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Preface 

This volume is a collection of original contributions from a new field 
which lies at the intersection of computer vision and computer graphics. 
Recently, great effort has been made towards the integration of computer 
vision and computer graphics techniques in the areas of realistic model­
ing of objects and scenes, interactive computer graphics, and augmented 
reality. 

General issues and numerous specific applications are discussed which 
demonstrate the close relationships between computer vision, computer 
graphics, and communication technologies. These include urban and 
archeological site modeling, modeling dressed humans, medical visu­
alisation, figure and facial animation, real-time 3D-teleimmersion and 
telecollaboration, augmented reality as a new user interface concept, 
and augmented reality for underwater scene understanding. 

The contributions collected in this volume are extensively revised ver­
sions of papers which were initially presented at the NATO Advanced 
Research Workshop which was held in Ljubljana, Slovenia, on 29-31 Au­
gust 1999. The workshop was funded by the NATO Scientific & Envi­
ronmental Affairs Division: High Technology Priority Area. Additional 
support was provided by the Ministry of Science and Technology of the 
Republic of Slovenia, University of Ljubljana, Faculty of Computer and 
Information Science, IEEE Slovenia Section, and Hermes SoftLab. 

ALES LEONARDIS, FRANC SOLINA, RUZENA BAJCSY 
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Introduction 
Ales Leonardis, Franc Solina, Ruzena Bajcsy 

In the past, the fields of computer vision and computer graphics have 
been considered as tackling the inverse problems. Traditionally, com­
puter vision starts with input images and process them for the pur­
pose of understanding geometric and physical properties of objects and 
scenes, and to build appropriate models. On the other hand, traditional 
computer graphics starts with geometric models and then generates, ma­
nipulates, and displays virtual representations in the form of images. In 
the recent years, we have seen great efforts towards the integration of 
computer vision and computer graphics techniques, in particular, in the 
areas of realistic modeling of objects and scenes, interactive computer 
graphics, and augmented reality. 

Which are the main reasons that have brought the researchers of com­
puter vision and computer graphics closer together? Computer graphics 
community has been active in inventing increasingly better, faster, and 
more complex methods of animation for creating virtual 3D synthetic 
environments. This paradigm has been successfully demonstrated in the 
constantly expanding series of complex digital animations. Yet, even 
though these animations have been successful (also commercially), it is 
clear that in order to create even more realistic virtual environments 
and on a much larger scale, the cost and time involvement have to be 
lowered. Such a leap in cost and quality is possible by incorporating 
sensor data of actual physical objects and environments, that can later 
be modified and extended with synthetic data. For example, it should 
be less costly to make a 3D model of a complex geometric object directly 
from images, than to have an animator construct such a model by hand. 

Sensor data, which are crucial for an efficient creation of larger and 
more realistic virtual(ized) environments, need to be properly inter­
preted, processed, and modeled-and this is precisely what computer 
vision does. In other words, computer vision provides the tools needed 
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to transform the real world back into the virtual. The marriage of com­
puter graphics and computer vision techniques is further facilitated by 
increasingly lower costs of hardware for image capture and processing. 

Some of the most critical issues in this emerging field are: 

• generation of highly realistic 3D graphical models from a collec­
tion of calibrated or non-calibrated images obtained with multiple 
cameras, stereo-rigs, or video cameras; 

• building of dynamic deformation models using the motions cap-
tured from real video sequences; 

• dynamic image-based rendering; 

• role of computer vision in interactive computer graphics; 

• tracking, ego-motion estimation, and registration techniques for 
harmonious integration of real worlds and computer generated ob­
jects; 

• virtual studio techniques. 

The key element for the successful merger of computer graphics and 
computer vision technique are appropriate models. The models provide 
the information describing the geometry, the dynamics, and many other 
attributes of objects and scenes that represent the prior knowledge and 
impose a set of constraints for analysis, and later for rendering the virtual 
environments. 

The Book at a Glance 

The book focuses on the integration of computer VISIon and com­
puter graphics techniques in the areas of realistic modeling of objects 
and scenes, interactive computer graphics, and augmented reality. Each 
chapter of the book presents recent results within this emerging domain. 
The results encompass both theoretical formulations and derivations, as 
well as numerous examples of applications. These include urban and 
archeological site modeling, modeling dressed humans, medical visu­
alisation, figure and facial animation, real-time 3D-teleimmersion and 
telecollaboration, augmented reality as a new user interface concept, 
and augmented reality for underwater scene understanding. The chap­
ters have been designed to serve as technical overviews with extensive 
references to related work. We hope that this will enable researches 
working in individual fields to quickly get acquainted with the main 
common integration issues, while providing the experts with in-depth 
technical details. 
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The book starts with a chapter that describes a method to completely 
automatically recover a 3D scene structure from a sequence of images ac­
quired by an unknown camera undergoing unknown motion. Zisserman 
et ai. argue that, in contrast to previous approaches, which have used 
calibration objects or landmarks, their approach is far more general since 
no other information than images themselves is required. The automatic 
process can be thought of, at its simplest, as converting a camcoder to a 
sparse range sensor. Together with more graphical post-processing, such 
as triangulation and texture mapping, the system becomes a "VHS to 
VRML" converter. The authors demonstrate two applications of their 
method: the first is the construction of 3D graphical models of a piece­
wise planar scene, and the second is the insertion of virtual objects into 
the original image sequence, which is of use for post-production in the 
film industry. 

The next chapter by Cross and Zisserman describes a novel approach 
to reconstructing the complete surface of an object from multiple views, 
where the camera circumnavigates the object. To achieve the goal, the 
approach combines two sources of information, namely, the apparent 
contour and the imaged surface texture. The authors argue that the pro­
posed approach has significant advantages over using either the contour 
or texture alone: in particular, the geometric constraints available are 
complementary, so that the deficiencies of one source can be overcome 
by the strengths of the other. In addition, the novelty lies also in an im­
plementation which uses different surface representations as appropriate 
for accuracy and efficiency. Numerous examples of automatically gener­
ated texture-mapped graphical models demonstrate that the approach 
is successful for various objects and camera motions. The objects may 
contain concavities and have non-trivial topology. 

The subsequent chapter by Urban et ai. also addresses the problem 
of scene reconstruction from multiple views. The authors, in particular, 
concentrate on consistent projective reconstruction which involves a set 
of more than four views. The method is based on concatenation of tri­
focal constraints and requires only linear estimates. The accuracy and 
stability of the method have been analyzed, and the projective recon­
struction from seven real images has been successfully demonstrated. 

Sara explores a bottom-up approach to precise and accurate 3D sur­
face model reconstruction. The focus is on acquiring 3D models of natu­
ral objects for medical applications, augmented reality, and telepresence. 
The author proposes performing several successive steps in which more 
complex models are inferred from simpler models. The model at the 
lowest level consists of a set of unorganized points in 3D space obtained 
from polynocular stereo system which utilizes five fully-calibrated cam-
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eras and an uncalibrated infrared texture projector. The intermediate­
level model consists of local geometric primitives, called "fish-scales". 
By linking together close and compatibly oriented fish-scales, a dis­
crete pseudo-surface is obtained, which presents the high-level model. 
Throughout the chapter, the approach is demonstrated on a textured 
3D geometric model reconstruction of a human face. 

The contribution by Roth brings a systematic review of the problem of 
model building from sensor data, which stands at the interface between 
computer vision and computer graphics. The author first describes the 
basic steps in the model building pipeline; calibration, acquisition, regis­
tration, point creation, model creation, model compression, and texture 
creation. After which he systematically discusses open research ques­
tions that remain in each step and describes several overall research 
themes that he believes should further guide work in this area. Among 
the most important open problems in model building, the author lists: 
automation of the entire model building pipeline, incremental construc­
tion of the models, the role of active versus passive sensors, image-based 
versus model-based rendering, and environment modeling versus object 
modeling. 

Skocaj and Leonardis address the problem of 3D reconstruction of ob­
jects of non-uniform reflectance using a structured light sensor. Namely, 
standard approaches using structured light sensors assume that the re­
flectance properties of the objects are uniform. The authors illustrate 
the need to devise an approach that overcomes this constraint, which 
means that objects consisting of both high and low reflective surfaces 
should reliably be reconstructed. They propose to systematically vary 
the illumination intensity of the light projector and to form high dynamic 
scale radiance maps. The authors report experiments on objects which 
have surfaces of very different reflectance properties, and demonstrate 
that range images obtained from high dynamic scale radiance maps are 
of much better quality than those obtained by the standard approach. 

While the previous chapters have explored in particular the 3D re­
construction of objects and scenes, which can subsequently be used in 
computer graphics applications, this chapter, by Manning and Dyer, 
addresses the view-interpolation as a means of creating virtual views of 
scenes without explicit scene reconstruction. The authors present a tech­
nique, called "dynamic view morphing", for view interpolation between 
two reference views of a dynamic scene captured at different times. The 
interpolations produced portray one possible physically-valid version of 
what transpired in the scene between the time points when the two 
reference views were taken. The presented method works with widely-
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separated, uncalibrated cameras and sparse point correspondences, and 
does not involve finding the camera-to-camera transformation. 

Tao and Huang address the problem of building deformation models of 
faces and facial expressions using the motions captured from real video 
sequences, which is an excellent example that demonstrates the close 
relationship between computer graphics and vision technologies. The 
authors propose an explanation-based facial motion tracking algorithm 
based on a piecewise Bezier volume deformation model (PBVD), which 
is a suitable model both for the synthesis and the analysis of facial 
images. With the PBVD model, which is linear and independent of 
the facial mesh structure, basic facial movements, or action units, are 
interactively defined. By changing the magnitudes of these action units, 
a variety of different animated facial images can be generated. The 
magnitudes of these action units can be computed (learned) from real 
video sequences using a model-based tracking algorithm. The authors 
present experimental results on PBVD-based animation, model-based 
tracking, and explanation-based tracking. 

The subsequent chapter by Van Goal et al. brings together many dif­
ferent techniques for realistic object, scene, and event modeling from 
image data, to realize a system for visits to a virtual 3D archeological 
site. To model the landscape and buildings at the site, the authors pro­
pose a shape-from-video system that turns multiple, uncalibrated images 
into realistic 3D models. The texture that covers the 3D models of the 
landscape is synthesized from images of the natural surfaces which re­
sults in a compact, yet effective texture model. To model smaller pieces, 
like statues and ornaments, they use an active, one-shot range sensor 
which exploits the projections of a special pattern onto the object un­
der observation to yield high resolution 3D models. Once the model of 
the site is built, one can navigate through this virtual environment ac­
companied by a virtual guide. The virtual guide responds through head 
movements and facial expressions. The authors also developed a tech­
nique for learning natural lip motions from observed 3D face dynamics 
which will be used to animate the virtual guide in the future versions of 
the system. 

Jojic and Huang present another application which demonstrates how 
computer vision techniques can be exploited in conjunction with com­
puter graphics for modeling dressed humans. They combine computer 
vision based approaches such as 3D reconstruction of a human body and 
analysis-by-synthesis of the behavior of cloth material with the computer 
graphics approaches for realistic rendering of complex objects. The ex­
perimental results presented in the chapter include building textured 3D 
models of humans from multiple images, dressing these models into vir-
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tual garment, and joint estimation of cloth draping parameters and the 
underlying object's geometry in range images of dressed objects. 

The next chapter by Leberl et al. describes urban site modeling. The 
authors argue that while 3D models of buildings have long been produced 
based on photogrammetric technology, the focus today has shifted to­
wards producing 3D computer models of urban areas on a large scale, 
with perhaps half a million buildings of one metropolitan area. Thus, 
they discuss various issues related to the creation of such large data sets, 
with verified accuracy and detail, in a reasonable time and at a moderate 
cost. 

Clapworthy et al. have identified a number of relatively-unconnected 
areas where computer graphics aspects i.e., visualization and animation, 
are influenced by the use of computer vision techniques. These tech­
niques include 3D scene and object reconstruction, motion capture, and 
segmentation. The authors present various examples from diverse areas 
such as medical visualization, biomechanics, figure animation, and robot 
teleoperation. 

In his chapter, Wojdala presents an exciting new technology, called 
"Virtual Studio" , whose main goal is to combine two separate images or 
video streams. A typical example is to merge a foreground, filmed with 
a camera, with a computer-generated background, so well, that the com­
posite looks as if it was shot together, in one environment. To answer 
the basic question, namely, how realistic virtual sets can appear, the au­
thor discusses various techniques involved into this very interdisciplinary 
technology. These techniques are related to computer graphics, graph­
ics hardware, chroma keying, lighting, video camera parameters, camera 
tracking, and interaction between real and virtual worlds. While some 
problems still remain, the current level of visual realism has reached the 
point where more and more broadcasters are using this technology, even 
for complex, live-to-air productions. 

The contribution by Daniilidis et al. presents an application which 
demonstrates the confluence of computer vision, computer graphics, and 
communication. In particular, they implemented a new medium for 
telecollaboration, which was realized in the form of two tele-cubicles 
connected at two Internet nodes. At each telecubicle a stereo-rig is used 
to provide an accurate dense 3D reconstruction of a person in action. 
The two real dynamic worlds are transmitted over the network and vi­
sualized stereoscopically. The full 3D information facilitates interaction 
with any virtual object. The remote communication and the dynamic 
nature of telecollaboration offers the challenge of optimal representation 
for graphics and vision. Thus, the authors treat the issues of limited 
bandwidth, latency, and processing power with a tunable 3D represen-
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tation, where the user can select the trade-off between delay and 3D 
resolution by tuning the spatial resolution, the size of the working vol­
ume, and the uncertainty of reconstruction. 

The last four chapters deal with Augmented Reality-a technology 
by which a user's view of the real world is augmented with additional 
information from a computer model. In her chapter, Klinker gives an 
overview of this new technology which shows great promise as a new 
user interface concept for many applications. Namely, users can work 
with and examine real 3D objects, while receiving additional informa­
tion about these objects or the task at hand. Yet, augmented reality 
applications require fast and accurate solutions to several very complex 
problems, such as tracking the user and the real object, handling the oc­
clusions and reflections, as well as the motion of the virtual user. Klinker 
discusses computer vision based solutions which are currently considered 
to be among the most promising approaches towards solving these issues. 

Simon et al. focus on one of the most crucial problems in augmented 
reality, namely, how to achieve a harmonious integration of real world 
and computer generated objects. They propose a robust and accurate 
registration method which performs pose computation over the sequence 
of images in a completely autonomous manner. The accuracy of the pose 
computation is achieved by combining model-image correspondences of 
tracked curves in an image and 2D keypoint correspondences matched 
in the consecutive frames. The authors demonstrate the seamless inte­
gration of the real and virtual worlds by integrating a virtual car into a 
real-world video sequence. 

In the next chapter by Gagalowicz and Gerard, the authors also tackle 
the problem of tracking in images. The approach is model-based and 
proceeds as a two-step process. After the interactive calibration session, 
the geometric model of the object is automatically rendered with texture. 
Then, a 3D predictor gives the position of the object model in the next 
image and the fine tuning of the position is obtained by minimizing the 
error between the textured model and the real image of the object. The 
robustness of the approach has been verified by creating an augmented 
reality sequence. 

In the last chapter, a specific application of augmented reality is pre­
sented by Murino and Fusiello. They describe how to integrate visual 
and acoustic 3D data to enhance the perception of an underwater envi­
ronment during teleoperation tasks. 

The chapters in this book present only a selection of some of the 
representative approaches that have emerged in the recent years. In 
fact, the problems have mainly been observed from the point-of-view of 
computer vision researchers. A similar book, but more from the point-
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of-view of computer graphics researchers, would nicely complement this 
volume and shed additional light on this exciting new research domain. 
Many challenges are waiting in this interdisciplinary research field. One 
of the ultimate challenges is to bring these exciting ideas, in the form of 
easy to use tools, into the hands of all computer users. 



Chapter 1 

FROM IMAGES TO VIRTUAL AND 
AUGMENTED REALITY 

Andrew Zisserman, Andrew Fitzgibbon, Caroline Baillard, Geoffrey Cross 

Abstract We describe a method to completely automatically recover 3D scene 
structure together with a camera for each frame from a sequence of 
images acquired by an unknown camera undergoing unknown move­
ment. Previous approaches have used calibration objects or landmarks 
to recover this information, and are therefore often limited to a partic­
ular scale. The approach of this paper is far more general, since the 
"landmarks" are derived directly from the imaged scene texture. The 
method can be applied to a large class of scenes and motions, and is 
demonstrated here for sequences of interior and exterior scenes using 
both controlled-motion and hand-held cameras. 

We demonstrate two applications of this technology. The first is the 
automatic construction of a 3D graphical model of a piecewise planar 
scene; the second is the insertion of virtual objects into the original 
image sequence. 

1. INTRODUCTION 
The goal of this work is to obtain 3D scene structure and camera pro­

jection matrices from an uncalibrated sequence of images. The struc­
ture and cameras form the basis for a number of applications and two of 
these will be illustrated in this paper. The first application is building 
3D graphical models from an image sequence acquired by a hand-held 
camcorder. This enables texture mapped models of isolated objects, 
building interiors, building exteriors etc. to be obtained simply by video­
ing the scene, even though with a camcorder the motion is unlikely to 
be smooth, and is unknown a priori. The second application is to use 
the camera which is estimated for each frame of the sequence in order 
to insert virtual objects into the original real image sequence [14]. An 
'augmented reality' facility of this type is of use for post-production in 
the film industry. 

A. Leonardis et al. (eds.), Confluence o/Computer Vision and Computer Graphics, 1-23. 
© 2000 Kluwer Academic Publishers. 
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To obtain the structure and cameras we employ Structure and Motion 
recovery results from the photogrammetry and computer vision litera­
ture, where it has been shown that there is sufficient information in 
the perspective projections of a static cloud of 3D points and lines to 
determine the 3D structure as well as the camera positions from image 
measurements alone. In our approach these points and lines are obtained 
automatically from features in the scene, and their correspondence es­
tablished across multiple views. Establishing this correspondence is a 
significant part of the problem. 

The core of the system is shown in figure 1.1. This automatic process 
can be thought of, at its simplest, as converting a camcorder to a sparse 
range sensor. Together with more standard graphical post-processing 
such as triangulation of sparse 3D point and line sets, and texture map­
ping from images, the system becomes a "VHS to VRML" converter. 

The key advantage of the approach we adopt is that no information 
other than the images themselves is required a priori: more conventional 
photogrammetry techniques require calibration objects or 3D control 
points to be visible in every frame. 

1.1 BACKGROUND 
Although the general framework for uncalibrated structure from mo­

tion has been in place for some time [3, 10, 13] only recently have gen­
eral acquisition systems come near to becoming a reality. This is be­
cause a combination of image processing, projective geometry for multi­
ple views [8, 21, 23], and robust statistical estimation [26, 29] has been 
required in order to succeed at automating structure and motion algo­
rithms [2, 12]. Tomasi and Kanade [24] demonstrated that 3D models 
could be built from an uncalibrated sequence, but employed a simplified 
camera which does not model perspective effects (those that give rise to 
vanishing points etc.). 

1.2 THE SCOPE OF THE APPROACH 

The limitations of the approach of this paper are: first, that the images 
must be sufficiently "interesting" -if the scene has no significant texture 
(to be defined more precisely later), then the feature based methods we 
use will have too few 2D measurements to work with; and second, that 
the camera motion between images needs to be relatively small, in par­
ticular rotation about the optical axis should be limited-otherwise the 
cross-correlation techniques used to match the features between images 
will fail. Happily, this restricted motion is the typical motion between 
frames of a video sequence, and the system is tuned for such data. We 
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Figure 1.1 Overview of the system. Four frames from the 32-frame input video 
sequence are shown at the top; views of the automatically acquired VRML model are 
shown at the bottom. 
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also require that the 3D scene be largely static, although smaller in­
dependently moving objects-shadows, passing cars and the like-are 
excised automatically by the use of robust estimation techniques. 

The advantage of a video sequence, where the distance between cam­
era centres (the baseline) for successive frames is small, is that evalu­
ating correspondences between successive images is simplified because 
the images are similar in appearance. The disadvantage is that the 3D 
structure is estimated poorly due to the small baseline. However, this 
disadvantage is ameliorated by tracking over many views in the sequence 
so that the effective baseline is large. 

2. REVIEW: THE CORRESPONDENCE 
PROBLEM OVER MULTIPLE VIEWS 

In this section we rehearse the method for establishing correspon­
dences throughout the sequence, and thence compute the scene and 
camera reconstruction. Background details on the multi-view geome­
try and estimation algorithms are given in [11]. 

Under rigid motion there are relationships between corresponding im­
age points which depend only on the cameras and their motion relative 
to the scene, but not on the 3D structure of the scene. These rela­
tionships are used to guide matching. The relationships include the 
epipolar geometry between view pairs, represented by the fundamental 
matrix [3, 10]; and the trifocal geometry between view triplets, repre­
sented by the trifocal tensor [8, 21, 23]. These relationships, and image 
correspondences consistent with the relations, can be computed auto­
matically from images, and this is described below. 

Geometry guided matching, for view pairs and view triplets, is the 
basis for obtaining correspondences, camera projection matrices and 
3D structure. The triplets may then be sewn together to establish 
correspondences, projection matrices and structure for the entire se­
quence [2, 6]. The correspondence method will be illustrated on the 
corridor sequence of figure 1.2. 

2.1 MATCHING FOR VIEW PAIRS 
Correspondences are first determined between all consecutive pairs of 

frames as follows. An interest-point operator [7] extracts point features 
("corners") from each frame of the sequence. Putative correspondences 
are generated between pairs of frames based on cross-correlation of in­
terest point neighbourhoods and search windows. Matches are then 
established from this set of putative correspondences by simultaneously 
estimating epipolar geometry and matches consistent with this estimated 
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geometry. The estimation algorithm is robust to mismatches and is de­
scribed in detail in [25, 27, 29J. This basic level of tracking is termed 
the F -Based Tracker ("F" for fundamental matrix). 
Typical results. Typically the number of corners used in a 768 x 576 
image of an indoor scene is about 500, the number of seed matches is 
about 200, and the final number of matches is about 250. Using corners 
computed to sub-pixel accuracy, the average distance of a point from its 
epipolar line is ",0.2 pixels. 

The robust nature of the estimation algorithms means that it is not 
necessary to restrict putative correspondences to nearest neighbours or 
even the highest cross-correlation match, as the rigidity constraint can 
be used to select the best match from a set of candidates. Typically 
the radius of the search window for candidate matches is 10-20% of 
the image size, which adequately covers image point motion for most 
sequences. 

2.2 MATCHING FOR VIEW TRIPLETS 

Correspondences are then determined between all consecutive triplets 
of frames. The 3-view matches are drawn from the 2-view matches 
provided by the F -Based Tracker. Although a proportion of these 2-
view matches are erroneous (outliers), many of these mismatches are 
removed during the simultaneous robust estimation of the trifocal ten­
sor and consistent matches [26]. The trifocal geometry provides a more 
powerful disambiguation constraint than epipolar geometry because im­
age position is completely determined in a third view, given a match in 
the other two views, whereas image position is only restricted to a line 
by the epipolar geometry between two views. 

The output at this stage of matching consists of sets of overlapping 
image triplets. Each triplet has an associated trifocal tensor and 3-view 
point matches. The camera matrices for the 3-views may be instantiated 
from the trifocal tensor [9J, and 3D points instantiated for each 3-view 
point match by minimizing reprojection error over the triplet. 
Typical results. Typically the number of seed matches over a triplet 
is about 100 corners. The final number of matches is about 180. Using 
corners computed to sub-pixel accuracy, the typical distance of a corner 
from its transferred position is '" 0.2 pixels. An example is shown in 
figure 1.2. 
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2.3 MATCHING LINES OVER VIEW 
TRIPLETS 

Line matching is notoriously difficult over image pairs as there is no 
geometric constraint equivalent to the fundamental matrix for point cor­
respondences. However, over 3 views a geometric constraint is provided 
by the trifocal tensor computed as above from point correspondences. 

Line segments are matched over the triplet in two stages. First, given 
the trifocal tensor and putatively corresponding lines in two images, the 
corresponding line in the third image is determined. A line segment 
should be detected at the predicted position in the third image for a 
match to be instantiated. Second, the match is verified by a photometric 
test based on correlation of the line's intensity neighbourhood. The point 
to point correspondence for this correlation is provided by the computed 
epipolar geometry. Details are given in [19]. 
Typical results. Typically there are 200 lines in each image and a third 
of these are matched over the triplet. The line transfer error is generally 
less than a pixel. In practice the two stages of verification eliminate all 
but a couple of mismatches. An example is shown in figure 1.2. 

2.4 MATCHING FOR SEQUENCES 
Correspondences are extended over many frames by merging 3-view 

point matches for overlapping triplets [6, 12]. For example a correspon­
dence which exists across the triplet 1-2-3 and also across the triplet 
2-3-4 may be extended to the frames 1-2-3-4, since the pair 2-3 overlaps 
for the triplets. The camera matrices and 3D structure are then com­
puted for the frames 1-2-3-4. This process is extended by merging neigh­
bouring groups of frames until camera matrices and correspondences are 
established throughout the sequence. At any stage the available cam­
eras and structure can be used to guide matching over any frame of the 
sequence. The initial estimate of 3D points and cameras for a sequence 
is refined by a hierarchical bundle adjustment [6, 22]. Finally, the pro­
jective coordinate system is transformed to Euclidean (less overall scale) 
by auto calibration [4, 17]. 

In this manner structure and cameras may be computed automatically 
for sequences consisting of hundreds of frames. Examples are given in 
the following section. 
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(b) 

(c) 

Figure 1.2 Image triplet processing: The workhorse of the system, converting a 
passive, uncalibrated, camera into a sparse range sensor. (a) The first three images 
of the corridor sequence. (b) Point (white) and line (grey) features extracted from 
the sequence. (c) features matched across these three views. 
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Figure 1.3 Example sequences: Corridor, camera mounted on indoor vehicle (12 
frames); Dinosaur, fixed camera, object on turntable (36 frames); Castle, hand-held 
camera (25 frames); Wilshire, camera in helicopter (350 frames). 

3. RESULTS 

Some example sequences are shown in figure 1.3, each of which par­
ticularly exercise different aspects of the system. First the sequences are 
discussed, with the points of note being identified. 

3.1 CORRIDOR SEQUENCE 
A camera is mounted on a mobile vehicle for this sequence. The 

vehicle moves along the floor turning to the left. The forward translation 
in this sequence makes structure recovery difficult, due to the small 
baseline for triangulation. In this situation, the benefit of using all 
frames in the sequence is significant. Figure 1.4 shows the recovered 
structure. 

3.2 DINOSAUR SEQUENCE 
In this sequence, the model dinosaur is rotated on a turntable so that 

effectively the camera circumnavigates the object. Feature extraction is 
performed on the luminance component of the colour signal. No reliable 
lines are extracted on this object so only points are used. In this case, 
the additional constraint that the motion is known to be circular is 
applied [5], resulting in improved structure fidelity. Although the angle 
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Figure 1.4 Corridor sequence. (a) A three dimensional reconstruction of points 
and lines in the scene, and (b) cameras (represented by their image planes) computed 
automatically from the images. A texture mapped triangulated graphical model is 
then constructed as described in section 4. (c) A rendering of the scene from a novel 
viewpoint, different from any in the sequence. (d) VRML model of the scene with the 
cameras represented by their image planes (texture mapped with the original images 
from the sequence). 
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of rotation was known to be precisely 10° ± 0.005°, this information 
was not supplied to the system in order to gain a measure of accuracy. 
The recovered RMS difference from 10° was 0.04°, or approximately 1 
milliradian. Figure 1.5 shows the recovered point structure and cameras. 

3.3 CASTLE SEQUENCE 

This sequence is taken with a standard SLR camera, by a cameraman 
walking around the grounds of a Belgian castle. The images are digitized 
to PAL resolution. There is significant lighting variation between the 
first and final frames, and the sequence contains non-rigid components 
(passing pedestrians and moving trees). Figure 1.6 shows that structure 
and motion are successfully recovered despite these impediments. 

3.4 "WILSHIRE" SEQUENCE 

The final sequence is a helicopter shot of Wilshire Boulevard, Los 
Angeles. In this case reconstruction is hampered by the repeated struc­
ture in the scene-many of the feature points (for example those on 
the skyscraper windows) have very similar intensity neighbourhoods, so 
correlation-based tracking produces many false candidates. However, 
the robust geometry-guided matching (§2.1) successfully rejects the in­
correct correspondences. Figure 1.7 shows the structure. 

4. CONSTRUCTION OF 
VIRTUAL-REALITY MODELS FOR 
POLYHEDRAL SCENES 

The previous sections have described the core camera-and-structure 
recovery system, and we now develop two applications which use this in­
formation: virtual reality model construction; and image augmentation 
in section 5. 

This section describes a method for automatically generating a piece­
wise planar model. The method proceeds from the lines automatically 
matched using the trifocal tensor over 3 views. Consequently it must 
cope with the shortcomings of that process and the earlier line detection: 
missing lines, fragmented lines, and the occasional mis-match. 

The method is based on searching for planes by sweeping through 
a one-parameter family. There are three main stages, which will be 
illustrated on the building shown in figure 1. 11 (a) , which is a detail 
from figure 1.S. 
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Figure 1.5 Dinosaur: 3D point structure and camera positions for the Dinosaur 
sequence. The automatic computation of a 3D graphical model for this sequence is 
described in Chapter 2 of this volume, and also in [5] . 
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Figure 1.6 Castle: Computed cameras and 3D point structure. The plan view 
shows the accuracy of the self calibration. 
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Figure 1.7 Wilshire: 3D points and cameras for 350 frames of a helicopter shot. 
Cameras are shown for just the start and end frames for clarity, with the camera path 
plotted between. 

4.1 COMPUTING HALF-PLANES 
Given a 3D line, there is a one-parameter family of planes 7r(O) con­

taining the line. As each plane defines a (planar) homography between 
two images, the family also defines a one-parameter family of homogra­
phies H( e) between any pair of images. Each side of the line can be 
associated with a different half-plane. Our objective is therefore to de­
termine for each line side whether there is an attached half-plane or not, 
and if there is we want to compute a best estimate of e. We wish to 
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(a) Three input images 

(b) Matched line segments 

Figure 1.B Aerial views. The input images are 600 x 600 pixels. There are 
248/236/212 detected line segments and 88 lines are matched over 3 views using 
the trifocal tensor, with only one erroneous match. 

employ only the minimal information of a single 3D line and its image 
neighbourhood. Essentially we are hypothesizing a planar facet attached 
to the line, and verifying or refuting this model hypothesis using image 
support over multiple views. 

The existence of an attached half-plane and a best estimate of its 
angle is determined by measuring image similarity over multiple views. 
The geometry is illustrated in figure 1.9. Given (J, the plane 7r( (J) de­
fines a point to point homography map H( (J) between the images. If the 
plane is correct then the intensities at corresponding pixels will be highly 
correlated. The similarity as a function of (J, Sim((J), is computed by 
measuring the normalized cross-correlation between all image pairs, with 
the point to point map H((J). Figure 1.10 shows two typical examples of 
similarity functions. 

Results of half-plane detection. Figure 1.12 shows all the half-planes 
which are hypothesised on the example building. All parts of the roof 
of the main building are detected, whereas no valid planes are detected 
for the walls within the considered angle interval (we are not aiming to 
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Figure 1.9 Geometric correspondence between views. e, the homography Hi(e) de­
termines the geometric map between a point in the first image and its corresponding 
point in image i. 
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Figure 1.10 Example of similarity score functions Sim( e). The black curve corre­
sponds to a valid plane, whereas the grey one is rejected. 
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(a) (b) 

Figure 1.11 (a) Detail of figure 1.8(a) with projected 3D lines (white). This building 
is used to illustrate the reconstruction method. The correct reconstruction is a four 
plane hip roof. (b) Detected edges (black) after applying an edge detector with a 
very low threshold on gradient. The similarity function is computed at points on 
these edges. 

Figure 1.12 Detected half-planes over the interval [-75°; +75°]. 
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reconstruct vertical walls). Occasionally erroneous half-planes arise at 
shadows, but these are removed in the subsequent stages. 

4.2 GROUPING AND COMPLETION OF 3D 
LINES BASED ON HALF-PLANES 

( a) (b) 

Figure 1.13 3D line grouping. (a) Collinear grouping reduces the 9 planes prior to 
grouping to only 6. (b) Coplanar grouping and plane merging reduces the number of 
planes further so that only 4 remain. These are the correct four planes which define 
the roof, but at this stage the plane boundaries are not delineated. 

The computed half-planes are now used to support line grouping and 
the creation of new lines. 

Collinear grouping: Two collinear lines which have attached coplanar 
half-planes are merged together. The result of the collinear grouping of 
half-planes of figure 1.12 is shown in figure 1.13a. 

Coplanar line and half-plane grouping: Any line which is neigh­
bouring and coplanar with the current plane is associated with it (see 
the example of figure 1.13(b). 

Creating new lines by plane intersections: New lines are created 
when two neighbouring planes intersect in a consistent way. This is very 
important as it provides a mechanism for generating additional lines 
which may have been missed during image feature detection (see the 
example of figure 1.14(a). 

4.3 PLANE DELINEATION AND 
VERIFICATION 

In order to produce a piecewise planar model of the scene a closed 
delineation is required for each plane. A closed delineation can then be 
computed by using heuristic grouping rules based on polygonal shapes 
and convex hulls [15, 16, 28]. 
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(a) (b) (c) 

Figure 1.14 (a) New lines (black) created by plane intersection; (b) Delineation of 
the verified roofs projected onto the first image; (c) 3D view with texture mapping. 

Each delineated 3D face so produced is then verified by assessing in­
tensity similarity over the complete image set, at corresponding points 
within the projected delineation. This verification step removes falla­
cious planes, for example those which erroneously bridge two buildings. 
Figure 1.14 shows both the 2D delineation and a 3D view of the roof 
produced for the building of figure 1.11(a). Finally, occlusion predic­
tion is used to signal and resolve conflicts between inconsistent plane 
hypotheses. A conflict occurs between two facet hypotheses when their 
projections onto an image substantially overlap, i.e. when one of them 
is occluded by the other. 

4.4 RESULTS OF MODEL BUILDING 
Figure 1.15 shows the 3D reconstruction of the full scene of figure 

1.8a. Figure 1.16 shows the result on much larger and more complicated 
images. Note that intricate and unusual roofs (for example the factory in 
the upper part of the image) have been completely recovered. This also 
demonstrates how little photometric texture is required by the method, 
since roofs with virtually homogeneous intensity are retrieved. Only two 
roofs are missed in the entire scene. 

5. AUGMENTED REALITY 

Because the system automatically determines the camera position for 
each view, it is possible to render computer-generated objects as if they 
are part of the scene. Figures 1.17 and 1.18 demonstrate this process 
on two of the example sequences. In figure 1.17, planar surfaces are 
identified in the 3D structure, and then an image is transformed via 
the implied 2D perspective transformation such that it appears to be 
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( a) (b) 

(c) 

Figure 1.15 Model reconstruction results on the full example scene of figure 1.8. (a) 
49 detected half-planes from 137 3D lines . (b) 3D model of the scene (12 roof planes). 
The vertical walls are produced by extruding the roof's borders to the ground plane. 
(c) 3D model of the scene with texture mapping. 

attached to the plane. Figure 1.18 demonstrates the use of the recovered 
3D structure of the scene for depth-keying. The cage around the object 
is rendered into a Z-buffer which is initialized using the 3D model, so 
that the bars behind the object are correctly occluded, and those in front 
correctly occlude the object. 

6. FUTURE DEVELOPMENTS 
We have presented a system that will take sequences of images from an 

un calibrated camera or cameras, and will automatically recover camera 
positions and 3D point and line structure from these sequences. We are 
currently extending the core system to include space curves [20]' and 
cope with wide baselines between frames [18]. More details of the plane 
sweeping method for generating 3D models of piecewise planar scenes 
are given in [1]. 



From images to virtual and augmented reality 19 

(a) (b) 

(c) 

(e) 

Figure 1.16 (a)-(c) Three of six overlapping aerial views. The images are about 
1200 x 1200 pixels, one pixel corresponding to a ground length of 8.5cm. (d) The 452 
reconstructed 3D lines and the 267 detected half-planes. (e) A view of the 3D model 
of the scene, with texture mapping (180 roof planes) . 
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Figure 1.17 Wilshire: Augmented reality. Planar surfaces are identified in 3D, then 
2D homographies are computed which map the augmenting images onto the planes . 
Note that images appear to be rigidly attached onto two skyscrapers . Compare with 
figure 1.3. 
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Chapter 2 

SURFACE RECONSTRUCTION FROM 
MULTIPLE VIEWS USING APPARENT 
CONTOURS AND SURFACE TEXTURE 

Geoffrey Cross, Andrew Zisserman 

Abstract We describe a novel approach to reconstructing the complete surface 
of an object from multiple views, where the camera circumnavigates 
the object. The approach combines the information available from the 
apparent contour with the information available from the imaged surface 
texture. 

It is demonstrated that this approach of combining two information 
sources has significant advantages over using either the contour or tex­
ture alone: first, the geometric constraints available are complementary, 
so that the deficiencies of one source can be overcome by the strengths 
of the other; second, judicious use of the two sources enables an efficient 
automatic reconstruction algorithm to be developed. 

In particular we make the following contributions: it is shown that 
the set of epipolar tangencies generates an epipolar net at which the 
visual hull coincides with the surface; a statistical cost function is de­
fined which incorporates terms for error in image intensity similarity 
and geometric error in the apparent contour; and, an improved photo­
consistency constraint is developed for space carving. 

Examples of automatically generated texture-mapped graphical mod­
els are given for various objects and camera motions. The objects may 
contain concavities, and have non-trivial topology. 

1. INTRODUCTION 
Surface reconstruction from images has been extensively investigated 

over the past three decades. The methods that have been developed 
can broadly be categorized into four classes: reconstruction from the 
apparent contour [5, 7, 13, 15, 18, 30, 32, 33] where the visual hull [21] 
is computed; texture correlation [2, 10, 14, 16] where a dense recon­
struction is computed based on a measure of intensity similarity; feature 
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based matching, e.g. [1, 24] which produces only a sparse surface map; 
and, more recently, space carving [20, 27] which is a variant on texture 
correlation, where voxels are progressively carved from an occupancy 
representation based on the principle of "photo-consistency" between 
images. 

A secondary issue, but of considerable importance in implementations, 
is how the surface is represented. The choice is broadly either a pa­
rameterized surface, for example a triangulated mesh or tensor product 
surface; or voxel occupancy. A recent elegant addition is representation 
by a level set of a hyper-surface in 4D [28]. This representation was the 
basis of the texture correlation method described in [10]' and has the 
advantage of being able to represent surfaces with various topologies. 

The objective of this paper is the automatic reconstruction of a sur­
face from multiple views, where the camera may circumnavigate an ob­
ject (Fig. 2.1). This means that methods which build a depth-map 
reconstruction from a particular view are not appropriate. The novelty 
here lies in combining elements from the various classes of reconstruc­
tion method, and also in an implementation which uses different surface 
representations as appropriate for accuracy and efficiency, such that all 
views contribute equally. 

We start in section 2.1 by rehearsing and extending the geometry of 
the visual hull, which is the surface bound computed by back-projecting 
apparent contours. In particular we introduce the "epipolar net" which 
is the collection of surface point constraints provided by the apparent 
contours over a set of view points. The computation of the visual hull 
is then described in section 2.3. Section 3 introduces space carving and 
the photo-consistency test which is central to the algorithm. We then 
develop and implement an extension to the standard photo-consistency 
test [19]. The extension enables sub-pixel registration and greater in­
variance to photometric variations. Section 4 then describes a statistical 
cost function which is an extension of that proposed and implemented 
by Faugeras and Keriven in [10]. The extension is to include a geometric 
error based on conformity to the measured apparent contour. 

These three developments (visual hull, photo-consistency, and sta­
tistical optimization of the surface) form the elements of an efficient 
and 'optimal' automatic surface reconstruction algorithm in which space 
carving proceeds from the visual hull, rather than the much looser bound 
usually used in [20], and the statistical optimization proceeds from the 
space carved surface. Because the cost function includes both texture 
and apparent contour terms, regions of the surface may be reconstructed 
even in the absence of adequate texture for correlation. 
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Figure 2.1 Six images (top image set) from a sequence of a toy dinosaur. The 
figure demonstrates that the apparent contours (middle image set) are a rich source 
of information for reconstruction. Corner matches (lower image set) also provide 
further information on the surface structure. 

It is assumed that the camera matrices are known for each view. 
For all the example sequences included here the objects are rotated 
on an (uncalibrated) turn table, and the camera matrices are com­
puted automatically from the image sequence using the method de­
scribed in [11]. Other methods for generating the cameras from corner 
features, e.g. [3, 12, 34], or from the apparent contour and other image 
features [4, 6, 8, 25] could equally well be used. 

2. RECONSTRUCTION FROM APPARENT 
CONTOURS 

In this section we first review the geometric constraints on surface 
reconstruction provided by the apparent contour over multiple images. 
Then we describe a surface reconstruction algorithm using the apparent 
contours. 

2.1 GEOMETRY 

The image outline of a smooth surface S results from surface points at 
which the imaging rays are tangent to the surface, as shown in figure 2.2. 
The contour generator on S is the set of points X on S for which rays 
are tangent to S. The corresponding image apparent contour is the set 
of points x which are the image of X, i.e. the apparent contour is the 
image of the contour generator. Image points on the apparent contour 
back-project to rays tangent to the surface, and image lines tangent to 
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contour generator 

Figure 2.2 The apparent contour is the image of the contour generator. The surface 
tangent plane at any point on the contour generator passes through the camera centre 
C. 

(a) (b) 

Figure 2.3 (a) Back-projecting the apparent contour gives a cone tangent to the 
surface along the contour generator. (b) The visual hull is given by the intersection 
of the cones, one for each view. It encloses the original surface and is tangent to this 
surface along the contour generators. 

the apparent contour back-project to planes which are tangent planes to 
the surface. 

Back-projecting apparent contours. For known cameras, the ap­
parent contour generates a set of tangency constraints and a bound for 
surface reconstruction. Each apparent contour back-projects to a "cone" 
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Figure 2.4 At an epipolar tangent point X on the surface, the surface tangent plane 
passes through both camera centres. 

as shown in figure 2.3(a). The surface is tangent to this cone at the con­
tour generator, and all points on the surface must lie on or within this 
semi-infinite cone. 

If two or more images of the surface are available, the cones intersect 
to enclose the surface [17]. The closed surface as reconstructed from 
these cones is referred to as the visual hull (see figure 2.3(b)). The 
visual hull is guaranteed to fully enclose the surface (as each of the 
generating cones enclose the surface). The surface will be coincident 
with and tangent to the visual hull along each of the contour generators 
but not elsewhere. As can be seen in figure 2.6(a), the visual hull does 
not, however, penetrate concavities of the surface, and only reconstructs 
the convex elliptic and hyperbolic parts of the surface. 

Epipolar tangents. Consider two views. In general the cones back 
projected from apparent contours intersect in a space curve which does 
not lie on the surface. However, as shown in figure 2.4, at a point 
where the epipolar plane is tangent to the surface the space curve is 
coincident (and tangent to) the surface. Such points arise where the 
apparent contour is tangent to the epipolar lines, and are termed epipolar 
tangencies [25, 26] or frontier points [6]. 

Epipolar nets. Since an epipolar tangent point on the surface arises 
from contact with an epipolar plane, it is a property of view pairs. If 
one of the camera centres changes position then the epipolar tangent 
points will also move in general!. For three views there are epipolar 
tangencies for each pair of images of the triplet, and over a set of views 

1 Epipolar tangent points are the same over multiple views if the cameras share an epipolar 
plane, e.g. in the case of three views with collinear camera centres. 
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• 
(a) 

• 

• 

(b) 

Figure 2.5 The epipolar net. (a) The intersections of each pair of contour generators 
are epipolar tangent points for the associated pair of images. The epipolar tangent 
points combine to create an epipolar net of points through which both the surface 
and the visual hull must pass. The camera centres and image planes are shown. (b) 
The model from the gourd sequence of figure 2.15 with all epipolar tangent points 
superimposed demonstrates that a significant part of the surface is covered by the 
epipolar net. The net is for 30 images covering a 180 degree sweep. 

an epipolar net of such points is built up (see figure 2.5). Each point of 
the net arising at the intersection of two contour generators for a view 
pair. However, since not all contour generators actually intersect with 
each other, some image pairs will not provide epipolar tangent points. 

Each point (node) on the epipolar net is a 3D point which can be 
found directly from the apparent contour. The visual hull is coincident 
with the viewed surface at each of the 3D points of the net. Therefore 
in areas with a dense epipolar net the visual hull models a surface more 
closely than elsewhere. 

2.2 DEFICIENCIES IN RECONSTRUCTING 
FROM THE VISUAL HULL 

As shown above, reconstruction from apparent contours alone pro­
vides the visual hull which is a bound on the surface, but does not fully 
reconstruct the surface. There are two types of deficiencies: first, concav­
ities are not reconstructed since they do not contribute to the apparent 
contour, see figure 2.6 ( a); second, even for a convex surface the visual 
hull is not coincident with the surface, see figure 2.6(b). This difference 
between the visual hull and surface depends on the surface shape, and 
the number and position of the views. 
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(a) (b) 

Figure 2.6 2D schematic of the difference between the 'surface' and the visual hull 
computed from image 'outlines'. (a) The visual hull does not 'capture' surface con­
cavities; (b) Even if there are no concavities, the visual hull computed from a finite 
number of images may not coincide with the surface. 

On the other hand, surface points (e.g. texture), viewed over multiple 
images and reconstructed by triangulation, "probe" the surface at all 
visible points including concavities, see figure 2.7. So, triangulating on 
surface features does reconstruct concavities, but provides no constraints 
at texture-less surface patches; and, the visual hull does not reconstruct 
surface concavities, but does reconstruct surface regions even in the ab­
sence of any surface features. Consequently, triangulating on surface 
texture features complements the tangency constraints provided by the 
apparent contour. We return to triangulation on surface texture in sec­
tion 3. 

2.3 COMPUTING THE VISUAL HULL 
If no assumptions are made about the surface shape, the visual hull 

must simply be reconstructed as the intersections of the back-projected 
cones as in figure 2.8(a). However, an approach used by several au­
thors [5, 7, 15] is to assume a local quadric form of the surface which is 
fitted generally to three apparent contours (see figure 2.8(b)). This hull 
surface is then parameterized by a net formed by the contour generator 
for each view linked by epipolar curves. The problem with this parame­
terization is that it is singular at epipolar tangencies, and reconstruction 
errors result. An alternative approach is a volumetric computation where 
the visual hull is computed and represented by voxel occupancy. This 
idea dates back to [22]. 



32 CONFLUENCE OF COMPo VISION AND COMPo GRAPHICS 

... . ,. .. ' .. ' ... 

.: .... 

:.: 

... ... ... 

Figure 2.7 Two views of a surface provide information from both the apparent con­
tours in the form of a tangent constraint and a point match which provides a surface 
point constraint . Both reconstruction methods complement each other, and will be 
used together to provide complete models, 

(a) (b) 

Figure 2.8 (a) The visual hull can be reconstructed as the intersection of the cones 
generated by back-projecting the apparent contour in each image. (b) If assumptions 
are made about the smoothness of the surface, the visual hull can be reconstructed 
by locally fitting quadratic or Bezier patches. 
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occluding. conlour 

Figure 2. g A region of space is sampled, and each voxel is assigned one of three 
values. Light cubes are known to lie outside the visual hull, and dark cubes are 
known to lie inside the visual hull (from this single image) . Gray cubes lie on the 
surface and can be sub-sampled for greater resolution . 

2.3.1 Volumetric model generation. A region of space, known 
to enclose the surface, is subdivided volumetrically at a given (but not 
necessarily uniform) resolution. Each sub-region is then classified ac­
cording to whether it lies inside the visual hull, outside the visual hull 
or spans the surface of the visual hull (figure 2.9) . This classification is 
achieved by observing the projection of the sub-region, or voxel, onto 
each image plane: if the projected voxellies outside any of the apparent 
contours, it must also lie outside the visual hull. The algorithm is close 
to that presented by Szeliski in [31]. 

Octree representation. An implementation based on octrees has sig­
nificant speed advantages. A region of space is subdivided into a set of 
cubes at a low resolution. Each cube is then classified with respect to 
the visual hull as above. If a higher resolution is required, each cube 
is subdivided into 8 equal sized cubes and the classification is repeated. 
However, cubes which are known to lie completely outside or completely 
inside the visual hull do not need to be subdivided, as the classification 
of their 'children' will be the same as that of their parents. 

Using this approach, an arbitrary volumetric resolution can be achieved. 
A trade-off is required at this point: at a low resolution, important topo­
logical features of the visual hull may be missed, whilst high resolution 
models take longer to generate and are more difficult to manipulate. 
Figure 2.10 demonstrates this trade-off. 
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Figure 2.10 Three different resolution reconstructions (from left to right: 728 voxels, 
4k voxels and 246k voxels) of the visual hull of a mug imaged from 36 views (six of 
the original images are shown in the top row). Note, the change in topology between 
the first and second resolution. 

3. COMPUTING THE SURFACE FROM 
TEXTURE INFORMATION 

It has been shown that the apparent contour does not give any infor­
mation about concavities of the viewed surface. In order to accurately 
reconstruct such surface regions, it is necessary to make use of other 
information such as texture. 

Dense stereo algorithms, e.g. [16], make good use of texture informa­
tion, but to date have only been extended from two views to many by 
merging surface patches - an approach that does not generalize well to 
circumnavigation of the object. 

It is also possible to obtain surface shape information from features 
such as corners or curves in the image. However, this data is sparse and 
generally a parameterized surface model must subsequently be fitted, 
e.g. [14], in order to obtain a dense reconstruction. 

3.1 SPACE CARVING 

Space carving [20, 27] does not suffer from either of these limitations. 
It provides a successive algorithm for removing voxels in a voxmap with 
the aim of creating a 3D shape which reproduces the input images. 

In brief, the idea of space carving is to project each voxel on the surface 
into the set of images. The projected voxel defines a correspondence 
between image points, and the intensity at the corresponding points is 
evaluated to determine if it is "photo-consistent" (see below), ensuring 
the voxel is only compared with pixel values in images in which it is not 
occluded. If the voxel is not photo-consistent it is removed (carved) from 
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the occupancy space, and the algorithm repeats. If it is photo-consistent 
then the voxel can be coloured with the corresponding pixel value. The 
final result is a set of voxels which closely reproduce the original images. 

There are 2 main drawbacks to the original implementation described 
in [19]. The first concerns initialization, and the second the photo­
consistency test. The following sections describe improvements in these 
two areas. 

3.2 SURFACE DIRECTED INITIALIZATION 
It is often necessary to initialize the algorithm with a very large 

voxmapped space in order to ensure that it completely encloses the sur­
face. Each voxel must then be tested in turn for consistency with the 
images which results in a high computational load. As has been shown 
in section 2.1, the visual hull completely encloses the generating surface, 
and can be efficiently constructed using octrees. It follows naturally that 
the visual hull should be used as a starting point for the space carving 
algorithm. 

3.3 IMPROVED PHOTO-CONSISTENCY 
CONSTRAINT 

In the original implementation of space carving [19], the photo-consi­
stency test proceeded as follows: project a voxel centroid into each im­
age, and compare the intensities of the corresponding pixels. If the inten­
sities differ by less than a threshold then the voxel is photo-consistent. 
Unfortunately this test is prone to errors from image intensity noise and 
from the spatial sampling noise inherent in the voxelation of space. A 
"shift transform" was introduced in [20] to solve the second of these 
problems. However, it can be shown that a bias is introduced such that 
the model is larger than the original object and hence misses certain 
small concavities. 

If the threshold on the photo-consistency test is too low, the result is 
false protrusions on the surface. Conversely, (and more serious here), if 
the test is too conservative (i.e. points are not considered consistent even 
when they are) the result is indentations or holes in the final surface. 
The photo-consistency test must therefore be robust to image noise. 

Here we improve the photo-consistency test so that it is more robust in 
two ways: first, a smooth surface fit is used to provide an image to image 
map (see figure 2.11). This enables registration to sub-pixel accuracy. 
Interpolation is now required because pixels from one image will not 
in general coincide with pixel positions in the other image; second, the 
comparison of intensities uses normalized cross-correlation so is invariant 



36 CONFLUENCE OF COMPo VISION AND COMPo GRAPHICS 

Figure 2.11 Surface-induced transfer. Any image point back-projects to a ray in 
space. Given the local geometry of a surface, this ray can be intersected with the 
surface to give a 3D point, which in turn can be projected into a second image. This 
process defines a point to point mapping between the images induced by the surface. 

to a local affine transformation in brightness (I -t ad + (3). The photo­
consistency test defines a binary valued indicator function for voxels. 

3.3.1 Photo-consistency constraint-implementation. In or-
der to provide an accurate and smooth surface-induced mapping, it is 
necessary to fit a local surface patch to the voxelated surface. This is 
achieved by locally fitting a quadratic patch to a set of surface points. 
Each patch can then be represented as a quadric surface in the form 

XTQX=O, 

where X = (X, Y, Z, l)T is a 3D point on the surface patch, and Q is a 
4 x 4 symmetric matrix representing the quadric. It can be shown [9, 29] 
that the quadric induces an algebraic mapping, Xi = f(xj) between any 
two images, i and j, where Xi and Xj are corresponding points in images 
i and j respectively. 

The photo-consistent indicator function is then computed as follows 
for each voxel: fit a quadric patch to the voxel neighbourhood, and 
project the voxel centroid into each image. The projected centroid de­
fines corresponding points between the images. Starting from the most 
fronto-parallel image measure the normalized cross-correlation with cor­
responding image neighbourhoods, where the map between images is 
defined by the fitted quadric patch. If the cross-correlations are above a 
threshold (here 0.8) then the voxel is photo-consistent. 
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3.4 SPACE CARVING IMPLEMENTATION 
The starting point for the space carving algorithm is the voxel repre­

sentation of the visual hull produced from the apparent contours. Often, 
and in particular when many views of a single object are available, the 
visual hull is close to the final surface. Incorrectly modeled regions (the 
two deficiencies illustrated in figure 2.6) are identified using the indi­
cator function, and only these regions are a candidate for space carv­
ing. Voxels are successively removed in these regions until the surface is 
photo-consistent with the images. 

3.5 RESULTS 
Figure 2.12 shows six images from a sequence of 36 images of a skull, 

and the computed visual hull. The eye and nose areas are not accurately 
modeled by the visual hull. However, areas around the back of the head 
which are convex and smooth are accurately reconstructed in the visual 
hull. These two types of regions are identified by the photo-consistency 
indicator function. Figure 2.13 shows the number of voxels remaining in 
the model through iterations of the algorithm in section 3.4. 

Figures 2.14 and 2.15 shows further examples of using the voxel based 
algorithm. In each case the VRML models generated have in the order 
of 50k faces which allows them to be rendered in reasonable speeds on 
a workstation. 

4. MINIMISING REPROJECTION ERRORS 
USING A SURFACE REPRESENTATION 

Although the results from the space carving algorithm are subjectively 
good, and objectively accurate to within one voxel, they are limited by 
the resolution of the voxels (which is often limited by computation time 
and available memory). This limitation is illustrated in figure 2.16(a). 

To overcome this limitation a parameterized surface representation 
may be used instead of voxel occupancy. In [10] a parameterized surface 
fit was obtained using a cost function based on image correlation. Here 
we extend the cost function to also enforce the geometric constraints 
arising from the apparent contour. 

Intensity correlation. The cost function used in [10] has the form 

1 l+P l+q 
- -Ct = 4 (h(ml + m) - h(ml)) (h(K(ml + m)) - h(K(ml)) dm , 

pq -P -q 

(2.1) 
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(a) (b) 

(c) (d) 

Figure 2.12 (a) A voxelelated model of the visual hull of a skull. It can be seen 
that the visual hull "smoothes over" concavities such as the nose and eye sockets. 
(b) An indicator function (section 3.3) is applied to the surface of the visual hull, 
and regions with high score are shown in gray and those with low score are shown in 
black. A high score indicates that the reprojection of the surface is consistent with 
the input images. It can be seen that the eyes and nose regions have been marked 
as "incorrect". (c) The final model after applying the space carving algorithm as 
described in section 3.4. After space carving, areas such as the eye socket and nose 
region are correctly reconstructed. A simple mesh smoothing algorithm has been 
applied to the surface to highlight these areas, but the model is stored as 1283 voxels. 
(d) A textured-mapped model using intensities from the original images. 
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Figure 2.13 Number of voxels remaining in model (figure 2.12) as the space-carving 
algorithm converges. 

Figure 2.14 Texture-mapped 3D models of the dinosaur from sequence in figure 2.1 
and the cup from the sequence in figure 2.10 
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(a) (b) 

Figure 2.15 (top) Six images from a sequence (30 images) of a gourd. (a) An untex­
tured model and (b) a textured model. 

(a) (b) 

Figure 2.16 The apparent contour as projected from the generated volumetric model 
of the visual hull. (a) A low resolution model has been chosen to exaggerate the 
re-projection errors. This model has approximately 8000 polygons and gives an ap­
proximate reprojection error of 5-7 pixels. (b) The errors are reduced to sub-pixel if 
the cost function of equation (2.2) is used in a minimization over the surface. 
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Figure 2.11 Six images (top) from a sequence of 100 images of a plasticine object 
with a single large concavity. The plane common to the cameras is intersected with 
each image plane and the ID intensity image corresponding to the line of intersection 
(bottom) taken as an example in section 4.1. 

thus correlating a texture patch, centred around image point ml in a 
first image, h (m) with the surface-mapped patch in a second image, 
h(m). The function K(m) maps points between the two images given a 
hypothesized surface shape (the optimization parameter), S. The mean 
patch intensities, I1 and I2 , allow for an affine scaling of intensities. 

Here, we extend the cost function by introducing an extra distance 
term to minimise errors in the reprojected surface: 

Ca = f d(P(S)(s), c(s))ds . (2.2) 

The distance function, d, measures the distance between the projected 
apparent contour, P(S) from the apparent contour detected in the orig­
inal images, c. 

The overall cost function balances these two terms according to vari­
ance of the noise probability distributions, at (of intensity cross-correla­
tion) and a a (of pixel localization error), on each one of the cost terms: 

C = C~ + C~ . (2.3) 
at aa 

The importance of including this term is that the surface is now con­
strained (by the apparent contour) at regions at which there is no tex­
ture. This information is unused in the original work [10] because the 
cost is not included. 

4.1 TWO DIMENSIONAL 
EXAMPLE-IMPLEMENTATION 

Figure 2.17( top) shows a turn-table image sequence of a plasticine 
object with a large concavity. As an example, we will consider a cross­
section of the object by considering the images along a set of correspond­
ing epipolar lines (figure 2.17 ( bottom)). 
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Figure 2.18 (a) A voxel model of the visual hull. Due to sampling errors, it does 
not accurately obey the apparent contour constraints. (b) Applying the cost function 
of equation (2.2) (minimizing errors in the reprojected apparent contour along), the 
model is significantly improved from the voxelated visual hull. 
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Figure 2.19 (a) The cost function (2.3) is applied to the surface of the visual hull. 
Areas with high cost (incorrectly modeled regions such as the concavity) are marked. 
(b) A model generated by minimising the cost function of equation (2.1) is shown. 
The concavity is now more accurately modeled, but if the full cost function (equation 
(2.3)) is used the convex regions are further constrained by the apparent contour 
constraint (c). (d) and (e) show the results of (b) and (c) with two of the back­
projected apparent contours superimposed. (d) clearly shows that the model does 
not obey the apparent contour constraint if cost (2.2) is not directly included in the 
cost function (as is the case in (e)). 
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The visual hull (figure 2.18) is used as the starting point for the opti­
mization (computed using the algorithm outlined in section "Volumetric 
model generation" on page 31). By applying a similar indicator func­
tion to that used in section 3.3, the correctly reconstructed regions of 
the curve are located and held constant during the optimization (fig­
ure 2.19( a)). 

For the purposes of this example (see discussion below), the curve is 
represented as a piecewise linear spline, with approximately 150 line seg­
ments. The vertices are restricted to move along the curve normals. The 
cost function (2.3) is minimized by moving the vertex positions of the 
curve using a Levenberg-Marquardt algorithm. A Z-buffer is maintained 
during the optimization to compute the reprojected apparent contour, 
and to ensure that occluded regions are not included in the correlations. 
Figure 2.19( b) shows the results of this optimization if the texture term 
alone is used (it is clear that the algorithm has only converged to a lo­
cal minimum, and is far from the correct solution), whilst figure 2.19(c) 
shows how the apparent contour term improves the model considerably. 
In the concave region, results (b) and (c) are identical as the appar­
ent contour provides no information. It is clear that the texture does 
not provide sufficient information alone (indeed, figure 2.19(d) violates 
the visual hull constraint) and is augmented by the apparent contour 
constraint in the convex regions. 

The gourd sequence of figure 2.15 is used as a 3D example using 
the cost function of equation (2.2). Figure 2.16 demonstrates how the 
reprojection errors of the apparent contour reduce from 5-7 pixels to 
subpixel. 

5. SUMMARY 

The algorithm presented here enables an accurate and complete model 
of a surface to be built automatically from multiple images, and we now 
discuss limitations and possible extensions to this approach. 

Apparent contours. This contribution to the cost function involves 
a geometric image error minimization. The error makes minimal as­
sumptions about the world (cf. the photo-consistency constraint dis­
cussed below). Its use requires that the apparent contour is correctly 
segmented from the image (here this is achieved by 'blue-screening') and 
this is the point at which errors can occur. There are two failure modes: 
first, under segmentation (where parts of the contour are missed). This 
failure is not particularly serious because the surface can still be carved 
away from other views where the contour is detected; the second type of 
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failure, over segmentation, is serious because parts of the actual object 
will then be removed. 

Photo-consistency. This requires assumptions about the photo-me­
tric properties of the surface, i.e. about the BRDF, which is generally 
assumed to be Lambertian. A serious problem is with specularities where 
the assumed properties are strongly violated. The naive use of the space 
carving algorithm is inappropriate in such cases. Unfortunately, specu­
larities do commonly occur, e.g. for metallic and shiny surfaces. How­
ever, it is possible to verify the consistency of the BRDF assumptions: 
at the epipolar net points the visual hull generates surface points (and 
the surface normal), and the brightness of these points can be used to 
assess, for example, the Lambertian assumption. 

Extensions. The presence of specularities can also be turned to an 
advantage if the position of the light source is known. In this case, based 
on the standard geometry of mirror reflection, the surface (position and 
normal) can be reconstructed up to a one parameter family. Shadows 
may also be used to provide geometric constraints. 

In the current implementation, it has been assumed that the visual 
hull correctly captures the topology, and the topology does not subse­
quently change in the optimization stage. We are currently investigating 
other parameterizations of the surface, such as the level sets used in [10] 
and the T-snakes developed in [23] which will enable changes in surface 
topology within the optimization. 

Acknowledgments 

Figure 2.2 was provided by Roberto Cipolla and Peter Giblin. The dinosaur im­

age sequence of figure 2.1 was provided by the University of Hannover. The gourd 

sequence (figure 2.15) was provided by Edmond Boyer of INRIA, Grenoble. Funding 

for this work was provided by the Engineering Physical Sciences Research Council 

(EPSRC). 

References 

[1] N. Ayache and O. D. Faugeras. Building a consistent 3D represen­
tation of a mobile robot environment by combining multiple stereo 
views. In Pmc. International Joint Conference on Artificial Intel­
ligence, pages 808-810, 1987. 

[2] H. H. Baker and T. O. Binford. Depth from edge and intensity 
based stereo. In IJCAI81 , pages 631-636, 1981. 



Surface reconstruction from multiple views . . . 45 

[3] P. Beardsley, P. Torr, and A. Zisserman. 3D model acquisition 
from extended image sequences. In Proc. European Conference 
on Computer Vision, LNCS 1064/1065, pages 683-695. Springer­
Verlag, 1996. 

[4] R. Berthilsson and K. Astrom. Reconstruction of 3-D curves from 
2-D images using affine shape methods for curves. In Proc. IEEE 
Conference on Computer Vision and Pattern Recognition, 1997. 

[5] E. Boyer and M.O. Berger. 3D surface reconstruction using occlud­
ing contours. International Journal of Computer Vision, 22(3):219-
233, March 1997. 

[6] R. Cipolla, K. Astrom, and P. Giblin. Motion from the frontier of 
curved surfaces. In Proc. 5th International Conference on Computer 
Vision, Boston, pages 269-275, 1995. 

[7] R. Cipolla and A. Blake. Surface shape from the deformation 
of apparent contours. International Journal of Computer Vision, 
9(2):83-112, 1992. 

[8] G. Cross, A. W. Fitzgibbon, and A. Zisserman. Parallax geometry 
of smooth surfaces in multiple views. In Proc. 7th International 
Conference on Computer Vision, Kerkyra, Greece, pages 323-329, 
September 1999. 

[9] G. Cross and A. Zisserman. Quadric surface reconstruction from 
dual-space geometry. In Proc. 6th International Conference on 
Computer Vision, Bombay, India, pages 25-31, January 1998. 

[10] O. Faugeras and R. Keriven. Complete dense stereovision using 
level set methods. In Proc. 5th European Conference on Computer 
Vision, Freiburg, Germany, pages 379-393, 1998. 

[11] A. W. Fitzgibbon, G. Cross, and A. Zisserman. Automatic 3D 
model construction for turn-table sequences. In R. Koch and 
L. Van Gool, editors, 3D Structure from Multiple Images of Large­
Scale Environments, LNCS 1506, pages 155-170. Springer-Verlag, 
June 1998. 

[12] A. W. Fitzgibbon and A. Zisserman. Automatic camera recovery 
for closed or open image sequences. In Proc. European Conference 
on Computer Vision, pages 311-326. Springer-Verlag, June 1998. 

[13] P. Giblin and R. Weiss. Reconstruction of surfaces from profiles. In 
Proc. 1st International Conference on Computer Vision, London, 
pages 136-144, London, 1987. 

[14] W. E. L. Grimson. From Images to Surfaces: A Computational 
Study of the Human Early Visual System. MIT Press, 1981. 



46 CONFLUENCE OF COMPo VISION AND COMPo GRAPHICS 

[15] T. Joshi, N. Ahuja, and J. Ponce. Structure and motion estimation 
from dynamic silhouettes under perspective projection. In Pmc. 
5th International Conference on Computer Vision, Boston, pages 
290-295, 1995. 

[16] R. Koch. 3D surface reconstruction from stereoscopic image se­
quences. In Pmc. 5th International Conference on Computer Vi­
sion, Boston, pages 109-114, 1995. 

[17] J. J. Koenderink. What does the occluding contour tell us about 
solid shape? Perception, 13:321-330, 1984. 

[18] K. Kutulakos. Affine surface reconstruction by purposive viewpoint 
control. In Pmc. 5th International Conference on Computer Vision, 
Boston, pages 894-901, 1995. 

[19] K. Kutulakos and S. Seitz. What do N photographs tell us about 
3D shape? Technical Report 680, University of Rochester, January 
1998. 

[20] K. Kutulakos and S. Seitz. A theory of shape by space carving. In 
Pmc. 7th International Conference on Computer Vision, Kerkyra, 
Greece, pages 307-314, 1999. 

[21] A. Laurentini. The visual hull concept for silhouette-based image 
understanding. IEEE Transactions on Pattern Analysis and Ma­
chine Intelligence, 16(2):150-162, February 1994. 

[22] W. N. Martin and J. K. Aggarwal. Volumetric description of objects 
from multiple views. IEEE Transactions on Pattern Analysis and 
Machine Intelligence, 5(2):150-158, March 1983. 

[23] T. McInerney and D. Terzopoulos. Topologically adaptable snakes. 
In Pmc. 5th International Conference on Computer Vision, Boston, 
pages 840-845, 1995. 

[24] S. B. Pollard, J. E. W. Mayhew, and J. P. Frisby. PMF: A stereo 
correspondence algorithm using a disparity gradient limit. Percep­
tion, 14:449-470, 1985. 

[25] J. Porrill and S. B. Pollard. Curve matching and stereo calibration. 
Image and Vision Computing, 9(1):45-50, 1991. 

[26] J. H. Rieger. Three dimensional motion from fixed points of a 
deforming profile curve. Optics Letters, 9(1):123-125, 1986. 

[27] S.M. Seitz and C.R. Dyer. Photorealistic scene reconstruction by 
voxel coloring. In Pmc. IEEE Conference on Computer Vision and 
Pattern Recognition, Puerto Rico, pages 1067-1073, 1997. 

[28] J. A. Sethian. Level Set Methods. Cambridge University Press, 
Cambridge, 1998. 



Surface reconstruction from multiple views. . . 47 

[29] A. Shashua and S. Toelg. The quadric reference surface: Theory 
and applications. In Proc. International Conference on Computer 
Vision, 1997. 

[30] S. Sullivan and J. Ponce. Automatic model construction and pose 
estimation from photographs using triangular splines. IEEE Trans­
actions on Pattern Analysis and Machine Intelligence, 20(10):1091-
1096, October 1998. 

[31] R. Szeliski. Rapid octree construction from image sequences. 
CVGIP, 58(1):23-32, July 1993. 

[32] R. Szeliski and R. Weiss. Robust shape recovery from occluding 
contours using a linear smoother. International Journal of Com­
puter Vision, 28(1):27-44, June 1998. 

[33] R. Vaillant and O. D. Faugeras. Using extremal boundaries for 3-
D object modeling. IEEE Transactions on Pattern Analysis and 
Machine Intelligence, 14(2):157-173, February 1992. 

[34] Z. Zhang, R. Deriche, O. D. Faugeras, and Q. Luong. A robust tech­
nique for matching two uncalibrated images through the recovery of 
the unknown epipolar geometry. Artificial Intelligence, 78:87-119, 
1995. 



Chapter 3 

CONSISTENT PROJECTIVE 
RECONSTRUCTION FROM 
MULTIPLE VIEWS 

Martin Urban, Tomas Pajdla, Vaclav Hlavac 

Abstract Projective reconstruction recovers 3-D points in projective space p3 
from their several projections to 2-D images. Applications of projective 
reconstruction include algorithms for selecting point correspondences, 
algorithms for camera self-calibration, and algorithms for 3D shape re­
covery. We introduce a method for the projective reconstruction from 
n views. The method is based on concatenation of trifocal constraints 
and relies on linear estimates only. The method is not symmetrical with 
respect to input data. One of the captured images is selected as a ref­
erence image which plays a special role during the computation. The 
proposed algorithm requires that all the points involved be visible in the 
reference image. Accuracy and stability of the proposed algorithm with 
respect to pixel errors were tested. Experimental results are presented 
too. 

1. INTRODUCTION 
The second half of nineties witnessed a qualitative move from stere­

ovision that remained for a long time in photogrammetric framework 
providing relation between two views only. Information from more views 
was not acquired simultaneously as the multi-image geometric constraints 
were not commonly applied. A precise elaboration of multiple view ge­
ometry led to a new view on stereovision. Partial contributions for two, 
three, and four images followed. The unified treatment of the subject is 
provided in [6, 7, 4]. The new theoretical tools open the door to process­
ing of large number of images and, subsequently, to qualitatively better 
results than before. 

We present a method which applies trifocal relations to obtain pro­
jective reconstruction from n > 4 views. The proposed method comes 
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from the algorithm for the projective reconstruction from three views 
introduced by Hartley [5]. Since it is necessary for the proper insight, 
Hartley's algorithm is reviewed in Section 3 after basic preliminaries 
(Sections 1 and 2). The very method is described in Section 4. 

1.1 PROJECTIVE RECONSTRUCTION 
Let us consider that a camera is modeled by a projection from a 

projective space p3 to p2. The homogeneous coordinates of points in 
the i-th image are denoted by u(i) E p2 and homogeneous coordinates 
of a point from p3 are denoted by X. 

Then, the projections of a set of m points by n cameras can be ex­
pressed as 

(i)-(i) _ p-(i)- .. -1 '-1 
S j u j - xJ ' 1, - , •.. , n, J - , ... , m, (3.1) 

where 3x4 real matrix p(i) E M 3,4 is so-called camera projection matrix, 

sy) E R\{O} are scale factors. 

The goal of a projective reconstruction is to find camera matrices p(i) 

and homogeneous coordinates Xj so that Eq. (3.1) is satisfied for all 
. . - (i). 1 . 1 Image pOlnts U j ,1,= , ... , n, J = , ... , m. 

Since both p(i) and Xj are unknown, it is obvious that they can be 
recovered up to a choice of a coordinate system in p3, i.e., up to a 
homography. Having camera matrices p(i), the consequent recovery of 
points Xj is trivial (and vice versa). Therefore, the following definition 
of projective reconstruction is introduced: 

Definition 1 (Projective reconstruction) The recovery of the equiv­
alence class P 

P = { (p(1), ... ,p(n)) I (p(l), ... ,p(n)) = (P(1)H, ... ,p(n)H), 

H E M 4,4, det(H) =f. 0 } 

from a set of points uy) i = 1, ... , n, j = 1, ... , m, such that there exists 

a corresponding set of points Xj E p3 so that sY)uY) = p(i)Xj, is called 
the projective reconstruction. 

1.2 MULTIFOCAL CONSTRAINTS 
The projective reconstruction is based on the so-called multifocal con­

straints. The multifocal constraints are equations constraining the image 
points and projection matrices. They are derived from (3.1) byelimi-

t · (i) d-na mg Sj an Xj' 
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Scale factors sY) in (3.1) can be eliminated by introducing matrix 

[ 
0 _u(i)3 u(i)2] 

L(i) _ -(i)3 ~ _ :(i)l 
J - u j u j . 

-(i)2 -(ill 0 -uj u j 

Then, the image equations (3.1) can be transformed to the equivalent 
system 

[ 
Ljl)p(l) ] Xj = MjXj = 0, j = 1, ... ,m . 

dn)p(n) 
J 

The constraints between p(i) and nY), assuring the existence of Xj E p3, 
Xj i- 0, can be expressed as 

d (M u(,A.J-L) - 0 W MU'cA.J-L . - 1 et j -, v j ,J - ... , m , (3.2) 

where MjIC~J-L stands for the minor of M j consisting of rows /." K" A, J-l. It is 

seen from the size of M j that me:) such constraints can be constructed. 
Since rankL(i) = 2, it follows that at most e:) of them are linearly 
independent. 

Depending on the chosen rows, the minor Mr.AJ-L can comprise coordi­
nates of points from two, three, or four images. They are called bifocal, 
trifocal, or quadrifocal constraints. 

It was shown [10] that the solution of a projective reconstruction from 
m points projected to n views is described by a system of me:) polyno­
mial equations (3.2) of degree four. To solve such a system appears to 

be an overwhelming problem. l In addition, the measured data ny) in­
volve errors in real situations and thus this overconstrained system (3.2) 
need not have any non-trivial solution. Therefore, some optimization 
technique should be applied. 

1.3 OPTIMIZATION METHODS FOR 
PROJECTIVE RECONSTRUCTION 

The ideal technique for a projective reconstruction minimizes the dis­
tances between original and reconstructed image points. Due to the 

1 In this context, we shall mention the paper from Bondyfalat, Mourrain, Pan [1]. They 
present a method for resolving overconstrained polynomial systems. However, the full com­
prehension requires rather deep knowledge from elimination algebra and from the cursory 
view we are not sure if this approach is applicable for the systems of our dimension. 
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non-linearity and complexity of the problem, this can be solved only by 
a numerical search (e.g. by the gradient descent) which considers an 
initial estimate and a minimal parameterization of P, see [2, 6]. For all 
those considerations, the recovery of the global minimum is not guaran­
teed. 

Instead, a linearization of the problem is often used. It means that a 
non-linear task is decomposed to several subtasks which can be solved 
by a least-square solution of a linear system. The approaches based on 
the linearization are not ideal in the previously mentioned sense, i.e., 
they minimize imaginary algebraic distances instead of image discrepan­
cies. However, these algorithms are efficient and the results are mostly 
sufficiently correct. The results can be used also as initial estimates for 
the numerical search in the ideal optimization technique. 

At present, the methods based on the linearization are known only 
for bifocal, trifocal, or quadrifocal constraints. Thus, they can be used 
for the projective reconstruction either from two or three or four images. 
For a detailed description see [3, 4, 5, 11]. 

Naturally, it is tempting to use already existing effective algorithms 
for projective reconstruction from two, three, or four views at first and 
then only join the obtained classes somehow. However, this method fails 
due to inaccuracies in measured data and in numerical computations. 

In this paper, we introduce a technique for an estimation of class P 
from n views. The presented method is based on a concatenation of 
the trifocal constraints of different triplets of views. The constraints are 
bound together so that a single optimization task can be constructed. 

2. PROBLEM OF JOINING TWO 
INDEPENDENT PROJECTIVE 
RECONSTRUCTIONS 

Let us consider n views. Let PI is the equivalence class describing 
a projective reconstruction from views (1, ... , k) and P2 is the class 
corresponding to the reconstruction from views (l, . .. ,n), where l :S k. 
We study now, how to join classes PI and P2 and create a class P 
describing the projective reconstruction from all n views. 

Consider the representative ( -(1) -(k)) 
P PI ' ... , P PI E H. Let us select 

( -(I) -(n)) 
P P2' ... , P P2 E P2 such that 

P- (i) _ p- (i) . l k 
PI - P2' ~ = , ... , . (3.3) 
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If l < k, then the representative of P2 is constrained uniquely by (3.3) 
and the representative of P can be expressed as 

( -(1) - (k) - (k+l) - (n») 
PPt,···,PPl,PP2 , ... ,PP2 EP. (3.4) 

This is based on the fact that if l < k, the classes PI, P2 have at 
least two common views and so the appropriate representative of P2 is 
fixed uniquely by (3.3). Otherwise, if PI, P2 have not at least two com­
mon views then the appropriate representative of P2 is not determined 
uniquely by (3.3) and the representative of P cannot be expressed by 
the n-tuple (3.4). 

2.1 THE INCONSISTENCY OF Pt, P2 IN 
REAL SITUATIONS 

Image data involve errors in real situations and therefore the results 
of projective reconstructions are only approximations of PI and P2. The 
problem of numerical inconsistency of PI and P2 arises. It means that 
it may be impossible to select the elements of PI and P2 such that 
(3.3) holds. Consequently, the previous approach fails. We propose 
a method overcoming this problem. The idea is to concatenate the 
projective reconstructions from multiple triplets of images. The trick is 
that the estimates of the classes Pi are not performed independently. The 
computations (Hartley's approach, see Section 3.3) of all the classes Pi 
are bound together and a representative of P is then recovered directly 
from image data. The method can also be viewed as an extension of 
Hartley's algorithm [5] from three views to n views. 

Binding the computations of Pi requires a special grouping of view 
triplets to a configuration which we call the cake configuration and which 
is described in Section 4. 

3. PROJECTIVE RECONSTRUCTION 
FROM THREE VIEWS 

Notation. In the next paragraph, the following notation is used. The 
element in i-th column and j-th row of a matrix A is denoted by a{. The 
i-th column of A is denoted by ai. Einstein summation convention is 
used. An index that appears as a subscript and superscript is summed 
over. The matrix A (i) is used to denote the matrix of the first three 
columns of the projection matrix p(i), e(i) denotes the fourth column of 
p(i), i.e., p(i) = [A(i), e(il Matrix Ti signifies 3 x 3 matrix consisted of 

nine elements j, k = 1,2,3 of the tensor ~jk. Sometimes a matrix or a 
tensor has to be rearranged to a vector of an appropriate length. Then, 
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the following expression is used: t = vectormn(T), t E nmn , T E Mm,n. 

The way of arrangements follows from the context. 

3.1 THE TRIFOCAL CONSTRAINTS AND 
THE TRIFOCAL TENSOR 

The trifocal constraints are equations (3.2) where Mr),J.L comprises 
the coordinates of three views. Consider the minors consisting of two 
rows coming from the first view and one row from the second and the 
third view. Without loss of generality, one of the camera matrices, say 
p(l), may be chosen as p(l) = [1,0]' where 1 is the 3 x 3 identity matrix 
and 0 zero vector. 

Then, the expanded form of the corresponding determinants (3.2) can 
be written (see Appendix A) as 

-(1)>' -(1)il(2)~1(3)K;( (3)k (2)j _ (2)j (3)k) - 0 \ - 1 2 3 
U U j k e ai e ai -,~, K" /\ - , , , (3.5) 

where ,\,~, K, = 1,2,3 are free indices (i.e., system (3.5) represents 27 
equations) and i, j, k are the indices it is summed over. Since at least 
one u(1), =1= 0, system (3.5) is equivalent to 

-(1)il(2)~1(3)K;( (3)k (2)j _ (2)j (3)k) - 0 
U j k e ai e ai -, ~,K, = 1,2,3 . (3.6) 

Naturally, the term in the parenthesis can be written as a 3 x 3 x 3 tensor 

rrjk _ (3)k (2)j _ (2)j (3)k .. k - 1 2 3 
.Ii - e ai e ai ,~,], - , , . (3.7) 

This 3 x 3 x 3 tensor is called the trifocal tensor. Likewise, (3.5) can be 
written using tensorial notation as 

(3.8) 

Definition 2 (Hartley) Suppose we have three distinct views described 
by projective matrices p(l), p(2), p(3). Let us choose the basis of pro­
jective space p3 such as the projective matrix of the reference view is 
p(l) = [I OJ Consider that p(i) = [A (i) e(i)J i = 2 3 where A (i) is , . " , , 
a 3 x 3 matrix composed from the first three columns; e(i) is the fourth 
column of p(i). Then, the trivalent tensor formed as 

Y jk = e(3)ka (2)j _ e(2)ja(3)k .. k 1 2 3 
t t t' ~,], = , , , (3.9) 

is called the trifocal tensor. 
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One triplet of corresponding points ii(1), ii(2) , ii(3) gives 9 linear equa­
tions (3.8) in elements of ~jk but only four of them are linearly indepen­
dent (due to rankL(i) = 2). Thus, at least seven point correspondences 

'k are necessary so that ~J can be computed as a least-squares solution 
of the linear system (3.8). It should be noticed that the least-squares 
estimate is only an approximation of the ideal solution and thus the 
obtained tensor does not fulfill the definition of the trifocal tensor. 

In the next paragraphs, we will use the matrix form of relation (3.9) 

(3.10) 

3.2 DECOMPOSITION OF THE TRIFOCAL 
TENSOR INTO CAMERA MATRICES 

Special configurations occur when the equivalence class P is not deter­
mined uniquely by the trifocal tensor, see [9]. Here, we focus only on the 
cases when dim(Ker T i) = 1, i = 1,2,3. Then, P is determined uniquely 

and the method of the tensor decomposition to (p(l), p(2), p(3)) consists 

of the following steps : 

1. Recovery of e(2) and e(3) from T. 

Vector e(2) can be computed as the common normal to the kernels 
of matrices T J, i = 1, 2, 3 and vector e(3) as the common normal 
to kernels of T i, i = 1,2,3. 

2. Recovery of A (2) A (3) from T e(2) and e(3). , , 
For each i, the matrix equation (3.10) represents 9 linear equations 

in six elements of vectors a~2) and ap). We can write this system 
of equations in a matrix form as: 

[ 
(2) 1 

vectorg(Ti) = F :~3) , (3.11) 

where F is a matrix composed from the elements of e(2), e(3) : 

o 
_e(2) 

o 
o 1 o . 

_e(2) 
(3.12) 
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Except for the critical configurations2, dim(Ker F) = 1, 

and hence, just 5 equations from 9 is linearly independent. There­
fore, the solution of (3.11) is a set of dimension one in R6 : 

I Wi E R} , (3.13) 

where [~l:~] is a particular solution of (3.11) different from Wi [ :~~~ ]. 

Selecting any element of the set (3.13) (for all i = 1,2,3), we obtain 
a representative of P 

(p(l) p(2) p(3») E P 
" , 

where 

p(1) = [I 0] p(2) = [a (2) a (2) a (2) e(2)] p(3) = [a (3) a (3) a (3) e(3)] 
" 1'2'3" 1'2'3" 

3.3 ALGORITHM FOR PROJECTIVE 
RECONSTRUCTION FROM THREE 
VIEWS 

It is possible to estimate the trifocal tensor from image data and to 
decompose tensor to projective matrices as was described in Section 3.2. 
However, this method is not optimal from the numerical point of view. 
The estimated tensor is only an approximation of the trifocal tensor, 
it does not have to satisfy (3.10). The consecutive decomposition to 
projective matrices can lead to incorrect results. 

Therefore, the following method is preferred: 

1. Estimate T from image data and then recover e(2), e(3) from T. 

2. Using e(2), e(3), formulate one optimization task for the estimation 

of remaining columns a~2), aP), i = 1,2,3, directly from image 
data. 

2when:li: dim(KerTi) > 1. 
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This method was first presented by Hartley in [5]. In the following 
paragraph, we detail the algorithm only for the case, when dim(Ker T i ) = 
1. The other cases mentioned in [9] have to be treated individually. 

Algorithm: 

1. Construct a matrix C from image data according to (3.8) so that 
T can be estimated as a LS solution of the following optimization 
problem: 

minimize IICtl1 subject to Iltll = 1, t = vector27(T) 

2. From T, estimate the fourth columns e(2) and e(3) of p(2) ,p(3) . 

Perform SVD on T i : 

where U i , Vi are orthogonal matrices, Di E M 3 ,3 is a diagonal 
matrix of singular values in decreasing order. 

Concatenate the third columns of U i , i = 1,2,3, to matrix W L 

and the third columns of Vi, i = 1,2,3, to matrix W R: 

(3.14) 

(3.15) 

where u~i) denotes the third column of U i and V~i) denotes the 
third column of Vi. 
Compute e(2), e(3) so that 

e(2) minimizes 

e(3) minimizes 

IIWle(2)11 

IIW~e(3)11 

subject to Ile(2) II = 1 (3.16) 

subject to lIe(3)II = 1 (3.17) 

(e.g., using SVD compute e(2) as the third singular vector of W L 

and e(3) as the third singular vector of W R.) 

3. From C and e(2), e(3) estimate a?), a~3), i = 1,2,3. 

The estimate is based on the tensor decomposition described in 
Section 3.2. Having T and e(2), e(3), T can be decomposed to 
a~2), a~3) by solving (3.11). The solution is one dimensional set 

Let us select one solution, e.g. [:~:;] orthogonal to [:~:;] . This 

solution can be expressed as 

a· 0 [ (2)] al3 ) = V Zi , i= 1,2,3, (3.18) 
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where v o, VO E M 6 ,5, is a matrix which columns form a basis of 
five-dimensional subspace of n6 and ar[e g~t]hOgOnal to vector 

:13) . 
Having substituted (3.18) to (3.11), we obtain 

vectorg(Ti) = FVozi , i = 1,2,3 , (3.19) 

and we can formulate one optimization task for Zi, i = 1,2,3, 
directly from image data: 

Sought a;2) and a;3) we then obtain simply by the back projection 

[ (2)] :l3) =Vozi,i=1,2,3. 

4. PROJECTIVE RECONSTRUCTION 
FROM N VIEWS BASED ON 
CONCATENATION OF TRIFOCAL 
CONSTRAINTS 

4.1 CAKE CONFIGURATION 
The method requires the following configuration of view triplets: con­

sider n views (1,2,3,4, ... , n) are grouped into n - 1 triplets (1,2,3), 
(1,3,4), ... , (1, n, 2) . It means that view (1) is common to all the triplets 
and the others are common to a pair of triplets, for an illustration see 
Figure 3.1. 

Consider we have performed the projective reconstruction from each 
triplet, and we have obtained 

( p(1) p(n) p(2) ) E P 
Pn-I' Pn-I' Pn-I n-1 

from the triplet 

from 

from 

(1,2,3) , 

(1,3,4) , 

(1, n, 2) 

Furthermore, we can assume without lost of generality that 

P- (1) = p- (1) = = p- (1) = [I 0] 
PI P2 . . . Pn-I ,. 
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2 
+ 

(a) (b) 

Figure 3.1 Cake configuration of n-l triplets of views. ( a) Inconsistent state, (b) 
consistent state. 

Then in the ideal case, when the errors are not taken into account, it 
should hold 

where H(i) is from 

- (2) P 
Pn-l 

{ [ ~ ~ H 11 Wj E R, i = 1, ... ,3, W4 # o} . 
WI W2 W3 W4 

That implies 

e~; ~e~;, ... ,e~Ll ~e~; 

(3.20) 

With regard to the algorithm of trifocal tensor decomposition in Sec­
tion 3.2, one can see, that the estimates of e(i) from trifocal tensors 
of the neighboring triplets (1, i - 1, i) , (1, i, i + 1) can simply be joined 
together. 

Furthermore, this configuration allows to formulate one optimization 
task for estimating all A (i), i = 2, ... ,n from image data and e(i), i = 
2, ... ,no 
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4.2 RECOVERY OF PROJECTION 
MATRICES FROM CAKE 
CONFIGURATION 

Joining the estimates of e(j) from the neighboring triplets. 
Consider two trifocal tensors T(j-l) and T(j) of the neighboring triplets 
(1,j -1,j), (1,j,j + 1), both with the reference view (1). 

The method of the trifocal tensor decomposition described in Sec­
tion 3.2 enforces 

p(1) = [1,0] . 

Then, the vector e(j) can be computed both from T(j-1) and T(j), from 

T(j-l) as a common normal to the kernels of matrices T~j-1), i = 1,2,3 

and from T(j) as a common normal to the kernels of matrices T~j)T. 
Hence, vector e(j) can be recovered at once as the common normal to 

the kernels of six matrices T~j-1), T~j)T, i = 1,2,3. 

Recovery of A (j) from the tensors of Cake configuration. Con­
sider n - 1 tensors T(1), ... , T(n-1) of the triplets (1,2,3) , ... , (1, n, 2) . 
Assume we have already performed the estimates of e(j), j = 2, ... , n. 

The method for determination of A (j) is based on the relation (3.11) 
for decomposition of the trifocal tensor; see Section 3.2. Let us write 
the equations analogical to (3.11) for all the tensors T(j): 

vectorg (T;l») [ (2)] F(1) ai 
(3) ai 

vectorg (T?») [ (3)] F(2) ai 
(4) ai 

[ (n)] vectorg(T;n-I») F(n-l) ai . = 1 2 3 (2) , t ", 
ai 

(3.21) 

where 

[ ,\'" -e'" 0 

-:", 1 
F(l) e(3)I 0 _e(2) 

2 
e(3)I 0 0 3 

[ '\'" -e'" 0 

o 1 F(2) e(4)I 0 _e(3) o , 2 
e~4)I 0 0 _e(3) 
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F(n) = 

The set of equations (3.21) can be rewritten in the matrix form 

[ 
vector~. (TF)) j = G [a~.2) j 

, i = 1,2,3, 

vectorg(T}n-l)) a}n) 

(3.22) 

where G is 9(n - 1) x 3(n - 1) matrix. The structure of G is described 
in Appendix B. The kernel of G has dimension one and is generated by 
the vector 

[ 
e~2) j . 
e(n) 

Therefore, the solution of (3.22) is a set of dimension one in R 3(n-l) 

[ 

y~2) 1 
where : is a particular solution of (3.22) different from 

yin) 

Having performed this decomposition of all n - 1 tensors y(j), we 
obtain directly the representative of the projective reconstruction from 
n views: 

([1,0], [A (2), e(2)], ... , [A (n) , e(n)]) E P . 

4.3 ALGORITHM FOR PROJECTIVE 
RECONSTRUCTION FROM N VIEWS 

Here, an algorithm for a projective reconstruction from the Cake con­
figuration is outlined. The algorithm has two parts: the estimation of 
the fourth columns e(j) of p(j) and the consecutive estimation of A (j), 
j = 2, ... ,n, from image data. 

Algorithm for the estimation of eCi), j = 2, ... , n: 

1. From image data ofn-1 triplets (1,2,3), (1,3,4), ... , (l,n,2) 
construct matrices C(1), C(2), ... , c(n-I) according to (3.8) and 
estimate independently tensors T(1), T(2) ... , T(n-I). 
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2. Partition the tensors T(l) to matrices T;lJ , 
i = 1,2,3, I = 1, ... ,n - 1. 

3. Perform SVD on T;lJ : 

T;lJ = U(l,i)D(l,i)y(l,i) T , 

where U(l,i), y(l,i) are orthogonal matrices, D(l,i) E R 3x3 is a 
diagonal matrix of singular values in decreasing order. 

4. Concatenate the third right singular vectors of matrices T;k), i = 
1,2,3 and the third left singular vectors of matrices T;j), i = 
1,2,3, to matrix W(j) 

W (j) [(k,l) (k,2) (k,3) (j,l) (j,2) (j,3)] 
= v 3 , V 3 , V 3 , u 3 , u 3 , u 3 , (3.23) 

where k = mod(j - 3,n -1) + 2, j = 2,3, ... ,no 

5. Compute e(j), j = 2, ... ,n so that 

e(j) minimizes IIW(j) T e(j) II subject to Ile(j) II = 1, j = 2, ... ,n . 

(The third singular vector of W(j) T .) 

Algorithm for the estimation of A (j), j = 2, ... ,n : 

1. The algorithm is based on the decomposition of T(l), ... ,T(n-l) 

to A (j), j = 2, ... ,n, described in Section 4.2. Having T(l), ... , T(n-l) 

and e(j), j = 2, ... ,n, then A (j) , j = 2, ... ,n can be obtained by 
solving (3.22). As it was shown in Section 4.2, the solution of 
(3.22) is a set of dimension one 

[al:
2
)] E {[Y?)] +Wi [el2)] , WiER}' i=1,2,3. 

(n) (n) (n) 
a i Yi e i 

2. Let us select one of the solutions, e.g.~ on[:~~tlhogonal to 

f - . . 

e(n) 

Let yO 
yO E M 3(n-l),3(n-l)-1, is a matrix whose columns form a ba­
sis of the space orthogonal to vector f and let Zi E R 3(n-l)-1, 

then the selected solution can be expressed as 

(3.24) 
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3. Substituting (3.22), (3.24) to 

we can formulate the optimization task directly for Zi, i = 1,2,3, 

where matrix D is composed from matrices C(l), C(2), ... , c(n-l). 

4. The columns a;2), ... , a;n), i = 1,2,3, can easily be obtained by 
the back projection 

[
a;2) 1 = VOZi ,i = 1,2,3. 

(n) a i 

5. EXPERIMENTS 
The accuracy and the stability of the algorithm with respect to noise 

in image data was tested on simulated experiments with synthetic data. 
The point coordinates in artificial images were perturbed by Gaussian 
noise. The standard deviation of the noise increases gradually from 0.5% 
to 2% of the image size. The projective reconstruction was obtained from 
the sets of three and five images. The results were then reprojected 
back to the images and the discrepancy was measured (the discrepancy 
between the original points without the noise and reprojected image 
points). Two hundred of such experiments were done for a given value 
of the deviation of noise. 

It was observed that a higher number of views stabilizes the process 
and improves the accuracy of the results. In other words, a larger number 
of images are used for projective reconstruction, the more the results 
correspond to reality. 

In other experiment, we demonstrate one of possible applications of 
the proposed algorithm. A projective reconstruction from 7 real uncal­
ibrated images is computed using the proposed algorithm. Then, it is 
used as the input for Pollefeys' algorithm [8] which performs Euclidean 
reconstruction3 . The texture was mapped using the hand-marked poly­
gons. The input images and the obtained model is in Figure 3.2. 

3 Pollefeys algorithm assumes a simpler structure of the matrices K( i). This allows to estimate 
K(i) from the class P and then compute the Euclidean model of an observed scene (up to a 
scale) using information from all n images. 
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Figure 3. 2 Seven input images were used to compute a projective reconstruction P. 
A 3D Euclidean model was then recovered by upgrading P by Pollefeys' algorithm [8] . 
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6. SUMMARY 
We have presented a new approach for consistent projective recon­

struction from a set of n views even if n > 4. The views are grouped 
by triplets to the Cake configuration. The knowledge of point corre­
spondences across the triplets is assumed. The Cake configuration is 
not symmetrical with respect to the views. The reference view has an 
exceptional position. It is common to all the triplets and only points 
visible in the reference view can be involved in computations. 

All used estimations are linear, none of them requires a numerical 
search. A huge number of point correspondences can be employed. The 
solution is determined uniquely except for critical configurations. The 
occurrence of the critical configurations is very improbable in practical 
situations and can be detected numerically [9]. 

The properties of the algorithm were verified in two experiments both 
on synthetic and real data. In the first experiment, the stability of the 
algorithm was tested on projective reconstructions from sets of three 
and five synthetic images. In the second experiment, the projective 
reconstruction from 7 real images was successfully demonstrated. 

The main contribution of this approach is that it makes possible to 
estimate the consistent projective structure of n views even if n > 4. 
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Appendix A: Trifocal constraints 

One group (from three) of the trifocal constraints can be expressed as 

o 
o 

I (2)Le(2) 

I (3)l\;e(3) 

o 
o 

I (2)Le(2) 

I (3)l\;e(3) 

= 0, ", /"i, = 1,2,3 , (3.25) 

= 0, ", /"i, = 1,2,3 , (3.26) 
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o 
o 

1(2)Le (2) 

1(3)Ke(3) 

= 0, L, K, = 1,2,3 , (3.27) 

where 1(i)L is [-th row of L(i). Expanding the determinant we obtain 

U(1)3U(1)i ((Z~2)L a~2)j ) (li3)K e(3)k) _ (ZY)L e(2)j)(li3)K ap)k)) 0 

u(1)lu(1)i ((Z~2)L a~2)j)(li3)K e(3)k) _ (Z~2)L e(2)j)(li3)K ap)k) ) 0 

u(1)2u(l)i ((l~2)L a~2)j)(li3)K e(3)k) _ (Z~2)L e(2)j)(li3)K ap)k)) 0 , 

L, K, = 1,2,3 , 

and after grouping the common terms 

-(1)>"-(1)iZ(2)Ll(3)K( (3)k (2)j _ (2)j (3)k) - 0 
U U j k e ai e ai -, L, K" ,\ = 1,2,3 , (3.28) 

where,\, L, K, = 1,2,3 are free indices (i.e., system (3.28) represents 27 
equations). Since at least one u(l)>" =I- 0, system (3.28) is equivalent to 

-(1)iZ(2)LZ(3)K( (3)k (2)j _ (2)j (3)k) - 0 - 1 2 3 u j k e ai e ai -, L, K, - , , . (3.29) 

Appendix B: The structure of matrix G 

[ '\"'] [-r 0 
j" ] [000] e~3)1 _e(2) 000 

e~3)1 0 000 

[000] [ '\"'] [T 0 j,,] 000 e~4)1 _e(3) 

G= 000 (4)1 0 e3 

[-r 0 
j.,] [000] [ '\"'] _ern) 000 (2)1 e2 0 000 (2)1 e3 

Considering eli) f. 0 the kernel O[f ~~~l- 1) x 3(n - 1) matrix G has also dimension 

one and is generated by vector : . 

ern) 



Consistent projective reconstruction from multiple views 67 

References 

[1] D. Bondyfalat, B. Mourrain, and V. Y. Pan. Controlled iterative 
methods for solving polynomials systems. Proceedings ISSAC'98, 
pages 252-259. ACM Press, 1998. 

[2] O. Faugeras and T. Papadopoulo. Grassmann-Cayley algebra for 
modeling systems of cameras and the algebraic equations of the 
manifold of trifocal tensors. Technical Report 3225, INRIA, July 
1997. 

[3] O. D. Faugeras. What can be seen in three dimensions with an 
uncalibrated stereo rig? In Proceedings ECCV-92, pages 563-578. 
Springer-Verlag, LNCS 588, 1992. 

[4] R. 1. Hartley. Computation of the quadrifocal tensor. In Proceedings 
ECCV-98, volume I, pages 20-35. Springer Verlag, 1998. 

[5] R. 1. Hartley. Lines and points in three views and the trifocal tensor. 
International Journal of Computer Vision, 22(2):125-140, March 
1997. 

[6] A. Heyden. A common framework for multiple view tensors. In 
Proceedings ECCV-98, volume I, pages 3-19. Springer Verlag, 1998. 

[7] A. Heyden. Reduced multilinear constraints - theory and experi­
ments. International Journal of Computer Vision, 30:5-26, 1998. 

[8] M. Pollefeys, R. Koch, and L. VanGool. Self-calibration and met­
ric reconstruction in spite of varying and unknown internal camera 
parameters. In Proceedings ICCV98, pages 90-95, 1998. 

[9] M. Urban, T. Pajdla, and V. Hlavac. Projective reconstruction from 
multiple views. Technical Report CTU-CMP-1999-5, CMP, FEL 
CVUT, Karlovo namesti 13, Praha, Czech Republic, December 1999. 

[10] M. Urban. Uncalibrated 3D Vision: Contributions to Projective Re­
construction and Camera Self-Calibration. PhD thesis, Czech Tech­
nical University, Faculty of Electrical Engineering, Department of 
Cybernetics, Karlovo mimesti 13, Prague, Czech Republic, 1999. 

[11] Z. Zhang. Determining the epipolar geometry and its uncertainty: 
A review. International Journal of Computer Vision, 27(2):161-195, 
1998. 



Chapter 4 

ACCURATE NATURAL SURFACE 
RECONSTRUCTION 
FROM POLYNOCULAR STEREO 

Radim Sara 

Abstract We show in this chapter that the bottom-up approach to 3D surface 
model reconstruction is feasible and may be used in applications requir­
ing precision and accuracy. We focus on acquiring 3D models of natural 
objects for medical applications, augmented reality, and telepresence. 
The reconstruction consists of several successive steps in which more 
complex models are inferred from simpler models. The low-level model 
we use is a set of unorganized points in 3-space obtained from poly­
nocular stereo. The intermediate-level model consists of local geometric 
primitives which we call fish-scales. Fish-scales are reconstructed from 
the unorganized point model by local PCA. The high-level model is a 
discrete pseudo-surface. It is reconstructed by linking together close and 
orientation-compatible fish-scales. The ungrouped isolated points and 
the unlinked fish-scales remain unexplained by the higher-level mod­
els. The approach is demonstrated on textured 3D geometric model 
reconstruction of a human face. 

1. INTRODUCTION 
Our long-term project of building a system for reconstructing textured 

3D surface models of unknown objects from a set of its images is intro­
duced in this paper. The system is scalable up or down according to the 
particular application needs. The stress is on accuracy and geometric 
precision of the model reconstruction process. By accuracy we mean the 
ability to reliably infer artefact-free structures that have strong support 
in input data. The recovered structure must not be sensitive to small 
calibration error or sensor noise. 

The system we describe below in detail solves the stereo problem first 
to obtain primary 3D data in the form of unorganized isolated points 
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in Euclidean space. The cloud of points is subsequently verified in the 
input images (or in a new set of images from another view) and pruned, 
based on propagated image error. 

The verified set of accurate points is then locally grouped to form 
disk-like local geometric primitives which we call fish-scales. They are 
represented by fuzzy sets of infinite extent and ellipsoidal kernel. Subse­
quently, the fish-scale model is verified in the images (or in a new set of 
images) and, optionally, it is refined based on the mutual congruence of 
sub-images onto which each primitive projects. The verified fish-scales 
are linked to a pseudo-surface structure in the final reconstruction step. 

In this paper, the whole image interpretation procedure is demon­
strated on accurate reconstruction of 3D human face models with the 
aim of capturing the geometry of facial expression as accurately as pos­
sible. We focus solely on the vision part of the problem and omit any 
high-level surface modeling. 

The paper is organized as follows. Section 2 describes in greater de­
tail the problem of point set reconstruction from stereo images. Section 
3 focuses on local fish-scale model reconstruction from the point set. 
The surface reconstruction problem is discussed in Section 4 and some 
related open questions are posed. Finally, in Section 5, the whole proce­
dure is demonstrated on an example of human face geometric 3D model 
reconstruction. 

2. THE POINT-SET MODEL 
RECONSTRUCTION 

Unlike the standard structured-light range-finders, a calibrated poly­
nocular camera system together with a set of uncalibrated texture pro­
jectors is a robust setup that can be easily extended to make a system of 
more complete visual field without any interference between the multiple 
cameras/projectors. This is the reason why we use stereo vision for data 
acquisition. 

In this section, our approach to polynocular stereo matching and dis­
parity map fusion is described. It allows artefact-free, high-precision 
wide-baseline stereo. 

The stereo setup The input data device we use consists of five cam­
eras; four are used for stereo and the fifth for texture acquisition, see 
Fig. 4.1(a). Cameras are fully calibrated using a special flat calibration 
target that is moved towards the cameras in known distance steps, see 
Fig. 4.1(b). Usually, 189 calibration points (63 per target position) filling 
the stereo-rig workspace are used. Off-the-shelf progressive-scan digital 
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(a) (b) 

Figure 4.1 (a) Stereo rig used in our experiments. The color texture camera is not 
shown. (b) One of the calibration images as viewed by the first camera. 

cameras are used (Pulnix TM-9701) with good but inexpensive 25mm 
lenses (Tamron, 23FM25L, not shown in Fig. 4.1(a)). The lens has a 
negligible radial distortion. All camera shutters are triggered simulta­
neously from the frame-grabber. After the 20ms exposure interval, the 
images are transferred one by one from each camera internal memory 
to the host computer via a digital frame-grabber. The progressive-scan 
cameras and the synchronized camera exposure enable capturing consis­
tent stereo image sets that do not violate the global epipolar constraint 
even if the objects move in the scene. This is very important for a precise 
capture of time-variant geometry. 

To enforce surface texture on textureless objects, uncalibrated in­
frared texture projector is used (not shown in Fig. 4.1(a)). The IR cutoff 
filter is substituted for an IR long-pass filter in a standard commercial 
slide projector. The projected pattern is invisible to the human eye and 
to the texture camera equipped with an IR cutoff filter. A long-pass IR 
filter is used in the stereo cameras. The texture effect is visible in the 
images shown in Fig. 4.2. 

Stereo matching Stereo matching establishes consistent pixelwise 
correspondence among the images in a stereo set. We match pixels per 
image pairs, which speeds up the processing time and allows to paral-
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Figure 4.2 The input images. Only the four on the left are used for stereo matching. 
The image on the right (originally color slide) is used for texture projection. 

lelize the computation. The consistency is enforced in a fusion step that 
follows matching. 

Epipolar image rectification is done to simplify stereo matching. The 
matching then compares 5 x 5 centered image windows X and Y using 
the modified normalized cross-correlation (MNCC) [12] 

c(X, Y) = 2 cov(X, Y) . 
varX + varY 

(4.1) 

The advantage of this correlation measure over a standard normalized 
cross-correlation coefficient (NCC) is that it tends to zero when there is 
a significant difference in variance between the variables X and Y, while 
it approximates the NCC closely for equivariant X and Y. This property 
reduces the likelihood of a mismatch between similarly textured areas of 
very different contrast. 

In our current implementation, we use the Stable Monotonic Match­
ing Algorithm [14]. It searches for the largest set of stable pixel assign­
ments complying with the ordering constraint. Each pair of epipolar 
lines is matched independently. We briefly sketch the stability princi­
ple on which the matching is based. Precise definitions, the existence 
and uniqueness theorem, and the implementation details can be found 
in [14]. 

Let I and J be two sets that index pixels on the corresponding epipolar 
image lines. A matching M is a subset of I x J in which each i E I 
and each j E J is represented at most once. Let (i , j) E M be a pair 
of corresponding pixels (an assigned pair), let c(i,j) be the correlation 
measure computed between the neighborhoods of i and j using (4.1). 
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(a) (b) 

Figure 4.3 (a) Grey-encoded binocular disparity map computed for the top image 
pair from Fig. 4.2. Unmatched pixels are black. (b) The result of fusion of all binocular 
disparity maps shown in the disparity space of the same image pair. 

If there is a unassigned pair (i, 1) E I x J such that c( i, 1) > c( i, j) 
the assigned pair (i, j) E M will be unstable iff there is no assigned 
pair (k,l) E M such that c(k,l) > c(i,l). Clearly, the pixel I is a 
better candidate than j to be assigned to i. Symmetrically, if there 
is an unassigned pair (m, j) E I x J such that c( m, j) > c( i, j) the pair 
(i, j) E M will be unstable iff there is no pair (m, n) E M such that 
c(m, n) > c(m,j). 

A matching is stable if none of its pairs is unstable. A matching 
is complete if it has maximum possible cardinality. A matching M is 
monotonic iff for each two pairs (i,j) EM and (k,l) EMit holds that 
k > i implies I > j (the 'ordering' property holds). It can be shown that 
stable monotonic matching is a subset of stable complete matching. A 
stable complete matching is found by a simple O(N2) algorithm, where 
N is the epipolar line length in pixels. Its largest monotonic subset is 
found by a modification of dynamic programming algorithm. 

Unlike most of the standard algorithms, this approach to binocular 
stereo matching does not use any matching cost functional and is com­
pletely parameter-free. It does not suffer from most of the usual match­
ing artefacts (jagged contours, streaks) that appear in functional-based 
matching when applied to a wide-baseline stereo pair. The regions where 
pixelwise correspondence cannot be established reliably, like when the 
surface texture is locally weak or repetitive, remain unmatched. These 
properties of the matching algorithm increase the precision of the final 
3D reconstruction result considerably. 

An example of a binocular disparity map computed for the top pair 
of the image set from Fig. 4.2 is shown in Fig. 4.3(a). Matching window 
of 5 x 5 pixels was used and the entire disparity range was searched. 
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Sub-pixel disparity After pixel correspondences are established, the 
sub-pixel disparity is computed. This step is not so computationally 
demanding, therefore a more general image formation model can be used. 
It is assumed that the observed object is locally approximated by a plane 
of arbitrary orientation and its BRDF is first-order approximated by a 
linear function. Then, if the images are rectified so that their epipolar 
lines coincide with the image lines u = const, it is known [3] that the 
affine left-to-right image mapping (u, v) f---> (u' , v') is expressed as follows 

u' u, 

v' (4.2) 

where the constants CI and C2 are related to local surface orientation 
and de is the sub-pixel disparity update to be found. In addition to the 
above three parameters, we use two more to linearly approximate the 
relation between the left- and the right-image values 

(4.3) 

A least-squares procedure is used to find the parameters Cl, C2, C3, C4, de 
and their variance. Details are found in [15]. Only de is used in sub­
sequent processing together with its relative variance estimate. The 
variance is computed under the assumption of unit standard deviation 
i.i.d. Gaussian image noise. 

Point reconstruction and error propagation Point reconstruc­
tion from binocular disparity is a simple quasi-linear procedure. The 
disparity error is propagated through this step and is used to compute 
the variance of the z-coordinate (which is most sensitive to error) [10]. 
Reconstructed points whose z-error exceeds a given threshold are fil­
tered out. We use the threshold of 0.5 mm/O', where 0' is the image noise 
standard deviation. We assume the value of 0' = 1.0, which is valid for 
standard 8-bit cameras [8]. 

The point set verification The point set verification is a procedure 
of re-projecting all the reconstructed points to the disparity space of all 
camera pairs, re-computing the correlation and re-running the matching 
procedure. The verification can be also considered disparity map fusion. 

This step considerably reduces the percentage of mismatches and thus 
fuses the binocular point sets by preserving only those points that have 
strong support in more than just two images. The fusion is performed 
by the stable monotonic matching algorithm discussed above. See [14] 
for the implementation details. The result of verification is shown in 
Fig. 4.3(b) in the form of a fused disparity map. 
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Open problems The geometric accuracy of the reconstructed point 
set is most affected by the accuracy of sub-pixel disparity estimates. 
Currently, the ordering constraint is not employed in the estimation 
procedure. Our experience shows that the local ordering is violated 
quite frequently in the subpixel-resolution disparity map. Whether the 
use of the constraint would improve the quality of the estimates remains 
a question left for further research. 

3. THE FISH-SCALE MODEL 
RECONSTRUCTION 

The set of unorganized (unstructured, isolated) reconstructed points 
in 3-space that results from polynocular stereo is typically highly re­
dundant with respect to the noise level (cf. Fig. 4.8). If the object is a 
surface, the reconstructed points will form a layer of non-uniform den­
sity. If the object is a curve, the points will form a non-uniform density 
string. We seek a mean manifold (or a set of them) but do not want 
to assume closedness, orient ability, or other global constraints. Since we 
may be observing a set of curves, surfaces, or both, we do not want to 
restrict the class of models too early. The structure is therefore inferred 
in a bottom-up way. First, the point-cloud structure is locally modeled 
by means of simple geometric primitives. This is described in this sec­
tion. Second, the primitives are linked under sufficient evidence to form 
larger structures. This will be described in the next section. 

Fuzzy fish-scales from unorganized point set The point cloud is 
locally interpolated by partially overlapping round geometric primitives 
of prescribed diameter. We call them fish-scales. The concept is similar 
to the oriented particles of Szeliski and Tonnessen [17J. An example of 
a fish-scale set is shown in Fig. 4.9. For the sake of clarity, we restrict 
the following discussion to fish-scales representing two-dimensional sur­
face patches in three-dimensional space. With only slight alterations in 
wording, the reasoning is valid for other space or fish-scale dimensions 
as well. 

Fish-scales are recovered by local principal component analysis (PCA) 
as follows. The 3-space is divided into non-overlapping cubic cells of 
given size. The covariance structure of each non-empty cell contents is 
computed. The result is a set of fish-scales Si = (Xi, Si), i = 1,2, ... , n, 
where Xi are location estimates representing the fish-scale position and 
Si are covariance matrix estimates representing the fish-scale structure. 
The direction of minimum covariance is called the fish-scale orientation 
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(it is known up to a sign) and the plane perpendicular to this direction 
and containing the center is called the principal plane. 

A fuzzy-set fish-scale representation is then constructed by selecting 
a scalar influence function f(·) that takes a scalar argument: 

1 
j.L(S) = f(2(x - x) TS-l(x - x)), (4.4) 

where j.L(S) is the fuzzy membership function for the fish-scale S = 
(x, S). It is important for f to have infinite domain, to be strictly 
positive and smaller than or equal to 1, to be square-integrable, and 
such that f(O) = 1. We have selected f(t) = e-t . 

The fuzzy fish-scale collection properties With the help of the 
fish-scale size 

(4.5) 

we define the relative intersection of two fish-scales as the ratio of the 
size of their intersection over the size of their union: 

(4.6) 

where nand U are the fuzzy-set-theoretic intersection and union, re­
spectively. More details on how to compute the intersection is found 
in [16]. 

The relative intersection captures both proximity and compatibility 
of orientation: close fish-scales have larger relative intersection over the 
more distant ones, so have collinear fish-scales over the non-collinear 
ones, see Fig. 4.4 for an example in 2-D. 

Note that from (4.4), (4.5) and (4.6) it follows that the relative in­
tersection is invariant under affine transformation of x (this means that 
a small camera calibration error will not affect the recovery of global 
structure based on w). Note also that the relative intersection is defined 
for any space dimension other than or equal to 3. 

Fish-scale verification Fish-scale verification is a process of elimi­
nation of local models that are unlikely to correspond to real surface 
patches. This is not a procedure redundant to the verification described 
in Section 2, since we verify whether the local primitives reconstructed in 
the previous step do indeed have the orientation that has been recovered 
at the predetermined diameter. Verification is more important for large 
fish-scales as opposed to small ones, since a large fish-scale is much more 
likely to be biased in orientation by outliers from the stereo matching 
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(a) (b) (c) 

Figure 4.4 Close fish-scales that are (a) perpendicular or (b) parallel but non­
collinear intersect much less than those that are (c) (almost) collinear. The degree of 
their intersection is measured by w. 
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Figure 4.5 Fish-scale verification. (a) The set of fish-scales recovered for the size 
parameter of I5mm. (b) The set after verification. (c) The histograms correspond to 
three types of fish-scales according to their image congruence. 

process. The likelihood stems from the sole fact that a large fish-scale 
is born out of points within a larger spatial region, which may include 
more residuals of the matching artefacts. The verification process ef­
fectively removes outliers created by a non-robust (but fast) fish-scale 
fitting process and thus improves the performance of the global 3D model 
reconstruction. The effect of verification is demonstrated in Figure 4.5. 

Fish-scales are verified by re-projecting n points randomly selected 
from their principal plane to a (new) set of m camera retinas and by com­
puting the mutual congruence of their (cubicly interpolated) images, see 
Fig. 4.6. The image congruence is computed in k trials and a histogram 
of the values is obtained. Three typical histograms for the fish-scales 
from Fig 4.5(a) are shown in Fig. 4.5(c): from left to right they rep-
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Figure 4.6 Image congruence is used for fish-scale verification. Fish-scales are pro­
jected to all images (ellipses) and the mutual image congruence is computed. 

resent a low-congruence, a medium-congruence, and a high-congruence 
fish-scale, respectively. The narrow high-congruence histogram corre­
sponds to a fish-scale of correct pose visible to all cameras. Note that 
the low-congruence histogram is relatively narrow as well; it corresponds 
to a fish-scale of incorrect pose. The wide histogram in-between cor­
responds to a fish-scale of correct pose located close to the occluding 
boundary and invisible to one or two cameras. 

The fish-scale is accepted based on statistical test at a given confi­
dence level using the computed image congruence value histogram: If 
the cumulative histogram value Ko. corresponding to the given confi­
dence level 0: exceeds the prior image congruence value Kp, the fish-scale 
is accepted, otherwise it is rejected. The Kp is a parameter to the rejec­
tion procedure and is chosen individually for each application. The value 
is not critical, however. In the example in Fig. 4.5 we used Kp = 0.7 at 
the confidence level of 0: = 0.1 (lower decile). This approach avoids the 
need for the prior knowledge of the congruence measure statistical distri­
bution required for the verification decision. Such a distribution would 
be difficult to obtain under hypotheses other than independence, which 
would clearly not be useful here when testing statistical dependence. 
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The image congruence is measured by Spearman coefficient of concor­
dance K among m vectors of length n [11] 

12 n m 
( )

2 

K = m(m _ I)n(n2 - 1) ~ .r; Tij 

3m(n+I)-n+I 
(m-I)(n-I) , 

(4.7) 

where Tij E {I, 2, ... ,n} is the rank of the i-th point projected to j-th 
image. The ranks are assigned based on image values in image j. The 
index i ranges from 1 to n and the index j ranges from 1 to m. If the 
images are all congruent, K = 1. If they are statistically independent, 
K=O. 

Although other normalized concordance measures can be used as well 
in the rejection procedure, we use a rank method for two reasons: 

1. To weaken the influence of surface reflectance angular anisotropy 
on the rejection decision. 

The underlying assumption is that images of the same surface 
patch taken from different viewpoints have the same image value 
up to an unknown monotonic transformation. 

2. To relieve the influence of image texture statistical distribution on 
the congruence measure distribution. 

Note that, under the hypothesis of independence, the statistical 
distribution of K is invariant to the statistical distribution of im­
age values [11]. Under hypotheses other than independence, this is 
no longer true, but the sensitivity of K to the distribution is small. 
This is important given the enormous variability of real-world tex­
tures. 

The original (unrectified) images are used in the verification test in 
order to eliminate any possible systematic errors due to epipolar image 
rectification. The verification thus uses the most general imaging model 
and avoids any preprocessing artefacts. As to the surface, local planarity 
is assumed, although this constraint can be easily relaxed (one can work 
with curved fish-scales). 

For the fish-scales verification, at least three images taken from a 
general position are required. We use up to four images to make the 
verification more reliable. 

We have observed that the verification rejects only gross outliers, not 
the slightly biased fish-scales that are very near to the true surface. 
However, because of the discrete image nature small fish-scales cover 
only a few pixels and the rejection decision becomes based on too little 
evidence which may results in rejecting many good models when the 
rejection threshold Kp is set too high. 
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Open problems Currently, to recover a collection of fish-scales, the 
size parameter must be selected. Large values result in surface over­
smoothing, small values increase the number of fish-scales in the model. 
Ideally, the size parameter should adapt to the local surface curvature. 
This is the subject of our ongoing work. 

4. THE DISCRETE MANIFOLD MODEL 
RECONSTRUCTION 

The last step in image interpretation we discuss here is the reconstruc­
tion of a pseudo-surface (or a set of pseudo-surfaces) from the collection 
of verified fish-scales. Discrete pseudo-surface (with boundary) is a sim­
plicial complex in which each edge is incident to at most two faces [5J. 

The previous attempt to interconnect a set of local geometric primi­
tives to form a larger structure has been made by Fua [6J. He used 2-D 
Delaunay triangulation over a projection of local primitive centers. This 
restricts the application to surfaces that can be globally mapped on a 
plane by a one-to-one projection. 

We pose the 3D model reconstruction problem in full generality with 
respect to space dimension, manifold genus, its orient ability or struc­
ture. The following discussion, however, deals with fish-scale model 
representing a set of continuous (orient able or unorientable) surfaces. 
Generalizations are straightforward. 

Pseudo-surface reconstruction from unorganized fish-scales 
Given a collection (Sl, S2, ... ,Sn) of fish-scales, let T be a tetrahedral­
ization defined over the fish-scale centers Xl, X2, ... , Xn . It is a complex 
in which every tetrahedron has four triangular faces and every face is 
bounded by three edges. The function w defined in (4.6) acts on the 
edges of this structure. If we select a subset of triangles from T and a 
subset of edges such that any selected edge is incident to exactly two 
selected triangles, the result is a closed pseudo-surface. We choose the 
pseudo-surface of maximum aggregated compatibility by maximizing the 
sum of selected edge costs Wj: 

(4.8) 

where € j, j = 1,2, ... , e are the binary edge selection variables. The 
edge-triangle incidence constraints are formalized as follows: 

e 

L !\,ij - 3 Ti = 0, 
j=l 

i = 1,2, ... , t, (4.9) 
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(a) (b) 

Figure 4.7 (a) Singular point v of a closed pseudo-surface. (b) Edge-triangle com­
patibility. 

t 

L/'i;ij - 2cj = 0, 
i=1 

j = 1,2, ... , e, (4.10) 

where Ti, i = 1,2, ... , t are the binary triangle selection variables, Cj are 
the edge selection variables as above, and /'i;ij are the binary triangle-edge 
incidence variables. The constraint (4.9) requires each selected triangle 
to be incident to three selected edges and the constraint (4.10) requires 
each selected edge to be incident to two selected triangles. The (4.8)­
(4.10) is a Boolean programming problem. The solution consists of tri­
angles, for which Ti = 1 and edges for which Cj = l. 

We are not aware of a polynomially bound algorithm for this prob­
lem. Our implementation uses a heuristic approach. First, the Delaunay 
tetrahedralization is computed over the fish-scale centers. A local con­
straint is then applied in an edge elimination process implemented as 
a greedy procedure. The edge pruning process starts with removing 
all edges of very low compatibility. This step introduces a boundary 
to the resulting pseudo-surface. From the remaining edges, the lowest­
cost edge violating a local constraint is removed. The constraint states 
that an edge (i, j) is incompatible with a triangle (j, k, l) if both angles 
1'1 = L{(j, l, i), (j, k, l)} and 1'2 = L{(i, k, j), (j, k, l)} are smaller than 
~7f, see Fig. 4.7(b). The algorithm then continues in the edge elimination 
process by proceeding to higher-cost edges violating the constraint. 

The computational complexity of this procedure is O(n2 log n), which 
is the complexity of 3-D Delaunay tetrahedralization. The algorithm 
finds a sub-optimal solution to the original optimization problem (4.8)­
(4.10). More details on the reconstruction procedure are given in [16]. 
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Open problems The class of pseudo-surfaces is much wider than the 
class of surfaces. A closed pseudo-surface is locally homeomorphic to 
an open 2-ball everywhere except for a finite number of singular points 
whose neighborhood is homeomorphic to k > 1 open 2-balls, all identified 
to the singular point. An example of a singular point is the vertex v 
shown in Fig. 4.7(a). 

Fish-scale collections that do not exhibit any strong pairwise orienta­
tion compatibility should remain uninterpreted, that is, they should be 
linked to only form isolated tetrahedra. When the pseudo-surface class 
is assumed, the tetrahedra tend to touch at singular points. This effect 
is observed in the hair region in Fig. 4.10(a), for instance. Note that 
other known attempts to recover shape of an unorganized point set end 
up with either a set of orient able closed surfaces (top-down approaches, 
e.g. [13, 2, 7]) or with a pseudo-surface (bottom-up approaches [9, 4, 1]). 
It seems that bottom-up surface reconstruction is a more difficult prob­
lem than the bottom-up pseudo-surface reconstruction. 

Our ongoing work focuses on formalizing the necessary local manifold 
conditions forbidding the singular points. It is clear that the conditions 
will have to include vertex properties in addition to edge and triangle 
properties. We find that complexes are not a suitable representation for 
this purpose. 

5. HUMAN FACE 3D MODEL 
RECONSTRUCTION 

We have built two similar stereo setups, one in our laboratory, and the 
other at the Neuropsychiatry Department at the University of Pennsyl­
vania Medical Center. The former is used for experiments and the latter 
is used to capture 3D textured models of human faces on a routine basis 
in a study of facial expression, which is motivated by neuropsychologi­
cal research. The following example shows the results of the individual 
processing steps as described in this paper. The input data consists of 
481 x 768, 8-bit images captured by the calibrated stereo cameras and 
of a high-resolution scanned color slide captured by a still photographic 
camera, which is calibrated as well (the markings on the background vis­
ible in Figs. 4.1(b) and 4.2 are used to register the scanned slides). The 
photographic images are also used in other psychological experiments. 
The stereo rig is placed at about 1.2m distance from the subject. The 
cameras verge so that pairwise disparity is approximately zero for a point 
on the rig's axis at this distance. Large-screen soft-light illuminants are 
used to reduce the specular surface effect. Infrared pattern projected 
from two uncalibrated random-texture projectors enforces surface tex-
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(a) (b) 

Figure .4-8 The point set reconstructed from stereo. (a) Only 20% of randomly 
selected points are shown. (b) The full set of colored points. 

ture. The infrared texture is invisible to the photographic camera. The 
input data set from this rig is shown in Fig. 4.2. 

Stereo matching is run for all six camera pairs independently. The 
images are rectified and passed to the subsequent stereo matching as 
standard left-right pairs. The set of all space points that results from 
stereo matching, point reconstruction, verification, and pruning based 
on propagated error, is shown in Fig. 4.8. 

The set of fish-scales recovered from the point set is shown in Fig. 4.9, 
the verified subset is light-gray and the rejected fish-scales are dark-gray. 
The size parameter was chosen to be 4mm (uniformly for all fish-scales). 
The verification procedure uses the four input images. The rejected 
primitives are located in hair, along self-occluding boundaries, and on 
highly non-Lambertian surface patches (such as the eyes or teeth). 

The final surface reconstruction is shown in Fig. 4.1O(a) and its tex­
tured version in Fig. 4.1O(b). 

6. SUMMARY 

In this paper we dealt with the problem of 3D surface reconstruction 
from the images of an unknown scene. We took the bottom-up approach. 
It works in successive steps in which the model constraints are progres­
sively more restrictive. The low-level model is a set of unorganized 
points in 3-space. The intermediate-level model consists of local geo­
metric primitives which we call fish-scales. Fish-scales are reconstructed 
from the unorganized point model by local peA. The high-level model 
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Figure 4.9 Fish-scales reconstructed from the point set 

(a) (b) 

Figure 4.10 Surface reconstructed from the verified fish-scale set 
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is a discrete pseudo-surface. It is reconstructed by linking together close 
and orientation-compatible fish-scales. The unlinked fish-scales and the 
ungrouped isolated points remain unexplained by the higher-level mod­
els. 

The approach presented here relies on strong support in input data 
when a higher-order model is inferred. This is motivated by the accu­
racy requirement: no structure should be inferred unless it is observed 
reliably. This is the reason why no strong prior models are used. 

We believe the approach can be applied in areas like augmented real­
ity, telepresence, and medical imaging, where accuracy is of concern. 

The work described in this paper is an ongoing effort. An array of 
smaller problems are still not satisfactorily solved, they have been dis­
cussed at the end of each section. 
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Chapter 5 

BUILDING MODELS FROM SENSOR DATA: 
AN APPLICATION SHARED BY THE 
COMPUTER VISION AND THE 
COMPUTER GRAPHICS COMMUNITY 

Gerhard Roth 

Abstract The problem of building virtual models from sensor data increases in im­
portance as powerful graphics rendering hardware becomes widespread. 
Model building stands at the interface between computer vision and 
computer graphics, and researchers from both areas have made contri­
butions. We believe that only by a systematic review of the remaining 
open research question can further progress be made. This paper is an 
attempt at providing such a review. First, we describe the basic steps 
in the model building pipeline. Then we discuss the open problems that 
remain in each step. Finally, we describe some overall research themes 
that we believe should guide further work in this area. 

1. INTRODUCTION 

In the past the fields of computer graphics and computer vision have 
been considered to be at opposite ends of the spectrum. The graphics 
field involves the display of virtual representations, and their manipula­
tion [18]. The vision field involves the processing of sensor data for the 
purpose of image understanding [2]. A number of recent changes have 
occurred that make this dichotomy less accurate. 

First, the basic technology of 3D graphics display systems as embod­
ied by the applications interfaces like OpenGL, Direct3D, etc. have been 
widely distributed commercially. The graphics community has been very 
successful industrially in terms of creating the necessary infrastructure 
for the display of 3D models. It is now possible to display complex sim­
ulations of reality on inexpensive personal computer systems. For this 
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reason the question of realistic content, that is what should be displayed 
on the graphics hardware, is becoming a more important issue. 

Thaditionally the graphics community has subscribed to the idea that 
an animator using a complex piece of animation software should cre­
ate the 3D content synthetically. This paradigm has been successfully 
demonstrated in the ever-increasing series of complex digital animations. 
Yet, even though these animations have been successful commercially, it 
is clear that in order to create more realistic virtual environments it will 
be necessary to incorporate sensor data of actual physical environments, 
not simply to use only synthetic environments. 

There are a number of reasons for this. First of all, people are familiar 
with their current physical world. Even if some of the 3D content is 
synthetic, they relate better if the virtual environment has a connection 
to the physical world. This is not in complete contradiction to the 
traditional graphics path of using only synthetic content. It simply says 
that to widen the impact of a virtual experience it is desirable to use 
sensor data of an actual physical environment. Second, it is less costly 
to make a 3D model of a complex geometric object directly from sensor 
data than to have an animator construct such a model by hand. 

In order to create more realistic virtual environments it will be neces­
sary to use sensor data. This problem of model building has long been a 
topic of research by some members of the vision community. However, it 
is a relatively small part of a much broader effort that has been directed 
towards the general problem of image understanding [20]. In the vi­
sion community this is beginning to change, and more vision researchers 
are working directly on the problem of model building [16, 35]. One 
of the reasons is that the investment in basic vision research has lead 
to a broader understanding of images and their geometric relationships 
[50, 27, 45]. The results are a suite of vastly improved algorithms for 
dealing with such basic vision problems as correspondence, stereo, and 
structure from motion. It seems that the capacity to obtain 3D structure 
from image sequences does exist. While this is a significant step in the 
model building process, it is, as we shall see, only one step. 

There has also been ongoing work in model building by those who 
use active projection techniques to obtain 3D data. In the past few 
years these research activities have focused on both the problems of 
model building and inspection. Model building goes under many names, 
and is sometimes called reverse engineering [28, 37, 41, 30, 17]. The 
work done by many groups in this field has resulted in a more complete 
understanding of the basic steps in the model building sequence. 

For the above reasons building 3D models from sensor data is an 
activity that is pursued by both the graphics and vision community. For 
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example, there has recently been an effort to make models of some of 
the statues of Michelangelo [29], and to build models of environments 
[34]; both by researchers from the graphics community. In this paper we 
discuss the problem of model building and suggest some future research 
directions. One caveat is that because of space limitations our reference 
list is far from being complete. 

Our thesis is that only by understanding and improving the entire 
model building process is it possible to make significant further progress. 
We believe that to accomplish this goal it will be necessary to have 
more interaction between the computer vision and computer graphics 
community. 

2. MODEL BUILDING PIPELINE 

In this section we will list the steps in the model building process. Re­
gardless of the type of sensor used the model building pipeline proceeds 
in a number of distinct steps, where the output of one step is the input 
of the next step. We will describe each of these steps in a quick survey, 
which is not meant to be exhaustive. For each step we will also discuss 
some open problems, along with their importance and difficulty. 

The input to the model building process is some sensor data, and the 
output is a geometric model. In practice, 3D triangles are the most com­
monly used geometric data representation in the graphics world. The 
current generation of graphics hardware has been optimized to display 
such textured triangles efficiently. For this reason the output of a model 
creation process is normally a set of possibly textured 3D triangles. 

The model building process consists of the following sequential steps. 

1. Calibration: the sensor characteristics and configuration are de­
termined. 

2. Acquisition: the sensor is moved to a number of different view­
points and the data is acquired. 

3. Registration: the data from different sensor positions is registered 
to be in the same co-ordinate frame. 

4. Point Creation: a set of 3D data points are created from the sensor 
data. 

5. Model Creation: a geometric model consisting of a number of tri­
angular meshes is created from the 3D data points. 

6. Model Compression: this triangular mesh model may be com­
pressed to a more manageable size. 
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7. Texture creation: if possible 2D textures are mapped onto the 3D 
triangles of the mesh model. 

We will now describe each of these steps in more detail, concentrating 
on what we think are the open problems that still remain to be solved. 

2.1 CALIBRATION 

There are many different sensors and sensor geometries used during 
the data acquisition process. A calibration step is necessary in order to 
accurately find the sensor parameters. For a single camera the standard 
calibration parameters are the intrinsic (or internal) parameters, or the 
extrinsic (or external parameters). 

In many model building systems there are often multiple sensors, and 
even different types of sensors (i.e. active sensors and passive sensors). 
This means that the calibration process is necessary more complex than 
with a single passive sensor. However, a good calibration is essential if 
an accurate geometric model is to be produced. There are still open 
problems in terms of creating simple and efficient calibration processes, 
but progress has been made [5]. 

Note also that while traditionally calibration is done once, in a labora­
tory, it may be necessary to do the calibration on-site. The reason is that 
the sensors may be disassembled during transit, and only reassambled 
in their final configuration at the acquisition site. On-site calibration is 
an area in which little work has been done. However, there has been 
considerable progress in self calibration for standard cameras [21, 38], so 
it may be that research in this area will have further applications to the 
problem of on-site calibration. 

2.2 ACQUISITION 

A sensor must be moved to different locations in order to acquire data. 
This is currently done manually in a rather ad-hoc process. In certain 
situations, where a sensor is mounted on a programmable motion device 
such as a co-ordinate measuring machine (CMM) or robot there is also 
the added issue of avoiding collisions with obstacles. There has been 
work done in the automation of the acquisition process [31, 39, 36]' but 
some basic questions remain: 

• Can we perform both view planning and obstacle avoidance at the 
same time? This is important when dealing with sensors that have 
a very small field of view. They must be close to the object in order 
to obtain 3D data, but must still avoid collisions. 
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• Can we integrate knowledge of the sensor accuracy into the plan­
ning process? 

• For the registration step we would like to maintain a certain mini­
mum overlap in the sensor data. Can we incorporate this goal into 
a viewpoint-planning algorithm? 

2.3 REGISTRATION 

Here the goal is to place all the sensor data into a common co-ordinate 
reference frame. This process is currently performed manually by choos­
ing corresponding feature points [19]' or by accurate sensor motion de­
vices such as turntables or CMMs. Manual registration of the sensor 
data is time consuming, and automatic registration using accurate posi­
tioning devices is expensive. An alternative is to use the 3D data itself 
to perform data-based registration. In practice there are two kinds of 
data-based registration algorithms. Those which refine an already ap­
proximately known registration are called pose refinement algorithms. 
They are usually based on an iterative closest point (ICP) strategy [9, 4]. 
While these algorithms work, there are still some open questions: 

• What is the best way to perform a multi-image ICP, where we 
must register multiple sets of 3D points at once? 

• Assuming that each data point has an uncertainty estimate, we 
would like these estimates to be used by the registration algorithm. 
What is the best way of propagating such uncertainty estimates 
into the registration process? 

If there is no prior estimate of the registration available we face 
the more difficult problem of pose determination. There has been less 
progress on the problem of data-based pose determination since it is 
computationally difficult [6, 1, 12]. There are many open questions: 

• To what degree can the process of pose determination be auto­
mated? 

• Which approach to the problem of pose determination is compu­
tationally tractable? 

• Can the problem of pose determination be solved using only the 
sensor data itself, or must targets be manually placed to aid in the 
registration process? 

The problem of pose determination is strongly related to the tradi­
tional vision problem of finding correspondence. As we have stated, a 
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manual registration process requires that the corresponding points be 
chosen by the user in the different sensor views [50, 45]. This manual 
process can take a number of hours for a significant number of images, 
and therefore needs to be automated. Attempting to automate pose 
determination is equivalent to attempting to solve the correspondence 
problem. 

2.4 3D POINT CREATION 
Assuming that the sensor data has been acquired, it is then necessary 

to extract 3D points from this data. In practice, there are two types 
of sensors used in model building. Active sensors project light onto the 
object using a source such as a laser beam. There are a number of 
different technologies for active sensors: time of flight, triangulation and 
structured light being the most common [8]. For any type of active sensor 
3D points are acquired efficiently and reliably by the sensing process. 

Passive sensors, which do not project an illumination pattern, rely 
totally on the texture of the object. Traditionally depth from passive 
sensors is extracted using stereo algorithms [27]. However, these algo­
rithms assume that the epipolar geometry of the two cameras is known. 
When a sensor is moved around an object this epipolar geometry is 
not known beforehand. Finding the epipolar geometry requires that we 
find correspondences between features in different sensor views so that 
again the correspondence problem is at the core. There are a number of 
important issues that need further study. 

• When using passive sensors it is necessary to find corresponding 
points among many different 3D views in order to obtain the epipo­
lar geometry and the 3D data points. Can this correspondence 
process be efficiently automated? 

• Is it necessary to use active sensors to get 3D data, or are passive 
sensors sufficient? If not, what type of active projection technology 
should be used? 

2.5 MESH CREATION 

From the 3D data points a triangular mesh must be created. There 
are many mesh creation algorithms, which work with different types of 
3D data [47, 24, 14, 41, 7]. When very dense 3D data is available the 
mesh creation process is simplified. This is because the topology of the 
mesh can be found easily with dense 3D data, but as the data becomes 
sparser, this is more difficult. Passive sensors tend to produce a much 
sparser set of 3D data points than active sensors. This implies that mesh 
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creation using data from a passive sensor is likely to be more difficult 
than with data from an active sensor. 

There are still some open problems in mesh creation. 

• How dense does the 3D data have to be in order to get good results? 
At some point the 3D data will not be dense enough to make a 
good model. 

• How can these algorithms handle data with significantly different 
accuracy. This again requires that these methods incorporate es­
timates of uncertainty into the mesh creation process. 

• How should these algorithms deal with very large amounts of data? 
This situation occurs when making models of large objects or en­
vironments. 

2.6 MESH COMPRESSION 

Active sensors produce a very dense sampling of the surface geometry. 
If all of these points are used to create a 3D mesh then the resulting mesh 
is often very large. For this reason a mesh created from active sensor 
data needs to be compressed for efficient viewing. This is not difficult to 
do when the final compressed mesh is at a single resolution. If we wish 
to display the data at multiple resolutions then we will need a different 
compression scheme, one based on a continuous compression of the mesh 
[23J. 

A multi-resolution, continuous compression scheme is especially useful 
when a large number of triangles are to be displayed. There are a num­
ber of competing continuous compression methods, and little systematic 
work has been done in terms of comparing them [23, 13, 49]. 

2.7 TEXTURE MAPPING 
In order to make realistic models it is desirable to add texture to the 

3D mesh triangles. This is normally done by using the data from a set 
of 2D images [33, 15]. This is a difficult problem, which encompasses a 
number of issues. First of all, the images from the 2D camera must be 
registered with the 3D data. This is trivial if the 3D data were created 
from the same set of 2D images, as is the case when a single passive 
sensor is used for the entire process. However, if a separate active sensor 
was used to get the 3D data, then it is necessary that the 2D and 3D 
sensors data be registered accurately [25J. 

Before the 2D data is textured mapped onto the 3D triangles the 2D 
images must be pre-processed. The goal is to remove the effect of the 
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local lighting, and also to remove any artifacts produced by surface spec­
ularity. The textures that we map on the geometric model should be as 
free as possible of shadows, highlights, specularities, and colour distor­
tions. Removing such artifacts is a difficult problem. It requires both 
a knowledge of the lighting conditions, and the surface characteristics. 
No general solution has been found, but under specific conditions it has 
been shown to be possible to remove certain types of specularities and 
ambient lighting affects [3, 42]. Once pre-processed the 2D images are 
mapped onto the 3D mesh by a projection process. 

3. RESEARCH THEMES 

In the previous sections we described the model building process, and 
some of the basic open problems in each step of this process. In this 
section we will discuss the following research themes that we believe are 
among the most important open problems in model building: 

1. Automation of the entire model building pipeline. 

2. Constructing models incrementally. 

3. The role of active versus passive sensors. 

4. Image-based rendering versus model-based rendering. 

5. Environment modeling versus object modeling. 

3.1 AUTOMATION OF THE ENTIRE 
PROCESS 

There are available some commercial systems for building geometric 
models from dense 3D data. For certain applications, such as scanning 
human bodies the model building process is automated. However, for 
model building in general one of the problems with current systems is 
the lack of automation. A number of steps in the 3D model building 
process are currently very laborious, and require a rather high degree of 
skill. The goal is to make the model building process more automatic. 
This way we can decrease the time necessary to build such models, and 
decrease the required skill level. 

Currently the acquisition process and the subsequent registration steps 
are the most time consuming part of the pipeline. Therefore these steps 
in the model building pipeline would gain the most from automation. 
However, automating these two steps is difficult. Planning the acquisi­
tion process is equivalent to viewpoint planning. This is a high dimen­
sional search for which no general solutions have been found. 
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Automating registration is equivalent to solving the correspondence 
problem. While traditionally this has been considered to be an in­
tractable problem, recent computer vision research gives hope that the 
correspondence problem can be solved for certain situations. First of all, 
there has been some success in solving the correspondence problem for 
2D images if they are not too far apart in viewpoint [46, 50]. For 3D 
data we believe that it is much easier to automate the correspondence 
problem than for 2D data [40]. This is because in 3D Euclidean distances 
are an invariant under a rigid transformation. Finally, faster computers 
make it more likely that both model planning and correspondence com­
putation can be automated because these problems are computationally 
difficult. 

3.2 INCREMENTAL MODEL 
CONSTRUCTION 

A second requirement that must be met in order for 3D models to 
be built efficiently is to make the model building process incremental. 
Currently, all the data is acquired at once, then it is registered, etc. in 
a sequential pipeline as we have described. This means that if there 
are errors in the data, or there is missing data, this will not be realized 
till late in the process. By this time the acquisition system may be 
dismantled, which means that collecting more data is impossible. 

A better way is to build the models incrementally, that is to perform 
all the steps in the process but only on a subset of the sensor data. Then 
by looking at the partial model we get valuable feedback which we can 
use to adjust the acquisition and building process. We may notice that 
we need to change some of the parameters of the sensor, or may need to 
move closer, or to scan some area again. 

To incorporate feedback into the process it is necessary to build models 
incrementally and to save the intermediate results. This is not trivial 
for some steps in the process such as mesh creation. The reason is that 
this step requires, for example, that the current mesh model be updated 
incrementally as new 3D data is acquired while still keeping the old 
model [41]. 

3.3 ACTIVE VERSUS PASSIVE SENSORS 
Active sensors use a light source such as a laser to project texture onto 

an object. The 3D data is only obtained where this light source strikes 
the surface of the object [8]. Passive sensors do not use artificial light, 
but instead extract 3D points using natural texture. Both approaches 
have advantages and disadvantages. 
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Since active sensors supply their own illumination they are not af­
fected by the ambient illumination. They can therefore successfully ob­
tain 3D data under a wide variety of ambient lighting conditions. They 
project their own texture-they do not require any texture on the ob­
jects being scanned. Active sensors also produce dense 3D data, which 
we have argued simplifies the mesh creation process. 

However, active sensors are significantly more costly than passive sen­
sors. There is also a safety issue with active sensors because the active 
projection system itself is sometimes powerful enough to harm the hu­
man eye (i.e. a strong laser). 

Passive systems are generally less expensive than active sensors, and 
there are no safety issues involved in their use. However, they have all 
the disadvantages for which active systems have an advantage. They are 
intolerant to changes in the ambient illumination, they require textures 
on the objects being scanned, and they produce only sparse 3D data. 

We believe that active projection technology will continue to be used 
in many model building applications. When building geometric mod­
els there mayor may not be enough texture to compute detailed 3D 
structure using only passive sensors. This means that we cannot really 
predict beforehand how well a passive system will work for a given sit­
uation. By contrast active sensors produce accurate 3D data for a wide 
variety of ambient lighting conditions and object texture. 

There are still a number of open questions in the use of active sensors. 
The cost of an active sensor is dependent strongly on the speed of data 
acquisition. This in turn impacts the density of the data that can be 
acquired. What density of 3D data is sufficient to make a good model? 
If we can still create good quality models from sparser 3D data, then 
this is preferable. Active sensors that produce sparser data will be less 
expensive, and the data acquisition process will not take as long. 

Another question is what active sensor technology is best suited for a 
particular application? The major technologies are time of flight, trian­
gulation and structured light. It seems that triangulation technology is 
very accurate, but is useful only for distances of ten meters or less. Time 
of flight technology is more expensive, but is useful for longer distances. 
Structured light systems tend to be less accurate, and produce fewer 3D 
data points than either time of flight or triangulation systems. However, 
structured light systems are the least expensive of the three. There has 
been a systematic survey of active sensors [8], but there has been little 
experience regarding the merits of different active sensor technology for 
the specific application of model building. 
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3.4 IMAGE-BASED VERSUS 
MODEL-BASED TECHNOLOGY 

Traditionally only model-based technology has been used in rendering 
virtual worlds. In this approach the goal is to have a geometric model 
that can be displayed on standardized commercially available rendering 
hardware. Recently the field of image-based rendering has matured suf­
ficiently to provide some competition to the model-based paradigm. The 
idea is to not create a geometric model, but instead to use the images 
directly, and therefore bypass the model creation step [22, 11, 26]. 

The most common image-based rendering methods use image mosaics. 
The technology of image mosaics has matured to the point where they 
can be built easily with passive sensors. Mosaic acquisition, creation and 
display are possible without having any 3D representation of the object 
[43,44]. However, mosaics do not handle viewpoint translation unless it 
is the case that only a planar surface is being observed. 

In order for an image based rendering system to deal with translation 
it is necessary to have depth data. If scaled depth is available for each 
2D image then that image can be rendered from a different viewpoint 
using image-based rendering [32]. It has also been shown that for some 
type of depth data, even projective depth is sufficient for performing 
image extrapolation [48], which is somewhere between traditional 3D 
reconstruction, and image interpolation [10]. So for image-based render­
ing systems, other than mosaics, it will still be a requirement that 3D be 
available, at least in projective form. What will not be necessary is the 
creation of a 3D model from this data. This implies that steps 4, 5 and 
6 of the model creation process will be eliminated with an image-based 
rendering system. While this is advantageous the effectiveness of image 
based rendering systems relative to traditional 3D graphics systems is 
not yet clear. They have advantages for rendering very large models, 
but their practical creation and display has not yet been demonstrated. 
The requirement that dense depth data be available makes image-based 
rendering systems, other than mosaics, difficult to implement in practice. 

3.5 ENVIRONMENT MODELING VERSUS 
OBJECT MODELING 

In the past there has been a concentration of work on building models 
of objects. Here an object is loosely defined as a blob that we view from 
the outside and can walk around. Objects have the following character­
istics: 

• You can walk around an object, it does not enclose you. 
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• You can move as close as you want to any part of the object. 

• You can often control the lighting conditions around the object. 

Recently there has been an increase in interest in building models of 
environments [15, 33, 34]. For environments the situation is different 
than for objects: 

• The environment encloses you, since you are on the inside. 

• You cannot necessarily move as close as you want to certain parts 
of the environment (i.e. there may be a high ceiling). 

• It is difficult to control the lighting for the entire environment. 

These differences have significant implications when building models. 
Basically, the problem of making and rendering object models is much 
simpler than for environment models for the following reasons: 

• The fact that you cannot move as close as you want to a part of the 
environment means that the sensor data will always be at different 
resolutions. This is not the case for objects. We usually have the 
ability to scan an object at a single stand off distance. This means 
that the sensor data for objects tends to all be at approximately 
the same resolution. 

• There is likely to be much more sensor data for environments 
than for objects. This is because environments are large and open 
ended, while objects are usually smaller and are closed. It is also 
more likely that a number of different sensors will be used for cre­
ating environment models. 

• Models of environments are more likely to require multi-resolution 
compression and visualization methods due to their large model 
sizes. 

• The accuracy and the quality of the data is likely to be much worse 
for environments than for objects. This is because the lighting 
conditions, and the specular characteristics of the environment are 
much harder to control than is the case for objects. 

4. CONCLUSION 
In this short discussion paper we have described the problem of build­

ing models from sensor data. We believe that this application is one of 
the main drivers in an ongoing process that will create a much closer re­
lationship between the fields of computer vision and computer graphics. 
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We have listed what we believe are the basic model building steps, along 
with the open problems in each step. The graphics community tends 
to concentrate more efforts on the last steps in this process, and the 
vision community on the first steps. In the mesh creation step, which is 
the middle step, there has been an equal amount of work done by both 
communities. 

We believe that to make faster progress there should be more interac­
tion between the graphics and vision research communities. Researchers 
in image based rendering are clearly dealing with many vision problems, 
and have initiated a wider dialogue between the two communities. This 
paper is an attempt to encourage more such interaction on the prob­
lem of model building in order to define the open problems and future 
research directions. 
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Chapter 6 

ACQUIRING RANGE IMAGES 
OF OBJECTS WITH NON-UNIFORM 
REFLECTANCE USING HIGH DYNAMIC 
SCALE RADIANCE MAPS 

Danijel Skocaj, Ales Leonardis 

Abstract We present a novel approach to acquisition of range images of objects 
with non-uniform reflectance using a structured light sensor. The main 
idea is to systematically vary the illumination intensity of the light pro­
jector and to form high dynamic scale radiance maps. The range images 
are then formed from these radiance maps. We tested the method on 
the objects which had surfaces of very different reflectance properties. 
We demonstrate that range images obtained from high dynamic scale 
radiance maps are of much better quality than those obtained directly 
from the original images of a limited dynamic scale. 

1. INTRODUCTION 

Sensor systems consisting of a structured light projector and a camera 
are commonly used for acquiring range images. In such systems, pat­
terns of structured light are projected onto an object. These patterns 
can be of different types: a laser dot or a line, grids, different stripe 
patterns, stripes of different colors, etc. [3, 5, 4]. 3-D coordinates of the 
points on the visible surfaces of the object are then calculated by a tri­
angulation. Before the acquisition, the geometric relationship between 
the structured light source and the camera has to be estimated by the 
calibration procedure. 

A major limitation of these methods is their sensitivity to reflectance 
properties of the object's surfaces. Most of the methods assume that the 
reflectance properties of the surfaces are uniform. Therefore, it is often 
even suggested that the objects are sprayed with a grey matte paint [4] to 
obtain objects with uniform albedo, thus eliminating the problems which 
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may be caused by non-uniform surface reflectance properties. However, 
when dealing with arbitrary objects in a non-destructive manner, this is 
not permissible. 

Most of the problems related to the acquisition of range images of ob­
jects with non-uniform reflectance properties are caused by the limited 
dynamic scale l of CCD cameras. Since the dynamic scale is limited, it is 
impossible to reliably capture both high and low reflective surfaces simul­
taneously. When we capture low reflective surfaces we suffer from low 
noise-to-signal ratio, while during acquisition of high reflective surfaces, 
we may face problems due to pixel saturation and blooming effect. As 
a consequence, the depth of some of the surfaces can not be successfully 
recovered. 

In this work we present a novel approach to overcome this problem. 
The main idea is to systematically vary the illumination intensity of 
the light projector and to form high dynamic scale radiance maps. The 
range images are then formed from these radiance maps. 

The paper is organized as follows. In the next section we briefly 
describe the acquisition technique of a coded light range sensor. In 
section 3 we elaborate the acquisition problem, while in the following 
section we explain our approach to the solution of the problem. In 
section 5 we present some results of the new approach and compare them 
with the results obtained with the original acquisition method. The last 
section concludes the paper and gives a short outline of a planned future 
work. 

2. ACQUISITION TECHNIQUE 
We use a coded light range sensor based on an LCD stripe projec­

tor [7, 6]. It projects nine Gray coded stripe patterns onto the object 
(Fig. 6.1). The patterns allow the distinction of 29 different projection 
planes indicated by s coordinate in the projector space (see Fig. 6.2). A 
camera, displaced from the projector, acquires grey level images of the 
deformed stripe patterns, which are binarized so as to separate projector­
illuminated from non-illuminated areas. For each pixel a 9-bit code is 
stored, which represents s coordinate of the point in the projector space. 
By knowing s coordinate in the projector space, U and v coordinates of 
the pixel in the image space, and by knowing the sensor calibration 
parameters, we can compute the 3-D coordinates of the point using a 
triangulation. 

IThe term dynamic range is commonly used in the literature, however, we rather use the 
term dynamic scale to avoid possible confusion with the term range (i.e., depth) image. 
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CALCULATION OF RANGE IMAGE ~ 

1 

Figure 6.1 Obtaining a range image from intensity images captured under a single 
illumination intensity. 

\ 

Figure 6.2 Acquisition principle 

The most important and delicate part of this procedure is the bina­
rization of the stripes. The accurate estimation of the s coordinate (and 
subsequently 3-D point calculation) depends on the correct binarization 
of the projected stripes. We use a simple space-variant thresholding, 
where the threshold is calculated for each pixel independently. We set 
the threshold at each pixel as the mean of the corresponding pixel value 
in the image of fully illuminated object and the pixel value in the image 
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of non-illuminated object. Therefore the threshold at a pixel is affected 
by illumination and reflectance of the particular point on the object. 

3. PROBLEM DESCRIPTION 
In this section we analyze the causes of the problems that we are 

facing during the acquisition of range images of objects with non-uniform 
reflectance. 

Since we can control the illumination intensity of the stripe projec­
tor, we can acquire range images of the objects under different lighting 
conditions. How do the different lighting conditions affect the obtained 
range images? To find out, we have taken range images of a flat surface 
illuminated by several illumination intensities. We evaluated the quality 
of the acquired range images using two quality measures. The first mea­
sure was the number of image pixels where depth could not be obtained. 
The second quality measure was the average distance of the 3-D points 
from the plane which was fitted to all 3-D points that had been obtained 
from the range image. The results are depicted in Fig. 6.3 and Fig. 6.4. 

As we can see, the quality of a range image depends on the illumina­
tion intensity of the stripe projector. The optimal results (i.e., minimal 
errors) are obtained, when the range image is taken under suitable illu­
mination intensity. In the example shown, the appropriate illumination 
levels are between 40 and 70, otherwise the quality of a range image 
degrades. 

As already briefly mentioned in the introduction, there are two reasons 
for such a behavior: one is low signal-to-noise ratio at low intensities and 
the other is pixel saturation and blooming effect at high intensities. 

We measured the signal-to-noise ratio with respect to the illumination 
intensity of the stripe projector. The results of the test are plotted in 
Fig 6.5. The signal-to-noise ratio is increasing with the increase of the 
illumination intensity. Thus, when we acquire a range image under a 
low illumination intensity, signal-to-noise ratio is low, therefore there is 
a higher probability of erroneous binarization of pixels on the edges of 
projected stripes (see Fig. 6.6(b)) and, consequently wrong estimation 
of projector coordinates s. This is the reason why many of 3-D points 
are not calculated accurately if we use too low illumination intensity. 

On the other hand, we face the problem of camera saturation at high 
illumination intensities. All the points which have radiance higher than 
the camera intensity scale limit yield the same intensity level which is 
not proportional to their radiance. This can result in incorrect threshold 
determination and consequently in incorrect binarization of the stripes. 
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Figure 6.3 Percentage of pixels where the depth could not be recovered 

In the extreme case, some highly saturated pixels spill over and affect 
values at the neighboring pixels. This is known as "blooming" of CCD 
cells. Such an example is presented in Fig. 6.6(c). Black and white 
stripes of the same width were projected onto the object, but in the 
image white stripes appear much wider than black stripes, due to the 
camera blooming effect. In such cases it is impossible to produce a 
proper binarization and consequently a correct estimation of the 3-D 
points. 

Therefore, we should aim to use as high projector illumination inten­
sityas possible to achieve high signal-to-noise ratio, but at the same time 
to avoid pixel saturation. Having a scene containing multiple surfaces 
of varying reflectance, it is evident that high reflective surfaces require 
lower illumination intensities while surfaces with lower reflectance re­
quire higher illumination intensities to achieve optimal results. 

How could we satisfy both conditions simultaneously? Fig. 6.7 demon­
strates that when we acquire a range image of an object with non­
uniform reflectance with low illumination intensity, we can not reliably 
acquire the depth of surfaces with low reflectance (because of low signal­
to-noise ratio), while when we acquire a range image with high illu­
mination intensity, we can not acquire the depth of surfaces with high 
reflectance (because of the saturation). As a solution to this problem we 
propose a new method which uses a high dynamic scale radiance maps 
of an object instead of its intensity images. 
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Figure 6.4 Average distance between the points and the fitted plane in the range 
images where almost all pixel depths were recovered. 
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Figure 6.5 Signal-to-noise ratio depends on the illumination intensity 
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( a) (b) (c) 

Figure 6.6 First row: intensity images, second row: binarized images of a stripe 
pattern taken under (a) suitable, (b) too low and (c) too high illumination intensity. 

(a) (b) (c) 

Figure 6.7 (a) The intensity image of a toy containing parts of different colors, range 
images taken under (b) low and (c) high illumination intensity. 

4. OUR APPROACH 
We obtain a high dynamic scale radiance map by taking multiple 

images at different illumination intensity levels of the stripe projector2 . 

The question is how to combine multiple images into a single map. 
Ideally, we can assume that a pixel value 9 is proportional to the 

radiance of the corresponding point in the scene (with the exception of 
saturated pixels). Since the stripe projector is the only light source in the 
system, the scene radiance is proportional to the illumination intensity 
of the projector. Therefore, a pixel value 9 should be proportional to the 

2 A similar effect can be achieved by varying exposure times [1] or iris settings. 



112 CONFLUENCE OF COMPo VISION AND COMPo GRAPHICS 

reflectance3 r of the corresponding surface point and to the illumination 
intensity levell, thus 9 ex r ·l. Since a radiance of a point is proportional 
to its reflectance and we are interested only in relative values of the 
radiance, we can neglect the scale factor and write 9 = r . 1 and take 
value r as an entry in the radiance map. 

If we take several images of a scene illuminated by different illumi­
nation intensities and plot the obtained gray levels with respect to the 
illumination intensity, all the points which describe the same scene point 
should lie on the same line (see Fig. 6.8). If gij is the grey level of the i-th 
pixel in the image taken under illumination intensity lj, then gij = rilj, 
where ri is the relative reflectance of the corresponding scene point. Rel­
ative reflectance of the i-th pixel ri = gij Ilj should remain constant for 
all illumination intensities. 

In this way we could combine the information from several images into 
a single radiance map. For computation of radiance map values of high 
reflective points we could use gray levels obtained with low illumination 
intensity to avoid saturation, while for computation of radiance map 
values of points with low reflectance we could use gray levels obtained 
with high illumination intensity to achieve better signal-to-noise ratio. 
This is illustrated in Fig. 6.9. 

This simple method would yield correct results, if the strict linear re­
lationship held. However, it turns out that the sensor system introduces 
nonlinearities. In Fig. 6.10 are plotted the captured gray levels with 
respect to the illumination intensity. The plots are far from the ideal 
straight lines as depicted in Fig 6.8. As a consequence, the calculated 
relative reflectance values of the i-th pixel ri = gijllj yield different 
values at different illumination intensities. This is plotted in Fig. 6.11. 
Thus, to combine the data from multiple images, we have to recover this 
nonlinear mapping. 

To achieve this, we have adopted an approach of Debevec and Malik 
proposed in [1] which dealt with recovering high dynamic scale radiance 
maps from photographs. Let us denote an unknown nonlinear function 
with f: 

(6.1) 

If we assume that f is invertible, we can write (6.1): 

(6.2) 

3We use the term reflectance for the product of two factors: geometric term expressing the 
dependence on the angles of light reflection and albedo [2J. 
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Figure 6.8 Ideal relation between the projector illumination intensity levels and pixel 
values for four scene points with different reflectance properties. 
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Figure 6.9 Obtaining relative reflectance values of high reflective point A, and point 
B with low reflectance. 
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Figure 6.10 Relation between the illumination intensity levels of the projector and 
pixel values in our sensing system. The point no. 1 has the highest reflectance while 
the point no. 4 has the lowest. 
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Figure 6.11 Relative reflectance values of the four points computed by ri = gijjlj 
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From (6.2) we can derive: 

lnj-l(gij)=lnri+lnlj (6.3) 

Let us define h = In j-l. We obtain a set of equations: 

h(gij) = In ri + lnlj; i = 1. .. n, j = 1. .. m , (6.4) 

where pixel gray values gij and illumination intensity values lj are known 
values while function h and reflectance values ri are unknowns. We wish 
to recover these unknowns that best satisfy the set of equations arising 
from (6.4) in a least-squared error sense. Since the camera has a limited 
intensity scale, a pixel gray level gij can only be an integer number from 
a finite interval. Therefore we only need to recover a finite number of 
values of the function h(gij). Let us define the lower and upper bounds 
of the interval of grey levels as gmin and gmax. If we take m images with 
different illumination intensities and if we observe n pixels, then we can 
formulate the problem as one of finding the (gmax - gmin + 1) values h(g) 
and n values of In ri, that minimize the following function: 

n m 

Cl=L2)h(gij)-lnri-lnlj]2. 
i=1 j=1 

(6.5) 

As an additional constraint we simultaneously minimize the function 

gmax- 1 

C2 = L h"(g)2, (6.6) 
g=gmin+ 1 

which ensures the smoothness of the function h(g). For calculation of 
h" we use h"(g) = h(g - 1) - 2h(g) + h(g + 1). It turns out [1] that by 
enforcing the smoothness of the function h(g) we assure also its mono­
tonicity. 

In addition we introduce a weighting function which puts more weight 
on the grey values in the middle of the grey level interval than on those 
near its extrema. We use a simple hat function: 

{ 
9 - gmin if 9 ~ ~(gmin + gmax) 

w(g) = 

gmax - 9 if 9 > ~(gmin + gmax) 

(6.7) 

The combination of Eqs. (6.5), (6.6), and (6.7) leads to the following 
minimization problem: 

n m gmax-1 

C = L L { W(9ij) [h(gij) -Inri -In Ij]}2 + .x L [w(g)h"(g)f, (6.8) 
i=1 j=1 g=gmin+ 1 
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where A is the parameter which weights the smoothness term relative 
to the data fitting term. The minimization of the function C is a linear 
least squares problem. The over-determined system of linear equations 
is solved using the singular value decomposition method as proposed 
in [1]. 

By knowing the function h(g), we can calculate a relative reflectance 
of every point in the scene from the image taken under an arbitrary 
known illumination intensity. From (6.4) we obtain: 

and finally: 
eh(gij) 

Ti=--
lj 

(6.9) 

(6.10) 

Using (6.10), all images taken under the different illumination intensi­
ties yield almost the same values of Ti for a scene point. This is depicted 
in Fig. 6.12. Thus, nonlinearity which caused errors depicted in Fig. 6.11 
is removed. 
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Figure 6.12 Relative reflectance values of the four points 

Now we can use the idea of combining images taken under different 
illumination intensities into a single radiance map. Using (6.10) we can 
calculate radiance values of high reflective surfaces from images obtained 
under low illumination intensity to avoid saturation problems. Also we 
can calculate radiance values of surfaces with low reflectance from images 
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obtained under high illumination intensity to take advantage of a better 
signal-to-noise ratio. To increase robustness we should use all gray values 
gij captured under various illumination intensities lj weighted with a 
weighting function w{g): 

(6.11) 

We store values ri as floating point numbers, so they are not limited to 
a finite number of levels any more. Thus, by calculating ri for all pixels, 
we obtain a high dynamic scale radiance map. 

The remaining issue is how many images are necessary to estimate rio 

Already two images are often enough to obtain a good radiance map. 
We take one image with low and one with high illumination intensity 
level of the stripe projector. If we take more images we achieve a higher 
robustness and noise insensitivity. 

Now, we can use the benefits of high dynamic scale radiance maps 
for calculation of range images. The basic algorithm, as explained in 
Section 2, remains the same, only the input data changes. For every 
projected stripe pattern we have to take several images illuminated by 
different intensities and form a radiance map from them. These radiance 
maps are then used instead of ordinary intensity images as an input in 
the algorithm for range image formation. This procedure is illustrated 
in Fig. 6.13. 

With high dynamic scale radiance maps we overcome the problem 
caused by the limited scale of intensity images and we can reliably cap­
ture range images of objects with non-uniform reflectance. This we will 
demonstrate in the next section. 

5. EXPERIMENTAL RESULTS 
We tested the algorithm which uses the high dynamic scale radiance 

maps on a number of objects with non-uniform reflectance. We com­
pared the results with those obtained with the original range image 
acquisition algorithm. . 

Fig. 6.14{a) shows an object consisting of parts in different colors. It 
is evident that we can not acquire the range image of the entire object 
under a single illumination intensity. The range image in Fig. 6.14{b) 
was obtained under low illumination intensity of the stripe projector, 
while the range image in Fig. 6.14(c) was obtained under high illumina­
tion. Only the depth of high reflective parts was successfully acquired in 
the first image, while the depth of some of these parts was not success­
fully recovered in the second range image. However, when we used the 
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Figure 6.19 Obtaining range images from high dynamic scale radiance maps obtained 
from images captured under various illumination intensities. 

high dynamic scale radiance maps, we reliably acquired the depth of all 
surfaces (Fig. 6.14(d)). 

As the second example we have chosen a well-known Rubie's cube. 
The cube is covered with squares of six different colors. Figs. 6.15(a)­
(j) show that we can not recover the depth of all squares simultane­
ously. However, this can be achieved using high dynamic scale radiance 
maps. Each radiance map was formed from three images, taken under 
low, medium, and high illumination intensity (Figs. 6.15(k)-(m) show 
images used for calculation of one high dynamic scale radiance map). 
These radiance maps were then used to create a range image, shown in 
Fig. 6.15(n). The depth of all colored squares was successfully estimated. 
Note that the spaces between the squares are black so it is impossible 
to acquire the depth of these parts with coded light range sensor. 

In another experiment we took range images of a flat surface consisting 
of two parts of different reflectance properties. The results are depicted 
in Fig. 6.16. Since the difference in the reflectance properties between the 
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(a) (b) 

(c) (d) 

Figure 6.14 (a) The intensity image of a toy, rendered models obtained from range 
images taken under (b) low and (c) high illumination intensity and (d) a rendered 
model obtained from the range image obtained using high dynamic scale radiance 
maps. 

two surfaces is not too large, we can obtain a complete range image also 
from intensity images taken under a suitable single illumination intensity 
(level 40-60, Figs. 6.16(d)-(f)). However, the error4 in the range images 
obtained using high dynamic scale radiance maps is smaller. The error 
is even further reduced if we form radiance maps from a larger number 
of images taken under different illumination intensities. 

Table 6.1 presents the percent of non-recovered pixels in range images 
from Figs. 6.16(d)-(f) and errors of these images with the respect to 
the illumination intensity of the stripe projector. Table 6.2 lists the 

4The error is computed as the average distance of the 3-D points from the plane which was 
fitted to all 3-D points that had been obtained from the range image. 
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(a) (b) (c) (d) (e) 

(f) (g) (h) (i) (j) 

(k) (1) (m) (n) 

Figure 6.15 Range images of a Rubie's cube obtained under various single illumina­
tion intensities (from (a) low to (j) high), three intensity images (from (k) to (m)), 
and (n) range image obtained using high dynamie scale radiance maps. 

errors of the range images calculated from radiance maps which were 
obtained from a different number of intensity images taken under various 
illuminations. The error in all range images obtained from radiance maps 
is smaller than the error in the best range image obtained under a single 
illumination. This improvement is even greater if the reflectances of the 
surfaces differ more. Therefore, this method is suitable for obtaining 
range images of objects consisting of surfaces with very different surface 
reflectances. 

6. CONCLUSION 
In this paper we have presented a solution to one of the main problems 

which we face during acquisition of range images of objects with non­
uniform reflectance. Because of the limited sensing range of the CCD 
sensor it is impossible to simultaneously acquire the depth of both high 
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(a) (b) (c) (d) (e) 

(f) (g) (h) (i) (j) 
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(k) (1) (m) (n) 

Figure 6.16 Range images obtained under various single illumination intensity levels 
(from (a) 10 to (j) 100), three intensity images (from (k) to (m», and (n) range image 
obtained using high dynamic scale radiance maps. 

Table 6.1 Percentage of nonrecovered pixels (%) and errors (E) of range images 
taken under different single illumination intensities (I) of the stripe projector. 

10 20 30 40 50 60 70 80 90 100 

% 55.2 51.6 47.7 0 0 0 16.9 32.6 41.4 43.0 

E 0.068 0.049 0.056 0.056 0.050 0.052 0.056 0.059 0.060 0.060 

and low reflective surfaces of the object with good quality. We presented 
a method for forming a high dynamic scale radiance maps which solves 
this problem. 

The high dynamic scale radiance maps contain much more informa­
tion about the surface properties than ordinary images taken under a 
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Table 6.2 Percentage of nonrecovered pixels (%) and errors (E) of range images 
which were calculated from high dynamic scale radiance maps obtained from dif­
ferent number (n) of intensity images, which were taken under various illumination 
intensities. 

n 2 3 5 8 15 25 

% o o o o o o 
E 0.049 0.046 0.044 0.043 0.042 0.039 

single illumination intensity. They can also be used to produce adequate 
texture maps that are subsequently mapped onto the geometric model 
of the object. These ideas remain to be investigated in the future work. 
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Chapter 7 

DYNAMIC VIEW INTERPOLATION 
WITHOUT AFFINE RECONSTRUCTION 

Russell A. Manning, Charles R. Dyer 

Abstract This chapter presents techniques for view interpolation between two ref­
erence views of a dynamic scene captured at different times. The inter­
polations produced portray one possible physically-valid version of what 
transpired in the scene during the time between when the two reference 
views were taken. We show how straight-line object motion, relative 
to a camera-centered coordinate system, can be achieved, and how the 
appearance of straight-line object motion relative to the background 
can be created. The special case of affine cameras is also discussed. 
The methods presented work with widely-separated, uncalibrated cam­
eras and sparse point correspondences. The approach does not involve 
finding the camera-to-camera transformation and thus does not implic­
itly perform affine reconstruction of the scene. For circumstances in 
which the camera-to-camera transformation can be found, we introduce 
a vector-space of possible synthetic views that follows naturally from 
the given reference views. It is assumed that the motion of each object 
in the original scene consists of a series of rigid translations. 

1. INTRODUCTION 
View interpolation [5] involves creating a sequence of virtual views of a 

scene that, taken together, represent a continuous and physically-correct 
transition between two reference views. A number of techniques for view 
interpolation have been developed to date, but all have been restricted 
to static scenes. Dynamic scenes change over time and, consequently, 
these changes will be evident in two reference views that are captured at 
different times. Therefore, view interpolation for dynamic scenes must 
portray a continuous change in viewpoint and a continuous change in 
the scene itself in order to transition smoothly between the reference 
views. 
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Figure 7.1 View interpolation of a dynamic scene involves creating the view for 
the virtual camera in the middle frame using only the two reference views from the 
cameras in the left and right frames . 

Algorithms that can interpolate and extrapolate the motion of dy­
namic scenes from a set of reference views have a wide range of poten­
tial applications. Using such an algorithm, video compression and video 
summarization could be accomplished by the selection of a small number 
of key frames bracketing primitive motion events. Dynamic augmented­
reality sequences could be created that place moving synthetic objects 
into real scenes. Video sequences could be generated from legacy pho­
tographs of dynamic scenes. Missing gaps in video sequences, arising 
from camera slews, could be filled in (as illustrated in Fig. 7.1). Occlud­
ing objects, both stationary and moving, could be removed from video 
sequences. Finally, the ability to perform temporal extrapolation of a 
dynamic environment could lead to a wide variety of important applica­
tions in visual servoing, navigation, and robot motion planning (where 
visual simulations of objects in motion could be used to anticipate the 
effects of actions). It is interesting to note that the human visual system 
is capable of generating the impression of smooth, continuous appar­
ent motion when shown alternating images at appropriate intervals [21], 
further motivation for this area of research. 

Our approach to view interpolation for dynamic scenes is called dy­
namic view morphing [17]. The method is based on our earlier work for 
static scenes called "view morphing" [22] and it retains the advantages 
of that earlier work. In particular, only two reference views of the scene 
are required, each reference camera can be different and uncalibrated, 
the views can be widely separated, and only a sparse set of correspond­
ing points between the views is necessary. If more information about 
the reference views is available, this information can be used for added 
control over the output and for increased realism. 
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Dynamic view morphing follows a pure image-based rendering (IBR) 
methodology wherein the goal is to compute new views directly from the 
input images with minimal recovery of three-dimensional information 
about the cameras or scene. Such direct approaches offer several advan­
tages over image-based methods that involve explicit scene reconstruc­
tion. For instance, pure IBR methods avoid potentially noise-producing 
intermediate steps such as the estimation of camera calibration. They 
can be computationally efficient, operating independently of scene com­
plexity and number of input views. They can produce photorealistic re­
sults in cases where explicit reconstruction methods are not reliable (e.g., 
with small scene objects or noisy images). Their output can be grace­
fully degraded when computational efficiency is more important than 
exact photorealism (e.g., when creating an out-of-focus background for 
a movie special-effect shot). Finally, they do not amplify errors in cam­
era calibration and conjugate point correspondences as many explicit 
reconstruction algorithms, by repeated reconstruction and reprojection 
of scene points, are prone to doing. 

Methods exist for creating view interpolations of static scenes without 
explicit scene reconstruction [1, 5, 22, 25] or with (at most) explicit pro­
jective reconstruction [9]. Many other methods exist for performing ex­
plicit affine or metric reconstruction of static scenes (e.g., [24, 18,23, 16]). 
Once explicit scene models have been recovered, view interpolations can 
be created via the standard graphics pipeline. Of particular recent inter­
est in the area of scene reconstruction are a variety of "self calibration" 
techniques (e.g., [10, 11, 13, 19, 20]) which can perform affine or metric 
scene reconstruction without relying on scene knowledge to calibrate the 
cameras. Unfortunately, all of the techniques listed so far were devel­
oped specifically for static scenes and cannot be directly applied to the 
kinds of dynamic scenes considered in this chapter. 

Some related work has been performed specifically for dynamic scenes. 
A vidan and Sashua [2] developed a method for explicitly recovering the 
geometry of dynamic scenes in which the objects move along straight­
line trajectories. However, their algorithm does not apply to the problem 
discussed in this chapter because it assumes that five or more views are 
available and that the camera matrix for each view is known or can be 
recovered. Clarke and Zisserman [6] developed a related method for the 
problem of collision detection; they also required the computation of the 
camera matrix for each object and view. There are several mosq,icing 
techniques for dynamic scenes [7, 14], but mosaicing involves compositing 
multiple small-field views to create a single large-field view, whereas 
view interpolation synthesizes new views from vantage points not in 
the input set. Non-reconstructive image-based rendering methods have 
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been applied to animating facial expressions (e.g., [4, 8, 26]) and body 
motions [15], though these methods were not concerned with creating 
physically-correct new views. 

The techniques of dynamic view morphing presented in this chapter 
apply only to scenes that satisfy the following assumption: For each 
object in the scene, all of the changes that the object undergoes during 
the missing time interval, when taken together, are equivalent to a single, 
rigid translation of the object. 

The term object has a specific meaning in this chapter, defined by the 
condition given above: An object is a set of points in a scene for which 
there exists a fixed vector u E ~3 such that each point's total motion 
during the missing time interval is equal to u. 

When the camera-to-camera transformation (see Section 3) between 
the reference views can be determined, the synthetic view interpolations 
produced by dynamic view morphing will portray linear motion. This 
means the synthetic interpolation sequence will portray all objects in 
the scene as undergoing rigid, constant-velocity, straight-line motion as 
viewed from a virtual camera moving along a straight-line, constant­
velocity trajectory. 

Unfortunately, calculating the camera-to-camera transformation is at 
least as difficult as affine reconstruction of objects in the scene. Conse­
quently, the focus of this chapter is on techniques that do not require 
knowledge of the camera-to-camera transformation. We demonstrate 
how a variety of conditions can be imposed on the interpolations with­
out guaranteeing linear motion. In the special case of affine cameras, 
we discuss how the camera-to-camera transformation cannot be found 
(except in special cases) and what this means for the resulting view 
interpolations. 

2. DYNAMIC VIEW MORPHING 

Dynamic view morphing refers to a variety of techniques whose appli­
cability depends on what information can be extracted from the reference 
views. All of the techniques share the following structure: 

The reference views are segmented into layers, with each layer rep­
resenting an object or part of an object. 

Each object layer is interpolated separately, and the resulting inter­
mediate views of each object are combined to produce the final, com­
plete intermediate view of the whole scene. 

The second step above (interpolation of individual object layers) pro­
ceeds as follows: 
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A prewarp transformation is applied to make the image planes of both 
reference views parallel to each other and to the object's motion. 

Conjugate points are linearly interpolated to produce a physically­
accurate intermediate view (of the conjugate points only). 

The intermediate view is completed via a morphing algorithm (e.g., 
Beier-Neely [3]) using the interpolated conjugate points as guides. 

3. NOTATION AND PRELIMINARY 
CONCEPTS 

This and the following section provide the mathematical background 
for dynamic view morphing. In particular it is shown that, with proper 
prewarping of the reference views, linear interpolation of conjugate points 
produces a correct new view of the scene. 

Assume two reference views are captured at times t = 0 and t = 1 
using pinhole cameras, which are denoted camera A and camera B, re­
spectively. A fixed-camera formulation is used, meaning the two refer­
ence cameras are treated as if they were at the same location and the 
world is moving around them; this is accomplished by subtracting the 
displacement between the two cameras from the motion vectors of all 
objects in the scene. When the scene is static, there will be a single 
moving object, called the background object, consisting of all points in 
the scene. Under the fixed-camera assumption, the camera matrices are 
just 3 x 3 and each camera is equivalent to a basis for ~3. Note that no 
assumption is made about the cameras other than they share the same 
optical center; the camera matrices can be completely different. 

Let U denote the "universal" or "world" coordinate frame, and let 
the notation H~A mean the transformation between basis U and basis 
A. Hence H~A is the camera matrix for A. Note that boldface capital 
letters will always represent 3 x 3 matrices; in particular, I will be the 
identity matrix. 

Of particular interest is the matrix H~B. This matrix represents a 
homography between the planes at infinity of the two cameras; that is, 
it transforms a direction as represented in one camera into the same 
direction represented in the other camera. The notation Hoo signifies 
how the basis transformation equals the infinity homography. Under 
the fixed-camera formulation H~B transforms the view from camera A 
into the view from camera B. For this reason, we refer to it as the 
camera-to-camera transformation. 

A position or a direction in space exists independently of what basis 
is used to measure it; we will use a subscript letter when needed to de-
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note a particular basis. For instance, if e is the direction between two 
camera's optical centers (ignoring the fixed-camera formulation momen­
tarily), then eA is e measured in basis A. The quantity e is called the 
epipole. The fundamental matrix F for two cameras A and B that are 
at different locations has the following representation [12]: 

(7.1) 

where [.] x denotes the cross product matrix. When the two cameras 
share the same optical center, the fundamental matrix is 0 and has no 
meaning. However, for each moving object n in the scene, we can define 
a new kind of fundamental matrix. If, after making the fixed-camera 
assumption, n is moving in direction u, then the fundamental matrix 
for the object is: 

(7.2) 

The epipoles of Fn are the vanishing points of n as viewed from the 
two reference cameras, and the epipolar lines trace out trajectories for 
points on n. 

4. VIEW INTERPOLATION FOR A SINGLE 
MOVING OBJECT 

Assume the two reference cameras share the same optical center and 
are viewing a point w that is part of an object 0 whose translation vector 
is u. Let q and q + u denote the position of w at times t = 0 and t = 1, 
respectively (Fig. 7.2). 

Assume for this section that the image planes of the cameras are 
parallel to each other and to u. The first half of this condition means 
that the third row of Hi?A equals the third row of Hi?B scaled by some 
constant >.. The second half means that (Hi?A Uu ) z = (Hi?B Uu ) z = 0, 
where Oz denotes the z-coordinate of a vector. Note that the condition 
of parallelism can be met retroactively by using standard rectification 
methods [22]. 

Setting e = (Hi?AqU)Z = >'(Hi?B(q + u)u)z, the linear interpolation 
of the projection of w into both cameras is 

(7.3) 

Now define a virtual camera V by the matrix 

(7.4) 
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Figure 7.2 Cameras A and B share the same optical center ( and are viewing a point 
on an object that translates by u. The image planes of the cameras are parallel to 
each other and to u, and hence interpolation will produce a physically-correct view 
of the object. On each image plane a line parallel to u is shown. 

Then the linear interpolation (Eq. 7.3) is equal to the projection of scene 
point q(s) onto the image plane of camera V, where 

q(S) 
u(s)v 

q + u(s) , 

sAuB' 

(7.5) 
(7.6) 

Notice that u(s) depends only on u and the camera matrices and not 
on the starting location q. Thus linear interpolation of conjugate object 
points by a factor s creates a physically-valid view of the object. The 
object is seen as it would appear through camera V if it had translated 
by u(s) from its starting position. 

Note that in Eq. 7.6, u(s) is represented in basis V. Since V changes 
with s it is difficult in general to characterize the trajectory in world 
coordinates. A key result in [17] states that, if UA = kUB, then 

SA 
U(S)B = (1 _ s)k + SA UB . (7.7) 

Thus the virtual trajectory, given by U(S)B' is a straight-line in basis B; 
basis V no longer plays a role. If k = A then U(S)B = SUB and the object 
moves at constant velocity. The results are in basis B, but multiplying 



130 CONFLUENCE OF COMPo VISION AND COMPo GRAPHICS 

by Hifu or HifA indicates that the results also hold in world coordinates 
and camera A's coordinates. Keep in mind that the world coordinate 
system used in this context has its origin at the shared optical center of 
the reference cameras. 

5. INTERPOLATION WITHOUT Hoc 

When HfB can be determined, the dynamic view interpolation will 
portray linear motion [17]. Unfortunately, finding HfB can be a difficult 
task. In fact, once HfB is known, each scene object can be reconstructed 
up to an affine transformation. The affine transformation is the same for 
each object up to an unknown scale factor that differs for each object. 
Hence, finding HfB is at least as difficult as affine object reconstruction. 

In this section we discuss the problem of creating dynamic view inter­
polations without first calculating HfB' All of the methods presented 
produce physically-valid view interpolations; some portray straight-line 
motion relative to a camera-centered coordinate frame. None are guar­
anteed to portray constant-velocity motion, however. 

In addition, we show how the appearance of straight-line motion can 
be produced in certain situations by correct prewarping. Finally, we 
discuss the benefits and drawbacks of using the methods in conjunction 
with affine views. 

5.1 SPECIAL CASE: PARALLEL MOTION 
Assume a fixed-camera formulation and let Ui denote the 3D displace­

ment between the position of object i at time t = 0 and its position at 
time t = 1. We will say the scene consists of parallel motion if all the Ui 

are parallel in scene space. 

Dynamic view morphing algorithm for the parallel motion case: 
Segment each view into layers corresponding to objects. Apply static view 
morphing to each layer and recomposite the results. 

The algorithm works because the fundamental matrix with respect to 
each object is the same, so the same prewarp works for each layer. The 
prewarp will make the direction of motion for each object parallel to the 
x-axis in both views; consequently, the objects will follow straight-line 
trajectories as measured in the camera frame. If we assume that the 
background object has no motion in world coordinates, then the virtual 
camera also moves parallel to the motion of all the objects and hence 
each object's motion is straight-line in world coordinates. 
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5.2 SPECIAL CASE: PLANAR PARALLEL 
MOTION 

We now consider the case in which all the Ui are parallel to some 
fixed plane in space. Note that this does not mean all the objects are 
translating in the same plane. Also note that this case applies whenever 
there are two moving objects (i.e., the background object and one object 
moving in the scene). 

Recall that in Section 4 the only requirement for the virtual view to 
be a physically-accurate portrayal of an object that translates by U is 
that the image planes of both reference views be parallel to U and to 
each other. In the planar parallel motion case, it is possible to prewarp 
the reference views so that their image planes are parallel to each other 
and to the displacements of all objects simultaneously. 

Dynamic view morphing algorithm for the planar parallel mo­
tion case: Segment each view into layers corresponding to objects. For 
each reference view, find a single prewarp that sends the z coordinate of 
the vanishing point of each object to O. Using this prewarp, apply static 
view morphing to each layer and then composite the results. 

The algorithm given above only guarantees physical correctness, not 
straight-line or linear motion. The appearance of straight-line motion 
can be created by first making the conjugate motion vectors parallel 
during the prewarp step. 

5.3 PRODUCING THE APPEARANCE OF 
STRAIGHT MOTION WITHOUT Hoo 

This subsection discusses the example illustrated in Fig. 7.3. Assum­
ing the fixed-camera formulation, let Uo denote the direction of motion 
of the background object and let Ul denote the direction the road is 
heading. That is, Ul is a vector parallel to the edges of the road. Note 
that Ul is not the direction of the car's motion under the fixed-camera 
formulation; the car's motion is the original translation of the car trav­
eling down the road minus the translation of the camera. 

Since vectors Uo and Ul are both parallel to the ground, they can be 
used to transform the two reference views to be parallel to the common 
plane. After this transformation, the views can be further transformed 
so that Uo points in the direction of the y-axis in both views and Ul 

points in the direction of the x-axis. 
The car's translation at this point is the sum of two perpendicular 

vectors: one is the translation of the background, which is entirely along 
the y-axis, and the other is the original translation of the car along 
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Figure 7.3 Illustration of how a car object can appear to stay traveling down a road 
during an interpolation sequence even when H~B is unknown. (i) A dynamic scene in 
world coordinates. (ii) Direction of camera and car movement in world coordinates. 
(iii) Reference views as captured by the moving camera. (iv) Movement of objects 
under the fixed-camera formulation. (v) Assuming the background motion is purely 
vertical and the road is purely horizontal, linear interpolation of conjugate points on 
the car will produce a motion where the car stays on the same horizontal line on the 
interpolated road. 

the road, which is entirely along the x-axis. When the car object is 
interpolated, the interpolation of the y-component of the car's fixed­
camera motion will exactly match the interpolation of the background 
object (which is interpolated entirely in the y direction). Since the road 
is part of the background object, this means that the car will stay on 
the road at every step of the interpolation, even as it translates in the 
x direction. In particular, the wheels of the car will stay on the correct 
horizontal line of the road throughout the interpolation; if the wheels 
had been touching one of the straight edges of the road, then they would 
stay touching that edge (Fig. 7.3(v)). 

Producing a view interpolation in which the car appears to move 
straight down the road is crucial for realism. The previous observation 
shows that this can be accomplished in some cases even without knowl­
edge of H~B' 

Is it necessary that the road be made purely horizontal and the back­
ground motion be made purely vertical before the interpolation is per­
formed in order for the interpolated car object to stay on the road? The 
answer is "no" as we now demonstrate. 
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Assume the two reference views have been transformed so that (1) the 
image planes of both cameras are parallel to the common plane of the 
ground, and (2) the conjugate directions Uo and Ul are aligned in the 
views. At this point a transformation M that preserves z-coordinates 
(i.e., a 2D affine transformation) could be applied to both views so as to 
make the road parallel to the x-axis and the motion of the background 
object parallel to the y-axis. For instance, M could be a rotation followed 
by a shear, both in the x,y-plane. 

By the discussion above, after M is applied the interpolated car object 
will always stay on the interpolated road. After the interpolation, M-1 

could be applied to the virtual view to bring it into agreement with the 
reference views. The interpolated car will, of course, still be on the road 
after M-1 is applied. Mathematically, this process of interpolation is 
described by 

M-1 [(1- S)~MH~AqU + S~MH~B(q + u)u .J (7.8) 

The corresponding virtual camera is 

(7.9) 

In both equations, the matrix M cancels out and the resulting equations 
exactly match those of Section 4. The net effect is that it was not neces­
sary to apply M at all; straight-forward interpolation would have kept 
the car on the road just as well. 

Note that the previous discussion applies to any invertible M that 
preserves the z-component. This can be a powerful tool for generalizing 
view interpolation results. For instance, it could have been used to prove 
the results of Section 4. 

5.4 AFFINE CAMERAS 
Although the development for affine cameras is very similar to that 

for pinhole cameras, the underlying geometry of the two models is very 
different and requires a separate analysis. 

The affine camera case is extremely important in practice. In addition, 
the algorithms for affine cameras are simpler and more robust than those 
for pinhole cameras. 

Like a pinhole camera, an affine camera has an orientation in space 
and can be associated with a system of basis vectors. However, projec­
tion onto the image plane consists simply of setting the z-coordinate to 
O. In effect, an affine camera has a z-axis corresponding to an infinitely 
long z basis vector. Using the fixed-camera formulation, in which the 
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Figure 7.4 Two affine cameras share the same optical center, but not the same z­
axis. The scene consists of two points lying on the z-axis of camera A. The points 
both project to the same location in camera A but to different locations in camera 
B, so no camera-to-camera transformation exists. 

camera matrices are just 3 x 3, the third row of an affine camera is all O's. 
Such a representation does not contain information about the camera's 
orientation and basis vectors. Hence, for the purposes of this section we 
will represent an affine camera A by the product of two matrices: 

[ 
1 0 0 1 

H~A = 0 1 0 H~A' 
000 

(7.10) 

Here H~A denotes the affine camera matrix for A while H~A provides 
the underlying camera basis and orientation. 

When cameras A and B share the same z-axis, there exists a camera­
to-camera transformation. This transformation is given by the matrix 

[ 100] [100] H~B = 0 1 0 H~B 0 1 0 . 
000 000 

(7.11) 

When the camera-to-camera transformation H~B exists, resulting vir­
tual views can be made to depict linear motion. H~B can be determined 
in this case from knowledge of just two conjugate directions: one conju­
gate direction is aligned with the x-axis of each view, the other with the 



A 

A 

\ 
\~ 

................ , 

Dynamic view interpolation. . . 135 
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(i) 
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(ii) 

Figure 7.5 (i) Three conjugate directions as seen in view A and view B. (ii) It is 
possible to transform the views so that all three conjugate directions are aligned. In 
this case, a rotation is used to point the dotted vector along the x-axis, then a shear 
is used to point the dashed vector along the y-axis, and finally the x- and y-axes are 
scaled to align the solid vector. 

y-axis, and then the x- and y-axes are scaled to place conjugate points 
on the same horizontal or vertical lines. Alternatively, a third conjugate 
direction could be used to determine scaling for the x- and y-axes (Fig. 
7.5). 

In general, except for when the z-axes are aligned, no camera-to­
camera transformation exists for affine cameras (Fig. 7.4). The following 
results lead to a general-purpose algorithm for affine cameras: 
Let n denote an object in the scene and let u be the associated trans­
lation vector. Let w be a point belonging to the object and let q and 
q + u denote the position of w at times t = 0 and t = 1, respectively. 

Projecting w into camera A at time t = 0 and into camera B at time 
t = 1 and then linearly interpolating the projected image points yields 

[ 
1 0 0 1 o 1 0 [(1- S)H~AqU + SH~B(q + u)ul . 
000 

(7.12) 

Because the x,y-projection matrix can be factored to the left, the devel­
opment for affine cameras continues exactly as for pinhole cameras with 
one notable exception: There are no conditions on the reference views 
because the z-coordinates will always be 0, and consequently there is 
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no prewarp step. As before, a virtual camera V exists such that the 
interpolation in Eq. 7.12 is the projection of scene point q + u(s) into 
camera V. Camera V is defined by 

[ 
1 0 0 1 H~v = (1- S)H~A + SH~B = 0 1 0 H~v' 
000 

(7.13) 

and u( s) is as given in Eq. (7.6). In Eq. (7.6), u( s) is given in terms of 
basis V, which is the basis implicit in Hifv. Note that the z-coordinate 
of u( s) is arbitrary. 

The results of Section 4 pertaining to straight-line and linear virtual 
motion also hold for affine cameras. 

It is always possible to simultaneously align three or fewer conjugate 
directions by using a technique analogous to that described above for 
finding H~B (Fig. 7.5). Any object whose conjugate translation direction 
can be aligned in both views will be portrayed as moving along a straight­
line path in camera coordinates. 

With pinhole cameras, the camera-to-camera transformation always 
exists so it is always possible to align any number of conjugate directions. 
With affine cameras, the camera-to-camera transformation may not exist 
so it is not always possible to portray straight-line motion for four or 
more objects. 

6. INTERPOLATION WITH Hoc 

If H~B is known or can be determined, then view interpolations can 
be produced in a much more controlled fashion. As discussed in Section 
4, an interpolation sequence can be created that portrays linear motion. 
Furthermore, as we now demonstrate, the space of possible intermediate 
virtual views that can be created from a set of reference views has an 
elegant vector-space structure. 

So far, we have only presented view interpolation for two reference 
views. When three reference views are available, view interpolation can 
be applied in a pairwise manner to make use of all three reference views: 
An interpolation can be performed on two of the views, and the resulting 
virtual view can be interpolated with the third reference view. This 
process can be continued so as to incorporate an arbitrary number of 
reference views. 

If the camera-to-camera transformation between each pair of reference 
views is known, the repeated pairwise interpolation will always portray 
linear virtual motion (Fig. 7.6). The order in which the pairwise interpo­
lations are performed will not matter, and the final image will represent 
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Figure 7.6 Virtual views can be created from multiple reference views by combining 
them in a pairwise manner. Here the reference views are A, B, and C, and the pairwise 
camera-to-camera transformations are known. 
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Figure 7.7 Reference view differences. The left-hand figure shows four points on 
a plane. By formally defining u to be the difference between point 2 and point 1, 
formally defining v to be the difference between point 3 and point 1, and formally 
taking point 1 to be the origin, point 4 can be represented as a linear combination of 
the quantities u and v. The same development exists if the points represent reference 
views acquired at various positions and times, assuming that linear motion can be 
achieved. Thus we can create a vector space of virtual views out of the purely formal 
concept of reference view differences. Note that each virtual view will have a time 
component as well as a space component. 

a "weighted sum" of reference-view differences analogous to a weighted 
sum of Euclidean vectors (Fig. 7.7). 

A reference-view difference is just an abstract concept; it does not, 
for instance, mean subtraction of the intensity values of one image from 
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another. The set of reference-view differences between one reference 
view and all the remaining views forms a basis for the vector space of 
all possible virtual views that can be created from the reference views. 
Therefore, just by considering such reference-view differences, we can 
quickly determine what virtual views can be created. For example, con­
sider two reference views taken from the same location but at different 
times. There is only one reference-view difference in this case, so there 
is a one-dimensional space of possible virtual views. In particular, the 
view at any time from the given location can be generated. Two refer­
ence views taken at the same time that differ only in the x-coordinate of 
their positions can generate all views along the x-axis for that instant in 
time. To generate every possible view (every position and every time), 
five reference views are necessary (leading to a four-dimensional basis 
set). 

Note that in general, except when linear motion can be achieved, the 
order in which the pairwise interpolations are performed will determine 
the final virtual view (i.e., the process is not commutative). 

7. EXPERIMENTAL RESULTS 
We have tested our methods on a variety of scenarios. Fig. 7.8 shows 

the results of three tests, each as a series of still images from a view 
interpolation sequence. The top-most and bottom-most images in each 
column are the two input reference views, and the center two images are 
virtual views created by the algorithm. 

To create each sequence, two preprocessing steps were performed man­
ually. First, the two reference views were divided into layers correspond­
ing to distinct objects. Second, for each corresponding layer a set of 
conjugate points between the two views was determined. Since our im­
plementation uses the Beier-Neely algorithm [3] for the morphing step, 
we actually determined a series of line-segment correspondences instead 
of point correspondences. For each sequence, between 30 and 50 line­
segment correspondences were used (counting all layers). 

For all the sequences, the camera calibration was completely unknown, 
the focal lengths were different, and the cameras were at different loca­
tions. 

The first sequence is from a test involving three moving objects (in­
cluding the background object). Since H~B could only be approximated, 
the appearance of straight-line motion was achieved by aligning the con­
jugate directions of motion for each object during the prewarp step (Sec­
tion 5.3). An object's direction of motion is given by the epipoles of the 
object's fundamental matrix. Instead of calculating the fundamental 



Dynamic view interpolation. . . 139 

Figure 7.B Experimental results 

matrices for the small objects on the table, we used the conjugate van­
ishing points of the tape "roads" for the same effect. 

The second sequence involves two moving objects (counting the back­
ground object) and a large change in focal length. The third sequence 
demonstrates the parallel motion algorithm (Section 5.1). The scene is 
static, but the pillar in the foreground and the remaining background 
points are treated as two separate objects that are moving parallel to 
each other. 
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8. SUMMARY 

We have demonstrated that physically-accurate, continuous interpo­
lations between two reference views of a dynamic scene can be created 
in an image-based manner without reconstructing scene geometry. The 
method requires that, for each object in the scene, the movement that 
occurs between the two reference views must be equivalent to a rigid 
translation. For pinhole cameras, it also requires that, through a pro­
cess of rectification, the image planes of both cameras can be made 
parallel to each other and to the direction of motion of any scene ob­
ject for which the interpolation is desired. In some cases this can be 
achieved without determining the exact direction of motion of the scene 
objects. When the direction of motion of an object can be determined 
with respect to the two cameras' bases, the view interpolation will por­
tray the object moving along a straight-line trajectory with respect to a 
camera-centered coordinate frame. 

For affine cameras, no prewarping step is necessary; interpolation al­
ways produces a physically-correct interpolation. If the directions of 
motion of up to three scene objects can be determined, then a prewarp 
can be performed so that the view interpolation will portray straight­
line motion with respect to a camera-centered coordinate frame. Since 
HfB does not exist in general for affine views, the techniques presented 
in this chapter cannot be used to portray linear motion except in special 
cases. 

For pinhole cameras, when H~B can be determined, the interpola­
tions can be made to portray linear motion. If more than two reference 
views are provided and if the camera-to-camera transformation can be 
determined between each pair of reference views, then the set of all pos­
sible virtual views that can be created is a vector space generated by 
reference-view differences. 
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Chapter 8 

FACIAL MOTION CAPTURING USING AN 
EXPLANATION-BASED APPROACH 

Hai Tao, Thomas S. Huang 

Abstract Building deformation models using the motions captured from real video 
sequences is becoming a popular method in facial animation. In this 
paper, we propose an explanation-based facial motion tracking algo­
rithm based on a piecewise Bezier volume deformation model (PBVD). 
The PBVD is a suitable model both for the synthesis and the anal­
ysis of facial images. It is linear and independent of the facial mesh 
structure. With this model, basic facial movements, or action units, 
are interactively defined. By changing the magnitudes of these action 
units, animated facial images are generated. The magnitudes of these 
action units can also be computed from real video sequences using a 
model-based tracking algorithm. However, in order to customize the 
articulation model for a particular face, the predefined PBVD action 
units need to be adaptively modified. In this paper, we first briefly in­
troduce the PBVD model and its application in facial animation. Then 
a multi-resolution PBVD-based motion tracking algorithm is presented. 
Finally, we describe an explanation-based tracking algorithm that takes 
the predefined action units as the initial articulation model and adap­
tively improves them during the tracking process to obtain a more realis­
tic articulation model. Experimental results on PBVD-based animation, 
model-based tracking, and explanation-based tracking are shown in this 
paper. 

1. INTRODUCTION 

Recently, great efforts have been made to integrate the computer vi­
sion and the computer graphics techniques in the areas of human com­
puter interaction, model-based video conferencing, visually guided an­
imation, and image-based rendering. A key element in these vision­
graphics systems is the model. A model provides the information de­
scribing the geometry, the dynamics, and many other attributes of an 
object that represents the prior knowledge and imposes a set of con-
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straints for analysis [6]. Among many applications, the analysis and 
synthesis of facial images is a good example that demonstrates the close 
relationships between graphics and vision technologies. As shown in 
Figure 8.1, a model-based facial image communication system involves 
three major parts (a) the analyzer or the motion generator, (b) the syn­
thesizer that renders the facial image (c) the transmission channel that 
efficiently communicates between (a) and (b). The system relies on an 
important component - the facial model. 

Video Analyzer 

Visual Speech 
Synthesizer 

Pre-stored facial 
movement sequences 

Human Interactive 
Tools 

E 0 
N E 

Oeformation---. C C 
Oetonmation 

Parameters 0 0 Parameters 
0 0 
E Channel E 
R R 

Facial Model 

Figure 8.1 A facial image communication system 

Te\econ lerencing 

Computer 
Human Agent 

3D Game 

Dislanl Learning 
System 

) 

Both geometric and deformation representations are equally impor­
tant components in facial modeling. We have developed system to ob­
tain 3D mesh model of a face from 3D CyberWare scanner data (Figure 
8.2). In this paper, however, our focus is the facial deformation model, 
which represents the dynamics of a face. Four categories of facial de­
formation models have been proposed. They are parameterized models 
[10], physical muscle models [7], free-form deformation models [5], and 
performance-driven animation models [12, 4]. In analysis, these models 
are applied as the constraints that regulate the facial movements. 

In this paper, a new free-form facial deformation model called piece­
wise Bezier volume deformation (PBVD) is proposed. Some properties of 
this model such as linearity and independence of mesh structure make it 
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a suitable choice for both realistic facial animation and robust facial mo­
tion analysis. The difference between this approach and Kalra's method 
[5] is twofold. By using non-parallel volumes, irregular 3D manifolds are 
formed. As a result, fewer deformation volumes are needed and the num­
ber of control points is reduced. This is a desired property for tracking 
algorithms. Further, based on facial feature points, this model is mesh 
independent and can be easily adopted to articulate any face model. 

By using the PBVD model, a facial animation system, a model-based 
facial motion tracking algorithm, and an explanation-based tracking al­
gorithm are presented. These algorithms have been successfully imple­
mented in several applications including video-driven facial animation, 
lip motion tracking, and real-time facial motion tracking. The remain­
ing sections are organized as following: Section 2 introduces the PBVD 
model and the PBVD-based animation system. Section 3 describes a 
PBVD model-based tracking algorithm. Explanation-based tracking is 
then described in Section 4. Some experimental results are demonstrated 
in Section 5, followed by discussions and concluding remarks in Section 
6. 

Figure 8.2 A facial mesh model derived from the CyberWare scanner data. Left: 
the mesh model. Right : the texture-mapped model. 
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2. PBVD MODEL 

2.1 PBVD - FORMULATION AND 
PROPERTIES 

A 3D Bezier volume [11] is defined as 

n m I 

x(u, v, w) = L L L bi,j,kBf(u)Bj(v)Bi(w) , (8.1) 
i=Oj=Ok=O 

where x( u, v, w) is a point inside the volume, which, in our case, is a 
facial mesh point. Variables (u, v, w) are the parameters ranging from 0 
to 1, bi,j,k are the control points, and, Bf(u), Bj(v), and Bi(w) are 
the Bernstein polynomials. By moving each control point bi,j,k with a 
amount of di,j,k, the displacement of the facial mesh point x( u, v, w) is 

n m I 

v(u, v, w) = L L L di,j,kBf(u)Bj(v)Bk(w) . (8.2) 
i=Oj=Ok=O 

Figure 8.3 shows the deformation of a Bezier volume that contains a 
part of the facial mesh. 

Bezier volume 
(top layer) 

Defonnation 

Figure 8.3 A Bezier volume 

In order to deform the face, multiple Bezier volumes are formed to 
embed all the deformable parts. These volumes are formed based on 
the facial feature points such as eye corners, mouth corners, etc. Each 
Bezier volume contains two layers, the external layer and the internal 
layer. They form the volume that contains the face mesh. Norm vec­
tors of each facial feature points are used to form these volumes. To 
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Figure 8.4 The face mesh and the 16 Bezier volumes 

ensure continuity in the deformation process, neighboring Bezier vol­
umes are of the same order along the borders. In other words, there 
are the same number of control points on each side of a boundary. The 
piecewise Bezier volume structure used in our implementation is shown 
in Figure 8.4. Using this model, facial regions with similar motions are 
controlled by a single volume and different volumes are connected so 
that the smoothness between regions is maintained. 

Once the PBVD model is constructed, for each mesh point on the face 
model, its corresponding Bernstein polynomials are computed. Then the 
deformation can be written in a matrix form as 

V=BD, (8.3) 

where V contains the nodal displacements of the mesh points, D contains 
the displacement vectors of Bezier volume control nodes. The matrix 
B describes the mapping function composed of Bernstein polynomials. 
Manipulating the control points through an interactive tool may derive 
various desired expressions, visual speech, or action units. In Figure 8.5, 
the real control mesh and the rendered expression smile is illustrated. At 
each moment, the non-rigid motion of a face may be modeled as a linear 
combination of different expressions or visemes (visual phonemes), or 
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(a) (b) 

Figure 8.5 (a) The PBVD volumes (b) the expression smile. 

formally 

v = B[DoDl ... Dm][POPl ... Pmr = BDP = LP, (8.4) 

where Di is an expression or a viseme, and Pi is its corresponding inten­
sity. The overall motion of the face is 

R(Vo + LP) + T , (8.5) 

where Vo is the neutral facial mesh, R is the rotation decided by the 
three rotation angles (wx , wy , wz ) = n, and T is the 3D translation. 

2.2 PBVD-BASED FACIAL ANIMATION 
Based on the PBVD model, facial action units are constructed using 

an interactive tool. Then various expressions and visemes are created 
either from combining these action units or from moving some control 
nodes. We have created 23 visemes manually to implement a talking 
head system. Six of them are shown in Figure 8.6. In addition to these 
visemes, six universal expressions have also been created. 

Once visemes and expressions are created, animation sequences can 
be generated by assigning appropriate values to the magnitudes of these 
visemes and expressions at each time instance. In our implementation, 
a human subject speaks to a microphone according to a script. The 
phoneme segmentation is then obtained using a speech recognition tool. 
Based on the phoneme segmentation results, mouth shapes and expres­
sions are computed using a coarticulation model similar to [9]. Audio 
and animation results are then synchronized to generate realistic talking 



Facial motion capturing using an explanation-based approach 149 

Figure 8.6 Expressions and visemes created using the PBVD model. The expressions 
and visemes (bottom row) and their corresponding control meshes (top row). The 
facial movements are, from left to right, neutral, anger, smile, voweLor, and voweLmet. 

Figure 8. 'l An animation sequence with smile and speech I am George McConkie. 

head sequences. Figure 8.7 shows some frames from a synthetic visual 
speech sequence. 

3. PBVD MODEL-BASED TRACKING 
ALGORITHM 

3.1 VIDEO ANALYSIS OF THE FACIAL 
MOVEMENTS 

Several algorithms for extracting face motion information from video 
sequences have been proposed [8, 1, 3, 2]. Most of these methods are 
designed to detect action-unit-level animation parameters. The assump­
tion is that the basic deformation model is already given and will not be 
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changed. In this section, we propose a tracking algorithm in the same 
flavor using the PBVD model. The algorithm adopts a multi-resolution 
framework to integrate the low-level motion field information with the 
high-level deformation constraints. Since the PBVD model is linear, an 
efficient optimization process using least squares estimator is formulated 
to incrementally track the head poses and the facial movements. The 
derived motion parameters can be used for facial animation, expression 
recognition, or bimodal speech recognition. 

3.2 MODEL-BASED TRACKING USING 
PBVD MODEL 

The changes of the motion parameters between two consecutive video 
frames are computed based on the motion field. The algorithm is shown 
in Figure 8.8. We assume that the camera is stationary. 

nn,P" 

E~ Defonn model 
H 

Template rN2D LSEmodel 

Rn(Vo+rPn)+t matching fitting 

di,dn,dP I Z-l 
I 

Figure 8.8 Block diagram of the model-based PBVD tracking system 

At the initialization stage, the face needs to be approximately frontal 
view so that the generic 3D model can be fitted. The inputs to the fitting 
algorithms are the positions of facial feature points, which are manually 
picked. All motion parameters are set to zeroes (i.e., ('to, 00, po,) = 0), 
which means a neutral face is assumed. The camera parameters are 
known in our implementation. Otherwise, a small segment of the video 
sequence should be used to estimate these parameter using the structure 
from motion techniques. 

Then, from the video frames nand n + 1, the 2D motion vectors 
of many mesh nodal points are estimated using the template matching 
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method. In our implementations, the template for each node contains 
11 x 11 pixels and the searching region for each node is an area of 17 x 17 
pixels. To alleviate the shifting problem, the templates from the previous 
frame and the templates from the initial frame are used together. For 
example, the even nodes of a patch are tracked using the templates 
from the previous frame and the odd nodes are tracked using those of 
the initial frame. Our experiments showed that this approach is very 
effective. 

From these motion vectors, 3D rigid motions and non-rigid motions 
(intensities of expressions/visemes or action units) are computed simul­
taneously using a least squares estimator. Since the PBVD model is 
linear, only the perspective projection and the rotation introduce non­
linearity. This property makes the algorithm simpler and more robust. 
The 2D inter-frame motion for each node is 

aV ~ 8[M(R(Vo + LP) + T)]I [ d! 1 = 
2D 8[T n P] A A A dH 

, , Tn,o'n,Pn d? 

[[ 1 0 --"-] [ Go - -"-G2 ] [ [RL]o - -"-[RLb ]] [ d! 1 
= MOl -~ GI - ~G2 [RL]o - ~[RL]2 ~~' (8.6) 

where aV 2D is the 2D inter-frame motion, and 

G = [ -~1 Zl -YI 

1 
0 -Xl 

YI -Xl 0 
(8.7) 

The projection matrix M is 

M= [ t 0 ~ 1 ' H. 
z 

(8.8) 

where f is the focal length of the camera, s is the scale factor, and 
Z is the depth of the mesh node. The vector (x, y, z) represents the 
3D mesh nodal position after both rigid and non-rigid deformation, or 
R(Vo + LP) + T. The vector (Xl, YI, Zl) represents the 3D mesh nodal 
position after only non-rigid deformation, but without translation and 
rotation (Le., Vo + LP). Matrix Gi and [RL]i denote the ith row of the 
matrix G and the matrix RL, respectively. 

An over-determined system is formed because many 2D inter-frame 
motion vectors are calculated. As the result, changes of the motion pa­
rameters (dT, dO, d?) can be estimated using a least squares estimator. 
By adding these changes to the previously estimated motion parameters 
(Tn, On, ?n), new motion parameters (Tn+1' On+1, ?n+1) , are derived. 
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3.3 MULTI-RESOLUTION FRAMEWORK 

Two problems with the above algorithm are the expensive template 
matching computation and the noisy motion vectors it derives. The first 
problem is obvious because the computational complexity for each mo­
tion vector is (11 x 11)(17 x 17) x 3 = 104,907 integer multiplications. 
The second problem is partially caused by the fact that in the above 
algorithm, the computation of the motion field is totally independent 
of the motion constraints, which makes it vulnerable to various noises. 
If the lower-level motion field measurements are too noisy, good esti­
mation of motion parameters can never be achieved, even with correct 
constraints. 
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Figure 8.9 The multi-resolution PBVD tracking algorithm 

A multi-resolution framework is proposed in this section to partially 
solve the above problems. The block diagram of this new algorithm 
is illustrated in Figure 8.9. An image pyramid is formed for each video 
frame. The algorithm proposed in the previous section is then applied to 
the consecutive frames sequentially from lowest resolution to the original 
resolution. For the diagram depicted in Figure 8.9, changes of motion 
parameters are computed in quarter-resolution images as 

(dT(O), dO(O), dP(O)). 

By adding these changes to (Tn, On , Fn), the estimated new motion pa­
rameters are derived as 
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Similarly, changes of motion parameters are computed in the half-reso­
lution images as (dT(1) , dO(l), dP(l») based on the previous motion pa­
rameter estimation 

This process continues until the original resolution is reached. 
In this coarse-to-fine algorithm, motion vector computation can be 

achieved with smaller searching regions and smaller templates. In our 
implementation, for each motion vector, the number of multiplications is 
[(5 x 5) x (7 x 7) x 3] x 4 = 14,700, which is about seven times fewer than 
the model-based scheme. A more important property of this method is 
that, to some extent, this coarse-to-fine framework integrates motion 
vector computation with high-level constraints. The computation of 
the motion parameter changes is based on the approximated motion 
parameters at low-resolution images. As the result, more robust tracking 
results are obtained. 

3.4 CONFIDENCE MEASUREMENTS 
Two quantities are computed for each frame as the confidence mea­

surements. The average normalized correlation Qc is computed based 
on nodes using the templates from the initial video frame. If the tracker 
fails, this quantity is small. The average LSE fitting error Q f indicates 
the tracking quality. When Q f is large, it means the motion field and the 
fitted model are not consistent. Qc and Qf are closely related. When Qc 
is small, which means the matching has low score, Qf is large. However, 
a large Qf does not necessarily imply a small Qc because the problem 
could be that the model itself is not correct. In our implementation, we 
use a confidence measurement J = Qc/Qf to monitor the status of the 
tracker. When J is smaller than a certain threshold, a face detection 
algorithm is initiated to find the approximate location of the face. The 
tracking algorithm will then continue. 

4. EXPLANATION-BASED MOTION 
TRACKING 

The model-based approach is powerful because it dramatically re­
duces the solution searching space by imposing domain knowledge as 
constraints. However, if the model is oversimplified, or is not consis­
tent with the actual dynamics, the results are prone to errors. To be 
able to learn new facial motion patterns while not to loose the benefits 
of model-based approach, a new tracking algorithm called explanation­
based method is proposed in this section. 
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4.1 THE APPROACH 

We use the term explanation-based to describe the strategy that 
starts from a rough domain theory and then incrementally elaborates 
the knowledge by learning new events. The existing domain theory pro­
vides some possible explanation of each new event, and the learning 
algorithm explores the new data to adjust the domain theory. For a 
PBVD tracking algorithm, the predefined action units provide an ex­
planation for the computed motion vectors. The fitting error, which is 
the combination of the noise and error of the model, is then analyzed to 
adjust the model. A block diagram is shown in Figure 8.10. It is essen­
tially the same as the block diagram for the model-based PBVD method 
except for the block that adjusts the non-rigid motion model L. The 
model L includes two parts: Band D. Both of them can be adjusted. 
Changing D means to change the displacement vector or control nodes 
for each action units so that the model fits the data better. Modifying B 
means to modify Bezier volumes so that descriptive power of the model 
is enhanced. In this paper, we discuss the learning of D. 

Deform model 

~(Vo+Ii:.)+fn 
Template 
matching 

dV2D LSEmodel 
fitting 

Figure 8.10 The block diagram of the explanation-based tracking algorithm 

4.2 LEARNING EXPRESSIONS/VISEMES 
AND ACTION UNITS 

The learning of D is based on the model-based analysis of a video 
segment. As shown in Figure 8.11, the predefined action units Dare 
first used in a model-based method to track n frames, then the tracking 
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error is analyzed and the deformation D is modified. The new D is then 
used as the model in the next segment. This process is performed during 
the entire tracking process. 

To adjust D, for each frame, 2D motion residuals are projected back 
to 3D non-rigid motion according to the 3D model and in-surface motion 
assumption. The fitting error for any mesh nodes can be written as 

(8.9) 

where V res2D is the 2D fitting error in the LSE equation, M is the 
perspective projection matrix, and R is the rotation matrix. Vectors Ul 

and U2 are the 3D vectors that span the tangent plane of the investigated 
facial mesh node. They can be decided from the norm vector of that 
mesh node. From Eq. (8.9), a and b can be solved and the 3D residual 
V res is derived. 

Frame 0 n 2n mn 
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Figure 8.11 Learning of the expressions/visemes or action units (D) in a video se­
quence 

For each frame, the projected 3D motion is 

V mes = LP + aVres , (8.10) 

where L is the previous PBVD model, P is the vector representing the 
non-rigid motion magnitudes, and a is the learning rate. The term LP 
means the fitted part of the motion. The vector V mes is collected for 
each frame in a video segment. At the end of that segment, adjustment 
of the D is performed. 

Adjusting D is equivalent to adjusting Di (see Eq. (8.4)). An iterative 
algorithm is proposed in this paper. For each loop, only one Di is 
modified; the others are fixed. For example, for the first iteration, only 
Do is adjusted. For each frame, we derive the 3D-motion vector that 
equals 

VrO = V mes - B[ODl ... DmlP . (8.11) 
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The peA analysis of V rO in a video segment is performed to extract 
the major motion patterns such as VeOO, VeOl, etc. The number of 
these patterns is decided by the energy distribution in the eigenvalues. 
The maximum number of these patterns can also be imposed to avoid 
over-fitting. We assume these motions are due to some DOi. 

To find the deformation unit that causes each eigenvector, the follow­
ing LSE problems are solved 

(8.12) 

where C is the smoothness constraint that regulates DOk so that the 
motion of PBVD control nodes are smooth. 

5. IMPLEMENTATION AND 
EXPERIMENTAL RESULTS 

The PBVD model has been implemented on a SGI ONYX machine 
with a VTX graphics engine. Real-time tracking at 10 frames/s has 
been achieved using the multi-resolution framework. It has also been 
used for bimodal speech recognition and bimodal emotion recognition. 
Explanation-based method has been implemented to improve the facial 
image synthesis. 

Figure 8.12 The action units in bimodal speech recognition. Top: the control nodes. 
Bottom: the action units. 
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5.1 FACIAL MODEL INITIALIZATION 
The face in the first video frame needs to be approximately frontal 

view and with a neutral expression. From this frame, facial feature points 
are extracted manually. The 3D fitting algorithm is then applied to warp 
the generic model according to these feature points. However, since we 
only have 2D information, the whole warping process is performed in 
2D except the initial scaling. Once the geometric facial model is fitted, 
a PBVD model is automatically derived from some facial feature points 
and their corresponding norms. 

5.2 PBVD MODEL-BASED TRACKING 
In PBVD tracking algorithm, the choice of deformation units Di de­

pends on the application. In a bimodal speech recognition application, 6 
action units are used to describe the motions around the mouth. These 
action units are illustrated in Figure 8.12. The tracking result for each 
frame is twelve parameters including the rotation, the translation, and 
the intensities of these action units. 

For the bimodal emotion recognition and the real-time demo system, 
12 action units are used. Actually, users can design any set of deforma­
tion units for the tracking algorithm. These deformations can be either 
at expression level or at action unit level. Lip tracking results are shown 
in Figure 8.13. Figure 8.14 shows the results of the real-time tracker. 

(a) (b) 

(c) (d) 

Figure 8.13 Lip tracking for bimodal speech recognition 



158 CONFLUENCE OF COMPo VISION AND COMPo GRAPHICS 

Facial animation sequences are generated from the detected motion 
parameters. Figure 8.15 shows the original video frames and the synthe­
sized results. The synthesized facial model uses the initial video frame 
as the texture. The texture-mapped model is then deformed according 
to the motion parameters. 

(a) (b) 

(c) (d) 

Figure 8.14 Tracking results of the real-time demo system. The two bars are Qc 
(left) and Qf(right), respectively. 

5.3 EXPLANATION-BASED TRACKING 
A set of predefined motion units is used as the initial deformation 

model. Then, these motion units are adjusted during the tracking. To 
compare the results, some generic motion units are used in the model­
based method. The resulted synthesis is not convincing (Figure 8.16(b)). 
In Figure 8.16(c), the improved result of the explanation-based method 
is shown. In our implementation, the segment size is 20 frames, and the 
learning rate is a = 0.4. 
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Figure 8.15 The original video frames (top) and the synthesized tracking results 
(bottom). 

(a) (b) (c) 

Figure 8.16 The synthesis results (a) original frame (b) model-based (c) explanation­
based. 

6. DISCUSSION 
In this paper, issues on generating facial articulation models from real 

video sequences are addressed. Three major contributions are PBVD 
model and facial animation, PBVD model-based tracking, and explanation­
based tracking. For future research, the emphasis will be on improving 
low-level motion field calculation, combining the explanation-based ap­
proach with multi-resolution framework, and recognizing spatio-temporal 
patterns from the facial motion parameters. 
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Chapter 9 

IMAGE-BASED 3D MODELING: 
MODELING FROM REALITY 

Luc Van Gool, Filip Defoort, Johannes Hug, Gregor Kalberer, 
Reinhard Koch, Danny Martens, Marc Pollefeys, Marc Proesmans, 
Maarten Vergauwen, Alexey Zalesny 

Abstract Increasingly, realistic object, scene, and event modeling is based on im­
age data rather than manual synthesis. The paper describes a system 
for visits to a virtual, 3D archeological site. One can navigate through 
this environment, with a virtual guide as companion. One can ask ques­
tions using natural, fluent speech. The guide will respond and will bring 
the visitor to the desired place. Simple answers are given as changes 
in the orientations of his head, by him raising his eyebrows or by head 
nodding. In the near future the head will speak. 
The idea to model directly from images is applied in three subcompo­
nents of this system. First, there are two systems for 3D modeling. One 
is a shape-from-video system, that turns multiple, uncalibrated images 
into realistic 3D models. This system was used to model the landscape 
and buildings of the site. The second projects a special pattern and was 
used to model smaller pieces, like statues and ornaments that often had 
intricate shapes. Secondly, the model of the scene is only as convincing 
as the texture by which it is covered. As it is impossible to keep images 
of the texture of a complete landscape, images of the natural surface 
were used to synthesize more of similar texture, starting from a very 
compact yet effective texture model. Thirdly, natural lip motions were 
learned from observed, 3D face dynamics. These will be used to animate 
the virtual guide in future versions of the system. 

1. INTRODUCTION 
We describe preliminary results for a virtual tour operator system. 

The demonstrator is centered around a visit to virtual Sagalassos, an 
ancient city in Turkey, that is being excavated by archaeologists of the 
University of Leuven. This demonstrator-coined EAMOS-integrates 
research on speech (Univ. Leuven) and vision (Univ. Leuven and ETH 
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Zurich). The underlying, three-dimensional site model not only consists 
of the current landscape, ruins, and other finds, but it also contains 
CAD models of the original city. This helps to interpret the ruins in 
their original context. 

One can navigate through this environment, with a virtual guide as 
companion. EAMOS allows a user to visually explore the scene with the 
assistance of this guide, which responds to spoken commands. The guid­
ing agent presents itself as a hovering mask, and is able to communicate 
back to the user through head gestures and emotional expressions. The 
user is invited to inquire about the archeological site. The user is free 
to query for any interesting places to visit, or may ask for additional 
information about something visible in the scene. The guide takes the 
user on a tour, navigating from viewpoint to viewpoint in the scene. The 
visitors of virtual Sagalassos can formulate their queries through fluent, 
natural speech. The visual presence of the guide makes the interaction 
even more intuitive. As the mask reacts to the requests, a protocol is 
established that is quite similar to that of a normal person-to-person 
conversation. If wrongly understood, the user can soon pick up on the 
guide's mental state, as the facial mask frowns in anguish. Simple head 
nods confirm or negate questions, affirm or deny requests. In the near 
future the head will be animated to also let it speak, so that the guide 
can formulate more intelligent answers. Fig. 9.1 shows some example 
views during such a virtual tour. 

The current line-up deployed for EAMOS consists of a single parallel 
processing computer (Onyx Infinite Reality), equipped with an audio 
interface. Different concurrently running software packages take care 
of rendering the scene, animating the guide, as well as processing and 
interpreting the speech. 

This contribution focuses on the vision, not the speech aspect. In 
particular it describes how the EAMOS demonstrator is based on three 
vision tasks, that each have been approached using image-based model­
ing as the primary paradigm: 

1. 3D modeling of the landscape, ruins, and finds, 

2. modeling of the landscape texture, 

3. speech-oriented animation of the virtual guide's face. 

Currently, the team is integrating these techniques into a system that 
guides people around through virtual Sagalassos. A first version is ready, 
but each aspect needs improvement. Each of these aspects in now dis­
cussed in more detail, as well as our plans for the future. 
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Figure 9.1 Holiday pictures from a trip to virtual Sagalassos. The guide was very 
helpful, but not very talkative. The weather was good: dry and room temperature 
throughout our stay. The figures show several of the components of which the site 
model is composed: a 3D landscape model, more detailed building models, CAD 
models that show the original shapes of the buildings and the context of the remaining 
ruins; the face mask of the virtual guide to whom questions can be asked in fluent 
speech and which reacts with emotional expressions. 

2. TWO IMAGE-BASED 3D ACQUISITION 
SYSTEMS 

A first requirement for the EAMOS demonstrator is that visually 
convincing 3D models of the site be built. In the end, this will have to 
include a 3D model of the terrain (landscape), of the existing ruins, of 
the statuary (sculptures and ornaments), and of the different finds such 
as pottery. For now, initial models have been produced for the terrain, 
for some of the ruins, and for a few sculptures. 

This section describes the two 3D acquisition systems that were used. 
They share the underlying idea of building systems that are easy to 
use and only require off-the-shelf hardware. This is important, as the 
archaeologists should be able to use the equipment in situ and without 
causing lengthy interruptions in the excavations. The systems should be 
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brought to the finds and not vice versa. This is difficult if the acquisition 
equipment is either too expensive or too vulnerable. As it has to be 
carried around, the 3D acquisition systems should also be very light. 

2.1 SHAPE-FROM-VIDEO 

A first technique only requires a camera. It starts from multiple im­
ages, e.g. a video sequence. In contrast to traditional shape-from-motion 
or stereo approaches, the motion and intrinsic parameters of the camera 
are unknown. As a result, also existing footage can be used to recon­
struct scenes that no longer exist. Much along the lines of work reported 
by Armstrong et ai. [1], the method is based on the automatic tracking 
of image features over the different views. This is done in stages. First, 
a (Harris) corner detector is applied to yield a limited set of initial cor­
respondences, which enable the process to put in place some geometric 
constraints (e.g. the epipolar lines as restricted search areas). These 
constraints support the correspondence search for a wider set of features 
and in the limit, for a dense, i.e. pixel-wise, field of disparities between 
the images [9]. 

The limited set of corner correspondences also yields the necessary 
data to perform a fully automated calibration of the camera and hence 
the camera projection matrices for its different, subsequent positions. 
Once these matrices are available, the 3D reconstruction of the observed 
scene can be produced. In general, to arrive at metric structure-­
i.e. to undo any remaining projective and affine skew from the 3D 
reconstruction-the camera intrinsic parameters like the focal length 
etc. have to remain fixed. But even if one has limited a priori knowl­
edge about these parameters, like the pixel aspect ratio or the fact that 
rows and columns in the images are orthogonal, then also focal length 
can be allowed to change [7, 11, 12]. 

Fig. 9.2 gives an example of a historic building that has been recon­
structed with this shape-from-video technique. It shows two of 6 images 
of an Indian temple, used for its 3D reconstruction. All images were 
taken from the same ground level as these two. Fig. 9.3 shows 2 views 
of the 3D reconstruction-a general overview and a detail-from view­
points substantially different from those of the input images. The same 
method was applied to model the Sagalassos landscape. Several images 
were taken along the rim of a hill overlooking the excavation site. For 
several of the buildings (ruins) close range images were taken and also 
these were modeled. In all cases the intrinsic and extrinsic parameters 
of the camera were unknown. 
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Figure 9.2 Images of an Indian temple 

As the method produces the list of intrinsic and extrinsic camera 
parameters one could also add virtual objects to the video sequences 
that were used as input. We have just started to explore such augmented 
reality work. 

Our ongoing research in the shape-from-video area focuses on the 
following aspects: 

1. to process longer image sequences fully automatically; 

2. to integrate data from different sequences, e.g. for the exterior and 
interior of a building; 
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Figure 9.3 Two views of the shape-from-video reconstruction obtained for the Indian 
temple 
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3. to solve the wide baseline correspondence problem, as to ensure 
that the system can automatically combine information from se­
quences taken from very different viewpoints; 

4. to better combine the texture information contained in the differ­
ent frames, e.g. to arrive at super-resolution; 

5. to model different excavation strata in 3D and to integrate such 
information to build a detailed 3D, dynamic record of the excava­
tions; 

6. to extend the use of 3D acquisition technology to the support of 
virtual or real restoration and anastylosis, i.e. to use the 3D shapes 
of building blocks, sherds, and pieces in general to see how they 
can fit together. If the building or the artifact to which the pieces 
belong is of high scientific or artistic value a real restoration can 
then follow. 

2.2 ACTIVE, ONE-SHOT 3D ACQUISITION 
The 'passive' technique outlined in the previous section cannot deal 

with untextured parts of a scene. This is a major problem with objects 
such as statues, the shape of which should be extracted with high preci­
sion, but which often do not have strongly textured surfaces. The same 
goes for the extraction of the shape of human faces, as is required for 
the animation of the guide's mask, as discussed later. 

"Active" systems bypass the problem by projecting a pattern onto the 
scene. The 3D shape is extracted by analyzing the displacements/defor­
mations of the pattern when observed from a different direction (see [8] 
and Besl [2] for an overview). Typically, such methods have relied on 
the projection of single points or lines and on scanning the scene to 
gradually build a 3D description point by point or line by line. 

It is possible, however, to extract more complete 3D information from 
a single image by projecting a grid of lines. So far, such approaches had 
used additional constraints or information codes which force the grid to 
remain sparse [3, 13, 10]. With the technique we have developed and 
which has been refined and commercialised by Eyetronics [4] dense grids 
are projected, yielding high resolution 3D models. A single image yields 
the 3D shape of what is visible of the object to the camera and the 
projector. Fig. 9.4 shows the setup and a detail of an image from which 
3D information can be extracted. 

In order to also extract the surface texture, the lines of the grid are 
filtered out. Obviously, an alternative for static objects is to take another 
image without the grid. Yet, this is not an easy option if texture is to 
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camera 

projector 

Figure 9.4 Top: The active system only consists of a normal slide projector and 
camera, and a computer. The camera takes an image from a direction that is slightly 
different from the direction of projection. Bottom: A regular square pattern is pro­
jected on the scene, as seen in this detailed view. In this case, the grid covers the 
complete face. 3D coordinates are calculated for all the line intersections, resulting 
in the simultaneous measurement for thousands of points. 
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Figure 9.5 Two views of the reconstructed Dionysos statue 

be obtained for dynamic scenes. The elimination of the grid is based on 
non-linear diffusion techniques and, of course, the precise knowledge of 
where the grid lines are in the image, but this is known from the shape 
extraction step. 

Fig. 9.5 shows the 3D reconstruction of a Dionysos statue, found at 
the archaeological site of Sagalassos. It would be difficult to put such 
several tons heavy statue into the working volume of a laser scanner and 
it is not sure that the latter would survive ... 

Currently studied extensions to this technology include: 

1. building a more compact, hand-held setup that is easy for use in 
situ; 

2. the automatic crude registration of partial 3D patches, after which 
a traditional technique like ICP or mutual information is used to 
perform the fine-registration. Now crude registration still has to 
be done manually; 

3. to specialize the setup also for pottery sherds, which are very im­
portant in archaeology for dating the stratigraphic layers uncov­
ered during the excavations. 

3. IMAGE-BASED TEXTURE SYNTHESIS 
Only a rather rough model of the landscape has been built. In fact, 

the resolution of this model is much coarser than that of some of the 
ruins. As one moves from building to building and crosses the bare 
landscape in between, there is a noticeable and disturbing difference in 
visual detail between the textures. On the other hand, precise modeling 
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Figure 9.6 Image showing terrain texture at the Sagalassos site 

of the landscape texture would cost an enormous amount of time and 
memory space. Also, such precise modeling is not really required. It 
would for most practical means suffice to cover the landscape with a 
texture that looks detailed and realistic, but that does not necessarily 
correspond to the real texture on that particular part of the site. Thus, 
as a compromise we model the terrain texture on the basis of a few, 
selected example images. Such example image is shown in Fig. 9.6. The 
resulting model is very compact and can be used to generate arbitrarily 
large patches of texture that look very similar to the exemplar texture. 
Emphasis so far has been on the quality of the results rather than the 
efficiency of the texture synthesis. 

The approach builds on the cooccurrence principle: nearly all pos­
sible pairwise interactions in the example texture image are analyzed. 
The fact that only pairwise interactions are analyzed is in line with 
Julesz's observation that mainly first and second-order statistics govern 
our perception of textures. Yet, it is well-known that third and higher 
order statistics cannot be neglected just like that, mainly because of fig­
ural patterns that are not preserved. Here we are dealing with natural 
textures and this issue is less crucial. Nevertheless, this restriction is dic­
tated rather by the computational complexity and not by the underlying 
principles. 

Textures are synthesized as to mimick the pairwise statistics of the 
example texture. Just using all pairwise interactions in the model is 
not a viable approach and a good selection needs to be made [6]. We 
have opted for an approach that makes a selection as to keep this set 
minimal but on the other hand bring the statistics of the synthesized 
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textures very close to that of the example textures [14]. Parameter 
selection follows an iterative approach, where pairwise interactions are 
added one by one, the synthetic texture is each time updated accordingly, 
and the statistical difference between example and synthesized texture 
is analyzed to decide on which further addition to make. The set of 
pairwise interactions selected for the model (from which textures are 
synthesized) is called the neighborhood system. 

A sketch of the algorithm is as follows: 

step 1: Collect the complete 2nd-order statistics for the example tex­
ture, i.e. the statistics of all pairwise interactions. (After this step 
the example texture is no longer needed). As a matter of fact, 
the current implementation does not start from all pairwise inter­
actions, as it focuses on interactions between positions within a 
maximal distance. 

step 2: Generate an image filled with independent noise and with values 
uniformly distributed in the range of the example texture. This 
noise image serves as the initial synthesized texture, to be refined 
in subsequent steps. 

step 3: Collect the full pairwise statistics for the current synthesized 
image. 

step 4: For each type of pairwise interaction, compare the statistics 
of the example texture and the synthesized texture and calculate 
their 'distance'. For the statistics the intensity difference distri­
bution (normalized histograms) were used and the distance was 
simply Euclidean. In fact, the intensity distribution of the images 
was added also, where 'singletons' played the role of an additional 
interaction. The current implementation uses image quantization 
with 32 gray levels. 

step 5: Select the intera'Ction type with the maximal distance (cf. step 4). 
If this distance is less than some threshold go to step 8-the end 
of the algorithm. Otherwise add the interaction type to the cur­
rent (initially empty) neighborhood system and all its statistical 
characteristics to the current (initially empty) texture parameter 
set. 

step 6: Synthesize a new texture using the updated neighborhood sys­
tem and texture parameter set. 

step 7: Go to step 3. 

step 8: End of the algorithm. 
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For texture synthesis the images are treated as a realization from the 
family of Markov random fields with the neighborhood system corre­
sponding to the selected interaction types. The convergence of the cor­
responding relaxation procedure to a single stationary point has been 
proven [14]. 

After the 8-step analysis algorithm we have the final neighborhood 
system of the texture and its parameter set. This model is very small 
compared to the complete 2nd-order statistics extracted in step 1. Typ­
ically only 10 to 40 pairwise interactions are included and the model 
amounts from a few hundreds to a few thousands bytes. Nevertheless, it 
yields small statistical differences between the example and synthesized 
textures. 

This texture synthesis approach can handle quite broad classes of tex­
tures. Nevertheless, it has problems with capturing complex semantic 
orderings or texels of specific shapes. The method has mainly been used 
for colored textures, as is also required for the Sagalassos virtual site. 
In the case of color images pairwise interactions are added that combine 
intensities of different bands. The shortest 4-neighborhood system and 
the vertical interband interactions were always preselected because ex­
periments showed that they are important for the vast majority of the 
texture classes. Fig. 9.7 shows a synthesized texture for the example 
image in Fig. 9.6. Fig. 9.8 shows part of the site with the original ter­
rain model texture (top) and with synthesized texture mapped onto the 
landscape (bottom). 

Ongoing work is aimed at extending the results in order to 

1. include the 3D nature of texture: the idea is to model textures 
from images taken from different views, but without a complete 
extraction of the neighborhood system for every view separately 
as this would take too much time; 

2. compress the 3D texture models: this could be done by exploiting 
the relation between a texture's appearance for different viewing 
angles; 

3. to achieve viewpoint consistency: if the goal is to move around 
in a scene, the texture at a certain location should change in a 
way that is consistent with the texture generated in the previous 
views, e.g. pattern mimicking rocks should not be shifted around. 
The hope is to achieve this by driving the probabilities for the 
generation of different color patterns not only from the model for 
the required viewing angle, but also from transition probabilities 
given the previous view. 
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Figure 9.7 A synthesized texture based on the example image of Fig. 9.6. 

Figure 9.8 View of the old bath house and surrounding landscape at Sagalassos. 
Top: view with the original landscape texture. As this view strongly zooms in onto 
this model, the texture is of insufficient quality. Bottom: the landscape texture has 
been replaced by synthetic texture. 
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4. FACE ANIMATION FOR SPEECH 

Currently the guide only listens and answers through facial expres­
sions, but he does not talk. Work on face animation should change 
this. The plan is to learn realistic 3D representations of visemes from 
observed 3D lip motions captured with the active system (section 2.2). 
As 3D can be captured from a single image, one can also take a video 
of a moving or deforming object and get as many 3D reconstructions 
as there are frames. Fig. 9.9 shows the 3D reconstructions extracted 
from three frames of a talking head video, each seen from three different 
viewpoints. From video data taken with a normal camera 25 (or 30) 
reconstructions can be made for every second of motion. The quality 
suffices to carry out detailed investigations into 3D face dynamics. Each 
3D snapshot consists of 3D data for thousands of points (the full grid 
contains 600 x 600 lines and for every intersection a 3D coordinate can 
be given out by the system, so camera resolution is the limiting factor 
here). The 3D reconstructions can be made at the temporal resolution 
of the video camera, but processing is done off-line. For the moment, the 
reconstruction of a single frame including texture takes about 2 minutes. 

At the time of writing, 3D dynamics have been captured for a basic 
set of 16 visemes, following conclusions by Ezzat and Poggio [5J. In a 
first step, a topological lip mask was fitted to the different 3D mouth 
positions. This mask is illustrated in Fig. 9.10. 

Statistics were extracted for the mask nodes positions. These were 
used to generate a robust lip tracker. Apart from the 3D positions, the 
tracker also uses color information and 3D surface curvature. Fig. 9.11 
shows the lip mask as it was automatically fitted to different mouth 
poses, in order to learn 3D lip dynamics for the 16 basic visemes. 

The work on face animation has just started. Several issues are under 
investigation: 

1. the set of basic visemes, including co-articulation effects, needs to 
be determined. Currently, there is not much agreement on this 
point in the literature; 

2. these visemes have to be extracted with a high degree of automa­
tion from examples for different people, in order to draw the nec­
essary statistics; 

3. the step from analysis to synthesis/animation of the virtual guide 
has to be performed, based on speech input. 
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Figure 9.9 3D reconstructions of a face for three frames of a video and shown from 
3 different viewpoints. 
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Figure 9.10 A lip topology mask is used to support tracking 

Figure 9.11 The lip topology mask is fitted automatically to the 3D data, using 3D 
positions, surface color, and surface curvature. 
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5. CONCLUSIONS AND FUTURE WORK 

In this paper we discussed ongoing work on a system that guides 
visitors through a virtual archaeological site. The underlying 3D ac­
quisition technology was concisely described. It plays a crucial role in 
making such large-scale projects possible, as it is easy to operate and 
yet yields realistically looking models. A similar philosophy of modeling 
from observations was used to synthesize textures similar to those found 
on site and to learn 3D mouth dynamics for a range of visemes. 

Much work remains to be done also on the visualisation side. In future 
implementations, EAMOS will try to anticipate user requests through 
user modeling. Also will more 3D models be produced, of additional 
buildings (with the passive shape-from-video technique) and finds (with 
the active one-shot technique). Also will the CAD reconstructions be 
extended to represent different periods: from the 2nd century BC (Greek 
period, Sagalassos' heydays) up to the 6th century AD (Christian period, 
decline and shortly before its destruction by an earthquake, after which 
it was abandoned for good). In parallel, some of our colleagues are 
working on the compression of the 3D models and level-of-detail oriented 
compression. 
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Chapter 10 

COMPUTER VISION AND GRAPHICS 
TECHNIQUES FOR MODELING DRESSED 
HUMANS 

Nebojsa Jojic, Thomas S. Huang 

Abstract In this chapter we present techniques for building dressed human models 
from images. We combine computer vision based approaches such as 
3-D reconstruction of a human body and analysis-by-synthesis of the 
behavior of cloth material with the computer graphics approaches for 
realistic rendering of complex objects. The experimental results include 
building textured 3-D models of humans from multiple images, dressing 
these models into virtual garment, and joint estimation of cloth draping 
parameters and the underlying object's geometry in range images of 
dressed objects. 

1. INTRODUCTION 

This chapter is a study of methods for acquiring relatively detailed 
human models from images. We concentrate on two important compo­
nents of a human model: body geometry and physics-based models of 
the garment, both augmented by texture mapping. Potential applica­
tions include synthetic-natural hybrid coding (SNHC) , virtual reality, 
CAD systems for garment design, and even garment shopping over the 
Internet (see [12]). 

In the first part of the chapter, we study the problem of 3-D recon­
struction of complex multi-part objects, such as a human body, from vi­
sual cues. In the second part, we present an algorithm for vision-based 
analysis of the cloth draping effect that allows for estimating param­
eters of a physics-based cloth model jointly with the geometry of the 
supporting object. In one of the experiments, we also demonstrate how 
a dressed human model can be built from images by combining these 
two algorithms. 
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We define the problem of the reconstruction of a human body in an 
arbitrary posture as the problem of 3-D shape estimation of an object 
consisting of several parts which may partially or completely occlude 
each other from some views. The algorithms that we derive here could 
be used for other such objects, or for multiple occluding objects. 

The usual stereo or structured light methods cannot give a complete 
surface estimate in such cases, as either the lighting source or the cameras 
may not see all the parts of the object. Moreover, the correspondence 
problem is not a trivial task in using stereo or structured light methods. 

To overcome these difficulties, we model the object with several de­
formable superquadrics and use occluding contours and stereo to govern 
part positioning, orientation and deformation. Image contours provide 
a crude surface estimate which guides the stereo matching process. In 
turn, the 3-D points provided by stereo cues can further refine the surface 
estimate and improve contour fitting. 

Compared with related work [16, 21], we propose a faster force assign­
ment algorithm based on chamfer images. We can reconstruct multiple 
objects and multipart self-occluding objects, which can be rigid or may 
not be capable of performing prescribed set of movements as required 
in [15, 14]. We can use arbitrary camera configuration, unlike the case 
in [24] where parallel projection and coplanar viewing directions are as­
sumed. Moreover, the whole scheme avoids the problem of merging of 
reconstructed surface patches from different views as in [24]. 

Experimental results in this chapter include building texture-mapped 
3-D models ofreal humans from images. These models could be used for 
automatic body measurements, or could be dressed into virtual clothing 
and animated. 

The main topic of the second part of the chapter is motivated by 
the extensive use and advancement of CAD/CAM systems for garment 
design and manufacturing, as well as the ever-increasing computer speed 
and popularity of the Internet. These developments indicate that the 
clothed human models might be more on demand in the next generation 
of model-based video coding and telepresence software, as well as in 
home shopping businesses that would involve trying on virtual garments 
before making the order of the physical ones. Several physics-based cloth 
models have been developed over the last decade. A good survey of cloth 
modeling techniques is given in [18]. 

Another approach to "simulating" draping has been rather successful 
in the garment CAD software. Instead of physics-based simulation of the 
three-dimensional draping effect, this type of software uses a single image 
of a model wearing a garment of uniform color. The human operator 
places a distorted 2-D or 3-D grid over the garment in the image, and 
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this grid is then used to apply a desired pattern by texture mapping. 
The shading from the original image is kept. This technique is usually 
referred to as re-imaging and is widely used to reduce the cost of photo 
shooting and sample manufacturing [17, 4]. 

The physics-based cloth models are used to simulate the internal and 
external forces that cause the cloth to drape [22, 3, 2, 6, 19]. Model 
parameters can be derived from mechanical measurements obtained by 
the Kawabata Evaluation System [2, 5]. To the best of our knowledge, 
a quantitative comparison between simulated and real drape has not 
yet been offered, except for the comparison of "drape factors" as in [5]. 
However, this measure is not reliable, as different materials may have 
the same drape factor, but exhibit visually different draping behavior. 

In this chapter, we address the problem of estimating model parame­
ters of any physics-based cloth model by comparing the simulated drape 
to the range data of the real drape. There are several advantages to this 
approach: 

1. We define a measure of the model quality, the mean distance be­
tween the model and the range data, computed over the whole 
surface of the scanned cloth. 

2. By minimizing this mean distance, we avoid performing mechanical 
measurements with expensive equipment. 

3. We directly address the problem of achieving the synthetic drape as 
close to the real drape as the model allows. Traditional approaches 
concentrate only on ensuring correct mechanical properties of the 
model. Therefore, our algorithm could also be used in combina­
tion with mechanical measurements to compare the performance 
of different cloth modeling approaches. 

4. We show that analysis-by-synthesis of the range data of the cloth 
draped over an object, also reveals the geometry of parts of the 
object's shape. This encourages research on utilizing physics-based 
cloth models in tracking humans. 

We tested the cloth draping analysis algorithm both on synthetic and 
real data (including an analysis of a dressed doll). We concluded that 
even a crude cloth model with imprecise bending constants could still 
be used for the detection of body-garment contact points, which in turn 
could be used in body reconstruction. We hope that this result will 
inspire further work on utilizing cloth models in computer vision areas 
such as dressed human tracking. 

The above mentioned re-imaging technique could also benefit from 
our algorithm, as it can be used for automatic registration of the model 
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with the image data (though it would require more views or some other 
way of capturing the 3-D geometry of the dressed human). 

2. HUMAN BODY RECONSTRUCTION 

2.1 DEFORMABLE SUPERQUADRICS 
In this section, we describe briefly the deformable model that we use 

to model body parts [21]. 
The deformable model is represented as a sum of a reference shape 

( ) - [ GEl G~2 GEl S~2 S~l] S u, V - a I u v' a2 u v' a3 u , (10.1) 

and a displacement function d(u,v) = S(U,V)qd, where u and v are ma­
terial coordinates; S~ = sign(sinw)lsinwl~; G~ = sign(cosw)lcoswl~; 

aI, a2, a3, El, E2 are global deformation parameters (stored in qs); qd 
contains nodal variables (displacements at the nodes sampled over mate­
rial coordinates), and S (u, v) is the shape matrix containing basis func­
tions in the finite element representation of the continuous displacement 
function. 

In addition to global and local deformations of the parts, a rigid trans­
formation of each part is allowed. It is defined by translational and ro­
tational degrees of freedom qc and qe. Under the external forces f the 
model will move and deform according to the following equation: 

Cit +Kq = fq, (10.2) 

where q = (q~, %, q;, qaf is the state of the model; C and K are 
the damping and stiffness matrices; and fq are the generalized external 
forces associated with the degrees of freedom of the model. These forces 
are related to the external (image) forces [21]. 

The image forces we use in this chapter can be written as f = fcontour+ 

f3D, where the first component of the force deforms the superquadric to 
have similar occluding contours as the imaged object and the second 
component governs fitting of the model to the range data provided by 
the stereo cue. 

2.2 CONTOUR FORCE COMPUTATION 

We first find model nodes residing on the occluding contour. With 
respect to camera l, such nodes Pi should satisfy INi . (Pi - 01)1 ~ E, 

where 01 is the optical center of the camera, Pi is the position vector 
of the model node i, and Ni is the surface normal at this node (refer 
to Fig. 10.1). Then, the PiS are projected onto the image plane by the 
projection operator ITI acquired by camera calibration, i.e. pI = ITIP i , 

where the superscript I denotes the image plane points. 
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Figure 10.1 Contour forces 

For each image contour point cr, the closest model projection p{ is 
found. Let Pi be its corresponding 3-D point on the model, and C k be 
a 3-D point that is projected to c£' i.e. cr = niCk. As can be seen in 
Fig. 10.1, such Ck should lie on the line formed by 01 and cr. To find 
a single direction for the force to bring p{ to cr we utilize the principle 
of minimal action and compute Ck as follows: 

(10.3) 

The contour force acting on the model point Pi is defined as: 

(lOA) 

In the case of a pinhole camera, the solution to Eq. (10.3) is simply the 
orthogonal projection of Pi onto the line OICr. In general, Ck could be 
found independently of camera model using Eq. (10.3). 

A similar type of occluding contour force was used in [23]. 
To avoid a computationally expensive search for the closest model 

point for each contour point, we developed an algorithm for force as­
signment based on the chamfer image of the occluding contours with an 
additional index matrix containing the index of the closest contour point 
for each pixel in the image (see [9, 10,8]). 
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Figure 10.2 Force assignment 

2.3 FORCES BASED ON STEREO AIDED 
BY STRUCTURED LIGHT 

Providing that the correspondences between the features in two im­
ages are available, it is possible to reconstruct a number of 3-D points 
on the object's surface using triangulation techniques. If necessary, the 
feature points can be created by a structured light source. 

Correspondence establishment in stereo is known to be a difficult prob­
lem. In this section, we make use of the surface estimated by occluding 
contours to assist feature matching (Fig. 10.3). A match between two 
features is considered good only if it satisfies both the epipolar constraint 
and a constraint on the distance from the point, which is reconstructed 
by the match under consideration, to the surface estimated using oc­
cluding contours. 

Once the feature correspondences have been established and a number 
of surface points Rk have been reconstructed by triangulation, the part 
models can be further deformed to fit these points by applying forces: 

(10.5) 

where Pi is the model node closest to the point Rk, and k3D is a scaling 
constant. 

These forces may reposition superquadrics slightly so that a better 
contour force assignment can be achieved. Therefore, the two visual 
cues assist each other. They also complement each other, as occluding 
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(a) (b) (c) 

Figure 10.3 Structured light provides feature points: (a) The intensity image of a 
human object; (b) The object illuminated by structured light; (c) The reconstructed 
feature points overlapped with an estimate from contours . 

contours provide constraints at the parts where stereo becomes unreli­
able, while stereo refines the estimate at the rest of the surface. 

2.4 FORCE ASSIGNMENT BASED ON 
FUZZY CLUSTERING 

We also experimented with weighted force assignment based on fuzzy 
clustering as proposed by Kakadiaris [15]. Instead of using the nearest 
neighbor force as in the previous sections, each data point r i should 
attract points on several models with forces scaled by a weight Pri ,j 

equal to the probability that this point is correctly associated with the 
superquadric j. Among other advantages, this allows for better merging 
of the body parts. For more details, see [9, 10, 8] . 

2.5 TEXTURE MAPPING 
The task of mapping the texture from all the available images onto a 

single 3-D model is not a trivial one. Even very small errors in the 3-D 
model create artifacts around the edges of the object. In addition to 
that , due to different camera gains, specular reflections, etc., the same 
3-D point may have different intensities in different images. 

We solve this problem in two steps. First, we compute the mapping 
T : (i , j) -t l, that assigns the image from the l-th camera to the j-th 
surface triangle on the i-th model part. This mapping is based on the 
triangle's position and orientation, as well as some local continuity con­
straints. Next, we compensate for the difference in the image intensities, 
by computing the scaling constants for each pixel. After this, the usual 
texture mapping algorithm can be applied-each triangle in the model is 
projected onto the appropriate image plane using the camera projection 
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operator Ill, and the texture of the projected triangle is mapped back 
onto the surface triangle. 

The texture assignment T should satisfy the following conditions: 
1) The surface triangle (i, j) has to be visible from the point of view 

of the T( i, j)-th camera. If there are several possibilities for T( i, j), the 
cameras which face the triangle (i, j) more directly should be preferred, 
i.e., we should try to satisfy V T(i,j) ·Nij = -1, where Nij is the triangle's 
normal, and V T(ij) is the viewing direction with respect to the camera 
T(i, j). 

2) Mapping T should be as continuous as possible, i.e., the preferable 
assignments are the ones in which the neighboring surface triangles have 
the same assigned texture source as often as possible. 

3) We may want some views to be preferred as texture sources to 
others. For example, we may want to make more use of the frontal 
camera views, especially for the part representing the head in the human 
body mode1. 1 

Such an assignment can be achieved by minimizing the following cost 
criterion: 

c(T) = L L WT(i,j),i [INi j . VT(i,j) + 11 + peT, i, j)] , 
• J 

(10.6) 

where wT(i,j),i is the weight given to the choice of texture T( i, j) for 
the model part i, and p(T, i, j) is the cost of the non-continuous texture 
assignment for the triangle j of the part i. For example p(T, i, j) could 
simply be proportional to the number of the different assignments in 
the local neighborhood of the triangle j. Due to this constraint, the 
cost c(T) needs to be minimized iteratively. Usually 4-5 iterations are 
sufficient. 

In Fig. 10.9 (a) an example of the texture assignment without the 
term p(T, i, j) is given. The surface of the body is color-coded according 
to the texture assignment map T. In Fig. 10.9 (b) the result after 
iterative minimization of the whole energy in Eq. (10.6) is shown. The 
small islands of texture inconsistent with the surrounding texture have 
been eliminated. 

When this assignment is used to map the original images onto the 
model surface, the resulting image looks like Fig. 10.9(c). The borders 
along which the texture source is changed are more or less visible in the 
image. To compensate for that, it is necessary to re-scale the intensities 

lThe textured head model is bound to have artifacts, as the reconstruction algorithm pre­
sented here is suited to smooth objects such as the human body; for detailed modeling of the 
human head a different model should be used. 
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kb = 0.01 kb = 0.02 

Figure 10.4 Three 100 x 100 particle systems with different bending constants 

in images while preserving the appearance of the texture. This results 
in the texture-mapped body in Fig. 1O.9( d) (for details, see [10]). 

3. MODELING AND ANALYSIS OF CLOTH 
DRAPING 

3.1 A CLOTH MODEL 
In our experiments, we represent a rectangular piece of cloth as a 

particle system {Pi,j : i = 1,M;j = 1,N}. Each particle (i,j) interacts 
with its neighbors and the supporting object:physics-based cloth model 

1) Repelling and stretching are modeled using simple springs: 

L (u - dk,j)ek,j + 
kE{i-l,i+l} 

L (v - di,k)ei,k + 
kE{j-l,j+l} 

r L (d - dk,j-l)ek,j-l + 
kE{i-l,i+l} 

r L (d - dk,j+l)ek,j+1] , 
kE{i-l,i+l} 

(10.7) 

where Pi,j = (Xij, Yij, Zij), dk,l = IPi,j - Pk,tI, ek,l = (Pi,j - Pk,l)/dk,l; 

u, v are nominal horizontal and vertical mesh spacings; d = ..; u2 + v2 ; 

ks is the elasticity constant; r is the diagonal-to-axial strength ratio 
controlling shearing in the model [18]. 

2) Bending resistance in horizontal and vertical directions is modeled 
by the force: 

Fb = kbh(ProjPi,j - p .. ) + kb (ProjPi,j - p. ·)(10 8) i,j Pi-l,jPi+l,j t,J v Pi,j-1Pi,j+l t,J . 
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kbh and kbv are bending constants. Proj~c is the orthogonal projection 
of A onto the line BG. 

3) The gravitational force is equal to mg, where g = (0, -9.81,0) [m/ s2J 
and m is the mass of the particle. 

4) The external forces, F ext ., model the interaction of the cloth with 
t,) 

other objects. 
The motion of the particles is governed by Newton's law (kv is the 

damping factor): 

(10.9) 

If only the final drape is of interest, the oscillations during the model 
relaxation can be avoided by setting the right hand side of this equation 
to zero. 

Other physics-based cloth models could also be used with the algo­
rithm explained in the following section. The model and the estimation 
algorithm are based on the study of the internal and external forces, 
but it is easy to derive these forces for energy-based deformable models, 
such as the models described in [2, 22, 3J. Also, the algorithm is not 
concerned with the discretization of the model, so it can be applied to 
models based on continuum approximations using finite differences or 
finite elements. 

3.2 PARAMETER ESTIMATION 
The estimation algorithm is shown in Fig. 10.5. It is assumed that 

the cloth sample is rectangular and its size is known. M, N are chosen 
in advance and the spacings u, v are derived from the size of the sample. 
However, no assumptions are made regarding the shape of the supporting 
object (Fig. 10.11 a), or cloth model parameters. Of the several model 
parameters in Eq. (10.7)-(10.9), only a few are important. kv does not 
affect the final drape, and m can be divided out from Eq. (10.9). ks is 
usually set to a high value, as cloth does not stretch visibly under its 
own weight. The parameters of our model that affect the final drape and 
should be estimated are p1 = r, p2 = kbh/m, p3 = kbv/m. For example, 
the effect of the bending constants is demonstrated in Fig. lOA. 

The range points, obtained by any available range finder, are orga­
nized into a smooth surface over which the model of the sample can be 
draped. The force F ext is derived from the range data: 

(10.10) 

where ri J. is the range point closest to the particle (i, j). The forces F d· . 
, 1,) 

force the model to drape similarly to the scanned cloth. With a low kd, 
these forces are not sufficient to prevent the model from falling through 
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Figure 10.5 Simplified block diagram of the estimation algorithm (the case of un­
known draping conditions). 

the data surface, so it is prevented by our collision handling routine, 
symbolically represented by force Fe in Eq. (10.10). This force is not 
included into Eq. (10.9) when it is integrated. Instead, the position 
and speed of a particle are directly adjusted each time step according to 
the law of momentum conservation [3], if collision with the range data 
surface is detected. 

To speed up the force assignment and collision detection algorithms, 
we use the 3-D chamfer image, the 3-D matrix containing the approxi­
mate distances to the range data for any point in a certain volume [1 J. In 
addition to this distance map, we create a 3-D index matrix, containing 
indices of the closest range points for each entry [8J. To create this ma­
trix, it is necessary to keep track of the closest point during the chamfer 
image computation in a standard two-pass algorithm. The distance map 
helps to evaluate the possibility of collision of a particle with the surface 
of the scanned cloth, while the index matrix allows intersection tests 
with the right triangles on the surface, and fast computation of the data 
forces F d. '.J 
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In the first phase in the main loop, the model is draped over the range 
data and is attracted by the data at the same time (df=l in Fig. 10.5) 
by integrating Eq. (10.9). Special forces are applied from the corners of 
the sample to the corners of the model to insure its correct positioning 
over the data. 

After the model has assumed its rest position, the particles corre­
sponding to the pieces of the sample that were not supported by the 
underlying object at the time of scanning, will satisfy the following: 

(10.11) 

where € is a small value. For the real cloth, this equation is obviously 
satisfied (even with € = 0) at parts not touching other objects. An ex­
ample of the distribution of IF s· . + Fb . + mgl in the model is given t,J t,J 

in Fig. 1O.10(c). Therefore, the particles not satisfying Eq. (10.11) are 
likely to represent pieces of cloth that were supported by the underly­
ing object, and are fixed in the next phase, simulating strong friction 
between the cloth and the object. The data forces are now turned off 
(df=O, Fext = 0), and the model is left to assume a new position under 
new draping conditions. 

At the end of the second phase, the mean distance between the par­
ticles and the range data is computed: 

e(pl,p2,p3, ... ) = ~N 2:!ri,j -Pi,jl, (10.12) 
i,j 

and this approximation error, as a function of model parameters p1, 
p2, p3, ... , is forwarded to a multivariate minimization routine. We use 
Powel's direction set minimization technique [20], as it does not require 
gradient information. The shape estimate is updated after each change 
of parameters, as Eq. (10.11) is better satisfied with more accurate 
model parameters. 

When some parts of the range data are missing, these parts are ex­
cluded from the error computation in Eq. (10.12). Missing data can be 
detected by a large distance Iri,j - Pi,jl, which, at the end of the phase 
one, should be small due to the attracting data forces. 

If the supporting object's shape is known a priori, the algorithm is 
slightly different [11]. Collision of the cloth model with the model of 
the underlying object is performed and handled in each time step (Fein 
Eq. (10.10)) , and in the second phase, there is no need to fix the posi­
tions of the particles touching the object. Instead, only the data force 
component of F ext is turned off, but collision detection and handling is 
continued. 
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. 
(a) !nitial position of the model parts (b) /llode! parts at intermediate stage 

(c) The final reconstructed surface (d) Texture mapped reconstructed surface 

Figure 10.6 Reconstruction of the human upper body 

4. EXPERIMENTAL RESULTS 

4.1 HUMAN BODY RECONSTRUCTION 
We performed preliminary experiments on human-like objects with 

two CCD cameras and a structured lighting source in between to project 
a stripe pattern on the object surface. Both ordinary intensity images 
and images under structured lighting were taken. 

In the first experiment, we imaged a real human (Fig. 10.3) with 
two cameras in the above configuration. Five deformable superquadrics 
(for arms, torso, neck and head) are manually positioned in the virtual 
3-D space so that their projections onto image plane lie relatively near 
the image contours (see the rightmost figure in Fig. 1O.6(a)). Fig. 10.6 
illustrates several steps in integrating Eq. (10.2). In each step, the left 
image shows the model parts smoothly shaded or texture mapped and 
the right image shows the fitting of the model parts to the contours in 
one of the images. 

In the second experiment, we tried to reconstruct a more difficult 
object-a doll with such a posture that the body parts occlude each 
other(see Fig. 10.2). The object was positioned on the turning table 
and a total of eight camera views were used in reconstruction. Six su­
perquadrics were initialized and in Fig. 1O.7(b) we show the final result 
after fitting to both contours and the 3-D points reconstructed by stereo 
cue. The reconstructed surface is compared to the reconstruction using 
only stereo correspondences obtained by manual matching (Fig. 1O.7(a)) 
to demonstrate how efficiently our scheme deals with self-occlusion. 

The experiments show that the contour based estimate of the surface, 
even by only two cameras can efficiently assist stereo matching. In the 
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( a) Reconstruction by structured light only 

(b) Reconstruction based on integration of occluding contours 

and stereo aided by structured light 

Figure 10.7 Reconstruction of a mannequin 

first experiment, for example, for the 80 feature points detected in the 
image, 74 correct matches are found purely guided by the contour based 
estimate of 3-D surface. Usually, the remaining false matches are cor­
rected as well during further refinement of the surface estimate using 
both cues. As can be seen in Fig. 1O.7(a), stereo aided by structured 
light cannot make estimates near the occluding contours due to the ab­
sence of matched feature points there, but the two combined cues can 
provide a rather complete estimate of those parts that were not visible 
to both cameras. 

An example of full body reconstruction from six views is shown in Fig. 
10.8. In order to be able to use distortion-free narrow angle cameras 
in a limited space, we used two cameras for each view, each camera 
capturing approximately half of the body. In this experiment, only the 
contours were used in the reconstruction. The body model, consisting 
of 15 superquadrics, was initialized automatically using an algorithm 
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(a) Images used for reconstruction 

(b) Several views of the reconstructed 3-D model 

Figure 10.8 Human body reconstruction from occluding contours 

based on volume intersection [7], and then refined by contour-driven 
deformation. Currently, due to the large number of nodes in the finite 
element model of the local deformations, the full body reconstruction 
takes a couple of hours on an SGI Indigo. However, the speed can 
be dramatically increased using the adaptive sampling in the material 
coordinate system, and the adaptive time steps. 

A number of measurements necessary for tailoring have been taken 
from this reconstruction and compared to the physical measurements [9]. 
The errors were mostly around 0.5-1 %. 

As a demonstration of our texture mapping algorithm, in Fig. 10.9 (d) 
and (c), the texture mapping results with and without texture equaliza­
tion are given. The mapping is based on the texture assignment in (b) 
(see also the section on texture mapping). As can be seen in the figure, 
the texture equalization leads to better images, though the resulting 
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(a) (b) (c) (d) 

Figure 10.9 Mapping the texture from several sources onto a human body model: (a) 
initial texture assignment; (b) smoothed assignment map and (c) the corresponding 
texture mapped model before and (d) after texture equalization. 

texture is not completely correct, as the whole scheme introduces artifi­
cial specularities at parts where the texture in Fig. 10.9 (c) had abrupt 
changes. However, if the visual effect is the main goal, the proposed 
scheme works fine. 

4.2 ANALYSIS OF CLOTH DRAPING 

Experiments were performed on both synthetic and real range data. 
In Fig. 1O.10(a), a synthetic drape of a cloth sample 400x400mm 
over four spheres is given. In Fig. 1O.10(b), 1O.1O(c), and 1O.1O(d), the 
best approximation with the 25 x 25 model (at the end of the parameter 
estimation algorithm), the distribution of forces in the model and the 
estimated supporting shape (the contact points between the cloth and 
the object) are shown. The mean distance between the model and the 
data was 2.77mm. A typical execution time of the estimation algorithm 
on an SGI Onyx is a couple of hours. 

In the second experiment we used the Cyberware laser scanner to 
scan the drape of a 380x380mm cloth sample (Fig. 10.11(b)). The mean 
distances were 2.2mm for a 50x50 model (Fig. 1O.11(c)) and 4.12mm for 
a 25x25 model (Fig. 10.11(d)). Note that even with a very crude 25x25 
model, the estimate of the supporting object's shape (Fig. 10.11(f)) still 
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Figure 10.10 (a) Synthetic range data created with a 50 x 50 particle system; (b) the 
best approximation using a 25 x 25 model; (c) the distribution of forces in the model 
and; (d) the estimated supporting shape overlapped with the model. 

, I 

(a) (b) (c) (d) (e) ( f) 

Figure 10.11 (a) The object, (b) over which a piece of cloth was draped, (c) the 
smooth shaded surface of the range data, (d) the result of approximation with a 
50x50 model, (e) and 25x25 model; and (f) estimated shape of the supporting object, 
determined from the 25x25 model. 

contains part of the nose of the underlying head (Fig. 1O.11(a)) because 
the cloth sample was touching the nose at that point. 

4.3 SYNTHESIS AND ANALYSIS OF 
DRESSED HUMANS 

The rectangular cloth piece model can easily be extended to a more 
complex garment model [8J. Examples of dressing a real human into a 
virtual T-shirt are given in Fig. 10.12. The T-shirt was positioned above 
the body model in the virtual space and allowed to drape over it using 
a fast collision detection and handling algorithm [8J. Then, the seaming 
forces were applied to merge the front and back pieces along the seam 
lines. Finally, a fabric texture and textile print design were applied on 
the cloth model surface and combined with smooth-shading. 

In the last experiment, we used the physics-based cloth model to an­
alyze the range data of a doll dressed into a simple T-shirt-like garment. 
The topological model and the size of the T-shirt were known in ad­
vance. The dressed doll was imaged from several angles using a stereo 
pair of cameras and a structured light source. The range data was in­
terpolated and used as an input to the cloth drape analysis algorithm in 
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(a) (b) 

Figure 10.12 Examples of dressing a human into virtual garments 

Fig. 10.5. In Fig. 10.13 we show the registered crude T-shirt model and 
the estimated contact points (in blue) . In Fig. 1O.14(a), we show the 
total range data available; (b) the range data that was kept after dis­
carding the data corresponding to the non-contact points of the T-shirt 
model; (c) the final reconstruction using the selected range data, as well 
as the proper contour information. Finally, in (d) the 3-D reconstruc­
tion obtained from the images of the naked doll is given for comparison. 
Note that the legs of the doll were visible in all images (though not 
shown in the images in Fig. 10.13), and that for the reconstruction (c) 
the contours of all uncovered body parts were used, as well as the im­
age contours corresponding to the parts that were estimated as contact 
points. 

Interestingly, even crude models with sub-optimal model parameters 
can relatively successfully be used for detection of major cloth support 
points. The contact forces are usually considerably stronger than the 
internal bending forces, and thus, at the contact points, the equilibrium 
equation is violated for a wide range of parameters. This means that 
in the analysis algorithm, only a single iteration of model draping and 
contact point estimation is necessary for this purpose. 

5. CONCLUSIONS 

We presented techniques for building realistic human body models 
from images. These models can be dressed into virtual garments, whose 
draping is simulated by a physics-based cloth model. Furthermore, we 
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Figure 10.13 Registration of a T-shirt model and estimation of contact points 

demonstrate how such cloth models can be used to analyze the draping 
behavior of real cloth, and even for analysis of images of dressed humans. 

In the first part of this chapter we have developed a method for recon­
structing multiple occluding objects or multi-part self-occluding objects 
by integrating occluding contours and stereo (possibly aided by struc­
tured light) within the deformable bodies framework. We applied the 
algorithm on 3-D reconstruction of human bodies. The reconstructed 
models can be texture-mapped using the texture from all available im­
ages. 

Our method does not require a particular camera configuration and 
makes no assumptions about the type of the projected patterns, as long 
as the feature detectors are available. Stereo matching is guided by the 
surface estimate from occluding contours, so the grid does not need to 
be labeled, and in fact, if there is a sufficient number of features on 
the object, structured light is not even necessary. We are also working 
on making the purely passive stereo applicable for body reconstruction 
using our camera configurations with very wide baselines. 

In the future, we plan to address the problem of "gluing" the object 
parts together where necessary. Fuzzy force assignment already helps 
by allowing partial overlaps, which can be seen in the case of legs in 
Fig. 10.7 , and the arms in Fig. 10.6. However, the parts may not 
always connect to each other (as in the case of the arms in lower right 
figure in Fig. 10.7). In such cases, to make the reconstruction complete, 
it may be necessary to include additional superquadrics, for example the 
'shoulders' superquadric in Fig. 10.14 (d). 
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Figure 10.14 Segmentation of the range data and the 3-D reconstruction of the doll 

Our vision-based algorithm for analysis of cloth draping offers an al­
ternative to using the expensive Kawabata Evaluation System for esti­
mating cloth model parameters. Furthermore, the algorithm is model 
independent and it offers a way to evaluate the quality of a cloth model 
for simulating draping behavior, which could be useful for design and 
testing cloth modeling techniques. 

The last experiment demonstrates the feasibility of utilizing cloth 
models for dressed human analysis. While this technique is not nec­
essary for automatic body measurements, as a subject can be imaged 
without unnecessary clothing, it can be very useful for automatization 
of the re-imaging technique mentioned in the introduction, or for com­
bining natural and synthetic content in special effects in movies. Since 
the detection of the garment-body contact points helps reveal the geom­
etry of the body underneath the clothing, we believe that the methods 
described in this chapter can be extended to analysis of the dressed 
human motion, and we hope to inspire further research in this direction. 

Other research in our laboratory has focused on vision-based tracking 
of articulated human motion [13] as well as face and hands modeling and 
tracking in images (visit our web site www.ifp.uiuc.edu) which should 
eventually result in detailed human models animated by the output of 
a vision-based motion capture system. Potential applications of our re­
search include realistic avatars in telepresence applications, virtual gar­
ment shops, virtual battleground, and more natural human-computer 
interfaces. 



Computer vision and graphics techniques for modeling dressed humans 199 

Acknowledgments 

The authors were supported by the National Science Foundation (grant IRI-9634618) 

and the Army Research Laboratory under Cooperative Agreement No. DAALOl-96-

2-0003. A part of this project was performed in collaboration with Helen Shen's group 

at the Hong Kong University of Science and Technology. 

References 

[1] G. Borgefors. Distance transformations in arbitrary dimensions. 
Computer Vision, Graphics, and Image Processing, 27:321-345, 
1984. 

[2] D. E. Breen, D. H. House, and M. J. Wozny. Predicting the drape 
of woven cloth using interacting particles. In Proceedings of SIG­
GRA PH '94 , pages 365-372, 1994. 

[3] M. Carignan, Y. Yang, N. Magnenat Thalmann, and D. Thal­
mann. Dressing animated synthetic actors with complex deformable 
clothes. In Proceedings of SIGGRAPH'92, pages 99-104, 1992. 

[4] http://www.cdi-u4ia.com/cdifiles/u4prem.html. 

[5] J. R. Collier, B. J. Collier, G. O'Toole, and S. M. Sargand. Drape 
prediction by means of finite element analysis. Journal of the Textile 
Institute, 82(1):96-107, 1991. 

[6] B. Eberhardt, A. Weber, and W. Strasser. A fast, flexible particle­
system model for cloth draping. IEEE Computer Graphics and 
Applications, 16(5):52-59, 1996. 

[7] J. Gu. 3D reconstruction of sculptured objects. PhD thesis, Hong 
Kong University of Science and Technology, 1998. 

[8] N. Jojic. Computer modeling, analysis and synthesis of dressed hu­
mans. Master's thesis, University of Illinois at Urbana-Champaign, 
1997. 

[9] N. Jojic, J. Gu, I. Mak, H. Shen, and T. S. Huang. Computer 
modeling, analysis and synthesis of dressed humans. In Proc. IEEE 
Conf. on Computer Vision and Pattern Recognition (CVPR '9S) , 
pages 528-534, June 1998. 

[10] N. Jojic, J. Gu, H. Shen, and T. S. Huang. Computer modeling, 
analysis and synthesis of dressed humans. IEEE Transactions on 
Circuits and Systems for Video Technology, 9(2):378-388, 1999. 

[11] N. Jojic and T. S. Huang. On analysis of the range data of cloth 
drapes. In Proceedings of 3rd Asian Conference on Computer Vision 
(ACCV'9S), pages 463-470, Jan. 1998. 



200 CONFLUENCE OF COMPo VISION AND COMPo GRAPHICS 

[12] N. Jojic, Y. Rui, Y. Zhuang, and T. S. Huang. A framework for 
garment shopping over the Internet. In M. Shaw et al., editors, 
Handbook on Electronic Commerce, pages 249-270. Springer Verlag, 
2000. 

[13] N. Jojic, M. Turk, and T. S. Huang. Tracking articulated objects 
in dense disparity maps. In Proc. Int!. Conference on Computer 
Vision (ICCV'99), pages 123-130, June 1998. 

[14] 1. Kakadiaris and D. Metaxas. Model-based estimation of 3D human 
motion with occlusion based on active multi-viewpoint selection. In 
Proceedings 1996 IEEE Computer Society Conference on Computer 
Vision and Pattern Recognition, pages 81-7, 1996. 

[15] 1. A. Kakadiaris. Motion-based part segmentation, shape and motion 
estimation of complex multi-part objects: Application to human body 
tracking. PhD thesis, University of Pennsylvania, Philadelphia, PA, 
1996. 

[16] D. Metaxas and D. Terzopoulos. Shape and nonrigid motion es­
timation through physics-based synthesis. IEEE Transaction on 
Pattern Analysis and Machine Intelligence, 15(6) :580-91, 1993. 

[17] http://www.monarchcad.com/rend.htm. 

[18] H. N. Ng and R. L. Grimsdale. Computer graphics techniques 
for modeling cloth. IEEE Computer Graphics and Applications, 
16(5):28-41, 1996. 

[19] H. N. Ng, R. 1. Grimsdale, and W. G. Allen. A system for modeling 
and visualization of cloth material. Computer Graphics, 19(3):423-
430, 1995. 

[20] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flan­
nery. Numerical Recipes in C: The Art of Scientific Computation. 
Cambridge University Press, 1995. 

[21] D. Terzopoulos and D. Metaxas. Dynamic 3D models with local and 
global deformations: Deformable superquadrics. IEEE Transactions 
on Pattern Analysis and Machine Intelligence, 13(7):703-14, 1991. 

[22] D. Terzopoulos, J. Platt, A. Barr, and K. Fleischer. Elastically 
deformable models. In Proceedings of SIGGRAPH'81, pages 205-
214, 1987. 

[23] D. Terzopoulos, A. Witkin, and M. Kass. Constraints on deformable 
models: Recovering 3D shape and nonrigid motion. Artificial Intel­
ligence, 36(1) :91-123, 1988. 

[24] Y. F. Wang and J. K. Aggarwal. Integration of active and passive 
sensing techniques for representing three-dimensional objects. IEEE 
Transactions on Robotics and Automation, 5(4):460-71, 1989. 



Chapter 11 

URBAN SITE MODELS: ACCURATE, 
DETAILED, RAPID AND INEXPENSIVE 

Franz W. Leberl, Konrad Karner, Markus Maresch 

Abstract 
Three-dimensional computer models of urban areas have become the 

latest topic of discussion in photogrammetric circles, although the pro­
duction of such models has long been a standard offering of photogram­
metric data providers. Initial "killer applications" of such data have 
been in defense organizations to support military operations in urban 
terrain (MOUT), and in the Telecom industry in their optimization of 
certain communications networks that depend on line-of-sight analyses 
in urban environments. Other applications are trailing behind these 
trailblazing needs. 

The issues today are cost, accuracy, detail, throughput and manage­
ability of data. This paper therefore ignores the discussion of principles 
of image information extraction. Instead we are concerned with work 
flow in the production of such data as they concern the actual creation of 
data sets with perhaps half a million buildings of one metropolitan area. 
The challenge is to create this at modest budgets, at tight schedules, 
and with verified accuracy and detail. 

1. INTRODUCTION 

The primary role of terrain data and maps of the land have not 
changed with the transition from the strictly 2-dimensional represen­
tation on paper maps and in the initial digital geographic data bases 
to the 3-dimensional renderings on computer monitors. The primary 
purpose was and is the support of the human navigator, planner, user 
of the land and explorer of its riches. 

The creation of such maps and data has always included the third 
dimension; had it not, the maps and data would have been distorted by 
the effect of the vertical dimension on the planimetric representation and 
positioning of objects. Photogrammetry has, since its inception at the 
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turn of this century, seen the world with its 3 dimensions, and always 
modeled, to this day, its objects in their 3, sometimes even 4 dimensions. 
The most radical effect of the transition from the 2-D maps and GIS to 
3-D data has not been in the modeling of the objects or the creation of 
the data, but in the storing and rendering of such data. 

The idea of 3-D models of urban areas was initially discussed in 
the context of Military Operations in Urban Terrain (also denoted as 
"MOUT", see publications in the context of the Image Understanding 
Workshops, for example [16,25]' and in academic environments [2,4,10,13]. 
Very recent telecommunications developments in Broadband Wireless 
Access need line-of-sight analyses from one building top to another, and 
this has created a market for 3-D building models (Fig. 11.1; see [14,22]). 

Figure 11.1 Example of a telecom-type urban site model for line-of-sight analyses 
for the so-called Local Multipoint Distribution System (LMDS). The example is from 
downtown Montreal, showing Place-Ville-Marie. The suggested "lines-of-sight" rep­
resent broadband wireless access communications. 

From a consideration of photogrammetric technology it is self-evident 
that urban 3-D data have been produced since a long time, using tradi­
tional photogrammetric means. In fact, architectural applications were 
at the root of the creation of the field of photogrammetry, and even the 
word "photogrammetry" was coined by M. Meydenbauer, an architect 
at the end of the 1800s and user of 3-D building data in Berlin. 
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New are thus the computer graphics aspects that have created inno­
vations which now support the use and application of vast quantities of 
3-dimensional urban building data (see for example [5,11]). As a result, 
the focus of discussions may preferably be on dealing with, and creating 
an application for, large quantities of such data. Key concepts are work 
flow, quality control, efficiency and automation to achieve cost advan­
tages, data retrieval and visualization using varying levels of detail and 
organizational concepts, and trade-offs between geometric detail versus 
information contained in photographic textures. 

2. SOURCE DATA 

2.1 AERIAL PHOTOGRAPHY 

Aerial photography is the overwhelmingly used source of urban site 
models [6,7,15]. This is the straight forward extension of traditional 
photogrammetry. The scales of standard photography, its overlaps, the 
use and role of color versus black & white material are at times items for 
discussions. However, it is the traditional standard of 60% forward and 
30% sidelap photography that serve as primary input to urban modeling. 

2.2 SCANNING LASER 

Laser scanning is currently considered as an alternative to aerial pho­
tography [8,17]. There is no other consideration than that of cost that 
leads one to deviate from photos and propose the use of lasers. A scan­
ning laser and video camera combine into a single pass 3-dimensional 
data collection and photo texturing system. Generally, however, the 
advantages of this approach have not yet been demonstrated with suffi­
cient clarity to make it replace the use of imagery. And as soon as aerial 
photography needs to be collected anyway, one may question the added 
value received in return for the added cost for the scanning laser data. 

2.3 INTERFEROMETRIC SYNTHETIC 
APERTURE RADAR 

Interferometric radar imagery has begun to get consideration as a 
primary source for building models. At image resolutions of 30 cm to 
10 cm per radar image pixel, and with the benefits of the single pass, 
autonomous measurements of 3-D shape by means of interferometry, 
radar may gain in importance for this application (Fig. 11.2). At this 
time, however, there is hardly any research to develop such autonomous 
modeling and texturing systems. 
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Figure 11.2 Example of a building reconstruction based on high-resolution, taken 
from 4 flight lines (left). Shown is the church in the village, as marked in the four 
images. The SAR images are at a resolution of 30 cm per pixel, and the reconstruction 
(right) has an uncertainty of about 1 meter. 

2.4 DATA COLLECTION FROM THE 
GROUND AND INSIDE A BUILDING 

At issue is of course also the detail of buildings both concerning their 
outside features such as skylights, chimneys, windows, doors or other 
structures, as well as their inside. This has led to various ideas for effi­
cient source data collections with linear array and digital frame cameras, 
with indoor imaging and laser scanning systems, again combined with 
video cameras for autonomous 3D and phototexturing. 

3. WORK FLOW ISSUES 

3.1 THREE MAJOR PROCESSING 
FUNCTION BLOCKS 

A system to build urban site models consists of three major com­
ponents, each of which consumes about an equal part of the overall 
resources required: 

1. Aerial photogrammetry subsystem; 

2. Bulk processing for digital canopy elevation modeling; 

3. Manual refinements for building geometry extraction. 

All three components are very well established capabilities with a high 
degree of technological maturity. Many hundreds of commercial com­
panies are currently able technologically to apply these components to 
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create urban site models. At issue is thus not whether one can create 
such data, but how inexpensively, how accurately, how reliably. This is 
where automation is at issue. 

However, automation is already a standard in many of the work flow 
elements. Aerial photography gets scanned and submitted to aerial tri­
angulation, producing the geometric foundation on which the urban site 
models are built. Stereo matching then follows as a mature technology, 
and very little gain is being expected from additional automation in the 
creation of canopy Digital Elevation Models (DEMs). 

3.2 REFINEMENT OF BUILDING MODELS 
The aspects of actually producing the geometric building models are 

the "last frontier" at which the opportunity exists for significant gains in 
productivity and thus in a reduction of cost. However, this still addresses 
no more than a third of the entire work flow. Manual interaction with the 
digital sources addresses both the initial creation of building polygons 
as well as the control of the quality of the resulting data. Many authors 
have consistently argued that the human operator just be in the loop in 
this data extraction and quality assurance component of the work flow, 
and as a result have developed strategies for data extraction that have 
the computer support the human, instead of having a fully autonomous 
data processing strategy followed by a manual editing effort. 

3.3 BUILDING DETAILS 
Modeling the insides of buildings and the architectural details on the 

outside of buildings have their separate technological challenges. Ground 
based imagery is much less well structured in comparison to aerial im­
agery, and there is no photogrammetric tradition to deal with such 
ground based data sources. As a result the work flow for the use of 
such images is less well developed and more opportunities exist to de­
velop and study new methods for data extraction from such images, as 
will be discussed later. 

3.4 HUMAN STEREO VERSUS 
MONOPLOTTING 

Traditionally, photogrammetry has made a strong case in favor of con­
sistent stereoscopic viewing and measuring on specialized stereo equip­
ment. Recently this view has been challenged, for example by Englert 
and Gulch [1] or Spradley and Welch [24]. A much more "scalable" in­
teractive process results when it is based on monocular viewing, but a 
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machine supports the augmentation of the monocularly collected 2-D 
data into the 3-D domain. Interesting work flow issues result: what 
really is the human contribution to the image analysis task? Is the man­
machine system capable of creating an equally effective product without 
regard to the way the human operator works-monocularly or in stereo? 

These questions currently have no clear answer, however, in the Ur­
ban Site Modeling debate, monocular human interaction has found a 
valuable role that reduces cost, creates scalability of procedures, and in 
the process does not compromise the result. 

4. THE USE OF IMAGE MATCHING 

4.1 CANOPY DEM 

Matching is the classical approach to create a so-called "canopy DEM". 
The reflective surface as seen in aerial photography will be modeled by 
simply finding as dense a set of surface points as is reasonable, and us­
ing for that either regular stereo overlaps, or exploiting multiple overlaps 
involving more than 2 stereo photographs. 

4.2 MONOCULAR MAN-MACHINE 
SYSTEM 

Matching has a second role to play by assigning a third dimension to 
the 2-dimensional data collected by a human in a monocularly interactive 
man-machine environment. 

By identifying the buildings in one image (2-D polygons), one of the 
most critical parts of computer vision, the segmentation, is solved by the 
human operator. This information combines with a rough bald Earth or 
so-called canopy DEM and the exterior orientation of the aerial images 
to calculate the 3-D roof line of buildings in the following way: 

• Assuming that the roof line of a building lies in the horizontal 
plane, we can calculate a mask (see Fig. 11.3), to show the areas 
used for image matching in white areas. The mask is calculated by 
using the outline of the building and a given inflation and defla­
tion factor. By employing several tests on different data sets, we 
optimized the inflation and deflation factors, separately for large 
and small polygons. 

• Using the position of a currently considered building in the image 
in which it was monocularly defined (thus still a 2-D polygon) 
and the DEM we get an estimate of the elevation of a building. 
Furthermore, we use the information of a maximum building height 
in an area of interest or in a town-which is easy to find out-and 
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Figure 11.3 Illustrating the matching areas to assign an elevation to a polygon col­
lected in one image, and the role of inflation and deflation parameters. The manually 
collected input is shown in the upper left image; the upper right image presents one 
assumed parameter set for the inflation and deflation values, and other parameters 
are shown in the two lower images. 

a tolerance depending on the quality of the DEM. We can restrict 
the search area for a stereo match by means of the minimum and 
maximum height and thus the search areas are limited in all images 
that cover a building (see Fig. 11.4). 

The process starts with the largest polygons and proceeds down to 
the smallest ones, using inside/outside tests to decide whether we are 
considering polygons in an urban or downtown area. This knowledge 
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Figure 11.4 Illustrating the search line in a second image, assuming that we start 
from the centroid of a manually collected polygon as shown in Fig. 11 .3. The length of 
the line segment is a result of the assumed minimum and maximum building heights. 

enables us to restrict the search area significantly and thus decrease the 
ambiguity of false matches. 

Depending on the overlap of the aerial images, polygons are often vis­
ible in more than two images. Thus, by employing the above mentioned 
process to all stereo pairs and a post processing 3-D clustering, one is 
further able to decrease the ambiguity. 

5. SETTING UP LARGE BLOCKS OF 
IMAGERY 

5.1 CLASSICAL AERIAL 
PHOTOGRAMMETRY 

Mature procedures exist to deal with many 1,000 aerial photographs 
and set them up geometrically so that individual overlaps can then be 
exploited for optimum accuracy. Since such images taken from the air 
follow some very strict rules of flight lines and standardized overlaps, 
it has become a standard to set up such blocks of images with a great 
degree of automation. 

The determination of relative orientations between aerial images, the 
identification of common points and finally the calculation of the exte­
rior orientation is a well-known process for aerial images. Furthermore 
a fairly simple geometry and global positioning systems support these 
procedures. 
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5.2 INSIDES OF BUILDINGS AND 
GROUND BASED IMAGES 

Modeling the insides of a building may be based on 10,000 digital 
images that need to be geometrically linked together and put into a 
consistent geometric framework. Because ground based imaging, and 
the insides of buildings, are subject to vagaries absent in aerial imaging, 
the task is harder to automate. 

An approach has to be chosen for ground based images which are 
used for facade modeling and extraction of detailed features not visible 
by aerial images. A generally higher depth variance in images, oblique 
views, repetitive patterns (windows, man-made structures) and therefore 
ambiguity make it a more challenging task for automation than is the 
case in aerial photogrammetry. 

We have developed procedures to automate the analytic phase for 
ground based facade images and are able to reduce human effort to 
about 5%, compared with the prior fully manual process. Our method 
is based on "video-like" image sequences with high overlap (~ 75%, see 
also Maresch [18]). This requirement seems to be justified with the 
recent dramatic drop in camera and disc storage prices. Some of the 
frames are used for point transfer only. 

The process is based on standard cross correlation based image match­
ing as described in standard texts on image processing, for example by 
Gonzalez and Woods [3], and supported by high and low level feature ex­
traction [19,23]' and relative orientation algorithms to verify and qualify 
match candidates [9,12]. 

The simultaneous employment of completely different strategies in 
most sub-tasks of this process and the use of matching and the calcu­
lation of the relative orientation yield a reliable tool. Human effort is 
reduced to quality control and the throughput for the analytic phase was 
increased by a factor of 10 to 20 using this method over a purely manual 
process. About 1 minute of processing time is budgeted per image pair. 

6. EXTRACTING DETAILS OF BUILDING 
FACADES 

So far, building models were simply understood to be "lego-boxes". 
This, of course, is entirely satisfactory for many applications that deal 
with line-of-sight issues such as those in Telecom. However, when build­
ings themselves are the object of interest, then one is concerned with 
doors, windows, escape routes, chimneys and so forth. Such details are 
costly to collect by hand and efforts are being made to produce such 
building details with machine support. 
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Figure 11.5 Example of an automatic relative orientation of a pair of overlapping 
terrestrial photographs using a large number of candidate points in each of two images, 
and pruning the candidates for correspondence to fit a legitimate relative orientation. 

The source of such information is ground-based imagery. We are us­
ing an approach for modeling 3-D building facades that is similar to the 
one explained in sub-section 4.2. The human operator again is working 
monoscopically in one image only and the 3-D information is calculated 
automatically by image matching employing geometry-based restrictions 
(e.g. conics) using other images, showing the same part of the object. 
In the modeling process pre-calculated features like corners, lines, conics 
and splines are used. The user is able to select and edit these features 
as well as to define new features, which might not be found in the pre­
processing due to weak edges or peculiarities. Thus again, the critical 
part is the segmentation and it is solved by the human operator by only 
selecting different kinds of features and combining them to surface facets. 

We use well known matching techniques for different kinds of features . 
The point matching algorithm works similarly to the one explained in 
sub-section 4.2. For line features we are using a slightly modified ap­
proach of Schmid and Zisserman [21J. Conics are calculated without 
calculating cross correlation. We use the approach of Quam [20], with 
an additional 3-D clustering, however only if more than 2 images are 
available, so that one reduces ambiguities. A result is illustrated in 
Figs. 11.6 and 11.7. 
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Figure 11.6 Example of a facade shown in three photographs, in which various fea­
tures have been found. 

7. WHERE WILL THIS LEAD? 
The Telecom industry has charged ahead with its requirement for 

line-of sight-analyses, and has embarked on massive projects to model 
all major metropolitan areas on the globe. Specifications vary, and such 
data may not be reusable unless they satisfy specifications for appli­
cations other than the planning for hubs of broadband wireless access 
systems. In Canada, Telecom employs data of all buildings, elsewhere 
the focus is on business and commercial buildings only. The Canadian 
concept leads to data sets, say for Montreal, with up to 1,000 buildings 
per km2, and about 0.5 million for the area of interest. Unfortunately, 
Telecom's interest is only for the densest regions of any city, and there­
fore its data sets may have large holes in the less densely populated 
segments of urban areas. As a result, the Telecom-inspired efforts may 
have to be augmented to be useful for other applications. 

There is little doubt that at the current cost of producing such data, 
the 3-dimensional building data will become as ubiquitous as the 2-D 
GIS currently is. There are no cost reasons not to go forward with this. 
A large city like Montreal may have 400,000 buildings scattered over a 
core area of 400 km2 . At a cost of US$ 200 per km2 , it would be a 
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Figure 11.7 Lines extracted from the overlapping terrestrial photographs in Fig. 11 .6. 
These 3-D vectors have been computed automatically and can now be submitted to 
a machine-supported manual editing and clean-up procedure. 

modest expense of US$ 80,000 to model all of the buildings of Montreal 
in 3-D! 

The texturing of the buildings is another issue. While the aerial pho­
tography will automatically, and almost at no additional cost, produce 
a texture for all horizontal or near-horizontal surfaces, this is not true 
for the vertical walls of buildings. These textures will need to be sepa­
rately produced. Once this has been accomplished, the issue may arise 
concerning the geometric detail of each building versus the information 
contained in the photographic texture. These issues will move into the 
foreground once the basic data sets have come into existence. 
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Chapter 12 

MEDICAL VISUALISATION, 
BIOMECHANICS, FIGURE ANIMATION 
AND ROBOT TELEOPERATION: THEMES 
AND LINKS 

Gordon J. Clapworthy, Igor R. Belousov, Alexander Savenko, Wei Sun, 
JiaCheng Tan, Serge 1. Van Sint Jan 

Abstract The relatively-unconnected areas of medical visualisation, biomechanics, 
figure animation and robot teleoperation are considered, and relation­
ships between the fields are identified. Influences of computer imaging 
on the computer graphics content are described, as is assistance pro­
vided in the opposite direction. 

1. INTRODUCTION 
In its early days, what constituted computer graphics was relatively 

clear. An image was generated by the use of software, and at that point 
the process stopped. Over the years, as a variety of technologies merged 
with computer graphics and computer animation, so what was computer 
graphics and what not became much less distinct. For example, it is 
not uncommon to find papers on sound or haptic interfaces and tactile 
feedback [2, 28, 32] being presented at computer graphics conferences. 
With the advent of image-based rendering [7, 13, 19, 27], existing two­
dimensional images, from whatever source, were used to create a three­
dimensional scene. Motion capture has matured considerably and is 
now the major means of animating faces and articulated figures [11, 16]. 
Laser-based capture of objects has reduced the need for a graphics-based 
approach to modelling three-dimensional objects. And there are many 
other examples of how advances in other technologies have had a major 
impact on the way in which computer graphics images are created. 

The Computer Graphics & Modelling Group at De Montfort Univer­
sity has interests in a number of areas. Although the focus is firmly 
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on computer graphics, the use of images is central to a number of the 
projects and, although at first sight, they appear to be radically different, 
several areas of overlap can be identified. 

2. MEDICAL VISUALISATION AND 
BIOMECHANICS 

For many years, the two-dimensional images produced for radiolo­
gists by Computed Tomography (CT) and Magnetic Resonance Imaging 
(MRI) have been used to create three-dimensional scenes for viewing 
either by surface or, more recently, volume visualisation. Surfaces ren­
dering normally uses the Marching Cubes Algorithm [25] or one of its 
variants. Segmentation, in which the various components of the struc­
ture are separated, can be a problem for complex anatomical structures. 

The combination of rapidly-decreasing hardware costs and improv­
ing rendering techniques has increased the demand for volumetric ren­
dering [23, 24] which, though computationally more demanding than 
surface-based methods, is also much more versatile. 

One of the problems with CT and MRI images is that they are static 
data. The installations that collect them are expensive, large and immo­
bile. This makes it difficult to use the available data for cases in which 
movement is important, for example, orthopaedics. So, while joint kine­
matics and joint disease are frequently closely related, it can be difficult 
to identify the problems by non-invasive diagnostic techniques. 

Some researchers have created models of the bones in the joint of an 
individual from radiological data and attempted to animate the model 
using what they felt was appropriate kinematic data. The difficulty in 
employing this approach in a clinical situation is that knowledge of the 
precise individual characteristics of that person's movement and their 
effect on the joint are important to the clinician in making his diagnosis. 

Van Sint Jan et al [21] have recently developed a system for combining 
radiological and kinematic data of the same patient, so that accurate 
demonstrations of the joint movement for that patient can be viewed. 

Standard reconstruction techniques produce a 3D surface model of the 
bones of the joint from the radiological data. The user positions virtual 
markers on the surface of each bone in this model, wherever suitable 
anatomical markers are found. This is performed on the image of the 
model using the mouse-driven screen cursor. 

The landmarks are any bony features that can be repeatedly localised 
in all the datasets analysed. During this process, the bones can have 
standard 3D transformations applied to allow viewing from any direction 
so that the best landmarks are identified. 
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An electrogoniometer is attached to the joint in question to record 
its full (six-degrees-of-freedom) movement in three-dimensions. This is 
fed into the joint model built from radiological scans of the joint. The 
reference frame for the goniometer is aligned with the reference frame 
for the joint. 

Thus, an accurate animation of the bones of the joint can take place, 
reasons for the discomfort experienced by the patient can be identified, 
and suitable remedial treatment can be diagnosed. 

In certain joints, combined motion is highly significant. During joint 
rotation, one bone moves around the surface of the other. The surfaces 
of the bones are not regular or symmetric, and the bones are constrained 
in their movements by the actions of ligaments and the synovial capsule. 
Thus, the concept of a simple hinge joint is, for many applications, a 
gross oversimplification; nevertheless, it is one that is almost universally 
used outside clinical biomechanics. 

The results obtained in the current work concerning the functional 
anatomy of the knee are already challenging classical thinking. The way 
in which the instant axis of rotation of the joint changes during motion 
is illustrated in Figure 12.1. 

Figure 12.1 Frames from the animation of a human knee. The lines indicate the 
positions of the instant axes of rotations at previous frames. 

For the first time we have accurate kinematics data together with 
accurate morphological data of the same joint. More examples from a 
range of subjects have to be analysed before we can judge how general 
the current findings are. 

By pre-processing the radiological images, it is also possible to use 
knowledge of the morphological structure of bones to simplify the mod­
els produced by segmentation without losing information. Conventional 
segmentation techniques employed on the radiological slices of a bone 
in order to create a three-dimensional model of its surface produce an 
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excessive number of polygons. These are conventionally reduced to man­
ageable numbers by decimation [34], though this is a process that loses 
some surface detail. 

Figure 12.2 Spongy bone contains trabeculea which are small cavities within the 
spongy bone. On the enlarged image, a 4mm scale is shown. 

Many of these polygons are interior to the bone because of its morpho­
logy-they are associated with the trabeculea which exists within spongy 
bone (Fig. 12.2). Van Sint Jan et al. [22] have suggested a straightfor­
ward way of employing knowledge of bone structure, to remove these un­
necessary polygons automatically and thus create simpler models which, 
unlike decimated models, still fully retain the required surface detail. If, 
thereafter, further reduction in the polygon count is required, decimation 
can still take place but it will not be necessary to apply it as vigorously. 

"Lean" models are particularly useful in Internet transfer [8], rapid 
prototyping [10], Virtual Reality [12] and telepresence surgery [31]. 

The method shows great promise for clinical use in orthopaedics and 
other areas. It is thought that prosthesis design has progressed little 
in recent years because of limitations in the data available. Also, early 
prosthesis failure is probably caused by poor modelling, again usually the 
result of insufficient or inexact data. The availability of good morpholog­
ical and kinematic data of the same patient will address this fundamental 
problem. 

However, the method has the drawback that it is dependent upon the 
use of the three-dimensional goniometer, which is somewhat intrusive, 
but it is vital that the recording of the patient's movements is accurate, 
as clinical decisions will be based upon it. 

The extension of the model to deal with whole-limb data is seen to 
be an urgent priority. It is impractical to use the goniometer on several 
joints of the same limb. However, current motion-capture techniques, 
as employed in the animation industry, do not have sufficient accuracy 
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as they are associated with capturing external data and the skin can 
stretch considerably during the motion of a joint. The development of 
a highly-accurate, non-intrusive motion capture system for use in this 
context is a challenge for the future. 

3. FIGURE ANIMATION 
The biomechanics results concerning joint motion have implications 

about the form of joints adopted within the models conventionally used 
in figure animation. Figure animation has inherited joint models from 
robotics that are mathematically convenient but not anatomically cor­
rect. 

Robotics normally assumes a single-degree-of-freedom (sdof) joint, 
which is well suited to precision-machined parts. Multiple-degree-of­
freedom joints are constructed from several sdof joints joined by dimen­
sionless and mass-less links. Thus, motion of the joint is represented by 
successive rotations about the orthogonal axis system associated with 
the proximal link. This is the fundamental model used throughout fig­
ure animation, [1, 14, 37]. It is not clear that it is well suited to the 
anatomical characteristics of most real-life joints. 

Combined motions [20] are functionally important and they provide 
the smooth aspect of most joint motions. They have two main charac­
teristics: 

• they have limited amplitude (in general), 

• they occur subconsciously. 

In some joints, combined motion is not highly significant. However, 
that is not the case with the knee; here, the bones are complex and 
asymmetric and there is a system of ligaments which produces quite 
complicated motion (Fig. 12.3). In full flexion, the secondary motion of 
the knee is about 15°. 

The axis of knee flexion is inclined at an angle to that which the 
simplified model would use, and changes throughout the movement. This 
may explain why knee movement in computer-generated figures often 
appears inaccurate. 

Given the critical position of the knee in the kinematic chain of a 
moving figure, it is clear that accurate modelling of the knee is important 
to the "look" of any animation. Savenko et al. [33] have created a model 
for knee motion using biomechanical principles and will be extending 
this to a full figure in order to address these problems. 
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Figure 12.3 The articulating surfaces of the knee 

The complications in such an approach are clear: the joint rotation no 
longer takes place about pre-configured orthogonal axes, and it changes 
as the movement progresses. 

The knee is also capable of abduction/adduction, but these are not 
currently being investigated. For atypical gaits (bow-legged or knock­
kneed), it is likely that the biomechanical model will be even more ben­
eficial than in a "standard" gait. 

A number of researchers have attempted to use dynamics [18, 35, 36J 
as a basis for figure animation. The joint model used for these figures 
is based upon the types of joints used in robotics and the dynamical 
equations employed are precisely those developed in that area. The 
biomechanical analysis above demonstrates that this model is flawed. It 
is unclear how deleterious an effect this has on the performance of the 
model because other factors, such as the inaccuracies in the calculation 
of ground reaction forces, may also contribute to the problems. However, 
it is fair to say that even the most advanced applications of dynamics to 
figure modelling are still far from producing results which are sufficiently 
versatile and convincing for general use. 

The most commonly-used form of input to a figure animation system 
currently is motion-captured data. However, there is, as yet, no ac­
cepted method by which the individual (or idiosyncratic) characteristics 
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of captured motion can be changed in a structured and predictable way 
in order that, for example, the mood of the character performing the ac­
tion is changed, or that the character to whom the motion is transferred 
imbues the movement with qualities more suited to his own "personal­
ity" rather than that of the "donor". 

Hodgins and Pollard [17] and Gleicher [15] have developed systems 
which enable data captured from individuals to be edited and re-used 
on other figures having different physical characteristics. While this 
appears to work well and makes captured data much more versatile, it 
fulfills only part of the requirements. The data that is changed still 
has the same overall qualities, in terms of emotion and subtle secondary 
messages, as the original. 

The eye is extremely sensitive to individual characteristics associated 
with people with whom we are familiar. We are often able to recognise 
someone at a distance simply by the manner in which they are holding 
themselves or small idiosyncrasies in their locomotion. If figures in a 
Virtual Environment are to provide with individualism, their complete 
range of motions must exhibit similar, and distinguishable, characteris­
tics. 

An early attempt at developing a model to support this was made 
by Unuma et al. [26] using Fourier analysis, and the problem was revis­
ited by Clapworthy and Sun [9] using wavelets. An attractive feature 
about wavelets is that they can be used to separate localised detail from 
general trends. Wavelets also supply a common underlying mathemat­
ical framework to the models and thus allow data from different gaits 
to be compared and blended. By identifying a "signature" in a set of 
motion-captured data for one person, it may be possible to transfer per­
sonal characteristics on to the general trend of data for a different set of 
movements that have been captured from another individual. 

Until this, or some other method, provides a versatile tool for mod­
elling personal traits, the only way to providing inhabitants on virtual 
environments with individual characteristics will be to model them all, 
separately and in detail. 

4. TELECONTROL OF ROBOTS 
Tele-operation of robots has great promise for its potential applica­

tions such as remote surgery and operation in hazardous conditions such 
as in subterranean, underwater or nuclear environments, or in outer 
space. Communication delays in such systems clearly present technical 
difficulties, and other unresolved problems in this area include insuffi­
cient visual information, slow system reaction and tedious task descrip-
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tion. A combination of computer vision, computer graphics and Virtual 
Reality techniques holds the promise of overcoming many of the current 
obstacles to successful deployment. 

In a project currently being undertaken, a PUMA robot (of standard 
industrial design) has been connected to the Internet at a remote site (in 
fact at the Keldysh Institute of Applied Mathematics in Moscow) and 
a virtual environment has been created at DMU with which to control 
the robot. The dynamics of the robot can be amended so that reacts as 
if it is working in a gravity-free environment, if required [5]. 

Apart from the hardware installed, the major factor influencing the 
efficiency and acceptability of a teleoperation system is a flexible and in­
formative user interface. As users are separated from the physical robot, 
an effective visual interface is vital for the system to be used effectively. 
It is often desirable to have a live video picture of the remote site, but 
low bandwidth and communication delays often make this difficult, par­
ticularly if the connection is via the Internet. The Internet connection 
in the current set-up has been found to have an operating transmission 
rate within the range 0.1-3.0 KBjsec. 

One approach to the problem is the immersion of a graphic robot 
model into TV images transmitted from the remote work site [3, 30]. 
Minimum knowledge of the remote site is required; the TV images are 
not updated except for changes in the camera view. In such a model, the 
graphics is more suited to simulation of the task, preliminary planning 
or autonomous repetition of the tasks. The real robot is not visually 
available to the operator who sees only the final status of the robot and 
the work site between control sessions. 

The system described by Belousov et al. [6] uses a graphical display 
of an accurate virtual environment for the robot, Figure 12.4, and the 
visual display of the robot performance is updated by numerical data 
transmitted by the actual robot as it performs the task. The volume of 
this data is considerably less than that of video images, so the state of 
the local virtual robot more closely resembles the physical situation at 
the remote site than would a transmitted image. 

The operator's control environment contains a sophisticated graphic 
control panel and a tool for remote robot programming. Using this, 
the operator can conduct sophisticated actions such as pick-and-place 
or assembly in manual and automatic regimes. 

The system architecture is illustrated in Figure 12.5. The client part of 
the system consists of independent applets running: the robot graphical 
visualisation module (Java3D), the robot control panel, a module for 
remote robot programming and two "live" video images from the remote 
site (if required). The control system can operate on-line (the operator 
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Figure 12.4 Java3D model of the robot 

controls the real robot) or off-line (the operator controls the graphical 
model-useful for preliminary testing). In the programming module, 
the operator can execute individual commands or arbitrary sequences of 
commands (programs) . A robot-control language has been developed to 
support this [4]. 

In operation, small data parcels (6 joint and 6 Cartesian coordinates) 
are transmitted to the visualisation module several times a second. A 
path-planning module at the operator's site can choose to use linear 
interpolation or an interpolated trajectory in joint space to smooth the 
trajectory between the robot positions received. 

The system can operate in world space, joint space or in the robot grip 
reference frame. Moves are made incrementally, with the user controlling 
the size of the increment. 

Experiments in which a rod is collected from a support and trans­
ported to another support, and the robot strikes one of two balls sus­
pended on string in such a way that it collides with the other, are cur­
rently being conducted. The next phase will be to use methods, based 
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Figure 12.5 The system architecture and robot control panel 

on computer vision, which have been developed for trajectory predic­
tion by Okhotsimsky et al. [29] to work in the virtual environment with 
dynamic scenes. 

This work will be adapted in the future to control of figures in a vir­
tual environment. The control of figures is computationally intensive; if 
this is combined with the rendering calculations, frame rates will be ex­
cessively slow. By decoupling the control calculations on the server from 
the rendering calculations on the client and defining control mechanisms 
for the figures which reduce communications overheads, sophisticated 
real-time control of complex inhabited virtual environments should be 
possible on relatively low-specification computers. 

5. SUMMARY 

Computer graphics is no longer the pure, "standalone" discipline it 
was at the outset, it is now influenced by many forms of technology. 
Several projects were identified which appeared to bear little relation to 
each other, but which did, in fact, gain greatly from cross-fertilisation. 
A common thread through them was the use of images (taken in its 
broadest sense). 

I 

I 
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As research in graphics becomes more diversified, often more interdis­
ciplinary, so the teams involved will have to call on a greater variety of 
knowledge and skills. 

As the power of visualisation spreads the influence of computer graph­
ics into other disciplines, so they, in turn, influence the way in which 
computer-generated images are produced. 

However, the use of vision is not necessarily the complete answer. For 
example, motion capture is often used for figure animation with consid­
erable success. But it is not very versatile and the development of, for 
example, motion-editing tools, will enable data to be widely re-used and, 
therefore, much cheaper to acquire. Likewise, retaining the individuality 
of the figure is very important and without a rigorous underlying model, 
identifying the characteristics associated with a particular figure is very 
difficult. 

Thus, while computer vision and computer graphics are continuing to 
combine to produce effective solutions to many problems, these solutions 
are not necessarily complete. It should not be overlooked, therefore, that 
a sound underlying model can provide improved solutions and broaden 
the applicability of the techniques developed. 
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Chapter 13 

CAN VIRTUAL LOOK REAL? 
A REVIEW OF VIRTUAL STUDIO 
TECHNIQUES 

Andrew Wojdala 

Abstract 
Five years since its introduction to television world, Virtual Studio 

has proven that it can be successfully used. More and more broadcasters 
are using this technology, even for complex, live-to-air productions. 

The goal of this paper is to address the most basic issue raised by 
this relatively new technology: how realistic virtual sets can appear? 
Has the technology reached the level high enough to create a convincing 
illusion? 

Virtual Studio is a very interdisciplinary technology. To answer these 
questions, we need to discuss techniques related to computer graphics, 
today's graphics workstations, chroma keying, video camera behavior, 
camera tracking and interaction between real and virtual worlds. 

1. INTRODUCTION 
Virtual Studio evolved from traditional blue-box technique, where ac­

tors and real objects are shot in front of a blue screen. The camera signal 
(foreground) is then fed to the chroma keyer, where it is mixed with an­
other video signal (background), coming from a VTR or a computer 
(Fig. 13.1). This technique, used for years for weather forecasts, has 
one major drawback: the camera cannot move, because the background 
video is static. If the camera moved or zoomed, then only foreground 
would change, while the background would remain the same, which of 
course is not what we expect. 

There is no "official" definition of the Virtual Studio. In fact, new 
developments and products obscure the matter even more. Virtual stu­
dios can be "3D", "2D" or even "still", "live" or "post", "SGI-based" or 
"NT-based", "standalone" or "plug-in", "low-end" or "high-end". 
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Figure 13.1 Traditional blue-box technique 

But in fact, there is one major feature that defines Virtual Studio: 
camera motion. Virtual Studio is a technology, which allows cameras 
to move, and which changes background video in such a way, that it 
matches the foreground when camera moves. To change the background 
according to the camera motion, the graphics computer is needed. This 
computer should be connected to the camera tracking system, in order to 
get the real-time information about current camera position. The pres­
ence of a camera tracking system and the computer constitutes the main 
difference between traditional blue-box and Virtual Studio (Fig. 13.2). 

graphics 
computer 

Foreground 

Background 

Composite 
Chromakey 

Figure 13.2 The presence of a camera tracking system and the computer constitutes 
the main difference between traditional blue-box and Virtual Studio. 

There are many reasons to use Virtual Studio. The most important 
of them are: 

• Shorter production cycle: virtual sets can be created quicker than 
real ones. 

• Better studio utilization: the same studio can be used for different 
productions; the change of a virtual set is a matter of seconds. 
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• Easy changes: since virtual set is not a real thing, some modifica­
tions are possible even in the last moment. 

• Unleashed imagination: sets can be created, that in reality would 
be too difficult, too expensive, or even physically impossible to 
build. 

• Bigger sizes: virtual sets can be much more spacious than stu­
dios that host them, and tricks like rotating platforms, can further 
enhance the impression of spaciousness. 

• Live graphics effects: computer allows to enrich the set with special 
effects and graphics in real time, significantly enhancing the look 
and making viewer's perception easier. 

• No storage problems: virtual sets do not occupy expensive storage 
space. 

Most television programs can benefit from using virtual sets. The 
types of programs that are obvious candidates for this technology are: 
news programs, weather forecasts, sportscasts, talk-shows, music pro­
grams and video clips, programs for kids, educational programs, ads, 
game shows, soap operas, corporate presentations. 

Since they replace real sets, the primary function of virtual sets is 
to look convincing. There is no point in using the technology, which 
generates sets that look worse than cheap cartoon decorations. To create 
a convincing illusion that actors are immersed in a computer-generated 
set, issues of various areas must be addressed: 

• real-time performance of all virtual studio components, in partic­
ular of camera tracking and computer graphics display, 

• realism of computer-generated sets, 

• proper lighting of the virtual and real stage and good chroma key­
ing, 

• proper interaction of virtual and real shadows, 

• precise camera tracking and in consequence--matching motion of 
real and virtual cameras, 

• precise lens calibration, 

• simulation of lens behavior, such as depth of field and distortion, 

• display of virtual objects in front of real ones. 

In the following sections we will discuss these issues in detail. 
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2. REAL-TIME PERFORMANCE 

The term "real-time" is frequently treated as an equivalent to "interac­
tive". This is partially the result of the confusion between Virtual Studio 
and Virtual Reality (VR). Although there are many similarities between 
them, there are also notable differences. The goal of the Virtual Reality 
is for the actor (Le., the person being the subject of the experiment) 
to have an impression of being immersed in the virtual environment, 
by using such attributes as Head Mounted Displays. In Virtual Studio 
only the audience is "cheated" by looking at the composite image; the 
actor remains perfectly aware of his real environment. But perhaps the 
most important difference stems from the area of application: while it is 
still acceptable for VR images to be crude and motion to be jerky, Vir­
tual Studio demands absolutely flawless and smooth motion as well as 
good-quality images, because they are eventually broadcast in TV. This 
condition imposes strict requirements on the equipment and software 
used in the Virtual Studio: 

• The display frame rate has to be equal to the video frame rate 
(50Hz in PAL, 59,94Hz in NTSC). Consequently, in Virtual Stu­
dio the term "real-time" means 20/16.6 milliseconds per frame. 
Within that time, the virtual scene must be displayed, and all 
special effects applied. 

• In consequence, computers used to generate the virtual scene must 
be high-performance graphic workstations. Until recently, the only 
computer regarded as capable of handling this demanding task was 
Silicon Graphics Onyx. 

• Both camera tracking and the computer must use studio genlock 
as a reference for sending data reports and redrawing the scene 
with new perspective. 

• Finally, the computer must support broadcast-quality graphics-to­
video conversion. 

3. REALISM OF COMPUTER-GENERATED 
SCENES 

Sets can be generally classified into two categories: recreated real 
sets, where as much realism as possible is needed, and unreal, impossible 
worlds. It is important to realize however, that to look convincing even 
unrealistic sets need realistic lighting. 

At present, the most advanced commercially available methods to 
simulate lighting are mutations and combinations of radiosity (Cohen 
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et al. [2] and further works) and ray tracing (Whitted [17] and further 
works). Although they are able to produce very good results, they are 
far from being real-time. 

On the other hand, computer graphics hardware of even most powerful 
among today's workstations is limited to simple rendering methods using 
z-buffer and Gouraud shading. The main bottlenecks are the number 
of polygons that can be displayed within video frame rate, the number 
of light sources and the texture space. Certainly, more realistic scenes 
are bigger challenge for graphics hardware, because they are composed 
of more polygons and use more textures and light sources. A number 
of methods can be employed to simplify the geometry of the set while 
retaining the same look. Apart from polygon reduction algorithms, tech­
niques such as replacing flat complex shapes by textures with an alpha 
channel can be used. Those techniques usually eliminate superfluous 
polygons while retaining the visual complexity at the expense of texture 
memory space. 

Light sources supported by hardware are usually the weakest point: 
there is a limited number of them (typically 8) and the lighting model 
they employ is very simple. Therefore, the typical solution is to trade 
light sources for increased number of polygons, which have lighting pre­
processed and converted into vertices' color, which is then interpolated 
by the graphics hardware. Unfortunately, methods such as radiosity 
subdivide the original geometry, generating a lot of polygons (frequently 
hundreds of thousands) which makes real-time performance unreachable. 
Such subdivision can be converted into textures; at present the technique 
of preprocessing lighting and combining it with original texture patterns, 
known as "texture rendering" (Figs. 13.3, 13.4), is the only efficient way 
to achieve high level of realism while maintaining the requirement of 
real-time performance (Fig. 13.5) [5,10,18]. Of course, texture space is 
also limited, and exceeding the limit results in texture swapping, which 
kills the real-time performance, but this seems to be the most acceptable 
trade-off. 

The discussion above concerns mainly diffuse lighting. Specular light­
ing effects (e.g., mirror reflections) usually cannot be preprocessed, be­
cause they are inherently view-dependent, but can be simulated using 
capabilities of the graphics hardware, although not without certain per­
formance penalties [18,7]. On the other hand, the usability of specular 
reflections in a virtual set is somewhat limited, because it is naturally 
expected that real objects would be reflected in virtual mirrors as well. 
Such effect can be accomplished to the certain extent, by placing sheets 
of glossy material on the floor or walls (Fig. 13.6) or by employing ded-
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Figure 13.3 Texture rendering 

Figure 13.4 Texture rendering 
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Figure 13.5 Texture rendering 

icated hardware to process foreground video, as was recently demon­
strated by Orad. 

While simulation of interiors reached quite convincing level of realism 
(Fig. 13.7), outdoor scenes are still beyond computer simulation, unless 
they are limited to a "look through the window", photographed and 
mapped onto the background. 

4. LIGHTING AND CHROMA KEYING 
Proper, even lighting of the blue-box is essential to eliminate unwanted 

shadows and to ensure quality keying. While the lighting plays a key 
role in building the mood of every production, because of the chroma 
key limitations the virtual set lighting director's freedom is limited, es­
pecially if colored lights are desired. Moreover, unless the blue-box walls 
coincide with the walls of the virtual set, the light effects must be limited 
to the floor only. Setting flat and very bright lighting for the whole stage, 
including actors and foreground objects precludes the possibility of dra­
matic lighting, which-contrary to the popular belief-can be achieved 
in a blue screen. This is especially true when replacing the paint with 
retro-reflective material (HoloSet from Play, Inc., developed by BBC and 
formerly known as Truematte; Fig. 13.10). Illuminated by a ring of blue 
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Figure 13.6 Specular reflections in a virtual set 

Figure 13.7 Simulation of interiors 
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LEDs mounted around the lens (Fig. 13.11), the material reflects almost 
all incident light back in the direction of the camera, which "sees" the 
whole background stage as blue. This gives the lighting director much 
more freedom in lighting actors and the stage, and even allows to work 
in almost complete darkness (Fig. 13.12). 

Good quality keying is critical to create the convincing illusion. The 
color and shape of the blue-box, the lighting, cameras, and the quality of 
the chroma keyer all play their roles, and setting the entire environment 
is still more an art than a science. But even technically perfect keying 
will not help, if the lighting of a real stage does not match the light­
ing of a virtual scene. Unfortunately, this is usually the case, because 
the lighting of the actor is white and even (as a result of even lighting 
of a blue-box), unlike the lighting of the scene. Only recently the new 
Ultimatte-9 keyer addressed the critical issue of ambiance, adding an 
automatic adjustment of the foreground image color to match the influ­
ence of the virtual background. This way, when the background is red, 
the foreground (e.g., the actor) gets the subtle reddish coloring, which 
is exactly what the human visual system expects. 

Matching lighting levels between virtual scene and real foreground is 
a separate problem. The latter stems from the technical requirements, 
while the former is an artistic issue. Ultimatte keyers enable the software 
to control the foreground brightness in real-time, thus allowing lighting 
levels to be matched within certain limitations (Figs. 13.8, 13.9). Any 
dynamic lighting changes make the things even more difficult, whether 
they occur in the virtual set (possibilities are limited, because of per­
formance issues) or in the real environment (here possibilities are lim­
ited due to the chroma keying considerations). With the techniques of 
lighting preprocessing discussed in previous chapter, it is reasonable to 
design certain number of lighting situations and dissolve between them, 
simultaneously with the transition between foreground brightness levels 
(Figs. 13.8, 13.9). To really synchronize the changes of the real and vir­
tuallighting, the studio lights should be computerized. This allows the 
lighting situations to be recorded and repeatedly recalled. Ideally, any 
changes of the real lights should be detected by the computer generating 
the background to trigger an appropriate change of the virtual lighting 
(and vice versa). Of course, the keyer should also synchronously recall 
the settings appropriate for the new lighting conditions. 

5. SHADOWS 

Shadows were always recognized as an important element responsible 
for proper understanding of computer-generated images. Generation of 
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Figure 13.8 Ultimatte keyer: The foreground brightness is matched to the bright 
subject in real-time. 

Figure 13.9 Ultimatte keyer: The foreground brightness is matched to the dark 
subject in real-time. 
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Figure 13.10 Dramatic lighting can be achieved in a "Truematte". 

Figure 13.11 Blue LEDs mounted around the camera lens 
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Figure 13.12 Using the illumination by a ring of blue LEDs mounted around the 
camera lens allows the lighting director to work in almost complete darkness. 

shadows is an integral part of realistic image synthesis methods, but it 
was always more difficult in real-time rendering algorithms. Application 
in Virtual Studio makes it even more difficult, because it imposes the 
requirement of sustained display rate equal to the video frame rate. If 
the textures are rendered, they already contain static shadows. But if 
virtual objects that cast shadows move, the shadows do not move with 
them. To allow dynamic lighting and animated objects, it is necessary to 
employ hardware-assisted shadowing techniques [1]. Of these, most are 
multi-pass rendering methods, which usually significantly degrade the 
performance, thus requiring the scene complexity to be reduced several 
times. In practical cases only projection shadow (fake shadows) and 
shadow object methods, being the most efficient, can be used in Virtual 
Studio. Unfortunately, these methods have limitations; primarily shapes 
of shadowed objects need to be planar. 

But the biggest challenge is to address the problem created by and 
specific to Virtual Studio: casting shadows of real elements (especially 
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Figure 13.13 Casting shadows of real people on virtual objects 

an actor) on virtual ones and vice versa. For real-to-virtual shadow 
casting the solution is to use another camera, which emulates the light 
source. The camera signal is run through the chroma keyer to obtain 
the black-and-white mask, which is then input to the computer, as was 
demonstrated by some virtual studio vendors, most notably by RT Set. 
Multi-pass projected texture method [14] is then used to map the shadow 
onto virtual objects in the scene (Fig. 13.13). Casting shadows of virtual 
objects on real objects is also technically possible. One of the simple 
solutions is to cover the studio lights with masks of the proper shapes. 

It can be concluded, that while proper shadowing is really important 
for realistic look of virtual sets, it was not yet resolved in a satisfactory 
manner, so that aspect of interaction of the real and virtual worlds still 
requires better solutions. 
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6. CAMERA TRACKING 

To properly match perspectives of the real foreground and virtual 
background, the precision and stability of the camera tracking system 
is crucial. If the information about camera motion delivered to the 
computer does not reflect the real change of its position and orientation, 
then real objects will "swim" with respect to the virtual ones, and most 
visibly to the virtual floor. Camera tracking systems available today use 
the following techniques: 

• sensors (encoders), 

• pattern recognition, 

• position detection. 

Encoders-based camera tracking is the most accurate and proven tech­
nology. Encoders are mounted on the pan and tilt axes of camera heads. 
This way, the precise information about camera orientation in space can 
be passed to the computer. Zoom and focus rings have special brack­
ets and separate encoders, necessary to calculate the view angle of the 
camera. To allow camera motion, it can be put on a dolly with the 
height sensor. Using the rail with additional sensor allows a movement 
on the floor. Mounting the camera on a crane with encoders, and even 
mounting such crane on a rail usually gives all the freedom and preci­
sion of movement that might be desired, except for hand-held cameras. 
Also, large studios can be a problem. The leaders in sensor tracking 
are Thoma Filmtechnik (Germany), Radamec EPO (Great Britain) and 
Hybrid MC (France). 

Pattern recognition tracking systems use fixed pattern, that the cam­
era must "see" all the time. Pattern's construction makes it possible 
to calculate the position and orientation of the observing camera based 
on what it sees. The biggest advantage of pattern recognition systems 
is their ability to track even hand-held cameras. The drawback is that 
when the pattern falls out of view (big tilt or roll, obscuring objects), 
the tracking stops to work. Although this type of tracking is less precise 
than sensor-based solutions (because it is limited by the resolution of a 
video image seen be a tracking camera), it is possible to reach the sat­
isfactory level of accuracy (positional accuracy of the order of 0.1 mm 
and angular accuracy of 0.01 degree is considered good). Two mature 
solutions are available on the market. 

Orad Hi-Tec Systems, one of Virtual Studio vendors, has a proprietary 
system, in which the same camera that is used for shooting also watches 
the pattern, a non-uniform grid painted in two shades of blue on a flat 
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wall of a blue-box [15]. In its theory, it is an ideal tracking system, be­
cause it calculates the camera parameters directly from the foreground 
image, to which the background will be matched. In particular, the 
advantage of this solution is that no zoom/focus sensors are needed, 
because the view angle is determined from the pattern along with posi­
tional information. The drawback is that if the camera looks away from 
the blue-box the tracking no longer works. The same can happen in big 
zooms, because the pattern can get obscured or defocused. To reduce 
these negative effects, additional sensors and infra-red position detec­
tion elements usually complement Orad's pattern-recognition tracking. 
Another problem with Orad's tracking is that it makes chroma keying 
more difficult than in normal environments painted with one shade of the 
keying color. This is particularly true when keying with green. British 
company Radamec EPO offers the system licensed from BBC, where 
a small progressive-scan camera, mounted to the body of the shooting 
camera is used to determine the position and orientation, by looking 
at the grid of targets usually mounted under the ceiling (Fig. 13.14); 
zoom and focus information is received from encoders [16]. This way 
the tracking still works even if the shooting camera points away from 
the blue-box. The big advantage of this system is its ability to cover 
large studios. Interestingly, it has rather problems with studios, where 
the ceiling is not high enough. 

In position detection tracking, fixed elements of the system are moun­
ted in the studio and detect the position and orientation of the camera 
in space, by tracking special construction or active elements mounted to 
the camera body. Zoom and focus information is derived from encoders. 
This technology comes from motion capture systems and is opposite to 
what pattern recognition systems are doing, but the precision is simi­
lar. Two mature solutions available on the market are Walkfinder from 
Thoma Filmtechnik and X-pecto from Xync (both from Germany). 

Walkfinder uses intelligent, infra-red cameras that track the antenna­
like construction mounted to the video camera body. The ring of diodes 
around the lens of the tracking cameras emits IR flashes, which are 
reflected back from the five balls mounted on the "antenna" and coated 
with the retro-reflective material. As long as this construction is "seen" 
by at least two IR cameras, the tracking is possible. The advantage of 
this solution is practically unlimited pan, tilt and roll, which gives the full 
freedom of camera motion. The two main problems are interference from 
shining objects and strong light sources, and the precision of tracking 
at bigger distances between IR cameras and the tracked construction, 
which makes it difficult to use this system in high studios without the 
additional supporting construction. 
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Figure 13.14 Camera determines the position and orientation by looking at the grid 
of targets usually mounted under the ceiling. 

X-pecto is also based on infra-red technology, although it uses the 
reverse process: it is the circular construction mounted to the camera 
body that contains IR light sources, which are detected by the high­
resolution surveillance cameras overlooking the tracked area. The main 
advantage of X-pecto is its high precision. 

Recently, American company InterSense demonstrated camera track­
ing system based on its Constellation technology [4]. IS-900 Studio 
Camera Tracker uses inertial and ultrasonic components to track the 
construction attached to the camera body. While the results of the first 
tests are promising, extensive tests in the real studio environments are 
still needed. What should be certainly attractive about this system is a 
potentially very competitive price. 

Aside from the prices, the main difference between tracking systems 
presented above is their robustness and ease of use in different conditions. 
Certainly, there is no universal tracking system suitable for every studio, 
but today the selection is wide enough to satisfy most environments, thus 
fulfilling the goal of matching background and foreground with enough 
precision. 
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7. SIMULATION OF LENS BEHAVIOR 
An important observation is that it is not enough for computer­

generated sets to look real-they also need to behave in a realistic way. 
Proper simulation of the lens behavior is the key element to achieve the 
convincing illusion. 

7.1 LENS CALIBRATION 

The information delivered by the camera tracking system is used by 
the computer to adjust the virtual camera, so that the perspectives of 
the real foreground and virtual background match. Unfortunately, the 
graphics hardware of today's computers uses the simple camera model 
that does not consider the optics of the lens. The only parameters that 
can be specified are: viewpoint, target point, roll angle, view angle and 
aspect ratio, and the projection screen is flat. To match perspectives, 
we have to find the virtual camera parameters which are the best ap­
proximation of the information about the real camera, obtained from 
the tracking system. The position and orientation of the camera can be 
directly used, but the lens causes problems, because: 

• the lens' nodal point, representing the virtual camera viewpoint, 
travels when zoom and focus change, and its behavior is non-linear, 

• the view angle depends on both zoom and focus, and the relation 
is non-linear, 

• the center of the CCD can be off the optical axis of the lens, 

• the lens has the depth of field, which does not have its counterpart 
in the virtual camera model at all, 

• the lens produces non-linear distortions on the edges, which are 
also not considered because of flat projection screen, 

• the lighting on the edges depends on the iris (which usually is not 
reported anyway). 

The nodal point travel, view angle dependency on the zoom and fo­
cus and CCD centering offset have undoubtedly the biggest influence on 
matching of the virtual "pinhole" camera with real perspective. Lens 
calibration is the process of finding these relations, by matching virtual 
and real objects of the known size. Usually, specialized equipment is 
used for that purpose by either the virtual set software vendor or track­
ing system vendor. If the calibration is poor, then real objects do not 
keep their position on the floor and seem to "float" during panning, 
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tilting and zooming. Calibration procedures used by today's Virtual 
Studio and tracking systems vendors are sufficiently accurate to assure 
good matching of real and virtual perspectives; usually, it is enough to 
calibrate one lens to obtain the relations satisfactory for all lenses of 
that type. Visible artifacts can occur only on the edges for lenses with 
relatively big distortions (see below). 

7.2 DEPTH OF FIELD 
To address the issues of depth of field and lens distortions, a more 

realistic camera model would be needed. Such model was created for 
computer graphics by Kolb [9]' but it is non-real time. Therefore, the 
only way to deal with these effects is to simulate them with hardware­
supported techniques. 

Defocus due to the depth of field is one of the key effects responsible for 
realistic look of the virtual scenes. Proper simulation of this effect is time 
consuming [11]. The algorithm works as a post-processing stage after 
rendering an image in sharp focus, and requires both RGB and depth 
information to be stored for an image. The advantage of that approach 
is its physical foundation, and consequently, convincing results. Several 
methods have been developed to simulate this effect in real time. 

Texel magnification method assumes, that the resolution of the tex­
ture is such that zooming at it causes texel (texture pixel) to occupy more 
than one pixel on the screen. Graphics hardware extrapolation makes 
such texture blurred, which visually looks like defocusing. Of course, 
the effect is far from being natural and is very difficult to control. 

Better results can be achieved by the method using texture's Level of 
Detail (LOD). By switching between levels of different resolution in real 
time, the blurring effect can be better controlled. 

Hardware accumulation buffer allows a multi-pass solution that gives 
results of better quality, but only under the condition that the number 
of passes is relatively big [6]' which makes it practically unusable in 
real-time application such as Virtual Studio. 

As was shown by Rokita [12], a convolution filter can be used to ap­
proximate physically based simulation. Dudkiewicz [3] modified Rokita's 
method to use multi-pass display with hardware-supported convolution 
on the Silicon Graphics Onyx computers. Unfortunately, the rate was 
at best several frames per second on SGI's RealityEngine2. Although 
faster on InfiniteReality graphics, it still remains an expensive method. 

In 1996, in its ELSET virtual set software Accom implemented real­
time, physically-based and visually convincing depth-of-field algorithm. 
The algorithm has preprocessing stage based on Potmesil's algorithm 
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Figure 13.15 Multilayer textures are used to control the defocusing level 
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and assumed ranges of camera movements. Multilayer textures are used 
to control the defocusing level in real-time during shooting [19]. Such 
effects as rack- or back-focus are easy to achieve, because the algorithm 
is driven by both zoom and focus information coming from the camera 
head, and can also take iris into account, if available (Figs. 13.15). 

Methods presented above use computer's graphic hardware to achieve 
the effect of real-time depth of field. Some of these methods impose per­
formance penalties, others reduce available texture space. Another ap­
proach was taken by BBC and Radamec. In their solution, background 
generated by the computer is routed through Defocus-a specialized 
hardware, which applies special blurring filters in real time, effectively 
simulating the depth of field effect. Unfortunately, Defocus requires 
depth information for every pixel of the virtual background delivered 
as the digital video signal, while currently available graphics worksta­
tions do not output z-buffer in a natural way, which makes this solution 
difficult to efficiently use. 

7.3 LENS DISTORTION 
Lenses with significant distortion clearly reveal that virtual and real 

worlds do not match on the edges of the composite video. Two tech­
niques can be used to simulate the distortion. 

If the scene is tessellated into relatively small polygons, the position 
of each vertex can be transformed, so that vertices on the edges of the 
view frustum are visibly displaced, while centrally-located vertices stay 
unchanged. Unfortunately, the general tendency is to avoid high tessel­
lation, and also the cost of transforming every vertex in every field of 
display is non-negligible. 

Another approach is to use spherical image warping, applied to the 
background image rendered with ordinary, planar projection. This can 
be done by reading the rendered frame from the frame buffer and map­
ping it as a texture on the sphere in the second display pass. Of course, 
this technique degrades the performance; an alternative approach is to 
use another, low-cost computer to execute the second pass. 

8. DISTANCE KEYING 

Having virtual objects in the background is obvious, but there is also 
a need to place them in front of real objects, and actors in particular. 
This allows, for example, putting newscaster behind the virtual desk. 
First attempts to place virtual objects in front of real ones were made 
by German company DVS, which developed a digital keyer with addi­
tional video input, fed with 8-bit values representing the distance be-
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tween the virtual objects and the camera. At the same time, the cutting 
distance (usually the distance between the camera and the talent) was 
sent through the serial line [13]. Similar solution was implemented by 
BBC and Radamec in their D.focus unit. Unfortunately, as already no­
ticed, today's graphics workstations do not output z-buffer in a natural 
way, which makes these techniques difficult to employ. However, similar 
result can be achieved using graphics hardware feeding the chroma key 
with external matte signal, at a certain expense of performance. 

Two solutions are in use in virtual sets: object- and distance-based. 
The former assigns one of two priorities (foreground or background) to 
every object. Foreground objects are additionally drawn in alpha chan­
nel, which goes to the matte input of the chroma keyer. Consequently, 
they appear in front of real objects on the composite image (Fig. 13.16). 
Distance-based solution is also technically simple: in this case, all pixels 
that display virtual set points closer to the camera than the cutting dis­
tance get white alpha. The advantage of this approach is the possibility 
to put real objects inside virtual ones. On the other hand, object-based 
approach allows to put one actor behind one pillar and second actor 
behind another pillar, as long as pillars do not overlap. In other words, 
the only issue is not to assign contradicting priorities to the same object. 
In distance-based technique it usually cannot be done, because of one 
cutting distance. Solutions for automatic determination of the cutting 
distance are offered by Orad and Xync. Orad uses overhead camera and 
IR sensor located on the talent; Xync's X-ploro talent tracking system 
uses multiple surveillance cameras overlooking the blue stage. 

The biggest problem of the distance-key techniques is that while com­
puter "knows" the depth of each pixel of the virtual scene, there is no 
depth data available for the foreground, other than the cutting distance 
representing the distance of real objects (usually the talent) from the 
camera. This makes it impossible for the actor to embrace the virtual 
column, for example. The hope for solution came with the Zcam, the 
first z-buffer camera based on infrared technology and introduced by the 
Israeli company 3DV Systems at NAB'99 convention [8]. 

Virtual blue-box is in a wayan extension of the distance keying. This 
technique allows to mask out areas past the physical boundaries of the 
real blue-box, and to display the virtual set instead. It is achieved by 
feeding alpha channel generated by the computer simultaneously with 
the background, as a video matte signal to the chroma key. This tech­
nique is especially useful in masking out the ceiling and the studio lights 
mounted there. Of course, chroma keying of actors and real objects in 
masked areas is not possible. 
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Figure 13.16 Distance keying 

9. CONCLUSIONS 
The goal of all the techniques presented above is to combine two sep­

arate images: camera foreground and computer-generated background 
so well, that the composite looks as if it was shot together, in one en­
vironment. This is not an easy task, since human visual system is very 
picky in detecting all incorrect subtleties, even though the nature of an 
error need not be consciously recognized. 

In the light of the discussions presented in this paper we can say, that 
reaching such level of realism is very difficult, and even impossible in 
general case. Technologies associated with the Virtual Studio still face 
many challenges, but they are constantly improved [20] and every year 
brings new, exciting developments. But at the same time we can risk 
the statement, that under certain conditions (for certain types of virtual 
environments), it is possible to successfully create an illusion that will be 
convincing to most viewers, maybe except for TV professionals. Perhaps 
the best conclusion of this paper is the situation that really happened 
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during one of the TV productions using Virtual Studio technology. Dur­
ing the rehearsal, one of the managers passing by the control room and 
seeing only the composite video, commented that the virtual set looks 
really good, but complained that the model of one of the chairs was 
incorrectly constructed and looks artificial. As it happened, this was a 
real chair. 
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Chapter 14 

REAL-TIME 3D-TELEIMMERSION 

Kostas Daniilidis, Jane Mulligan, Raymond McKendall, David Schmid, 
Gerda Kamberova, Ruzena Bajcsy 

Abstract 
In this paper we present the first implementation of a new medium for 

telecollaboration. The realized testbed consists of two tele-cubicles at 
two Internet nodes. At each telecubicle a stereo-rig is used to provide 
an accurate dense 3D-reconstruction of a person in action. The two 
real dynamic worlds are transmitted over the network and visualized 
stereoscopically. The full-3D information facilitates interaction with 
any virtual object, demonstrating in an optimal way the confluence of 
graphics, vision, and communication. 

In particular, the remote communication and the dynamic nature of 
telecollaboration put the challenge of optimal representation for graph­
ics and vision. We treat the issues of limited bandwidth, latency, and 
processing power with a tunable 3D-representation where the user can 
choose the trade-off between delay and 3D-resolution by tuning the spa­
tial resolution, the size of the working volume, and the uncertainty of 
reconstruction. Due to the limited number of cameras and displays 
our system can not provide the user with a surround-immersive feeling. 
However, it is the first system that uses 3D-real-data that are recon­
structed online at another site. The system has been implemented with 
low-cost off-the-shelf hardware and has been successfully demonstrated 
in a local area network. 

1. INTRODUCTION 

Advances in networking and processor performance open challeng­
ing new directions for remote collaboration via immersive environments. 
With the continuing progress in bandwidth and protocols for the infor­
mation highway, new education and business structures become feasible. 
The incorporation of graphical models in remote training is already a 
reality: Two astronauts from two different continents can already train 
together in a virtual space-shuttle [9]. However, nothing that they see is 
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real: they see each other as their graphical avatars and the space shuttle 
is a virtual model. The demand for collaboration among physicians, for a 
common medical consultation during an operation, or between engineers 
for virtual prototyping, is increasing. 

The purpose of this paper is to show, in the context of teleimmersion, 
the utility of an integrated approach coming from two fields: Computer 
Vision and Computer Graphics. The problem of teleimmersion requires 
two different technologies: data acquisition/reconstruction (the typical 
domain of Computer Vision) and fast realistic and interactive data dis­
play (the typical domain of Computer Graphics). Further, it requires 
rethinking some of the basic representations of the data in view of the 
constraints coming from the real time, low latency, high spatiotemporal 
resolution, and low cost demands. 

While the Computer Vision community is mainly concerned with 
scene reconstruction to be used in different tasks such as navigation/ma­
nipulation or recognition, here the goal is different. In teleimmersion 
applications, the goal is communication amongst people who are geo­
graphically distributed but are meeting in the space of each local user 
augmented by the dynamic, lifelike avatar of the remote partner. This 
is quite different from the conventional virtual reality. What is most 
important is not the realism but the usefulness with respect to the task 
in hand, for example, collaboration or entertainment. It is also different 
from traditional off-line versions of image-based rendering which just re­
place virtual with static image worlds. Therefore, the challenging issue 
for computer vision beside the representation is the real-time process­
ing - which has long been a focus for the visualization and the graphics 
community. 

What will follow is a description of a fully integrated dynamic 3D 
telepresence system working over the network. The highlights of the 
system are: 

1. Full reconstruction and transmission of dynamic real 3D-data which 
can be combined with any virtual object or world. 

2. Real-time performance using off-the-shelf components. 

3. Optimal balance between several quality factors (spatial resolution, 
depth resolution, work volume). 

Why is 2D not enough. Nowadays, most advanced teleconferencing 
and telepresence systems transmit 2D-images. In order to get additional 
views, the systems use either panoramic systems and/or interpolate be­
tween a set of views [3, 16, 15]. We argue here, that for collaboration 
purposes 3D-reconstruction can not be avoided. First, view morphing 
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approaches are able to interpolate views over a very restricted range 
of weakly calibrated viewpoints. Second, even if a system is fully cali­
brated [15] we need a calibration between the observer tracker and the 
cameras. In a collaboration scenario, where multiple persons discuss real 
3D properties of mechanical objects or even give instructions requiring 
6DOF movements, there is no camera placement constellation which can 
produce the required variability of viewpoints resulting from the head 
movements of a user. Therefore, we pursue a 3D image based rendering 
which is viewpoint independent based on stereo reconstruction. 

2. RELATED WORK 
Here we are not going to review the huge number of existing papers 

(refer to the annual bibliographies by Azriel Rosenfeld) on all aspects of 
stereo (the reader is referred to a standard review [5]). Application of 
stereo to image based rendering is very well reviewed in the recent paper 
by Narayanan and Kanade [13]. Although terms like virtualized reality 
and augmented reality are used in many reconstruction papers, it should 
be emphasized that we address a reactive telepresence problem, whereas 
most image based rendering approaches try to replace a graphic model 
with a real one off-line. 

Stereo approaches may be classified with respect to the matching as 
well as with respect to the reconstruction scheme. Regarding matching 
we differentiate between sparse feature based reconstructions (see the 
treatise in [6]) and dense depth reconstructions [14, 13]. Approaches such 
as [2, 17] address the probabilistic nature of matching with particular 
emphasis on the occlusion problem. Area-based approaches [10] are 
based on correlation and like our approach emphasize the real-time issue. 

An approach with emphasis on virtualized reality is [13]. This system 
captures the action of a person from a dome of 51 cameras. The process­
ing is off-line and in this sense there is no indication how it could be used 
in telepresence beside the off-line reconstruction of static structures. 

With respect to reconstruction, recent approaches can be classified as 
strongly or weakly (or self-calibrated) approaches. Self-calibration ap­
proaches [11] provide a metric reconstruction from multiple views with 
an accuracy which is suitable only for restricted augmented reality ap­
plications like video manipulation where the quality of depth is not rel­
evant. Weakly calibrated approaches [8] provide real time performance 
and are suitable for augmenting scenes only with synthetic objects. Our 
approach is the first that provides an optimal balance between depth 
accuracy and speed and therefore can be applied in teleimmersion. 
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3. SYSTEM DESCRIPTION AND 
SCENARIO 

The teleimmersion testbed we work with is a continuously evolving 
system. Before delving into the individual algorithms we describe below 
the first hardware configuration realized in spring 1999 (See Fig. 14.1). 
Each side consists of 

1. a stereo rig of two CCO-cameras, 

2. a PC with a frame grabber, 

3. a PC with an accelerated graphics card capable of driving stereo­
glasses. 

The spring-99 version has an Intel Pentium-II 450 MHz and a Matrox­
Genesis Frame Grabber at the local site. The latter includes the TI C80 
processor as a component. The CCO-cameras are the Sony XC-77. For 
visualization we use the Diamond FireGL-4000 board and CrystalEyes 
stereo-glasses. Both sites are connected to the network and send their 
data using the TCP lIP protocol. Implementation of networking is for 
the local area network used now and will be extended to include com­
pression and to compensate for lossy transmission protocols in a wide 
area Internet2 connection. 

Pentium 
Ii 

Malrox 
Genesis 

Cameras 

Pentium 
II 

RreGL 

Pentium 
II 

RreGL 

Pentium 
Ii 

Malrox 
Genesis 

St..,.., 
Cameras 

Stereo Reoonsbuctlon Stereo Reoonstruction 
Vie_r Vie_r 

Figure 14.1 First set-up for teleimmersion hardware 

The next generation of the system will integrate rendering and display 
technology by Henry Fuchs and his co-workers at the University of North 
Carolina, Chapel Hill. The difference in the 3D scene acquisition will be 
a new surround configuration of seven cameras arranged in an arc of 120 
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deg. These seven cameras yield five overlapping stereo triples each of 
them connected to a four-Pentium-III multi-processor workstation. The 
cameras will be digital and connected to the workstations via an IEEE 
1394 interface. 

The display system will be in a remote geographic location consisting 
of a polarized stereo projector system and a wall as a display. The 
user's head will be magnetically tracked and the received 3D-scene will 
be rendered in an SGI engine. Projection of the remote scene in life size 
will maximize spatial augmentation and thus the feeling of sharing the 
same room. 

Our innovation in this system will be a new trinocular stereo recon­
struction algorithm. Our surround camera configuration produces image 
planes which cannot be warped into a common rectified plane. We de­
scribe in a later section a new algorithm and results based on such a 
non-rectifiable stereo configuration. 

To minimize processing and transmission time the background is as­
sumed to be stationary, reconstructed once initially, and then perma­
nently subtracted from every incoming scene. 

4. BINOCULAR STEREO 
RECONSTRUCTION 

We elaborate next the main steps of the reconstruction algorithm 
with emphasis on the factors that affect the quality of reconstruction 
and the processing time. Our reconstruction uses two images but it is 
easily extensible to a polynocular configuration. We rely on the well 
known stereo processing steps of matching and triangulation given that 
the cameras are calibrated. 

Filtering. It is well known that two image patches can be matched if 
they contain sufficient gray-value variation. Since most of the matching 
steps are time consuming we want to avoid them if we know a-priori that 
there is not sufficient image structure to match. Therefore, we compute 
the image gradient at each position by convolving the image with a 
Gaussian derivative. A subsequent thresholding extracts the image areas 
with a high gradient. 

If the background is stationary we would like to avoid its reconstruc­
tion at each time-frame. A change detection method detects only the 
moving area on the image by thresholding the quotient of temporal 
derivative and spatial gradient. 

Rectification. When a 3D-point is projected onto the left and the 
right image plane of a fixating stereo-rig the difference in the image 
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positions is both in horizontal and vertical directions. Given a point in 
the first image we can reduce the 2D search to 1D if we know the so called 
epipolar geometry of the camera which is given from calibration. Because 
the subsequent step of correlation is area based, and for reduction of 
time complexity, we first perform a warping of the image that makes 
every epipolar line horizontal [1]. This image transformation is called 
rectification and results in corresponding points having coordinates (u, v) 
and (u - d, v), in left and right rectified images, respectively, where d is 
the horizontal disparity. 

Matching: disparity map computation. The degree of correspon­
dence is measured by a modified normalized cross-correlation (MNCC) 
[12], 

(1 1) _ 2 cov(h, 1R) 
c L, R - var(h) + var(IR) , (14.1) 

where hand 1R are the left and right rectified images over the selected 
correlation windows. For each pixel (u, v) in the left image, the matching 
produces a correlation profile c( u, v, d) where d ranges over a disparity 
range. The definition domain is the so called disparity range and depends 
on the depth of working volume, i.e. the range of possible depths we want 
to reconstruct. The time complexity of matching is linearly proportional 
to the size of the correlation window as well as to the disparity range. 

We consider all peaks of the correlation profile as possible dispar­
ity hypotheses. This is different from other matching approaches which 
decide early on the maximum of the matching criterion. We call the 
resulting list of hypotheses for all positions a disparity volume. The hy­
potheses in the disparity volume are pruned out by a selection procedure 
that is based on the constraints imposed by 

• Visibility: If a spatial point is visible then there can not be any 
other point in the viewing rays through this point and the left or 
right camera. 

• Ordering: Depth ordering constrains the image positions in the 
rectified images. Both constraints can be formulated in terms of 
disparities without reconstructing the considered 3D-point [20, 5]. 

The output of this procedure is an integer disparity map. To refine 
the 3-D position estimates, a subpixel correction of the integer disparity 
map is computed which results in a subpixel disparity map. The sub­
pixel disparity can be obtained either using a simple interpolation of the 
scores or using a more general approach as described in [4] which takes 
into account the distortion between left and right correlation windows, 
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induced by the perspective projection, assuming that the surface can be 
locally approximated with a plane. The first approach is faster while 
the second gives a more reliable estimate of the subpixel disparity. We 
chose an extended version of the former which assumes preservation of 
the intensity value left and right. To achieve fast subpixel estimation 
and satisfactory accuracy we proceed as follows. 

Let E be the unknown subpixel correction. For corresponding pixels 
in the left and right images, 

h(u, v) = aIR(u - d + E, v) = a(IR(u - d, v) + EV'IR(u - d, v)), (14.2) 

where the coefficient a takes into account possible differences in camera 
gains. By taking a first order linear approximation of Eq. (14.2) over 
the correlation window we obtain the equivalent of a differential method 
for computing the optical flow. We use an FIR-filter-approximation of 
the image gradient appearing in the above formula. The disparity map 
is the input to the reconstruction procedure. 

3D-reconstruction. Each of the stereo rigs is calibrated before the 
experiment using a standard "strong" calibration technique [18]. The 
calibration estimates the two 3x4 projection matrices for the left and 
the right camera. Given the disparity at each point and the calibration 
matrix the coordinates of a 3D-point can be computed. 

From the disparity maps and the camera projection matrices the spa­
tial positions of the 3D points are computed based on triangulation [6J. 
The result of the reconstruction (from a single stereo pair of images) is 
a list of spatial points. 

The error in the reconstruction depends on the error in the disparity 
and the error in the calibration matrices. Since the action to be recon­
structed is close to the origin of the world coordinate system the depth 
error due to calibration is negligible in comparison to the error in the 
disparities. What is mainly of concern is the number of outliers in the 
depth estimates resulting in invalid depth points usually appearing near 
occlusion or texture-less areas. 

Once we have extracted the depth of the remote user, we augment 
the local user's world by putting the extracted real avatar of the remote 
user in it. We can further augment the environment with a synthetic 
object like a teapot by placing it in the local user's world. 

5. A NOVEL TRINOCULAR STEREO 
ALGORITHM 

Reconstructions from a single stereo pair often have errors and ex­
treme outliers due to ambiguity in matches along the epipolar line. For 
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applications such as building detailed object models or creating mod­
els of humans for virtual environments, identifying and eliminating such 
points or patches is critical, but often difficult and expensive. One well 
known constraint for reducing these ambiguities is to add a third cam­
era to verify hypothesized matches. The trinocular epipolar constraint in 
stereo vision is based on the fact that for a hypothesized match [u, v, d] 
in a pair of images, there is a unique location we can predict in the 
third camera image, where we expect to find evidence of the same world 
point [5]. A hypothesis is correct if the epipolar lines in the third camera 
image for the original point [u, v] and the hypothesized match [u - d, v], 
intersect. 

/,/ /' 
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~:>" 
L ------

, 
, 

\ / CR ------
---~-------------

CL b R 
c 

Figure 14.2 Trinocular camera triple 

The configurations we are interested in are similar to that depicted 
in Figure 14.2, where a sequence of cameras surrounds an object to be 
modeled or a user interacting with an augmented reality system. 

We begin by independently rectifying the left and center cameras (L 
and CL) and the center and right cameras (CR and R), so that their 
epipolar lines are parallel respectively. For the right rectified camera 
pair every disparity dR to be searched represents a plane with constant 
Z, which can be projected into the Land CL images to compute the 
corresponding [UL, VL, h] for each fUR, VR, dR]. This straightforward 
application of the trinocular constraint is illustrated in Figure 14.2. 

Of course for any Z-plane constructed from dR, a range of dL will 
be required to match points in the left pair. For example for the im-
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Figure 14,3 Three camera views 

ages used later, the right range DR = [-90,1OJ corresponds to a left 
range DL = [-74,67J. Also because the two pairs are independently 
rectified, corresponding points in the left pair will not necessarily have 
VL = VR, thus all of UL, VL, and dL depend on fUR, VR , dRJ. The 
calculation is simplified slightly by the fact that CL and CR are de­
rived from the same image C and are related by the a priori recti­
fication rotations RCL and RCR. We can thus precompute a lookup 
table of locations in CL equivalent to those in CR by precalculating 
[UCL, VCL, sJ = RCLRC1[uCR, VCR, IV, for all image locations. 

Our underlying matching measure is modified normalized cross corre­
lation (MNCC) as defined above. Borrowing from [14J the insight that 
we need to select matches based on minima (or maxima in the case of 
correlation) of the combined matching measure with respect to depth, 
we sum the MNCC values for corresponding fUR, VR, dRJ and [UL, VL , dLJ 
to obtain a correlation measure which now varies between -2 and +2. 

Given the intrinsic and extrinsic camera parameters, and rectification 
matrices we can precalculate DL, the range of dL generated by the plane 
implied by the current dR. We calculate and store the right to left (CL to 
L) correlation for the left pair, for all d LED L. This gives us a set C L of 
k = IDLI planes of correlation values for the left center image. To eval­
uate a match at fUR, VR, dRJ, we calculate Cr = MNCC(CR, R, dR) first. 
For the left pair we calculate the location (ULL, VLL) of points on the 
depth plane in the left rectified image L. Using the precomputed lookup 
table we find the coordinates (UCL, vcL) and finally we can calculate 
the disparity dL = ULL - UCL for each point. Given the corresponding 
[UCL, VCL, dLJ for each point in the center right image, we can look up 
the correlation value CL at the specified location in the computed left 
correlation planes. We can now calculate our overall correspondence by 
Scarr = CL + CR· 

In Fig. 14.4 we show results of binocular and trinocular reconstruction 
of the stereo triple in Fig. 14.3. 
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(a) (b) 

Figure 14.4 (a) Reconstructed views for binocular and (b) trinocular matching. 

6. PERFORMANCE 
We next present a listing of the timing of every algorithmic step for 

two exemplary parameter set-ups resulting in a frame-rate of 2Hz and 
O.5Hz, respectively. The fast set-up has a quarter of the resolution of the 
original slow set-up as well as half of the working volume. The working 
volume in the slow set-up is 50cm at a distance of 1m of the camera. We 
do not mention the effective bandwidth of our network connection and 
the display speed because both of them are orders of magnitude faster 
than the reconstruction processing (for a local network application) and 
depend on the coding of the transmitted data. 

Table 14.1 Timings of each processing step in two different qualities 

Step Fast setup Slow setup 

Total time 506ms 2080ms 

Rectification 26ms HOrns 
Filtering 32ms 90ms 
Correlation and Selection 358ms 1460ms 
Subpixel disparity 42ms 270ms 
Reconstr. and Coloring 48ms 150ms 

The real power of the system lies in the accuracy of the depth estima­
tion without sacrificing time. We achieve a relative depth error of less 
than 0.1 % at a distance of 1m (less than 1mm). The comparison to the 
performance of other stereo algorithms is difficult since we have to con­
sider both depth accuracy and speed. Furthermore, depth accuracy is 
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measurable only on objects with known ground-truth which are difficult 
to compare with human figures. 

There exist considerably faster systems all of them based on rougher 
depth estimates. The Stereo Vision Machine II from SRI [7J and the 
Interval stereo processor [19J use a DSP C60 and an FPGA array, re­
spectively, achieving a video frame rate (30Hz) of processing. However, 
their depth accuracy is not useful for close range systems because it is 
based on integer disparity estimation. Pentium-II based machines are 
the SRI-SVM-I [7J and the Point-Grey Triclops trinocular systems which 
achieve 12 and 3 frames per second, respectively, but also provide only 
integer-valued disparities. It should be emphasized that the Genesis 
frame grabber board used in our approach may have a DSP on board 
but still has to be considered as off-the-shelf hardware, first due to its 
low price and second due to the convenience of its programming. 

7. CONCLUSIONS AND THE FUTURE 
We have presented a first real-time implementation of 3D-teleimmer­

sion based on view-point independent scene acquisition. The current 
stereo-reconstruction uses state of the art stereo matching. We also in­
troduced a novel trinocular algorithm which will be part of the next 
system release. The fusion of the two 3D worlds is asynchronous which 
facilitates higher flexibility in the display site. The implementation en­
ables the tuning of quality and working volume vs. speed. The user 
can choose an acceptable balance among size of working volume, depth 
quality, and spatial resolution. 

As with many other prototypes in the history of technology, ours 
opens numerous challenges for all disciplines of graphics, vision, and 
communication. Teleimmersion is already recognized as one of the key­
applications for Internet-2. The main challenge for the vision as well 
as the graphics community is the issue of representation. Like the ex­
plosion of coding techniques for transmission of 2D images after the 
introduction of WWW we anticipate breakthroughs in problems related 
to representation. 

The wide use of 3D-data from reconstruction raises demand for a 
higher quality of shape representation. We are working on the critical 
problems of occluding contours and specularities arising in stereo recon­
struction. The dynamics of the scene necessitate shape representations 
that will be easily updatable using some simple assumptions on tempo­
ral coherence. Even if we use multiple cameras to obtain a surround 
capture we need surface parameterizations that can be also spatially 
registered in a simple and robust way. Last but not least, the 3D-data 
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have to be transmitted over the network. The challenge for progressive 
3D wavelet-like representations which simultaneously address the critical 
issues above, remains open. 
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Chapter 15 

AUGMENTED REALITY: A PROBLEM IN 
NEED OF MANY COMPUTER VISION­
BASED SOLUTIONS 

Gudrun Klinker 

Abstract Augmented reality (AR) is a technology by which a user's view of the 
real world is augmented with additional information from a computer 
model. It constitutes a very promising new user interface concept for 
many applications. Yet, AR applications require fast and accurate so­
lutions to several very complex problems, such as user and real object 
tracking, occlusion and reflection handling, as well as virtual user mo­
tion. Currently, computer vision based solutions are considered to be 
among the most promising approaches towards solving these issues. This 
paper discusses several such AR issues and potential solutions. 

1. INTRODUCTION 

Augmented reality (AR) is a technology by which a user's view of 
the real world is augmented with additional information from a com­
puter model [4, 26]. Users can work with and examine real 3D objects 
while receiving additional information about those objects or the task 
at hand. Rather than pulling the user into the computer's virtual world, 
AR brings information into the user's real world, thereby building upon 
people's visual and spatial skills. 

AR constitutes a very promising new user interface concept for many 
applications, e.g., in medicine [6, 13, 15, 34], exterior construction [22], 
interior design [1, 32], the assembly, maintenance and repair of com­
plex technical objects [8, 11, 28], and games [21, 32] (Fig. 15.1). With 
the increasing availability of virtual prototypes, industries can benefit 
from AR during all phases of the life cycle of a product, integrating the 
computer- generated information with the physical environment. 
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Figure 15.1 Manipulation of real objects within an augmented world [20, 21]. 

Yet, AR applications require fast and accurate solutions to several 
very complex problems, such as user and real object tracking, occlu­
sion and reflection handling, as well as virtual user motion. Currently, 
computer vision based solutions are considered to be among the most 
promising approaches towards solving these issues. This paper discusses 
several such AR issues and potential solutions. 

2. TYPICAL AR CONFIGURATIONS 

Several different arrangements of display and tracking devices are cur­
rently in use depending on the purposes and constraints of different ap­
plications. 

• Head-mounted see-through AR 
Head-mounted, see-through displays are the prototypical setup 
that people envision first when talking about AR [20]. Users wear 
a head-mounted semi-transparent display through which they can 
see the world like through a set of sunglasses. Shown inside the 
glasses are three-dimensional objects. They are rendered accord­
ing to the current vantage point of the user such that the virtual 
objects seem to co-exist side-by-side with real objects in the scene. 
When users move their heads, the virtual objects maintain their 
position in the world. Magnetic or acoustical trackers, gyroscopes, 
or mini-cameras [20] are attached to the HMD in order to track its 
position in the scene. 

• Head-mounted video-feed-through AR 
Video-feed-through HMDs are used in a fashion very similar to 
see-through displays, except that the display is opaque in this case. 
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The real scene is recorded by one or two (stereo) video cameras 
attached to the HMD. The video signal is displayed inside the 
HMD, thereby showing users the real world around them. Com­
pared to the see-through solution, precise augmentations of such 
video-based reality are easier to achieve since the augmentations 
can be inserted into a suitable recent video image whenever the 
results become available. Yet, implementations tend to lack the 
immediacy of a truely immersive see-through setup due to the off­
set between the cameras and the user's eyes, the limited resolution 
of the video signal, and the time lag between recording, process­
ing, augmenting and displaying the video signal. Nevertheless, if 
the geometric offset and time lag can be kept small, video-feed­
through AR is very successful. It is thus a very common setup in 
demonstrations. 

• Monitor-based AR 
In monitor-based setups [20]' users view video-based augmenta­
tions on a monitor rather than in an opaque HMD. The video 
images are recorded by a mobile camera which could be anywhere 
- on the user's head, in his hands, on a tripod, on a wall, on a 
moving robot, or with a collaborator. By decoupling the display 
coordinate system from the camera coordinate system, AR can 
thus be related to collaborative and telepresence concepts. 

• Portable monitors 
Flat, portable AR monitors [29], provide hand-held video augmen­
tations. A camera on the back of the device records the scene 
behind the screen. The picture is augmented and displayed on the 
monitor, generating the illusion of a picture frame inside which the 
real world is augmented with virtual objects. 

• Combinations of various wearable devices 
In realistic AR applications, it is likely that no one display modality 
will be used by itself. Rather, users will prefer having a choice 
between several display devices each for its own purpose. Feiner 
et al. [11] are combining the immersive 3D display qualities of a 
HMD with better 2D resolutions of a portable monitor, allowing 
users to drag pieces of information involving extended amounts of 
text from the HMD to a Netscape-based browser in their hand. 

3. USER TRACKING 
Precise user tracking is one of the key issues in AR since it determines 

the immersive quality and credibility of the augmentations. Virtual 
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objects have to be rendered from a virtual camera perspective that is 
identical with the current vantage point of the user. 

Various carefully calibrated sensing devices have been used for this 
purpose in the past [2, 5, 33]. Commercial tracking devices such as 
magnetic trackers and active LED-systems can be used [11, 33]. But the 
precision and the working range of such devices are insufficient for most 
AR applications. Thus, research is now focusing on computer vision 
based methods which promise untethered, higher-precision applicability 
of AR. 

However, the vision-based approaches cannot be arbitrarily sophisti­
cated and complex. They have to perform in real-time and they have to 
be very robust, degrading gracefully and recovering fast when they fail. 
Users wearing a HMD cannot be expected to restrain their natural head 
motions severely while interacting with the system, neither can they be 
expected to stay motionless while the system is trying to recover from 
failures. Thus, vision-based approaches have started from very simple, 
limited setups. They are now progressing towards more sophisticated 
approaches. 

3.1 TRACKING OPTICAL MARKERS AT 
KNOWN 3D POSITIONS 

Currently, the most successful vision-based approaches track optical 
markers in indoor laboratory demonstrations (Fig. 15.1) [23, 24, 27, 30, 
31,34] sometimes combined with information from other tracking modal­
ities [22, 27, 30]. Optical markers provide enough simplifying assump­
tions to achieve real-time tracking performance. Typically, the markers 
are specially designed to be easily recognizable. Examples are polka dots 
of varying sizes placed in pre-designed patterns on large form boards for 
Boeing's wire harness assembly application [8], large dark rectangles 
with unique identification labels at Fraunhofer-IGD's doorlock instal­
lation demonstration [20, 28, 31], and concentric, multi-colored rings 
at Neumann's lab at USC [27] and in Fuchs's lab at UNC [30]. The 
placement of such markers is quite a severe restriction to the overall 
applicability of the system. It is tedious to install a significant num­
ber of them necessary to warrant a robust operation of the system. In 
some applications (especially outdoors), such an approach is completely 
impractical. 

Yet, the current demonstrators are a good starting point to begin 
experimenting with more general concepts. 
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3.2 TRACKING NATURAL FEATURES AT 
KNOWN 3D POSITIONS 

As a first step towards generalizing vision-based, real-time user track­
ing setups, several approaches are now tracking features that occur natu­
rally at known positions in the scene [27, 31]. Stricker et al. [28,31] track 
three-dimensional lines, such as the edges of doors and walls as well as 
strongly bent edges on car bodies which tend to show up as slim bright 
lines due to specular reflections . The 3D positions and orientations of 
these lines are measured ahead of time and provided to the tracker in 
a data file. After initialization, the system predicts the position of such 
known lines in each image according to the most recently known cam­
era position and searches for them in a local image area. From several 
non-collinear lines, it then computes the new camera position. The ap­
proach works very well when provided with an initial calibration. Yet, it 
requires more detailed information at startup time, such as black squares 
with unique identification marks. 

For outdoor exterior construction applications, Klinker et al. [19, 20J 
use a different approach. It is not possible to install special markers 
ubiquitously in vast outdoor environments. Besides, the markers would 
have to be huge to be visible from long distances. Instead, natural 
landmarks must be used as calibration marks. Klinker et al. currently 
select easily visible landmarks (such as church steeples, tips of power 
line poles, bridge pillars and river banks) off-line and determine their 
three-dimensional position from other sources. When calibrating and 
augmenting a video sequence of the area, they interactively indicate the 
location of such landmarks in the initial image. The landmarks are then 
tracked in subsequent images using normalized correlation such that the 
video sequence can be calibrated with minimal user intervention. 

Although these approaches don't require scene modifications, they 
still depend on complicated setup procedures involving the three-dimen­
sional measurement of natural landmarks and their initial identification 
in an initial image. Model-based computer vision approaches are needed 
in order to automatically associate large sets of known 3D landmarks 
with currently visible image features using suitable feature properties. 
Such object recognition has to work in real-time since the initialization 
phase of an AR system cannot require the user to remain motionless for 
extended periods of time whenever the system looses track and requires 
a re-initialization. Alternatively, several hybrid approaches address the 
initialization problem by combining optical trackers with other technol­
ogy, such as magnetic trackers [30], GPS [22J, or gyroscopes [27]. 
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3.3 TRACKING NATURAL FEATURES AT 
UNKNOWN 3D POSITIONS 

The logical next step involves striving for optical tracking solutions 
that do not require the off-line three-dimensional measurement of land­
marks. Mendelsohn et al. [25] use an uncalibrated stereo vision approach 
for indoor applications. They do place special, easily identifiable targets 
(black pentagons) in the scene, but they do not determine their 3D lo­
cation. Using the constraint that each target pentagon lies in a plane, 
they are able to compute a highly accurate, metric scene reconstruction 
after tracking the targets for a few images, gaining increasingly precise 
estimates the longer the tracking proceeds. The system currently runs 
off-line on prerecorded sequences involving up to 1200 images (40 sec­
onds). 

Neumann et al. [27] are presenting first steps towards tracking un­
known landmarks outdoors. They track both interesting feature points 
and entire regions using differential-based local optical flow estimation. 
A multi-scale estimation strategy iteratively fits region and point motion 
estimates to an affine motion model until they agree. The approach is 
able to dramatically improve the precision of a hybrid inertial (3 DOF) 
and vision tracker. Treating the fusion of inertial and image tracks as a 
2D image stabilization problem, the hybrid tracker is able to annotate 
three-dimensional objects such as cars and entrance gates to parking lots 
very reliably after the intrinsic camera parameters and an initial camera 
position have been determined off-line. So far, the algorithm is used 
off-line since it does not yet operate in real-time. 

3.4 MODELING OF USER MOTION 
Due to numerical instabilities of the camera calibration involving a 

large number of parameters in a system of non-linear equations, it is 
not advisable to calibrate incoming pictures independently of each other 
one at a time. Calibrations are likely to jump back and forth between 
solutions at different local maxima of the parameter space. To introduce 
a temporal constraint, physical motion models have to be added to the 
system. 

It is very customary in computer vision applications to use Newtonian 
motion models which describe the velocity and acceleration of a point 
in space over time. Such models have been applied to the problem 
of tracking user head motions [3, 23]. Yet, due to the randomness of 
user head motion, it is hard to predict future head motion from history 
looking merely at velocity and acceleration. Impulse seems to play a 
significant role. Sophisticated motion prediction models [23] so far have 
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encountered serious problems tracking a user-held or user-worn camera. 
The prediction of 3D user motion is too slow on today's computers to 
quickly react to a user's head rotations (e.g., during a quick glance to 
the side or a head shaking motion), generating an effect of "swimming" 
off track. If the head motion is very abrupt, the system never recovers 
from its "detour". 

Thus, current approaches tend to be much more pragmatic, ignor­
ing 3D motion constraints alltogether and simplifying motion analysis 
down to a 2D, image-based analysis of local pixel motion coupled with 
numerical initialization heuristics to ensure that calibrations of consec­
utive images are likely to settle at that same local extremum of the 
parameter space. Such approaches are surprisingly successful since they 
are able to perform at close-to-real-time speeds on current computer 
systems [20, 31]. 

4. 3D SCENE MODELING FOR OCCLUSION 
AND REFLECTION HANDLING 

In order to augment real worlds with virtual objects, the virtual ob­
jects need to be integrated seamlessly into the environment. They have 
to behave in physically plausible manners: they occlude or are occluded 
by real objects, they are not able to move through other objects, and 
they cast shadows on other objects. To this end, AR applications require 
a very accurate model of the real environment (a reality model). 

4.1 OCCLUSION HANDLING BETWEEN 
REAL AND VIRTUAL OBJECTS 

Occlusion relationships between real and virtual objects can be com­
puted efficiently by the geometric rendering hardware of today's graphics 
workstations. By first rendering the AR reality model transparently, the 
z-buffer of the rendering engine is initialized to account for the distances 
of real objects from the user. Since the model is drawn transparently, 
it remains invisible and thus does not obstruct the view onto the real 
world (or its video picture). When the virtual objects are rendered sub­
sequently, only those are drawn that are closer than any real objects to 
the user. 

4.2 GEOMETRIC REALITY MODELS 
Occlusion handling in AR applications requires geometrically precise 

descriptions of the real world. Similar descriptions are also used in Vir­
tual Reality (VR) applications. Yet, for AR, such reality models gen-
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erally don't need to be as complex as those used for VR. VR models 
are expected to synthetically provide a realistic immersive impression of 
the simulated environment. Thus, the descriptions of surface textures 
are crucial. AR, on the other hand, can rely on live optical input (or 
a live view of the real world) to provide a very high sense of realism. 
For occlusion handling, the AR reality model only needs to describe the 
surface shape. 

However, AR reality models have to be much more precise than VR 
models. Since an immersive VR system cuts users off from reality, users 
can only gain a qualitative impression whether or not the objects are 
modeled correctly. In AR, on the other hand, users have an immediate 
quantitative appreciation of the extent of disagreements between the re­
ality model and the real world, since virtual objects then won't integrate 
into it seamlessly. 

Reality models for AR applications are currently acquired in many 
different ways depending on the requirements and data sources of a 
particular application. In many cases, 3D scene information is provided 
manually by the user, e.g., in simple text files describing the locations 
of markers on planar laboratory walls. In other cases, pre-existing CAD 
models of man-made objects can be used [28]. Sometimes, maps and 
geodesic measurements of landscapes and cityscapes are available [19]. 
Most of the time, however, current AR systems ignore issues related to 
occlusion handling alltogether because appropriate models of cluttered 
scenes are hard to generate. The automatic construction of scene models 
by computer vision techniques is a promising way to help alleviate this 
problem. 

The construction of 3D scene descriptions is a long-standing issue in 
computer vision research. Its application to AR applications is being 
demonstrated increasingly. Semi-automatic approaches towards gener­
ating architectural models from images have been reported by Debevec 
et al. [9] and by Faugeras [10]. Kanade et al. [17] have built a setup 
at Carnegie Mellon involving 51 calibrated video cameras that are ar­
ranged on the periphery of a "3D Dome". Dynamic scenes inside the 
dome such as multi-person ballgames are recorded by all cameras. Ap­
plying a trinocular vision approach to each group of three cameras, the 
system then computes, off-line, a fairly accurate dynamic 3D model of 
the game, a "virtualized reality". Hirose and Tanikawa [14] are using a 
van with 8 cameras, a GPS sensor, a terrestrial magnetism sensor and 
a 3-axis angle sensor on its roof to drive through the streets of Tokyo, 
recording image sequences and positional data. Back in the laboratory, 
they invite visitors to a virtual walk through the recorded parts of the 
city using image-based rendering techniques. 
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4.3 REFLECTION HANDLING BETWEEN 
REAL AND VIRTUAL OBJECTS 

In addition to handling occlusions between virtual and real objects, 
AR-systems also need to be able to handle photometric relationships. If 
the positions of all light sources and the reflective material properties 
of all real objects are known, inter-reflections and shadows from real 
objects onto virtual objects can be taken into account when rendering 
the virtual ones. Furthermore, the video pixels showing the real objects 
can be modified to simulate the influence of virtual light sources as well 
as inter-reflections and shadows from virtual objects [12, 30]. 

4.4 PHOTOMETRIC REALITY MODELS 

Quintessential to reflection handling in AR applications is the avail­
ability of photometric reality models. The models need to indicate the 
location of all direct and indirect light sources in the real scene. To 
this end, Ikeuchi et al. [16] have developed a photometric model-based 
rendering method. From calibrated input images of real objects and a 
previously obtained geometric reality model, it obtains reflectance pa­
rameters of the real objects by tracking individual small spots on the 
3D surface through the image sequence and relating their color changes 
to user motion: in principle, pixels related to a particular surface area 
of a 3D object should remain constant when the user moves through the 
scene. Using a color histogram analysis, Ikeuchi et al. attribute color 
variations to sensor noise and to occasional specular reflections. After 
discounting such effects, they can attribute an intrinsic reflective color 
property to each small surface area of real objects. 

4.5 PHYSICAL INTERACTIONS BETWEEN 
REAL AND VIRTUAL OBJECTS 

For an augmented world to be realistic the virtual objects not only 
have to interact optically with the real world, but also mechanically. This 
applies to virtual objects when animated or manipulated by the user. 
For example, a virtual chair shouldn't go through walls when it is moved, 
and it should exhibit gravitational forces [7]. Given a reality model, this 
behavior can be achieved using collision detection and avoidance systems 
that are known from Virtual Reality systems [36]. 

These two laws make up the most important physical constraints. A 
full physical simulation including more aspects of the interaction between 
real and virtual objects, such as elastic behavior and friction, would be 
desirable. For off-line applications this is possible if enough information 
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about the virtual objects and a complete enough reality model is avail­
able. For real-time applications most simulation systems are not fast 
enough. Yet, even simple implementations of the above rules will make 
the system much more realistic. 

5. DIMINISHED REALITY 
Many AR applications require that existing structures be removed 

before new objects are added to the scene. For example, interior design 
or refurbishment typically doesn't start from an empty room. Rather, 
the area is cluttered with all kinds of furniture or structure that needs 
to be moved or removed. Similarly, many exterior construction projects 
require the removal of old buildings before new ones are put into their 
place. Medical and machine repair applications as well typically require 
x-ray vision skills, allowing the user to ignore current structures in the 
foreground to focus on what is behind it. Thus, just as important as 
augmenting reality is technology to diminish it. 

The removal of foreground objects requires a model of the objects 
behind them, i.e., a three-dimensional reality model of the entire area. 
Modeling currently unseen parts of the scene is a very complex issue. 
There is no general solution to this problem since we cannot know what 
a dynamically changing world looks like behind an object at any specific 
instant in time-unless another camera can see the occluded area. Yet, 
some heuristics can be used to solve the problem for various realistic 
scenarios. We can use morphological operators to extrapolate proper­
ties from surrounding "intact" areas into the occluded region (e.g: in a 
cloudy sky) [22]. Furthermore, when a building is to be removed from a 
densely populated area in a city, particular static snapshots of the build­
ings behind it could be taken and integrated into the reality model to 
be mapped as textures into the appropriate spaces of the current image. 

For video sequences, computer vision techniques can be used to suit­
ably merge older image data with the new image. Faugeras et al. [37] 
have shown that soccer players can be erased from video footage when 
they occlude advertisement banners: For a static camera, changes of in­
dividual pixels can be analyzed over time, determining their statistical 
dependence on camera noise. When significant changes (due to a mobile 
person occluding the static background) are detected, "historic" pixel 
data can replace the current values. 

In more general schemes involving mobile cameras, such techniques 
can lead towards incremental techniques to diminish reality. While 
moving about in the scene, users and cameras see parts of the back­
ground objects. When properly remembered and integrated into a three-
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dimensional model of the scene, such "old" image data can be reused to 
diminish newer images, thus increasingly effacing outdated objects from 
the scene as the user moves about. Stricker uses geometric constraints 
to compute pixelwise correspondences between regions in several images 
that outline a particular object [19]. From such correspondences, he 
traces specific points on the object across all images and then decides in 
which images it is visible or occluded. Accordingly, occluded pixels can 
be replaced by visible ones, effectively removing the occluding object 
from the image. 

6. MOBILE OBJECT TRACKING 
In realistic AR applications, real objects in the scene cannot be ex­

pected to remain stationary throughout the entire course of running the 
application. Actions or instructions issued by the computer as augmen­
tations in the HMD or on the monitor cause the user to perform actions 
changing the real world - which, in turn, prompt the computer to gen­
erate new, different augmentations. For example, a machine repair task 
typically includes a partial disassembly of the machine, followed by a 
replacement of some parts and a subsequent reassembly. 

To maintain correct virtual-real occlusion relationships, the AR ap­
plication has to keep track of all moving objects in real-time and update 
the reality model accordingly. Furthermore, the AR-system has to un­
derstand the meaning of the user's actions such that it can react and 
propose the next step of a repair procedure or indicate that a mistake 
has been made. 

Several prototypes of two-way human-computer interaction involving 
limited degrees of reality tracking with non-optical means have been 
demonstrated. In Feiner et al. 's space frame construction system [11], 
selected new struts are recognized via a bar code reader, triggering the 
computer to update its visualizations. In a mechanical repair demon­
stration system, Breen et al. [7] use a magnetically tracked pointing 
device to ask for specific augmentations regarding information on spe­
cific components of a motor. 

6.1 DETECTION AND TRACKING OF 
OBJECTS WITH SPECIAL MARKERS 

Klinker et al. [21] currently use rather pragmatic, simple solutions 
towards reality tracking that can be run approximately in real-time. 
In a "mixed mockup" demonstration involving the insertion of virtual 
buildings in a miniaturized scene they attach special markers to mobile 
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objects, such as toy buildings. Both virtual and real buildings can be 
moved to experiment with different house arrangements. 

The current approach assumes that unique markers are attached to all 
mobile real and virtual objects and that they are manipulated on a set 
of known surfaces. The marks can then automatically be identified and 
their 3D position and orientation can be determined by intersecting the 
rays defined by the positions of the squares in the image with the three­
dimensional surfaces on which they lie. If the markers are manipulated in 
mid-air rather than on a known surface, more sophisticated approaches 
are needed, such as stereo vision or the computation of the 3D target 
location from its projected size and shape. The current system does not 
apply the latter concepts due to real-time and robustness considerations. 

Attaching markers to a few real objects is an elegant way of keeping 
track of objects even when both the camera and the objects move. The 
objects can have arbitrary textures that don't even have to contrast well 
against the background - as long as the markers can be easily detected. 
Yet, the markers take up space in the scene; they must not be occluded 
by other objects unless the attached object becomes invisible as well. 
Furthermore, this approach requires a planned modification of the scene 
which generally cannot be arranged for arbitrarily many objects. Thus 
it works best when only a few, well-defined objects are expected to move. 

6.2 DETECTION OF OBJECTS USING 
OBJECT MODELS 

Klinker et al. [21] show more general reality tracking schemes in the 
context of an augmented Tic Tac Toe game. The user and the computer 
alternate placing real and virtual stones on the board. When the user 
has finished a move, he waves his hand past a 3D "Go" button. The 
computer then scans the image area containing the board. If it finds a 
new stone, it plans its own move and places a new virtual cross on the 
board. If it could not find a new stone or if it found more than one, it 
asks the user to correct his placement of stones. 

The Tic Tac Toe system uses model-based object recognition princi­
ples to find new pieces on the board. Due to the image calibration the 
location of the game board in the image is known, as well as all nine 
valid positions for pieces to be placed. Furthermore, the system has 
maintained a history of the game. It thus knows which positions have 
already been filled by the user or by its own virtual pieces. It also knows 
that the game is played on a white board and that the user's stones are 
red. It thus can check very quickly and robustly which tiles of the board 
are covered with a stone, i.e. which tiles have a significant number of 
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pixels that are red rather than white. Error handling can consider cases 
in which users have placed no new stone or more than one new stone-or 
whether they have placed their stones on top of one of the computer's 
virtual stones. 

Using a model-based object recognition approach is a more general 
approach than the one based on special markers since it does not re­
quire scene modifications. Yet, the detection of sophisticated objects 
with complex shape and texture has been a long standing research prob­
lem in computer vision, consuming significant amounts of processing 
power. Real-time solutions for arbitrarily complex scenes still need to 
be developed. 

Thus, the appropriate choice of algorithm depends on the require­
ments of an application scenario. In many cases, hybrid approaches in­
cluding further information sources such as stationary overhead surveil­
lance cameras that track mobile objects are most likely to succeed. 

6.3 PEOPLE AND HAND TRACKING 
During a repair procedure, the user typically manipulates real objects 

with his hands or with special tools. Potentially, he is also assisted by 
coworkers. Thus, for large parts of an AR application, moving hands and 
people will be visible within the scene. Human hand-eye coordination 
requires that the user's hands are integrated particularly well into the 
augmented world: when the user touches a virtual object or some virtual 
positioning aid like a pointer or a virtual yard stick on the floor, users 
have to receive immediate and precise feedback as to where their hands 
are in relationship to the virtual objects. Thus occlusion handling has to 
work well. To this end, hands and people have to be tracked in real-time. 

Yokoya et al. [35] have developed a stereo-based vision system which 
uses two cameras on an HMD. From optical markers at unknown scene 
locations, the system tracks user head motion. In addition, it also tracks 
the motion of the user's hands, determining their current position by 
stereo triangulation on an SGI Onyx2 IR. The system is able to perform 
the stereo approximately in real-time due to its heuristics for quickly de­
tecting skin color in each image and thereby pruning the time-consuming 
stereo matching process significantly. Kanade et al. [18] have reported 
real-time stereo vision performance for arbitrary objects using a stereo 
vision machine based upon special-purpose hardware. Kanade's "3D 
Dome" demonstrations of constructing a dynamic 3D model of a sev­
eral people playing a ball game together is another example of a reality 
tracking system [17]~yet, it currently still has to rely on 51 prerecorded 
video sequences and doesn't run in real-time yet. 
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7. VIRTUAL USER MOTION AND 
TELEPRESENCE 

In addition to analyzing real user motion and real and virtual object 
motion, AR applications are likely to also be confronted with require-­
ments of virtual user motion. While looking at an augmented scene and 
working in it in a reality-based coordinate frame, users may want to tem­
porarily take a side-step from reality to look at the world from a different 
perspective. For example, while discussing a planned new building at a 
construction site, users might be interested in getting a bird's-eye view 
of the location. Similarly, a mechanic may want to temporarily step into 
his colleague's shoes (or HMD) during a complex repair effort of a big 
machine or look at details of the machine through a magnifying glass. 

In this sense, augmented reality and virtual reality are not two discrete 
alternatives but rather part of a spectrum of mixed realities [26] with 
full virtual reality on one end and full physical reality on the other. 
Augmented Reality is in the middle, combining the best of both worlds. 
But sometimes it might be desirable to lean more in one direction or the 
other. 

To leave reality behind without getting lost, users need a smooth 
transition path from their current position to virtual places and back. 
Whenever possible, available real data should be integrated into the 
virtual presentations. To this end, 3D scene descriptions are essential. 
As discussed in the previous sections, computer vision techniques lend 
themselves to generating and dynamically updating such descriptions 
from the live image data being obtained while the user moves about. 

8. SUMMARY 

Augmented reality is an exciting new technology with the potential 
of becoming a "killer application" , combining many aspects of computer 
science into well-designed and well-tuned systems. One of the most es­
sential ingredients of such a system is intelligent sensor analysis technol­
ogy, such as provided by computer vision research. This paper has listed 
many areas in which augmented reality systems can benefit greatly from 
concepts and approaches that are common within the computer vision 
community. 
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Chapter 16 

REGISTRATION METHODS FOR 
HARMONIOUS INTEGRATION OF REAL 
WORLD AND COMPUTER GENERATED 
OBJECTS 

Gilles Simon, Vincent Lepetit, Marie-Odile Berger 

Abstract We focus in this chapter on the problem of adding computer-generated 
objects in video sequences. A two-stage robust statistical method is used 
for computing the pose from model-image correspondences of tracked 
curves. This method is able to give a correct estimate of the pose even 
when tracking errors occur. However, if we want to add virtual objects 
in a scene area which does not contain (or contains few) model features, 
the reprojection error in this area is likely to be large. In order to 
improve the accuracy of the viewpoint, we use 2D keypoints that can be 
easily matched in two consecutive images. As the relationship between 
two matched points is a function of the camera motion, the viewpoint 
can be improved by minimizing a cost function which encompasses the 
reprojection error as well as the matching error between two frames. 
The reliability of the system is shown on the encrustation of a virtual 
car in a sequence of the Stanislas square. 

The interested reader can look at the video sequences of our results! . 

1. INTRODUCTION 

Augmented Reality (AR) is an effective means for utilizing and ex­
ploiting the potential of computer-based information and databases. In 
augmented reality, the computer provides additional information that 
enhances or augments the real world, rather than replacing it with a 
completely virtual environment. In contrast to virtual reality, where the 
user is immersed in a completely computer-generated world, AR allows 

1 http://www.loria.frr gsimon/videos.html 
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the user to interact with the real world in a natural way. This explains 
why interest in AR has substantially increased in the past few years 
and medical, manufacturing or urban planning applications have been 
developed [3, 5, 17]. 

We focus in this paper on the problem of adding computer-generated 
objects (also called virtual objects) in video sequences. This is one of the 
key points for numerous AR applications: for instance, suppose we want 
to assess the potential impact of a new construction in its final setting; 
visualizing the architectural project on a video of the environment allows 
designers to test several architectural projects on computer simulations 
alone. Special effects in movies also require such a composition process. 

In order to make AR systems effective, the computer generated objects 
and the real scene must be combined seamlessly so that the virtual 
objects align well with the real ones. It is therefore essential to determine 
accurately the location and the optical properties of the cameras. The 
registration task must be achieved with special care because the human 
visual system is very good at detecting even small mis-registrations. 
Realistic merging of virtual and real objects also requires that objects 
behave in a physically plausible manner in the environment: they can 
be occluded by objects in the scene, they are shadowed by other objects 
etc. 

In this paper, we only focus on the registration problem because it 
is one of the most basic challenges in augmented reality. But we have 
proposed some preliminary solutions to the occlusion problem in [2]. 

Registration problems can be solved by using either algorithmic solu­
tions or sensor-based solutions. For instance, position sensors (as Polhe­
mus sensors) can be used to locate the camera (or the viewer) [15]. Easily 
detectable landmarks placed in the scene can also be used to make the 
registration process easier [5]. However, instrumenting the real world is 
not always possible, especially for vast or outdoor environments. Thus, 
vision-based object registration is an interesting and cheaper approach 
that leaves the environment unmodified. 

2. CONTRIBUTIONS 
Since 1996, we have proposed methods to make the registration task 

easier, especially for complex outdoor scenes [3, 14]. For outdoor urban 
scenes, some 3D knowledge is often available: dimensions and localiza­
tion of the main buildings for instance. These 3D data can be used to 
compute the viewpoint provided that their corresponding 2D features 
can be identified in the images. In the following, this 3D knowledge of 
the scene is also called model features. 
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Figure 16.1 (a) The complete wire-frame model and the 3D points used for registra­
tion. (b) The corresponding 2D points extracted in an image. 

First, we developed in [3] a registration method which is based on 
2D j3D point correspondences: in the first frame of the sequence the 
user marks the 2D points which correspond to the 3D model points. 
Then these points are automatically tracked from frame to frame and the 
viewpoint is automatically computed. The points used are characteristic 
points in the model that correspond to corners or junctions. Hence, only 
a small number of interest 3D points is generally available in the images. 

As an example, let us consider the application of the illumination of 
the Paris bridges (Fig. 16.1) . Our motivation came from the encrusta­
tion of a model illuminated synthetically in its real environment. The 
aim was to test several candidate illumination projects for a number of 
bridges in Paris, and be able to choose on computer simulations alone 
which project was the best. The complete wire-frame model of the bridge 
is shown in Fig. 16.1(a) as well as the 3D points used for registration: 
the light bulbs on the bridge and some junction points of the bridge. 
The corresponding points extracted in one image of the sequence are 
shown in Fig. 16.1(b). 
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(a) (b) (c) 

Figure 16.2 Shortcomings of the 2Dj3D registration method. (a) Incrustation in the 
calibration area is quit good. (b,c) Away from the calibration area, incrustation is 
not realistic. 

As the complete model is not visible in each frame of the image se­
quence, we are only able to extract between 10 and 20 points which 
correspond to the 3D model points. In addition, due to the darkness of 
the scene, the localization accuracy of the 2D extracted points is poor. 
Moreover, false matching between the 2D point and the 3D model point 
may occur. In practice, it turns out that this small number of 2D/3D 
correspondences is not always sufficient to prevent erroneous viewpoint 
computation. 

To overcome these problems we recently proposed in [14] a registration 
method which is based on 2D /3D correspondences of various features: 
points, lines, and free form curves. This allows us to exploit all the 
3D information on the model rather than only sparse 3D points. We 
sketch out in section 4 our original approach. Our method minimizes 
the reprojection error of the model features in the image. However, one 
of the limitations of this method originates in the spatial distribution of 
the model features: the reprojection error is likely to be large far from the 
3D features used for the viewpoint computation. Consider for instance 
the video of the Stanis las square shown in figure 16.2. The viewpoint 
has been computed using 3D knowledge of the building Opera in the 
background of the scene (see the eight white curves in Fig. 16.2(a)). 
We add in the scene a computer generated car which is coming on the 
square from the background along the y axis. When the car is in the 
area containing the 3D features used for the viewpoint computation (Fig. 
16.2(a)), the overall impression is quite satisfactory. As the car moves 
away from the Opera, the car seems to hover. Indeed, the reprojection 
error of the 3D model features is small but the reprojection error is very 
large in the foreground of the scene. 

In order to improve viewpoint computation, we now resort to 2D /2D 
point correspondences between consecutive frames. Unlike other ap-
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proaches which attempt to recover the viewpoint from 2D /2D corre­
spondences alone [6, 16], point correspondences between frames are here 
used to provide additional constraints on the viewpoint computation. 

We present in this paper an efficient approach which encompasses the 
strengths of these two methods: the viewpoint is defined as the minimum 
of a cost function which incorporates 2D /3D correspondences between 
the image and the model as well as 2D /2D correspondences of key points 
that are automatically extracted and matched in two consecutive frames. 
This way, the 2D points which are automatically extracted and matched 
in consecutive frames are likely to appear in areas where the 3D knowl­
edge available of the scene is missing. We show in the following that 
this method dramatically improves the viewpoint computation. As a 
result, our method allows us to perform efficiently registration over time 
without human interaction. 

The paper begins with an overview of our method. Section 4 gives 
the explanation of our robust algorithm for viewpoint computation from 
3D-2D correspondences, including results on various augmented reality 
applications. Section 5 describes how the viewpoint computation can 
be dramatically improved using key-point correspondences. Finally, we 
show results demonstrating the accuracy of pose estimation. 

3. OVERVIEW 
Fig. 16.3 gives an overview of our registration system. The knowl­

edge that must be brought to the system is represented with shaded 
areas. Our system is initialized with known camera parameters and a 
user specified set of four 2D points along with their 3D counterparts. 
The 2D features corresponding to the visible model features are then 
automatically determined (see [14] for further details). The model of 
the object to be added as well as its trajectory in the scene must also 
be given to the system. 

Once initialized, the system follows a four step loop: 

Step 1: Tracking assessment and pose computation. 

The set of features is tracked in the current image using a curve­
based tracker that we have previously developed [1]. Unfortunately the 
tracking may sometimes fail (Fig 16.6). As a single tracking error can 
have a large effect on the resulting pose, it is necessary to devise a robust 
algorithm capable of extracting the parts of the features that match the 
3D model. The interest of our algorithm is two-fold: first it computes 
the pose in a robust manner, second it allows us to detect and discard 
matching errors (see section 4). 
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Step I 

Step 2 

Step 3 

Step 4 

Initialization stage 

pose 
+ set of vi ible model features in the 
fi rst image 
Extraction of the key points in the 
first frame. 

image k->k+1 

Tracking the set of visible model features in the current image. 
Updating the set of tracked features (assessment) 

The key-points are extracted in frame k+ I 
They are matched with the points extracted in frame k 

Figure 16.3 Overview of the system 

Step 2: Accounting for 2D /2D correspondences 

Key-points are then extracted in the current frame and they are 
matched with the ones extracted in the previous frame. Section 5 de­
scribes how to automatically extract these points. These matched points 
can be used to improve the viewpoint computation: given a point nl in 
frame h, the corresponding point in h+l must belong to a line. This 
epipolar line is the intersection of the image plane h+l with the plane 
(nl, Gl, G2) (Fig. 16.4(a)). The matching of two key points nl and n2 
can therefore be assessed by measuring the distance v between n2 and 
the epipolar line of nl (Fig. 16.4(b). 

Step 3: Mixing method for viewpoint computation 

We define a cost function which encompasses the strengths of the two 
approaches. We minimize a weighted sum of the residuals ri obtained 
by the correspondences with the model and the residuals Vi between 
the matched key points in two consecutive images (Fig. 16.4(c)). This 
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method is described in section 5. The computer generated object can 
then be added in the scene using the computed viewpoint. 

(a) (b) 

(c) 

Figure 16.4 (a,b) Constraints between matched points. (c) The residuals used in the 
mixing method. 

4. ROBUST POSE COMPUTATION FROM 
VARIOUS FEATURES (RPC 
ALGORITHM) 

Once the model/image correspondences have been established in the 
first frame, they are generally maintained during tracking. Unfortu­
nately, tracking errors will sometimes result in a model feature being 
matched to an erroneous image feature. Even a single such outlier can 
have a large effect on the resulting pose. For point features, robust ap­
proaches allow the point to be categorized as outlier or not [8]. When 
curved features are considered, the problem is not so simple, as some 
parts of the 2D curves can perfectly match the 3D model whereas other 
parts can be erroneously matched (Fig. 16.6). While numerous papers 
are dedicated to pose estimation from points or lines [4, 10], only few 
papers have been devoted to the 2D /3D registration of curves. The de­
tails of our robust pose computation algorithm (RPC) are given in this 
section. First we address the problem of point correspondences; a much 
more difficult case of curve correspondences is then considered. 
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4.1 POSE COMPUTATION FROM POINT 
CORRESPONDENCES 

The problem consists in finding the rotation R and the translation t 
which map the world coordinate system to the camera coordinate sys­
tem. Therefore, if the intrinsic parameters of the camera are known 
(they can be determined by a calibration process [7]), we have to de­
termine 6 parameters (three for R and three for t), denoted by vector 
p. 

We suppose we know the 3D points Mi{l::;i::;n} and their corresponding 
points mi{l::;i::;n} in the image. Computing the viewpoint amounts to 
finding R, t which minimize the re-projection error: 

n n 

Lr; = LDist(mi,Proj(Mi)), 
i=l i=l 

(Proj denoting the projection of a 3D point into the image plane). Un­
fortunately the least-square estimator is not robust against false matches, 
because the larger the residual ri, the larger its influence on the final es­
timate. 

In order to reduce the influence of the feature outliers, statisticians 
have suggested many different robust estimators. Among them, one 
popular robust technique is the M-estimator. The underlying idea is to 
reduce the effect of outliers by replacing the squared residual 1: r; by 
another function of the residuals 

n 

minLPh), 
p i=l 

(16.1 ) 

where p is a continuous, symmetric function with minimum value at zero 
and is chosen to be less increasing than square. Its derivative 1jJ(x) is 
called the influence function because it acts as a weighting function in 
optimization of Eq. (16.1). An example of such a p function (Tukey 
function) along with its influence function is drawn in Table 16.1. 

Minimizing (16.1) can be performed by standard techniques using an 
initial estimate of p: a very simple approach like Powell's method [12] 
proved to be sufficient in our case, and relatively fast to compute (for 
temporal registration, the initial estimate of p is the pose computed for 
the previous frame). 
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Table 16.1 The mean square estimator and the Tukey M-estimator 

Type p(x) Graph of 1jJ(x) 

Mean squares 

Tuk {if Ixl :s; c 
ey if Ixl > c { f [1- (1- (~)2r] 

c2 /6 

4.2 COMPUTING VIEWPOINT FROM 
CURVE CORRESPONDENCES 

This problem is much more difficult because point-to-point correspon­
dences between the 3D curves and the corresponding 2D curves are not 
available. Let (Fig.16.5): 

• Ci be a 3D model curve, described by the chain of 3D points 
{Mi,jh::;j::;li (note that Ci can be any 3D feature, including points 
and lines), 

• Ci be the projection of Ci in the image plane, described by the 
chain of 2D points {mi,jh::;j::;li' where mi,j = Proj(RMi,j + t), 

• < be the detected curve (tracked curve) corresponding to Ci , de­
scribed by the chain of 2D points {m~,j h::;j::;l~. 

A simple solution would be to perform a one-stage minimization 

min L p(di,j) , 
p .. 

(16.2) 
t,] 

where di,j = Dist(m~,j' Ci) (Dist being a function which approximates 
the Euclidean distance from a point to a contour) and p is aM-estimator 
function, as Tukey function. 

Unfortunately, this method is unsatisfactory because it mixes all the 
features into a set of points, and makes no distinction between local 
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Figure 16.5 Computing the distance between the projection of the 3D model and 
the 2D feature extracted in the image. 

errors (when a feature is only partially well localized), and gross errors 
(when the position of a feature is completely erroneous). However, these 
two kinds of errors are not identical, and not treating them separately 
induces a great loss of robustness and accuracy. 

Therefore, we propose to perform a robust estimation in a two-stage 
process: a local stage, which computes a robust residual for each feature, 
and a global stage which minimizes a robust function of these residuals. 
The local stage reduces the influence of erroneous sections of the con­
tours (features 1 and 4 on Figure 16.6(c)), whereas the global stage 
discards the feature outliers, i. e. contours which are completely erro­
neous, or which contain too large a portion of erroneous points (feature 
5 on Fig. 16.6(c)). 

The local stage 
The aim of this stage is to reduce the influence of erroneous sections 

of the features: to perform this task, the residual error ri of curve Ci is 
computed by a robust function of the distances {di,j h::;j::;l;: 

(16.3) 

The glo hal stage 
Once a robust residual has been computed for each feature, the view­

point is computed in a robust way by minimizing 

n 

min LP(ri)' 
p i=l 
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This way, completely erroneous features will be discarded because 
they have a large residual. 

Discarding feature outliers 
The detection of feature outliers can now be performed easily: as they 

should not have influenced the estimation, their residual must be much 
larger than the other ones. We therefore only have to compare them 

with the standard deviation of all the residuals: if ri > 2.5 {; (where {; is 
computed in a robust way [10]), then the feature is discarded. The set 
of visible features is updated accordingly. 

Results of the RPC method are shown in Fig. 16.6 in the Paris bridges 
illumination project. Note that the reprojection of the model using the 
computed viewpoint is very good. Furthermore, the algorithm is able to 
detect and to discard the tracked features which do not match the 3D 
model. These features are drawn in black. 

Other results are shown on the Stanis las square application. Once 
again, the reprojection error on the 3D model features is very good. We 
also compare in Fig. 16.10 the computed viewpoint with the expected 
one. Indeed, the video was shot from a car which is passing on the 
opposite side of the square along the x-axis. The actual viewpoint was 
used as an initial guess in the first frame. The obtained curves proved 
that the algorithm failed to recover the expected viewpoint (the ty and 
t z coordinates should be constant over the sequence). Another way to 
assess the viewpoint is to consider the epipolar line for some given points 
(Fig. 16.9(a,b)). We can notice that the epipolar lines pass far from the 
corresponding points. This proves that the viewpoint is not computed 
with sufficient accuracy. 

5. IMPROVING THE VIEWPOINT 
COMPUTATION 

In order to improve the accuracy of the viewpoint, we use key-points 
that can be easily matched in two consecutive images. As the relation­
ship between two matched points is a function of the camera motion 
and of the intrinsic parameters, the viewpoint can be improved by mini­
mizing a cost function which encompasses the reprojection error as well 
as the matching error between two frames. Since the key-points do not 
generally correspond to the model points, the viewpoint computation 
will be improved through these 2D correspondences. 

Section 5.1 describes the way to extract key-points. Section 5.2 presents 
the cost function we use to improve the viewpoint. Significant results 
are shown in section 6. 
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(a) 

(c) 

(d) 

Figure 16.6 Temporal registration. (a) Wireframe model of the object to be regis­
tered (the bridge). (b) Tracking of image features . White lines correspond to the 
tracked features, white dashed lines to the projection of their 3D correspondents in 
the previous frame and black dashed lines to the features not (yet) used. (c) Robust 
pose computation. Sections for which residuals are greater than c and feature outliers 
are drawn in black. (d) Re-projection of the model. 
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5.1 EXTRACTING AND MATCHING 
KEY-POINTS 

Key-points (or interest points) are locations in the image where the 
signal changes two dimensionally: corners, T-j unctions , locations where 
the texture varies significantly etc. Approaches for detecting key-points 
can be broadly divided in two groups: the first group involves first ex­
tracting edges and then searching for points having maximum curvature; 
the second group consists of approaches that work directly on the grey­
level image. As the edges are already used in the viewpoint computation, 
we resort to the second approach that provides us with interesting tex­
ture points which are not yet used. We use the approach developed by 
Harris and Stephens [9]. They use the autocorrelation function of the 
image to compute a measure which indicates the presence of an interest 
point. More precisely, the eigenvalues of the matrix 

[ f; l x l y ] (/ _ 01 / _ 01) 
lxly l; x - ox' y - oy , 

are the principal curvatures of the auto-correlation function. If these 
values are high, a key-point is declared. 

We still have to match these key-points between two consecutive 
images. Numerous works use correlation techniques to achieve this 
task [18]. These methods are well-suited when the motion in the im­
age is roughly a translation but they are unable to cope with rotations 
and scale changes. That is the reason why we prefer to use the matching 
approach developed in [13]; each key-point is characterized locally by a 
vector of differential invariants under the group of displacements. For 
example, the vector of differential invariants up to second order is 

I 
12 + 12 

2 x y 2 
1xx1x + 2Ixy1xly + lyyly 

Ixx + lyy 
f;x + 2Ixylyx + l;y 

The invariance of the vector makes the matching stage easier even in 
case of important geometric transformations. Moderated scale changes 
can also be considered. The interested reader can find further details 
on the computation of the local invariants in [13]. The key-points are 
then matched according to a measure of similarity between the invariant 
vectors. Neighbouring constraints are also used to make the matching 
easier (close key-points must have a similar disparity). 

Fig. 16.7(a,b) exhibits the key-points which have been automatically 
extracted in two successive images in the scene. For the sake of clarity, 
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only a small part of the image is shown. The matched key-points are 
represented with an arrow in Fig. 16.7(c). These points bring depth 
information in areas which do not contain 3D model features: in the 
foreground of the scene, near the statue, and in the background of the 
scene (the street behind the square). Around 1000 key-points have been 
detected. Among them, 600 points are matched. 

(a) (b) 

Figure 16.7 (a,b) Key-points extracted in two consecutive frames. (c) The matched 
key-points. 
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5.2 MIXING 3D KNOWLEDGE AND 
POINTS CORRESPONDENCES 

Given the viewpoint [Rk, tk] computed in a given frame k, we now 
explain how we compute the viewpoint in the next frame k + 1 using 
the 3D model as well as the matched key-points (qi, q~h:::;i:::;m. Before 
describing the cost function to be minimized, we first recall in a little 
detail the relationships between two matched key-points ql, q2 and the 
two viewpoints [Rk' tk] and [Rk+l, tk+d. Let b.R, b.t be the relative 
displacement of the camera between the frames k and k + 1. Let A be 
the intrinsic matrix of the camera: 

[ 
kuf 0 Ua 1 

A = 0 kvf Va . 
001 

Let qi and q2 be the images of a 3D point M from the cameras. Their 
homogeneous coordinates are denoted ifl and if2' We then have the 
fundamental equation (see Appendix for a proof of this result) 

if2tA-Itb.Tb.RA-Iq-1 = 0, 

where b.T is an antisymmetric matrix such that b.Tx = b.t 1\ x for all 
x. F = A-Itb.T~RA-I is called the fundamental matrix. 

Then, a simple way to improve the viewpoint computation using the 
interest points is to minimize 

(16.4) 

where 

• Ti is the distance in frame k + 1 between the tracked features and 
the projection of the model features, 

I I -. t -. 
• Vi = . 2 . 2 + . 2 . 21q2 Fqil measures the quality 

(Fqi) 1 +(Fqil2 (Ft qi)l +(Ftqi)2 

of the matching between qi and q~ [11], 

• PI and P2 are M-estimators. Note that the use of an M-estimator 
for the key-point correspondences is not essential: as the key-points 
are significant points in the image, false matches are unusual. 

Parameter A controls the compromise between the closeness to the 
available 3D data and the quality of the 2D correspondences between 
the key-points. We use A = 1 in our practical experiments. 

The minimum of Eq. (16.4) is computed by using an iterative algo­
rithm for minimization such as Powell's algorithm. 
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6. RESULTS 
Fig. 16.8 shows the result of using the mixing algorithm to incrust a 

virtual car in a video sequence. A video of the Stanislas Square, city of 
Nancy, France, has been shot from a car driving around the square. Our 
aim is to incrust a virtual car passing on the square. It is worth noting 
here that the 3D data available from the scene only concern the Opera. 
On the other hand, the 3D model of the statue is not available. 

First, the importance and the working of the mixing algorithm can be 
visually assessed. We have compared the results obtained with the mix­
ing algorithm (Fig. 16.8) to the ones obtained with the RPC algorithm 
(Fig. 16.2). These results clearly prove that the mixing algorithm dra­
matically improves the viewpoint computation. The car and the scene 
are combined seamlessly and the realism of the composition is very good. 

Figure 16.8 Composition with the mixing algorithm 

The quality of the viewpoint can also be assessed by looking at the 
epipolar lines (Fig. 16.9). The epipolar lines of five given points ran­
domly chosen in the images have been drawn using the RPC algorithm 
and the mixing algorithm. The reader can note that the epipolar lines 
computed from the mixing algorithm pass very closely to the correspond­
ing points. 

(a) (b) (c) 

Figure 16.9 (a) Five points and (b) their epipolar lines computed with the RPC 
algorithm and (c) the mixing algorithm. 
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Table 16.2 Computation time for the three steps of the algorithm 

Machine instruction Elapsed time 
cycles (in seconds) 

Tracking 233623865 .78 s 

2D j2D matching 565359817 1.88s 

Mixing 370003480 1.23 s 

Fig. 16.10 exhibits the viewpoint evolution for the RPC algorithm and 
the mixing method. In the considered sequence, the camera is passing 
on the opposite side of the Opera. The motion of the camera is then 
a translation along the x-axis. Fig. 16.10 proves the efficiency of the 
mixing method: the ty and tz coordinates are nearly constant whereas 
the t x , a, f3 and, parameters evolve slowly. 

Finally, the computation time of our algorithm is shown in Table 
16.2 for the Stanis las square application. The computation time of the 
algorithm depends on numerous factors: 

• number of 3D features, 

• size and motion of the 2D features that are tracked: if the motion 
of the feature is large, the tracking algorithm converges slowly. 
The rate also depend on the number of points used to discretize 
the curve feature. 

• camera velocity: as the pose computed in the previous frame is 
used as initial guess in the mixing algorithm, the convergence rate 
of the minimum finding routine depends on the distance between 
two consecutive viewpoints. 

• number of key-points: a key-point is declared if the principal cur­
vatures of the auto-correlation function are high. The number of 
key-points can therefore be adapted. However, selecting a high 
threshold can lead to detect only very prominent key-points. This 
can suppress key-points which bring depth information. 

The elapsed time has been computed for each of the three steps of the 
algorithm on an Ultra-spare 300 Mhz. They are expressed in machine 
instruction cycles and in seconds. 

Currently, the time needed to process one frame is around 3.9s in 
this application for eight curves and 600 key-points. However we can 
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Figure 16.10 Evolution of the motion parameters for the RPC (solid lines) and the 
mixing algorithm (dotted lines). The Euler angles are expressed in radians and the 
translation is expressed in meters. 
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greatly improve the speed of our algorithm by processing both the pose 
computation and the key-points extraction in a parallel way. In this 
way, we think that our algorithm is likely to be amenable to real time. 
In any case, our registration methods can be very useful to perform 
post production tasks: visual assessment of new projects in their final 
settings, special effects in movies etc. 

Other significant results on video image sequences can be seen at URL 
http://www .loria.fr r gsimon/videos.html. 

7. CONCLUSION 

To conclude, we have presented a robust and accurate registration 
method which allows us to combine the real and the virtual worlds seam­
lessly. One of the main advantages of our approach is to perform pose 
computation over the sequence in a completely autonomous manner. 
The accuracy of the pose computation is due to the combined use of 
3D-2D correspondences in an image and 2D-2D correspondences in two 
consecutive frames: indeed the use of 2D-2D correspondences allows us 
to bring some kind of spatial information on the scene in areas where 
3D model features are missing. As a result, our method only requires a 
limited number of 3D features to be effective. 

Future works will concern the automatic determination of the intrinsic 
camera parameters. Indeed, these parameters are currently computed 
off-line before shooting the sequence. As the zoom of the camera may 
change during shooting, it would be interesting to compute dynamically 
the intrinsic camera parameters. 

Appendix: The fundamental matrix 

epipolar line 

Figure 16.11 Geometry of two cameras 

Consider the case of two cameras as shown in Fig. 16.11 where C1 and 
C2 are the optical centres of the cameras. Let the displacement from the 
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first to the second be [R, t]. Let ml and m2 be the image of a 3D point 
M. The three vectors Clml, C2m2 and t are coplanar. Without loss 
of generality, we assume that M is expressed in the coordinate frame 
of the first camera. As the coordinates of C2m2 in the first frame are 
RC2m2, the coplanarity of the three vectors can be expressed by 

(16.5) 

As t 1\ x = Tx with T = [ t~ 
-ty 

-tz ty 1 o -tx ,we can write Eq. 
tx 0 

(16.5) 

as 
C2m2tTRClml = O. 

The mapping between the pixel coordinates m( u, v) and the metric co­
ordinates (X, Y, Z) in the camera frame is given by 

[ su 1 [kuf 0 Uo 1 [ X 1 [ X 1 
m = :v = ~ kC/ ~o i = Ai' 

where ku, kv are the pixel sizes, f is the focal length, and Uo, Vo are the 
coordinates of intersection of the optical axis with the image plane. 

Hence, we have 
m2t(A- I )tTRA-I rih = O. 

Let F be F = (A-I)tTRA- I ; then two corresponding points ml, m2 
satisfy the equation 
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Chapter 17 

3D OBJECT TRACKING USING 
ANALYSIS/SYNTHESIS TECHNIQUES 

Andre Gagalowicz, Philippe Gerard 

Abstract In post-production, a traditional method for creating some special ef­
fects is named "rotoscopy". This technique consists of segmenting a 
video sequence by hand and for every frame. Our method is a new tool 
designed to reduce considerably the cost of this operation by making it 
almost automatic and quick. In our case, we track a rigid object whose 
geometry is known, in a sequence of video images. This new approach 
is based upon a two-steps process: first, one or several "keyframes" are 
used in a preliminary interactive calibration session, so that a 3D model 
of this object is positioned correctly on these images (its projection fits 
to the object in the image). We use this match to texture the 3D model 
with its image data. Then, a 3D predictor gives a position of the object 
model in the next image and the fine tuning of this position is obtained 
by simply minimizing the error between the textured model in this po­
sition and the real image of the object. Minimization is performed with 
respect to the 6 DOF (Degrees of Freedom) of the model position (3 
translation parameters and 3 rotation ones). This procedure is iterated 
at each frame. Test sequences show how robust the method is. 

1. INTRODUCTION 

Tracking objects in a video sequence is a very popular topic. Possible 
applications are: teledetection, security, traffic control, animations, spe­
cial effects, video compression. In special effects and augmented reality 
applications, which are the applications we are interested in, tracking 
accuracy must be high. The retrieved position of the object should not 
be beyond 1 or 2 pixels off from its real projection in the video sequence. 
Moreover, in order not to disturb the human eye, the residual position 
error should be consistent all over the video sequence in order to avoid 
jittering effects. Up to now, in special effects and postproduction appli­
cations (such as adding synthetic objects to a real scene) the traditional 
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rotoscopy method is still used. But such a method is cumbersome, te­
dious and highly interactive, which is why an automated 3D tracking is 
direly desired. 

1.1 STATE OF THE ART 
The tracking research activity can be classified in two different fields: 

• 2D tracking: a significant amount of work has been done on 
locating salient image features. Image processing is often used 
to detect moving regions [1], contours [12], textures [9]' oriented 
points, optical flows. Different kind of transformations are applied 
to the images such as Gabor filters or wavelets [18, 2]. 

• Model-based tracking: a model might be more or less sophisti­
cated: it might consist of any information given to the algorithm 
before or during the process like the snake model used by Raveda et 
al. in [15] for segmentation purposes. The model used by Jang et 
al. [8] is a simple bounding rectangle where the object is supposed 
to lie. One might notice that any 2D tracking is very sensitive to 
noise, cluttered environment, occlusion, and object rotations. For 
robustness purposes, we considered the use of an explicit 3D model 
of the object to track. In [11] and [10]' Nagel et al. got some good 
tracking results using a parameterized 3D car model. This type 
of model can be adjusted to different types of car. Complicated 
motions such as turn about, backing and parking manoeuvres have 
been correctly tracked, but their model included modeling of shad­
ows in order to perform it properly. Gavrila et al. [7] got some 
really accurate results too while tracking two dancers where self­
occlusions occurred. However, the background is clean and actors 
wore some special black and white clothes used as markers to rec­
ognize the right leg and arm from the left ones. The matching 
process is quite similar for every method: first, image features 
(gradients, edges, velocity map etc.) are extracted from the origi­
nal video sequence and secondly, the 3D model is projected using 
a more or less sophisticated camera calibration process. For traffic 
control purposes and human tracking, some assumptions are made 
and some constraints are added: for instance, the objects can only 
slide above a surface. This diminishes the number of degrees of 
freedom and simplifies the task. The match between the projected 
3D model and the images is often made comparing simple primi­
tives such as lines or corners, then a matching function is defined 
and an error has to be minimized. One might notice that com put-
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Figure 17.1 Overview of the tracking method 

ing image features induces a lack of robustness in object tracking: 
many factors such as lighting condition variations, shadows, or 
cluttered environment might spoil the image feature computation. 
Another approach has been implemented in [6, 5, 4], where planar 
surface patches have been tracked over time. Their approach is 
stochastic using a Gaussian assumption and a Markov-type tech-



310 CONFLUENCE OF COMPo VISION AND COMPo GRAPHICS 

nique. Our method is conceptually similar to this latest reference, 
in a way that no image features have to be extracted beforehand. 
Nevertheless, it differs in that our approach is deterministic and 
tracks 3D objects globally. Our matching function is mainly "top­
down": a synthetic model is generated and directly compared to 
the original real image. 

The implemented algorithm is summarized in Fig. 17.1: the first image 
of a video sequence is used to obtain an initial calibration, i.e., a camera 
position that matches best the initial object appearance. This is done 
interactively, by specifying correspondences between 3D model vertices 
and their image projections. Based upon this initialization, a prediction 
of the model appearance in the next frame is achieved, through motion 
prediction and image-based texture mapping. A synthetic image of the 
isolated object is generated and compared to the actual frame. At this 
stage an iterative optimization process finds the best object position 
(with respect to the camera) matching the predicted image with the real 
one. After convergence, the new object pose estimate is obtained. From 
that estimate, a supervisor updates the texturing and motion prediction 
parameters before starting the processing of the next frame. The final 
result can be interpreted in terms of a camera trajectory (fixed object), 
an object trajectory (fixed camera), or a combination of both. 

The remainder of the paper will detail the most important aspects of 
the tracking tool. First, Section 2 will outline the 3D model generation, 
a prerequisite for model-based tracking. Then the tracking (object) pa­
rameters will be defined in Section 4. The matching process which is 
at the core of the tracking procedure is explained in Section 5. The op­
timization procedure is described in Section 6, while the tested motion 
predictors are presented in Section 7. Finally, experimental results are 
shown in Section 8 and we conclude by some perspectives in Section 9. 

2. MODELS 
We use a 3D model of the object to track by assuming that such a 

model can be built with a photogrammetry tool (available on the mar­
ket), scanned with an active sensor, built from scratch with a computer 
graphics modeling software, or using a 3D reconstruction method such as 
[13]. The accuracy of the tracking process is related to the quality of this 
3D description. The tracking algorithm was applied to 3 sequences in 
which the model corresponded to the real object with varying accuracy. 
Figure 17.2 shows the 3D models used to track the "Arche de la Defense" 
(building in Paris), and a minitel (telecommunication terminal). Figure 
17.3 shows a car (2 accuracy levels). 
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(a) (b) 

Figure 17.2 3D Models: (a) Arche de la Defense, (b) a minitel. With respect to the 
image data, the model (a) is excellent but (b) has some inconsistencies. 

(a) (b) 

Figure 17.3 3D models: (a) A simple model of a car, (b) a more elaborate model of 
the same car. With respect to the image data, the model (a) has no details and (b) 
has some inconsistencies. 

Our goal is to study the complexity of the 3D model which has to be 
used in order to satisfy the accuracy performance (pixelwise 3D object 
positioning) required by the rotoscopy application. A tradeoff between 
the object complexity and the computation overhead (coupled with mod­
eling precision) has to be analysed. The "Arche de la Defense" is made 
of 16 faces and is really close to the real model. We have also studied two 
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versions of a car model: One is made of only several trapezoids and is 
just a rough approximation of the filmed car, the second one is a much 
more elaborate (though still incorrect) model (see Figure 17.3(a) and 
(b)). Both are used for tracking and performances are compared. The 
mini tel model is also close to the real object but exhibits a few inconsis­
tencies (the model is an early CAD version which does not correspond 
to the final manufactured object). 

3. CAMERA CALIBRATION 

The initial step of the tracking procedure is to determine the position 
of the camera in the world coordinate system for the first frame of the 
video sequence we want to analyze. We used the CamCal package [17] to 
achieve the calibration. This package requires correspondences between 
3D vertices of the object model and 2D image positions specified by 
the user to compute the extrinsic (rotation matrix, translation vector) 
and intrinsic (pixel size and image center) camera parameters. Camera 
calibration is performed directly on the object. 

4. DEFINITION OF THE OBJECT 
TRACKING PARAMETERS 

Our goal is to track the object while the camera is supposed to be 
fixed or can itself move. As the object is rigid, its motion is reduced to a 
pure displacement (rotation plus translation) that we are going to track. 
Once the calibration is obtained, we apply some motion variations to the 
object by modifying the position of the vertices of the 3D model. The 
vertex coordinates are transformed by the rotation given by (17.1) and 
by a translation. The tracking parameters used are the Bryant rotation 
angles [3] for the rotation applied to the 3D model and the translation 
parameters. 

The rotation matrix, given the three Bryant angles, is (17.1) 

q 83 + 81 8 2C3 

C1 C3 - 81 8 28 3 

-81 C2 

81 8 3 - Q82C3] 
81 C3 + C1 8 2 83 , 

Q C2 

(17.1) 

where c1, 81, C2, 82, C3, and 83 are respectively the three Bryant angles 
cosine and sine values. 

The camera position is given by the calibration and at the first frame 
the model is positioned at the origin of this coordinate system. We 
have to track its position with respect to the camera. For example, the 
minitel motion is mainly a rotation about an axis while the camera is 
fixed, so we only need to track the object itself. The car sequence is more 
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tricky since both the camera and the object move, but our procedure 
copes with it without any problem by directly tracking the composed 
movement. 

5. MATCHING PROCESS 

5.1 TEXTURE MAPPING 
Once the model is calibrated with respect to the first image frame, 

we project the 3D coordinates of the complete geometry by using the 
transformation (17.2) given by the calibration process 

P;)= 
Uo ) (1 0 0 0) (R T) ( ~: ) Vo 0 1 0 0 0 1 Z 
10010 r 

(17.2) 

where X w, Yw, and Zw are the 3D vertex coordinates and (Sx,Sy,S) 
the corresponding homogeneous image coordinates. Rand T are the 
viewing transformation matrices. They can be derived from the extrinsic 
parameters (Re, T c) by applying a coordinate frame transformation to 
get the model position with respect to the camera: 

R=Rt 
e 

T = -R~*Tc 
(17.3) 

In Eq. (17.2), f is the focal length, r the pixel ratio, and (uo,vo) 
the image center, which are all supposed to be known in our current 
implementation (obtained from the camera calibration on the object). 

The computed projection coordinates are then used as texture coor­
dinates to texture the model with the first image of the sequence. We 
also defined a flag associated with each face indicating their visibility 
in the first frame. Visible faces learn the texture, while the others do 
not. If a geometrical transformation is applied to the textured model 
(or if it is seen from another viewpoint), only the faces which learned a 
texture and are visible in the current viewpoint are drawn, the others 
are ignored. 

The use of a fast standard texturing library, such as OpenGL greatly 
speeds up the tracking process, because this mapping has to be done at 
every step of the image/model matching. 



314 CONFLUENCE OF COMPo VISION AND COMPo GRAPHICS 

5.2 TEXTURE LEARNING 

At the calibration stage, texture may be learned only on the visible 
faces of the model. Along the sequence, if we only draw the faces that 
learned texture at the calibration time and are visible at the current 
frame and if the object under scrutiny is submitted to a rotation, the 
number of faces rendered by the algorithm thus decreases over time 
and the comparison between a synthetic view and a real image becomes 
increasingly difficult. It is quite obvious that we need to learn texture 
while tracking. 

Running the algorithm, the user is able to choose the timestep for tex­
ture learning. One might learn the texture at every frame: this might be 
the only way to track a fast rotating object (i.e the minitel sequence) or 
an object getting varying illumination. But when the motion is mainly 
a translation, we still get a really robust algorithm learning the texture 
only once (i.e., the "Arche de la Defense" sequence). However, in a com­
plicated case such as the car sequence, it might be difficult to guess the 
texture learning timestep, because the apparent object motion is a mix­
ture of camera motion and object motion, because the illumination of the 
car varies and because the model used is not exact. The strength of this 
method is related to the fact that only the pixels belonging to the object 
are compared with the real image. Unfortunately, when the texture is 
not learned properly (i.e., case of the use of a non exact model), pixels 
from the background are mapped and used to compute the matching 
error (see next section). 

The texture learning timestep is a parameter related to the residual 
matching error values. If the residual matching error between the syn­
thetic image and a particular frame from the sequence is high (i.e., the 
object model was not properly positioned in that frame) it would be 
ill-advised to learn the texture at that time. In that case, restarting a 
new calibration process to initiate a proper tracking is necessary. 

We used constant learning rates on the test sequences. For example, 
for the car sequence, the texture learning timestep was set to 4 frames. 
In later developments we plan to have the algorithm choose the learning 
rate automatically based upon the matching data. 

5.3 MODEL MATCHING 
The main interest of the method comes from its matching process. 

Once the texture learning process has been performed at the calibration 
frame, we go to the next frame and apply some variations to the six 
position parameters of the object and generate a synthetic view of this 
object with an OpenGL-based renderer. Meanwhile we also generate 
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a boolean alpha image where zero and one values indicate for every 
pixel their ownership to the object projection on the new frame. Only 
the pixels from the synthetic view corresponding to a non zero value in 
the alpha image are computed in Eq. (17.4). Using this method, only 
very few pixels (ideally belonging to the object) are compared to the 
background. 

N 

Error = ~ I: I (Preaz(i) - Psynt(i)) I , 
i=l 

(17.4) 

where N is the number of matched pixels, PreaZ (i) denotes R, G, B values 
for the ith pixel of the real image (between 0 and 255), and Psynt(i) 
denotes R, G, B values for the ith pixel of the synthetic model. 

The matching method is quite simple and does not rely on compu­
tation of image features which are very often the cause of instability, 
unless one is working under specific conditions such as in [16] for traffic 
control purposes. 

Finding the optimal 3D object position means finding optimum val­
ues in six dimensional space. The matching function is computed for 
every parameter variation, comparing the synthetic image (generated 
at each parameter variation) with its counterpart in the video frame. 
Because of the number of possible parameter values, and the number 
of pixel comparisons, this process might be quite computationally ex­
pensive. We reduced this computation cost by using a multiresolution 
matching process and an optimization algorithm, as explained below. 

5.4 MULTIRESOLUTION MATCHING 

A natural idea consists in first running the matching procedure at a 
low image resolution, which provides a good initial guess for a higher 
resolution search. The matching process does not behave properly with­
out blurring the images before reducing their sizes (which avoids alias­
ing effects). To reduce the image size by half, we used a simple 3 x 3 
blurring filter, while we used a 5 x 5 blurring filter before reducing the 
image size by 4. We still got some really accurate results using low 
resolution images. Figure 17.4(a) shows an example of the Y variation 
parameter evolution along the video sequence using different image res­
olutions. The algorithm running on smaller resolution images exhibits 
only a slight degradation in minimum localization but takes great ad­
vantage of the smoothness of the error function when compared to the 
full resolution experiment (Fig. 17.4(b)). This multiresolution approach 
has been taken into account for all results presented later. 
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Figure 11.4 (a) Best translation parameter about the y-axis using different image 
resolutions for the Arche sequence. (b) Matching error when the translation parameter 
about the z-axis is varying around its optimal value (located at zero in the figure). 
This computation has been done for 3 different image resolutions. 
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6. OPTIMIZATION 
To avoid brute-force matching (finding the parameters that provide 

the smallest matching error by an exhaustive search) which would require 
several hundred thousands iterations in a 6-dimensional space, we tried 
several optimization algorithms . 

• Levenberg-Marquardt method: This method requires the esti­
mation of the first and second derivatives of an unknown matching 
error function for each parameter. This computation proved to be 
highly sensitive to the scale used for parameter variations: too 
large a variation could give a wrong estimate for slope or curva­
ture, while too small a step could get the algorithm stuck in a local 
error minimum. Finding an acceptable trade-off was infeasible on 
the test sequences. 

As the global error function contains many local minima, the 
Levenberg-Marquardt method was not suitable. This led us to 
choose a method based upon simulated annealing. 

• Simulated annealing algorithm: The method described in [14] 
is a combination of a standard simulated annealing algorithm and 
a simplex implementation. The procedure is started by defining a 
set of six Ai values used to build the first simplex, consisting of six 
matching error computations around the calibration position Po 

(17.5) 

where ei are the six unit vectors. 

The simplex procedure deforms the shape defined by the PiS ac­
cording to simple expansion, contraction, and reflection operations 
on the vertices until no such operation can find a better match­
ing error. This deterministic procedure is coupled with a standard 
Metropolis approach, so that after a scaling operation, a stochastic 
search is performed on the vertex points to overcome possible local 
minima. See [14] for details. 

The Ai are determined experimentally. They have to be large 
enough to enable the optimizer to jump over local minima. One 
might set these values using any a priori knowledge of the global 
object motion. For instance, in the car sequence, it seems obvious 
that the motion is mainly a rotation about the axis perpendicu­
lar to the road combined with a translation on the ground plane: 
thus we chose higher values for Ai corresponding to these parame­
ters. Exact values are not critical to achieve convergence. Finding 
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the right scale for Ai helps the optimizer to converge faster, how­
ever, one might impose a certain number of optimization iterations 
which guarantee a convergence when using smaller A values. The 
annealing algorithm is relatively efficient since 600 iterations al­
ways gave a correct result for all frames of the analyzed sequences. 

7. DYNAMIC TRACKING 

7.1 ZERO ORDER PREDICTOR 
The first improvement of our method was to re-inject the parameter 

values obtained at the frame (t-l) as initial values for the optimization 
process at frame (t). This model is just assuming that the position 
parameters at time (t-l) are close to the new ones to be found for the 
frame (t) in Eq. (17.6). 

(17.6) 

where X stands for the position vector (three Bryant angles and three 
translation values) and X is the predicted position vector. This improved 
significantly the tracking for the Arche sequence. Using only the first 
frame to texture the model and computing the correlation product with 
1/4 image resolution were sufficient conditions to track properly the 
entire Arche sequence. 

7.2 FIRST-ORDER MODEL 
This model assumes that the object is moving at a constant speed: 

The optimizer initialization at time (t) is given by Eq. (17.7). 

(17.7) 

For the first timestep we utilize the zero order model. This first order 
model forced the object to keep on turning once it started the U-Turn 
manoeuvre in the car sequence. 

7.3 SECOND-ORDER MODEL 
This model assumes that the object is moving with a constant accel­

eration: The prediction at time (t) is given by Eq. (17.8). 

Xt = 3 * Xt-l - 3 * Xt-2 + X t - 3 . (17.8) 

For the first two timesteps we use the zero-order model and the the 
first-order model, respectively. 

We compared the three predictors on the test sequences and found out 
that the zero-order one is the most stable. All presented experiments 
are restricted to the first-order case. 
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8. EXPERIMENTS AND RESULTS 

We processed three test sequences ("Arche, "Car", and "Mini tel") 
and their corresponding 3D models according to the algorithm detailed 
above. The first frame of each video sequence was used to provide the 
tracking process with a 3D textured model. This initialization included 
an interactive camera calibration and a texture learning scheme. Then, 
a simulated annealing algorithm was used to search for the 6 DOF val­
ues providing the smallest residual matching error between the synthetic 
(predicted) images and the actual video sequence. The various optimiza­
tions presented in the previous sections (multiresolution matching, tex­
ture learning, dynamic prediction) were implemented to improve both 
computation time and robustness. 

8.1 "ARC HE DE LA DEFENSE" 
We first studied the "Arche de la Defense" sequence to test the stabil­

ity of the proposed tracking. We chose this sequence because we have a 
perfect model of the Arche to track and the sequence contains very noisy 
and erratic movements (pictures were taken from a helicopter). The part 
of the Arche seen on the sequence was nevertheless always the same. Our 
first goal was to study if we were able to track very noisy movements 
wi th a perfect model and viewing conditions. Figures 17.5 ( a), (b) and 
( c) present the results obtained for this sequence. 

The position of the 3D model is represented by its wireframe projec­
tion overlaid on the real image. Tracking as it can be seen on the pictures 
was always perfect at a pixel precision level in all experience conditions 
tried (even with low resolution images). We studied the robustness of 
this method by learning texture only once at the calibration time, and 
then computing the residual matching errors for the best match found 
at each frame. In figure 17.6, parameter variations were added to the 
calibration position (at frame#O). The matching errors shown in this 
figure correspond to the best matches found using an optimization algo­
rithm which was initialized with the initial calibration parameter values 
at each frame. 

According to Fig. 17.6, one can conclude that tracking is pretty sta­
ble up to the end of the sequence which means that the entire "arche" 
sequence has been tracked properly using the same texture image. The 
residual matching error never went above 12 grey levels, which is a pretty 
low error. For this sequence, no texture learning was necessary. Evi­
dently, being able to recover the correct object position over more than 
eighty frames without texture update is a good proof of robustness. Fur­
thermore, the residual error value might be monitored to detect tracking 
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(a) (b) 

(c) 

Figure 17.5 "Arche de la Defense" tracking: (a) frame #0, (b) frame #70, (c) frame 
#100. 

failure. We found out that above an error of 40 grey levels, the algorithm 
is not performing properly. 

We also tested the robustness of the matching process by trying to 
retrieve the correct parameters after applying some image modifications 
such as occlusion or low contrast to the video sequence (see Fig. 17.7). 
The synthetic model is textured with the correct image (Fig. 17.7(a)) . 
In Figs. 17.7(c) and (d), some pixels of the arche have been replaced by 
pixels from the background. 

The object appearance has to be severely distorted to mislead the 
matching process: the correct pose is computed for the cases (b), (c), (e) 
and (f), and fails only for extreme occlusion in case (d), all in Fig. 17.7. 

The first conclusion is that tracking is very stable when we dispose of 
a correct model and when the view of the object does not change. 
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Figure 17.6 "Arche" tracking: (a) third Bryant angle, (b) translation about (x) 
world axis, (c) residual matching error. 
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(a) (b) 

(e) (f) 

Figure 17.7 "Arche" tracking: (a) image used to texture the 3D model, (b) low 
contrast image, (c) 30% occlusion, (d) 75% occlusion, (e) spread image (pixels are 
spread out randomly around their initial positions), (f) blurred image. 
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Figure 17.8 "Mini tel" tracking (a) frame #0, (b) frame #6, (c) frame #12. 

8.2 MINITEL 

In the next experiment, we studied the performance of tracking when 
the model used was no longer exact. 

In this case of a non-exact model use, we studied first the minitel 
sequence. This sequence is such that the minitel is moving quickly (pure 
rotational motion), the camera is fixed, and the background is very dif­
ferent from the minitel texture. So, tracking errors will come mainly 
from the lack of precision of the model. Figs. 17.8(a), (b), and (c) show 
the tracking results. 

As the object presents various aspects, tracking using only texture 
learning at initialization time happened to be unstable (the part of the 
object seen at initialization time disappears even completely after a 
while). In order to cope with the quick object aspect change, we im­
plemented an adaptive tracking version where texture is learned at each 
frame. As the 3D model does not exactly correspond to the real object, 
the tracking is not correct: the 3D movement of the minitel is very poor, 
but the projection of this movement on the image sequence remains very 
good and is without jittering effect. So, as a conclusion, model errors 
bring 3D position errors but tracking remains stable in the sense that 
the projection of the 3D positions still fits well with the 2D data. The 
second point is that when the object aspect changes in the sequence, tex­
ture learning at the initialization time is no longer sufficient and frame 
by frame refreshment is a good way to alleviate this problem. 

8.3 CAR 

We decided to study a more realistic case, where camera and object 
are both moving which implies cluttered background movements. Illu­
mination variations on the car are also very important (110 grey level 
differences between the two extreme frames on the object). In order to 
study the influence of model deficiencies in this more realistic case, we 
used two versions of the car model: one model is very crude (9 faces: 
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(a) (b) 

Figure 17.9 Car tracking using a simple 3D model; (a) frame #150, (b) frame #201. 

(a) (b) 

Figure 17.10 Car tracking using a more detailed 3D model; (a) frame #150, (b) 
frame #201. 

(a) (b) 

Figure 17.11 Car tracking; (a) using only one keyframe and texture learning at each 
frame, (b) tracking results using 4 keyframes. 
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Figure 17.9), the other one is more detailed but still with modeling errors 
(828 faces: Figure 17.10). 

As the car movement is significant and the lighting conditions vary a 
lot, tracking needs to use adaptive texture learning. In the case when the 
object model is poor, such as the minitel or the car, texture learning may 
induce some texture error since the model does not fit properly during 
the learning phase. Some background pixels are then used to texture the 
new model. This problem implies some deviations in the tracking results. 
We found out that a model error produces a cumulative matching error 
when we process the successive frame. This matching error grows faster 
when the model error is greater. The matching error grows very steadily 
due to the feedback produced by the error function which infers stability 
to the positioning process. So displacement grows slowly from frame 
to frame and only in a more significant manner when the model error 
is itself greater. Compare Fig. 17.9(a) and Fig. 17.10(a). The initial 
positioning at frame #150 was roughly the same but the tracking error is 
much more significant in Fig. 17.9(b) than in Fig. 17.1O(b) at the same 
time step. This effect might be reduced by adding a texture learning 
controller and, of course, by using a better 3D model. The use of the best 
car model, though it improves considerably the tracking performance, 
produces as poor results as with the more primitive model but after a 
longer sequence. See Fig. 17.11(a) where the positioning error becomes 
very pronounced after 160 time steps due to the cumulative effect of 
adaptive model matching. 

Another source of tracking error is due to transparent or semi-trans­
parent faces. Texture on objects such as windows, varies in an un­
predictable way, because transparency implies that background pixels 
become part of the 3D model texture. Specular reflections create some 
uncontrolled texture artefacts. In order to avoid these problems one has 
to exclude these faces from the 3D model, so that we do not use them in 
the error matching function. The elimination of the windows in the car 
model allowed us to obtain smaller jittering effects (animation artefacts) 
than with the global car model. 

An important problem of 3D object tracking occurs when new facets 
of the object appear in the sequence. They were not learned before so 
that tracking cannot incorporate them. Thus, tracking has the tendency 
to block such rotations of the object. To solve this problem, the idea 
consists of treating the image sequence in the reverse time sequencing. 
As in post-production applications, one does not care about real time 
computation and the order in which the sequence is computed, then we 
can let the user define by hand, several keyframes instead of one. In this 
case several calibration processes are performed and for each keyframe 
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(a) (b) 

(c) 

Figure 17.12 Car tracking; (a) frame #0, (b) frame #120, (c) frame #220. 

two trackings (backward and forward) are computed. This allows the 
tracker to be able to track a sequence properly for a large number of 
frames (220 frames). Fig. 17.11 shows the difference when tracking the 
car by using one keyframe and using four keyframes. 

Figs. 17.12(a), (b) and (c) show tracking results for a complicated car 
motion where both the camera and the car are moving. Nevertheless, 
the tracking is performed correctly. Another tracking difficulty is due to 
the fact that the visible faces at the frame #0 are completely different 
from the ones visible in the last frame . To obtain such results, texture 
learning option was enabled: the texture was refreshed every frame, and 
the dynamic model used the first-order predictor. 

9. CONCLUSION AND FUTURE WORK 
Comparing the obtained results with the ones produced with other 

methods, the tracking algorithm presented appears to be more robust 
even for complicated motions such as 3D rotations. Using line matching 



3D object tracking using analysis/synthesis techniques 327 

like in [10] inevitably leads to model position instabilities in cluttered 
environment. In their paper, Nagel et al. [10] filmed a car from a high 
viewpoint, so that some faces were always visible during the entire se­
quence. In minitel and car sequences, the faces shown on the first frame 
are completely different from the ones shown in the last frame. Nagel et 
al. also had to add a shadow model to help tracking (which is not neces­
sary in our case). Another important advantage of this method is that 
the model matching is consistent over time, which is important for ani­
mation and special effect purposes where getting correct (e.g., smooth) 
kinematics is compulsory. In other works, the overlaid model projection 
appears jerky, and some trajectory post-filtering is necessary. We found 
out that little or even no post-filtering was needed with this method. 

Of course, tracking accuracy is closely related to the quality of the 
object geometrical description given by the 3D model. A trade-off has 
to be made between modeling complexity and desired accuracy. Too 
complex a model may slow down the tracker unnecessarily, and may 
not match the observed object contours any better. However if the 3D 
model used is too simple, not only the tracker is less accurate but it 
might fail completely. The exact trade-off depends on the application, 
but we found that even a very rough polygonal object approximation 
gave at least a reliable initial estimate of the 3D object motion relative 
to the camera. 

In future work, we need to study a better dynamic model in order to 
force the model to follow a constrained trajectory. Also, simple texture 
matching is impossible when cast shadows occur: in that case, a more 
elaborate texture comparison scheme could be beneficial. 

Further refinements can also be added to our current matching pro­
cedure, which remains very simple. For example, we could associate a 
confidence flag to each face of the model according to its transparency 
feature: this flag would modulate the matching error computation, e.g. 
in the car sequence the transparency of the windows implies that the 
model is improperly textured with pixels from the background seen 
through the windows. Finally, we need to extend this tracking algo­
rithm to cameras with varying focal length by adding a zoom factor to 
the projection parameters to be optimized, and to more complex objects. 

10. SUMMARY 

In this paper we presented a new model-based approach for object 
tracking. The first step is to define some keyframes for which the 3D 
model of the tracked object is positioned by hand. This interactive 
process initializes the algorithm which automatically learns the textures 
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Figure 17.13 A frame from an augmented reality sequence 

to map them on the visible faces of the sequence. For the rest of the 
sequence a simulated annealing is used in order to find the new best 
position of the model, corresponding to its six degrees of freedom for each 
frame. This trajectory might be used to create an augmented reality 
sequence, such as in Fig. 17.13, where a 3D animated and synthetic 
animal has been placed on top of the car. 
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Chapter 18 

AUGMENTED REALITY BY 
INTEGRATING MULTIPLE SENSORY 
MODALITIES FOR UNDERWATER 
SCENE UNDERSTANDING 

Vittorio Murino, Andrea Fusiello 

Abstract This chapter proposes a method for the integration of acoustic and 
optical data to enhance the perception of an underwater environment 
in teleoperation tasks. Off-shore applications are addressed, in which 
an underwater remotely operated vehicle is approaching an oil rig for 
inspection, maintenance and repairing tasks. A technique is presented 
which takes advantage of optical features to segment an acoustic three­
dimensional (3-D) image. Cylindrical surfaces are than extracted from 
3-D points, and complete cylinders are reconstructed. The final step is 
to present useful information to the human operator, by displaying the 
superposition of measured acoustic data and geometric primitives fitted 
to parts of it, i.e., an augmented reality view. Experimental results 
with real data are reported showing the effectiveness of the proposed 
approach. 

1. INTRODUCTION 
This paper is devoted to the construction of an augmented reality 

view that can help a human operator of an underwater remotely oper­
ated vehicle (ROV) to better perceive and understand the surrounding 
environment. Two sensing channels are available, optical and acoustic. 
The former gives an image easier to read by a human, but visibility 
is very limited due to low illumination and clutter. On the other hand, 
acoustic data are not affected by illumination and provide inherently 3-D 
information, but are more complicated to understand for a human oper­
ator. From these considerations it arises the need to integrate, whenever 
possible, the two channels in order to exploit the best of both, so as to 
compensate their disadvantages. Moreover, presenting a synthetic model 
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Figure 18.1 Rendering of the VRML model of an oil rig with the ROV. 

of the scene superimposed on data, i.e., generating an augmented reality 
image, is much more useful and readable for a human operator. 

The scenario for the applications consists of an ROV approaching 
an oil rig made up of connected pipes (see Fig. 18.1). The ROV is 
equipped with an optical and an acoustic camera. The optical camera 
provides classical gray-level images and the acoustic one provides range 
and intensity images associated with a set of 3-D points [18]. 

A virtual reality view is obtained by displaying the superposition of 
measured 3-D points and a synthetic model automatically constructed 
from the data. The key issue for automatic modeling is the segmentation 
of the range data into subsets of points corresponding to the desired 
primitives, cylinders in our case. Due to the noisy and low-density nature 
of the acoustic range data, segmentation using differential geometry or 
step-edges is infeasible. Therefore, we propose to integrate acoustic and 
optical images, and to use optical edges to segment the acoustic data. 

First we extract pipe-boundaries in the optical image. Then, assuming 
that the mutual position of the two cameras is known, acoustic (3-D) 
points are projected onto to the image plane. The points falling inside 
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the pipe-boundaries are segmented. The pipe direction and radius are 
then estimated and a synthetic model is generated by fitting cylinders. 

Fusion and integration of different kinds of data is actually a matter of 
active research. When available information sources are of different na­
ture, probabilistic, heuristic, or fuzzy methods are typically used [16, 3]. 
In case of visual data, a straightforward approach consists in recovering 
symbolic information separately from the several types of data, and then 
performing data fusion at the highest (symbolic) level. Classical sym­
bolic Artificial Intelligence techniques [1] are applied in this case. In our 
case, due to the similarity of the data at hand (they are both images), 
we would like to integrate them at a lower processing level, possibly to 
improve or facilitate the recognition procedure on either sensorial chan­
nel. 

Some works are present in the literature on data fusion and integration 
of the different sensor functionalities. Among these, some interesting 
papers can be considered concerning the fusion of intensity and range 
data, mainly derived by a laser range finder [10, 24, 23]. 

In [10]' a Markov Random Field (MRF) model is proposed for the fu­
sion of registered range and intensity images aimed at image segmenta­
tion. An extended weak membrane model is utilized as prior knowledge 
devoted to enforce the line process, thus improving edge detection. The 
fusion occurred by means of a coupled term in the energy function that 
penalized different edge configurations in the two kinds of images. A 
similar method for the fusion of range and intensity images was followed 
in [24] by integrating in a single framework edge detection, semantic 
labeling and surface reconstruction. Initial edge labeling and classifica­
tion is based on a physical analysis of the local behavior of intensity and 
range data. Then, an MRF model is used to relax the edge configuration 
while performing concurrently the reconstruction of the surfaces. In [23], 
an intensity-guided range sensing technique is presented. 

Concerning specifically 3-D scene modeling, there are several works 
on robotic applications mainly devoted to decontamination and decom­
missioning tasks in hazardous environments [13, 17]. The closest to our 
work are [9, 12, 14]. In [9]' segmentation of range data of pipes and torii 
is proposed by using a procedure estimating local centers of curvature. 
Locally fitting a bi-quadratic function, the locus of centers of curvature 
is estimated using a robust least squares method. Then, these centers of 
curvatures are used to discriminate between straight and curved cylin­
ders, thereby allowing the accurate reconstruction of these parts for CAD 
modeling. A-priori information is utilized to set some algorithms' pa­
rameters in order to increase the precision of the segmentation. In [12], 
quadric surface parameters (representing cylinders) are used to estimate 
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radius, axis and position, so that the resulting cylinders are displayed 
to an operator, without performing an actual recognition phase. Gener­
alized cylinders are fitted to range data in [14]. The extraction of axis 
points is done by computing the midpoints between two contour points, 
then the axis curve is represented as a third degree polynomial. 

In our work the acoustic range data and the optical intensity image are 
used in a cooperative way to extract useful (topological and geometrical) 
information, to be used in the construction of a virtual environment. Our 
goal is to automatically model significant objects present in a cluttered 
scene and facilitate human interpretation by displaying such objects in 
an augmented reality view. The only a-priori information that we ex­
ploit is that the rig consists of connected pipes. No high level (CAD) 
description of the visible portion of the rig is available. In another work 
[6] we deal with the problem of fitting (a portion of) a known model of 
the rig to the sensed data. 

The rest of the paper is organized as follows. Section 2 describes the 
processing of intensity and range data and their integration, in order to 
obtain a segmentation of the range data. In Section 3 the extraction of 
cylinders from range data is outlined and in Section 4 the augmented 
reality view is obtained. Finally, Section 5 shows some results of the 
method applied on real data and, in Section 6, conclusions are drawn. 

2. SEGMENTATION 
The first processing step consists of filtering and segmenting both 

acoustic and optical data. 

2.1 ACOUSTIC DATA PROCESSING 
Three-dimensional data are obtained by a high resolution acoustic 

camera, the Echoscope [11]. The scene is insonified by a high-frequency 
acoustic pulse and a two-dimensional array of transducer gathers the 
backscattered signals. The whole set of raw signals is then processed 
in order to enhance those coming from the fixed steering directions 
(called beamsignals) and to attenuate those coming from the other di­
rections. The distance of a 3-D point can be measured by detecting the 
time instant at which the maximum peak occurs in the beamsignal (see 
Fig 18.2). A range image is formed by 64 x 64 points ordered according 
to an angular relation, as adjacent points correspond to adjacent beam­
signals. Moreover, the intensity of the maximum peak can be used to 
generate another image, representing the reliability of the associated 3-
D measures: the higher the intensity, the more confident the associated 
measure. 
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Figure 18.2 Acoustic camera 

The acoustic image is affected by false reflections, caused by secondary 
lobes, and by acquisition noise, which is modeled as speckle noise. The 
intensity image turns out to provide very useful information to discrim­
inate between "good data" and noise. A dramatic improvement of the 
image quality is obtained by discarding points whose associated inten­
sity is lower than a threshold. Then, the connected components are 
extracted by a percolation technique: a sphere of radius R is drawn 
around each point, and two points are considered to be connected if 
their spheres intersect. Finally, a size filter eliminates the small blobs 
caused by noise and clutter. The radius R, the threshold on the inten­
sity, and the threshold on the blob size are chosen based on a priori 
knowledge of the spatial resolution and direction characteristics of the 
sensor [8]. 

2.2 OPTICAL DATA PROCESSING 

The image, obtained by a conventional optical camera is first filtered 
with an edge preserving anisotropic smoothing [19], that is a smoothing 
operator whose strength depends on the local gray-level gradient. 

Straight lines are extracted by combining Canny's edge detector [5] 
and Burn's Plane Fit Algorithm [4]. First edge points are extracted with 
the Canny edge detector, that allows to find very sharp edges (often 
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(a) (b) 

Figure 18.3 (a) Synthetic optical and (b) acoustic images of a joint. 

one pixel large) thanks to the non-maxima suppression. Then, pixels 
are clustered in support regions if they are spatially adjacent and if 
their gradient orientation is roughly the same. The line parameters are 
computed using the intersections of the weighted plane fit to the intensity 
values and the horizontal average pixel intensity plane, within a support 
region. The weight favors the intensity values of pixels with high gradient 
magnitude. Taking mainly the gradient orientation as the evidence for a 
line and using the plane fit method, the algorithm extracts long, straight 
lines as well as shorter lines and is effective in finding low-contrast lines. 

Each extracted segment is then labeled, and its attributes (midpoint, 
length, etc.) are computed. In order to find pipes in the image, pairs of 
segments are grouped together, which are possibly the projection of the 
boundaries of a pipe. Grouping is based on proximity and parallelism 
criteria: two segments are paired if the distance between their midpoints 
is less than a threshold (that is related to the expected distance of pipes 
boundaries in the image), and if their angle is in the range of 1800 ± 300 • 

Finally, the convex hulls of all the paired segments are computed. 

2.3 INTEGRATION 
Optical and acoustic data are integrated by projecting 3-D points 

obtained by the acoustic camera onto the image plane of the optical 
camera. Points falling inside a convex hull are deemed to belong to a 
candidate pipe. Points that lie outside any convex hull are discarded. 
In such a way a segmentation of the acoustic image is obtained. 
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Figure 18.4 (a) Projection of the acoustic points onto the image plane, where the 
optical edges are also depicted. (b) Segmented points after computing the convex 
hulls. 

In order to project 3-D points onto the image plane, the relative pose 
(i.e., position and orientation) between the optical and the acoustic cam­
era is needed. This information is obtained off-line, once and for all, by 
means of a semi-automatic calibration procedure. Both acoustic and 
optical data are registered to the same known model of a given object in 
the scene, thereby obtaining the relative pose between the optical and 
the acoustic camera. 

In our approach, we used the oil rig itself as a calibration object. It 
must be stressed that this is the only point in this work where we use the 
CAD model of the oil rig. In the rest of the paper, describing the on-line 
functioning, only generic assumptions will be made (namely, knowing 
that the rig consists of pipes). The procedure can be summarized as 
follows (for more details refer to [7]): 

• calibrate camera intrinsic parameters, using Robert's algorithm 
[20] and a suitable calibration rig; 

• register 3-D data points to the model by using the Iterative Closest 
Point algorithm [2], thereby obtaining the pose of the acoustic 
camera; 

• match image segments and model segments in the image, using an 
algorithm due to Scott and Longuett-Higgins [22]; 

• register optical segments to the model, using Lowe's algorithm [15] 
to find the pose of the camera. 

Figure 18.4 shows an example of segmentation of synthetic data. 
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3. EXTRACTION OF CYLINDERS 
Regions segmented in the optical plane are now back-projected into 

the original 3-D frame where we look for cylindrical surfaces. The sub­
sequent phase consists of estimating the axis and the radius of the pipes 
in order to reconstruct a synthetic representation of the objects. 

3.1 FINDING CYLINDRICAL REGIONS 

Pipe-like regions are detected by analyzing their inertial tensor (this 
criterion is related to the so-called principal component analysis as dis­
cussed in [8]). The inertial tensor I of a set of 3-D points {Xi} of unit 
mass is defined as: 

(18.1) 

where 0 is the center of mass of the distribution, and the symbol n 
denotes the following operator 

( 
(ayby + azbz ) -axby -axbz ) 

an b == -aybx (axbx + azbz ) -aybz . 
-azbx -azby (axbx + ayby) 

(18.2) 

We denote with {.\} i = 1,2,3 the eigenvalues of J ordered by increas­
ing magnitude and with ei the respective eigenvectors. For a cylindrical 
distribution of points, it can be shown that the eigenvector el points in 
the axis direction and the following relations hold for the eigenvalues 

(18.3) 

Therefore, if one eigenvalue is much smaller with respect to the others, 
the region is classified as a cylinder, otherwise it is discarded. This 
algorithm needs a threshold to decide to what extent ).,1 has to be smaller 
with respect to the other two eigenvalues. If this threshold is too small, 
elongated regions can be misclassified as cylinders. On the other hand, 
if it is too high, some pipes could be lost. 

3.2 FITTING CYLINDERS 

In order to fit a cylinder to the cylindrical regions extracted in the 
previous step, we need to find the axis and the radius. The axis direction 
is given by edllelll. The axis length is obtained by projecting the points 
belonging to the cylinder onto a plane parallel to the axis and computing 
the height of the bounding box of the points. 

In order to find the radius of the pipe, we project the points belonging 
to the cylinder onto a plane perpendicular to its axis. 3-D points are not 
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distributed on a cylindrical surface, but only on a portion of it, as only 
the sector of the pipe facing the camera backscatters the sonar signal. 
Hence, their projections lie approximately on a circular sector. The 
center of the circle fixes the position of the cylinder and the radius gives 
the radius of the cylinder. The problem of fitting a circle to the points is 
a classical parametric regression problem that we solved using the robust 
Least Median of Squares (LMedS) technique [21]. The principle behind 
LMedS is the following: 

1. given a regression problem, in which d is the minimum number of 
points determining a solution (three, in our case) 

2. compute a candidate model based on a randomly chosen d-tuple 
from the data; 

3. estimate the fit of this model to all the data, measured by the 
median of the squared residuals; 

4. if the current fit is better than the previous one update the model; 

5. repeat from step 2. 

The optimal model represents the majority of data. Data points that 
do not fit into this model are outliers. The breakdown point, i.e., the 
smallest fraction of outliers that can yield arbitrary estimate values, 
is 50%. Although, in principle, all the d-tuples should be evaluated, in 
practice a Monte Carlo technique is applied, in which only a random 
sample of size m is considered. Assuming that the whole set of points 
may contain up to a fraction E = 0.5 of outliers, and requiring that the 
probability of missing the optimal solution be P = 0.1, the sample size 
m is [25]: 

m = 10g(P) = 17 
log(1 - (1 - E)d) . 

(18.4) 

Although LMedS is usually a computationally intensive method, it is 
practicable in our case, due to the low dimensionality of the problem. 
Moreover, the following observation helps in reducing the number of 
evaluations. When the three points in the sample are very close to each 
other, the estimation of the circle from such points is instable, and it is 
a waste of time to evaluate such a sample. In order to achieve better 
efficiency we used a bucketing technique, analogous to the one developed 
in [25]' which works as follows. The rectangle containing the n points is 
partitioned in three regions (buckets) along the major dimension, each 
of them containing n/3 points. Each triple to be fitted with a circle is 
built by taking one random point from each bucket. This technique does 
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not change the probability of a point to be selected, since each bucket 
has the same number of points. 

An example of robust circle fitting is shown in Figure 18.5, where some 
of the circles that have been fitted in the LMedS process are depicted, 
and the selected one is drawn in bold line. 

3.3 FINDING INTERSECTIONS 

In general, the axis of pipes belonging to a joint will not intersect ex­
actly in one point or may not intersect at all. To extract an approximate 
intersection we use the following simple algorithm: for every axes pair i, 
we compute the midpoint mi of the unique segment that connects the 
two lines defined by the axes and that is perpendicular to both of them. 

If the number of axes is n, the number of possible pairs is n(n -1)/2. 
We define the centre of the joint as the center of mass of these midpoints, 
I.e. 

n(n-l)/2 

L mi 
i=l 

n(n - 1)/2 
(18.5) 

Since we consider the line containing the axis, we retain only the 
intersections that are close enough to the axis endpoints. 

This method works straightforward if there is only one joint in the 
scene. If this is not the case, it is necessary to preliminary subdivide the 
set of extracted pipes in subsets containing pipes that belong to the same 
joint. To do this, it is sufficient to group pipes whose distance, defined 
as the distance between the lines passing through the axis, is below a 
threshold that depends on the radius of the pipes. This can be done by 
building the incidence graph G of the pipes, i.e. a graph whose nodes are 
the pipes and in which two nodes are connected if the distance between 

Figure 18.5 Some circles fitted during the LMedS process (the bold circle was se­
lected). 
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/ 
(a) (b) 

Figure 18.6 (a) Cylinder axes as extracted from data and (b) after computing the 
intersection. 

the corresponding pipes is below the given threshold. A joint correspond 
to a maximal complete subgraph of G, i.e., a complete subgraph that is 
not contained in any larger complete subgraph. Two distinct joints can 
have no more than one node in common, corresponding to the pipe that 
connects them. The algorithm can be summarized as follows: 

1. start with the graph G of order n (the total number of pipes) and 
with an empty list of joints; 

2. while n > 1 repeat the following steps: 

3. search for a complete subgraph of G of order n that is not contained 
in a subgraph of the list of joints. 

4. if the latter exists, add it to the list of joints. Otherwise decre­
ment n. 

A complete subgraph of order three may not represent a real joint, but 
a triangle formed by three pipes (see Fig. 18.7). This a degenerate case 
which is easily handled. It is sufficient to calculate the three midpoints 
mi defined above for the three pairs of pipes and discard those for which 
the distance is greater than a threshold. 

For each of the remaining joints, the center is computed using Eq. (18.5). 

4. AUGMENTED REALITY 
Once the pipe axes have been estimated together with their radii 

and their reciprocal intersections, it is possible to build a VRML (Vir­
tual Reality Modeling Language) representation of the scene observed 
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4 
2 4 

3 

Figure 18.7 Example of a degenerate case. The rig depicted on the left has a proper 
joint and a false one, as its graph (right) has two complete subgraph of order three. 
The proper joint (2,3,4) shares two pipes with the false one (1,2,3). 

Figure 18.8 Augmented reality: virtual reconstruction of the joint with 3-D points 
superimposed, from two different viewpoints. 
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(Fig 18.8). Owing to the registration of optical and acoustic data to the 
model, the synthetic representation can be superimposed on actual data 
to support the ROV operator. 

5. EXPERIMENTAL RESULTS 
We performed experiments with real and synthetic images. Figs. 18.3, 

18.4, 18.6, 18.8 show an example of our technique applied to a synthetic 
case. Due to the nature of the data, this case is not particularly inter­
esting. In this section we describe results obtained in a real case. 

(a) (b) 

Figure 18.9 (a) Real image from the underwater camera of a joint and (b) the pro­
cessed image with extracted segments. 

Figure 18.9 shows a real image of a joint between four pipes, and 
the segments extracted from the image as described previously. Note 
that, due to the low quality of the image, only some segments have been 
detected. 

Figure 18.10 shows the corresponding 3-D data, as returned by the 
Echoscope and the result of pre-processing. 

Using the algorithm illustrated in Section 3., cylinders are fitted to 
3-D data. As one might expect, the axis direction is estimated with 
far better accuracy than the radius. Indeed, we obtain, on the average, 
a relative error of 1% on the axis direction and of 20% on the radius. 
Figure 18.11 shows the projection onto the image plane of the 3-D points 
together with the boundaries of the extracted cylinders. 

Finally, the reconstructed joint along with the original 3-D data are 
shown in Figure 18.12. Note that some pipes are missing in this joint, 
namely, the ones corresponding to the missing segments in the image. 
We are not assuming here that a high level description of the imaged 
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Figure lB.l0 Acoustic 3-D data. Raw, from the Echoscope (top) and processed 
(bottom). Please note that the scale is different in the two images. 
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Figure IB.ll 3-D points and pipe boundaries in the image plane 

portion of the rig is available. The number, position and radius of the 
cylinders are obtained from the data only. 

6. SUMMARY 

In this paper, the integration of optical and 3-D acoustic data for 
virtual scene reconstruction is addressed. 

This work, carried out within the VENICE project (http://www.disi. 
unige.it/project/venice/), is aimed at presenting an integrated and in­
formative view of the working environment to an underwater ROV op­
erator. The ROV is equipped with an acoustic camera and an optical 
camera, and its task is the inspection, maintenance and repair of an oil 
rig. The only a-priori information that we exploit is that the rig consists 
of connected pipes. No high level (CAD) description of the portion of 
the rig in the view frustum is available. 

Our method can be summarized as follows: 

1. extract pipe boundaries in the optical image; 

2. project 3-D acoustic points onto the optical image plane; 

3. segment points using pipe boundaries in the image and back-project 
them onto the 3-D frame; 
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Figure 18.12 Augmented reality: virtual reconstruction of the joint with 3-D points 
superimposed, from two different viewpoints. 
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4. build a virtual reconstruction by fitting cylinders to the segmented 
data. 

This is one of the few attempts to integrate different sensor modalities 
and actually fuse data having different nature and physical characteris­
tics. 

Presently, there is only a one-way influence of optical features on the 
analysis of 3-D acoustic data. We plan to investigate other schemes 
incorporating backtracking and mutual influence. 

Acknowledgments 

This work is supported by the European Commission under the BRITE-EURAM 

III project no. BE-2013 VENICE (Virtual Environment Interface by Sensor Integra­

tion for Inspection and Manipulation Control in Multifunctional Underwater Vehi­

cles). The authors would like to thank Dr. R. K. Hansen of Omnitech A/S1 for 

kindly providing the images acquired by the Echoscope acoustic camera, Riccardo 

Giannitrapani for the fruitful discussions, and Claudio Miatto, who wrote part of the 

code used in the experiments. 

References 

[1J D. H. Ballard and Brown C. M. Computer Vision. Prentice-Hall 
Inc., 1982. 

[2J P. Besl and N. McKay. A method for registration of 3-D shapes. 
IEEE Transactions on Pattern Analysis and Machine Intelligence, 
14(2):239-256, February 1992. 

[3J R. R. Brooks and S. S. Iyengar. Multi-Sensor Fusion. Prentice Hall, 
Upper Saddle River, USA, 1998. 

[4J J. B. Burns, A. R. Hanson, and E. M. Riseman. Extracting straight 
lines. IEEE Transactions on Pattern Analysis and Machine Intel­
ligence, 8(4):425-456, 1986. 

[5J J. F. Canny. A computational approach to edge detection. 
IEEE Transactions on Pattern Analysis and Machine Intelligence, 
8(6):679-698, November 1986. 

[6J A. Fusiello, R. Giannitrapani, V. Isaia, and V. Murino. Virtual 
environment modeling by integrated optical and acoustic sensing. 
In Second International Conference on 3-D Digital Imaging and 
Modeling (3DIM99) , pages 437-446, Ottawa, Canada, 4-8 October 
1999. IEEE Computer Society Press. 

1 http://www.omnitech.no 



348 CONFLUENCE OF COMPo VISION AND COMPo GRAPHICS 

[7] A. F'usiello and V. Murino. Calibration of an optical/acoustic sen­
sor. In 6th International Conference on Computer Graphics and 
Image Processing (GKP02000), 2000. To appear. 

[8] R. Giannitrapani, A. Trucco, and V. Murino. Segmentation of un­
derwater 3-D acoustical images for augmented and virtual reality 
applications. In Proceedings of the OCEANS'99 Conference, pages 
459-465, Seattle (USA), September 1999. MTS/IEEE. 

[9] F. Goulette. Automatic CAD modeling of industrial pipes from 
range images. In International Conference on Recent Advances in 
3-D Digital Imaging and Modeling, pages 229-233, May 1997. 

[10] B. Gunsel, A. K. Jain, and E. Panayirci. Reconstruction and 
boundary detection of range and intensity images using multiscale 
MRF representations. CVGIP: Image Understanding, 63(2):353-
366, March 1996. 

[11] R. K. Hansen and P. A. Andersen. A 3-D underwater acoustic 
camera-properties and applications. In P. Tortoli and L. Masotti, 
editors, Acoustical Imaging, pages 607-611. Plenum Press, 1996. 

[12] M. Hebert, R. Hoffman, A. Johnson, and J. Osborn. Sensor based 
interior modeling. In American Nuclear Society 6th Topical Meet­
ing on Robotics and Remote Systems (ANS '95), pages 731 - 737, 
February 1995. 

[13] A. Johnson, P. Leger, R. Hoffman, M. Hebert, and J. Osborn. 3-D 
object modeling and recognition for telerobotic manipulation. In 
Proc. IEEE Intelligent Robots and Systems, volume 1, pages 103 -
110, August 1995. 

[14] D. Dion Jr. and D. Laurendeau. Generalized cylinders extraction 
in a range image. In International Conference on Recent Advances 
in 3-D Digital Imaging and Modeling, pages 141-147, May 1997. 

[15] D. G. Lowe. Fitting parameterized three-dimensional models to 
images. IEEE Transactions on Pattern Analysis and Machine In­
telligence, 13(5):441-450, May 1991. 

[16] R. C. Luo and M. G. Kay. Multisensor integration and fusion in 
intelligent systems. IEEE Transactions on Systems, Man and Cy­
bernetics, 19(5):901-931, September-October 1989. 

[17] M. Maimone, L. Matthies, J. Osborn, E. Rollins, J. Teza, and 
S. Thayer. A photo-realistic 3-D mapping system for extreme 
nuclear environments: Chornobyl. In Proceedings of the 1998 
IEEE/RSJ International Conference on Intelligent Robotic Systems 
(IROS '98). IEEE, 1998. 



Augmented reality by integrating multiple sensory modalities. . . 349 

[18] V. Murino, A. Trucco, and C. Regazzoni. A probabilistic approach 
to the coupled reconstruction and restoration of underwater acous­
tic images. IEEE Transactions on Pattern Analysis and Machine 
Intelligence, 20(1):9-22, January 1998. 

[19] P. Perona and J. Malik. Scale-space and edge detection using 
anisotropic diffusion. IEEE Transactions on Pattern Analysis and 
Machine Intelligence, 12(7) :629-639, 1990. 

[20] L. Robert. Camera calibration without feature extraction. Com­
puter Vision, Graphics, and Image Processing, 63(2):314-325, 
March 1996. 

[21] P. J. Rousseeuw and A. M. Leroy. Robust regression 8 outlier de­
tection. Wiley, 1987. 

[22] G. Scott and H. Longuet-Higgins. An algorithm for associating 
the features of two images. In Proceedings of the Royal Society of 
London B, volume 244, pages 21-26, 1991. 

[23] C. Yu W. Lie and Y. Chen. Model-based recognition and positioning 
of polyhedra using intensity-guided range sensing and interpretation 
in 3-D space. Pattern Recognition, 23:983-997, 1990 . 
• 

[24] G. H. Zhang and A. Wallace. Physical modeling and combination 
of range and intensity edge data. CVGIP: Image Understanding, 
58(2):191-220, September 1993. 

[25] Z. Zhang, R. Deriche, O. Faugeras, and Q.-T. Luong. A robust 
technique for matching two uncalibrated images through the re­
covery of the unknown epipolar geometry. Artificial Intelligence, 
78(1-2):87-119, 1995. 



Index 

Acoustic range data, 334 
Acquisition, 90, 167 
Active 

3D acquisition, 167 
sensors, 92, 95 

Albedo, 105 
Analysis-by-synthesis, 181 
Animation 

face, 143, 174 
figure, 219-220 

Augmented reality, 1, 267, 285, 341 
Automatic relative orientation, 210 

Bending resistance, 187 
Biomechanics, 216-217 
Blooming, 109 
Blue screen, 229, 235, 237 
Broadband wireless access, 202 

Cake configuration, 58 
Calibration, 90 
Camera 

affine, 133 
calibration, 245-246, 271, 312 
camera-to-camera transformation, 126 
saturation, 108 
tracking, 242, 244 

Canopy DEM, 206 
CCD cameras, 106 
Chamfer image, 189 
Cloth model, 187 
Coded light range sensor, 106 
Combined motions, 219 
Contour 

apparent, 26 
forces, 182 

Cylinders, 338 

Decimation, 218 
Deformable models, 182 
Depth 

keying, 248-249 

of field, 246, 248 
Disparity 

map fusion, 74 
range, 258 

Dynamic 
range, 106 
scale, 106 
scenes, 123 
view morphing, 124 

Elasticity, 187 
Environmental modeling, 94, 97 
Epipolar 

geometry, 258, 290 
tangency, 29 

Error propagation, 74 
Estimation of cloth draping parameters, 188 

Facial motion 
tracking, 143 
animation, 143 

Filtering, 257 
Fish-scale verification, 76 
Fish-scales, 75 
Fixed-camera formulation, 127 
Force assignement, 184 
Free form curves, 288 
Fundamental matrix for the object, 128 

Garment, 179 

Hand and object tracking, 279 
Human body reconstruction, 182 

Illumination intensity, 112 
Image congruence, 77 
Image-based rendering, 125, 274 
Incremental model construction, 95 
Inertial tensor, 338 
Internet2, 256 

Joint kinematics, 216 

351 



352 CONFLUENCE OF COMPo VISION AND COMPo GRAPHICS 

LCD stripe projector, 106 
Least Median of Squares, 339 
Linear motion, 126 

M-estimator, 292 
Matching, 258, 313-315 

stable monotonic, 72 
Medical visualisation, 215 
Mesh compression, 93 
Model building, 87, 89 
Monocular man-machine system, 206 
Multifocal constraints, 50 

Nonlinear mapping, 112 

Object modeling, 94, 97 
Occluding contour, 182 
Occlusion handling, 273 
Optical and acoustic data integration, 336 

Particle system, 187 
Photogrammetry, 202 
Physics-based cloth model, 187 
Point 

creation, 92 
set verification, 74 

Projection matrix, 50 
Projective reconstruction, 50 
Pseudo-surface reconstruction, 80 

Radiance map, 111 
Radiosity, 232-233 
Range 

images, 106, 188 
acoustic, 334 

Ray tracing, 233 
Real-time, 254, 271 

graphics, 232 
shadows, 237 

Reality models, 273 
Reconstruction, 259 
Rectification, 257 
Reference-view difference, 137 
Reflectance, 112 
Registration, 91, 286 
Relative intersection, 76 
Remotely operated vehicle, 331 
Robot teleoperation, 221-222 
Robust pose computation, 291 

Shape-from-video, 164 

Signal-to-noise ratio, 108 
Stereo, 184, 257 

matching, 71 
Structured light, 184 
Subpixel 

disparity, 74 
correction, 258 

Superquadrics, 182 
Surface reconstruction, 25 
Synthesis and analysis of dressed humans, 

195 

Teleimmersion, 254 
Teleoperation, 331 
Telepresence, 280 
Texture, 25 

infrared, 83 
learning, 314 
mapping, 185, 313 
synthesis, 169 

Three dimensional 
building models, 202 
structure, 2 

Timing, 262 
Tracking, 269, 307, 318 
Trifocal 

constraints, 65 
tensor, 54 

Trinocular 
epipolar constraint, 260 
stereo, 259 

Uncalibrated image sequences, 2 
Underwater environment, 331 
Urban site model, 202 

View 
interpolation, 123 
morphing, 124 

Virtual 
environment, 222, 224 
guide, 162 
reality, 1 
studio, 229-232, 240-242 
tour, 161 
view, 131 

Vision-based object registration, 286 

Wavelets, 221 
Working volume, 258 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <>

    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>



    /HUN <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>


    /SKY <>

    /SUO <>
    /SVE <>
    /TUR <>

    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0033002e00310029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




