describe in the following subsection. The
algorithm itself is described in the next subsection.

Generalized Binomzial Trees

A gbt is a combination of binomial trees and lists; the binomial tree structure
captures the subsetting relationship between caches with varying number of
sets, and the list structure captures the relationship between caches of varying
associativities.

Definition 1 The following is a definition by construction of a gbt of order
n (gbt(n)). (Fig. 4). A gbt(n) of degree zero, Bo(n), is a list of length n.

Non-stack Single-pass Simulation 121

Trace: 0011, 1010, 0100, 0001, 0110, 1000, 0101, 1011

Conventional representation Stack representation
(for FS+) {for AA)
Cach .
ache Tag Set No 1011
L - 101
2 1011, 0101 0
G 1000
L 100, 011 0 0110
C1 @ 101, 010 1 000t
0100
L 10, Of 00 1010
C.(2 '
2 01, 00 01 0011
01, 10 10
10, 00 11
Incoming Address Method No. of Comparisons
0101 FS+ 5
AA 2
0011 FS+ 6
AA . 8

Figure 3 FS+ and AA — Example

122 CHAPTER 5

B,(4)

B,(4)

Figure 4 Definition of the generalized binomial tree

A gbt(n) of degree &, By(n), is constructed by putting together two gbt(n)s of
degree & — 1, By_1(n) and B,_,(n), as follows:

1. Two segments of lengths ny and ny beginning at the roots of By_1(n) and
B, _,(n) are removed so that ny + ny = n.

2. These two segments are merged in an order, determined by the application,
to form the root-list of B, (n).

3. The rematning parts of By_1(n) and B;_l(n) are attached to the end of
this root-list.

Here are some definitions and one lemma relating to a gbt that are necessary
for understanding the algorithm. The rank of a node in a gbt is defined to be?

log([

The tree rooted at a node in a gbt consists of the node and all its descendants.
The degree of a tree is the rank of the root of the tree. The list-child of a node

Number of descendants (inclusive).l)
— .

3 All logarithms are to base two.

Non-stack Single-pass Simulation 123

in a gbt is that child which at some stage in the combining process was a child
of that node in the root-list. A tree-child of a node in a gbt is any child that is
not the list-child.

Lemma 2 (i) A node of rank 0 in a gbt either has no children (leaf node) or
has one list-child. (i1) A node of rank k, k > 0, (a) has ezactly k tree-children
of ranks O through k — 1, if it does not have a list-child, or (b) has ezactly r,
r < k, tree-children of ranks k — r through k — 1, if it has a list-child of rank
k—r.

A subtree of a gbt is now defined as follows. A node of rank k has a subtree
of degree r, r < k, iff it has a tree child of rank r, and this subtree is the tree
left after pruning tree-children of rank r and greater from the tree rooted at
the node. A node of fank k always has a subtree of degree k which is the tree
rooted at the node.

Two operations are defined on this data structure: SWAP and EXCHANGE.
SWAP(v) is permitted only when v is a tree-child and causes the tree of degree
k rooted at v to be swapped with the subtree of degree k rooted at its parent.
EXCHANGE(v) is permitted only when v is a list-child and causes v to be
exchanged with its parent node. The children of v become the children of its
parent and vice versa. SWAP and EXCHANGE are used to move lines up the
tree when their priorities change.

3.3 Simulation Algorithm

Lemma 1 leads to the generalized binomial tree representation of caches used
in GBF_LS. Consider the sets in cache Cs+2(n) where each set contains a list
of n lines. Group sets in Cs+2(n) mapping to the same set in C&,,(n) into
pairs. Combine the line lists in the two sets in each pair by forming a list of
the n most recently referenced lines in either set. Use this list as the root-list,
leaving the remaining n lines in two separate branches, each branch containing
lines from distinct sets in C'5+2(n) Clearly, we now have a forest of ght(n)s
of degree one. The lines in the root-list are in CS+1(”) while the other lines
are only in C%,,(n). The structures formed can be further grouped into pairs
and combined resulting in a gbt(n) of degree two with the line in the root-list
being in C%(n). Further combining may similarly be done obtaining gbt(n)s of
higher degrees. Fig. 5 illustrates the construction of the gbt representation
for the example of Fig. 3. Here S = 0; the tag-field for C&, 4(n) is shown

124 CHAPTER 5

(10)|00 (o1)|1o (01)?1 (10);1

(01)00 (1010 (o0)o1 (00)11

l First combining

(10)c|>o (1O)I1
(o1)10 (01)01
\ I

(10)10 (01)00 (00)0t (00)11
l Second combining

(10)11

(o1)c|)1

(00)41 (00)11 (10)00
(o1)|10

(10)10 (01)00

Figure 5 Construction of a gbt representation — Example

within parentheses; the line field is not shown. To simulate caches C¢,;(j),
t=0,...M,j=1,...,n, the sets in C§’+M(n) are combined until there are 2°
distinct gbt(n)s of degree M. In the following, set number and tag are with
respect to C§+M(n) unless stated otherwise.

The algorithm is presented in page 125. For each address z, the tree that
will contain the corresponding line is first identified using the set field in the
smallest cache [S+L—1 : L]. The tree is then searched for the line as follows:
1. On a right-match of k at a node, the tree-child of rank S+ M — k —1 is
searched next if the tree-child is present. If the node does not have a tree-child
of rank S+ M —k—1 the list-child is of rank greater than or equal to S+ M —k—1
(Lemma 2) and is searched next.

2. When there is a complete set match and tag match at a node, the line is
found and the search is successful. If the line is of rank k then the reference hits
in caches C§‘+i(n), t=M—k,...,M. The number of right-matches of S + ¢
or greater is calculated for : = 0,..., M from the right-match counts obtained
during the search. When the number of right-matches of S + 7 or greater is t,
the reference hits in C§+i(j),j =t+1,...,n.

3. When there is a complete set match at a node and the node does not have a
list-child the search has failed. The line at the node examined last is replaced

Non-stack Single-pass Simulation 125

Algorithm GBF_LS

sim_gbf_ls()
Initialize()
for every reference x in trace
set_.no_CO «— Set number in Cq (¢[S + L —1:L])
set.-no_.CM « Set number in Cn (z[S+ M + L —1: L))
tag «— Tagin Cyp («[W —1: S5+ M + L))
cur_node + Root Map[set_no_C0]
found « 0; end_of_tree — 0
fori—0to M
RM_Count[i] « 0
end for
while (NOT found AND NOT end_of_tree)
if ((cur_node—set_no = set_no.CM) AND (cur.node—tag = tag))
/* Search successful */
found « 1
fori — M to 0
sum — sum + RM_Count[i]
Hit_Array[i][sum] « Hit_Array[i][sum] + 1
end for
else
k « Right_Match(cur-node—setno, set_.no.CM)
next_-node « Child(cur_node, S+M-k-1)
if (next_node == NULL)
/* Search failed */
cur-node—tag « tag
end_of_tree «— 1
else
/* Increment Right Match count and continue search */
RM_Count[k] — RM_-Count[k] + 1
if (next_node is a tree-child of cur.node)
SWAP(next_node)
cur-node «— next_node
end while
Move_to_Top(cur-node)
end for
form — 1 ton:
Hits in cache Cé_l_k(m) = Z:n:o Hit_Array[k][i]
end for
Move_to_Top(node)
while (node not at root of tree)
EXCHANGE(node)
end while
Root_Map[set_no_C0] « node
Child(node, d)
if (d < 0)
/* Complete match at node */
if (node has no list-child)
return(NULL)
else
return(list-child)
else if (node has tree-child of rank d)
return(tree-child of rank d)
else
return(list-child)
Initialize()
Build 2° gbt’s from 25+M Jine lists (Using the combining procedure, assuming arbitrary ordering)
Set all tags to invalid

126 CHAPTER 5

(10)11 (01)01

Incoming
(01)01 Addr: 0101 (1on
(00&(%)11 @ l)00 (m!)omi)oo
(01)10 (o1)10
\ \
(10010 (01)00 (10010 (01)00
(10)11 . (00)11
Incoming
(01)01 Addr: 0011 011
(ookh)n { I)00 1! (76)00
o o1 (0710
(10110 (01)00 (10)10 (01)00
Incoming Address No. of Comparisons
0101 2
0011 3

Figure 6 Examples illustrating Algorithm GBF_LS

with the incoming line, which is now the most recently referenced line, and is
moved to the root by a series of SWAPs and EXCHANGEs.?

In Fig. 6, the examples of Fig. 3 are shown processed by Algorithm GBF_LS.

1. For the incoming line 0101, the first line checked is 1011. The set field
of the referenced line does not match the set field of 1011; the right match of
one is noted and the search moves to the only child 0101. Here the set field
and the tag field match. One right-match of one is seen along the path and so
the reference hits in C§(2), C£(1), C¥(1) and C¥(2). 0101 is now moved to
the top of the tree, which in this case is accomplished through an EXCHANGE.

2. For the incoming line 0011, the tag does not match at the root; the right-
match of two is noted and the search goes to 0101. Here the set field does
not match. The right-match of the set fields of 0011 and 0101 is one; so

*In the algorithm the SWAPs are done during the search which is equivalent.

Non-stack Single-pass Simulation 127

(S+M—-k—-1)=(0+2-1-1) = 0. Since 0011 is a tree-child of rank
zero, the subtree rooted at 0011, {0011}, is swapped with the subtree {0101,
0001} and searched. Both the set and tag fields match at 0011. The search
is successful. Since right-matches of one and two were seen along the search
path, the reference hits only in C¥(2). 0011 is moved to the root through an
EXCHANGE.

The search takes two comparisons for 0101 and three comparisons for 0011.

3.4 Complexity

O((M +1)n) comparisons are required in the worst case in GBF_LS and in FS+.
In FS+ this worst case occurs when the reference misses in all the caches, and in
GBF_LS it occurs when all combinings occur with (ny,n2) = (n, 0) or (0, n) and
the search is along the longest path from the root to a leaf. O(n2M) comparisons
are required in the worst case in AA simulation (assuming that there are no
additional nodes in the stack), where the worst case occurs when the reference
misses in all the caches. In practice, AA does not perform as badly as the worst-
case numbers indicate owing to locality characteristics of traces. Empirical
comparisons show GBF_LS running about a factor of 1.5 times faster than FS+
and about a factor of 2.5 times faster than AA. (This comparison was done using
the authors’ implementations of the three algorithms. Our implementation of
AA is a factor of about 8 times faster than the implementation of AA in Tycho
[4], another cache simulation package that is publicly available.)

Clever implementation is critical to the performance of all three of the algo-
rithms (in fact any cache simulation algorithm). In particular, a large percent-
age of the references normally hit in the smallest cache simulated. Making the
first check a special case and coding it carefully leads to significant performance
improvements. Another aspect to watch out for is the time spent in trace pro-
cessing. When creating trace formats there is an impulse to add in a lot of
information and to make the trace easily readable. This helps in debugging
trace-generation, but it often results in a large fraction of the simulation time
being spent in extracting addresses out of traces. Other good rules of thumb
are:

1. Implement tree structures with arrays whenever possible (please see [14]
for details of implementing GBF_LS with arrays).

128 CHAPTER 5

2. Minimize processing in the simulation loop which iterates over all trace
references. It pays to speed up maintenance of output metrics during
simulation, and use a post-processing step at the end of the simulation to
extract output information.

3.5 Literature Review

The inclusion property on which both FS+ and GBF_LS are based was first
stated by Puzak [9] for reduced trace generation. FS+ as a single-pass algorithm
was suggested by Hill and Smith [5]. GBF_LS was introduced by Sugumar and
Abraham [14]. In this paper, they also introduce an algorithm for simulating
direct mapped caches of varying line sizes but of a fixed size using binomial
trees. Analytical and empirical comparisons of the various algorithms are also
presented.

4 WRITE-BUFFER SIMULATION

In this section, we describe multi-configuration simulation algorithms for write-
buffers. Write-buffers are small queues interposed between the CPU and main
memory. On a store, the CPU enters the address and data into the write-
buffer. Subsequently, the data is written to main memory when free cycles are
available on the bus and main memory. The main advantage of a write-buffer
is that the CPU does not stall on stores unless the write-buffer is full and so the
latency of stores is hidden by the write-buffer usually. Additionally, some write-
buffer designs (coalescing write-buffers) can merge closely spaced writes to a
single cache line into a single write of the entire cache line. Therefore, another
significant advantage of such coalescing write-buffers is that they reduce write
traffic to the second-level cache.

An important parameter in write-buffer design is its size. Larger buffers reduce
the likelihood of write-buffer stalls and also merge more writes. However they
take up more space on-chip, and increase the cost of maintaining program con-
sistency. In this chapter we describe an algorithm for the single-pass simulation
of write-buffers of a range of sizes. The input to the simulation is a trace of store
addresses and their inter-arrival times®. The output of the simulation consists
of the number of CPU stall cycles and write traffic to second-level cache for a
range of write-buffer sizes.

5Inter-arrival time is the time interval in CPU clock cycles between two successive stores

Non-stack Single-pass Simulation 129

Write-buffer

CPU
Cache

——— ——» L2-Cache

Figure 7 Write-buffer Simulation Model

We consider both coalescing and non-coalescing write-buffers. A non-coalescing
write-buffer creates a separate entry in the write-buffer for each store. A coa-
lescing write-buffer checks if it already has an entry that maps to the same cache
line as the incoming store and merges (coalesces) the incoming store with such
an entry, if the entry is not one that is being written out. In a non-coalescing
buffer, entries are written out when bus cycles are available; however, with a
coalescing write-buffer delaying writes is advantageous since subsequent writes
might merge into the line reducing write-traffic. Lines may be written out
whenever free cycles to memory are available (greedy policy), or they may be
written out when the number of entries in the write-buffer exceeds a certain
limit (minimum occupancy policy).

We focus mostly on non-coalescing write-buffer simulation — the algorithm for
coalescing write-buffer simulation is based on the former.

4.1 Preliminaries

Stmulation Model

As shown in Fig. 7, the write-buffer is modeled as a queue between the CPU-
cache subsystem which functions as the requestor and the second-level cache
subsystem which functions as a server. Each store from the CPU-cache subsys-
tem is a request and the inter-arrival time between requests is varying because
the time interval between stores is varying. Assuming that the second-level
cache always hits, the service time is the time to write an L1 cache line into
the second-level cache and we assume that this service time is constant.

The input to the model is a trace of store addresses from the CPU-cache sub-
system, along with the separation, in CPU clock cycles, between successive
stores. The goal of write-buffer design is to minimize both stall cycles, which

130 CHAPTER 5

directly degrade the CPI performance measure, and bus-traffic which increases
contention at the second-level cache. Therefore, the desired output of the sim-
ulation are the number of stall cycles that occur because of a full write-buffer,
and the write-traffic to second-level cache. Here we consider algorithms that
simulate write-buffers of multiple lengths, and report stall cycles and write-
traffic.

A few simplifying assumptions are made in this model. First, there is the
assumption that the trace of inter-arrival times and the addresses of the lines are
independent of the write-buffer size and the service discipline. This assumption
may not be strictly true; for instance, on a buffer stall other functions in the
CPU could continue, and the inter-arrival time might be shorter than when
the buffer does not stall. However, such effects are usually not significant and
are normally ignored in memory hierarchy simulation to maintain tractability.
Second, the contention effects of write-traffic with read miss traffic from the L1
data cache or instruction fetch traffic from the L1 instruction cache are ignored.

Definitions and Notation

The miss-penalty, S, is the constant service time required to write an entry into
the second-level cache. This is often also the penalty of a read miss in the L1
cache.

A merge occurs in a coalescing write-buffer if the incoming store maps to a
cache line already in the buffer, and is not the line that is currently being
written out.

A stall occurs if the buffer is full on the arrival of a store. The number of stall
cycles is the number of cycles it takes for the entry currently being written out,
to leave the buffer and create an empty space.

A clear out occurs if the buffer empties out completely between two successive
arrivals to the buffer. The cycles to clear out at any instant is the number
of cycles it would take for the buffer to clear out; that is, it is the number of
entries in the write-buffer (excluding the entry being written out) times the
miss-penalty plus the time to complete the write of the entry being written
out. The cycles to clear out is a measure of the occupancy of the write-buffer.
The number of empty cycles between two successive arrivals is the number of
cycles for which the buffer is empty and the server sits idle.

Non-stack Single-pass Simulation 131

We denote a buffer with a maximum capacity of ¢ entries as B;. We denote the
number of stall cycles of B; on an arrival k as St(i, k). We denote the cycles
to clear out of B; just before the k** arrival as CC(i,k—) and just after the
k' arrival as CC(3,k+). The k+ is omitted if it is clear from the context.
Finally, we denote the number of empty cycles between arrivals k1 and ks as
E'm(z, k‘l, k’g)

4.2 Non-Coalescing Write-Buffer Simulation

This section develops a multi-configuration simulation algorithm for a range
of non-coalescing write-buffers of varying sizes. Simple write-buffer implemen-
tations often use non-coalescing write-buffers. Also, the simulation algorithm
for coalescing write-buffers is an extension of the algorithm developed in this
section.

We use Fig. 8 to illustrate various relations between write buffers. Fig. 8 shows
the cycles-to-clearout, CC, of three non-coalescing write-buffers with one to
three entries as a trace of ten stores is processed. The miss-penalty is 10 cycles.
The state of a non-coalescing write-buffer is determined completely by its cycles
to clear out. The vertical bars in the figure indicate arrivals, and the cycles to
clear out of the three buffers just before the arrival is shown to the left of the
bar. The cycles between successive arrivals is shown between the corresponding
bars. The stall cycles (on the following arrival) and the empty cycles (between
the arrivals) is shown below each buffer. In this example, ten arrivals are shown.
The one-entry buffer stalls for a total of 34 cycles, the two-entry buffer for 21
cycles and the three-entry buffer for 11 cycles.

In our development of the theory behind the simulation algorithm, we first
state a basic result which says that the difference in state between two buffers
of different sizes is affected only when either of the buffers stalls or experiences
a clear out (Lemma 3). We then bound the difference in states between two
buffers, B; and B;;1 (Lemma 4), and use this bound to show that a buffer
stalls only when all smaller buffers stall. Finally, we derive an expression for
the state of a buffer in terms of its previous state and the state of smaller buffers
between stalls (Lemma 6 and Lemma 7). These results allow us to simulate a
small buffer in detail, and examine larger buffers only when smaller buffers stall.
Since stalls are usually infrequent, this approach leads to significant reductions
in simulation time. omit proofs of many lemmas here; for proofs and more
detail please refer to [13, 11]. The algorithm itself with a brief explanation of
how it works appears in pages 135 and 136. Readers might prefer going to

132

CC-0 CC-0

CC-0

arrival O

SR |

3 8 8
stall-3
inter arr cycles 7 arrival 2
2 15 15
stall-8 stall-5
inter arr. cycles 2 arrival 4

16
stall-8 stall-6

inter arr cycles 2

m—

inter arr. cycles 10

21
stall-1

arrival 6

20

arrival 8

CHAPTER 5

e

5 5 5
stall-5

inter arr. cycles 5 arrival 1

| EEmm Ems

[0} 7 7
clearout-1

inter arr cycles 11 arrival 3

-
- == i

13
clearout-2
inter arr. cycles 12 arrival 5
3 13 23
stall-3 stall-3 stall-3
inter arr. cycles 7 arrival 7
7 17 27
stall-7 stall-7 stall-7
inter arr. cycles 3 arrival 9

Figure 8 State change in write-buffers — Examples

Non-stack Single-pass Simulation 133

the algorithm directly, and coming back to the lemmas later for justification as
required.

Lemma 3 Consider two buffers B; and B;yy. If neither buffer stalls nor ez-
periences a clear out from Arrival ky to Arrival ko (exclusive),

CC(i+1,ky—) — CC(i, ko=) = CC(i + 1, k=) — CC(i, ky—) =
CC(i+ 1, ks+) — CC(s, kot) = CC(i + 1, ky+) — CC (i, k1 +)

where k; is any arrival between ki and k.

In Fig. 8, consider buffers B, and B3 between Arrival 0 and Arrival 4. Both
buffers do not stall or clear out in this interval, and we see that the difference
between their cycles to clear out stays constant at zero in the interval.

Lemma 4 On any arrival, k,

0<CC(i+1,kx)— CO>i, k+) < S

Proof :
0<CC3E+1,kx) — CC(3, kx):
CC(i+ 1) can decrease relative to CC(¢) under two circumstances.

1. B; clears-out and B;;; clears-out for fewer cycles or not at all between
arrivals.

2. Bj41 stalls and B; stalls for fewer cycles or not at all on an arrival.

In the first case, CC(i 4 1) cannot go below C'C(:), since CC(7) is already at
zero. In the second case, B;4+1 has i 4 1 entries since it is stalling. B; can at
most have ¢ entries, and so CC(%) remains below CC(i + 1).

CC(i+1,k+) — CC(i, k+) < S:

CC(i+ 1) increases relative to CC(¢) under two circumstances.

1. Biyi clears-out and B; clears out for fewer cycles or not at all.

2. B; stalls on an arrival and B;y; stalls for fewer cycles or not at all.

134 ' CHAPTER 5

In the first case CC(i+ 1) is at zero and cannot go above CC(%). In the second
case, when B; stalls on an arrival, k, CC(i,k+) =i+ S. But CC(i+ 1,k+) <
(7 + 1) * S; therefore, CC(i + 1) — CC(7) is less than or equal to S. O

The following corollaries to the lemma state that stall inclusion and clear out
inclusion hold between the queues. As a consequence we can simulate the
smallest queue in detail and progressively update the state of bigger queues as
the smaller queues stall.

Corollary 1
B; 4, stalls only if B; stalls.

Corollary 2
If there is a clear out of B; 1 between two successive arrivals &£ and k+1, there
is a clear out of B; for at least as many cycles in the same interval.

Lemmas 6 and 7 give us a means for determining the cycles to clear out of one
buffer from the cycles to clear out of the other, provided the cycles to clear
out of both buffers is known at some earlier arrival, and both buffers have not
stalled after that arrival. Lemma 6 gives an expression for the number of empty
cycles of B;41 between two arrivals k; and k5 in terms of the cycles to clear out
of B;y; and B; at ki+, the cycles to clear out of B; at k;—, and the number
of empty cycles of B; in the interval k; to k3. Lemma 7 gives an expression for
determining the state of B;;1 from the number of empty cycles. We first state
Lemma 5 needed for the proof of Lemma 6.

Lemma 5 If B; and B;11 clear out between arrivals ky and k1 + 1, and of the
next stall after Arrival ky for either of them occurs at Arrival ko then

CC(i ko—) = CC(i + 1, kp—),
CC(i, kp+) = CC(i + 1, ke +)

and

CC (i, ky—) = CC(i + 1, ky—),

where kg 1s any arrival between ky and k».

Non-stack Single-pass Simulation 135

Lemma 6 If neither B; nor B;1 stalls between writes ky and ko (exclusive),
then Em(i + 1,kq, ko) is given as

CC(iky=) — CC' (i + 1, ko), CC(i, ka—) > CC (i + 1, ko—)
0, otherwise

Em(i+1,ky, k2) = {

where CC'(i+1, ky=) = CC(i+1, k1+)—CC (i, ky+)—Em(i, k1, ko) +CC (i, ka—)

Proof :
There are two cases.

Case 1: CC(i,ka=) > CC'(i + 1, ko—)

In the following, we prove by contradiction that Em(i + 1,k1,k2) # 0. By
Lemma 7, CC(i + 1,ks—) = CC'(i + 1,ky—) + Em(i + 1,k1, k2). Assume
Em(i 4+ 1,ky, k3) = 0. Then CC(i + 1,ky—) = CC'(i + 1, ka—). But, CC(i +
L, ky—) > CC(i, ka—)(Lemma 4) > C'C'I(H-l, k2—), a contradiction. Therefore
if CC(i,ky—) > CC (i +1,ka—=), Em(i + 1, ki, ko) # 0).

Since Em(t + 1,k1,k2) # 0, B;11 experiences a clear out at some point in
the interval k1 to k3. By Lemma 5 B; also experiences a clear out before
Biy1. By Lemma 7, CC(i,ky—~) = CC(i + 1,ks—). Since from Lemma 7,
CC(i+1,ky=) = CC (s + 1, ko—) + Em(i + 1, ky, k3), it follows that Em(i +
L ki, ky) = CC(i, ka—) — CC' (i + 1, ko—).

Case 2: CC(i,ky—) < CC'(i + 1, ky—)

We prove by contradiction that Em(i+1, k1, k2) = 0. Assume Em(i+1, ky, ka) #
0 Then since both buffers clear out in the interval k; to ko, CC(3, k2—) = CC(i+
1, ky—). From Lemma5, CC(i+1,ky—) = CC'(i+1, ka—)+ Em(i+1, k1, k2) >
CC (i+1,ky—) ie., CC(3,ka—) > CC (i+1, ka—), a contradiction. Therefore,
Em(z + 1,k‘1,k‘2) =0. O

Lemma 7 If neither buffer stalls between arrivals ky and ko (exclusive),

CO(i+1, ky—)—CC (i, ky—) = CC(>i+1, k1+)—CC(, ky+)—(Em(i, k1, ka)— Em(i+1, ky, ko))

The simulation technique can now be developed as follows. The smallest buffer
1s simulated for each store in the trace. The cycles to clear out and the empty
cycles of this buffer since the last stall are maintained. As long as it does not
stall, we know that a bigger buffer also does not stall. If the smallest buffer

136 CHAPTER 5

Algorithm NC_WBUF:

sim._nc_wbuf()
for each store (or dirty-miss):
sep « Inter-arrival cycles CC[0] «~ CC[0] - sep;
if (CC[0] < 0)
/* Clear Out in smallest buffer */
Em[0] — Em[0] - CC[0]; /* Add —CC— */
cclo] ~ s;
else if (MIN_BUF.SZ > (CC[0] + S))
/* Neither Clear Out nor Stall in smallest buffer */
CC[0] ~ CCJ[0] + S;

else
/* Stall in smallest buffer */
St[0] — St[0] + CC[0] + S - MIN_.BUF_SZ;
for i=1 to Q_LRANGE
if (first stall in buffer i-1)
CC[i] «~ CC[i-1] + S;
Em[i-1] ~ 0,
break;
else
change — (MIN.BUF.SZ + S * (i-1)) - CC[i-1];
CC[i] «~ CCI[i] - (change + Em[i-1});
Em[i-1] «~ 0;
if (CC[i] < CCfi-1])
/* buffers "1” and ”i-1” are clear out synchronized */
Em[i] « Em[i] + CC[i-1] - CC[i};
CC[i] « CC[i-1] + S;
CC[i-1] «~ MIN_BUF.SZ + S * (i-1);
break;
else if ((MIN.BUF_SZ + S*i) > (CC[i] + S))
/* No Stall in buffer ”i”. No clear out sync with ”i-1” either */
CCl[i-1] «— MIN_BUF_SZ + S * (i-1);
CC[i] ~ CC[i] + S;
break;
else
/* Stalls in both buffer ”i-1” and ”i” */
St[i] « St[i] + CC[i] + S - (MIN_BUF_SZ + S*i);
CCl[i-1] — MIN_.BUF.SZ + S * (i-1);
end if
end if
end for
end if
end for

Figure 9 Non-coalescing write-buffer simulation — Algorithm

stalls on an arrival we can determine the state of the next larger buffer using
Lemmas 6 and 7. From that state we can determine if the buffer stalls and if
so for how many cycles. Lemma 6 also lets us determine the number of empty
cycles of the larger buffer. If the larger buffer stalls we can go to the next larger
buffer and continue as before. The detailed algorithm is given in Fig 9.

Non-stack Single-pass Simulation 137

4.3 Coalescing Write-Buffer Simulation

In this section we consider the simulation of coalescing write-buffers. The main
new result is that a limited form of inclusion holds; that is, under certain con-
ditions, we can show that when a merge occurs for a smaller buffer, one occurs
for a larger buffer as well. Additionally, the property proved in the previous
section that a buffer stalls only when all smaller buffers stall continues to hold.
The lemmas proved in the previous section also hold with some modifications
to account for merges. In the description below we first demonstrate that data
inclusion holds between the buffers. We then discuss the changes that need to
be made in the simulation algorithm to account for merging.

The state of a coalescing write-buffer, is a combination of the cycles to clear
out and the addresses of the lines in the buffer. The key observation we use
is that the W lines in a write-buffer, excluding the line being written out, are
the top W lines in an LRU stack of write-lines. This observation follows from
the policy of retiring the least recently written line from the write-buffer to
the second-level cache. The write-buffer is thus similar to a fully-associative
cache, except that it is not always full. We maintain the number of lines in
each write-buffer using the techniques similar to those of the previous section,
and as much of the LRU stack as needed. From these two data structures we
can determine the addresses of the lines in each write-buffer.

When there are merges the techniques of Section 4.2 have to be modified appro-
priately. The most significant change is to Lemma 4, and we restate it below
as Lemma 8. We see that now CC(i) may be greater than CC(i — 1), and as
a result, Corollary 2 of Lemma 4 does not hold. Lemma 6 is true provided
CC(i,k1+) < CC(i+ 1, k1+) with the additional condition that a merge does
not occur only in B;y; in the interval k; to k3. Lemma 7 is also true if a merge
does not occur in only one of B; and B;y;. Lemma 9 is for the case where

CC(i, ky+) > CCi + 1, ki+).

Lemma 8 On any arrival, k,
=S <CCUE+1Lkx)-CCUL k)< S

In addition
-S<CCGE+n k)~ CC3H, k+)Vn >0

Proof :
In addition to the cases we considered in the proof of Lemma 4, we need to
consider the case when differences in state occur as a result of merges.

138 CHAPTER 5

That is, apart from the two cases mentioned earlier, CC(i 4+ 1) can increase
above C'C(%) when a line merges in B;, and not in B;y,. But this occurs only
when B; has an additional entry. The increase when this happens is a maxi-
mum of S, and so CC(i + 1) cannot go more than S above CC(3). Similarly
CC(i) can increase above CC(i+ 1) when a line merges in B;4; but not in B;,
and for similar reasons CC(7) cannot increase to more than S above CC(i+1)
when this happens. Further, note that CC(i) can increase above CC(i + n),
n > 0, only when a merge occurs in B;;, and not in B;, and so CC(i) can
never increase more than S above CC(i + n) by the earlier argument. O

Lemma 9 If neither B; nor Biy stall between writes ky and ky (exclusive),
and
if CC(i,k1+) > CC(i + 1,k1+) and there is no merge in B; alone, then

CC(i+1,k14) + (CC (3, ka—) — CC(i, k1+)),
Min(CC(i, k1+, ka—)) >
(CC(i, k1+) — CC>i + 1, k1+))
CC(i, ka—) + Min(CC(z, k1+, k2—)), otherwise

CC(i+1,ky) =

where Min(CC(i, k1+, ka—)) is the minimum value of CC(i) in the interval
ki+ to ko—.

By the inclusion property of LRU fully-associative caches, when a merge occurs
in a buffer, a merge will occur in other buffers with as many or more entries.
Also, by Lemma 8 a buffer can have at most one more entry than larger buffers.
In the simulation, we first determine if there is a merge in any of the buffers.
If there is, we start at the smallest buffer size and examine larger buffer sizes
till a merge occurs somewhere other than the last entry examined. Then we
know that a merge would occur for all larger buffer sizes as well, and we do not
examine larger buffer sizes. If we know that there is no merge in any of the
buffers we start at the smallest buffer size and examine buffers till there is no
stall at some buffer. We maintain counts of empty cycles and minimums, and
use them to derive the state of buffers.

4.4 Performance

Empirical performance evaluations of implementations of these algorithms show
that for the non-coalescing case the single-pass simulation algorithm is on the

Non-stack Single-pass Simulation 139

average about five times faster than the naive algorithm which examines all
buffer sizes each time. The number of buffer sizes that need to be examined is
about three on the average where the total number of buffer sizes is 32. For
the coalescing case the single-pass algorithm is about three times faster on the
average. The number of buffers examined is about 15 on the average where
the total number of buffer sizes is 32. These evaluations were done on traces
of some of the SPEC benchmarks, with write-through caching.

4.5 Literature Review

The write-buffer simulation algorithms were introduced by Sugumar and Abra-
ham [13, 11]. Related work has also been published in work on perturbation
analysis in the context of manufacturing systems. In Ho, et al. [6] the simula-
tion of two buffer sizes simultaneously in an assembly line is described. Also
when assumptions are made about the stochastic behavior of the inter-arrival
times, methods like augmented systems analysis [3] are available for evaluating
the effect of varying buffer sizes. The stochastic nature of write inter-arrival
times is a topic for future research. For a good overview of the perturbation
analysis perspective see [15].

5 DIRECTIONS FOR FUTURE WORK

In this chapter single-pass simulation algorithms have been described for three
architectural subsystems. All the algorithms presented in this and the previous
chapter belong to the class of single-pass algorithms, that accept a common
trace to a range of configurations as an input and generate performance metrics
for each configuration. We believe opportunities exist for developing single-pass
simulation algorithms that are not necessarily based on a trace input but can
simulate multiple configurations of interest simultaneously. We propose the less
restrictive term multi-configuration simulation for this type of simulation.

The work presented here may be extended in a couple of directions. First,
multi-configuration simulation algorithms need to be developed for other types
of architectural simulators such as CPU simulators, multiprocessor simulators
and interconnection network simulators to name a few. Such work will lead to
the development of efficient simulation algorithms for these components. Fur-
ther, as more work on multi-configuration simulators is done, unifying aspects of
multi-configuration simulation development might emerge. Second, most work

140 CHAPTER 5

on multi-configuration simulation algorithms has been on isolated architectural
features, such as, caches or write-buffers. Multi-configuration simulation al-
gorithms are likely to be even more important in complete system simulators,
since in such systems the time spent simulating any one part of the architecture
is probably small compared to the total system simulation time, and rerunning
the entire system simulation for each small architectural change is inefficient.
In such systems, changes made to one architectural feature might propagate to
other parts of the system, and handling such effects efficiently is a challenging
problem that needs to be addressed.

Non-stack Single-pass Simulation 141

Exercises

5.1

5.2

5.3

5.4

5.5

5.6

Construct a simple cache simulator for simulating a single set-associative
cache. Determine the percentage of time spent in (1) Reading in addresses
from the trace and (2) Actually simulating the cache.

Define Ran(k) as an infinitely long trace of random addresses chosen from
integers 1...k. Define S(7) as the fraction of hits at depth i of the stack in a
fully associative stack simulation. For a Ran(k) trace derive an expression
for S(7) under the following replacement schemes

(a) Least recently used (LRU)
(b) Least frequently used (LFU)

Is S(¢) defined for FIFO. Why or why not?

Construct a stack simulator for OPT using complete lookahead to obtain
priority information. Use the simulator to determine S(¢), ¢ = 1,...,k for
Ran(k) for k = 4,8, 16.

Derive an expression for S(i) for Ran(k) under OPT replacement from first
principles. ‘

The OPT stack can be broken up into groups within which addresses are
in priority order [e.g if stack is 23 74 5 9 8 6 , where numbers represent
priorities of addresses at those positions and lower numbers indicate higher
priorities, it may be broken up into groups as follows (2 3 7) (4 5 9) (8)

(6)).

(a) Use the simulator constructed for Exercise 5.3 to determine the num-
ber of groups in a stack on average for the Ran(k) trace for different
values of k. How can groups be used to avoid a sequential search of
the OPT stack (Hint: Use the fact that hits always occur at the lead-
ing entry of a group) How can groups be used for a tree simulation of
oprT?

(b) Derive an expression for the average number of groups in a stack for
Ran(k) from first principles.

Develop a tree simulation algorithm for fully associative caches under LFU
replacement. The number of operations per trace reference should be O(log
of number of stack entries). (Hint: Consider maintaining a list of lines that
are not in their correct priority position and performing update operations
only for members of that list.)

Prove that the SWAP operation defined in page 123 is always possible.

142 CHAPTER 5

5.7 Describe an implementation of the multiprogramming (context switching)
technique of the previous chapter with the gbt algorithm.

5.8 Enumerate all distinct gbt(2)s of degree 4. Which of these do you think
would be most common in a cache simulation? Construct a gbt simulator
or modify the gbt simulator available as a part of the Cheetah package
to output statistics on gbt structure frequencies. Run a trace of a real
applications through the simulator and check if your intuition is correct.

5.9 The non-coalescing write-buffer simulation algorithm described in Sec-
tion 4.2 examines buffer sizes until there is no stall at some buffer size,
which is efficient when stalls are infrequent — the common case. However,
programs go through periods of excessive write activity during which even
large buffers fill up and cause stalls. Think of an optimization to avoid
examining all buffer sizes on each write under such situations.

5.10 Take a public domain timing simulator of a CPU (such as DLX or SPIM)
and evaluate the effect of altering the depth of the add pipeline on the
course of a simulation. Implement a single pass simulator of multiple
pipeline depths by duplicating necessary state variables. Compare the
simulation speed of your single pass implementation against simulating
each pipeline depth separately. Think of ways to improve the efficiency of
your single pass simulator.

Non-stack Single-pass Simulation 143

REFERENCES

[1] G. M. Adelson-Velskii and E. M. Landis. An algorithm for the organization
of information. Soviet Math. Doklady, 3:1259-1263, 1962.

(2] B. T. Bennett and V. J. Kruskal. LRU stack processing. IBM J. of
Research and Development, pages 353-357, July 1975.

[3] C. G. Cassandras and S. G. Strickland. On-line sensitivity analysis of
Markov chains. [EEE Trans. on Automatic Control, 34(1):76-86, jan 1989.

[4] M. D. Hill. Man page of tycho.

[6] M. D. Hill and A. J. Smith. Evaluating associativity in CPU caches. IEEE
Trans. on Computers, 38(12):1612-1630, December 1989.

[6] Y. C. Ho, M. A. Eyler, and T. T. Chien. A gradient technique for gen-
eral buffer storage design in a production line. Int. J. Prod. Research,
17(6):557-580, 1979.

[7] R. L. Mattson, J. Gecsei, D. R. Slutz, and 1. L. Traiger. Evaluation tech-
niques for storage hierarchies. IBM Systems Journal, 9(2):78-117, 1970.

[8] F. Olken. Efficient methods for calculating the success function of fixed
space replacement policies. Technical Report LBL-12370, Lawrence Berke-
ley Laboratory, 1981.

[9] T. R. Puzak. Analysis of Cache Replacement Algorithms. PhD thesis,
University of Massachusetts, Amherst, 1985.

[10] D. D. Sleator and R. E. Tarjan. Self adjusting binary search trees. J. of
the ACM, 32(3):652-686, 1985.

[11] R. A. Sugumar. Multi-Configuration Simulation Algorithms for the Evalu-
ation of Computer Architecture Designs. PhD thesis, University of Michi-
gan, 1993. Also available as Tech. Report CSE-TR-173-93, CSE Division,
University of Michigan.

(12] R. A. Sugumar and S. G. Abraham. Efficient simulation of caches under
optimal replacement with applications to miss characterization. In Proc.

ACM SIGMETRICS Conf., pages 24-35, 1993.

[13] R. A. Sugumar and S. G. Abraham. Fast efficient simulation of write-buffer
configurations. In Hawaii Intl. Conf. on Systems Sciences — Architecture
Track, 1994.

144 CHAPTER 5

[14] R. A. Sugumar and S. G. Abraham. Set-associative cache simulation using
generalized binomial trees. ACM Trans. on Computer Systems, 1995 ?
Conditionally accepted pending minor revisions.

[15] R. Suri. Perturbation analysis: The state of the art and research issues
explained via the GI/G/1 queue. Proceedings of the IEEE, T7(1), jan 1989.

[16] D. Thiebaut. On the fractal dimension of computer programs and its
application to the prediction of the cache miss ratio. IEEE Trans. on
Computers, 38(7):1012-1026, July 1989.

[17] J. G. Thompson. Efficient analysis of Caching Systems. PhD thesis, Uni-
versity of California, Berkeley, 1987.

[18] I. L. Traiger and D. R. Slutz. One pass techniques for the evaluation of
memory hierarchies. Technical Report RJ 892, IBM, 1971.

EXECUTION DRIVEN
SIMULATION OF SHARED
MEMORY MULTIPROCESSORS
Bob Boothe

University of Southern Maine, Portland, Maine

1 INTRODUCTION

Execution driven simulation(7] is a technique for building fast instruction level
computer simulators. It is applicable when the instruction set of the simulation
host machine is the same as, or very similar to, that of the machine being sim-
ulated. In this chapter we examine three execution driven simulators designed
to study shared memory multiprocessors using a uniprocessor as the simulation
host machine.

In building a simulator one can take advantage of the fact that some events
are of greater interest than others. For instance a simulator of shared memory
multiprocessors is primarily concerned with the load and store instructions
which access memory. For other instructions, such as arithmetic and control,
the only concern is that they get performed and that their execution time
is properly accounted for. The key idea of execution driven simulation is that
rather than simulate each individual instruction, the bulk of the instructions can
be directly executed by the host computer. Only those instructions requiring
special treatment need to be simulated.

The simulation involves two stages: first a preprocessing of the application
and then the actual simulation. In the preprocessing stage, the application
program is modified by inserting extra instructions that will perform simple
operations needed by the simulator and by inserting calls to simulator routines
at important events. Figure 1 shows a simple example. Here the register Rtime
is used to accumulate the execution time (in processor cycles) as the program
is executed. Each application instruction is followed by an extra instruction
that increments this time register. The load word instruction (1w) in this

146 CHAPTER 6

addi Rtime, Rtime, 1

ey e I SR
mul.s £4, f6, £828di Rtime, Rtime, 4

bt RS,
oub %6, ¥l rd.. call simulator_lw

sub r6, rl, r4d
"...addi Rtime, Rtime, 1

(a) original code (b) modified code

Figure 1 A simple example of code augmentation. The 1w instruction
(marked with the asterisk) causes an event of interest to the simulator, and
thus in the modified code it is replaced with a call to the simulator. All exam-
ples in this chapter use the MIPS instruction set.

example causes an event of interest to the simulator; it is replaced by a call to
a simulator routine. When the modified application is executed, these inserted
calls will feed events to the simulator. This general technique is called ezecution
driven simulation because it is the execution of the modified application and
the inserted calls that drives the simulation process.

The preprocessing stage of modifying the application code is called augmenta-
tion. It is generally done at the machine language level on either object files
or the executable file. In general it is more sophisticated than in the example.
For instance, a simple improvement can eliminate most of the time counting in-
structions. Instead of inserting a time counting instruction after every original
instruction, one time counting instruction can be used for an entire basic block.
(A basic block is a group of contiguous instructions that is always executed in
sequence. The only jumps into the block are to the first instruction. The only
jumps out are from the last instruction.) The single time counting instruction
for a basic block would update the time counter by the sum of the times of its
component instructions.

The two augmentations seen so far, time counting and event call-outs, form
the basic mechanism used by an execution driven simulator. Later we will see
several other useful augmentations.

Code augmentation is currently an important technique for building other tools
besides simulators. Profilers such as pixie[l2] augment the application code

Ezecution Driven Simulation of Shared Mem. Multiproc. 147

to increment counters each time a basic block is entered. After execution is
completed, these basic block counts are then used to calculate the amount of
execution time spent throughout the application. Address trace generation
tools[10] have been built by augmenting the code to record the sequence of
basic blocks that are executed. This sequence is then used later to reconstruct
the full reference stream.

The advantage of execution driven simulation is speed. By directly executing
most instructions at the machine’s execution rate, the simulator can operate
one to two orders of magnitude faster than cycle by cycle simulators[13] that
decipher and emulate each individual instruction. Since the scope of simulation
studies often seems to be limited by the speed of the simulator, execution driven
simulation is a valuable technique.

The remainder of this chapter is organized as follows: Section 2 discusses the
four main implementation decision involved in designing an execution driven
simulator. Section 3 compares the different choices made by three different ex-
ecution driven simulators to these implementation decisions. Sections 4 and 5
then look more closely at one of these simulators. Section 6 presents perfor-
mance measurements, and Section 7 summarizes and concludes the chapter.

2 IMPLEMENTATION DECISIONS

In this section we discuss the major implementation decisions that must be
made in designing an execution driven simulator. Some of these decisions apply
to any execution driven tool, while others arise when trying to simulate multiple
processors or when simulating shared memory.

2.1 Decision 1: Where do extra registers
come from?

Extra registers are needed for many code augmentations. For example, in

Figure 1 the extra register (Rtime) was used to count the execution time. A

good compiler, however, generally tries to use all available registers, and thus
extra registers are not available.

Some possible solutions are:

148 CHAPTER 6

Modify the compiler: An easy solution, if you can control the compiler, is
to reserve a few registers and not allow the compiler to use them when
generating code. One problems is that a restricted register set will cause
the compiler to generate more register to memory spills. Timings gener-
ated from this code will not match exactly timings that would have been
produced if the entire register set were available. A second problem mod-
ifying the compiler is that library routines, whose source code is usually
not available, would need to be recompiled before they could be simulated.

Memory to memory instructions: Another potentially easy solution avoids
the problem altogether by using only memory to memory instructions.
This can’t be done directly, however, since memory to memory operations
are not provided by RISC processors. The next two implementations are
mechanisms for freeing up a few temporary registers long enough for a
RISC processor to update a memory resident value.

Save registers to stack: By convention, the compiler uses one register to
hold a stack pointer. This provides a base address for pushing the contents
of a few registers onto the stack. These registers can then be used to
perform the memory update, and then the registers’ values can be restored
from the stack.

Save to global pointer area: Another convention is that of having a certain
register that holds a pointer to the base of a memory block containing
global variables. If a few locations in this block are reserved, they can be
used like the stack was to temporarily stash the contents of a few registers.

Commandeer and remap: A more efficient technique than obtaining new
temporary register for each augmentation is to commandeer three unfre-
quently used registers for use by the code augmenter. The original values
of these registers are stashed in memory. One of these registers is now
used to hold a memory base address, and the other two are used in load-
ing operands and storing the result. In the rare cases when any of these
commandeered registers are used in the original code, additional code is
inserted to remap the instruction and to load and store the registers’ real
values. An example of this is shown in Figure 2. This technique was used
in the pixie profiler.

Virtualize the register file: The most sophisticated solution is to virtualize
the register file. The virtual register set consists of the registers used in
the original code as well as the additional registers used in the augmented
code. These virtual register are assigned home locations in memory and
then mapped into whatever physical registers are available at the points

Fzecution Driven Simulation of Shared Mem. Multiproc.

149

1w r2, 12(rl) rl
addiu r2, r2, 3 »time counting
sw r2, 12(rl) L
R SR I R sad e
B B T LR L0 S S o[Valne r1
sub x4, rd, rl v T2 0 A e valuerl 4[alie v
oy TS e, sub x4, T4, x2 L
......................... 1ot 2 0 }r2¢- value rl 523 value;3'
1w r3, 4(rl) }r3e valuer2 12 vatue Xitme
or r2, r2, r3 /\/
S¥.....52. 8(x1) }r2- valuer3
(a) original code (b) modified code (c) memory block

Figure 2 Commandeering three registers to provide memory to memory op-
erations. In this example, the three commandeered registers are r1, r2, and r3.
Part (a) shows the original code. This is then transformed into the modified
code in part (b). The original values from the registers are stashed in the mem-
ory block shown in part (c). In the modified code, the first piece increments the
time value to account for all 3 instructions. It uses the commandeered registers
to load, increment, and store the time value in the memory block. The second
piece, the add instruction, is unchanged. The third piece, the expansion of the
sub instruction, uses the commandeered register r1, and thus it is preceded by
an extra instruction to load the value that would have been in r1. This value is
loaded into r2, and then the sub instruction is remapped to use r2 instead. The
last piece shows how an instruction that uses all three commandeered registers

is remapped.

in the program where they are used. An efficient implementation of this

will be described in Section 4.

2.2 Decision 2: How do you get the original
instruction addresses?

The object code will be expanded by all of the extra augmenting instructions
inserted into it. If we wish to accurately simulate the instruction caches, we
need to obtain the original addresses of the application’s instructions. Below
are a few approaches to obtaining the original addresses:

Fixed expansion factor: In a simulator designed by Jeff Rothman[1§] all
instructions are expanded by a fixed factor into 8 instructions. Usually
all of these aren’t needed, so nops are used for padding. This is an easy
solution that makes calculating the original addresses simple.

150 CHAPTER 6

Complete address map: At the other extreme, one might choose to pro-
vide a complete map of new instruction addresses back to their original
addresses.

Partial address map: A more compact mapping takes advantage of sequen-
tial portions known as basic blocks. In this mapping a basic block number
maps into a starting address and an instruction count. This technique has
been used for compact storage of address traces[10].

Don’t care: Tradeoffs must be made in any simulator, and in most multi-
processor simulators the tradeoff is made to ignore instruction accesses.
Instruction caches generally have very high hit rates, and thus ignoring
instruction misses should have only minor affects on timing accuracy. If,
however, instruction caches are simulated, they will dominate the simula-
tion time since instruction accesses occur every cycle where as other events
occur much less frequently.

2.3 Decision 3: How do you create multiple
processes?

To simulate multiprocessors we need multiple processes, each with their own
set of registers, stack, and local variables. The simulator running on a single
processors will then cycle amongst these processes. Our implementation options
are:

Unix processes Use the mechanisms available in UNIX for creating and com-
municating among processes. This may be simple, but there is a very large
overhead in using operating system level context switching and scheduling.
A typical simulation will have events occurring every 10 to 100 instruc-
tions, and thus a 10,000 cycle UNIX context switch would dominate the
execution time.

Lightweight threads A much better choice is to use lightweight threads. An
example of this implementation is the Proteus[9] simulator. It performs a
context switch in just 135 instructions. Most of this being used to save
and restore the 64 registers on the MIPS R3000.

In-line context switching An even faster approach named in-line context
switching is used in the FAST{2] simulator. It takes advantage of the
fact that usually only a small fraction of the registers are used between

Ezecution Driven Simulation of Shared Mem. Multiproc. 151

simulation events. It augments the application with code that loads just
those registers that are used and stores just those registers that are changed
between simulation events.

2.4 Decision 4: How do you specify and
identify shared memory references?

Real shared memory machines such as the Sequent[14] support an extended C
language that allows the declaration of static shared global variables as well the
dynamic allocation of shared memory. A shared integer is declared: “shared
int i;”, and shared memoryis allocated with “ptr = shmalloc(size);”. Since
shared memory accesses are events of interest to the simulator, a mechanism is
needed for identifying these accesses within the application program.

Compiler tagging The cleanest solution would be to modify the compiler to
recognize the shared memory language extension and then to tag accesses
to shared memory variables in the assembly language code. The compiler
could easily tag direct accesses to shared variables, but indirect accesses
through pointers would be difficult if not impossible to determine.

Source code manipulation The approach taken in Proteus[9] was to modify
the source code to use a new operator @ for indirect accesses to shared
memory instead of the usual -> operator. They then run a preprocessor
on the source code to transform these new operators into procedure calls
to the simulator. The main drawback of this method is that the inserted
procedure calls will substantially change the way an optimizing compiler
produces code, and the timings derived from such code will be inaccurate.

Dynamic address testing If all shared memory is allocated from a single
block of memory, shared memory references can be identified by compar-
ison to an address range. This comparison can be done either within the
simulator or more efficiently as an additional code augmentation. A good
place for this shared memory block is at the top of user memory space,
since then only a single address comparison will be needed to identify a
shared reference.

Variable naming While dynamic address testing can catch indirect accesses
to shared memory, a mechanism is still needed for declaring shared global
variables. The approach used in the FAST[2] simulator is to require
shared variable names to begin with the prefix “shared”. These names

152 CHAPTER 6
Extra Instruction | Multiple Shared
Simulator || Registers | Addresses | Processes Variables
Tango save to don’t Unix dynamic
stack care processes address testing
Proteus save in don’t lightweight source code
globals care threads manipulation
FAST virtual don’t in-line dynamic address
registers care context testing and
switching | variable naming

Table 1 Design decisions in three example simulators.

are available to the code augmenter because all global variable names are
stored by the compiler in an object file’s symbol table for later use during
linking. The advantages of this approach are that the original compiler
can be used, and there are no semantic changes made to the application
programs being studied. Since the application is semantically unchanged,
the object code produced is unperturbed.

3 EXAMPLE SIMULATORS

In this section we look at three execution driven simulators that were all de-
signed for basically the same purpose: simulating a variety of large shared
memory multiprocessors at the instruction level. Table 1 shows the design
choices made in these simulators.

3.1 Tango

The Tango simulator[8] was developed at Stanford. It is based on Unix shared
memory, and it uses Unix context switches in order to switch from executing
one process to another. These heavy weight context switches require thousands
of cycles, and thus dominate the execution time of their simulator. They
report slowdown factors ranging from 500 to 6000. This slowdown factor is a
measure of a simulator’s speed. The slowdown is equal to the average number
of machine cycles taken to simulate one cycle of one processor.

Ezecution Driven Simulation of Shared Mem. Multiproc. 153

Because of the large cost of Unix context switches, they provide an option to
tradeoff accuracy for faster execution by letting the individual processor clocks
get out of sync. This allows them to accumulate a number of global events
before context switching and thus reduces the context switch frequency. These
faster simulations, however, no longer accurately interleave the shared memory
references.

Recently they have rewritten their simulator to use a light weight thread pack-
age. This should significantly reduce the magnitude of their context switch
overhead problem.

Tango requires all shared memory to be dynamically allocated. The drawback
of this is that all accesses to shared global variables require two memory accesses
instead of just one. In the extreme case this could double the reference rate of
an application.

3.2 Proteus

The Proteus simulator was developed at MIT[5, 9]. It uses a light weight thread
package and is substantially faster than Tango. They report typical slowdown
factors ranging from 35 to 100.

As mentioned in Section 2.4, they identify shared variables by modifying the
application’s source code. They replace shared memory references in the C
source code with calls to the simulation routines (and optionally also insert
statistics gathering calls.) They then compile this modified code and apply
code augmentation for timing on the assembly language. Because each shared
reference (which should be just a single instruction) is replaced with a proce-
dure call, the compiler optimizations that can be applied and the object code
produced are substantially changed from that which would have been produced
if the original code were compiled directly.

In fact, their good performance is partially due to the fact that their insertion
of procedure calls causes the compiler to save away important registers. This
allows them to “exploit ‘partial’ context switches” in which they only save a
limited amount of the register file. This is good for performance, but bad for
timing accuracy.

154 CHAPTER 6

3.3 FAST

The FAST simulator was developed by this chapter’s author at Berkeley[2]. Tt
uses sophisticated code augmentation techniques in order to provide both high

speed and high accuracy. Its slowdown has been measured as ranging from 10
to 100.

The remaining section of this chapter explore the FAST simulator in greater
detail. Section 4 explains the complete set of code augmentations used in FAST.
Section 5 describes the rest of the simulator, and Section 6 presents detailed
performance statistics.

4 CODE AUGMENTATIONS

As described earlier, code augmentation is the process of taking an original
piece of code and adding to it and modifying it so that it can perform additional
functions. In this section we describe all of the code augmentation used in the
FAST simulator. We then show a detailed example that includes some of the
more complex augmentations.

Time Counting: The code augmenter breaks the code into basic blocks and
then adds an instruction that increments a time counter by an amount
equal to the number of cycles that would be required to execute the original
basic block.

Accurately determining timing is more complicated than just counting
instructions; the processor pipeline must be modeled. Usually looking
just within a basic block is adequate, but sometimes long latency floating
point operations continue executing past the end of a basic block and affect
the timing of subsequent blocks. If these subsequent blocks are selected
by conditional branches, the exact timing will depend upon the branch
paths taken at execution time. These cases are rare, and for FAST we
used timings based on static prediction of branch paths. Accurate timing
would be further complicated if modeling a superscaler processor.

Event Call-Outs: At special events, such as shared memory references, code
is inserted to call out to the simulator in order to let the simulator regain
control and process the events.

For FAST these events are load and store instructions. There are several
variants of these instructions: byte, half-word, long, and double. Each

Ezecution Driven Simulation of Shared Mem. Multiproc. 155

is replaced with a small template that sets up the parameters for the
procedure call and later upon return from the simulator moves the result
into the destination register specified by the original instruction.

Reference Indirection: For a single process program, for which the compiler
thinks it is compiling, static local variables are assigned to fixed memory
addresses. However, we are simulating multiple processes within a single
address space. Each thread needs its own copy of the local variables, and all
references to local variables must therefore be transformed into references
that are relative to the currently executing thread.

In FAST, one register is used as a context pointer. This points to the
current thread’s context block which contains the thread’s local state (reg-
ister values, local variables, and stack). All local variables are reassigned
new addresses in this context block, and all instructions accessing local
variables are then modified to be relative to the context pointer.

Reallocation of Shared Variables: Since a uniprocessor’s compiler does not
distinguish references to shared variables, shared memory references must
be identified by the code augmenter.

In FAST shared variables are identified by the prefix “shared” that is
used on all shared variable names. These variables are then reallocated to
locations within the shared memory block.

Dynamic Reference Discrimination: The code augmenter can not deter-
mine by looking at the code whether an indirect reference is to a local or
to a shared location. It therefore adds code that tests at execution time
if the referenced address falls within the shared memory region. Based on
this test the code then either directly executes the local access or calls out
to the simulator to simulate the shared memory reference.

In our research into parallel machines(3, 4], we proposed language exten-
sions that would allow a compiler to classify indirect references as directed
either to local or to shared memory. Current compilers can not perform
this classification, but we needed this classification for our studies of code
reorganization techniques. (We were studying grouping of shared memory
references to help hide remote memory latency.) We used code augmen-
tation to collect a trace file that recorded for each memory referencing
instruction whether it was used to access local or shared variables. This
trace file was gathered on the first simulation run of the application and
then fed back into a second pass of the code augmenter to provide complete
classification.

Re-Optimization: Having obtained a trace classifying each access as either
local or shared, we now wanted to study how an optimizing compiler might

156 CHAPTER 6

reorganize the code to group independent shared memory references. We
implemented this as just another code augmentation within the code aug-
menter. This augmentation operated on basic blocks and moved shared
memory load instructions upwards until their movement was blocked by
a data dependency. During this process there were sometimes false de-
pendencies caused by the allocation of temporary registers in the original
code. To bypass these we added a few temporary registers using the aug-
mentation technique of virtual registers, which will be discussed shortly.

Extended Instruction Sets: For the most part we accepted the instruction
set of the processor on which simulations were being executed: the MIPS
R3000[11]. However we wanted to add a number of new instructions such
as: double word load and stores, local and shared memory versions of
all loads and stores, an explicit thread switch instruction, fetch-and-add,
and other special synchronization instructions. These were all added by
having the code augmenter convert these new instructions into calls to
special simulator routines.

In-line Context Switching: The augmented code typically runs for a small
number of instructions before reaching an event and returning control to
the simulator. During this short execution, only a small subset of the regis-
ter file is ever accessed, and it would therefore be wasteful to load and store
the entire register set. We avoid this waste by inserting customized context
loading and storing code into the application at basic block boundaries.

Between basic blocks all register values reside in memory in a thread’s
context block. At the start of a basic block we insert code to load just
those registers that are going to be used, and at the end of the basic block
we insert code to save any registers whose values may have changed. When
only a few registers are used between context switches, this in-line context
switching provides a large savings in context switch overhead compared to
a routine that loads and stores all 64 registers. Performance statistics are
presented in Section 6.

Virtual Registers: When performing code augmentation, extra registers are
needed for a variety of purposes, such as for holding the time counter.
We call our technique for making these extra registers available virtual
registers. By virtual registers we mean extra registers that can be used in an
assembly language program but that do not exist in the actual processor.
For example, the register Rtime (used in the Figure 1) could be provided
as a virtual register.

The idea of virtual registers was motivated by the technique of in-line
context switching. It usually leaves most register values residing in the

Erecution Driven Simulation of Shared Mem. Multiproc. 157

context block, not in the actual register file. The key to providing virtual
registers is that when a register is loaded and later used, it can be loaded
into any physical register as long as the later use of that register is changed
to match. Thus the virtual registers used in the original code need not be
the same as the physical registers used in a modified basic block. Over the
course of the program, different basic blocks might use different physical
registers to hold a particular virtual register.

The benefit is that we can now have more virtual registers than there are
physical registers. For FAST, the virtual register Rtime and two other
virtual registers (Rsbp and Rcp to be discussed in the next example) are
used so frequently that we chose to let them permanently reside in physical
registers. Any uses of the original registers were remapped to other physical
registers.

The mapping between virtual and physical registers is possible as long as
each individual basic block does not use more virtual registers than there
are physical registers. Mapping problems are rare and occur only for large
basic blocks; they are easily handled by splitting these large blocks into
multiple smaller blocks.

Virtual registers simplify the implementation of complex code augmenta-
tions because additional virtual registers can be added without concern for
the details of how those extra registers are to be provided. For example,
in the re-optimization augmentation a few extra temporary registers were
needed. These extra registers were made available as virtual registers.

4.1 An example

Figure 3 uses a small C code fragment to demonstrate several of the code aug-
mentations described above. The original assembly language instructions are
shown in part (a); the modified code is shown in part (b).! These instructions
were generated by the compilation of the expression A = B+ C + X, where the
variables B and C will be loaded from local memory, the variable X is already
in register r8, and the result A will be stored to shared memory. Assume for
this example that this expression by itself forms a basic block. Basic blocks are
the granularity at which we perform analysis and code augmentation, and thus
this small basic block can serve as a complete example.

1The instruction set is approximately that of the MIPS R3000[11], but it has been sim-
plified slightly to make the example clearer.

158 CHAPTER 6

code for: registers: Rgp = global pointer
A=B+C+X Rsbp = shared base pointer
where: Rcp = context pointer
A isavariable in shared memory Rtime = time value
B,C are variables in local memory simulator interface:
X is a variable in register r8 simulator_sw(r4 = address, r5 = value)
_ v lw r8, offset of rB(Rcp)) load used
1w rl, local_addr_of_B(Rgp) 1w rl, local_addr_of_B(Rcp) registers
1w r2, local_addr_of_C(Rgp) 1w r2, local_addr_of_C(Rcp)
add r3, rl, r8 add r3, rl, r8
add r3, r3, r2 add r3, r3, r2
sw r3, shared addr_of_A(Rgp)" sw rl, offset_of_rl(Rcp)
sw r2, offset_of_r2(Rcp) save mOdlﬁed
. sw_ x3, offset_of r3(Rep) registers
“addi Rtime, Rtime, 4 > accumulate

addi r4, Rsbp, shared_addr_of_A time
- lw . rSz offset.:__of_r3(ch) cal}outto
v addi Rtime, Rtime, 1 simulator
“call simulator_sw

(a) original code (b) modified code

Figure 3 Example of code augmentation

The first step is to identify which instructions can be directly executed by the
host processor and which instructions will require a call out of the applica-
tion to a simulator routine. In this example the last instruction references
shared memory and thus will be replaced with a call to the simulator function
“simulator sw” that simulates a shared memory store word instruction. The
other four instructions are local to the processor and can be directly executed.
For ease of manipulation, the call-out instruction is isolated into its own basic
block, as indicated by the horizontal lines separating the instructions.

The second step is to calculate the timing of the basic blocks. The first block has
four instructions and takes four cycles. The second block has one instruction
and takes one cycle. The timing of each basic block is computed statically and
is used in the inserted instructions which accumulate the running execution
time in register Rtime.

Ezecution Driven Simulation of Shared Mem. Multiproc. 159

The third step is reference indirection. The loads of local variables B and C are
originally relative to the global pointer (register Rgp). These are changed to be
thread relative by indexing off of the thread context pointer (register Rcp).?

Step four involves adding code for in-line context switching. In our implementa-
tion, we maintain the invariant condition that between basic blocks all register
values should be correctly stored in the context block of the executing thread.
This context block is pointed to by the Rep register, and thus register load and
stores are relative to this pointer.

At the start of each basic block we insert code to load the registers whose
values will be used. In the example, only the value in register r8 is used. The
registers r1, r2 and r3 also appear, but they do not need to be loaded since
their original values are not used. At the end of each basic block we append
code to store any registers who’s values have been redefined. In the example
these are r1, r2 and r3.

We do not show any remapping of registers in this example, but suppose r8 had
already been used to hold the virtual registers Rtime. The 1w instruction could
be changed to load the value of r8 into the physical register r9 instead. The
later use of r8 in the add instruction would then also be changed to r9. After
these changes, the application program would operate the same even though
the assembly language code uses a different register.

This completes the code augmentation for the first basic block. The second
basic block is the save word instruction (sw) that originally saved the value in
register r3 to an address in shared memory. It is replaced by a sequence of
instructions which load parameters and then call out to a simulation routine
to perform the shared memory operation. The address and data values are
loaded into the argument registers (r4 and r5), and the time counter (Rtime)
is incremented by 1 (the time taken by the original instruction). If the simulator
finds that more time would be needed by this instruction, for instance if the
memory network is clogged or there is a cache miss, the simulator would add
the extra time.

This completes code augmentation. The code has now been converted so that
it is context block relative. The simulator can now switch threads by changing
the context pointer and time counter and then jumping into the new thread to
be executed.

2Here reference indirection is simply changing from Rgp to Rcp and possibly changing the
offset. It is more involved when the original reference is not relative to Rgp.

160 CHAPTER 6

/__/
application gm
program: »(oc —O2
app.c
— e
— T~ //’L\
lbrary =1 link >
routines
/_\-/

code modified code:
augmenter app.o simulator
core
cache
module
network
module
scheduler
module
executable:
app.out
—T T~ //‘—\\‘“/
simulation statistics
parameter »< execute —| and trace
file files

— ~
e ~. ——

Figure 4 This diagram shows the process of using FAST to simulate an
application program.

5 THE SIMULATOR HALF

Code augmentation is the unique aspect of an execution driven simulator, but it
is only half of the simulator. The other half is the actual simulation code. This
is a discrete event simulator, and we describe it in much less detail. Figure 4
shows a diagram of the complete FAST simulator and the process of using it.
The code augmenier part and the simulator part are shown in heavy boxes.

Ezecution Driven Simulation of Shared Mem. Multiproc. 161

The simulator part consists of the core of the simulator as well as additional
configurable modules for the cache, network, and thread scheduling. Other
simulators have similar modular and configurable design.

To use the simulator, the application program to be simulated is first compiled
with full optimization, just as it would be for a real machine. It is then linked
with any libraries that is uses, such as math routines. The linked object code
is then fed into the code augmenter which performs the various code augmen-
tations. It is important that augmentation also be done on library functions
since some applications use these extensively.

One limitation of our system is that system calls, such as I/O, execute outside
of the simulation. Their timing and memory access patterns are therefore not
simulated or properly accounted for. Fortunately, the parallel applications that
we studied did not use system calls during their parallel computations phases,
which were the phases from which we needed accurate timing and access results.

After code augmentation, the modified code is then linked with the simulator
core and selected modules that simulate the caches, network, and scheduler.
A large number of these modules have been written, and they can be selected
based on what is of interest to the user. For caching there are modules for var-
ious cache configurations and protocols, or for no caching at all. For networks
the simulator is usually used with a simple constant time network approxima-
tion, but it has also been used with a detailed simulator of packet switched
networks. The scheduler module is used for multithreading studies and imple-
ments simple scheduling policies such as FIFO, or more complex policies like
priority scheduling or timeouts.

The single executable file produced includes the simulator core, the various
modules, and the modified application code. When it is run, the simulator core
starts first. It reads in a simulation parameter file that specifies the number
of processors, level of multithreading, network latency, and other parameters.
It then calls initialization routines for the various modules, and starts up and
manages the execution driven simulation of the application program.

The simulator core is a time wheel scheduler. This is just a linear array with
one slot per time step (modulo the array size), where each slot points to a
linked list of events that will occur at that time step. The simulator operates
by removing an event at the current time step, simulating it (using execution
driven simulation), and then placing the resulting event into the proper slot to
be executed in the future. This data structure is very efficient since there is
no polling to test for ready events. For simulations of large parallel machines,

162 CHAPTER 6

Context Average

switch cost interval | Average

switch | switch || between | cost per
App. Description in out switches instr.
sieve finds primes 9.8 7.9 7.0 2.5
blkmat | blocked matrix multiply 47.7 50.3 48.0 2.0
sor solves Laplace’s equation 8.5 5.5 4.2 3.3
ugray ray tracing renderer 11.8 9.1 10.1 2.1
water system of water molecules 27.7 22.2 33.1 1.5
locus standard cell router 8.0 5.2 4.0 3.3
mp3d rarefied hypersonic flow 8.1 6.3 4.7 3.1

Table 2 Context Switch Costs

there are so many events that typically every slot has one or more events in it,
and thus the amortized cost of scheduling an event is constant.

6 PERFORMANCE CHARACTERISTICS

In this section we discuss three aspects of the performance of the FAST sim-
ulator: the cost of in-line context switching, the slowdown factors of basic
simulations, and the affects on slowdown when simulating multithreading or
caching.

6.1 Cost of in-line context switching

Table 2 shows the effectiveness of in-line context switching. It gives the context
switch frequency and the average context switch costs for the applications that
we have used in our simulation studies. Sieve, blkmat, and sor are toy ap-
plications developed by the author. Ugray is from Berkeley[1l]. Water, locus,
and mp3d are from the Stanford SPLASH[16] benchmark set.

The switch in cost listed in the table is the average number of registers loaded
per context switch into the application from the simulator. The switch out cost
is the average number of registers saved per context switch from the application
out to the simulator. Recall that these register loads and stores do not all occur
at the points of context switching between the simulator and threads, but are

Ezecution Driven Simulation of Shared Mem. Multiproc. 163

spread among the prefixes and suffixes of the sequence of basic blocks executed
between context switches. Also included in these context switch costs are the
overheads incurred by the simulator in saving and restoring reserved registers
such as the program counter, time counter, stack pointer and context pointer.

The column labeled average interval between switches shows the average num-
ber of simulated cycles between context switches. For those applications that
context switch most frequently, the context switch cost is less than 10 cycles.
The locus program, for example, accesses shared memory very frequently and
thus context switches at an average rate of once every four cycles. The average
cost of these context switches is 8.0 cycles to switch in and 5.2 cycles to switch
out. In all cases, the context switch cost is less than the size of the register
set®. In comparison, the light-weight thread package used in Proteus[9] loads
and stores the entire register set and takes 135 cycles per context switch.

In our system, the cost of context switching is roughly proportional to the
period between switches. The longer an application executes, the more registers
it 1s likely to use. The blkmat and water applications, for example, context
switch less frequently than the other applications, and their average context
switch costs are higher. However since they do not context switch as frequently,
the higher context switch costs are amortized over a longer period. Overall, the
total context switch overhead ranges from 2 to 3 cycles per simulated cycle.

6.2 Slowdown factors for basic simulations

Figure 5 shows the performance of the FAST simulator on the set of benchmark
applications. Results are shown with the number of processors varied from 1
to 1024. The slowdown factors shown in this graph are the number of cycles
taken to simulate a single cycle of a single processor. Since most instructions
are directly executed and the context switching cost has been reduced to just
2 to 3 cycles per simulated cycle, one might expect slowdown factors of 3 or
4. The slowdowns are larger because of the remaining overhead which comes
from the scheduling mechanism within the simulator, the simulation of shared
references, the memory simulator, and statistics gathering. For this graph the
memory model is a simple ideal memory that has 0 latency and no contention.

Two interesting trends can be observed from this graph. First, the slowdowns
vary for different programs. Programs such as blkmat and water have typical

30n a Mips processor there are 29 integer, 32 floating point and 3 special purpose registers
in the usable register set.

164 CHAPTER 6

C
3
(e}
o]
2
o
7]
N~ . .
20 — \::\ﬂ’—A —— |
T — — e . —— S
10 — o b blkmat

R B B e e N T D e

1 2 4 8 16 32 64 128 256 512 1024
Processors

Figure 5 Simulation Slowdown Factors

slowdowns from 10 to 30, while programs such as locus and sor have typical
slowdowns from 60 to 100. The difference comes from the different frequencies
at which the applications interact with the simulator. Sor and locus had
context switches every 4 cycles compared to blkmat and water which have
context switches only every 30 to 50 cycles and thus require much less scheduling
by the simulator. The cost of simulated events is amortized over a larger number
of instructions, and thus the overall slowdown factors for blkmat and water
are lower than those for the other applications.

The second interesting trend is that as the number of processors is increased,
the slowdown factor initially drops and then slowly rises. The initial decrease
in slowdown is due to the time wheel algorithm used to schedule threads and
events. It works best when there are many processors and thus there are many
events per cycle. The later increase in the slowdown factor occurs because the
applications use more synchronization operations as the number of processors is
increased. Synchronization operations, especially spinning on locks or barriers,
involve many shared accesses and thus increase the work of the simulator.

6.3 Multithreading and caching

FAST was designed in a modular fashion and can be configured to perform a
wide variety of different simulations depending upon what is of interest to the

Ezecution Driven Simulation of Shared Mem. Multiproc. 165

c

g -

o -

e

2 —

i)

(D [
10—+ &—m———————— = blkmat [

0= T |
ideal Multithreading Caching

Figure 6 Comparison of slowdowns when simulating machines with different
configurations. (16 processors were simulated for these tests.)

researcher conducting the simulation studies. The main uses of the simulator
have been for studies of multithreading under long memory latencies and for
performance studies of cache coherency protocols[4].

Figure 6 shows the performance of the simulator under three configurations:
the ideal case which has 0 latency, the multithreading case which has 200 cycle
latency and several threads per processor, and the caching case which uses a
cache simulator of the Censier and Feautrier[6] directory based cache coherence
protocol. The ideal case and the multithreading case have roughly the same
performance. This occurs because studying multithreading was one of the pri-
mary intended uses of FAST, and thus multithreading support was built in from
the start. Single threaded execution is simply a special case of multithreading
in which there is just one thread per processor. The cache simulator typically
takes hundreds of cycles per reference to check and manipulate the caches’
states, and this extra overhead slows the simulations. The change in perfor-
mance is moderated by the fact that the cache simulation cost is amortized
over the total number of simulated cycles.

166 CHAPTER 6

7 SUMMARY

In this chapter we have shown the importance of execution driven simulation
techniques for building fast computer simulators. We discussed the major de-
sign choices in building such a simulator and explained the collection of code
augmentations that have been used in our execution driven simulator FAST as
well as the design choices made in two other execution driven simulators.

The performance of a simulator can be quantified as its slowdown factor. For
FAST we measured slowdown factors ranging from 10 to 100 depending on the
application and configuration being simulated. A comparable simulator using
cycle by cycle emulation written by O’Krafka[13] exhibited slowdown factors of
2000. The speed advantage of execution driven simulation comes from the fact
that most instructions are directly executed in a single cycle. The analysis of
the code’s timing and the identification of important events are performed once
during the preprocessing stage rather than repeatedly during the simulation.

Since the scope of simulation studies often seems to be limited by the speed of
the simulator, execution driven simulation is a valuable technique.

FAST is available by anonymous ftp from: ftp.usmcs.maine.edu .

Execution Driven Simulation of Shared Mem. Multiproc. 167

Exercises

6.1

6.2

6.3

6.4

6.5

6.6

Assume we have a cycle by cycle simulator that takes on average 1000
cycles to decipher and emulate each instruction. Compare its performance
to that of an execution driven simulator in which only 1 in 10 instructions
is emulated and the rest are directly executed at an average of 5 cycles
each (including overhead). What is the preformance difference if only 1 in
20 instructions needs to be emulated?

In Figure 1 the original 1w instruction is meant to load the value from the
address in register r5 and put that value into register r4. Work out the
code that needs to be inerted before and after the call instruction to set
up the parameters and put the result into the destination register. (Hint:
Figure 3 shows the code for sw.)

For this exercise assume that the four instructions in the original code block
from Figure 1 form one basic block. Also assume that the 1w instruction is
a local load and thus can be directly executed. If in-line context switching
were performed on this block, what registers would need to be loaded at
the start, and which would need to be stored at the end. Add the necessary
code to the basic block.

In the previous exercise, what if the register r1 had already been used to
hold the value of Rtime. Remap the r1 register in the code block and in
the register loading and storing code to use an unused register.

In the original code block in Figure 1, consider what could be done if it were
not known by the code augmenter whether the 1w instruction referenced
a local memory address or a shared memory address. A reference to a
local address can be directly executed, but a reference to a shared address
requires a call to the simulator. Add code to perform dynamic reference
discrimination by comparing the referenced address to the base address of
shared memory held in the register Rsbp. ’

Delayed branch instructions cause a difficulty when augmenting code. If
the instruction in the branch delay slot is to be replaced by more than
one instruction, they won’t all fit in the delay slot. The easy case can be
solved by moving the delay slot instruction before the branch instruction
and putting a nop in the branch delay slot. Work out the hard case where
there is a register dependency between the branch instruction and the
delay slot instruction. For example BGEZ r1, label followed by ADD ri,
r2, r3.

168 CHAPTER 6

6.7 Some optimizing compilers will generate a branch into the delay slot of
another branch instruction. The unfortunate effect of this from the per-
spective of the code augmenter is that the delay slot instruction belongs to
two basic blocks. Work out how to rearrange the instructions to eliminate
this overlap. (Hint: you may need to duplicate the delay slot instruction
as well as add other instructions.) Add time counting instructions so that
the correct timings from the original code are preserved in all cases.

6.8 Estimate how much memory will be needed to store the context block
for a thread (this contains its registers, stack, and local variables). How
much memory would it take to support a simulation with 1000 parallel
threads? Estimate how much memory it would take to store the state of
a simulated processor’s cache. How much memory would be required to
simulate a parallel machine with 1000 caches?

6.9 Estimate how long it would take an execution driven simulator with a
slowdown factor of 20 to overflow a 32 bit time counter. What would be
the best way solve this problem?

6.10 What can you do to verify that a simulator is working correctly?

Ezecution Driven Simulation of Shared Mem. Multiproc. 169

REFERENCES

(1]

[2]

[3]

[5]

[6]

(7]

(8]

)

[10]

(11]
[12]

Bob Boothe. Multiprocessor Strategies for Ray-Tracing. Master’s thesis,
U.C. Berkeley, September 1989. Report No. UCB/CSD 89/534.

Bob Boothe. Fast Accurate Simulation of Large Shared Memory Multi-
processors. In Proc. 27th Annual Hawaii International Conf. on System
Sciences, pages 251-260, January 1994.

Bob Boothe and Abhiram Ranade. Improved Multithreading Techniques
for Hiding Communication Latency in Multiprocessors. In The 19th An-
nual Int. Symp. on Computer Architecture, pages 214-223, May 1992.

Robert Francis Boothe. Evaluation of Multithreading and Caching in Large
Shared Memory Parallel Computers. PhD thesis, University of California
at Berkeley, July 1993. published as Technical Report No. UCB/CSD
93/766.

E. A. Brewer, C. N. Dellarocas, A. Colbrook, and W. E. Weihl. Pro-
TEUS: A High-Performance Parallel-Architecture Simulator. Technical Re-
port MIT/LCS/TR-516, Massachusetts Institute of Technology, Septem-
ber 1991.

L. M. Censier and P. Feautrier. A New Solution to Coherence Problems in
Multicache Systems. IEEE Transactions on Computers, C-27(12):1112-
1118, December 1978.

R. C. Covington et al. The Rice Parallel Processing Testbed. In Proc.
1988 ACM SIGMETRICS, pages 4-11, 1988.

Helen Davis, Stephan R. Goldschmidt, and John Hennessy. Multiprocessor
Simulation and Tracing using Tango. In Proc. 1991 Int. Conf. on Parallel
Processing, pages I 99-107, 1991.

Chrysanthos N. Dellarocas. A High-Performance Retargetable Simula-
tor for Parallel Architectures. Technical Report MIT/LCS/TR-505, Mas-
sachusetts Institute of Technology, June 1991.

Susan J. Eggers et al. Techniques for Efficient Inline Tracing on a Shared-
Memory Multiprocessor. Technical report, University of Washington, 1989.
Technical Report 89-09-18.

Gerry Kane. MIPS RISC Architecture. Prentice Hall, 1989.

MIPS Computer Systems. MIPS language programmer’s guide, 1986.

170 CHAPTER 6

[13] Brian W. O’Krafka. An Empirical Study of Three Hardware Cache Con-
sistency Schemes for Large Shared Memory Multiprocessors. Technical
report, Electronics Research Laboratory, University of California, Berke-
ley, May 1989. Tech Report UCB/ERL M89/62.

[14] Anita Osterhaug, editor. Guide to Parallel Programming on Sequent Com-
puter Systems. Prentice Hall, 1989. '

[15] Jeff Rothman, 1992. personal communication.

[16] Jaswinder Pal Singh, Wolf-Dietrich Weber, and Anoop Gupta. SPLASH:
Stanford Parallel Applications for Shared-Memory. Technical report, Com-
puter Systems Laboratory, Stanford, 1991. Tech. Rpt. #CSL-TR-91-469.

SAMPLING FOR CACHE AND
PROCESSOR SIMULATION

Kishore N. Menezes

Department of Electrical and Computer Engineering
University of South Carolina, Columbia, South Carolina

1 INTRODUCTION

There are a wealth of technological alternatives that can be incorporated into
a cache or processor design. The memory configuration and the cache size,
associativity and block size for each of the components in the heirarchy are
some of these applicable to memory subsystems. For processors, these include
branch handling strategies, functional unit duplication, and instruction fetch,
issue, completion and retirement policies. The deciding factor between the
various choices available is a function of the performance each adds, versus the
cost each incurs. The large amount of available design choices inflates the design
space. The profitability of a given design is measured through the excution of
application programs and other workloads. Trace-driven simulation is used to
simplify this process.

Workloads or benchmarks may be instrumented to generate traces that con-
tain enough information to test the performance of the processor subsystem
under test. The SPEC92 suite [1] is one such set of benchmarks that has been
widely used to measure performance. These benchmarks execute for billions of
instructions. An exhaustive search of the design space using these workloads
is time-consuming. Given the stringent time to market for these designs, a
more efficient method is required. The large amounts of information in a trace
also makes storage a problem. Statistical sampling [2],[3],{4],[5]., has been used
successfully to alleviate these problems in cache simulations. In recent years it
has also been extended to the simulation of processors [6],[7],[8].

Statistical sampling techniques involve the drawing of inferences from a sample
rather than the whole, using statistical rules. The primary goal is to make the

172 ‘ CHAPTER 7

results obtained from the sample representative of the entire workload. The
method used to collect the sample is therefore critical. Sampling for caches has
received a lot of attention in the past. This chapter discusses some of these
methods. An accurate method for statistical trace-sampling for processor simu-
lation is then developed. The method can be used to design a sampling regimen
without the need for full-trace simulations. Instead, statistical metrics are used
to derive the sampling regimen and predict the accuracy of the results. When
the method is tested on members of the SPEC92 benchmarks, the maximum
relative error in the predicted parallelism is less than 3%, with an average error
of 0.74% overall.

In the past, studies which have employed sampling to speed up simulation have
not established error bounds around the results obtained or have used full-trace
simulations to do so. It is necessary that confidence intervals be mentioned in
such work as an indication of the error that might be expected in the results.
Error bounds can be obtained from the sampled simulations alone without the
need for full-trace simulations. An example of validation of sampling methods
for processors and the establishment of confidence intervals is included in this
chapter.

2 STATISTICAL SAMPLING

Sampling has been defined as the process of drawing inferences about the whole
by examining a part [9]. It is a technique frequently used by statisticians in esti-
mating characteristics of large populations to economize on time and resources.
Sampling may be broadly classified into two types, probability sampling and
non-probability sampling. Probability samples contrast with non-probability
samples in that they are chosen by a randomized mechanism. This assures
selection of samples independent of subjective judgements. Simple random
sampling is known to be one of the most accurate methods for sampling large
populations. It involves a random selection of single elements from the popu-
lation. However, the cost associated with this technique makes its application
infeasible in some cases. Another less accurate, but cost-effective technique
is cluster sampling. This technique collects contiguous groups of elements at
random intervals from the population.

An element on which information is required is known as a sampling unit.
Where the sampling unit for cache simulation is a memory reference, the sam-
pling unit for a processor is a single execution cycle of the processor pipeline.

Sampling for Cache and Processor Simulation 173

The total number of sampling units from which the performance metric is
drawn is called a sample!. The larger the size of the sample, the more accu-
rate the results are. Since larger samples also mean a greater cost in time and
resources, the choice of an efficient sample size is critical. A parameter is a
numerical property of the population under test. The primary parameter for
cache simulations is the miss ratio, whereas that for processors is the mean
instructions per cycle(IPC).

Consider a processor running a benchmark which executes in n time cycles,
t,t+1,t+2,...,t+n, where t + 1 is a single execution cycle. For a processor,
these execution cycles constitute a complete list of the sampling units or what
may be termed as the {otal population. The corresponding population in cache
simulations is the total set of memory references in the address trace. Simple
random sampling involves random selection of sampling units from this list for
inclusion in the sample. The gap between two sampling units is randomized -and
calculated so that the majority of the benchmark is traversed. The sampling
unit immediately following each gap is included in the sample. To be able to
extract single execution cycles with such precision requires simulation of the
full trace. This does not yield any savings in simulation cost. An alternative
method is to extract subsets of the trace at random gaps and execute these.
The execution cycles that result are then included in the sample. The random
gap is calculated in the same manner as mentioned above. This method of
sampling is essentially cluster sampling. Cluster sampling when implemented
in caches has been referred to as time sampling [2],[4],[6],[10].

Another technique called stratified sampling [11] requires some prior knowledge
about the elements of the population to be sampled. The elements are ordered
into groups based on this information. Elements are then chosen from each of
the groups for inclusion in the sample. This method is known as set sampling
when applied to caches [5],[12].

2.1 Sample design

Sample design involves the choice of a robust (i) sample size, (i7) cluster size
and, (i) number of clusters. The accuracy of estimates for a particular sample
design is primarily affected by two kinds of bias [11]:

1Several cache trace-sampling studies refer to a cluster as a “sample,” in contrast to
common statistical terminology. We will retain the statistical conventions and reserve the
term sample for the entire set of sampling units.

174 CHAPTER 7

Nonsampling bias arises when the population being sampled (the study pop-
ulation) is different from the actual target population. In a full-trace cache
simulation the address references at the beginning of the trace encounter an
empty cache. This leads to excessive misses at the start of the simulation and
can adversely affect the performance estimates. This phenomenon is known as
the cold-start effect. When sampling is employed clusters are extracted from
different locations in the full trace. The cache state seen by each of these clus-
ters is not the same as in a full trace simulation. Therefore, the cold-start effect
appears at the start of every cluster. This leads to bias in the estimation of
the parameter being measured. Recovering an approximately correct state to
reduce the effect of this bias is largely an empirical sample design consideration.

The bias due to the cold-start effect also affects processors. The processor
maintains state in the reservation stations, functional unit pipelines, etc. Con-
temporary processors have branch handling hardware which also maintains
considerable state.

Sampling bias is measured as the difference between the mean of the sampling
distribution and the sample mean. It is a result of the sampling technique
employed and the sample design. Since clusters from different locations may be
selected from sample to sample, the estimates may vary across repeated samples
(i.e., across repeated sampled simulations). Repeated samples yield values of
means that form a distribution. This distribution is known as the sampling
distribution. Statistical theory states that, for a well designed sample, the
mean of the sampling distribution is representative of the true mean. Sampling
techniques and the estimates derived from them may be prone to excessive error
if the sample is not, properly designed. Increasing sample size typically reduces
sampling bias. In case of cluster sampling, semple size is the product of the
number of clusters and cluster size. Of these two, the number of clusters should
be increased to reduce sampling bias, since it constitutes the randomness in the
sample design.

An additional consequence of the selection of clusters at random is sampling
variability. The standard deviation of the sampling distribution is a measure of
the variation in estimates that might be expected across samples. Sampling bias
and variability can be reduced by making the clusters internally heterogeneous,
(i-e., large standard deviation of the parameter within the cluster), making the
cluster means homogeneous, and by increasing the number of clusters [11],[9].
This is demonstrated for processors in Section 3.3. V

The reduction of bias requires that the design of the sample be robust and
all factors that could increase error be taken into consideration. Some of the

Sampling for Cache and Processor Simulation 175

methods that have been used to overcome or reduce the total bias are discussed
in the following subsections.

2.2 Sampling for caches

Trace sampling has been used frequently for cache simulation studies. Two dif-
ferent types of sampling are possible for caches: time sampling [2],[4],[6],[10] and
set sampling [12],[5]. Time sampling involves the extraction of time-contiguous
memory references from different locations in a very long address trace. In con-
trast to time sampling where a contiguous subset of references forms a member
of the sample, a single set in the cache forms a member of the sample in set
sampling.

Time Sampling

O Laha, et al. [2]: This is one of the foremost studies in time sampling for
caches. For small caches, Laha, et al. [2] obtained reliable results using as little
as 35 clusters of contiguous references. Their method takes advantage of the
fact that under normal circumstances a small cache would be completely purged
on a context switch. Thus references after a context switch would encounter
an empty cache. If clusters were made up of these references, their behavior
would be the same in a sampled simulation as in a continuous trace simulation.
This reduces the non-sampling bias as a consequence of the elimination of the
cold-start effect.

The sampling method is as follows: The average sampling interval is calculated
as the ratio of the length of the total trace to the number of clusters required.
Clusters of a few thousand references are collected after each sampling interval.
These clusters are selected immediately following a context switch.

The above assumption that a cache is flushed on a context switch does not hold
for large caches. In large caches (larger than 16KB) [2], some information is
almost always retained across a context switch. Since the clusters of memory
references are selected from different places in a continuous trace, the cache
state needs to be reconstructed before each cluster. Laha, ef al. achieved this
by using some address references from each cluster to warm up the cache state.
Statistics were calculated only for the sets that had been filled by previous
references in the sample, in a method similar to that of Stone [3]. Such sets were
referred to as primed sets. Any references to unprimed sets were recorded as fill
references or unknown references since their behavior in full trace simulations

176 CHAPTER 7

could not be known. When a set was primed, a number of continuous hits were
observed to the just filled block in the set. Laha et al. found that dependable
estimates were possible if these references were also neglected in addition to
the fill references. In other words, statistics collected from the first miss in a
primed set were found to be more accurate.

O Wood et al: Wood, Hill and Kessler [4] discussed methods to estimate
the miss ratio for the unknown (fill} references used to warm-up the cache.
Whereas the fill method assumes that these references had a miss ratio equal
to the overall miss ratio, Wood, Hill and Kessler showed that the miss ratio of
such references is in fact higher than the overall miss ratio.

This study models each block frame in the cache in terms of generations. A
block frame is a part of the cache set capable of holding a single block. Each
generation is composed of a live time and a dead time. A block frame is said
to be live if the next reference to that frame is a hit, and dead if the next
reference to it is a miss. A generation therefore starts after a miss occurs and
ends when the next miss occurs. The miss that ends the generation is included
in the generation, whereas the miss that starts it is not. The miss ratio at any
instant in time during a simulation is the fraction of block frames that are dead
at that instant.

The probability that a block frame is dead at any instant in time is the fraction
of the generation time during which the block is dead. Assuming that the live
and dead times for the block frames are identically distributed for all the block
frames in the cache, the miss ratio is given by:

_ E[Dj]
Hiong — E[G]]v (71)

where, E[D;] = Expected dead time in generation j, and E[G;] = Expected
generation time for generation j.

Since the distributions of the live and dead times are not known, the two times
can be calculated as means of the respective times computed throughout the
trace. When sampling is employed, these are computed using only the sampled
references. The live and dead times for each block frame are counted in terms
of the number of references to that block frame. Equation 7.1 holds true only
when every block in the cache is referenced at least once. This is true only

Sampling for Cache and Processor Simulation 177

when large clusters are used. Thus, the miss ratio for the unknown references
computed in this manner is called Hiong -

For short traces it may not be possible to have every block frame addressed
at least once. This makes the above method inaccurate. Wood et al. suggest
estimates for the miss ratio of unknown references for short traces. uigs; is
based on the assumption that any block frame that is not referenced by any
of the address references in the cluster is dead. For a cache with S sets and
associativity of A, the total number of block frames is SA. If U is the number
of unknown references then, (SA — U) is the number of block frames that are
never referenced by the cluster. Therefore,

maz (0,54 x 224 _ (54 - 1)
Hlast = (EUGJ]) . (72)

It is possible that not all live block frames are referenced by a small cluster.
Thus, the maximum with 0 in Equation 7.2. Another metric, pspiz is the
arithmetic mean of piong and pass. piepia simply assumes that exactly half
of the block frames are dead i.e. 50% of the unknown references are misses.
Ktepid is therefore defined as 0.5. Empirical results show pgprir and pigepiqg to
be the best estimators. pepiq may be preferred over pgpi¢ since it requires no
computation.

O Fu and Patel: This study recommends a metric other than the miss ratio.
The metric is similar to the generation time used by Wood et al. and is called
the miss-distance. The miss-distance is computed as the distance between
misses for the complete cache rather than for each block frame. The results are
validated by comparing the distributions of the miss-distance for the sampled
and continuous traces. Each cluster of address references in the sample consists
of a priming interval and an evaluation interval. The priming interval is used
to warm up the cache, effectively reducing the number of unknown or fill
references. The algorithm is as follows: In the priming interval, if a miss
occurs, compute and store the miss distance in an history table. If a fill reference
occurs, ignore it. In the evaluation interval, if a fill occurs and the history table
is empty, predict it as a hit. If not, the history table is checked to see if the
miss distance is within the range of those in the history table, in which case
a hit is predicted. If the miss distance is not within the range of the miss
distances in the history table, but the sets adjacent to the set being referenced
contain addresses of adjacent memory blocks, a hit is predicted, else a miss is

178 CHAPTER 7

predicted. If all the above conditions fail, a miss is predicted. The history table
need have only the last three computations of the miss distance. Greater than
three history table entries are not seen to provide any additional performance
gain. This study also includes an analysis for multiprocessor caches.

Set Sampling

A cache that can hold C blocks, and has associativity A can be divided into
C/A sets i.e. each set contains A block frames. The set sampling method
varies from the time-based techniques above, since in this approach the sets
in the cache are sampled rather than the workload. The sets for inclusion in
the sample may either be selected at random, or by using information about
the parameters of the caches. The method employed in [12] consists of two
phases. The first phase uses a partial run of the workload on the whole cache
to obtain information about the behavior of each set in the cache. Based on
this information, certain sets are selected for inclusion in the sample. The
actual simulation is done in the second phase using only the sets in the sample.
Another interesting method is that suggested by Kessler et al. [5]. Referred to
as the constant-bits method, it can be used to simulate a heirarchy of multi-
megabyte caches. It can also be used to simulate multiple caches in a single
simulation. Both of these methods are explained below.

O Liu and Peir: The authors characterize each set by a metric called weighted
miss. The sampling procedure is initiated with a preliminary run using a
subset of the workload. Liu and Peir used 15 million address references for this
purpose. Let pipre; be the miss ratio of the cache under study for this phase of
the sampling procedure. Let p; be the miss ratio of the i*? set in the cache due
to the references r; to the set. The weighted miss, W;, for set 1is given by:

Wi = (i — Mpre1) X Ti. (7.3)

In words, the weighied miss of a set is the number of misses that may be
attributed to the references to that set. After the preliminary run, the weighted
miss metric is computed for every set in the cache. The sets are arranged in
ascending order of W;. The list of sets is then divided into equal sized groups.
One set is chosen from each group for inclusion in the sample. This set is
chosen according to some heuristic. One heuristic is to choose the p* set from
each group. Other heuristics that were seen to perform well were the median
and best-fit. In the former, the set with the median weighted miss value in the

Sampling for Cache and Processor Simulation

179

group is chosen. The latter is used to select the set whose weighted miss value
is the closest to the average weighted miss of the group.

Cache structure

List of sets arranged
in ascending order of weighted miss

w
set: 1 szl
set: 2 W, Sample selected b
set:3 w - choosing the third set from
e $ S~ groups of four
w e
h 16 B sels
set: i 4 .
set:i+1 Preliminary . Sample o
set:i+2 —- . - -
3 run W selection 7] set 1 2
H i+19 e i
set:s—2 W o P :
set:s—1 W - *
set:s 2
Wi
[]
[]
[]

Figure 1 Set sampling by weighted misses

The second phase of the procedure simulates the sets in the selected sample.
The complete workload is simulated on these sets. The miss ratio is then
computed as the ratio of misses to the references to the sets in the sample.

This method of sampling does not suffer from non-sampling bias as much as
the time-based techniques. However, the bias due to the empty cache at the
start of simulation still exists. This is overcome by Liu and Peir by warming
up the sets in the sample with around 500K instructions. The sampling bias,
due to the design of the sample, can be reduced by using better heuristics such
as the best-fit method, mentioned above, for the selection of the sample. The
sets to be included in the sample may be selected on criteria other than the
weighted miss. These include number of references, number of misses and miss
ratios of each set. The weighted miss was, however, found to be the best.

O Kessler et al.: By far the most comprehensive and statistically sound study
of cache trace sampling is by Kessler, Hill and Wood [5]. It is a comparison
between set sampling and time sampling for caches [5]. The authors suggest a
method for set sampling whereby a single trace may be used to simulate multiple

180 CHAPTER 7

caches or cache heirarchies. The method is called the constant-bits method and
will be explained below. The metric used to measure cache performance in this
study is misses per instruction(MPI). An instruction includes the instruction
fetch as well as the data references for an instruction. Therefore, if the sample
selected contains n from a total of s sets, the MPI becomes,

n
>om
Mpr=332__ (7.4)

Z inst,-

i=1

where, m; is a miss recorded in set ¢, and inst; is an instruction fetch from set
1.

A further refinement is applied to obtain a more accurate metric. The number
of misses is normalized by the fraction of the sets included in the sample times
all of the instruction fetches. The MPI is then given by,

n
2 mi
MPI = =L (7.5)
%Z inst;
i=1

The constant-bits method uses a filter which selects address references with the
same value in the portion of the address used to select the set. The filtered
trace is then applied to the cache. The sets referenced by the filtered trace
constitute the sample. The sets are thus chosen as a consequence of the selection
of references. This method can be used to simulate more than one cache at
a time. The method is illustrated in Figure 2. It depends on the knowledge
of the value of the address rather than that of the sets in the cache as in the
method in [12]. If p bits in the set selection portion of the address are used
to filter the address references, (1/2P)** of the cache sets in each cache are
included in the sample. The disadvantage of this method is that the sample
is chosen systematically rather than in a random manner and could possibly
provide flawed estimates when a workload exhibits a regular pattern.

Sampling for Cache and Processor Simulation 181

The trace of address references to a secondary cache consists of the references
that miss in the primary cache. When sets are selected at random it is difficult
to simulate a hierarchy of caches. The misses generated from a randomly
sampled primary cache when applied to a randomly sampled secondary cache
do not provide reliable estimates. The constant-bits method does not encounter
this problem and may be conveniently used to simulate an heirarchy of caches.

16 KB, 4-way set associative < set number (9 bits) -1

32 byte blocks I } lo'ol1!0! l]
O T o
set : 0000000 16 KB, 2-way set associative
set : 0000001 16 byte blocks
set : 0000010 S
E [N - set number (7 bits)
RN
set : 0010000 ~
set: 0010001 PR | 10joj10]
set : 0‘210010 B il 16 KB, 4-way set associative
e . 32 byte blocks
set- 0100000 o
set : 0100001 s g J,= set number (8 bits) >4
set : 0100010 | T i
: | [00 10]
¢ 8 KB, direct mapped
32 byte blocks

Figure 2 The constant-bits method used to simulate multiple caches (p = 4)

To summarize, there are two widely accepted sampling methods in caches. Set
sampling chooses sets from the cache and considers these to be representative
of the entire cache. The choice of sets may be random or based on some
information about the sets in the cache (e.g. sampling by weighted misses). The
choice of sets may also be a consequence of information available in the trace as
in the constant-bits method. Set sampling has been found to provide accurate
estimates at low simulation cost [5]. However, it fails to capture time-dependent
behavior (such as the effects of prefetching). Though set sampling reduces the
time required for simulation it does not solve the trace storage problem. If
many different caches are to be simulated the full trace needs to be stored. Time
sampling, on the other hand, requires the storage of only the sampled portion of
the trace. It can also capture time-dependent behavior. The drawback of time
sampling is the bias due to the cold-start effect. Many different techniques

182 CHAPTER 7

have been employed to overcome this bias. Most of these methods require
additional references in each cluster thus lengthening simulation. The decision
as to which method to use depends on the resources available and the desired
nature of the simulation.

2.3 Trace sampling for processors

The sampled unit of information for processor simulationsis not the instructions
in the trace, rather it is the execution cycles during a processor simulation. The
metric that may be measured from each execution cycle is the instructions/cycle
(IPC). Since IPC varies between benchmarks, the relative error, RE(IPC) may
be used to validate results. The relative error is given,

true sample

RE(IPC) = Hpc—Hipc (7.6)

Brpc

where p3¢ is the true population mean IPC, and pujp¢? ' is the sample mean

IPC. RE(IPC) relies on pi#¢ from a full-trace simulations of each test bench-
mark. (Reduction in sampling bias, sampling variability and determination of
error bounds do not require p¥3s.)

Table 1 Relative error for a 10 million instruction single-cluster sampling
technique.

Benchmark || u78¢ | uiper | RE(IPC) |

compress 2.786 3.207 -15.11
eqntott 2.523 3.072 -21.76
€espresso 2.440 2.879 -17.99
gce 2.574 2.336 9.25
it 2.481 2.510 -1.17
sC 2.214 3.358 -51.67
doduc 3.425 3.465 -1.17
mdljsp2 2.545 1.902 25.27
ora 2.932 2.932 0.0
tomcatv 4.964 5.949 -19.84

average: 16.32%

Many published studies of instruction-level parallelism use a convenience sam-
pling regimen based on a single cluster from the beginning of a benchmark’s

Sampling for Cache and Processor Simulation 183

execution. Table 1 presents the results of simulations using the first 10 million
instructions from the trace of each benchmark. These results were obtained
using the processor model described in a later section. The results presented
here and throughout this chapter use 10 of the shorter-running SPEC92 bench-
marks. These include all SPECint92 benchmarks (compress, espresso, egntott,
gee, i, and sc) and four of the SPEC{p92 benchmarks (doduc, mdljsp2, ora,
and tomcatv). SPEC92 benchmarks are described in [1]. Several benchmarks
achieve relatively accurate results with this technique, but this is by no means a
universal conclusion. The pjpef ' of one benchmark is over-estimated in excess
of 50% (sc), with the majority of benchmarks experiencing in excess of 15%
error. The majority of the p}5er'® values are over-estimates, which should be
expected since initialization often involves setup for code sequences much later

in execution.

O Conte: One of the earliest studies of trace-sampled processor simulation used
a systematic sampling method [6]. For state repair, a strategy similar to that
used for caches by Laha, et al. was used. The method used 40 contiguous
clusters of sizes either 10,000 or 20,000 instructions each at regular intervals.
Results for a highly-parallel microarchitecture with unlimited functional units
showed a maximum relative error of 13% between the sampled parallelism and
the actual value.

O Poursepanj: In a similar study [7], performance modeling of the PowerPC 603
microprocessor employed a method using one million instructions in 200 clus-
ters of 5,000 instructions each. The geometric mean of the parallelism for the
SPECint92 benchmarks was within 2% of the actual value. However, the error
for individual benchmarks varied as much as 13%. As with [6], the error was
described using a comparison between the sampled and the full-trace simula-
tions.

O Lauterbach: This study discussed an iterative sampling-verification-resampling
method in [8]. The sampling method used consists of extracting 100 clusters
of 100,000 instructions each, at random intervals. Quick checks involving in-
struction frequencies, basic-block densities and cache statistics are done to in-
vestigate the validity of the sample. The checks are done against the full trace
for the benchmark. In the case that the sampled trace is not representative of
the full trace, additional clusters are collected. This is done till the required
criterion is reached. Final validation of the sampled trace consists of the com-
parison of the execution performance of the sampled trace with that of the full
trace. This study simulates the cache along with the processor. The state of
the cache at a new cluster is stored along with the instructions of the cluster.

184 CHAPTER 7

This state is loaded in before the beginning of the cluster during the sampled
trace simulation. This is done in order to reduce the influence of the cold-start
effect in the cache subsystem on the processor simulation. The need to collect
cache statistics makes a full trace simulation necessary. The process of collect-
ing the trace can therefore be time-consuming. The full-trace simulation is also
required to validate the sampled trace and determine error bounds.

3 AN EXAMPLE

A solid body of work exists for the application of trace-sampling for cache sim-
ulations. This is, however, not true for processor simulations. The remainder
of this chapter demonstrates how sampling techniques can be applied to pro-
cessors. The problems unique to trace-sampling in processor simulations are
discussed. An accurate method to alleviate non-sampling and sampling bias
using empirical results is presented. Also, shown is a method to calculate error
bounds for results obtained using sampling techniques. These bounds can be
obtained without full simulations using the sampling results alone.

Where previous studies have tried to reduce all bias as a whole and make a
prescription for all trace-sampled processor simulation, this study separates
bias into its nonsampling and sampling components. It develops techniques
for reducing nonsampling bias. Reduction in sampling bias is achieved using
well-known techniques of sampling design [9],[11].

As the first step in the sampling process, clusters of instructions are obtained
at random intervals and written to a disk file. The choice of clusters at random
satisfies the conditions of probability sampling. The clusters of instructions
are then simulated to obtain clusters of execution cycles. The fixed number of
instructions in a cluster yields a variable number of execution cycles. Statistics
are ultimately calculated from these execution cycles. The number of execution
cycles that would be obtained on the execution of a sampled instruction trace,
Néample, is given by,

Ncluster % NI ‘
N].:jample — I P cluster (77)

where, Nf“‘”” is the number of instructions in a cluster, N¢iyster is the number
of clusters, and p;pc is the mean IPC. The term cluster is used interchangeably
for the group of instructions that yield a set of contiguous execution cycles, and
for the set of execution cycles themselves.

Sampling for Cache and Processor Simulation 185

3.1 The Processor Model

A highly-parallel processor model is used in this study to develop a robust
nonsampling bias reduction technique and to test the method for sample design.

The processor model considered is a full-Tomasulo, out-of-order execution
engine. The model is based on a RISC design methodology. It assumes a perfect
cache and has 7 different types of functional units. (The processor model is
summarized in Table 2.) The model issues instructions at an aggressive rate of
eight instructions/cycle. In addition, there are multiple copies of key functional
units, and each functional unit has access to an unlimited supply of reservation
stations. The performance of this model may also be considered as a projection
of the performance of future processor designs.

Table 2 Processor model design parameters.

Issue rate: 8 instructions/cycle

Scheduling: Full-Tomasulo, out-of-order

Branch handling: Two-level adaptive training (“PAs”)
Branch speculation degree: 3 branches ahead

Functional unit || Description Number | Latency
Alu Arithmetic logic unit 4 1
Load Load 8 2
Store Store 64 1
FPAdd FP add 3 2
FPMul FP multiply 3 3
FPDiv FP divide, remainder 1 13*
Branch Branch 3 1

* FPDiv is unpipelined.

Highly-accurate branch prediction and speculative execution are generally ac-
cepted as essential for high superscalar performance. In the spirit of the other
high-performance design parameters, a hardware predictor with high predic-
tion accuracy is incorporated. The specific predictor used here is the two-level
adaptive training branch predictor (specifically, the “PAs” scheme from [13])2.
This scheme consists of a 1024-entry table known as the History Register Table

20ur simulation is based on the textual descriptions in [13]. Although every effort has
been made to faithfully duplicate the design described there, some inconsistencies in our
simulation may exist.

186 CHAPTER 7

(HRT), which maintains a history of the last eight executions of a branch. The
entries in the HRT point to locations in another 1024-entry table called the
Pattern Table (PT). The prediction is made using a 2-bit counter predictor in
the PT. (The entire branch prediction hardware including the HRT/PT tables
will be referred to as the branch history buffer (BHB) for the remainder of the
chapter.) In addition, the processor is able to use the results of the predictor
to speculatively execute beyond three branches (for comparison, the PowerPC
604 can speculate beyond two branches [14]).

The standard performance metric for superscalar processors is the IPC, mea-
sured as the number of instructions retired per execution cycle. IPC is ulti-
mately limited by the issue rate of the processor, since flow out of the processor
cannot exceed the flow in. For the SPECint92 benchmarks, the processor model
achieves an IPC with a harmonic mean of 2.5 (lowest IPC = 2.214 (sc), highest
IPC = 2.786 (compress)), demonstrating it is indeed highly parallel.

Sampling for Cache and Processor Simulation 187

3.2 Reduction of nonsampling bias

Nonsampling bias is due to any state information contained in the simulation.
State in a processor is kept in the reservation stations (scheduling window),
the functional unit pipelines, and in the branch handling hardware (the BHB).
Analysis showed that the largest amount of state is contained in the BHB for
the processor model considered here.

A study of the nonsampling bias for the processor model is shown in Figure 3.
This data shows RE(IPC) between a complete run of the benchmark and a
sampled run. For these runs, the number of clusters is made large enough so
that it does not contribute considerably to the error (2,000 clusters are used).
The size of each cluster is then varied from 1,000 to 10,000. Two different
approaches to sampling the processor were tried. In fresh-BHB, the BHB was
flushed between the simulation of each cluster i.e. each cluster starts with an
empty BHB. The relative error is high when fresh-BHB is used. For example,
it can be as high as 24.71% for integer benchmarks (gcc) and 27.33% for the
floating-point benchmarks (doduc), for a cluster size of 1,000 instructions. As
cluster size increases, the error reduces, since the BHB warms up using the
initial part of each cluster.

The characteristics of the branch instructions in the benchmarks explain much
of the behavior seen in Figure 3. Table 3 presents these characteristics. The
data in the table represents the distribution of unique branch instructions dur-
ing execution. The “E-z” column presents the number of branches that occupy
z percent of the benchmark’s execution. For example, of the 1323 branches
in eqntott, only 502 (E-100) are actually executed. Of these, only one branch
accounts for 25% (E-25) of the execution, and one more branch for a total
of two branches account for 50% of the execution (E-50). This table shows
that most of the benchmarks exercise only a very small number of dynamic
branches for the majority of their execution (E-50). The E-100 column re-
veals three groups of benchmarks. Benchmarks that execute unique branches
numbering in the hundreds include egntott and compress. These benchmarks
have a very small pool of branches and should therefore be relatively easy to
sample. The fresh-BHB results agree with this observation. Benchmarks that
have an intermediately-sized pool of executed branches include espresso, li and
sc. These benchmarks are consequently moderately hard to sample. The gcc
benchmark has a high number of active branches across all categories (e.g.,
14382 for E-100, 348 for E-50, 72 for E-25). This benchmark is the hardest
of the integer benchmarks to sample (see Figure 3). A similar trend can be
seen for the floating-point benchmarks, where dodue has the highest relative

188 CHAPTER 7

30 T T T T T T T T

compress ~6—
eqntott -+--
espresso -B--

£
51
4
0 i L L L s s 1 L
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Instructions in cluster
30 T T T T T T T T
doduc -—
mdljsp2 -+---
ora -8--
s b tomcaty - |
20 P, b
— \“‘\‘
£ st T 1
i T
4 s S
S
e
e P
10k]]
L L I L L 2 L

0 1
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Instructions in cluster

Figure 3 Relative error vs. Cluster size (fresh-BHB)

error. The relative error for the other benchmarks follow the ordering given
in the E-100 column. Particularly interesting is mdljsp2, which in spite of the
lowest number of static branches of the four floating-point benchmarks (848),
executes 96.8% (821) of them. Mdljsp2 has the second-highest relative error in
Figure 3. ‘

Sampling for Cache and Processor Simulation 189

Table 3 Dynamic branch distributions.

The E-z columns present the number of branches that occupy = percent of the bench-
mark’s execution. E-100 is the total number of branches that are dynamically ex-
ecuted. Static branches in program is the total number of static branches in the
program text.

Branch instructions

Static branches
Benchmark | E-25 [E-50 | E-90 | E-99 | E-100 in program
compress 2 5 17 21 135 432
eqntott 1 2 6 34 502 1323
espresso 15 49 225 842 2838 7582
gcc 72 348 | 2610 | 6535 | 14382 34347
i 10 34 119 264 1058 3138
sC 2 7 52 135 1529 4634
doduc 7 283 468 1596 3643
mdljsp2 2 5 15 35 821 848
ora 3 6 13 24 396 1791
tomcatv 3 6 12 14 372 1318

Since the branch distributions of Table 3 predict the difficulty of sampling the
benchmarks (Figure 3), it is clear that the major component of nonsampling
bias is due to the BHB. The effect of flushing the BHB in fresh- BHB is similar to
a context switch during actual program execution. For the latter, one method
to reduce the impact of context switching is to save and restore the contents
of the BHB around every context switch (see [13], among others). A similar
approach was tested here, called the stale-BHB approach. Stale- BHB preserves
the contents of the BHB between the simulation of each cluster. The two
approaches differ because, in the case of sampling, parts of the benchmark are
missing between each cluster.

The results for stale-BHB are presented in Figure 4. Here the relative error
is much lower than fresh-BHB, and in many cases reduced to half its value.
Specifically, floating-point benchmarks experience dramatic reductions between
Figures 3 and 4. One theory for why this occurs is based on the difference
between the dynamic lifetimes of branch instructions. Based on the data in
Table 3, branches can be divided into two categories: short-lifetime branches
(e.g., those accounted for solely in categories E-50 through E-100), and long-

190

CHAPTER 7

T T T
compress ~6—
cqntott —+= |
espresso 8-
goc X
[
sc ¥-

3
g
ol
0
2) B
s L s L ' s L 1
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Instructions in cluster
16 T T T T T T T T
doduc -o—
mdljsp2 ~+- |
14 F or
tomcaty -
12 r 4
10 | E
£
il
3

4
1000 5000 6000

Instructions in cluster

7000 8000 9000 10000

Figure 4 Relative error vs. Cluster size (stale-BHB)

lifetime branches (e.g., those in category E-25). Short-lifetime branches are
accurately captured by either fresh-BHB or stale-BHB as cluster size increases.
Either a large cluster size captures the entire lifetime of these branches, or the
effect these branches have on the IPC is relatively minor.

Sampling for Cache and Processor Simulation 191

Few branches are long-lifetime branches in the benchmarks (E-25 category).
Fresh-BHB must restore the state of these branches for each cluster. The
stale-BHB approach succeeds because it preserves these branches in the BHB
between clusters. Overall, the results of Figure 4 suggest that a large portion
of nonsampling bias can be reduced using large cluster sizes coupled with the
stale-BHB policy.

Although large clusters reduce nonsampling bias, increasing cluster size directly
increases the amount of simulation work required for accurate results. One
reason that RE(IPC) reduces for the data of Figures 3 and 4 may be that the
instructions at the beginning of the clusters repair the state for the remainder
of the cluster. Nonsampling bias is then introduced by recording the IPC for
this repair region. Overcoming this bias in turn requires additional instructions
in the cluster. This suggests that not recording IPC for the repair or warm-up
region of a cluster has the potential to reduce the overall number of instructions
required. To study this, the effects of warm-up were considered using two
approaches, partition and fired. These are depicted in Figure 5. Partition
uses a movable boundary between warm-up and sampled instructions for each
cluster. The boundary is static for a given sample. The overall cluster size
is kept as a constant of 5,000 instructions. The location of the partition is
measured in terms of the warm-up portion. The second method, fized, uses a
fixed size for the cluster and prepends variable numbers of warm-up instructions
to each cluster.

The results for partition are presented in Figure 6. The results show that
warm-up works towards greater accuracy of the sample design. The errors are
lower than those for the stale-BHB case (Figure 4). The left edge of the plot
shows areas of high relative error due to lack of warm-up. The major portion
of the groups of instructions in this area is made up of the actual cluster, with
very little dedicated to warm-up. A better balance between the two yields
lower relative errors. This is indicated by the dip in RE(IPC) between 40%-
80% warm-up. However, RE(IPC) begins to increase again towards the right
when the sizes of the actual clusters begin to reduce (warm-up > 80%). Several
benchmarks (e.g., espresso and 1) show reductions in RE(IPC) when the warm-
up constitutes about 98% of the group of 5,000 instructions, suggesting these
benchmarks have a large amount of state information. In general, for the
majority of benchmarks the relative error is lowest in the 40% to 80% warm-up
region.

The results for fized were generated using the cluster size recommendations
of 1,000 and 2,000 from partition. Figure 7 (1,000 cluster size) and Figure 8
(2,000 cluster size) present the fized results. The warm-up is varied within the

192 CHAPTER 7

range of 1,000-10,000 instructions. The overall relative error decreases as the
amount of warm-up increases. For the same amount of warm-up, the errors for
a cluster size of 2,000 are generally lower than those for a cluster size of 1,000.
The data indicates that a cluster size of 2,000 requires a warm-up greater than
7,000 instructions.

In summary, reduction in nonsampling bias can be achieved using three param-
eters: stale-BHB, cluster size and warm-up. Results indicate an appropriate
cluster size is 2,000 or more instructions, in conjunction with a warm-up in
excess of 7,000 instructions. It is important to underscore that this empirical
evidence is for a highly-parallel processor model that includes a large branch
predictor (1024-entry HRT, 1024-entry PT). Current processor designs have
much less state information. Sample designs based on our recommendations
for these and other less-parallel processors will be robust, and should not suffer
significantly from nonsampling bias. Full-trace simulations were used in this
section to demonstrate the reduction in non-sampling bias. It is also possible
to achieve the same from the mean IPC statistics available from the sampled
simulations using the different cluster sizes.

partition: fixed:

variable partition between warm—up and cluster

(warm—up + cluster size) is constant

variable warm—up fixed cluster size

Figure 5 The two approaches to measuring the effects of warm-up.
The partition approach moves a partition between warm-up and the cluster for a fixed
cluster size. The fired approach fixes the cluster size and varies the warm-up.

3.3 Reduction in sampling bias and
variability

It is accepted in sampling theory that bias exists in every sample due to the
random nature of the sample. It is possible to predict the extent of the error
caused by this bias. The standard error of the statistic under consideration is
used to measure the precision of the sample results (i.e., the error bounds) [9].
Standard error is a measure of the expected variation between repeated sampled

Sampling for Cache and Processor Simulation 193

6 T T T T T T T
compress —e—
eqntott -+~
espresso B
gee % ¥

T &

RE(IPC)

20 30 40 50 60 70 80 90 100
% Warm-up
6 T T T T T T T
doduc o—
mdljsp2 -+-
ora -8--
5k tomcaty -

RE(IPC)
~
T
J’

Figure 6 Relative error vs. %Warm-up (partition).

simulations using a particular regimen. These repeated simulations yield mean
results that form a distribution. The standard error is defined as the standard
deviation of this distribution. It’s use is based on the principle that mean results
of all simulations for a particular regimen are normally distributed, regardless
of whether or not the parameter is normally distributed within the population.

194 CHAPTER 7

compress ~o—
egntoft -+~ |

espresso -B--
ge

g 4
o
[
S S .
g s mndadad |
2 F mo(- 0
4 y ‘ : I
0 2000 4000 l
Warm-up
16 j ' ' |
doduc -e—
mdljsp2 -+ |
il ora -9--
tomeaty -
12 F —
10 | |
£
&
o

0 2000 4000 6000 8000 10000

Warm-up

Figure 7 Relative error vs. Warm-up (fized, cluster size = 1,000).

Based on this principle, the properties of the normal distribution can be used
to derive the error bounds for the estimate obtained from a simulation.

It is not cost-effective to perform repeated sampled simulations to measure the
standard error. Sampling theory allows the estimation of the standard error
from a single simulation. This is termed as the estimated standard error and

Sampling for Cache and Processor Simulation 195

16 T T T T
compress ——
eqntott -+-
14 F espresso -8+]
-
i 4
1RkF s¢ %- g
10 4
Y
X,
sb ™ 1
g .,
o)
o
2 L !) !
0 2000 4000 6000 8000 10000
Warm-up
16 T T T T
doduc ~o—
mdljsp2 =+-
14+ ora 8-+
tomeaty X%
12 1
10 F g
Q 8 F 4
¢
[

Warm-up

Figure 8 Relative error vs. Warm-up (fired, cluster size = 2,000).

is denoted by S;pz. This method of measurement and the results obtained
from it are used in the rest of this section. The standard deviation for a cluster
sampling design is given by,

Nc uster] 1
sipe = i (Wipe = pipe) (7.8)
(Ncluster - 1) ’

196 CHAPTER 7

where ,uﬂpc is the mean IPC for the #;, cluster in the sample. The estimated
standard error can then be calculated from the standard deviation for the
sample as,

SipC

Stpe = T (7.9)
The estimated standard error can be used to calculate the error bounds and
confidence interval. Using the properties of the normal distribution, the 95%
confidence interval is given by piper *+ 1.96 Stpg, where the error bound is
+1.965755. A confidence interval of 95% implies that 95 out of 100 sample
estimates may be expected to fit into this interval. Moreover, for a well designed
sample, where nonsampling bias is negligible, the true mean of the population
may also be expected to fall within this range. Low standard errors imply little
variation in repeated estimates and consequently result in higher precision.

Figure 9 shows the manner in which standard error reduces with increasing
sample size, measured by the number of clusters. Using the recommendations
of the previous section, the sample designs use a 2,000-instruction cluster size
with an 8,000-instruction warm-up and the stale-BHB policy. All benchmarks
exhibit standard errors that decrease rapidly as the number of clusters is in-
creased. Although low standard errors are seen for small samples (using 25
clusters) for gec and i, such observations are a matter of chance and the search
for a better standard error should be continued. With the exception of ora, the
floating-point benchmarks are not as easy to sample as the integer benchmarks.
These benchmarks have very large Sypz when the sample consists of around
25 clusters. All benchmarks reach the target precision when 1,000 clusters are
used to make up the sample.

Table 4 shows the values of Sypx for a sample made up of 1,000 clusters. The
95% error bounds are also shown. Doduc has the maximum standard error
and therefore larger error bounds. It’s confidence interval indicates that the
mean IPC for repeated samples should be between 3.293-3.489 (u$%42P' + CI).
Whether or not the precision provided by this range is acceptable depends on

the tolerable error decided upon. The values of the true mean (u¥3g) are

included in the table to show that the confidence interval also contains pi%s.
This is true for all the benchmarks except ora. The true mean IPC for ora lies
Jjust outside the range specified by the confidence interval. This is because the
standard error presented in Table 4 is only an estimate. Since ora has a very

small S;p=, the range provided by the confidence interval becomes very tight.

Figure 10 provides insights into why some benchmarks are more difficult to
sample than others. It shows the distribution of the mean IPCs of the clusters

Sampling for Cache and Processor Simulation 197

0.4 T T T T ~r T T T T
compress —e—
egntott —+--

0.35 |

03+

025

Standard error

0 100 200 300 400 500 600 700 800 900 1000

04 T T T T T T T T T
dodug ~o—
mdljsp2 -+
035 F ora -9
: tomeaty -

Standard error

0 100 200 300 400 500 600 700 800 900 1000

Number of Clusters

Figure 9 Standard Error vs. Number of Clusters

in the 1,000-cluster sample. Note that benchmarks with small variations among
cluster means, such as eqntoft and ora, are conducive to accurate sampling.
Benchmarks such as gce, doduc, mdljsp2 and tomcatv exhibit high variation
in the cluster means and are therefore difficult to sample. It is clear that the
precision of a sampling regimen depends upon the homogeneity of the cluster

198

compress

o Wm0 W W W % o

espresso

ora
.
s
.
3 bt Mt e bl bk
3
‘ W00 20 WO W0 00 W0 N w0 90 K00

CHAPTER 7

eqntott

W W % %o %o we e W a0

gece

W W w0 w0 % W % W

mdljsp2

o We M %o Mo w0 @0 A W w0 w0

tomcatv

Figure 10 Variability of cluster means across all clusters in the samples.
X-axis is the cluster number and y-axis is the mean IPC for the cluster.

Sampling for Cache and Processor Simulation 199

Table 4 Confidence interval measurements from estimates obtained from sin-
gle samples (N jyster = 1,000).

True mean| Estimated Standard [95% Error Relative
Benchmark || (u#%3&) jmean (u;‘;,'z.ple) Error (Sz55)| Bound |Error (RE(IPC))
compress 2.786 2.768 0.016 + 0.031 0.65
eqntott 2.523 2.521 0.007 + 0.014 0.08
espresso 2.440 2.414 0.017 + 0.033 1.07
gcc' 2.574 2.498 0.039 + 0.076 2.95
i 2.481 2.488 0.012 + 0.024 -0.28
sC 2.214 2.220 0.009 + 0.018 -0.27
doduc 3.425 3.391 0.050 + 0.098 0.99
mdljsp2 2.545 2.551 0.035 + 0.069 -0.24
ora 2.932 2.919 0.003 + 0.006 0.44
tomcatv 4.964 4.983 0.039 + 0.076 -0.38

means. For these benchmarks, the number of clusters need to be large enough
to offset the effects of the highly-heterogeneous cluster means.

Since the full-trace simulations are available in this study, it is possible to test
whether sample design using standard error achieves accurate results. The
estimates of p}5er'® when compared to p%g show relative errors of less than
3% for all benchmarks (Table 4). The conclusion is that a robust sampling
regimen can be designed without the need for full-trace simulations. When
nonsampling bias is negligible, the sampling regimen can be designed from the

data obtained solely from a single sampled run.

4 CONCLUDING REMARKS

This chapter has described techniques that have been used in sampling for
caches. Though the survey of techniques may not be exhaustive, an attempt has
been made to describe some of the more efficient methods in use today. Since
techniques for processor simulation have not developed as rapidly, techniques
have been developed for accurate processor simulation via systematic reduction
in bias. A highly-parallel processor model with considerable state information

200 CHAPTER 7

is used for the purpose. The techniques were verified with empirical results
using members of the SPEC92 benchmarks.

The use of the nonsampling bias reduction techniques were demonstrated by
sample design for the test benchmarks. To reduce sampling bias, statistical
sampling design techniques were employed. The results demonstrate that a reg-
imen for sampling a processor simulation can be developed without the need
for full-trace simulations. It is unlikely that all nonsampling bias was elimi-
nated using the techniques. However, since the error bounds calculated using
estimated standard error bracketed the true mean IPC, it can be concluded
that the nonsampling bias reduction technique is highly effective.

The recommended steps for processor sampling design are:

7.1 Reduce nonsampling bias: This requires a state repair mechanism.
Empirical evidence from a highly-parallel processor with a robust branch
predictor suggests selection of a cluster size of 2,000 instructions or more,
with a warm-up greater than 7,000 instructions per cluster, and the stale-
BHB policy for branch predictor state repair.

7.2 Determine the sample design:

(a) Select a number of clusters: Simulate using a particular number
of clusters. From Figure 9, suggested test numbers are between 200
to 1,000 clusters.

(b) Determine error bounds: Estimate standard error (Equations 7.8
and 7.9) to determine error bounds/precision of the results. If the er-
ror is acceptable, the experiments are completed. Otherwise, increase
the sample size by increasing the number of clusters, and resimulate
until the desired precision is achieved.

The results of this study demonstrate the power of statistical theory adapted
for discrete-event simulation.

Sampling for Cache and Processor Simulation 201

Exercises

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

7.10

Cluster sampling (time sampling in cache simulations) is found to be less
accurate when compared to other types of probability sampling methods
such as simple random and stratified (e.g. sampling by weighted misses)
sampling. Why?

What are the causes of non-sampling bias in cache simulations (full and
sampled)? List some of these for processors. What effect does non-
sampling bias have on the estimated mean from a sampled simulation?

How do the distribution of a metric within a cluster, the cluster means
and the number of clusters affect sampling bias and variability?

Laha,et al. suggested the extraction of a cluster soon after a context switch
for inclusion in the sample. Why? They also suggested that statistics be
collected from the first miss to a primed set rather than as soon as the set
is primed. Why?

By intuition, which of the four metrics piong, fiast, Msptit aNd fyepia SUE-
gested by Wood et al. for unknown references in short traces can be
expected to provide the best estimates. Give reasons.

State the advantages and disadvantages of set sampling in contrast to time
sampling in cache simulations.

The requisite reduction of non-sampling bias in the processor simulations
in this chapter is detected by plotting relative error. This requires full-
trace simulations. However, it is possible to achieve the same with the
means obtained from the sampled simulations alone (i.e., without full-trace
simulations). Explain how.

Statistics may be collected throughout the simulation of a cluster. Alter-
natively, they may be collected after a certain warm-up period. Why 1is
the latter method better?

Describe the procedure to be followed in setting error bounds around an
IPC measurement obtained from a sampled simulation. How is this bound
interpreted?

The processor simulations in this chapter have assumed a perfect cache.
For a processor simulation with a cache included, it becomes necessary to
be able to predict an unknown or fill reference as a hit or miss immediately,
rather than at the end of the simulation. The processor can then take the
appropriate action. Which of the methods to predict an unknown reference

202 CHAPTER 7

described in this chapter is suitable for this purpose? Would the addition
of a cache require an adjustment in the warm-up period?

REFERENCES

[1] K. M. Dixit, “CINT92 and CFP92 benchmark descriptions,” SPEC
Newsletter, vol. 3, no. 4, 1991. SPEC, Fairfax, VA.

[2] S. Laha, J. A. Patel, and R. K. Iyer, “Accurate low-cost methods for
performance evaluation of cache memory systems,” IEEE Trans. Comput.,
vol. C-37, pp. 1325-1336, Feb. 1988.

[3] H. S. Stone, High-performance computer architecture. New York, NY:
Addison-Wesley, 1990.

(4] D. A. Wood, M. D. Hill, and R. E. Kessler, “A model for estimating trace-
sample miss ratios,” in Proc. ACM SIGMETRICS ’91 Conf. on Measure-
ment and Modeling of Comput. Sys., pp. 79-89, May 1991.

[5] R. E. Kessler, M. D. Hill, and D. A. Wood, “A comparison of trace-
sampling techniques for multi-megabyte caches,” IEEE Trans. Comput.,
vol. C-43, pp. 664-675, June 1994.

[6] T. M. Conte, Systematic computer architecture prototyping. PhD thesis,
Department of Electrical and Computer Engineering, University of Illinois,
Urbana, Illinois, 1992.

[7] A. Poursepanj, “The PowerPC performance modeling methodology,” Com-
munications ACM, vol. 37, pp. 47-55, June 1994.

[8] G. Lauterbach, “Accelerating architectural simulation by parallel execu-
tion,” in Proc. 27th Hawaii Int’l. Conf. on System Sciences, (Maui, HI),
Jan. 1994.

(9] J. C. H. McCall, Sampling and statistics handbook for research. Ames,
Iowa: Iowa State University Press, 1982.

[10] J. W. C. Fu and J. H. Patel, “Trace driven simulation using sampled
traces,” in Proc. 27th Hawaii Int’l. Conf. on System Sciences, (Maui, HI),
Jan. 1994.

[11] G. T. Henry, Practical sampling. Newbury Park, CA: Sage Publications,
1990.

Sampling for Cache and Processor Simulation 203

[12] L. Liu and J. Peir, “Cache sampling by sets,” IEEE Trans. VLSI Systems,
vol. 1, pp. 98-105, June 1993.

[13] T. Yeh, Two-level adaptive branch prediction and instruction fetch mech-
anisms for high performance superscalar processors. PhD thesis, Depart-
ment of Electrical Engineering and Computer Science, University of Michi-
gan, Ann Arbor, MI, 1993.

[14] S. P. Song and M. Denman, “The PowerPC 604 RISC microprocessor,”
tech. rep., Somerset Design Center, Austin, TX, Apr. 1994.

8

PERFORMANCE BOUNDS FOR
RAPID COMPUTER SYSTEM
EVALUATION

Bill Mangione-Smith

Department of Electrical Engineering
University of California at Los Angeles

1 INTRODUCTION

Simulation is generally used to model program execution characteristics under
some set of conditions, for example the execution of a finite element application
on a high speed workstation. The simulation output may include several per-
formance metrics, such as the expected runtime, memory utilization, register
usage, or processor cache performance.

This chapter will summarize a body of work that provides an effective perfor-
mance evaluation tool that can either complement simulation or serve as an
alternative analysis tool. A group of researchers, primarily at the University of
Michigan, have been refining a set of techniques for finding useful upper bounds
on performance for scientific codes. These techniques have been applied to a
wide range of computer architectures, including vector (Cray-1, Cray X-MP,
Cray-2, Convex C-240), Decoupled Access Execute (Astronautics ZS-1), su-
perscalar (IBM RS/6000), and traditional commodity RISC (Mips R2000).
While the specific studies considered here focused on one or more machines in
detail, they form a consistent history of refining the overall techniques by broad-
ening their applicability, formalizing each step in the process, and tightening
the resulting bound.

1.1 Rationale For Performance Bounds

The performance bounds discussed here were originally applied to scientific
workloads, and this chapter will focus on this class of applications. The classic
model of a scientific application is a set of Fortran DO-loops executing floating-

206 CHAPTER 8

point intensive operations on dense matrices. While this characterization does
not cover the full range of scientific applications, it does contain an impor-
tant subset, in particular those that can be executed efficiently on vector or
massively-parallel supercomputers. The scientists and engineers who develop
and use these applications generally are committed to achieving extremely high
performance, and have been known to exert massive effort in order to optimize
their codes. Additionally, many scientific applications have scalable algorithms
which allow increased compute bandwidth to be directly translated into finer
detail (e.g. finer meshes for fine-element codes) or more complete models (e.g.
more components in an n-body problem). For these problems, the performance
requirements are essentially unbounded.

Historically, developers of scientific applications generally are not interested in
expected performance as much as achievable performance. Good performance
bounds serve this purpose. A bound that is significantly above delivered per-
formance indicates an opportunity for optimization. This is in contrast to an
accurate simulation or performance model that is close to the delivered perfor-
mance, but fails to reveal existing opportunities for improvement. Performance
bounds also identify the complimentary case, where the achieved performance
is poor but no significant opportunity exists for improvement. These results
help focus optimization efforts on the best targets.

Performance bounds have also been beneficially applied to a number of Real-
Time applications, particularly those involving communications. Real-Time
systems generally have a number of statically known tasks that have well defined
workloads. For example, MPEG codes must typically produce 30 frames of
video a second and a V.32bis modem must move data at 14.4 kbps. Once
these tasks achieve high enough performance to meet their required data rates,
no further performance increases can be beneficially used. Performance bounds
may serve to quickly identify those cases where a physical computer system can
never provide enough performance for a given Real-Time workload, and thus
help in redesigning or partitioning the system in a new manner.

While a number of scientists have focused on capacity (or bandwidth) to un-
derstand and frame performance issues, this specific line of research began
with Tang and Davidson [20, 21, 22]. They considered performance on the
Cray-1 [17, 4], Cray-XMP, and Cray-2 [5] processors, and developed the simple
workload and processor models that are central to this chapter. The original
workload was restricted to vectorizable kernels. They used an ad-hoc approach
to identifying and resolving performance inhibitors when achieved performance
significantly lagged the performance bound.

Performance Bounds For Rapid Computer System FEvaluation 207

Mangione-Smith, Abraham and Davidson [8, 9, 10, 11] expanded on this work
by extending both the workload and processor models. They included some
application codes that are not vectorizable. The new workload was executed
on machines that are not nearly as deeply pipelined as the Cray computers,
and where instruction issue capabilities could impact performance.

The next improvement was by Boyd and Davidson [1], who focused on explain-
ing the gap between achieved and bounded performance. They developed a
hierarchy of performance inhibitors, which proved effective for understanding
common features among multiple factors. This hierarchy also serves to struc-
ture the efforts to explain the performance gap.

2 OUTLINE OF APPROACH

The performance bounds presented here focus on two concepts: the workload
presented by an scientific program and the available processor bandwidth. A
workload is composed of fundamental operations that are essential to execut-
ing a particular program and generally are realized as atomic operations in the
processor’s instruction set. Examples include floating-point additions, multi-
plications, and memory operations. The workload also includes enough infor-
mation to account for the performance impact of some well understood data
dependencies.

Each processor is modeled by a set of hardware units that service this workload,
e.g. floating-point pipelines, instruction issue units, and memory ports. These
hardware units are represented by mathematical expressions that calculate a
minimal number of processor clock cycles required by each unit for a given
workload.

The processor necessarily requires at least as many clock cycles as each of its
function units. Thus, by taking the maximum value for all of the function unit
expressions, a lower bound on the number of clock cycles for the whole processor
can be determined. This number can be translated into a megaflop rate (the
more common performance number for scientific computers) by combining it
with the number of floating-point operations (flops) in the workload and the
processor clock period.

208 CHAPTER 8

2.1 Problems With Performance Bounds

Unfortunately, three factors have combined to thus far limit the applicabil-
ity of performance bounds: automatic program transformations, conditional
operations, and library routines.

Consider the question of what constitutes a scientific application. The following
code fragment implements a matrix multiplication using a straight forward
approach that is frequently used for an initial implementation:

DO I =1 TO ILIMIT BY 1
DO J = 1 TO JLIMIT BY 1
DO K = 1 TO KLIMIT BY 1
c[J,1] = c[J,1] + A[I,K1*BIK,J]

Figure 1 Naive matrix multiplication algorithm

Unfortunately, this algorithm contains a data dependence between successive
iteration of the inner loop, which is carried through the C[J,I] cell. This
dependence will drastically limit performance on any machine with deep func-
tion unit pipelines, as is typically the case with high speed computers. One
well known technique for achieving higher performance for this task on such
machines is to swap the second and third loop construct. This algorithm trans-
formation, called loop interchange, produces the same numerical result as the
original algorithm. Fortunately, a number of modern compilers will identify
the unnecessary dependence in the original code and automatically execute the
loop interchange. However, an abstract performance bounding technique can
not know a priori whether or not such a transform will be conducted.

The resolution to this problem has been to specify that the performance bounds
are only applicable to the actual algorithms that are executed. Thus, the
workload and dependencies under consideration are only those that exist after
all optimizations (either explicit or automatic) have been fully applied. This
rule does not really reduce the range of applications to which the performance
bounds can be applied, but rather limits when the techniques should be used.

Conditional statements, such as Fortran IF/THEN/ELSE structures, increase the
complexity of any program analysis. Consider the example in Figure 2. If E is
true 50% of the time, a workload could model half of the requirements of A and
half of those for B. This approach would be inappropriate if E is highly skewed,
for example when B handles a rarely occurring exception. Profiling statistics

Performance Bounds For Rapid Computer System Evaluation 209

may help in these cases, but programs do not always have accurate profiles due
to data set variations and sensitivities. Because to these reasons, none of the
programs considered in this chapter have conditional statements.

Do
IF (E)
THEN
A
ELSE
B
ENDDO

Figure 2 Problematic conditional program fragment

Library functions (or subroutines in general) are difficult to model, because the
actual workloads can vary significantly over multiple executions. For example,
consider a square-root function that has a short-circuit return path for values
of 1, 0, and -1. If a majority of the actual parameters fell into the short-circuit
category any conservative performance bound (i.e. one that assumed worst
case performance) would be too loose to be useful.

Though some functions do lend themselves to inline expansion and analysis,
the general case is difficult to model with satisfactory results. None of the
benchmarks discussed below invoke library functions.

2.2 Benchmark Programs

Each of the projects considered in this chapter used the Livermore Fortran
Kernels [13] (LFK), also known as the Livermore Loops, for their workload.
The Livermore Fortran Kernels are 24 small subroutines that were extracted
from key production codes in use by the Livermore Labs community. Each LFK
is structured as nested Fortran DO-loop (though some are composed of only a
single DO-loop) with predominantly double precision floating-point operations.
The suite was originally comprised of only 14 LFKs, and most studies either
use that subset or all 24. Of the original 14 LFKs only number 13 and 14
contain subroutine calls (to library mathematical functions) in the inner most
loop.

210 CHAPTER 8

The 12 remaining LFKs can be characterized in one of three ways. Some of the
LFKs can be vectorized with modern compiler technology, and execute with
relatively high performance. For arbitrary long vector lengths, these kernels
have essentially infinite available parallelism, and should saturate some system
resource during steady state execution. These kernels will be referred to as
Vector kernels (marked with with a V in Table 1).

LFK 1 will be used as an example for the vector kernels and is shown in Figure 3.
Clearly, each iteration of the inner-loop is independent of all other iterations,
and thus they can be executed concurrently to achieve high performance.

DO1K=1, N
X[K] = Q+Y[K]*(R*ZX[K+10]+T*ZX[K+11])

Figure 3 Livermore Fortran Kernel 1

LFKs 5 and 11 are called recurrence kernels (and are marked with an R in
Table 1) because they contain strong data dependencies between iterations.
Figure 4 shows the code for LFK 5. It is apparent that the result from one
iteration (X[K]) is needed in the immediately succeeding iteration (as X[K-1]).
These kernels present little opportunity for concurrent execution!, and gener-
ally execute slowly on high speed processors due to deep function-unit pipelines.
However, the performance impacts of such data recurrences are very easy to
model, and thus these kernels generally result in very tight performance bounds.

DO1K=1, N
XIK] = Z[K] + (Y[X] - X[K-11)

Figure 4 Livermore Fortran Kernel 5

The third class of kernels exists between vector and recurrent and are termed
Vector Reductions. Vector reductions operate in a bimodal fashion: first a
function is applied to the data in a vector-like manner, and then an evalua-
tion tree is used to reduce the dimension of the result. LFKs 3, 4 and 6 are
vector reduction kernels (and are marked VR in Table 1). Because of this bi-
modal operation, neither of the previous simpler characterizations is successful
at bounding the execution of reduction loops. These loops show the highest
average disagreement between the performance bound and actual performance.

1Program transformations do exist that can loosen the constraints of some recurrences,
though at the expense of more total floating-point and memory operations. The bounds de-
veloped in this chapter can be effectively applied in these situations after such transformations
have been applied.

Performance Bounds For Rapid Computer System Fvaluation 211

3 SIMPLE BOUNDS MODEL

This section focuses on the work of Tang and Davidson, who were interested
in understanding performance issues for the Cray-1, Cray X-MP, and Cray-2
vector supercomputers. The Cray-1 will be considered in detail to frame and
evaluate their work.

3.1 Cray-1 Processor Architecture

The Cray-1 is a uniprocessor vector supercomputer. The CPU is composed of a
scalar and integer execution unit and a vector execution unit. In general, scalar
instructions do not have a significant impact on performance for the Cray-1,
though achieving this goal requires the compiler to apply very specific and non-
trivial instruction scheduling techniques. Furthermore, since the workload is
dominated by floating-point operations, the execution of scalar unit instructions
should have negligible impact on performance. Therefore, the scalar execution
unit was not modeled in the performance bounds.

The memory system services requests from a single processor port. It is inter-
leaved and provides reasonably high bandwidth (one operation per processor
clock). However, the bandwidth can be degraded by non-unit stride vector
memory operations. The achieved memory latency is also relatively high.

The vector unit contains eight vector registers, each composed of 64 elements
which are 64 bits wide. The vector registers source all memory store operations
and sink all loads. Because of this, the Cray-1 is generally referred to as a load-
store (or register based) vector processor.

The Cray-1 introduced the concept of vector register chaining, which is used
to mask the latency of deep floating-point pipelines and memory. Floating-
point add operations require 6 clock cycles to complete, while multiplications
require 7. Depending on memory bank access conflicts caused by non-unit
stride reference requests, memory load latency can vary dramatically. However,
typical memory access startup latencies tend to be around 15 clock cycles.
Vector operation chaining can often mask the impact of these latencies for
a serles of dependent instructions. For example, consider the case where a
floating-point addition uses the result of a preceding multiplication. The Cray-
1 can forward the results from the multiplier directly to the adder, while each
element of the result is on the register write-back bus. Thus the adder need
not read its input out of the vector register file. As Russel points out [17],

212 CHAPTER 8

[
ﬁ f H
[L
lJ igliglin
o HHH
N s
. |
N
L
Iglinim
alininin
6t HHF
e
63 -

T T T

Load/Store | Adder Multiplier
15 Stages 6 Stages 7 Stages

Main Memory

Figure 5 Architecture of the Cray-1 processor

this approach is similar to the technique of data forwarding used in the IBM
360/195 [14], though the 195 can only forward scalar values.

Performance Bounds For Rapid Computer System Evaluation 213

It is important to understand how the vector registers are actually implemented
on the Cray-1. Each register has a control bit that marks whether it is being
read or written, a count register for the number of elements left to be used for
the current operation, and an access pointer that addresses the next element to
use. Since there is only a single pointer, only one access can be active for each
vector register. Thus, continuing with the example, if the first element in the
multiplication has already been written into the result register and is no longer
present on the result bus when the addition is ready to begin operation, the
addition will be stalled until the entire vector multiplication has completed. At
that time a new access can begin on the register which stores the multiplication
result. The maximum time between when the multiplication begins execution,
and when the addition must be ready to begin execution in order to use chain-
ing, is termed the chain slot time. If the chain slot time is met the two coupled
instructions require 7 clocks for the multiplication, 6 for the addition, and 64
to write each result, for a total of 77 clocks. If the chain slot time is not met,
the addition will be stalled for 64 clock cycles before it can begin execution,
resulting in a completion time of 141 clocks.

It is worth pointing out that Cray computers have used a number of different
approaches to chaining. The immediate successor to the Cray-1 was the X-
MP, which provided flexible chaining. On this machine a second access is
supported into each vector register, which effectively removed the constraint
of the chain slot time. However, the succeeding Cray-2 dropped chaining from
the architecture.

3.2 Workload Model

Tang and Davidson did not consider the vector reduction and data recurrence
kernels, since these cannot be vectorized effectively on the Cray-1. Their ap-
proach to modeling the remaining workload was to focus on fundamental oper-
ations that are supported by the hardware, in this case floating-point additions
and multiplications as well as memory loads and stores. Table 1 shows the
break down for these operations in the inner loops of the LFKs under consider-
ation. Additions are noted as A, multiplications as M, loads as L, and stores as
S. These counts were derived by simple inspection of the inner-loops as written
in Fortran, and for the floating-point operations do not necessarily reflect the
actual operation counts that occur in the compiled code.

The bounds model developed by Tang and Davidson is very straight forward.
Even though the Cray-1 has a number of deeply pipelined function units, it is

214 CHAPTER 8

LFK | Type | Adds | Mults | Memory Operations
A M L S L+S
1 \% 2 3 233)] 1 3(4)
2 A% 2 2 2(4) |1 3(5)
3 VR 1 1 2 0 2
4 VR 1 1 2 0 2
5 R 1 1 2 1 3
6 VR 1 1 2 0 2
7 \Y% 8 8 4(9) | 1| 5(10)
8 \Y% 21 12 15 6 21
9 A 9 8 10 1 11
10 Vv 9 0 10 | 10 20
11 R 1 0 1(2)| 1 2 (3)
12 \% 1 0 1(2)| 1] 2(3)

Table 1 Fundamental operations in each LFK

designed to hide the impact of these latencies. Furthermore, the hardware is
well matched to the workload presented by these LFKs. Tang and Davidson
assume that the latencies of each function unit can be ignored, and instead focus
on the function unit bandwidth. Patel [16] had proven that the controller for a
pipelined floating-point unit can be designed to saturate at least one pipeline
stage, assuming that the workload is known in advance and has an acyclic
dependence graph. This theorem is roughly comparable to the requirement
that an inner loop be vectorizable, and it was used as justification for focusing
on bandwidth by assuming a saturated function unit. A lower bound on the
number of processor clock is

C =max(A,M,L+S5).

Table 2 shows the value of C for each LFK. Memory contention due to IO or
scalar operations, which could effectively reduce the available memory band-
width, is ignored.

Tang and Davidson also developed an accurate timing model, based very closely
on the processor microarchitecture and instruction issue constraints. The pur-
pose of this timing model was to determine the performance of a compiled or
hand coded LFK. Because of the complexity of this model, and considering

Performance Bounds For Rapid Computer System Evaluation 215

LFK | Time Bound (C) | Achieved Time | % of Bound
1 4 5.85 68
2 5 19.56 26
7 10 16.60 64
8 21 40.26 52
9 11 16.91 65
10 20 25.66 78
12 3 3.67 82

Table 2 Bounded vs. achieved performance on the Cray-1

that it is not fundamentally relevant to the issue of performance bounds, it will
not be presented here. However, it is important to point out that the model
proved to be very accurate, and was used to determine achieved performance
for a given LFK.

Table 2 also shows the best achievable time, using the straight forward com-
pilation techniques then provided by the Cray-1 Fortran compiler, for these
kernels. Also shown is percentage of the performance bound achieved by these
code schedules. :

Table 2 clearly shows that each of the LFKs loses a significant fraction of the
apparently available performance (when compared to the performance bound).
The next step is to understand whether the performance bound really is achiev-
able, and if so what factors account for this lost performance.

3.3 Sources of Lost Performance

The following factors were identified as important for explaining the difference
between the performance bound and the achieved performance:

Musaligned Loads

LFK 1 (Figure 3) contains an example of a misaligned load. Each iteration of
the inner loop contains a reference to ZX(K+10) and ZX(K+11). The bounds
model assumes that after the K+11 term is used as an operand, it is kept in

216 CHAPTER 8

a processor register and used as the K+10 term for the successive iteration?.
This sort of optimization can have an important impact on performance by
reducing the required memory bandwidth, and is relatively easy to identify.
Unfortunately, this optimization is poorly suited to register based vector ma-
chines. Taking advantage of this opportunity would imply a vector shift of each
element in a given register, with final element being reloaded from memory or
copied from a different vector register. The Cray-1 does not support this sort
of operation, and thus the compiled code for LFK 1 contains an additional load
over what the workload suggests is the minimum. The same phenomenon in-
creases the memory traffic in kernels 2, 7, 8 and 12. Table 1 shows the increased
memory traffic in parentheses for each LFK.

Effective Use Of Chaining

Although the Cray-1 directly supports chaining in hardware, experience in-
dicates that careful instruction scheduling is required to enable chaining in
practice. In particular, the Cray-1 provides an instruction called Vector to
Scalar Transmission Instruction (VTSTI), which may be used to enable or dis-
able operand chaining. The compiler or assembly programmer can insert these
instructions in a stream of vector operations. Generally, the VTSTI refers to
one of the vector elements in the result of the last vector instruction issued.
The data must be read out of the vector register file, which effectively inhibits
chaining on the function unit result bus and delays the execution of any suc-
ceeding vector instructions. However, VISTI instructions can be necessary
for enabling chaining in some situations, in effect lengthening some chains by
breaking others.

By focusing on optimal performance, and the contrasting it to achievable per-
formance, Tang and Davidson were able to identify the problem with VTSTI
instruction use. They developed a set of four rules for when to insert these
instructions into a code sequence in order to achieve increased performance.

Single Load Port

It is generally accepted that the single memory port on the Cray-1 is frequently
the performance bottleneck. All succeeding Cray computers have increased
memory bandwidth, relative to floating-point bandwidth. However, Tang and
Davidson identified an additional problem with the single memory port design

2Without this assumption, an aggressive compiler could generate code that exceeded the
performance bound.

Performance Bounds For Rapid Computer System Evaluation 217

on the first machine. Consider the case where the first operations in a kernel
load a vector and multiply it by a constant (either vector or scalar). The
multiplication can chain to the load operation, and concurrent execution is
achieved. However, if the kernel begins by loading two vectors and multiplying
them, chaining cannot be achieved and performance is lost. Because there is
only a single load memory port, multiple loads can not be executed concurrently
in an interleaved fashion. This will reduce performance, even in the case where
the kernel is not fundamentally limited by memory bandwidth.

4 DATA DEPENDENCE AND SCALAR
CPUS

Mangione-Smith, Abraham and Davidson began with the results of the Cray
study just discussed, and extended it in two ways. First, they considered some
kernels that are not strictly vectorizable, by including vector reduction and data
dependent LFKs. Their workload consisted of the first twelve LFKs. Secondly,
they extended and generalized the processor model to those machines without
vector hardware. This included the Astronautics ZS-1 [19], the Mips R3000(6],
and the IBM RS/6000 [15]. This section will focus on the ZS-1.

4.1 Astronautics ZS-1 Architecture

The Astronautics ZS-1 was a commercial decoupled access execute (DAE) com-
puter. DAE computers attempt to separate the address generation section of a
CPU from the function units that operate on data. Once this is done, operands
can be read in from memory in advance of when they are actually needed. Sev-
eral architectures exploit this parallelism in other ways: load/store machines
and VLIW computers rely upon optimizing compilers to achieve early access,
while memory-to-memory vector computers overlap long incremental sequences
of memory requests with data operations. The IBM 360/91 was an early I-
box/E-box machine where the two units have a clean interface and there is
extensive hardware support for achieving early access.

The DAE architecture is an outgrowth of research carried on by J. E. Smith
at the University of Wisconsin. At the same time, though independently, the
Structured Memory Access (SMA) architecture was being developed at the uni-
versity of Illinois. Both projects proposed using a network of queues to allow
two processing units to execute semi-autonomously. However, the Wisconsin

218 CHAPTER 8

Access Unit Execute Unit
A-Processor X-Processor
) o Copy Queues
o P
[2] < « < [+
T 2| 3 3 £ 5
< < A A A A
Q Q ()]
3 E F % i E
gl B B & & 2

’ SpTlitter |

Ej E E E I-cache H E
g 9 g < 16k Bytes ot 4
33 % s Y =/ I
!
D-cache
64k Bytes

Figure 6 Architecture of the ZS-1 processor

project developed the characteristics of DAE as a modification of the Cray-1
scalar architecture, while the SMA project focused on memory access patters
and support hardware. Smith started a company, later acquired by Astronau-
tics, which developed the ZS-1 into a commercial product.

Figure 6 shows an overview of the ZS-1 CPU and cache memory. Even though
the access processor (A-processor) and the execute processor (X-processor) ex-

Performance Bounds For Rapid Computer System Fvaluation 219

ecute one dynamic flow graph, they are not necessarily executing the same part
of that graph concurrently.

The splitter maintains the program counter and fetches instructions from the
instruction cache. Only instructions that will be execute are fetched, no branch
prefetching is done. The splitter places each instruction in either the A-
instruction queue or the X-instruction queue. However, because the splitter
can fetch and split two instructions concurrently, the CPU has an instruction
bandwidth of two instructions per clock cycle. Instruction splitting continues
until one of the instruction queues is full or a conditional branch is encountered.
For a conditional branch, the splitter stops execution until the branch flag is
asserted, and the conditional branch is resolved. The splitter then resumes
instruction fetching at the start of the next basic block.

The ZS-1 works best when executing iterative programs that make great use of
the floating-point hardware. The X-processor uses the memory queues to read
and write operands, without knowing the memory source or destination. The
A-processor generates addresses and sets the branch flag to signal loop continu-
ation or termination. Most fixed-point operations require only one clock cycle,
and it is easy for the compiler to find efficient schedules for these instructions.
The floating-point X-processor is more complex; its operations require more
clock cycles and are pipelined. The latency of the floating-point units com-
plicate the task of generating effective instruction schedules and increases the
performance penalty of data dependencies. Because the A-processor tends to
execute instructions at a higher average rate than the X-processor, it is often
able to move ahead of the X-processor in the program flow path. This phe-
nomenon, called slip, is responsible for hiding the effects of memory latency
from the X-processor.

Whenever an operand for either processor is required from memory, the A-
processor puts the operand’s address into the load address queue (LAQ). Sim-
ilarly, store addresses are placed in the store address queue (SAQ). The archi-
tecture specifies that all read requests will be fulfilled in order, as will all write
requests. An address comparator is used to avoid potential read-after-write
hazards. When a hazard is detected, the read request, and all later reads, are
stalled until the pending write commits its result to memory.

The X-processor, which is responsible for floating-point operations, has pipelined
function units for addition/subtraction, multiplication, and reciprocal approx-
imation. The natural representation for floating-point numbers on the ZS-1 is
64-bit IEEE format, though 32-bit IEEE format is also supported.

220 CHAPTER 8

4.2 Performance Bounds

Mangione-Smith, et al. modified the performance bound by splitting it into two
components: one for modeling resource constraints, and a second for modeling
dependence constraints. The aggregate performance bound is simply the larger
of these two individual terms.

Resource Based Timing Model

The resource based model is a straight forward extension of the approach used
by Tang and Davidson for the Cray-1. For scalar machines, such as the ZS-1,
the instruction issue bandwidth is added to the model. The ZS-1 floating-point
adder and multiplier have a bandwidth of one result every two clock cycles®.
Thus, the resource based timing bound can be represented as:

C=max(A+M,2xA,2«M,L+S).

In this case the first term models the instruction issue demands of the X-
processor, the second is the floating-point additions, the third is the floating-
point multiplication, and the last is memory operations (as well as A-processor
instructions). Once again, this equation finds a bound on the minimum time
per iteration of the inner-loop, not the execution time of the entire loop nest.

Dependence Based Timing Model

A dependence pseudo-unit is used to calculate a time bound for data dependent
operations. The bandwidth of the dependence unit is a function of pipeline
latencies and the workload characterization. The dependence unit has proved
a convenient abstraction that lends consistency to the overall model.

The first step in finding the bandwidth of the dependence unit is to construct
a dependence graph for the unrolled loop. Each node in this graph represents
an operation on some X-processor resource, such as a read from the memory
port or a floating-point multiplication. A-processor instructions, such as fixed-
point calculations on induction variables or address calculations, are ignored
under the assumption that the A-processor is rarely the system bottleneck and

3This chapter is modeling the original X-processor on the ZS-1, though Astronautics
produced a later design which increased the throughput.

Performance Bounds For Rapid Computer System FEvaluation 221

generally do not participate in dependence cycles?. Edges in the graph show
data dependencies, and each edge has an associated cost which is equal to the
time required for the pipeline latency. In particular, the floating-point pipelines
have a latency of six clock cycles, so edges that begin at floating-point operation
nodes cost six time units. A floating-point operation can refer to a data queue
in the same way that registers are referred to, regardless of whether the queue
is a data sink or source. In effect, each queue is a register that must be directly
addressable by an instruction. The model assigns most memory operations a
cost of zero when viewed through the X dependence graph, i.e. fully adequate
slip is assumed.

The second step in finding the dependence unit time bound is to identify all
simple cycles in the dependence graph. A simple cycle in the graph is any
closed path where no edge occurs twice. Each cycle has an associated cost, i.e.
the sum of the weights on its set of edges. Each cycle also has an associated
iteration-span, i.e. the number of (unrolled) loop iterations contained in the
cycle. Thus, each cycle impresses a time constraint on the iteration time, which
is equal to the ratio of its cost over its iteration-span. The dependence time
bound is then just the maximum of these values for all cycles in the dependence
graph.

The dependence graph for loop 5, after it has been unrolled four times, is shown
in Figure 7. This loop has a first order linear recurrence, which is manifested
as a cycle in the dependence graph. Because of this dependence, the longest
simple path through the graph is proportional to the degree of unrolling. The
dependence unit provides a good time bound for loops with linear recurrence,
as will be shown later in this section.

4.3 Achieved Performance and Bounds

Table 3 indicates the resource and dependence time bound for each of the loops.
For the vector loops, dependence time for the entire loop execution is simply a
constant that corresponds to the minimum time required to execute one itera-
tion of the inner loop. For an arbitrarily long vector operation the dependence
time per iteration is arbitrarily small. Thus, these LFKs are charged with zero
dependence time (marked with a ’-’ in Table 3). For the reduction operations,
a logarithmic term is added to account for the time required to evaluate a par-

% Actually, scalar induction variables do generally form dependence cycles, but most high
performance compilers can remove these dependencies through loop unrolling and variable
expansion.

222 CHAPTER 8

Y(1] X[L1]——
(\ /)

Y[I+1] \ / :
N .
Y[I+2] \ /
N .
Y(I+3] \ /
O\\ /; Z[1+3]
NS

Figure 7 Dependence graph for LFK § after unrolling 4 times

Performance Bounds For Rapid Computer System Evaluation 223

2 Clock Memory | 64 Clock Memory

Resource | Dependence % of % of

LFK Time Time Achieved | Bound | Achieved | Bound
1 60 - 7.43 81% 7.52 80%
2 40 - 15.46 32% 19.06 26%
3 32 - 6.20 32% 6.24 32%
4 32 - 6.24 32% 6.29 32%
5 46 12 12.47 96% 16.66 72%
6 16 - 14.41 14% 28.50 7%
7 80 - 23.60 68% 23.84 67%
8 84 - 57.61 73% 59.77 70%
9 72 - 28.60 63% 28.94 62%
10 80 - 27.19 74% 27.80 72%
11 33 6 6.57 91% 10.52 57%
12 33 - 2.75 73% 2.78 72%

Table 3 Bounded vs. achieved performance on the ZS-1

allel summation tree, composed of the results of each iteration inside of a single
unrolled iteration. Finally, for the linear recurrence LFKS this bound is equal
to the time required for evaluation each iteration is series.

A detailed performance simulation study was conducted, using simulation tools
available from Astronautics. These tools have been verified against the actual
hardware, and will be used to determine the actual achievable performance for
each LFK. A few modifications were made to the simulator before conducting
these experiments. The lengths of the data queues were increased to 64 entries,
so that queue full stalls would not impact performance. Also, the memory was
changed to model a fully pipelined (i.e. no bank stall) design. The latency of
memory accesses was allowed to vary, as an input parameter to the simulation.

Each run of the simulator executed 50,000 instructions. Table 3 contrasts the
simulation results with those predicted by the performance model.

For pure vector loops, the data and control flow are almost completely data
independent. The A-processor is able to slip far ahead of the X-processor, and
the floating-point pipelines rarely need to wait for previous results to become
available. Because of this slip, these loops have a higher achieved performance.
With a memory latency of 2, these loops achieve a harmonic mean of 9.71

224 CHAPTER 8

mflops. The harmonic mean of the performance bound is 15.83 mflops. The
performance bound is reasonably close to the actual performance for these
loops: the ratio of the harmonic mean of actual performance to the harmonic
mean of the performance bound is 61%. This ratio increases to 72% when loop
2 is excluded from consideration.

It is difficult to speed up loops that contain linear recurrences because these
loops have very strong data dependencies between iterations. The analytic
model does a very good job of modeling this performance; the performance
bound is tightest for this class of loops.

The bimodal operation of the vector reduction loops results in the combination
of two performance bounds (resource and dependence), neither one of which
does a good job of tightly bounding performance. These loops show the highest
average disagreement between the performance bound and the actual perfor-
mance.

4.4 Sources of the Performance Gap

Three primary sources of reduced performance were identified on the ZS-1,
which serve to explain the gap between achieved and bounded performance.

Dataflow Analysis

It has been claimed that one of the chief advantages of the DAE architecture
is that it can achieve vector like performance without requiring a vectorizing
compiler. While this is true for some loops, there still remains a wide class
of programs that would benefit from many of the techniques used by vector
compilers.

Of all 12 LFKs, 2 and 6 achieve the smallest fraction of the performance bound.
This is surprising, since both loops are generally vectorizable, and thus should
achieve high performance.

This low performance occurs because the ZS-1 compiler relies upon hardware to
avoid read-after-write hazards. For example, LFK 2 contains an array that is
read from and written into, however there are no recurrences or hazards. Many
vector compilers resolve this potential hazard at compile time and produce very
effective vector code. Unfortunately, the ZS-1 Fortran compiler is not able to
determine that there is no dependence. Because of this missed optimization,

Performance Bounds For Rapid Computer System Evaluation 225

the compiler cannot reorder instructions to keep the floating-point pipelines
full.

The dependence graph for this kernel can be constructed with this potential
recurrence considered as an actual data dependence. When memory has a
latency of 2 clocks this construction closes the gap between actual performance
and the bound to 94%.

Misaligned Loads

As has already been discussed, misaligned loads occur in LFKs 1, 2, 7 and 12,
and frequently occur in scientific algorithms. The ZS-1 code scheduler detects
and eliminates misaligned loads in unrolled loops.

This optimization will not, however, always improve performance. None of
the LFKs with misaligned loads are limited by the bandwidth of the memory
port, and so the redundant reads could be left in the compiled code. This
would require the A-processor to execute a few more read instructions but the
A-processor is rarely a performance bottleneck.

The problem with removing these loads in the ZS-1 involves the X-processor.
Each of the floating-point operations in the example loops execute in 6 clock
cycles. All X instructions issue in the order in which they occur in the basic
blocks, and most of the example loops encounter long sequences of instructions.
However, the X register file has only one write port. A copy of the XLQ into
the register requires one clock cycle. Because the register write port is often
reserved by previously issued instructions (which require six clock cycles to
complete), these copy instructions will often stall before being issued. This
stall may reduce ZS-1 performance by blocking later instructions that could be
otherwise issued. '

Model Inaccuracies

Fortran requires that mathematical operations with equal precedence must be
evaluated from left to right. The workload model, however, assumes that math-
ematical operations can execute concurrently, as long as dependence relations
are not violated. Thus, ZS-1 performance for the reduction kernels (LFKs 3, 4
and 6) is much lower than the performance bound.

226 CHAPTER 8

4.5 Followup Work

Mangione-Smith, Abraham and Davidson continued to refine their models,
principly by developing a unified approach to representing data dependence
with resource limits. They also used these techniques effectively to compare
the ZS-1 to the Mips R3000 RISC and the IBM RS/6000 CPU.

5 MACS: A HIERARCHICAL
PERFORMANCE MODEL

Boyd and Davidson [1] began with the work of Tang, Mangione-Smith, Abra-
ham and Davidson as a starting point, and formalized a complete performance
evaluation approach. The early work focused on machine/application perfor-
mance and dealt with other issues (e.g. compiler optimizations and processor
implementation details) in a somewhat ad hoc manner. This new model, called
MACS, manages to clearly capture and isolate the impact on performance of
several different factors: machine architecture, application program, high-level
compiler optimizations, and low level compiler code scheduling. An M (ma-
chine) bound is associated with the peak performance of any application on a
given architecture. This term is typically referred to as the machine’s mflops
rate, independent of application, and generally provides very little insight on
performance issue. An MA bound (machine-application) factors in the actual
work-load from a given application, and corresponds to the bounds presented
so far. The MAC bound (machine-application-compiler) formally addresses the
impact of high level compiler optimizations, such as misaligned load removal
and loop unrolling. The final performance bound, MACS (machine-application-
compiler-schedule), further extends the bound to consider the impact of a spe-
cific code schedule. The MAC and MACS bounds specifically and formally
address a number of issues that Mangione-Smith et al. and Tang and Davidson
addressed through informal discussion.

As each factor is added to the performance bound (moving from M through
to MACS), more issues are considered which could reduce performance. Thus,
the performance bounds naturally form a hierarchy, with M the most idealized
(and thus loosest), and MACS the closest to the actual achieved performance.
In essence, moving up the hierarchy identifies a performance gap that can be
associated with specific causes.

Performance Bounds For Rapid Computer System FEvaluation 227

MEASURED t, t, MERGE— &,
PERFORMANCE
CALCULATED - .

t.'f tm MERGE_—"' tmacs

BOUNDS

tg th MAX— fmac

tf tm MAX_" tmau

Figure 8 Hierarchy of MACS performance measures

Figure 8 gives a graphical view of this hierarchy. Each term will be discussed
in detail in the following sections. The t,,, term is the MA time bound for
each iteration, and is simply the maximum of the floating-point time bound
(ty) and the memory unit time bound (¢,,). The MAC bound ({prac) takes
into account the actual workload in the compiled code, and is the maximum
of the real workload time bounds for the floating-point (t;) and memory (t,)
units. The double primed time bounds correspond to actual code sequences,
and interact in a complicated fashion to form the MACS bound tapracs. ta
and t; correspond to actual execution of just the memory or floating-point
related instructions. These terms derive from a performance analysis approach
developed by Windheiser and Jalby [23] which Boyd and Davidson applied to
the C-240. However, this technique is orthogonal to the issue of performance
bounds, and will not be discussed further here.

228 CHAPTER 8

5.1 Convex C-240

Boyd and Davidson chose the Convex C-240 [2, 3] processor as the focus
machine for their performance study. The C-240 is a four processor vector
computer that is optimized for scientific computing. The system has a clock
period of 40ns, yet still manages to achieve high performance on a number of
scientific codes.

Only uniprocessor performance issues were considered. The C-240 provides a
number of light-weight tasks in low level hardware, and can manage to quickly
switch tasks with little or no operating system intervention®. Furthermore,
multiprocessor memory traffic can cause unpredictable response time, even for
processors executing the same application, as well as significantly degrade avail-
able bandwidth. These two factors combine to greatly complicate the task of

modeling multiprogrammed or multiprocessor systems.

The vector processor (VP) on the C-240 employs a load-store model centered
around eight vector registers with 128 elements each. The increased vector
register length (relative to the Cray computers) helps to reduce the impact of
pipeline latency (both in the function units and memory), though some recent
research suggests that a more effective approach would have been to increase the
number of available registers [7, 12]. Each VP has one memory port connected
to its register file. There are 3 function units, providing memory port access,
addition and multiplication. The memory port bypasses a data cache, which is
reserved for scalar data. A number of computers have shown that transferring
vector data through a cache can easily result in a flushed cache with little or
no reuse of the streaming vector elements.

The VP function units support multiple concurrent independent instruction
execution. Furthermore, a model of operand chaining is allowed which is more
flexible than the Cray-1 or Cray-XMP. The vector registers are grouped into
4 pairs, {v0,v4}, {v1,v5}, {v2,v6} and {v3,v7}. Each pair of vector registers
can support two read operations and one write operation simultaneously. The
hardware necessary for sequencing access to each register has been moved out of
the register itself, so that it is shared by both in the pair. There is no concept of
chain slot time, as in the Cray-1, and thus the problem of instruction scheduling
is greatly reduced.

5However, this mechanism is not nearly as fine grained as a multi-threaded (or barrel)
processor, such as the Denelcor HEP [18].

Performance Bounds For Rapid Computer System Evaluation 229

The Address/Scalar Unit (ASU) is responsible for all scalar integer and logical
operations. For example arithmetic, population count, and address operations
occur within the ASU. The data cache only services ASU requests. The ASU
is also responsible for all machine sequencing and control operations, such as
operations on the VP.

A single multiported memory subsystem is shared by all four processors, as
well as an I/O unit. There are 32 8-byte wide memory banks, with 8 clock
access time. Thus, the memory can theoretically service one data operation
(read or write) from each processor memory port per clock cycle, matching
the bandwidth of the processor port. In practice non-unit stride accesses and
multiprocessor contention tend to reduce this bandwidth to a significant degree.

5.2 MA Bound

The M bound is trivial to calculate based upon the VP function unit throughput
and the processor clock speed. Since each arithmetic pipeline can produce a
result each clock, and the processor has a clock frequency of 25 MHz, the M
bound is 50 MFLOPS. This calculation reveals little information about real
performance issues, and the M bound will not be discussed further.

The MA bound is essentially adapted from the same bound used for studying
the ZS-1 earlier. It is assumed that each of the 3 function units will produce a
single result each cycle, and all pipeline effects are ignored. However, because
of the relatively long pipelines in the C-240, and the resulting poor performance
on data dependent code, Boyd and Davidson choose to remove LFK 5 and 11
from their workload.

The MA model explicitly ignores the potential performance implication of:

Fortran arithmetic rules

The limited number of vector registers
Instruction issue constraints

Vector register length

Operation chaining

O o o o o o

Sub-optimal memory performance secondary to memory contention, access
patterns, or DRAM refresh

230 CHAPTER &

5.3 MAC Bound

The MAC bound improves on the MA bound by counting the actual opera-
tions present in the compiled workload. For example, the MAC bound uses
a workload based on the actual memory references, rather than the required
minimal number of references. These values are determined by inspecting the
compiler output directly, and adjusting the workload accordingly to calculate
tmac = max(t’f,t;n).

54 MACS Bound

The MACS bound further refines the MAC bound by adding information that
is specific to a particular computer system and a given instruction schedule.
In this case, Boyd and Davidson have developed a detailed timing model that
reflects the processor and memory subsystem of the C-240. This timing model
is similar to that developed for the Cray-1 by Tang and Davidson, and is used
for similar purposes. A new implementation of the processor architecture would
run the same compiled program binaries, but have a different timing model.
By conservatively modeling only the phenomena that are certain to happen,

the timing model can provide a lower bound on execution time tighter than the
MAC bound.

Detaziled Machine Model

The C-240 timing model is based primarily on 4 key features of the system:
pipeline control, memory conflicts, dynamic memory and operation chaining.
Each pipelined function unit can be modeled with a startup and shutdown con-
stant. These terms capture the time required for exclusive access to that unit
by each instruction, and will necessarily reduce the overall available bandwidth
of the pipeline. Fortunately, these costs can be amortized over the instruction
vector length, and these constants have values between 2 and 10 clock cycles.

Memory conflicts can come from references within the same program, other
processors and IO in the system, as well as DRAM refreshing. While it is
not possible to know a priori what references another processor will generate,
it is sometimes possible to analyze the intra-processor reference stream. In
particular, non-unit strides will reduce memory bandwidth and thus possibly
performance. In addition, DRAM refresh operation will reduce available band-
width for all processors by approximately 2%, based on specifications for the
memory chips. >

Performance Bounds For Rapid Computer System Evaluation 231

The most significant component of the timing model is a characterization of the
chaining rules. Instructions that combine at runtime into chains and achieve
concurrent execution do so by forming chimes. The term chime is used to
refer to divide register based vector code schedules into non-overlapping time
segments. All of the instructions in a given chime are effectively executed
concurrently, either because they share no data or functional dependence, or
because they can be chained together. By definition, chimes do not chain
together, and so one chime ends by draining all vector elements (usually 128)
into the data sink (either the register file or memory). If a code sequence
accidentally breaks one chime into two, the runtime for the loop will increase
by the vector length of the instruction. Clearly, an effective model for chaining
rules can have a significant impact on the MACS performance bounds. These
issues are similar to those related to the VISTI instruction on the Cray-1.

Developing the MACS Bound

The MACS bound now corresponds to examining the compiled and scheduled
assembly code, and applying it to the timing model. This results in the time
bound for vector loops, and dividing by the instruction vector length determines
the instruction MACS bound. This approach is different from the MAC and
MA bounds, which had no dependence on the instruction vector length.

Consider the relationship between MA, MAC and MACS bounds. Each of these
bounds assumes the same minimal set of operations for the base workload. Since
MA models the best case execution of this minimal set, it follows that the MA
bound will be looser than either MAC or MACS. Similarly, MAC considers the
best possible execution of the actual workload, regardless of the actual code
schedule. Clearly, the MA bound must be looser than the MACS bound, which
corresponds to a specific schedule. However, if the exact same set of instructions
could be reorganized in some manner without changing the computed result,
as is often the case, the MACS bound would be invalidated while the MAC and
MA bounds would still apply. ‘

Unlike the previous bounds, MACS cannot be determined by simply taking the
maximum of the separate memory and floating-point components after applying
the timing model. These two code streams are intimately coupled through the
chaining mechanism and chime rules, and are not useful in isolation as they are
for the MA and MAC bounds.

232 CHAPTER 8

5.5 Model Performance

TFK | fm | Jo | 1o | it | 551 | U
1 [3]2]-121]3
2 |2 2] -14]1]5
3 |1 (1]-12]0]-
4 1122 0]~
6 | 1 |1]-12]0]-
7 | 8 | 8] -13]1]09
8 | 15|21 -9] 615
9 | 8 9] -|10]1]-
10 |0]9 -]10]10]-
12 [0 |1 [-]1]1]2

Table 4 LFK workload for MACS bound

Table 4 shows the workload for each of the performance models. The term ¢,
corresponds to the actual number of addition instructions, and [%; the actual
number of memory load instructions. The compiler did not insert unnecessary
multiplications. These counts are used for the MAC time bound.

LFK | tyma | tamac | tamacs [tp [| 17 [tm [t | tm”
1 3 4 4.20 3 - 3.04 3 4 4.14
2 5 6 6.26 2 - 2.03 5 6 6.22
3 2 - 2.08 1 - 1.37 2 - 2.07
4 2 - 2.45 1 2 2.37 2 - 2.07
6 2 - 2.46 1 - 1.37 2 - 2.07
7 8 10 10.50 8 - 9.13 4 10 | 10.37
8 21 - 30.15 21 - | 21.28 | 15| 21 | 21.85
9 11 - 11.55 9 - 9.13 | 11 - 11.41
10 20 - 20.95 9 - 9.07 | 20 - | 20.88
12 2 3 3.13 1 - 1.01 2 3 3.12

Table 5 Performance Bounds

Table 5 shows the result of applying the workload to the performance models.
A ’-’in a column indicates that the value does not differ from either the baseline
workload or the baseline time bound respectively. Table 6 compares each of

Performance Bounds For Rapid Computer System FEvaluation 233

the performance bounds to the actual achieved performance ¢,, and indicates
the performance gap for each type of bound.

LFK | tpma | tmac | tmacs tp % of Bound
MA MAC | MACS
1 0.60 0.80 0.84 0.85 | 70.4% | 93.9% | 98.6%
2 1.25 1.50 1.57 3.77 1 33.1% | 39.8% | 41.5%
3 1.00 1.00 1.04 1.13 | 88.7% | 88.7% | 92.6%
4 1.00 1.00 1.23 1.86 | 53.7% | 53.7% | 65.8%
6 1.00 1.00 1.22 2.63 | 38.0% | 38.0% | 46.4%
7 0.50 0.63 0.66 0.68 | 73.4% | 91.8% | 96.4%
8 0.58 0.58 0.82 0.86 | 67.9% | 67.9% | 97.7%
9 0.65 0.65 0.68 0.75 | 86.4% | 86.4% | 90.7%
10 2.22 2.22 2.33 244 | 91.0% | 91.0% | 95.3%
12 2.00 3.00 3.13 3.18 | 62.9% | 94.3% | 98.4%
AV 1.08 1.24 1.35 1.90 | 66.6% | 74.6% | 82.3%
MF | 23.15 | 20.19 17.79 | 13.16

Table 6 MACS bounds vs. achieved performance for the Convex C-240

The data shows very similar results to the Cray-1. The vector loops with
misaligned loads execute unnecessary memory operations, and the result is
a gap in performance. The vector reduction loops achieve poor performance
which the performance bounds do not explain. This is due to a reduction
operation on the C-240 which interacts with memory is an unexplained manner.
Finally, vector codes that are difficult to analyze, such as LFK 2, result in a
significant performance gap.

However, it is very revealing to compare the differences between the MA, MAC,
and MACS performance gap for each LFK. Consider LFK 12, which has a MA
gap of 37%. Mangione-Smith et al. would have studied this kernel in detail,
searching for the source of the poor performance. Fortunately, the MACS
bound indicates immediately that most of the performance (31%) is lost to
unnecessary load operations (in the MAC model), while a bit more (4%) is
lost in instruction scheduling. The MACS hierarchy identify and classify these
performance losses automatically, without resulting to ad hoc analysis.

234 CHAPTER 8

6 CONCLUSION

This chapter reviewed a performance evaluation methodology that focuses on
bounded performance. This approach matches how scientific computer users
think of performance, i.e. by considering peak potential rather than achieved
metrics.

The performance bounds have been effective at identifying performance prob-
lems on a number of very different architectures, including the Cray-1, Astro-
nautics ZS-1, and Convex C-240. Though the approach is currently limited
to a small but important set of scientific codes, work continues to expand the
applicable workload.

Performance Bounds For Rapid Computer System Evaluation 235

Exercises

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

8.9

8.10

Discuss how the techniques for bounding performance might be extended
to handle library routines and function calls.

Present and discuss at least one approach to extending the techniques to
conditional operations, such as if statements.

How would the performance models for the ZS-1 change if the splitter
could only forward one instruction per clock cycle?

Develop the ZS-1 dependence bound for this inner loop: X[1] = Z[I] *
X[I-2], assuming that I increments by 1 for each loop trip.

What are the performance bounds on the ZS-1 if LFK 1 operated on inte-
gers rather than floating-point data?

What are the performance bounds on the ZS-1 if LFK 5 operated on inte-
gers rather than floating-point data?

The Mips R3010 floating-point unit can be modeled by two resources,
which we will call A and B. A multiplication instruction uses the A unit
exclusively for 5 clock cycles, and the B unit during clock 1 and 5. An
addition uses the B unit for 2 consecutive clock cycles. Calculate the
resource bounds for the vector loops.

Find the performance bound for LFK 8 on the R3010, and comment on
the relevance of Patel’s theorem [16].

Discuss the impact on the M, MA, MAC and MACS bounds if the C-240
had no chaining.

How could the performance bounding techniques be extended to effectively
capture the impact of cache memories?

236 CHAPTER 8

REFERENCES

(1] E. L. Boyd and E. S. Davidson. Hierarchical Performance Modeling with
MACS: A Case Study of the Convex C-240. In Proc. of the Int. Symp. on
Computer Architecture, pages pp. 203-212, 1993.

[2] CONVEX Architecture Reference (C200 Series). Technical Report 081-
009330-000, Convex Computer Corporation, 1990.

[3] CONVEX Theory of Operation (C200 Series). Technical Report 081-
005030-000, Convex Computer Corporation, 1990.

[4] An Introduction to the CRAY-1 Computer. Cray Research Inc., Chippewa
Falls, WI, 1975.

[5] The Cray-2 Computer System Functional Description. Cray Research Inc.,
Chippewa Falls, WI, July 1987.

(6] Gerry Kane. Mips RISC Architecture. Prentice Hall, 1988.

(7] William Mangione-Smith, Santosh G. Abraham, and Edward S. Davidson.
Register Requirements of Pipelined Processors. In Proc. International
Conference on Supercomputing, 1992.

[8] William H. Mangione-Smith. Performance Bounds and Buffer Space Re-
quirements for Concurrent Processors. PhD thesis, Univ. of Mich., EECS
Dept., Univ. of Mich., Ann Arbor, MI, 1992.

[9] William H. Mangione-Smith, Santosh G. Abraham, and Edward S. David-
son. The Effects of Memory Latency and Fine-Grain Parallelism on As-
tronautics ZS-1 Performance. In Proc. Twenty-Third Hawaii International
Conference on System Sciences, pages 288-296, 1990.

[10] William H. Mangione-Smith, Santosh G. Abraham, and Edward S. David-
son. A Performance Comparison of the IBM RS/6000 and the Astronautics
ZS-1. IEEE Computer, 24(1), January 1991.

[11] William H. Mangione-Smith, Santosh G. Abraham, and Edward S. David-
son. Architectural vs. Delivered Performance of the IBM RS/6000 and the
Astronautics ZS-1. In Proc. Twenty-Fourth Hawaii International Confer-
ence on System Sciences, January 1991.

[12] William H. Mangione-Smith, Santosh G. Abraham, and Edward S. David-
son. Vector Register Design for Polycyclic Vector Scheduling. In Proc.
Fourth Conference on Architectural Support for Programming Languages
and Operating Systems, April 1991.

Performance Bounds For Rapid Computer System Evaluation 237

[13] F. H. McMahon. The Livermore Fortran Kernels: A Computer Test of the
Numerical Performance Range. Technical Report UCRL-53745, Lawrence
Livermore National Laboratory, December 1986.

(14] J. O. Murphy and R. M. Wade. The IBM 360/195. Datamation, April
1970.

[15] R. R. Oehler and R. D. Groves. IBM RISC System /6000 Processor Archi-
tecture. IBM Journal of Research and Development, 34(1):23-36, January
1990.

[16] Janak H. Patel and Edward S. Davidson. Improving the Throughput of a
Pipeline by Insertion of Delays. In Proc. of the Int. Symp. on Computer
Architecture, pages 159-164, 1976.

[17) R. M. Russell. The CRAY-1 Computer System. Communications of the
ACM, 21(1):214-248, 1978.

[18] B. J. Smith. A Pipelined Shared Resource MIMD Computer. In Proc. of
the International Conference on Parallel Processing, 1978.

[19] James E. Smith et al. The ZS-1 Central Processor. In Proc. of ASPLOS
11, pages 199-204, October 1987.

[20] Ju-Ho Tang. Performance Evaluation of Vector Machine Architectures.
PhD thesis, CSRD, University of Illinois at Urbana-Champaign, 1989.

[21] Ju-ho Tang and Edward S. Davidson. An Evaluation of Cray-1 and Cray
X-MP Performance on Vectorizable Livermore Fortran Kernels. In Proc.
of the 1988 International Conference on Supercomputing, pages 510-518,
July 1988.

{22] Ju-ho Tang, Edward S. Davidson, and Johau Tong. Polycyclic Vector
Scheduling vs. Chaining on 1-Port Vector Supercomputers. In Proc. of
Supercomputing 88, pages 122-129, 1988.

[23] Daniel Windheiser and William Jalby. Behavioral Characterization of De-
coupled Access/Execute Architectures. In 1991 ACM International Con-
ference on Supercomputing, 1991.

ATOM, 73
ATUM, 49
Accelerator, 15
Astronautics ZS-1, 205, 217, 223
A-instruction queue, 219
A-processor, 218, 223
X-instruction queue, 219
X-processor, 219
load address queue, 219
splitter, 219
BSD a.out format, 57
BSS, 57, 62
COFF, 57
Cheetah tool, 111
Convex C-240, 205, 228
address/scalar unit, 228
chaining, 228, 230
memory conflicts, 230
memory subsystem, 229
Cray X-MP, 205
Cray-1, 205, 211, 218, 233
vector chaining, 211
vector unit, 211
Cray-2, 205
DAE, 217
ECOFF, 57, 69
ELF, 57, 69
FAST, 151, 154, 157
caching, 164
code augmentation, 154, 157
dynamic reference
discrimination, 155
event call-outs, 154
extended instruction sets, 156
in-line context switching, 156

INDEX

re-optimization, 155
reference indirection, 155
shared variables, 155
time counting, 154
virtual registers, 156
multithreading, 164
performance, 162-163
simulator, 160
system calls, 161
time wheel scheduler, 161
slowdown, 163
Goblin, 70
IBM RS/6000, 205
IDtrace, 56, 58, 63, 66, 68
LFK, 209, 233
LRU stack, 99
LRU stacks, 91
Livermore kernels, 209
MPEG, 206
MX/Vest, 15
Mimic, 15
Mint, 15
Mshade, 15
OPT, 72
Pixie, 62
Proteus, 153, 163
QPT, 61, 63, 66
SMA, 217
SPARC
version 8, 24, 28
version 9, 29
Shade analyzer, 16
interface, 16
tracing, 17
Shade implementation, 17

240

TLB, 18, 22
address translation, 26
asynchronous signals, 25
condition codes, 24, 30
cross shades, 28
cross-compiling, 19
host register allocation, 20
indirect jumps, 23
main loop, 18
memory synchronization
instructions, 19

performance, 28, 30
self-modifying code, 22
signals, 25
simulation, 17
stack frame, 18
synchronous signals, 26
trace buffer, 18
tracing, 17, 21
translation body, 19
translation cache, 22
translation chaining, 23
translation epilogue, 22
translation prologue, 19
translations, 19
traps, 25
virtual PC, 22

Shade, 6, 15

Spike, 75

SpixTools, 71

Spixstats, 71

Tango, 152
performance, 152

Tomasulo, 185

Unix
processes, 150

V.32bis, 206

address map
complete, 150
partial, 150

address translation, 26

analyzer, 6

CHAPTER 8

asynchronous signals, 25
benchmarks, 87
best-fit, 179
binary trees, 111
block reference stream, 91
branch characteristics, 187
branch handling, 171
branch prediction, 185, 187
dynamic lifetimes, 189
two-level adaptive, 185
cache dimension, 91
cache memories, 87
cache, 171
call-handling routine, 60
cluster size, 173
cold-start effect, 174-175, 181
compilation process, 47
compilation, 51
compiler modification, 148
compiler tagging, 151
complexity, 88, 93, 96, 127
conflicts, 89
tolerance, 95
context switch distance, 99
context switching intensity
distribution, 102
context switching, 88, 97
in-line, 150, 156
cost, 162
context-switching
in-line, 159
data cache, 228
data dependence, 208, 217
conditional statements, 208
loop carried, 208
debugging information, 52
decoupled access execute
computer, 217
A-instruction queue, 219
A-processor, 218
X-instruction queue, 219
X-processor, 219

Indez

splitter, 219
store address queue, 219
decoupled access execute, 205
dimensional conflict, 90, 95, 98
dimensional conflicts, 90, 94, 99
direct-mapped cache, 88, 90, 96
do_recurrence, 93
dynamic address testing, 151
epoxie, 76
executable instrumentation, 51
execution driven simulation, 145
augmentation, 146
implementation, 147
extra registers, 147
instruction addresses, 149
multiple processes, 150
shared memory references, 151
performance, 147
preprocessing, 145
trace generation, 147
exit call, 64
expected dead time, 176
extra registers
commandeer and remap, 148
register saves, 148
virtualize, 148
fill references, 175, 177
fixed expansion factor, 149
forward branch, 60
fully associative cache, 91, 110-111
function units, 207
g88, 15
generalized binomial tree, 120, 123
complexity, 127
exchange, 123
swap, 123
hash table lookup, 93
hash table, 111
inclusion property, 87-88, 111,
119, 128
instruction completion, 171
instruction fetch, 171

241

instruction retirement, 171
instruction-level parallelism, 182
instructions per cycle, 173, 186
instrumentation shortcomings
kernel code references, 50
multiple processes, 50
single-process programs, 50
instrumentation speed, 54
instrumentation tools, 47
OPT, 50
code instrumentation, 49
kernel tracing, 75
microcode, 49
multitasking, 75
operating system trapping, 49-50
Tapeworm II, 50
involuntary context switch, 97,
100
late code modification, 51
ISA properties, 65
condition codes, 66
delayed branch, 67
indirect addressing, 67
load-store arch., 65
memory-to-memory arch., 65
multi-reference inst., 65
register allocation, 66
variable inst. length, 67
address translation, 60
branch target distance, 62
branch translation, 57
building, 56
code extraction, 56
code insertion, b8
disassembly, 56
problems, 57
indirect jumps, 61
procedure beginnings, 61
profiling, 58
rebuilding executable, 62
trace generation, 56
least-recently used, 87, 91, 111

242

library instrumentation, 52
link-time instrumentation, 53
Mabhler, 53
Titan, 53
epoxie, b3
linking, 51
load-forwarding, 97
locality of reference, 104
loop interchange, 208
memory synchronization
instructions, 19
memory system prototyping, 87
memory to memory instructions,
148
memory trace, 89
miss ratio, 89-90, 99, 110, 173
miss-distance, 177
misses per instruction, 180
multiprocessor simulation, 145
multiprogramming conflict, 99
multiprogramming conflicts, 98
new executable construction, 51
nixie, 69
number of clusters, 173-174
object rewriter, 53
out-of-order execution, 185
performance bounds, 205
MACS, 226
achieved, 207, 221
best achievable time, 215
chaining effectiveness, 216
data dependence, 217, 220
dependence based timing model,
220-221
hierarchical, 226
instruciton schedule, 230
instruction schedule, 230-231
load ports, 216
machine bound, 226, 229
machine-application bound, 226,
229

CHAPTER 8

machine-application-compiler
bound, 226, 230
misaligned loads, 215, 225
model inaccuracies, 225
non-vectorizable code, 206
problems, 208
resource based timing model, 220
resource constraints, 220
performance evaluation, 87
pixie, 47, 69, 146, 148
potential victims, 98
primed sets, 175
priming interval, 177
processor design, 171
processor model, 185
processor, 207
program counter, 5
program generation independence,
52
read-after-write hazards, 224
real-time, 206
recurrence/conflict model, 89
recurrence/conflict, 88
method, 93
recurrences, 89
recurring reference, 99
reference stream, 90, 97
relocation, 53 ‘
replacement algorithms, 87
right-match, 95
run-time data collection, 48
hardware-assisted, 48
BACH, 48
Monster, 48
performance monitoring, 48
software-only, 49
SPIM, 49
Shade, 49
emulation, 49
instrumentation, 49
simulation, 49
run-time information, 47

Indez

sample size, 173

sampling unit, 172

scientific codes, 205

sectored cache, 97

self-modifying code, 22

shade analyzer
tracing, 16

signals, 25

simulation tools
address tracing, 7
application errors, 12
capabilities, 7
checkpointing, 12
cross-architecture, 7, 12
cross-compiling, 5-6
dynamic analysis, 12
dynamic linking, 10
execution driven simulation, 145
host/target assumptions, 14
implementation technology, 11
implementation, 7, 17
incompatible word sizes, 14
input, 10
interpreter, 6
multiprocessing, 10
multiprocessor simulation, 145
multitasking, 10
performance, 16, 30
portability, 10
signal support, 10
source access, 10
system-level code, 10
tracing, 5

single-pass cache simulation, 87

single-pass simulation
all associativity, 120
all-associativity, 117
binary tree algorithm, 112
binomial forest simulation, 117,

120

non-stack-based, 109
stack-based, 87, 109

243

write buffers, 109, 128
coelescing, 137
non-coelescing, 131
performance, 138

single-pass

extensions, 96

extensions
multiprogramming, 97
write-back caches, 97

source code independence, 52-53
source code modification, 53, 151

AE, 54

Gnu C, 54

MPtrace, 54

portability, 54

spixtools, 47
stack operation, 91
stack, 92

LRU, 91

management policy, 92

push, 92

repush, 92

statistical sampling, 171-172

cache sampling, 171

cluster sampling, 172

estimated standard error,

195-196

for processors, 182, 184
iterative, 183

nonsampling bias, 173, 179, 184,

187, 191-192

processor sampling, 200

sample design, 173

sampling bias, 174, 184, 192

sampling for caches, 175

sampling variability, 174, 192

set sampling, 178
contstant-bits, 179

simple random sampling, 172

standard error, 192

stratified sampling, 173

time sampling, 175

244

generations, 176
total population, 173
storage allocation, 19
stripped binary, 52
structured memory access
computer, 217
sub-blocking, 97
superscalar, 205
symbol table, 52
synchronous signals, 26
system-wide events, 48
temporal localities, 94
temporal locality, 104
threads, 150
translation table, 60
unique references, 95
unknown references, 175
upper bounds, 205
variable naming, 151
vectorizable kernels, 206
virtual memory, 98
voluntary context switch, 91, 97
weighted miss, 178-179
working set, 98
workload model, 213
write buffers
clear out, 130
coelescing, 128
merge, 130
miss-penalty, 130
non-coelescing, 128
size, 128
stall, 130
write-back caches, 97

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

