

A Pathology of Computer Viruses

David Ferbrache

A Pathology of
Computer Viruses

SPRINGER-VERLAG
London . Berlin . Heidelberg . New York
Paris· Tokyo . Hong Kong
Barcelona· Budapest

David Ferbrache, BSc(Hons)
Defence Research Agency (eSl)
Royal Signals and Radar Establishment
St. Andrew' s Road
Great Malvern
Worcestershire, UK

ISBN-13: 978-3-540-19610-5
DOI: 10.1007/978-1-4471-1774-2

e-ISBN-13: 978-1-4471-1774-2

British Library, Cataloguing in Publication Data
Ferbache, David 1965--
A pathology of computer viruses.
1. Computer. Viruses
1. Title
004

Library of Congress Cataloging-in-Publication Data
Ferbrache, David, 1965--
A pathology of computer viruses / David Ferbrache
p.cm.
Inc1udes index.

1. Computer viruses. 1. Title.
QA76.76.C68F451991
005.9--dc20 91-12483

CIP

Apart from any fair dealing for the purposes of research or private study, or
criticism or review, as permitted under the Copyright, Designs and Patents Act,
1988, this publication may only be reproduced, stored or transmitted, in any form
or by any means, with the prior permission in writing of the publishers, or in the
ca se of reprographie reproduction in accordance with the terms of licenses issued
by the Copyright Licensing Agency. Enquiries concerning reproduction outside
those terms should be sent to the publishers.

© Springer-Verlag London Limited 1992

The use of registered names, trademarks etc. in this publication does no imply,
even in the absence of a specifie statement, that such names are exempt from the
relevant laws and regulations and therefore free for general use.

The publisher makes no representation, express or implied, with regard to the
accuracy of the information contained in this book and cannot accept any legal
responsibility or liability for any errors or omissions that may be made.

Typeset from disk by Saxon Printing Ltd, Derby
34/3830-543210 - Printed on acid-free paper.

I ToAnn I

Disdaimer

While every effort has been made to ensure the accuracy of the
information provided in this work, no responsibility can be
accepted for damages caused directly or indirectly through the use
or interpretation of the information.

Note

Within the text all references to "h" as a numeric suffix designate a
number in hexadecimal format.

This work has been carried out with the support of Procurement
Executive, Ministry of Defence.

Contents

1 Introduction , .. " 1
1.1 Preamble.. 1
1.2 What is a Computer Virus? 1
1.3 Worms: Networked Viruses................................. 2
1.4 Terminology ... 3

2 Histcirical Perspectives '" , 5
2.1 Introduction ... 5
2.2 1960s: Early Rabbits.. 5
2.319705: Fiction and the Worm 6
2.41980-1983: Genesis... 8
2.51984-1986: Exodus 10
2.61987: Mac, Atari andAmiga Next...... 12
2.71988: Proliferation and Disbelief............ 14

2.7.1 January-March... 14
2.7.2 April-September .. 15
2.7.3 October-December 16

2.81989: Reaction by the Community 19
2.8.1 January-March... 19
2.8.2 April-June... 20
2.8.3 July-September .. 22
2.8.4 October-December 24

2.91990: Organisation and Litigation. 27
2.9.1 January-April .. 27
2.9.2 May-September ... 28
2.9.3 October-December 29

2.10 Summary.. 30

3 Theory of Viruses.. 31
3.1 Introduction ... 31
3.2 Addition of Viral Code.. 31
3.3 Detection of Viruses ... 35
3.4 Classes of Viruses.. 36
3.5 Thompson: and Trusting Trust............................. 38

viü A Pathology of Computer Viruses

3.6 Biological Analogies ... 42
3.6.1 Biological Viruses....................................... 43
3.6.2 Paralleis Between Low Level Operation 44
3.6.3 High Level Paralleis 45

3.7 Quest for Life.. 46
3.8 Evolution: Genetic Algorithms 48

3.8.1 Random Mutation....................................... 48
3.8.2 Programmed Mutation................................ 48
3.8.3 Genetic Algorithms 50
3.8.4 Growth and Death 51

4 Operation of PC Viruses. ... 55
4.1 Introduction ... 55
4.2 PC Boot Sequence: Initialisation............................ 56
4.3 BIOS and DOS.. 56
4.4 Master Boot Record 57
4.5 DOS Boot Sector .. 58
4.6 System Initialisation 59
4.7 Batch Processing Viruses..... 60
4.8 COM and EXE Viruses.. 61

4.8.1 Non-overwriting Prepending COM Infectors ... 62
4.8.2 Overwriting COM Infectors 63
4.8.3 Non-overwriting Appending COM Infectors.... 63
4.8.4 EXE Viruses ... 64

4.9 Resident and Transient Viruses........ 65
4.10 Manipulation by Viral Code 69
4.11 Activation Criteria 70

. 4.12 Camouflage... 73
4.12.1 Concealment in Infected Files...................... 74
4.12.2 Encryption of Viral Code............................ 74
4.12.3 Hiding of Viral Code.................................. 77
4.12.4 Checks um Calculation 78
4.12.5 Prevention of Alteration Detection................ 78
4.12.6 Concealment of Viral Code in Memory.......... 79
4.12.7 Concealment of Viral Activity 80
4.12.8 Concealing Disk Activity 82
4.12.9 Concealing System Slowdown 82

4.13 Replication.. 83
4.13.1 Locating a Host... 83
4.13.2 Signatures. ... 84
4.13.3 Miscellaneous Topics 86

4.13.3.1 Corresponding File Virus...................... 86
4.13.3.2 SYS Virus... 87
4.13.3.3 Multi-vector Viruses............................. 87
4.13.3.4 Multi-architecture Viruses..................... 87
4.13.3.5 Architecture Dependent Viruses............. 88

Contents ix

5 Management of pe Viruses. 91
5.1 Perspective on Security 91
5.2 Components of a Virus Control Scheme 91
5.3 Prevention of Virus Attack................................... 92

5.3.1 Physical Access Constraints 93
5.3.2 Electronic Measures 94

5.3.2.1 Physical Feature Verification 95
5.3.2.2 Knowledge Verification 95

5.3.2.2.1 Passwords 96
5.3.2.2.2 Background Verification...... 97
5.3.2.2.3 Other Techniques 97

5.3.2.3 Possession Verification........................... 97
5.3.3 Media Access Controls.... 97
5.3.4 Network Access Controls 98

5.3.4.1 Identification of Access Controls 99
5.3.4.1.1 Centralised Network File Servers........ 99

, 5.3.4.1.2 Distributed Trust............................. 100
5.3.4.1.3 Network Transport by Public Carrier
or Accessible Media " 100

5.3.5 Ideological Controls 101
5.3.5.1 User Education 101

5.3.6 Management Policies................................... 105
5.3.6.1 Training of Employees 105
5.3.6.2 Use of Anti-viral Measures...................... 105
5.3.6.3 Compartmentalisation............................ 107
5.3.6.4 Centralisation....................................... 107
5.3.6.5 Personnel Policies................................. 108

5.3.7 Vaccination and Inoculation.... 108
5.4 Detection of Viral Code....................................... 109

5.4.1 Monitoring and Logging 109
5.4.2 Signature Recognition 112
5.4.3 Generic Code Recognition 112
5.4.4 Sacrificial Lamb .. 114
5.4.5 Auditing ... 115
5.4.6 Use of Expert Systems to Analyse Viral
Behaviour ... 116
5.4.7 Fighting Fire with Fire 117

5.5 Containment of Viral Code.................................. 118
5.5.1 Hardware Compartmentalisation................... 119

5.5.1.1 VirtualMachine 119
5.5.1.1.1 80386 Task Switching Support............ 120
5.5.1.1.280386 Paged Segmented Memory........ 120
5.5.1.1.3 Accessing OS Code.......................... 124
5.5.1.1.4 Segment Permissions 125
5.5.1.1.5 Paged Memory Operation................. 126

x A Pathology of Computer Viruses

5.5.1.1.6 Input/Output Operations.................. 127
5.5.1.1.7 Virtual Machine in Software............... 128

5.5.1.2 Automatie Flow Verification 129
5.5.1.3 Software Distribution: Ensuring Trust....... 130

5.5.2 Software Compartmentalisation 130
5.5.2.1 Interrupt Trapping Code 130

5.5.2.1.1 Configurable Monitors...................... 131
5.5.2.1.2 Operation of a Monitor..................... 133
5.5.2.1.3 Extensions to Real Time Monitoring 135

5.5.2.2 OS Support.. 135
5.5.3 Network Compartmentalisation 135
5.5.4 Investigation and Response.......................... 136

5.5.4.1 What is the Infection?............................ 136
5.5.4.1.1 Acquisition 137
5.5.4.1.2 Logging of Relevant Information........ 138
5.5.4.1.3 Disassembly 138

5.5.4.2 Dissemination ofInformation 140
5.5.4.3 General Containment............................. 141
5.5.4.4 Tracing of Infection Source...................... 142

5.5.5 Disinfection of Viral Code............................. 144
5.5.5.1 Re-installation 144
5.5.5.2 Recompilation from Source..................... 145

5.5.6 Checking for Re-infection 145
5.5.7 Disinfection Utilities.................................... 146

5.6 Recovery from Viral Infection............................... 147
5.6.1 Backup Procedures 147

5.7 Contingency Planning .. 148
5.7.1 Redundancy :............... 149
5.7.2 Insurance .. 149
5.7.3 Public Relations.. 149

5.8 Remedial Action .. 150

6 Apple Macintosh Viruses.. 153
6.1 Introduction ... 153
6.2 Macintosh: The Abstract Operating System............ 154

6.2.1 Initialisation... 156
6.2.2 Resources.. 158
6.2.3 Trap Dispatch Table Structure 161
6.2.4 Non-link Viruses.. 162
6.2.5 Link Viruses.. 162
6.2.6 Notes on Keyboard Sequences 165
6.2.7 Summary of Mac Proteetion 165

7 Mainframe Systems: The Growing Threat 167
7.1 Introduction ... 167
7.2 Hardware Architectures,..................................... 167

Contents xi

7.3 Software Architecture... 168
7.3.1 Discretionary Access Controls 168
7.3.2 Integrity versus Confidentiality 172
7.3.3 Mandatory Access Controls 173
7.3.4 Commentary on Security Standardisation.. 177

7.4 UNIX: A Viral Risk Assessment............................ 180
7.4.1 System Startup... 180
7.4.2 Login and User Commands 183
7.4.3 Bugs and Loopholes.................................... 184
7.4.4 Mechanics of UNIX Viruses 185

7.4.4.1 Batch Viruses....................................... 185
7.4.4.2 Link Viruses... 186
7.4.4.3 Dynamic Loading 186
7.4.4.4 Other Considerations............................. 186
7.4.4.5 Protecting Against UNIX Viruses............. 189
7.4.4.6 Cohen: Early UNIX Viruses..................... 190

8 Network Viruses: The Worms 193
8.1Introduction 193
8.2 Standardisation ... 194
8.3 History of Network Pests 195

8.3.1 Early Work: Pre-1980 195
8.3.2 Recent Benign and Malicious Worms.............. 196
8.3.3 CHRlSTMA EXEC Chain Letter..................... 197
8.3.4 Chain Letters on UNIX 199

8.4 Internet Protocols 199
8.4.1 Architecture.. 200
8.4.2 Peer Authentication 201
8.4.3 Access Controls .. 202
8.4.4 Data Stream Integrity 202
8.4.5 Daemons and Servers.................................. 203
8.4.6 Distributed Trust.. 203
8.4.7 Trusted Ports ... 205
8.4.8 Problems and Solutions 205
8.4.9 Internet Worm: Black Thursday - 3 November
1988... 205

8.4.9.1 Internals .. 206
8.4.9.2 Action and Reaction............................... 208
8.4.9.3 The Aftermath 211

8.4.10 DISNET: A Child of the Internet................... 213
8.5 OSI: Security in the Making 214
8.6 DECNET: Insecurity Through Default.................... 215

8.6.1 Hl.COM: The Christmas Worm..................... 216
8.6.1.1 Reaction of the DECNET Community 217
8.6.1.2 Worms Against Nuclear Killers 218

xii A Pathology of Computer Viruses

9 Reactions of the IT Community 221
9.1 Discussion and Advice.. 221

9.1.1 Bulletin Board and Casual Users 221
9.1.2 Academic Establishments............................. 222

9.1.2.1 CREN/CSNET....................................... 223
9.1.2.2 NSFNET .. 223
9.1.2.3 HEPNET/SPAN 224
9.1.2.4 General Community Responses............... 225

9.1.3 Govemment Research Organisations.............. 226
9.1.4 Military Organisations 227
9.1.5 Commercial Organisations 227
9.1.6 Criminal Investigation Organisations 227
9.1.7 Professional Organisations 227

9.2 Legislative Issues.. 229
9.2.1 Scottish Law Commission 230
9.2.2 English Law Commission 231
9.2.3 Computer Misuse Act.................................. 233
9.2.4 Summary of Legislation 234

9.3 Professionalism and Software Development 235

10 Conclusions: The Future Ahead. 237

Appendices 239

1 DOS Filestore Structure .. 239
1.1 Introduction ... 239
1.2 Master Boot Record .. 239
1.3 DOS Boot Sector :................ 240
1.4 File Allocation Table ... 241
1.5 Root Directory... 242

2 Low Level Disk Layout.. 245

3 EXE File Format...... 249

4 Mac Filestore Structure ... 251

5 PC Virus Relationship Chart 253

6 Macintosh Virus Relationship Chart 255

7 PC Boot Sequence .. 257

8 AIDS Trojan: Accompanying Licence 259

9 Software Infected at Source 263

Contents xiü

10 Nomenclature.. 265
10.1 Types of Virus... 265

10.1.1 Master Boot Sector Viruses.......................... 265
10.1.2 DOS Boot Sector Viruses. 265
10.1.3 Executable COMIEXE Viruses...................... 265
10.1.4 Memory Resident Viruses........................... 266
10.1.5 Overwriting Viruses.................................. 266
10.1.6 Prepending Viruses................................... 266
10.1.7 Appending Viruses 266

10.2 Generations of Virus ... 266
10.3 Classes of Anti-virus Product.............................. 267

11 UNIX Boot Sequence .. 269

12 CERT Press Release. 271

13 CERT/CIAC Advisories... 273

14 Contact Points ... 277

15 Abbreviations ... 279

16 Further Reading... 283

17 Virus-l Archive Sites .. 291

18 Relative Frequencies of IBM Viruses.. 293

Subject Index... 295

Chapter 1

Introduction

1.1 Preamble

This book considers in depth the problem of the computer virus - what it is;
who it affects; and, most importantly, what can be done to prevent or destroy
it.

I aim to give a comprehensive description of the history of the computer
virus "explosion" we are experiencing atthis time, a detailed analysis ofhow a
virus might operate on the IBM PC and Apple Macintosh computer platforms,
and a complete review of management precautions to reduce the viral threat.

The issues of trojan horses and network worms are also covered in some
detail, with particular emphasis on the security of local area networks (LANs).
Ouring this work a limited knowledge of computing is assumed, although
introductory material is included in the preface to each chapter.

1.2 What is a Computer Virus?

A computer virus is informally defined as:

A self-replicating segment of executable computer code embedded within a host
program

To explain the above description, the case of a simple computer virus can be
considered. A computer executes aseries of instructions, which are simple
commands (such as add or multiply two numbers). These instructions are
represented by codes known as "object" or "rnachine" code. High level
languages such as Pascal and C are compiled into such basic instruction
sequences.

A virus is a similar short instruction sequence embedded within the object
code of a larger "host" pro gram, thus:

2 A Pathology of Computer Viruses

Host Original host program

Small virus segment

Host I Virus I New infected host program

The virus additionally modifies the host so that when the computer begins
execution of the host program, control is passed to the virus code. When the
virus code is run, it rapidly searches for a new host into which it can copy its
code.

Thus, if we show both the flow of control (execution sequence) and code
before and after infectioh, we have:

I Host Original host program

Host Virus Infected host program

Although appearing complex, the flow of control in the infected case is:

• Computer tries to execute the host program
• Modified host causes virus code to be run
• Virus runs and multiplies by infecting new files
• Virus returns control to the host
• Host appears to run normally

In brief, this is the essence of a computer virus. It spreads by infecting host
programs; the host program appears to run but in doing so activates the virus,
which spreads even further.

Virus are propagated between machines by the physical movement of
infected media (disks) or electronic movement of infected programs.

1.3 Worms: Networked Viruses

The current trend in computing appears to be towards mass wide area
networking of both mainframe and personal computer systems. This rich

Introduction 3

environment allows the rapid spread and replication of both the computer
virus and its cousin, the worm. A worm is an independent pro gram which,
when run on a computer, will attempt to infect other connected computer
systems.

This is achieved by making use of the extensive set of services provided by
the network, which often - and critically - includes the ability to execute
computer code under remote control. Networks also allow traditional viruses
to spread more rapidly through organisations by allowing the sharing of
infected files and utilities. Thus with a networked "file server" a PC virus can
spread without manual movement of software (i.e. disks) between computer
systems.

The worm is analogous to the virus and differs only in terminology. In this
case the host program is the operating system of the computer, and the infected
code is a stand-alone process or thread of execution running under the
operating system.

The computer worm was originally developed as an innocuous method of
load balancing and distributed computation at Xerox. This work created worms
which identified free processors on the distributed workstation network.
When a free processor was located a copy of the worm would be started on that
system. Thus, workstations in locked offices could make a useful contribution
to the overall processing power of the network. The worms developed at Xerox
were exceptionally intelligent in that they could detect the death of a
"segment" (an instance of the worm code) running on a remote system, and
restart it if necessary. Similarly they could detect the compartmentalisation or
division of the network into sub-networks and the rejoining of such
compartments.

The carefully controlled and engineered worm at Xerox was a far cry from the
uncontrolled spread of the major worm known as the "Internet" worm which
spread on the US Defense Advanced Research Projects Agency (DARPA)
Internet in November 1988. This ca se and its implications for the computer
security community are considered in Chapter 8.

1.4 Terminology

A feature of the anti-virus community has been the adoption of a wide range of
(often conflicting) terminology, based mainly on the analogy between biolog
ical and computer viruses:

• Back door A software feature programmed by the original designer which
will permit hirn to carry out operations denied to normal users of the
software (e.g. a login program which will accept the designer's hard-wired
password irrespective of the contents of the system password file)

• Chain letter A program encapsulated within an electronic mail message,
which, when run, will send copies of itself to a number of users by electronic
mail

4 A Pathology of Computer Viruses

• Logic bomb Malicious code incorporated within a program which will
activate when a particular set of circumstances exists (e.g. ~ode to crash the
system when the author' s name is deleted from the company payroll)

• Rabbit A program designed to exhaust some resource within the system by
its unchecked replication (e.g. exhaust disk space or saturate CPU
utilisation)

• Time bomb A logic bomb timed to activate on particular "activation" dates
• Trap door A feature, normally added by a hacker, which will permit later

privileged access to a computer system without the use of valid authentica
tion codes or passwords. A form of back door

• Trojan horse Any program which includes code designed to carry out
functions not intended by the user running the pro gram, or advertised in the
system documentation. This includes the incorporation of logic bombs or
benign hidden code

• Trojan mule A pro gram which will emulate some aspect of the system's
standard behaviour, such as the login prompt, with a view to collecting
system passwords or authorisation codes

• Virus A program that can infect other programs by modifying them to
include a possibly evolved copy of itself

• Worm A program that spreads copies of itself via network connections to
other computer systems. Unlike a virus, a worm does not require a host
program, but is a stand-alone executable program. There is also an older
meaning of the term "worm", namely a logic bomb incorporated by a
software designer with a view to causing denial of service on expiry of
sQftware licence agreements, or when software is pirated

Further terms are introduced in Chapter 3, when a comparison between the
replication of biological and computer viruses is made. In general, the term
"virus" is used to describe any self-replicating code where an obvious host
program can be defined (this includes code executed as part of a system boot or
startup process). The term "worm" tends to be reserved for self-replicating
code spreading via a network where the code is a stand-alone program within
the operating system environment. The distinction is often unclear; for
example, the Massachusetts Institute of Technology (MIT) research group
branded the Internet worm as a virus.

Viruses and worms need not be malicious, other than causing limited denial
of service as a result of their use of central processing unit (CPU) capa city to
self-replicate.

Chapter 2

Historical Perspectives

2.1 Introduction

This chapter gives abrief introduction to the history of the computer virus,
demonstrating its origins in the early mainframe "rabbit" programs and the
science fiction literature of the "Cyberpunk" genre.

2.2 1960s: Early Rabbits

The earliest self-replicating programs were probably the mainframe rabbits.
These pro grams, normally written in command languages (which are inter
preted rather the compiled), rapidly created clones of themselves and caused
severe degradation of system performance.

In many cases, the command language supported direct facilities for process
creation and manipulation. The rabbit could thus clone itself thousands of
times, completely filling all queues of processes waiting to be executed (in
batch environments) or causing the load on the machine to rise to the point at
which useful work could not be achieved.

The problem of a single user completely swamping systems is one which
recent designers have countered using the concept of a "fairness" scheduler.
This technique allocates each user a fixed share of system processing power.

An example of such a replicating batch job is a rabbit written by two
undergraduate students in 1966 which used a RUNCOM command script on a
CTSS system. The script would invoke itself continually, generating large
numbers of temporary files which would exhaust disk space. Unfortunately,
because of a bug in the system, this caused CTSS to crash, leaving the disk
directory in an invalid state (due to cached disk blocks in memory not being
flushed).

A further early example was the "Animal" game on the Univac 1108. This
program in its normal form asked a variety of questions, in an attempt to guess

6 A Pathology of Computer Viruses

the type of an animal. This innocuous game was modified to produce
"Pervading Animal". This pro gram, when run, would attempt to add itself to
every writable program file (directory). The pro gram would check for an
existing copy in the program file, and would also mark each created program
with an illegal creation time (thus distinguishing between user- and program
created copies).

2.3 1970s: Fiction and the Worm

Ouring the 1970s the concept of a self-replicating pro gram continued to interest
hackers, and appeared in a variety of forms in the works of John Brunner and
Oavid Gerrold.

The book When Harlie Was One by Oavid Gerrold was published in 1972. This
book carried abrief subplot (removed from later editions) which described a
virus that used auto-dialler modems to establish links from its host system to
remote systems. The virus then copied itself to the remote system, and deleted
the original copy. Thus a single copy slowly spread across the public telephone
network. Unfortunately, a bad connection resulted in corruption of the code
for self-erasure. The corrupted version then rapidly began to clone itself
exponentially across the network. This description is akin to a modern worm:
indeed the description closely matched the functioning of the "Creeper" and
"Reaper" programs.

These programs were developed by two researchers at Bolt Beranek and
Newman (BBN), and were used to demonstrate the Tenex operating system.
The Creeper mirrored Gerrold' s concept exactly. The program started to print a
file on a system, paused, transferred its code and state information to a remote
system, deleted the original version, and then recommenced on the remote
system. The Creeper was modified to replicate itself (in addition to migration).
A further program, the Reaper, was then designed to migrate across the
network looking for co pies of the replicating Creeper, which it would then
destroy. This was possibly the first anti-virus program. No exact date is
provided for the developments, although they are described as having taken
place in the early 1970s.

The term "worm" was coined by John Brunner in his book The Shockwave
Rider, published in 1975. A key part of the plot of Brunner's book was the
concept of a "tapeworm" which replicated across networked systems. Brun
ner's tapeworm was exceptionally advanced, carrying with it access codes and
passwords for large numbers of official systems. The worm was self
replicating, with each segment checking on the status of its counterparts. Thus,
any attempt to destroy a segment would only succeed in activating a stored
copy. In Brunner's words:

And - no, it can't be killed. H' s indefinitely self-perpetuating so long as the net exists.
Even if one segment of it is inactivated, a counterpart of the missing portion will

Historical Perspectives 7

remain in store at some other station and the worm will automatically subdivide and
send a duplicate head to collect the spare groups and res tore them to their proper
positions.

He provides avision of a global internetwork with dozens of tapeworrns
active, each being pursued by counterworms. This vision is closer to reality
than it may first appear, as indicated by the work by Shoch and Hupp at the
Xerox Palo AHo Research Center. This work in the mid-1970s centred on
distributed load balancing using worm programs. The worm located free
systems within the local network (Ethernet), and started segments running on
these nodes. The segments would run diagnostics of various forms. The Xerox
work also addressed the problem of network failure, co-ordination between
worm segments, and emergency termination of worms. Amusingly, Shoch
and Hupp report a worm experiment in which a (possibly corrupted) worm
sought out machines and started a corrupted copy of its pro gram, which then
crashed the host. The end result of this was dozens of crashed machines.

The development of rabbit programs continued during this period, with
further documented examples. These included a program called "Rabbit"
which ran on IBM 360s. This program, developed in 1974, was written in a
batch programming language. When run, the program would copy itself, and
insert the copy twice into the batch queue. Thus, the number of copies of the
program active in the queue would grow rapidly. The ASP operating system
reacted poorly under heavy loads. In particular, processing of operator input
was delayed. Thus, once Rabbit had been running for a few minutes, the load
factor was sufficiently high to prevent operators from terminating it.

The concept of the rabbit was extended in the mid-1970s by a pair of
processes created by systems programmers at Motorola. These processes were
created through the use of a bug on Xerox CP-V timesharing. The errant
programs would cause a variety of symptoms, including:

• Rapid see king of disk drives
• Card punches punching a la ce card (all holes punched)
• Strange messages on the system console

When the operators attempted to kill off one of the two jobs (named Friar
Tuck and Robin Hood), the other would detect the death of its peer, and restart
the killed job. Thus the following sequence was reported:

!Xid1

idl: Friar Tuck. .. I am under attack! Pray save me! (Robin Hood) idl: Off (aborted)

id2: Fear not, friend Robin! I shall rout the Sheriff of Nottingham's men!

id3: Thank you, my good fellow! (Robin)

To terminate the programs it was necessary to kill both jobs in rapid
succession, or to restart the system. In the latter ca se the programs were
automatically restarted. This was achieved by patching the list of programs to
be automatically invoked at system startup.

8 A Pathology of Computer Viruses

The 1970s ended with complex self-replicating network worms; the 1980s
began with the first true viruses.

2.4 1980-1983: Genesis

The first reported incidents of true viruses, rather than rabbits or worms, were
in 1980 and 1981 on the Apple II computer. The earliest of these was written for
research purposes in 1980, and was never released into the wild. The virus
operated by:

• Trapping the CAT ALOe command
• Checking for the existence of a marker byte in the directory on disk
• If the marker byte was not present, then the DOS code in memory (complete

with virus code) was written to the disk boot sectors

A generation counter was maintained to monitor the spread of the virus.
This version was modified by a friend of the virus author to improve its
efficiency and to reduce the amount of executable code written to disko The two
viruses (old and new) were capable of dual infection, thus producing a disk
carrying both strains in active form.

A publicly documented example of an Apple II virus is the "Elk Cloner" ,
reported in mid-1981. This virus was a boot sector virus loaded from disk,
wh ich intercepted the DOS RUN, LOAD, BLOAD and CAT ALOe commands.
The virus inserted a USR (interrupt) vector which generated a wide range of
diagnostics, including:

• Printing a poem
• Printing the version number

• Infecting a disk

A counter in the boot block was then incremented. This counter was used to
check whether a special event would be generated, including inverting screen,
clicking speaker, flashing text, letter substitutions, lockup computer, poem
printing, reboot, and crash to monitor program.

Finally, the virus would remain resident and infect any non-write-protected
disks inserted into the computer system. This virus includes the concept of a
signature, version number, resident special interrupt vector (the USR) and a
wide range of manipulation tasks.

Historical Perspectives

ELKCLONER:
THE PROGRAM WITH A PERSONALITY

IT WIlL GET ON ALL YOUR DISKS
IT WIlL INFILTRATE YOUR CHIPS
YES IT'S CLONER!

IT WIlL STICK TO YOU LIKE GLUE
IT WIlL MODIFY RAM TOO
SEND IN THE CLONER!

9

A further Apple 11 virus was reported by Joe Dellinger, its author, in 1982.
This virus spread under Apple 11 DOS 3.3. A faulty early copy was reported as
having been released by friends of the virus author. This copy corrupted
graphics in an Apple 11 game "Congo". Dellinger reports than many pirated
co pies of Congo ceased operation over a two-week period. To solve this
problem, a modified copy of the virus was produced with the bug corrected.
This modified copy was released into the environment, and rapidly displaced
the original version. The concept of self-upgrading viruses was one which was
to reappear in the Amiga anti-virus and IBM PC "Jerusalern" virus strains
many years later.

In 1989, Associated Press reported the death (aged 39) of Jim Hauser of San
Luis Obispo, USo Hauser was reported to be the author of an early Apple 11
computer virus in 1982. The virus was described as having been designed to
give users a "guided tour" of the Apple 11 system.

In 1983 a key event occurred, namely Ken Thompson's Association for
Computer Machinery (ACM) Turing award speech. In this speech he outlined
a early trojan horse in the C compiler at AT & T Bell. This trojan exploited the
concept of a trusted software component completely vanishing within the
system (it is described in detail in Chapter 7). When in place, the trojan (which
modified the compiler and login program) permitted login using a well-known
hard-wired password. This speech clearly outlined the problems of placing
trust in software components, particularly when a virus or trojan horse can be
incorporated into the component.

This was also the year in which Fred Cohen carried out many of the early
experiments with VAX viruses, which culminated in his demonstration on 10
November at a seminar on computer security. Cohen's virus was implanted in
a trojan program called "vd". In five trials his virus gained full system
permissions, taking between 5 and 60 minutes. These trials are described in
detail in Chapter 7.

10 A Pathology of Computer Viruses

2.5 1984-1986: Exodus

1984 saw the continuation of Fred Cohen's work on viruses. This continued
with aseries of experiments in July 1984 on a Bel1-LaPadula (military security)
system on a UNIV AC 1108 machine. These experiments demonstrated that a
virus could propagate even on systems designed for high-security applica
tions, and indicated the distinction between the confidentiality and integrity of
information.

This year also saw the publication of a book by William Gibson which was to
create a cult. The book was Neuromancer; the cult was Cyberpunk. In
Neuromancer, Gibson created a world in which a11 computers were interlinked
bya global network. A person could enter this "Cyberspace", and navigate the
network as a three-dimensional space in which a11 computer systems (and
information) were represented as solid objects. Artificial intelligences created
beings within cyberspace, and computer system defences could kill interlopers
via neural feedback. The world which Gibson created is only now been realised
via virtual reality research (providing computer- genera ted three-dimensional
visual simulators which users can enter and interact with via bio-feedback
devices). Gibson also introduced the concept of computer defences, known as
"ICE" , which appeared as physical barriers in Cyberspace, and which, in the
case of "Black ICE", could injure the user via sensory feedback.

Cyberpunk provided a genre which glorified the hacker fighting the large
corporates who populated the Cyberspace with their computer networks and
systems. Paul Saffo, in his paper "Consensual realities in Cyberspace",
comments that an entire new generation of hackers may be basing their code of
ethics on Gibson. Certainly Robert T. Morris, the author of the Internet worm,
was noted as having a we11-thumbed copy of Gibson's book, which was
described by his mother as:

her teenage son's primer on computer viruses and one of the most tattered books in
young Morris' room

1985 saw a steady increase in the number of non-replicating malicious
programs - trojan horses. This was countered by the creation on 20 October of
the Dirty Dozen list produced by Tom Neff. The list of trojans extended rapidly
during the period 1985-1990, and passed into the hands of Eric Newhouse
when Tom lost interest.

The Dirty Dozen includes details of trojan horses, and hacked or pirated
commercial software or software which is in breach of copyright.

Historical Perspectives

Version Release Date

1.0 Oct 20 1985
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

Jan 31987
Feb 51988
Jun 91989

Number of flIes

12
15
37
65

103
120

166 (15 Trojan)
200 (24 Trojan)
323 (62 Trojan)

11

1986 was the year in which the first IBM PC computer viruses began to
appear. The "Brain" virus originated in Lahore, Pakistan in January 1986. This
virus was teputedly written by Basit and Amjad Farooq Alvi. Their names,
addresses and telephone numbers were included within the Brain virus boot
sector. Computer lore suggests that the brothers ran a flourishing software
business, and included copies of the Brain virus on all software provided to
non-Indian clients. The Brain virus was reported in 1990 as comprising around
7 per cent of all reported infection incidents. The virus was also the first case of
limited camouflage being employed. When the virus was active in memory no
alteration of the boot sector (from its standard value) could be detected.

1986 also saw the first computer virus forum being held at the Chaos
Computer Club (CCC) in Hamburg. The CCC is one of the more infamous
groups of hackers, meeting regularly to exchange ideas and information, and
to discuss the social justification for their hacking activities. It is worth noting
that cOI:nputer viruses have had a comparatively low profile in the computer
underground of hackers, pirates, phreakers and carders. The underground is
segregated into many, often exclusive, groups with particular interests. The
authors of viruses have maintained a low profile within the general computer
underground. Certainly in the large mass of published computer underground
literature, little mention of virus programming appears. Examples do,
however, include a number of items in the 2600 magazine from alleged virus
authors, republication of Burger' s virus sources and a disassembly of the
"Alameda" virus in the Phreakers/Hackers Underground Network newsletter,
as weH as an underground magazine devoted entirely to viruses (Corrupted
Programming International).

The complexity of later viruses clearly indicated that some exchange of ideas
was occurring between writers of viruses. This is borne out by the variations in
co ding style evidenced in examples such as the Internet worm (DES encryption
versus remainder of code) and "Whale" virus (variety of concealment
techniques).

It is interesting that at the December 1986 congress of the CCC, 20
programmers admitted to having experience of viruses (out of 200-300

12 A Pathology of Computer Viruses

attenders). It is therefore likely that a considerable body of virus experience
was in existence in the computer underground.

Ralf Burger, author of Computer Viruses - A High-tech Disease, produced a
demonstration virus program, "VIRDEM.COM", wh ich was made available at
the Hamburg congress. The Virdem virus was an extremely simple non
resident virus which infected COM files on the A: drive on the IBM Pe. The
virus was 1236 bytes in length. Burger also published sources for a variety of
other viruses in his book, including assembly code for IBM PC, Pascal, Basic
and Batch viruses. The majority of the viruses date from the period 1986-1987,
and have appeared largely unchanged since the first edition of the book in
1987.

2.61987: Mac, Atari and Amiga Next

1987 saw the spread of viruses to a variety of other computer platforms,
including the Apple Macintosh, Commodore Amiga and Atari ST. By the end
of 1987 the number of virus strains had risen to twenty-one.

The ubiquitous "nVIR" virus for the Apple Macintosh was detected in West
Germany during this year. The original strain of the virus was malicious and
would randomly delete a file from the system folder on the Mac. This virus was
discovered, and re-engineered into a benign form. This benign form was then
released, and has been successful in replacing most copies of the original virus.
The n VIR strain has remained among the most common Mac viruses, possibly
only recently usurped by the "WDEF" Astrain. n VIR comes in two common
strains, n VIR A and n VIR B, the former notable for its habit of using MacinTalk
to speak the words "Don't Panic!". Many clones of the nVIR B strain have been
produced using basic binary or resource editing.

Also benign, but considerably more controversial, was the "Peace" virus
released in December 1987. This virus was engineered by a contract program
mer at the request of Richard Brandow, publisher of MacMag magazine. The
virus carried a message of world peace:

RICHARD BRANDOW, publisher of MacMag, and its entire staff would like to take
this opportunity to convey their UNIVERSAL MESSAGE OF PEACE to all Macintosh
users around the world.

and included agraphie of the globe. The virus was timed to activate when a
Mac was booted on 2 March 1988 .. On this date the message would be
displayed, and the virus would delete itself from its hiding place in the Mac
system file. Infected Macs booted after this date would silently disinfect
themselves, thus the virus is now believed to be extinct (other than a few
research sampIes).

The Peace virus was also uploaded in a hypertext stack "NEWAPP.5TK" to
the CompuServe hypercard forum (CompuServe is a commercial electronic

Historical Perspectives 13

bulletin board system) on 6 February 1988. In an interview with the Chicago
Tribune, Brandow was quoted in the following terms:

I called Brandow, who readily accepted responsibility for the virus. "Actually, we
like to call it a message," he told me. "We look at it as something that's really
positive. "

1987 also saw a virus being created for the new Commodore Amiga machine.
This virus, believed to be written by the Swiss Cracker's Association (SCA),
was detected in November 1987. The virus infects the boot sector of disks, and
caused the following message to be displayed on every 15th infection:

Something wonderful has happened Your AMIGA is alive I!! and, even better. ..
Some of your disks are infected by a VIRUS I!! Another masterpiece of The Mega
Mighty SCA !!

On the Atari ST similar boot sector viruses were '>0 being written. An
example is the "Pirate Trap" virus which carries the "cupyright" message:

*** The Pirate Trap ***
* Youre being watched *
,*** [C] P.M.S. 1987 ***

The Atari was also host for the first cross-platform viruses, in this case the
"Aladdin" and "Frankie" viruses written to execute on a Mac emu la tor
running on the Atari ST. The University of Hamburg virus catalogue describes
the Aladdin virus as having been written by Aladdin producer Proficomp,
apparently in order to destroy cracked illegal software copies of their Aladdin
hardware/software emulator.

On the IBM PC platform a large number of new viruses were discovered,
including the "405" overwriting virus from Austria, the "AlamedalY ale" virus
discovered at Merritt college in California, the "Cascade" virus in Germany,
the "Friday 13th" virus in South Africa, the Jerusalem virus in Israel and the
"Lehigh" virus in the USo Of particular interest is the fact that the early viruses
are responsible for a significant proportion of current virus infections. German
incidence figures for 1990 indicate that Jerusalem is responsible for 15 per cent
of incidents, and Cascade for 25 per cent. Yale was comparatively rare due to
the fact that it would only propagate when a soft-reset (Ctrl-Alt-Del) was
attempted on an infected machine. 405 was readily detectable due to the
corruption of the host files.

Of particular interest was the incorporation of self-encryption techniques
into the Cascade virus (renowned for its classic falling letters display, which
earned it the aliases "Falling Tears", and "Autumn Leaves"). This virus is
considered by some to mark the second generation of IBM PC viruses, namely
the use of camouflage techniques.

1987 also saw the production of an IBM MVS 370 virus in April and a UNIX
virus in June, in addition to the original viruses developed by Cohen in 1984
(for UNIX, UNIV AC and VAX VMS).

14 A Pathology of Computer Viruses

Finally, in December 1987, network saturation occurred on the BITNET
computer network (and on IBM's internal VNET network) due to the rapid
proliferation of the BITNET Christmas chain letter. This incident, described in
Chapter 8, involved the execution by innocent users of a command script
designed to displaya Christmas tree on screen. When run, the script would
mail copies of itself to users who regularly corresponded with the person
running the virus.

2.7 1988: Proliferation and Disbelief

2.7.1 January-March

As 1988 dawned, many of the current computer viruses had been released and
were slowly spreading globally via traffic in disks, and electronic network
transfer of infected programs. To date, Cascade, Jerusalem and Brain are
believed to have spread worldwide with incidents as far afield as Taiwan,
India, Japan, Australia and Canada.

CompuServe carried an article on 10 February 1988 indicating disbelief in the
existence of computer viruses, citing the inability of people to produce living
copies of viruses. Professor Brunvard of Utah cited the computer virus as the
latest in aseries of urban legends. This sentiment was supported by Peter
Norton, who told Insight magazine, "We're dealing with an urban myth", and
compared the existence of viruses to stories of alligators in New York sewers.

This sentiment, while accurately indicating the penetration of computer
viruses within the computing community in 1988, was unfortunately followed
one month later by the recall by the Aldus Corporation of 5000 copies of its
FreeHand drawing pro gram which had been iI1fected by the "MacMag" virus.
The infection route was traced to a Chicago subcontractor who had received a
games disk from Brandow. This disk then infected a demonstration copy of
. Aldus FreeHand, which was eventually returned to Aldus, causing the
infection outbreak.

CompuServe had also carried (briefly) in January a disassembly of a modified
n VIR sampIe, as an indication of how a Mac virus opera ted. This was posted to
enable the production of anti-virus utilities. This virus was one of a number of
such postings of viruses for research purposes, including a posting by Patrick
Toulme of "Virus-90" and "Virus-101" in December 1989 and January 1990.
These were intended as educational ~ools, with the virus source available on
request. Possibly more laudable was the production of the "1260" virus by
Mark Washburn as an indication of the encryption techniques which a virus
could employ, and how these could defeat existing anti-virus scanning
programs.

Virus sources have been published in a variety of locations including the
Computer Underground Magazine (Yale), Pixel magazine ("Pixel"), Computer

Historical Perspectives 15

viruses: A High-tech Disease" ("Vienna", Virdem), numerous reports (Brain and
"Italian" boot sectors in hex), CompuServe (n VIR, "Dukakis") and even Virus-l
itself ("V alert-I"). This high level of source availability coupled with the ease of
modification have ensured a high level of simple clones (either binary edits, or
reassemblies with slight modifications).

The complexity of producing an Atari computer virus was eased in March
1988 by the availability of a virus construction set. This program allowed the
user to construct custom viruses using the GEM window interface, specifying
manipulation tasks, files to be infected, drives to be infected, etc. Distribution
of the pro gram and documentation was restricted to those over 18 years of age.
The package also included a removal utility for the generated viruses, and was
released at the Hanover Computer Fair, CeBIT.

2.7.2 April-September

The "Scores" Macintosh virus was detected in April 1988. This virus was
unusual in being specifically targeted at two programs produced by the firm
Electronic Data Systems (EDS). These programs contained resources with the
signatures "ERle' and "VULT" which the virus tested for. Four days after the
initial date of infection the virus checks for applications with these signatures,
and if it finds them crashes the system. Seven days after the initial date of
infection the virus will cause any attempted disk writes to fail after 15 minutes,
and 10 minutes later the application will crash. Internal sources within EDS
indicated that some time after a programmer was fired, a disk arrived
anonymously at the EDS Dallas office. Shortly afterwards the speed reduction
and random crashes caused by Scores were noticed on various machines.

On 22 April 1988 a new mailing list was established. This list - "Virus-I" -
was set up by Kenneth R. van Wyk of Lehigh University (the institution struck
by the virus of the same name in 1987). The mailing list was to grow to be read
by over 14 000 subscribers in October 1989.

Roger Gonzalez wrote to Virus-l describing three malicious programs he had
written but never released. These programs include:

• "Spam": an infector of the COMMAND.COM file on the IBM Pe. After five
infections this virus will randomly print the text "Spam" on screen

• "Cookie Monster": similar to Spam. This virus prints the text "Gimme
Cookie" at random intervals, requiring the response OREO or CHOCO
LA TE CHIP. If the incorrect response is provided the pro gram changes the
COMMAND.COM file to the name MUNCHED, and prints the text "ne ver
mind"

• "Pacman": appended to MSDOS.SYS. Apparently traps the vertical sync
timer interrupt. The virus causes a "pacman" to appear on screen, which
will then eat a character and vanish

If the above report is accurate, then Pacman is the only known MSDOS.SYS
infector on the IBM PC system. Cookie is based on a considerably earlier trojan

16 A Pathology of Computer Viruses

horse on a mainframe system. The trojan displayed the standard prompt on
each user' s terminal, and required a valid response before perf'\1itting continua
tion of operations.

On Friday 13th May, the Jerusalem virus activated worldwide. Unlike later
occurrences in 1989, damage appeared to be limited. The British Medical Journal
carried areport of a virus at the Royal Infirmary in Glasgow. The virus is
reported as having infected software destined for the cardiac intensive ca re
unit. This incident, reported in July 1988, is one of a number of such infections.
Normally damage is limited to possible destruction of patient information,
rather than immediate danger via infected equipment. Risk to life is therefore
indirect via possible loss of patient records, and other vital information.

The summer of 1988 brought two court cases related to systems damaged
due to the creation of malicious software. In the first case (11 July) a
programmer in Fort Worth, Texas was tried for the mass destruction of 168000
records belonging to his former employee: Donald Burleson allegedly intro
duced a program, described in the words of the Tarrant council district attorney
as being "just like a human virus". Further investigation indicated that the
intruder had entered the system via a back door, deleted log files, and
manually deleted the records in question. Burleson was convicted on 20
September under the Texas computer sabotage legislation, and sentenced to
pay damages of $12 000 to his former employee, USP A.

In the se co nd case, William Christison, operator of a New Mexico bulletin
board, filed a suit against Michael Dragg accusing hirn of uploading a trojan
horse program "BBSMON.COM". The program contained code to delete
system files and to corrupt the file allocation tables (FAT) on the PC Christison
asked for $1000 damages for each uploaded trojan horse, and enjoined Dragg
not to send trojan horses, viruses or other vandalising programs.

The Computer Virus Industry Association (CVIA) was formed in June of this
year under the leadership of John McAfee, president of the Interpath
Corporation, Santa Clara, California. Through the Homebase bulletin board,
the CVIA became one of the leading centres for virus research and provision of
anti-virus products. John led a high-profile, and often controversial, role in the
fight against computer viruses, a role culminating in his inclusion in the
Microtimes third annual selection of the 100 most influential leaders in the
computer industry (22 January 1990).

2.7.30ctober-Oecember

October saw the infection of a new media form, namely a CD-ROM. In this ca se
the Quantum Leap Technologies QLTech MEGA-ROM was reported as being
infected by no fewer than three copies of the n VIR Macintosh virus. The CD
ROM collection of public domain and shareware software was withdrawn, and
a new volume issued in December 1988. This was unfortunately too late for the
University of Toronto, wh ich reported twenty infected systems.

Historical Perspectives 17

In the same month one of the biggest virus hoaxes was started, that of the
2400 baud modem virus. This hoax began with a message from Mike RoChenle
(a number of users later pointed out the obvious similarity in name to
Microchannel). This message (a copy extracted from a Seattle bulletin board is
reproduced below) described a virus which migrated across the subcarrier
frequencies on a 2400 baud modem line. An infected modem would then
replicate the virus by transmitting it to any other modems it communicates
with. Finally the virus attached to incoming binary da ta and thus generated
infected executables:

SUBJ: Really nasty virus
AREA: GENERAL (1)

l've just discovered probably the world's worst computer virus yet.
I had just finished a late night session of IJBS'ing and file trading
when I exited Telix 3 and attempted to run pkxare to unarc the
software I had down loaded. Next thing I knew my hard disk was seeking
all over and it was apparently writing random sectors. Thank god for
strong coft'ee and arecent backup. Everything was back to normal, so
I called the BDS again and downloaded a file. When I went to use ddir
to list the directory, my hard disk was getting trashed agaion. I
tried l'rocomm Plus TD and also l'e Talk 3. Same results every time.
Something was up so I hooked up my test equipment and different modems
(I do research and development for a local computer telecommunications
company and have an in-house lab at my disposal). After allother hour
of corrupted hard drives I found wh at I think is the world's worst
'computer virus yet. The virus distributes itself on the modem
suob-carrier present in all 2400 baud and up modems. The sub-carrier
is used for ROM and register debugging purposes only, and otherwise
senes no othr purpose. The virus sets a bit pattern in one of the
internal modem registers, but it seemed to screw up the other
registers o~ my USR. A modem that has beeil 11 illfected 11 with this virus
will then transmit the virus to other modems that use a subcarrier (I
suppose those who use 300 and 1200 baud modems should be immune). The
virus then attaches itself to all billary incoming data and infects the
host computer's hard disko The only way to get rid of the virus is to
completely reset all the modem registers by hand, but I haven't found
a way to vaccinate a modem against the virus, but there is the
possibility of building a subcarrier filter. I am calling on a 1200
baud modem to enter this message, and have advised the sysops of the
two other boards (names withheld). I don't know how this vinls
originated, but Pm sure it is the work ofsomeone in the computer
telecommunications field such as myself. l'robably the best thing to
do now is to stick to 1200 ba IId until we figure this thing out.

18 A Pathology of Computer Viruses

The hoax continued to spread rapidly through the virus community, even
resulting in a warning memo being circulated at the NASA jet propulsion
laboratory. The initial advice was to avoid infection by utilising on 1200 or
lower baud rate modems. A parody of this message was se nt to the USENET
security mailing list in January 1989, and advised:

Date: 11-31-88 (24:60) Number: 32769
To: ALL Refer#: NONE

From: ROBERT MORRIS 111 Read: (N/A)
Subj: VIRUS ALERT Status: PUBUC MESSAGE

Waming: Therets a new virus on the loose thatts worse than anything
Itve seen before! It gets in through the power Iinet riding on the
powerline 60 Hz subcarrier. It works by changing the serial port
pinouts, and by reversing the direction onets disks spin. Over
300,000 systems,have been hit by it here in Murphy, West Dakota alone!
And thatts just in the last twelve minutes.

It attacks DOSt Unix, TOPS-20, Apple IIt VMSt MVSt Multics, Mact
RSX-11, ITS, TRS-80t and VHS systems.

To prevent the spread of this dastardly worm:

1) Dontt use the powerline.
2) Dontt use batteries either, since there are rumors that this virus

has invaded most major battery plants and is infecting the positive
. poles of the batteries. (y ou might try hooking up just the
negative pole.)

3) Dontt upload or download files.
4) Dontt store files on ßoppy disks or hard disks.
5) Dontt read messages. Not even this one!
6) Dontt use serial ports, modems, or phone Iines.
7) Dontt use keyboards, screens, or printers.
8) Dontt use switches, CPUs, memories, microprocessors, or mainframes.
9) Dontt use electric Iightst electric or gas heat or airconditioning,

running water, writing, fire, c10thingt or the wheel.

I'm sure if we are all careful to foUow these 9 easy steps, this
virus can be eradicated, and the precious electronic ßuids of our
computers can be kept pure.

- --RTM III

Historical Perspectives 19

The two messages indicate that while the virus paranoia in the community
had risen to extreme levels (also fuelled by the Internet worm incident in
November 1988), it was vital to take each report with a pinch of salto

In November 1988 the Internet worm incident began. This incident com
menced on 3 November when Robert T. Morris, a student at Cornell, released a
self-replicating worm on the DARP A Internet. This worm spread across the
closely coupled research network, infecting an estimated 2000-6000 host
systems, and causing damage estimated by one person at $96 million. The
worm exploited two known bugs in UNIX system software on DEC VAX and
SUN Microsystems SUN-3 machines. Despite rapid reaction by the research
community to combat the worm, active copies were still to be detected in
December of the following year. Details of the Internet worm incident are given
in Chapter 8.

Finally, the month of December brought two further network incidents: a re
release of the BITNET chain letter on 6 December, and the creation and release
of the HI.COM DECNET worm. This worm spread rapidly over the Space
Physics Analysis Network (SPAN) and High Energy Physics Network
(HEPNET), and displayed a Christmas tree and a message suggesting that the
user should not work so hard over Christmas.

The source for all three of these network pests had been made available via a
variety of sources: the Internet worm by the 2600 hacker magazine, the
DECNET Christmas worm from numerous archive sites due to its posting in
the aftermath of the worm, and the BITNET chain letter in Burger's book and
on the alt.hackers discussion forum on USENET. This, coupled with the wide
distribution achieved by these worms and chain letters, has ensured that
repetitions in modified form are likely.

The internet worm was the prime mover in the establishment of the
Computer Emergency Response Team (CERT) in December 1988. The team's
remit extends to action to combat all known security threats on mainframe and
networked systems connected to the DARP A Internet, including providing
information and fixes for known security loopholes and acting as a clearing
house for information during incidents. The initial press release establishing
CERT is attached as Appendix 12.

2.8 1989: Reaction by the Community

2.8.1 January-March

During 1989 viruses continued to spread rapidly through the IT community.
This year also marked the test case of the Internet worm, and the establishment
of the infrastructure to combat viruses.

The continued spread of the common viruses resulted in a number of further
shrink-wrapped software infections, including Microsoft's Word 4 beta test
version 10 by n VIR.

20 A Pathology of Computer Viruses

Friday 13th January saw another activation of the Jerusalem virus, which was
described by Alan Solomon in these terms:

It is a pesky nuisance and is causing a lot of problems today

February 1989 saw the attempted formation of a UK equivalent to CERT, but
with a far broader remit. The Computer Threat Research Association (CoTRA)
was formed by a consortium of interested members under the chairmanship of
Mark Gibbs of NovelI. The association's constitution covered investigation of
all threats to computer systems, including viruses, trojan horses, general
security loopholes and data integrity control. The organisation was unfor
tunately split by personality conflicts, and inability to address its extensive
remit adequately. By the end of 1989 CoTRA had be co me inactive, leading to a
vacuum within the UK response to malicious software. This lack of co
ordinated response became apparent during the "AIDS" trojan horse incident,
and during discussion of the formation of an international CERT organisation.

In March 1989 viruses were the topic of science fiction once more, as the Star
Trek: The Next Generation episode "Contagion" was screened. In this episode
the USS Enterprise downloaded virus-infected data from a ship in the Romulan
neutral zone. The transmitting ship began to experience intermittent system
failures, and finally self-destructed. The Enterprise then began to suffer similar
problems as the virus adapted to the system environment and duplicated
throughout the computer systems. Ironically the high-tech solution was to
shut down the computer system, and re-install the system from a backup
maintained on board!

On a more serious note, two hospitals reported computer virus infections,
on 22 March in the image display station for cardiac studies (reported as being
carried on a hard disk manufactured by CMS Enhancements), and a delayed
report in the New England Journal of Medicine of a n VIR virus infection at three
Michigan hospitals which disrupted patient diagnosis in Autumn 1988.

2.8.2 April-June

The Cornell Provost' s commission of enquiry into the Internet worm incident
reported in April, concluding that Morris released the Internet worm. They
described the incident as "a juvenile act that ignores the clear potential
consequences". The commission was unable to trace Paul Graham, a Harvard
graduate student, who Morris reportedly contacted on the day the worm was
released; or to speak to Morris hirnself, who on the advice of his attorney had
decided not to co-operate. The commission found that:

• Morris had viola ted departmental computer misuse policies
• No other members of the Cornell community were aware of Morris' work
• Morris made only minimal efförts to halt the worm once released

Historical Perspectives 21

• He did not intend the worm to destroy data, but did intend it to spread
widely

• The number of infected systems was in the thousands, although the
estimate of 6000 computers could not be confirmed

• The CVIA' s estimate of $96 million was grossly exaggerated and self-serving
• The worm, although sophisticated, could have been created by many

students, graduate or undergraduate

The commission' s report repeatedly emphasised that the release of the worm
was not a "heroic" event designed to demonstrate weaknesses in UNIX
security, but was a reckless act which did not consider the possible con
sequences for the community. It further stated that an academic community
was based on mutual trust, and that violations of this trust can not be
condoned.

On 12 April, the Philadelphia Inquirer reported that a former employee, Chris
Young of Trenton, Cambden County had been charged with computer theft by
altering a database belonging to his former employers, the Datacomp Corpora
tion. It was alleged that Young gained access to the system on 7 October (the
day of his resignation) and inserted a time bomb due to commence destruction
of da ta on 7 December (the anniversary of Pearl Harbour). This case was yet
another example of a trojan horse program being dubbed as a "virus".

An example of viruses in high level languages was reported at the end of
April, in this ca se affecting the logic programming language, Prolog. The virus
in question added its code to the end of Prolog source files, altering the
operation of the Prolog predicate "consult". A simple signature comprising an
arity 0 predicate "virus" is appended to infected files to prevent re-infection.

This example of a high levellanguage was augmented by the discussion in
Computers and Security of a virus written in a macro set utilised by the Lotus
1-2-3 program. This virus was designed to alter a single value in a specific
column each time the Lotus 1-2-3 spreadsheet was loaded. The change was
restricted to a small percentage range, and could be either added or subtracted
from the original value.

The article (reproduced in the Computer Virus Handbook) notes that such a
macro virus would be:

• Undetectable by general virus scanning utilities, since it exists in a data file
which is regarded as executable code only by the interpreting program

• Easily detectable by alert users unless highly sophisticated

The work was based on a number of reports of a spreadsheet macro virus
during the summer of 1988.

The first edition of a new hacker magazine was published in electronic form.
Corrupted Programming International (CPI), written by a hacker styling hirnself
Doctor Dissector, was described as "a protagonist' s point of view". While
many of the items in issues 1 and 2 were superficial and indicated a lack of
detailed knowledge, the publication of such abulIetin (and an associated

22 A Pathology of Computer Viruses

telephone bulletin board contact number) gave rise to concern. Issue 1 included
the following list of suggestions for new virus techniques:

• CSR virus a CMOS memory resident virus (presumably to avoid deletion on
system reboot) .

• Failsafe virus preserving all file sizes and attributes, infecting all files and
corrupting data on trigger. Possibly an early suggestion of "Stealth"
techniques

• Format virus whenever a DOS format is called it will format every second
track on the disk

• Write virus intercepting writes to disks, and marking written sectors as bad
• Low level format virus formats hard disk in background while recopying data

from original hard disk (compression and defragmentation utility)
• Hide virus incrementally sets the hidden attribute on files
• Crash virus emulates system crashes and freezes
• Modem virus monitors data on serial ports and adds random noise

Issue 2 introduced a number of ideas including use of slack space in allocated
clusters in an article by a hacker named Ashton Darkside. It even went as far as
proposing standards for CPI viruses. These standards included:

1. An inactive (latent) period and limited activation period for virus malicious
effects in order to conceal virus activity.

2. Use of Int 12h as arequest by the virus to determine if a system is "friendly"
before attempting infection, together with the circulation of recognition
codes which friendly systems will return on this request.

3. Upload of the virus to the CPI section on the Andromeda strain bulletin
board system (BBS) for peer review.

4. Use of end of cluster slack space for storage of virus code (so called ADS
standard).

5. Maintenance of a list of CPI standard viruses and identification strings.

The future of CPI after its second bulletin issue (27 July 1989) is unknown.
The existence of such a group of virus authors was to be noted in 1990 in
Bulgaria - the so-called Bulgarian Virus factory.

The summer ended with the publication of a special edition of the
Communications of the ACM dealing with the Internet worm incident. This
edition (volume 32, No. 6) included reprints of detailed reports from Purdue,
MIT and Cornell.

2.8.3 July-September

In July the Virus Bulletin was launched by Sophos. This publication, based at
Abingdon, UK, offered detailed technical information on virus development,

Historical Perspectives 23

anti-virus techniques, recognition strings and software product reviews. The
publication was priced at 195 for 12 monthly issues. The publication is now in
its second year, and has a worldwide readership.

Later that month an incident occurred which demonstrated the risks of
trusting users with viral disassemblies and materials. The "Icelandic" virus
was disassembled by Fridrik Skulason at the University of Iceland. Before
distributing the disassembly to the remainder of the research community he
made a modification (presumably to detect any re-assembly of this text).
Within one month a copy of the Icelandic virus was uploaded to the virus
analysis area on the Homebase board. This was analysed, and a statement
made by the CVIA that a virus named the "Saratoga" virus had been detected
in the US, and (based on the initial date reported by the discoverer) predated
the Icelandic strain. Unfortunately the Saratoga virus carried the modification
made by Fridrik, and had thus clearly been re-assembled from his disassembly.
Discussion on the ethics of the original alteration, and of the person who had
re-released the sample continued within the community for many months
afterwards.

The establishment by Joe Hirst of the British Computer Virus Research
Centre was announced (BCVRC). This centre aims to collect and catalogue
computer viruses, to disassemble and analyse sam pies, and to disseminate
information between anti- virus researchers worldwide. The centre is estab
lished as a personal venture in the aftermath of the failure of CoTRA, and it is
hoped that it will act as the nucleus of a UK virus response.

Associated Press reported that Robert Morris had been indicted by a federal
grand jury in Syracuse, New York, to stand trial on a count of accessing without
authorisation at least six computers in which the federal government had an
interest. This charge was brought as a test case under the 1986 Computer Fraud
and Abuse Act. If convicted, Morris would face a maximum sentence of five
years in federal prison, and a $250000 fine.

The US army solicited applications from small business contractors under
the Small Business Innovative Research (SBIR) programme, for research into
computer virus electronic counter measures (ECM). The programme's objec
tive was cited as:

Objective: The objective shall be to determine the potential for using "computer
viruses" as an ECM technique against generic military communications systems/nets
and analyzing its effects on various subsystem components.

Description: The purpose of this research shall be to investigate potential use of
computer viruses to achieve traditional communications ECM effects in targeted
communications systems. These effects can include data (information) disruption,
denial, and deception, but other effects should also be researched such as effects on
executable code in processors, memory, storage management, etc. Research in
effective methods or strategies to remotely introduce such viruses shall also be
conducted. Efforts in this area should be focused on RF atmospheric signal
transmission such as performed in tactical military data communications.

24 A Pathology of Computer Viruses

The programme is scheduled to be gin in fiscal year 1990, and is divided into
two phases. Funding for phase I may be up to $50 000; and up to $500 000 for
phase 11. Phase I is a feasibility study of the use of viruses as an'ECM technique;
phase 11 the development of a demonstration which will validate the ECM
concept.

The US National Institute of Standards and Technology (NIST) issued a
warning concerning the "Datacrime" or "Columbus Day" virus. This virus
would, when activating on 13 October, perform a low level format of cylinder 0
of the IBM PC hard drive. An exceptionally large number of warnings of the
destructive effects of this virus, first detected in March 1989, were distributed
by a number of organisations. In the event, very few occurrences of the virus
were detected, and the Jerusalem virus once more took the heaviest toll.

The US NIST is responsible for security standardisation for federal agencies,
and for security guidelines for unclassified systems. At this time, NIST was also
moving to establish a network of computer security response and information
centres modelled ~m the Internet CERT organisation. These centres were to
serve as sources of information and guidance on viruses and related threats,
and would respond to computer security incidents. These proposals continued
to develop during 1990, and culminated in an international CERT structure
proposal.

2.8.40ctober-December

On 4 October IBM announced the release of its own anti-virus product. This
product, based on the virus analysis work at the Thomas Watson Research
Centre, opera ted by scanning for known virus signatures in system files. A
token charge of $35 was levied for this utility. Initial problems included the
detection of a number of legitimate products as viruses by the scanner. Within
the UK IBM now offer upgrades to the scanner,together with general guidance
on virus prevention in the form of a publication based on David Chess' original
paper on "Coping with computer viruses" and aseries of workshops on virus
issues.

October 16 saw the release of a second worm on to the SPAN network. This
worm called itself the "Worm Against Nuclear Killers", and displayed a
graphie with the acronym of "WANK". The adviee supplied during the
HI.COM incident was re-iterated by CERT. Had this adviee been followed to
the letter, the impact of the WANK worm would have been considerably less.
This indieated a general problem with ensuring that security patches and fixes
are installed by a wide range of system administrators with varying experience
spread worldwide. A variant of the WANK worm - "OILZ" - was activated on
300ctober.

In November, the Washington Post reported that US District judge Howard
Munson had permitted the case against Robert Morris to proceed to trial,
despite requests by the defence fot the felony charge to be dismissed. This plea

Historical Perspectives 25

was based on the allegation that the Justice Department had improperly
revealed to areporter (before the indictment) that Morris had made a
statement, and that the Department was considering whether he should be
permitted to plead guilty to a misdemeanour charge.

The month of December saw the AIDS trojan horse incident in the UK. In
some ways this was to become the UK equivalent of the Internet worm
incident. The AIDS trojan was bulk-mailed during a five-day period from the
8th to the 12th of December from postal districts in west and south-west
London to computer users in the UK, Europe, Africa, Scandinavia and
Australia. The bulk mailing utilised 7000 names purchased from the pe
Business Warld circulation department in October, together with 3500 names
extracted from the World Health Organization's (WHO) databases. The
mailing comprised a computer diskette in a square white envelope together
with a sma11 blue piece of paper (the licence agreement). The disk label
announced itself to be "AIDS Information Introductory Diskette Version 2.0".
The disk itself was in I}3M DOS format and contained two files:

INSTALL.EXE
AIDS.EXE

Sept 28 1989 146188 bytes
Aug 7 1989 172562 bytes

The user is requested to start his/her computer, insert the disk in drive A,
type "A:install" to DOS and then press Enter. This action invoked the
INSTALL.EXE program which then proceeded to create aseries of hidden
directories on the C: drive. These directories are given names which are
combinations of spaces and ASCII character 255 (FFh). Within one of the
deeper directories five files are created which contain counters and program
serial numbers. Next the INSTALL.EXE program copies itself as REM#.EXE
into the hidden directory "C:#" where the "#" character is ASCII 255. Next the
AIDS.EXE program is copied to the root directory of the C: drive. Fina11y, the
AUTOEXEC. BAT batch file in the root directory is modified to:

echo off
C:
cd#
rem# PLEASE USE THE auto. bat FILE INSTEAD OF

autoexec.bat FOR CONVENIENCE
auto.bat

Note the "#" s representing ASCII 255. The inclusion of these characters in the
rem statement changed the normal comment into arequest to execute the
program named rem# (since the ASCII 255 character is not interpreted as a
space, even though DOS displays it as such).

Thus the AIDS trojan had arranged for regular execution of the REM#.EXE
program. When the machine has been rebooted approximately ninety times,
the AIDS trojan will begin encryption of a11 file names on disko The directory

26 A Pathology of Computer Viruses

entry for each file is encrypted using a simple substitution code, with file name
extensions being encrypted by look-up in a static table. After encryption the
modified directory entry is marked read-only and hidden. Following encryp
tion the trojan provides a DOS look-alike shell which emulates a small subset of
DOS commands, providing an unaltered listing of the directories. A READ.ME
file in the top level contains the text:

You are advised to stop using this computer. The software lease has expired.
Important: Renew the software lease before you use this computer again.

The AIDS.EXE program was itself innocuous, consisting of an AIDS risk
assessment interactive questionnaire. The "licence" document accompanying
the trojan program contained:

1. Introduction.
2. Instructions for installation.
3. Limited warrant)' stating that in the event of the program being defective PC

Cyborg (the alleged manufacturer) would replace it at no charge. This was
followed by a standard disclaimer indicating that the programs are supplied
"as is", without warranty of any form.

4. Licence agreement stating the conditions under which PC Cyborg would
renew the licence beyond the initial trial period, and noting that in the event
of a breach of licence PC Cyborg would be permitted to use "program
mechanisms to ensure termination of your use of the programs" .

The text of the licence agreement is reproduced in Appendix 8. This
agreement led to considerable legal discussion as to whether PC Cyborg was
legally permitted to corrupt data and executables on disk after termination of
the licence period.

Disassembly and analysis of the AIDS trojan horse was done on an ad hoc
basis by a loosely knit group of specialists (in a manner which mirrored the US
community's initial reaction to the Internet worm), including Jim Bates (of
Bates Associates), Dr Alan Solo mon (Director of the UK data recovery firm S &
S International Ud.) and Dr Jan Hruska (Director of Sophos). Reports of AIDS
cases were passed on to the UK police Computer Crime Unit (CCU) who were
investigating the incident.

Finally, as the year ended, the CCC in Hamburg held their 6th Congress,
with the title "Open frontiers: CoComed together". Included in this congress
was the second virus forum, including discussions by Professor Klaus
Brunnstein, Ralf Burger, Wau Holland (founder of the CCC) and Juergen
Wieckmann (editor of the CCC book). Particularly controversial was the
argument by Ralf Burger that the publication of computer virus code does not
contribute to the virus threat. Brunnstein indicated his estimate of 250 hours to
analyse and classify a new virus. An issue raised was whether there were
"good uses" of viruses - an example cited being disabling nuclear defence
(SIOP) systems.

Historical Perspectives 27

2.9 1990: Organisation and Litigation

2.9.1 January-April

The year opened with yet another example of shrink-wrapped software being
infected, in this case the "Desktop Fractal Design System" software supplied
by Academic Press, which was infected by the Jerusalem virus. This software
was a companion program to Michael Bamsley's "Fractals Everywhere". By
the end of 1990 the problem of shrink-wrapped software was to become
particularly acute, through the distribution of infected diskettes to thousands
of customers by computer magazines. Academic Press reacted in a responsible
manner and within two days had issued letters informing customers, and
asking them to contact the customer service department for disinfection
information.

Robert Morris was called to trial on 15 January. Of note was the decision by
the US Justice Department to select jurors with no technical knowledge of
computer systems. Morris' conviction was announced a week later, although
sehtencing was delayed until May.

Meanwhile in the UK, the CCU of the Metropolitan Police had applied on 18
January to the Bow Street Magistrate Court for a warrant to arrest Dr Joseph
Lewis Popp, aUS citizen, charged:

That on the 11 th December 1989, within the jurisdiction of the central criminal court,
you with a view to gain for another, vis the PC Cyborg corporation of Panama, with
menaces made unwarranted demand, vis a payment of one hund red and eighty nine
US dollars, or three hundred and seventy eight US dollars from the victim.

Popp was a zoologist who had conducted research into animal behaviour for
UNICEF and WHO, and who had examined the initial links between monkeys
carrying AIDS and the human population. Popp denied any connection with
the board of PC Cyborg. A spokesman for the FBI indicated that the FBI had
information to suggest that Popp was prepared to mail a further two million
disks. Popp alleged that the WHO was involved in a secret plot to raise funds to
conduct AIDS research via the trojan, and that WHO officials comprised the
board of PC Cyborg.

Popp appeared before the Cleveland District Court on 2 February faced with
extradition proceedings. US Magistrate Joseph Bartunek ordered psychiatric
reports after Popp's attomey described his dient as depressed and possibly
suicidal.

On 30 January the US Govemment Printing Office issued an urgent waming
to all depositories that a floppy disk accompanying the latest issue of the
County and City Data Book CD-ROM had been infected by the Jerusalem B
virus. This was particularly worrying as a more malicious virus could have
caused significant destruction of data in libraries worldwide.

28 A Pathology of Computer Viruses

The second issue of a new magazine, MacPublishing, was the unfortunate
carrier of a Macintosh virus - the WDEF virus. This virus was accidentally
included on 2000 copies of a font disk distributed free with the magazine. The
infection was apparently contracted from the US via a disk carrying hypercard
stacks. The magazine reacted rapidly by distributing copies of the shareware
anti-virus product "Disinfectant" .

Valert-l is the worldwide virus alert list maintained in parallel with the virus-l
discussion list. This list aims to pravide a channel for rapid global dissemina
tion of warnings on newly discovered virus strains. This worthwhile medium
was also the unfortunate carrier of the Valert-l virus ("1554") which was mailed
to the alert list. The user mailing the virus had not considered his actions,
which led to the global distribution of the virus binary. This action led to the
moderation (monitoring) of the Valert-llist.1t does, however, indicate the two
edged sword that global warning mechanisms may provide.

2.9.2 May-September

On 4 May the sentencing of Robert Morris was carried out in Syracuse, New
York. Morris was sentenced to three years' prabation, a fine of $10 000 and 400
hours of community service. Morris smiled broad!y after his sentencing but
gave no comment. Strang condemnation of the failure to sentence Morris to
imprisonment was expressed by Representative Wally Herger, author of
legislation to specifically outlaw viruses. A Justice Department spokesman
noted his disappointment in the sentence.

On 9 May the US Attorney for the District of Arizona announced the serving
of 27 search warrants over the period 7-8 May. These warrants served
throughout the US were part of a two-year investigation into illegal hacking
activities. An estimated 23 000 computer disks and 40 computers were seized.
The operation, known as SunDevii, was to result in the attempted prosecution
of a number of leading figures in the hacker/computer underground.

A research paper by Dr Peter Tippett entitled "The Kinetics of computer
virus replication" predicted an explosive binary growth of virus infections.
This has been questioned by a number of researchers in the field.

John McAfee issued a warning about the increasing number of bogus trojan
horse programs masquerading as anti-virus scanning utilities. By November
seven trojan versions had been reported:

Flushot
Flushot Plus
Virus scan

Version 4
Version 1.3
Vers ions 51, 65, 68, 70 and 72

The Homebase software is now bundled with a CRC checksum generator
"VALlDATE" . Lists of valid CRCs are published for all current anti-virus
software releases. '

Historical Perspectives 29

The UK Computer Misuse Act entered into force, creating three new
offences, namely a basic hacking offence with up to six months' imprisonment,
an enhanced offence where the hacking is a component of a further criminal
offence carrying a maximum of five years in jail, and an offence of unauthorised
alteration of computer data carrying a similar penalty. Associated with the Act
are extensive search and seize powers exercisable under Magistrate' s warrant.
The crime of releasing a computer virus was explicitly addressed in the Law
Commission White Paper on Computer Misuse which subsequently formed
the basis of the legislation. The non-retrospective nature of the legislation may
raise problems in prosecuting authors who released viruses prior to the date of
enactment.

A trojan horse was discovered on Apple Macintosh systems which re pro
grammed the attached laser writer systems to alter the default printer
password. This was possibly one of the first examples of manipulation of
intelligent peripheral devices (in this case the Postscript interpreter pro gram in
the printer).

The pe Today magazine mailed 40 000 copies of an inactivated version of the
"Disk Killer" PC virus in July. The boot sector virus was partially overwritten
during the duplication process and thus made inoperable. pe Today rapidly
retalled the infected disks, and stated that they would be taking action to
prevent such a recurrence, including the scanning of master disks for known
viruses, both in-house and at distribution facilities.

The Ithaca Journal reported on 25 September that a 16-year-old high school
student who created the "MDEF" and "CDEF" Macintosh viruses had been
identified by police. The student who was responsible for virus infections at
Ithaca High School, BAKA Computers Inc. and Comell University is not being
prosecuted at this time because of his co-operation with police. One estimate
placed damage at hundreds of hours of lost programmer time.

2.9.30clober-December

In November it was reported that pe Benelux World had mailed 16 000 copies of
disks infected with the Cascade ("1704") PC virus. These disks were mailed
within Belgium, the Netherlands and Luxembourg. The magazine imme
diately notified the media, and sent letters to all subscribers waming of the
infection. This, combined with the cost of providing disinfection utilities, was
estimated as having cost 1::40 000.

A further report indicated a "Goblins" Atari virus infection in the cover disk
of a major Atari magazine.

The problem of shrink-wrapped virus software, both published and dis
tributed by software manufacturers, has grown to be a significant risk. It has
demonstrated the need for all software distributors to take exceptional care in
screening their systems for virus infection. While many users will carefully
consider using software from bulletin boards, how many will think twice
before installing a commercial product?

30 A Pathology of Computer Viruses

In December the Dallas prosecutor' soffice announced that it intended to file
charges against the alleged author of the Macintosh Scores virus. Lt Walter
Manning of the Dallas Police Department requested organisations infected by
the virus to report details to hirn to permit an assessment of the damage caused
by the virus.

The year ended with an eyewitness account by Bryan Clough in the
December issue of Virus Bulletin. The article described the Bulgarian Virus
Factory, which had produced over 100 strains and 30 distinct types of virus.
New viruses have been quoted as appearing at the rate of one per week from
this source. Products of the factory have included the infamous "Dark
Avenger" virus, together with two further retro-viruses named "Evil" and
"Phoenix" by the same author, and the V, TP and VHP series of viruses. The
complexity of the virus family structure is indicated in Appendix 5. The
Bulgarian output has also included subverted anti-virus programs which will
themselves release viruses under certain conditions.

2.10 Summary

In this chapter I have tried to give a range of reports and examples of virus
incidents and details of how the computer community has reacted to those
incidents. The chapter seeks to indicate that a wide variety of malicious
software has been distributed, and that viruses represent a significant threat,
often through unexpected channels such as shrink-wrapped or published
software. This chapter also attempts to give a flavour of the authors who write
such software, and how they are treated by the community.

In the following chapter we will look at how viruses operate on a variety of
hardware platforms, and to consider how we can prevent such viruses.

Chapter 3

Theory of Viruses

3.1 Introduction

This chapter is structured into three main sections dealing with the following
questions: How is viral code added to a system? How can it be detected? and
What are the analogies between biological and computer viruses?

Viruses are dealt with at an abstract level in this section. For details of how
viruses replicate on specific hardware platforms, e.g. IBM pe, Mac, or UNIX,
the reader is referred to later chapters.

We begin by looking in abstract at the operation of a computer virus.

3.2 Addition of Viral Code

The first question is: How can a virus insert its code into the host system? This
can be achieved in a variety of ways - there are four primary methods of
inserting a block of viral code into a host executable program, namely:

1. Prepending: moving the original host's code (or part of the code) to a later
memory or disk location, leaving a gap into which the virus can insert its
code.

2. Appending: simply adding the virus' code to the end of the host program.
3. Shell: embedding the host's original code within the virus as a subroutine.
4. Overwriting or injective: the host is destroyed by being overwritten by virus

code.

In each technique the flow of control is slightly different. In the prepending
example the virus code is entered first, the virus replicates and then passes
control to the host program which executes and exits. In the appending case
the host executes first, exits and theh passes control to the virus. In the shell

32 A Pathology of Computer Viruses

case the host program forms a sub routine of the virus. The virus is thus
executed before and after host program execution.

Depending on the complexity of the object code file structure it may be
difficult or impossible to arrange for the execution of viral code after the host
program has terminated. In general this is due to the multiplicity of exit or
return instructions in a subroutine or pragram. The appending virus must
therefore patch the original host so that contral passes to the virus first (this is
normally achieved by modifying a few instructions at the start of the host).
Thus, true appending viruses require support for interception of host
initialisation or termination calls, rather than relying on execution to start at the
lowest address in memory and continue onward.

In the shell virus the host program be comes a single subroutine, and can thus
be run under complete control of the virus. The virus can execute initialisation
and termination code, allowing complex replication and manipulation strat
egies to be included.

Each of the tech~iques is illustrated below:

Host Program Virus

Original Host and Virus

-- Infected Host Program
Appending Virus Example

.. Infected Host Program ..
Prepending Virus Example

U

Infected Host Program •

Shell Virus Example

Virus - Damaged Host

Overwriting Virus Example

Theory of Viruses 33

A virus must have a certain degree of access to its environment. Specifically,
it must be able to write to executable or potentially executable code within the
system. The virus, by its activity, affects a permanent change in the
environment of the system (i.e. the infection of one or more host programs).

The algorithm used by a possible virus has been summarised (by Fred
Cohen) as:

program virus

begin

end

signature 1234567

subroutine infect_ executable
begin

end

loop: get random file
if first line of file = 1234567

then goto loop
prepend virus to file

subroutine do _ damage
begin

<variety of possible damage routines>
end

subroutine trigger -pulIed
begin

<check for a particular system state>
end

infect_ executable
if trigger -pulIed then do _ damage

host program starts here

This simple pseudo-code virus demonstrates a number of characteristics
shown by real viruses. First, the virus must infect an executable by adding its
code in a manner which ensures the code will be executed (here by prepending
to the host); second, the virus checks for a signature to avoid infecting the same
host file over and over again; and third, the virus checks for a certain
combination of system conditions and if satisfied will execute a damage
routine.

34 A Pathology of Computer Viruses

Not an viruses are malicious and in many cases the do_damage may be an
amusing display or message or, indeed, may be absent altogether.

In the example above it should be noted that the infected code may occur
anywhere within the system, it may include the system initialisation (boot
sequence), termination (shutdown) sequences, user or system executable
programs or indeed data which is interpreted by other programs (such as a
script of an editor or command interpreter instructions).

The examples above have assumed that the host' s code remains intact (in an
bar the overwriting case) and thus the infected file is longer by a certain
amount. Each virus causes a characteristic length extension of a host program -
for instance, the Cascade virus on the IBM PC extends an hosts by 1701 or 1704
bytes when infecting.

This is not necessarily the case. Consider a virus that compresses its host
before infecting. This virus modifies the above algorithm as folIows:

programvirus

begin

end

signature 1234567

subroutine infect_ executable
begin

end

loop: get random file
if first line of file = 1234567

then goto loop
compress host program
prepend virus to file

subroutine do _ damage
begin

<variety of possible damage routines>
end

subroutine trigger-pulled
begin

<check for a particular system state>
end

infect_ executable
if trigger -pu lied then do _ damage
uncompress host program

Theory of Viruses 35

The virus now compresses the host program using one of a variety of well
known algorithms such as Huffman or Lempel-Ziv coding. This results in a
significant saving in space - possibly 50 per cent or more of the original size.
The virus can then add its own code. The virus code includes instructions to
uncompress the host after the viral code has executed. The user of such a virus
detects no file extension, and indeed may detect a file compression or
shortening when the virus is active.

Cohen has argued that such a virus with no damage routine can be
considered a useful application of viral code. Later examples of anti-virus
viruses, self-replicating vaccines, are also cited later in this book as possibly
useful applications.

The criteria for detecting the action of virus code cannot be as basic as
detection of extension of infected object size. Indeed there are a number of
proofs that no possible set of criteria or characteristics can be used to identify a
virus absolutely.

3.3 Detection of Viruses

Cohen provides the following basic proof of the undecidability of whether an
object is a virus. He proposed the construction of a function "is_<1-virus".
This function returns "true" if a program is a virus, otherwise it returns "false".

By including this function in the virus propagation code itself, we can invoke
a contradiction which can be used to prove that this function cannot be written.
Namely:

Main program

begin
if (is_a_virus = FALSE) infect_executable
if trigger -pulIed then do _ damage
uncompress host program

end

If the function returns "true", then the program will never call its
infect_executable function and thus cannot be a virus. If the function returns
"false" (Le. not a virus), then the program will call its infect executable function
and must therefore be a virus.

Thimbleby notes that this proof has a number of shortcomings:

1. The time taken to compute the "is_a_ virus" function is not considered. If the
function takes an infinite time to compute then no contradiction is invoked.

2. It is argued that a program must infect to be classed as a virus. Thimbleby
argues that it is sufficient that a program contains code to potentially infect,

36 A Pathology of Computer Viruses

and thus no contradiction exists since "is_a_virus" can return "true" in the
case of the contradictory virus above without raising a contradiction.

3. The code "infect_executable" may be null, in which case the proof relates to
a non-replicating object which may or may not cause damage - i.e: a trojan
horse.

Alternative proofs have been proposed by both Thimbleby and Adleman
regarding the undecidability of virus (or trojan horse detection).

The proof presented by Thimbleby is based on the refutation of the concept
that all trojan horse programs are enumerable (i.e. can be listed). Basically, he
presents a short contradictory program which attempts to enumerate all
possible trojan horses. If the pro gram succeeds in locating itself within the list
of trojans, it runs the host normally, thus it is not a trojan. If it is not in the
generated list of possible trojans it loops forever, causing a denial of service and
indicating that it is indeed a trojan horse.

Variable N is an integer

N=O
While Enumerate(N) is not equal to my program

doN=N+l
Execute host code

The function "Enumerate" generates the code for the nth possible trojan
horse from a finite list of possible trojan horses.

This proof makes the assumption described as "trivial" that the trojan horse
can in fact access its own code. This implies a degree of access to the system
environment that is certainly allowable in open unprotected architectures such
as most personal computers, but may be questionable in architectures which
explicitly prevent read access to code or closely monitor access to code files.

3.4 Classes of Viruses

Adleman ofters aseries of classifications of viruses based on their behavioural
characteristics, which unifies the concept of trojan horse with that of a virus.
He decomposes the set of viruses into four disjoint subsets based on whether
they are pathogenic and/or contagious. While formal definitions of these two
criteria are given, it is sufficient here to note that a pathogenic organism will
cause damage to the host system, while a contagious organism will cause its
host to spread the organism.

Theory of Viruses 37

A program infected by a specific virus is:

• Benignant if it is not pathogenic and not contagious
• Trojan horse if is pathogenic but not contagious
• Carrier if it is not pathogenic but is contagious
• Virulent if it is pathogenic and contagious

For instance, a carrier is incapable of causing injury to the host, but will infect
other programs (which may not be carriers after infection).

This classification of the characteristics of an infected program is extended to
produce a general classification of viruses with respect to a11 programs. Thus a
virus is:

• Benign if a11 possible programs infected by the virus are non-pathogenic and
non-contagious

• Epeian1 if a11 possible programs infected by the virus are non-contagious, but
at least one possible program infected by the virus will be pathogenic

• Disseminating if a11 possible programs infected by the virus are non
pathogenic, but at least one possible program infected by the virus will be
contagious

• Malicious if at least one possible program infected by the virus will be
pathogenic, and at least one (possibly a different pro gram) will be
contagious

Adleman also provides a number of proofs of significance based on this
categorisation:

• Programs infected by a benign virus are benignant
• Programs infected by an Epeian virus are benignant or trojan horses
• Programs infected by a disseminating virus are benignant or carriers
• Programs infected by a malicious virus can be of any category
• It is impossible to detect a11 viruses
• Viruses which increase the length of the host on infection are isolatable
• It is impossible to isolate a11 viruses

The concept of a germ is also introduced. The germ is a virus which can infect
a host, but can itself never be genera ted by an infected host. An example may
be the launcher used to create an initial infected host - such launch code may
exist as part of a trojan horse program. Possible examples include the hypertext
stacks used to launch the Peace virus on the Macintosh.

Much further work is required in the area of virus theory, particularly with
regard to the minimal restrictions on the generality of computing systems
which will permit detection of viral replication or malicious software activity.

1. The term "Epeian" is based on the name of the builder of the original Greek trojan
horse cited in the Odyssey of Homer.

38 A Pathology of Computer Viruses

3.5 Thompson: and Trusting Trust

While on the subject of the inherent difficulties in detecting viruses (or indeed
trojan horses), mention must be made of Ken Thompson's 1983 ACM award
speech which described a trojan horse in an AT & T Bell C compiler. He
indicated the potential for such a trojan, incorporated into a trusted component
in the compilation path, to completely vanish.

The UNIX C compiler is written in C itself, and bootstrapped using either a
previous release of the C compiler or a minimal handwritten compiler in
assembly or another high levellanguage. The new C compiler is compiled by
the previous C compiler to produce a program which will correctly compile C
using the features of the new compiler, but with the code generated by the
previous compiler. This stage 2 compiler can then be used to recompile itself to
pro du ce a stage 3 compiler with the syntax and semantic analysis features of
the new compiler and the new code generator. This complex boots trap process
is typical of the installation of a new compiler on a mainframe system.

Theory of Viruses

Phase 1

Phase 2

New Compiler Source

!
Old Compiler

New Compiler Executable

Generated by inefficient or

buggy old compiler

New Compiler Source

!
New Compiler Executable

New Compiler Executable

Generated by efficient

new compiler

Two phases in porting a new compiler version

39

The difficulties began when a trojan horse was planted in the C compiler.
The trojan horse proposed by Thompson would look for a particular sequence
in the source and, if detected, miscompile the source program, e.g.

40 A Pathology of Computer Viruses

compile (program)

begin

end

if match(program, "login pattern"» then
compile ("login trojan")
return

else

He reports planting a bug which would recognise the compilation of the
UNIX login command. The modified login program would accept either the
correct password or a special hard compiled password. This type of pro gram
recognition is an intractable problem, but fortunately the matching process
could apply a significant degree of knowledge about the expected structure of
the login program (it was unlikely that the pro gram would change dramatica11y
from the previous release version).

The trojan code is easily recognisable in the compiler itself, therefore he
proposes a further match pattern. This match pattern looks for the C compiler
being itself compiled:

compile (program)

begin

end

if match(program, "compiler pattern "» then
compile ("compiler trojan")
return

else if match(program, "login pattern "» then
compile("login trojan")
return

else

The compiler will still recognise the login program, and will genera te a
trojanised executable. It now also recognises an attempt to compile a new C
compiler, and will insert the code sequence above into any future C compiler.
Thus a11 fo11owing C compilers will contain code to insert the trojan into login,
and the compiler trojan into a11 future compilers.

On ce the C compiler has been recompiled (and the trojan code automatica11y
inserted), the original source for the trojan can be removed from the C compiler
source. When the C compiler is recompiled, the clean source will have the
compiler and login trojan code added by the buggy executable, producing a

Theory of Viruses 41

new generation of the compiler. So the bug is self-perpetuating, and in Ken
Thompson' s words:

It is as dose to a "learning" program as I have seen

Actually, the compiler need not be the target of the trojan horse. It is
sufficient to attack any element in the compilation sequence. A trojan can be
inserted in the assembler which recognises assembly of a new assembler, in the
linker which recognises linking of a new linker, etc. At lower levels the
complexity of correctly adding code to support the trojan increases, due to the
loss of information and structure during the compilation. Theoretically the
concept could even be extended to an operating system which recognised
when an attempt was being made to write a file containing the executable for
the next release of the operating system, and to insert a similar trojan into the
file.

The problem is simply "trusting trust". When we compile a program on our
system, we must trust the hardware, operating system, editors, compilers,
assemblers and linkers. All are vital parts of the mapping operation from the
source we type in, to the code we run. The source code may be formally
verified, but unless the compilation path is also verified, this cannot provide
complete protection.

42 A Pathology of Computer Viruses

Valid Login Source -1 Trojan ~ Trojan Login
Compiler

Valid Compiler Source

-1 Trojan ~ NewTrojan
Compiler Compiler

Valid Assembly Code

for an Assembler -1 Trojan ~ NewTrojan
Assembler Assembler

Impossibility of generating a valid program with

an untrusted compilaüon path

Editor Compiler Assembler Loader

f ~
Source Object

Code Code

ComponenlS of the compilation path

This concludes abrief introduction to the abstract theory of viruses. To
continue we will look at biological analogies, and consider what - if anything
they can tell us about computer viruses.

3.6 Biological Analogies

The obvious analogy between the replication of a computer virus and that of a
biological virus has been a major driving factor behind the terminology that has
evolved within the field. Although care should be taken regarding the
extension of this analogy to extremes, it can provide a useful comparative
model, suggesting a number of possible protection schemes.

Theory of Viruses 43

Biologicallife also provides a range of possible models for the replication of a
virus within a computer system, and within the computing community as a
whole.

3.6.1 Biological Viruses

Life is based on the existence of the genetic code wh ich determines the
structure of an organism, and on the replication of such genetic material.
Structure is encoded as a chain of chemical groups consisting of a phosphate
and a deoxyribose. Attached to this backbone is one of four possible bases,
namely:

Purines: Adenine (A) Guanine (G)
Pyrimidines: Thymine (T) Cytosine (C)

The base, phosphate and deoxyribose form a single nucleotide. Two chains of
nucleotides are paired, with hydrogen bonds forming between purines on one
chain and pyrimidines on the other chain. The chain molecules (deox
yribonucleic acid, DNA) have four possible pairings for each element in the
chain: A- T, T-A, G-C and C-G. The arrangement of the nucleotides forms the
genetic code, with groups of nucleotides forming genes. Each gene contains
details of the structure of a single protein in the organism. Proteins are
comprised of combinations of twenty amino acids. Each nucleotide has four
possible states (A, G, Tor C). Thus a minimum of three are required to specify
an amino acid. This group is called a codon.

The DNA is replicated by a complex series of operations during which an
enzyme produces a ribonucleic acid (RNA) fragment transcribed from a gene or
group of genes in the DNA. The messenger RNA is a single strand of
information which can pass through the cell nucleus membrane (which
segregates the genetic material from the remainder of the ceIl). The messenger
RNA is transcribed by transfer RNA which assembles aseries of amino acids
(dictated by the codons in the messenger RNA) to produce a protein.

In biological systems a virus is a simple structure which is capable of self
replication only through the use of the complex cellular pro tein construction
mechanisms outlined above.

A virus injects its genetic material in the form of RNA or DNA into a host cell.
The genetic material is then replicated using the internal protein biosythesis
mechanisms of the ceIl, effectively producing a large number of viruses within
the cell itself. The build-up of toxins and viral material within the cell walls
causes breakdown of the ceIl, and eventual release of a large number of virus
clones into the environment.

Thus the operation of a biological virus can be described algorithmically as:

• Inject genetic material into the cell
• Cellular transcription and synthesis mechanisms cause replication

44 A Pathology of Computer Viruses

• Virus proteins are assembled to generate copies of the virus
• Cell wall rupture causes release of copies into environment

3.6.2 Paralleis Between low level Operation

A computer virus is a small segment of computer code which is incapable of
replication without being incorporated into a host program. The code of the
computer virus can be compared to the codon or nucleotide structure level in
the DNA of a biological virus. The parallel between the inability of both forms
of virus to propagate without the agency of a host program is obvious (in the
biological case injection of genetic material into a cell, in the computer case
injection of code into computer program).

A significant difference is the concept of the cell environment. If it is argued
that a cell represents a computer pro gram, then how could viral spread across
program boundaries occur?

The program would by analogy genera te a large number of copies of the
short viral code segment, and would then release them into the environment.
The viruses would seek out and infect further programs. In the case of a
computer virus it is more accurate to imagine the virus subverting the host cell
and manipulating the cell to infect other cells directly. To modify the computer
virus analogy to closely resemble the biological virus, it is necessary to
postulate that the environment consists of:

1. All host pro grams being active and subject to direct manipulation in system
memory (the alteration of an executable which may be loaded into memory
at alater time may be considered an acceptable extension of this concept).

2. Further fragments of computer code active in the environment which may
have been generated by the host programs. These represent viruses active
within the system.

An infected host pro gram would have its executable code altered (on disk or
in memory) to commence replication of the virus code fragment. The replicated
viruses would be executable code fragments which would be run and launched
into the environment. These fragments would then seek out and attach to
further host programs. This example implies a multi- processing environment.
The small resident virus executables are similar to the resident virus compo
nents on the IBM PC discussed in the next chapter. .

The concept of genetic code also differs significantly between current
computer systems and biological syst,ems. Specifically, while computer object
code may be likened to a codon or nucleotide, it is questionable whether any
discernible high level structure exists in most computer code. The procedural
structure imposed by compilers of high level languages may possible be
likened to the gene structure level, but this is questionable.

This key issue of high level structure is one which has significantly retarded
the application of genetic algorithmie techniques to computer viruses.

Theory of Viruses 45

3.6.3 High Level Paralleis

The comparison of the more abstract aspects of computer virus and biological
virus behaviour is potentially more useful at this time. The symptoms of an
infected system can be paralleled to an infected organism, the behaviour of a
computer virus at an abstract level to that of a biological virus, and the
prevention of biological infection paralleled to that of computer infection.

William Murray describes the analogy between computer and biological
virus propagation in clear terms, in the following manner:

A virus is expelled (sneeze, SENDFILE) from an infected member (carrier or
originator) of a community (family, users of a common system or network), on a
vector (mucus, da ta object, file or program), through a medium (air, network or
shared 1/0 devices or media) through a portal of entry (nose, network reader) to a
target member of the community.

1. Portals of entry The 'wide variety of portals through which viral material can
be introduced in a human being (by ingestion, via the circulatory system, via
respiration, etc.) is mirrored by a wide range of network services by which code
can be introduced and executed in a computer system.

2. Vectors Vectors are organisms which carry viral infection (possibly without
noticeable effect) between third parties. An example is the tsetse fly carrying
sleeping sickness. Vectors for viral infection are data or program objects, an
example might include a useful system utility which was infected be fore
release to the network.

3. Hygiene To prevent infection a wide range of hygiene measures are
suggested, including non-contact with contaminated materials (such as soiled
articles in the human case) and general bodily cleanliness. The computer
paralleis would be the avoidance of the ingress of suspect computer code (such
as anonymous games software) coupled with the regular verification of the
integrity of protective software (password controls, etc.).

4. Vaccination Vaccination provides an extremely powerful technique in
biological systems, promoting the development of natural immunity using
attenuated viral material. Within the computer environment fragments of viral
material mayaiso be used - in this ca se the signature recognition strings which
the virus uses to prevent repeated replication. These fragments may safely be
added to existing cells (computer programs) and will protect against the virus.

5. Antibodies Antibodies to specific infections would be equivalent to the
introduction into the computer environment of specific disinfection software,
which would recognise the infected program and destroy the virus. Such
antibodies can be introduced prior to the point of the infection in order to raise
the general level of protection. In the same way as the level of antibodies in the
bloodstream decreases after infection has been destroyed, so the probability
that the systems administrators will be conscientious in their use of scanning
and disinfection utilities decreases.

46 A Pathology of Computer Viruses

6. Isolation and quarantine Isolation of infected organisms from the remainder
of the community is suggested for all highly infectious diseases. In a similar
manner, constraints on electronic and physical media traffic between infected
and clean systems can significantly reduce the likelihood of infection
spreading.

7. Latency and incubation Many diseases have a significant delay between the
point of infection and the point at which the organism begins to demonstrate
the symptoms of the infection. This latency or incubation period exists in
computer virus infections too. The latency may be expressed as the time
between initial infection and the time at which the degradation in system
performance (due to widespread infection of executables) be comes unaccept
able to the user. It mayaiso depend on the delay between a virus initially
infecting a program, and the commencement of malicious activity by the virus.
This delay may be considerable (decades, in the case of the "Century" IBM
virus). Viruses may, however, cause damage during this period which is not
readily detectable by external symptoms (such as the steady interlinking of
data sectors caused by the "4096" virus strain) during this period.

8. Carriers If the computer system is, considered to be an organism, then a
carrier would be a host on which the virus was incapable of replicating or when
replicating would cause no obvious symptoms. This might be due to the
specific targeting of a virus against a specific host type, or hosts on which
specific code exists (e.g. the Scores Mac virus targeted against products of
Electronic Data Systems Ltd.) or may be unable to propagate due to host
architectural differences (such as the incompatibility between Intel 80386 and
8086 processors - the POP CS instruction).

9. Diagnosis The process of dia gnosis of an infected system can be compared to
that of an infected organism. External signs contribute to the diagnosis (e.g. the
symptoms of a viral infection), internal checks may be run (similar to inspection
of the contents of data on disk or in system memory). The patient may be
queried as to his health, possibly similar to the use of system auditing and
. monitoring, and the subsequent use of expert systems to interpret system logs.

10. AIDS FinaIly, the organism's internal protective systems may recognise
legitimate cell material (erroneous decisions resulting from a scan for a virus, or
analysis of system activity logs) and may remove legitimate programs. EquaIly,
the virus may alter the operation of the anti-virus software in such a manner as
to cause the deletion or corruption of valid da ta or programs. This could be
compared to the Acquired Immuno-Deficiency Syndrome (AIDS) in humans.

3.7 Quest for life

The clear paralleis between biological and computer viruses lead naturally to
the question: Do computer viruses constitute artificial life? To answer this

Theory of Viruses 47

question, a definition of what constitutes life is critical. A list of criteria required
for artificiallife was given by Farmer, and induded:

1. Life is a pattern in space-time.
2. Self-reproduction.
3. Information storage of a self-representation.
4. A metabolism.
5. Functional interactions with the environment.
6. Interdependence of parts.
7. Stability under perturbations.
8. The ability to evolve.
9. Growth or expansion.

Computer viruses are physical manifestations represented by computer
object code spread both locally within the file system storage and globally
throughout the world. At any given moment the code comprising a single virus
is likely to be in executton by many separate systems. The code representing an
individual virus instance has a distinct existence in memory, and a distinct
lifespan in terms of the duration of its presence in memory.

Self-reproduction is the principal feature which distinguishes a computer
virus from other executable code in the system environment.

The self-representation of a computer virus is clearly the object code which
constitutes the virus. This code is replicated as part of the virus' replication
cyde, and is broadly analogous to the genetic code of a living organism.

The existence of a metabolism (Le. a conversion between matter and energy)
is questionable in the case of a virus. It is possible to argue that the definition of
metabolism is insufficiently broad to encompass the significantly different
characteristics of any potential computer life form. The dependence of
computer viruses on the existence and manipulation of computers by external
entities does not directly void the definition of life. The parasite which depends
on its host' s existence and its host' s reproductive or digestive functions for
replication can be cited as a biological counter example. Metabolism in the case
of the computer virus may be considered as the conversion of computational
effort to increased information content or structure in the computer's second
ary storage. Thus the virus has consumed 1000 cycles of CPU time and has
generated a structured image where random data might have previously
existed.

A virus dearly interacts with its environment by alte ring system memory,
secondary storage or peripheral states. Equally, the components of a virus are
interdependent to a certain degree. Certainly the removal at random of a block
of instructions would significantly modify the behaviour of the virus.

Stability under perturbation is a significant question which is dosely related
to the ability to adapt to environmental changes. A virus can modify its
execution paths within tightly defined logical parameters to compensate for
limited environmental changes. This is probably comparable to the limited
range of environments in which many life forms can survive.

48 A Pathology of Computer Viruses

Putting aside the question of evolution (which must be considered the
significant hurdle for computer viruses), it is clear that following the release of a
computer virus it will grow, spreading potentially worldwide'. The increase in
the variety of computer viruses must, however, be ignored as this is a
representation of interference by another life form (man) and not of the
replication and growth of viruses.

Finally, evolution. This is the single area in which current viruses fall short of
the goal of artificial life. The next section discusses the limited degrees of
evolution or mutation which have been witnessed, and then considers the
extension of the genetic algorithm to computer viruses.

3.8 Evolution: Genetic Aigorithms

3.8.1 Random Mutation

A limited number of random mutations of computer viruses have been
recorded, caused by data corruption in transit, or by failure of system memory
or disks. One example is the single byte modification in the 1704 strain of the
IBM Cascade virus, detected. in Yugoslavia. This has been attributed to random
corruption rather than to deliberate modification. lt is worth noting that some
newer viruses incorporate self-correcting (Hamming) codes to avoid such in
transit corruption.

The possibility of random bit corruption causing virus code to be genera ted
in an executable program has been addressed by both Cohen and Burger. Both
give results wh ich vary by orders of magnitude, due mainly to differing
assumptions. As a simplistic estimate, consider a virus of length 1000 bits (or
125 bytes - not unrealistic considering the "Tiny" series of viruses on the IBM
PC which are around 158 bytes in length). The probability of extensive random
corruption of a block of 1000 bits generating an exact match against the 1000 bit
test virus is 1/21000 or =10- 301 •

If we consider that a 90 per cent chance of each bit correct may genera te a
viable virus, then this probability reduces to 1/1.821000 or =10- 259 • Thus a single
computer randomly generating 1000 bit patterns and testing the resultant
patterns at the rate of one pattern every millisecond would genera te a new
operational virus (assuming the 90 per cent criteria) once in every 10+249 years.

Even with the expansion of the computer base worldwide it seems highly
unlikely that such a random mutation would generate a new computer virus.
The probability of an existing virus mutating by random bit corruption into
another viable virus is considerably higher, however.

3.8.2 Programmed Mutation

A simple evolutionary virus was cited by Cohen which added random
statements between the functional statements of the virus when producing a

Theory of Viruses 49

new copy. He demonstrated that it was impossible to decide the functional
equivalence of two programs (even though it is comparable easy to prove in a
limited subset of cases), by producing an undecidable evolutionary virus
(UEV). The evolutionary virus is reproduced (in modified form) below:

program evolutionary virus

begin

end

subroutine print _random _ number
begin

end

print random _variable_name = random _variable_name
loop:

if random_bit = 1 then
print random _operator
goto loop

print semicolon

subroutine copy _virus _ with _insertions
begin

loop:

end

copy evolutionary virus until semicolon
ifrandom_bit = 1 then

print random_statement
if not end of input ille then goto loop

copy-virus _ with _insertions
infect_ executable
if trigger .]>ulled then do _ damage

host program

This programmed mutation is designed to opera te within carefully control
led criteria, and thus while generating a potentially infinite number of
mutations, will not functionally modify the behaviour of the core of the virus
replication task. Limited programmed mutation has been incorporated into
viruses such as the 4096 (random reordering of procedural code blocks within
the virus) and the 1260 (random padding instructions in the decryption
routines).

50 A Pathology of Computer Viruses

3.8.3 Genetic Aigorithms

An extension of the degree of programmed mutation is to utilise binary virus
techniques. A binary virus, first proposed by Hruska, is a virus which carries
one part of a double payload. Two strains of the virus exist, A and B. Both
strains are innocuous in isolation but when they meet, the payloads combine to
produce a malicious function. An example might be the introduction by an
author of a virus whose sole function is to replicate. At a later time the author
releases a trigger virus wh ich itself replicates. On detecting the operation or
presence of the trigger virus, the original virus will become active, potentially
destroying data and information.

A possible example of this might be the Atari ST "Key" virus. This basic boot
sector virus replicates. When active, the virus will check for the existence or
insertion of a key disk (carrying a special signature word). The code on the key
disk is loaded into memory, and immediately executed.

Binary viruses do, however, provide the ability to model sexual reproduction
in living organisms. The virus must be programmed in such a mann er to
incorporate a number of variable" genes". These genes may control functions
such as:

• Replication strategy
• Replication rate
• Latency time
• Manipulation task choice
• Infection mechanism
• Residency time
• Encryption techniques
• Camouflage techniques

These basic attributes are represented either as integer gene values which
select or modify the operation of standard code in the virus, or indeed as
procedures with standardised interfaces which are randomly swapped
between "mating" viruses.

Thus, we can design a skeleton virus with slots into which code blocks are
placed. Examples might be a procedure in one slot which scans the file system
hierarchy and selects a host to be infected, another which encrypts and
decrypts the remainder of the virus, and others which determine the
manipulation task of the virus.

Using the binary techniques above it becomes possible to design a virus
kerne I which on detecting a file infected by another variant will randomly swap
code modules between the two viruses, thus producing a third strain based on
the gene values or code from each virus. As a variant of natural selection comes
into play (based on the ability of man to detect and eliminate each strain) the
percentages of each gene will slowly alter to provide the optimal combination
of criteria for reproduction and evasion of detection.

Theory of Viruses 51

Structure of a genetic virus

l 1 1 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I Virus Core I

L Latency time

Replication selcctor

Replication rate

Encryption/Decryption

Camouflage routine

Stealth routine

Manipulation criteria selector

Manipulation lask

Memo ry residence code

Virus core is responsible for handling gene recombination and may itself by
modularised and subject to gene swapping. Additional gene possibilities are:

• Signa tu re recognition code
• Automatie disinfection of other viruses
• Anti-virus software counter measures
• Code aimed at specific software or files
• Information compromise functions

The author of the virus could potentially upgrade his virus in situ by releasing
a new strain which would compete with other existing strains, adding its new
genes to the gene pool. With sufficient flexibility in the structure of the gene
selection mechanisms, and a large pool of genetic material, considerable
natural selection and optimisation might occur.

The reported existence of a virus construction set (with window-driven
interface) for the Atari ST was possibly the first example of the static (rather
than dynamic genetic) approach to modular virus construction.

Certainly, the picture of a virus using a genetic algorithm is far doser to the
concept of life than the traditional viruses we have encountered to date.

3.8.4 Growth and Death

Finally, biological life can provide a useful source of experience in the
modelling of computer virus propagation characteristics. The growth of
computer viruses can be compared to the growth of isolated populations of
organisms in the presence of competition and inhibition.

52 A Pathology of Computer Viruses

The viruses left to their own devices would replicate rapidly within the
system, observing the traditional "5" growth curve (if random file selection is
used) or a far more rapid exponential growth curve (if a more complex
incremental directory search algorithm is adopted). Thus, a single system
would rapidly become completely infected depending on the replication
characteristics of the virus. This system is loosely coupled by the traffic in
removable media (floppy disks) to adjacent systems, and through common
access to electronic network services. Thus a similar viral growth curve
between system partitions can be predicted.

At this point we are forced to modify the growth model to add inhibition, in
this case the intervention of a human being or beings. When a virus population
grows, so does the population' s probability of detection. If the virus is detected
then a rapid response will be invoked from the virus research community,
culminating in the release of a new anti- viral product. This product (if a
traditional signature based scanning utility) will slowly percolate throughout
the community, aud will result in the death of many of the virus colonies. A
limited degree of re-infection will occur from rarely used systems or backup
tapes, and isolated infection pockets will continue to exist in systems which do
not use the anti-viral software. The situation may thus be compared to the
biological analogy of a campaign of mass vaccination to exterminate a viral
infection.

The model must be further extended to again deal with human factors, in this
case the author's response to the destruction of his virus, and his release of a
potentially modified strain into the environment. This represents a degree of
competition between anti-virus software authors and virus authors.

In summary, a growth model can be constructed with the following features:

1. Rapid initial growth on the source system (exponential or 5 curve).

2. Fixed prob ability of infection being coupled between isolated systems via
disk or pro gram transport.

3. Lag-time dependent on virus latency period or success of camouflage
between release and initial detection.

4. Further lag between detection and commencement of significant anti-viral
effort.

5. Penetration of anti-virus software throughout community over time with
inhibition of the virus.

6. Low probability of re-infection from isolated infection pockets or infected
backups.

7. Counter-reaction from virus author and release of new strain.

A rough graph of a possible virus infection within an organisation is shown
below. This is of course highly speculative.

Theory of Viruses

.,..-----.,- ------------- ----------- -------- ---- --,

3

I
I
I
I
I

I

-- ------~

Phases:

A possible model of virus infection

within a networked organisation

1. Rapid initial spread of infection throughout organisation.
2. Latency time before detection.
3. Effective use of anti-virus.
4. Limited number of systems not disinfected.
5. Re-infection from backups as anti-virus precautions fall into disuse.

53

6. Slow tail-off of infection within organisation as infected systems are
upgraded, reformatted, decommissioned, or eventually disinfected.

A number of authors have addressed the problem of viral growth modelling,
including models based on the concept of an environment partitioned into
system, partitioned into user spaces, or partitioned into files. A single infected
file is inserted into the system with a descriptive model of its replication
strategy, latency time, time resident in memory, etc. The model can be
extended to impose a mandatory or discretionary confidentiality framework on
top of the general partitions.

Gleissner quotes a simplified model in which the following assumptions are
made:

M program in a single account. All programs called with equal frequency 11M.
Initially only one pro gram infected.

His results indicate that for an account with 80 programs, infection of all
programs will occur after 378 program calls. The graph of the infection process
is approximately exponential.

Peter Tippett has produced a paper entitled the "Kinetics of computer virus
replication". This paper extrapolates viral growth based on a number of basic

54 A Pathology of Computer Viruses

assumptions, including the assumption that infection is a binary replication
process and that infected systems have a broadly equal chance of causing
infection to other systems. Based on this model he predicts exponential growth
of viruses within the community.

This, as with other basic growth models, suffers from oversimplification of
the structure of the computing base. Padgett Peterson has proposed the
categorisation of computing systems into three groups:

1. Source nodes - manufacturers and software developers.
2. Transit nodes - bulletin boards and open educational PCs.
3. End nodes - horne or corporate PCs.

He proposes that infection on an individual node is basically exponential, as
it is within a specific networked community (such as a group of corporate end
nodes). He does however propose slow spread over type 1 and 2 nodes
(probably in the face of extensive anti-viral software measures) coupled by
rapid spread amongst the systems comprising a cluster of type 3 nodes. The
human factor is noted (i.e. the reaction of the anti-virus community) which
leads to counter measures on the type 1 (and possibly type 2) no des restricting
the infection sources of the virus to local and intercommunicating type 3 nodes.
The model is thus based on a rapid anti-viral response within the expert
community, followed by a deferred local response.

David Chess confirms Peterson's comments on the "sharing" topology of
the computing community and comments that significant levels of anti-virus
scanner use can result in revers al of the exponential growth prediction. Models
adopted at the High Integrity Computing Laboratory at IBM have indicated
(albeit crudely) that stabilisation of virus frequencies at very low values «1 per
cent of the systems infected) may occur. Chess also denies that IBM data
indicate that an exponential growth of infections is occurring.

In general, it is certain that the topological structure of the community must
be considered, as must the intervention and inhibition of viral spread as a result
of action by the community. It is, however, likely that growth models will
evolve to include heuristics to address these issues.

Chapter4

Operation of pe Viruses

4.1 Introduction

The lifecycle of a typical pe virus can be divided into three stages, namely:

• Activation
• Replication
• Manipulation

To achieve a spread of viral material, the virus must arrange for its code to be
executed by the computer system on which the virus resides, or by a computer
system interconnected to that system.

A typical computer has many ways in which a user may invoke object code,
either directly as the result of the execution of a command or indirectly through
system functions carried out automaticallyon behalf of the users.

Four main types of code are executed by computer systems:

1. Initialisation code: executed as part of the system startup or boot phase
before system login or command interpreter prompts are generated.

2. User code: executed as a direct or traceable result of a command by the user.
3. Daemon code: regularly run by the system to carry out administrative

functions such as accounting, background mail transfer, etc.
4. Termination code: executed as part of system shutdown.

Any analysis of viral propagation on a specific hardware platform must
address all the above routes and carefully consider the avenues by which viral
code may be executed.

This chapter specifically addresses the avenues for viral infection of IBM pe
compatible systems, together with the techniques adopted by known pe
viruses to evade detection and analysis. A general knowledge of IBM pe
system architectures is assumed.

56 A Pathology of Computer Viruses

4.2 pe Boot Sequence: Initialisation

The initialisation code executed by a PC is known as the boot sequence and is
comparatively complex, leaving open many avenues for viral code to be
introduced. The sequence can be summarised as:

• System boots trap read-only memory (ROM)
• Master boot sector
• DOS boot sector
• Initialisation "SYSINIT" program code

• DOS code
• COMMAND.COMcode
•• AUTOEXEC. BAT command file
••• Startup utilities executed via AUTOEXEC.BAT

Initially when a user reboots, the system control passes to address
FFFF:OOOOh in the system ROM, which then passes control to an initialisation
routine in ROM. The principal function of this routine is to locate a "boot"
record or sector on a secondary storage device from which the boot sequence
can continue.

In this regard all devices are searched in physical device order (normally
floppy drives followed by hard drives) for such arecord.

ROM is of course unalterable by computer viruses (normally such memory is
implemented as an array of program-once fusible links, or has its structure
directly etched onto the silicon substrate). This is, however, not true of newer
electronically alterable/erasable read-only memory (EAROM/EEROM) used
primarily as non-volatile memory to hold configuration information during
power down periods.

In standard IBM PCs such "parameter" RAMs do not contain executable
code and thus can be ignored for the purposes of virus infection. A further
development in this area is low power consumption CMOS RAM chips which
can be powered by a battery or capacitive backup. Such RAM chips can retain
viral code in memory across system power downs. The use of non-volatile
RAM in laptops thus permits the continuation of system (and virus) operation
after the system power is restored.

The capacitance in standard IBM PC power supplies mayaiso allow retention
of information in volatile RAM for periods up to about 30 seconds. Thus when
it is suggested that the IBM PC is switched off, it must be for at least this period.

4.3 BIOS and DOS

The operating system of the IBM PC consists of two main components:

Operation of pe Viruses 57

• Basic input/output system (BIOS) - a set of basic potentially device
dependent routines which allows simple unstructured access to data on
storage devices

• Disk operating system (DOS) - utilising the BIOS, a far more complex
operating system which structures basic data (i.e. sectors and tracks on disk)
into files, which are in turn structured intö hierarchical directories

4.4 Master Boot Record

The location of the next component in the boot depends on whether the storage
media being booted is a hard or floppy disk drive. In the former ca se control
passes to a boot sector at a well-known location on the floppy disk (sector 0,
track 1, side 0), known as the boot sector.

In the case of a hard disk drive this sector contains a master boot record
including a partition table. The later encodes information on the location of one
or more "Iogical" disks into which the physical disk has been divided. Thus a
100 Mb physical disk may be divided into four separate logical drives of 25 Mb
capacity. The format of the master boot record is given in Appendix 1.

Execution starts at location 0 of the master boot record, which consists of up
to lBEh (446) bytes of executable code. This code is responsible for locating a
"boot sector" on a partition to continue the boot sequence. The partitions
marked as "bootable" in the partition record table are searched sequentially,
the first sector in each partition being read tolocate a suitable boot sector.

The master boot record represents the first location which can be altered by a
virus to contain viral code. The "New Zealand" or "Stoned" virus does exactly
this. This virus relocates the original master boot record to a well-known
location on disk, namely:

Version 1
Version 2

Hard disk
Track 0 head 0 sector 2
Track 0 head 0 sector 7

Floppy disk
Track 0 head 1 sector 3
Track 0 head 1 sector 3

and replaces the code portion of the master boot record with its own viral code.
The flow of control before and after infection can be described as:

58 A Pathology of Computer Viruses

Before infection

After infection
with New Zealand

The partition table is interpreted by the BI OS in ROM and is independent of
the DOS system. Thus UNIX and other foreign operating systems may be
allocated partitions co-resident with DOS partitions on disko Master boot
record altering viruses are becoming increasingly commonplace.

Corruption of a master boot record wilI generate the message "Partition not
found". Such corruption is caused by New Zealand infecting any non-standard
master boot record or by the destructive effects of viruses such as the
"Datacrime" virus.

4.5 DOS Boot Sector

The next stage in initialisation is the execution of code from the boot sector
located at the well-known location head 0, sector 1, track 0 on floppy drives, or
at the start of the partition in hard drives. This sector also contains information
detailing how DOS will interpret the data in the partition. The structure of a
boot sector is given in Appendix 1.

The boot sector comprises a maximum of 1C3h (451) bytes of executable code
in DOS versions 2 and 3, or 1COh (448) bytes in DOS version 4. This code is used
to locate the next component in the system initialisation, namely the IO.5YS or
IBMBIO.COM program on the logical partition. This code can be replaced or
modified by a virus: it is this which forms the mode of attack of one of the most
common classes of virus, the boot sector virus.

An example of such a virus is the Brain virus. This virus relocates the original
boot sector, storing its own viral code (plus pointers to additional viral code and
the original boot sector) in the DOS boot sector. Thus, when the boot sector
code is called as part of the boot sequence, the virus is loaded into memory by
the BI OS and executed.

Operation of pe Viruses 59

For further details of the organisation of DOS data on disk the reader is
referred to Appendix 1. In particular the following description uses the concept
of a "File Allocation Table" (FAT). This table contains a linked list of disk
clusters allocated to a file. Clusters may be corrupt because of media flaws on
the floppy or hard disko In such cases the FA T table entry for the cluster will be
set to a special value indicating a "bad" cluster.

It is common practice for boot sector viruses to scan the FAT to locate a free
cluster. This cluster is then marked as bad, and used as storage for virus code
which exceeds the available space in the original boot sector.

An indication of boot sector infection is therefore the presence of a bad
cluster on a floppy disk (the majority of which are now supplied as error free by
manufacturers). Please note that all magnetic media tend to degrade pro
gressively with use, causing bad clusters. Formatting programs normally mark
an entire track bad when formatting a disk, thus if a track has a small group of
bad clusters this may be an indication of virus activity.

Final jump to original
stored boot sector

Structure of a typical boot sector virus on disk

4.6 System Initialisation

Virus loads
additional
code sector

Jump to disk
OOot sector now
infected by virus

Following the location of the boot sec tor on floppy or hard disk, the boot
sequence will continue by:

1. Loading the IO.SYS or IBMBIO.COM (the former for MS-DOS, the latter for
PC-DOS) program from the booted disk partition. This is the first file in the root

60 A Pathology of Computer Viruses

directory of the partition. This pro gram contains two components: the BI OS
code (including device specific drivers and initialisation code) and the SYSINIT
program. The latter program is responsible for supervising the remainder of
the initialisation process.

2. SYSINIT checks memory and then loads the next file in the initialisation
sequence, the MSDOS.SYS or IBMDOS.COM (the former for MS-DOS, the
latter for PC-DOS) into memory. This file contains the code for the operating
system.

3. Control passes to DOS, which initialises and runs the command interpreter
specified by the shell variable in CONFIG.SYS (normally COMMAND.COM).
Various device drivers specified in the CONFIG.SYS file are loaded into
memory (such as extended screen and printer drivers). The command
interpreter then accepts aseries of user commands to be executed by DOS.
Initially it will consult a batch file called AUTOEXEC. BAT which contains lists
of user commands (such as setting data and time, clearing the screen and
starting system services such as printer spoolers). Each line of the batch file is
interpreted and the appropriate command executed.

4. The COMMAND.COM prompts for commands from the PC user.

Although they are potential targets for infection, no known viruses infect the
IO.SYS or MSDOS.SYS files (other than the unconfirmed report cited in
Chapter 2). Viruses can also be incorporated in the device drivers loaded as a
result of the interpretation of the CONFIG.SYS file. The COMMAND.COM file
was the target of one of the earliest computer viruses, the Lehigh virus.

The COMMAND.COM executable program is written in one of the two
conventions for IBM object or executable files, namely "COM". Many COM
infecting viruses specifically ignore the COMMAND.COM file in order to
frustrate simple deteetion by monitoring the length or alteration date/time of this
file.

It is also worth noting that boot sector viruses can only utilise BIOS funetions
(allowing simple unstructured disk 1/0) prior to completion of the DOS
initialisation sequenee. As such, they tend to aecess virus code by absolute
sector/track and side loeation. Hybrid viruses now exist which do infect both
boot sector and COM or EXE executable files.

4.7 Batch Processing Viruses

The DOS command language provides a rich and varied set of user commands,
which can be invoked either directly or indirectly through the use of batch file
teehniques. These commands include:

• Bateh file call functions (similar to proeedure eall)
• Iteration via "goto" and "for"

Operation of pe Viruses 61

• Conditional command execution via "if"

With such a rich set of facilities it is therefore possible to create a general
"batch" virus. Such a virus is an implementation of the virus algorithm:

Open target file
If no virus signature

Append virus code to target file
Add virus signature

Batch viruses have been proposed by both Burger and Levin: the latter is
reproduced below:

ctty nul
for %%f in (* .BA 1) do copy %%f + BFV.BAT
cttycon
cis

Jn general, a virus can be written in any language capable of changing
command flow via a conditional test (to allow signature verification) and with
limited file access or low level 1/0 primitives (to allow appending of code). This
is true of high level languages such as C and Pascal, and also (often
unexpectedly) of less powerful"Macro" languages provided by software such
as Lotus 1-2-3 and text editors such as "vi" and "emacs" (the latter executing a
subset of the Lisp program language).

Batch viruses, although theoretically possible, would tend to be fairly clumsy
and relatively slow in comparison with a machine code virus.

4.8 COM and EXE Viruses

A virus embedded in an EXE or COM file (the two IBM PC executable file
formats) can thus be activated by direct execution of a user command or by
inclusion in a .BAT batch file.

The structure of COM and EXE files is described in Appendix 3. In brief it is
sufficient to indicate that a COM file comprises a single image of the object code
as it would appear in memory. Such a COM file is loaded into a 64 Kbyte
memory segment allocated exclusively to the program. All memory accesses by
the program are theoretically restricted to this segment. The IBM PC contains
no memory management hardware (or in the case of the 80386 and later, when
running under DOS compatibility mode rather than OS/2, such hardware is
effectively disabled), thus allowing an errant program to write any location in
the PC address space.

62 A Pathology of Computer Viruses

The COM program is loaded into its 64 Kbyte segment and then called by
DOS executing a jump to offset 100h in the segment. When loaded into
memorya COM (and EXE) image is preceded by a "Program Segment Prefix"
(PSP) which contains details of the files and memory allocated to the program,
together with the string used to mvoke the command.

An EXE program is far more complex (and more versatile), permitting
programs to exceed 64 Kbytes in size. The EXE file contains information which
allows DOS to break the program into a number of separate segments of
variable length. EXE infecting viruses are rarer than the simpler COM infectors
because of the increased complexity required to correctly manipulate the EXE
file header block and relocation table, which are part of the EXE structure.

In the case of a COM virus, the virus code may be simply inserted by
prepending or appending to the COM executable. The virus must also modify
the first few bytes at offset 100h to pass control to the prepended or appended
virus.

Example of a COM virus (1200h user code, 400h virus code):

~ >-

I pSP I User Code I Before infection

Oh lOOh 12FFb

I pSP !vOm~ User Code I Prepended Virus

Oh lOOh 500h 16FFh
---> >-

psp l_. User Code I Virus Code ~ Appended Virus

In the above diagrams, two cases are considered: the prepending virus
(which appends the host's code to the virus to produce an infected version) and
the appending virus (which appends the virus to the host's code). The blocks
marked "J" are jump instructions. Jump 1 is areplacement of an initial jump in
the host code by a jump to the virus code. Jump 2 is the stored jump instruction
from the original host which is used by the virus to return control to the host.

4.8.1 Non-overwriting Prepending COM Infectors

In the prepended ca se the virus creates a new copy of the executable COM file,
consisting of the virus code to which the original contents of the COM file has
been appended. The virus code is then executed first (by the DOS load and

Operation of pe Viruses 63

execute subfunction); the viral code runs, then jumps to the original COM file
code (appended to the virus). This approach will allow a COM program using
relative addressing for jumps to operate correctly.

A slightly more sophisticated approach is for the virus to relocate the original
COM file's code by copying it from its location in memory (after the virus code)
to overwrite the start of the virus. The short relocation routine can easily be
located temporarily in free memory or system buffer space while executing.
This method unfortunately allows full transparent execution of COM files
without restriction on the addressing modes of jump and call instructions.

I Virus Code I User Code Before restoration

User Code After restoration

4.8.2 Overwriting COM Infectors

The simplest form of virus destroys its host by directly overwriting part of the
host's code with the virus code. The damage to the host can be minimised by
overwriting the end component of the host pro gram, thus allowing the
initialisation (and probably a large component of the host code) to operate
correctly.

The virus captures control by overwriting the initial three bytes of the host
with a jump to the virus code. The original three bytes of the host program are
stored for later restoration. Thus, DOS causes a branch to the virus code
whenever the host is run. The virus may then replicate, infecting other
potential hosts. When the virus completes operation, it restores the saved
bytes to the start of the host, and then jumps to the restored host.

Overwriting viruses do not alter the length of the infected file (which is a
major indicator of infection by non- overwriting viruses) but do show up
through occasional crashes or malfunctions of the infected host (due to part of
its code being destroyed on infection).

A simple example of an overwriting virus is the 405 strain, a basic COM
infecting virus which overwrites the first 405 bytes of the host when infecting.
The virus extends the host to 405 bytes if the latter is less than 405 bytes in
length. Multiple infections will occur because the virus does not check for a
signature value when infecting. Infection is restricted to the current directory.

4.8.3 Non-overwriting Appending COM Infectors

The appending virus operates by appending the virus code to the end of the
host code in the COM executable, as shown in the above diagram. The virus

64 A Pathology of Computer Viruses

must also modify the user code to gain control when the COM file is run. This
modification is carried out in the same manner as the complex COM
overwriting virus.

An example of a simple COM appending virus is the Vienna or "Austrian"
virus. This virus was first reported in Moscow in April 1988 at a UNESCO
summer camp. The virus (the code for a variant of which has been published by
Burger) is a simple 648-byte-Iong non-overwriting COM infector. The virus
saved the initial three bytes of the host, replacing them by a jump to the virus'
code which had been appended to the host. The virus executes by selecting a
COM file in the current path to infect, then res tores the saved three bytes to
restore the host's code in memory. It then jumps to the start (100h offset) of the
host. The virus utilises a simple signature to detect infection (thus preventing
multiple infection) - namely, the setting of the time of last update seconds field
to 31 (corresponding to an invalid value of 62 seconds since the field represents
the value in seconds/2). The seconds field of the time of last update is not
displayed when using the DOS "dir" command. Eighteen variant viruses
(including "Lisbon" , "Ghostballs", "1260", "VHP-435" and "VHP-623") have
been produced based on the Vienna strain.

4.8.4 EXE Viruses

In the ca se of the EXE file it is possible for the virus to either append or prepend
its code in the form of a separate segment of code. The appending virus adds its
code to the end of the EXE file, modifying the EXE program header as follows:

• Extend the file length field
• Extend the relocation table size
• Add relocation table entries to permit relocation of the jump from the virus

segment to host program code segment

• Modify the EXE file checksum value (if used)
• Modify the segment dis placement and IP register offsets to point to the viral

code segment

The virus is not required to modify the host program code segment as control
can be gained merely by modifying the EXE program header.

In the case of a virus which prepends to an EXE file the situation is
complicated by the need to rewrite the relocation table offsets to point to the
newly moved host code segment, i.e.:

Operation of pe Viruses

J I

I EXE
Header

I

Relocation I
Table

Host program before infecLioll

Virus Code
Segment

HostCode
Segment I

65

This allows the EXE program load er (in DOS) to correctly locate segment
values in the shifted host code segment, thus permitting it to complete its
function of relocating pro gram inter-segment jumps at runtime.

In summary, the principal modes in which an IBM PC can be infected by viral
code are:

Type Frequency Example
Master boot record virus Common NewZealand
Boot sec tor virus Common Brain
IO.SYS/MSDOS.SYS virus Theory Pacman
COMMAND.COM virus Rare Lehigh
AUTOEXEC.BAT virus Theory Many published examples
COM overwriting virus Occasional 405
COM non-over prepending Occasional Israeli
COM non-over appending Common Datacrime
EXE prepending Rare sURIV2.01
EXE appending Common Dark A venger

4.9 Resident and Transient Viruses

A virus becomes active through one or more of the means described
previously. Hybrid viruses which exist in multiple forms (e.g. boot sector and
COM infector) do exist (such as the"1253" virus). The virus can arrange to

66 A Pathology of Computer Viruses

re ta in control of the pe operating system even after its parent or host program
has exited. This is achieved by terminating and staying resident (TSR). A virus
which attempts this is described as "resident". A virus which is only active
when its host has branched to its code and ceases to be active when control
returns to its host is described as "transient" or "non-resident".

To become resident, a virus must exploit the interrupt driven facilities in the
operating system. An interrupt is genera ted either by a hardware related
event, e.g. external device data transfer, bus error, parity error or system timer,
or by a software event, e.g. divide by zero, overflow or user "int" instruction.
All interrupts cause the processor to transfer control to the address in the
interrupt vector table appropriate to that interrupt.

Offset Interrupt Function

OOh Oh Divide by zero

04h Ih Single step

08h 2h Nonmaskable interrupt

52h 13h BIOS service entry

84h 21h DOS service entry

For instance a DOS system call such as "open file (handle)" is performed by
placing values in the AH, AL and 0 registers. The AH register is set to contain
the DOS function required, in this case 3Dh. AL and 0 contain parameters to
the
system ·call. The program then executes the "int 21h" instruction, causing a
software interrupt. This interrupt places the flag register on the stack, together
with the return address, and then jumps to the address given in the correspond
ing entry in the interrupt vector table (in this case the address given at offset 84h in
the table). On completion of the DOS interrupt service routine DOS executes a
"iret" instruction, which pops the flag status and returns control to the calling
routine.

This centralisation of functionality unfortunately makes it simple for a virus
to redirect or intercept system activity. For instance a virus might have copied
its code into a free block of memory, or used the various TSR functions
provided by the operating system. By changing one or more interrupts to point
to the virus code in memory it can arrange to be activated:

• At regular timed intervals
• During disk activity
• When a program is loaded for execution

• On user keyboard input

and on many other such events, e.g.

Operation of pe Viruses

13h

21h

Interrupt veclOC
tablc

13h

21h

Interrupt veclOr
tablc

67

After modification

The virus is thus activated whenever any input/output or DOS service is
required. A brief list of the commonly used interrupt vectors (from the virus
writer's point of view) is given below:

68

Address

Olh
08h
09h
lOh
13h
14h
15h
16h
17h
19h
1Ah
ICh
21h
25h
26h
27h

Description

Single step interrupt
System timer
Keyboard interrupt
BIaS video driver
BIaS disk driver
BIaS comms driver
BIaS misc funcs
BIaS keyboard driver
BIaS printer driver
System warm boot
BIaS clock driver
Timertick
DOS service interrupt
Absolute disk read
Absolute disk write
Terminate and stay resident

A Pathology of Computer Viruses

Use by virus

In ripple decoders (sec camouflage)
For regular activation
To inten:ept user keyboard activity
To perform screen manipulation and IIansformation
To inten:ept an disk activity
To inten:ept remote communications
Keystrokc IIanslation
To intercept user keyboard activity
To inten:ept an user print activity
To prevent virus dcactivation on reboot
To perform clock alteration and slipping
A secondary timer called from 08h
To inten:ept an DOS service calls

To monitor programs going TSR

In general, most boot sector viruses will intercept 13h (BIOS disk driver),
while COM/EXE viruses will normally intercept 21h (DOS service). Thus boot
sector viruses make use of lower level disk functions provided by the BIOS,
which deal with sector-by-sector access (rather than the DOS abstraction of
logical files in hierarchical directories).

When a virus becomes resident in memory it must also arrange that its code
is not overwritten by the normal memory allocation operations of the operating
system. A number of locations exist in the DOS memory map which can be
utilised. A memory map of a typica11Mb DOS allocation scheme is given
below:

FFFFh

EOOOb

CCOOb

CSOOb

AOOOb

0400h
OOOOb

Reserved for BIOS

Unused

Disk adaptor, BIOS

Used by video

Transient program area

Resident COMMAND.COM

Disk buffers

DOSkemel

BIOS

Interrupt vectors

Operation of pe Viruses 69

Of these areas the following can be used:

• Unused allocated memory, such as unused DOS system variables and rarely
used or reserved buHer space, e.g. the Lehigh virus in the COM
MAND.COM stack area and "Number of the Beast" in the first DOS disk
buHer

• Expanded or extended memory, outside of the normal 640 K DOS address
ing range, such as the area CCOOOh to DFFFFh in the above map, e.g. the
"EDV" virus

• Unallocated memory in the transient program area, e.g. the Icelandic virus'
manipulation of memory control blocks; or the use of the DOS TSR
functions, e.g. Jerusalem

• Reserved memory: boot sector viruses wh ich commonly install in high
memory and then reduce the amount of physical memory available when
DOS loads

• BIOS and Video RAM areas: above the 640 K DOS memory limit

4.10 Manipulation by Viral Code

A virus can potentially manipulate any aspect of PC system operation,
including:
• Unusual screen displays, graphics, logos or displayed text strings often

carrying a political, personal or ideological message
• Corruption or alteration of user data files, including:

Byte swapping or alteration of data
Marking of disk clusters as "bad", causing reduction in usable disk space
Damage to BIOS parameter block, boot sector code or partition tables,
giving the appearance of reformatted or destroyed data
Reformatting of disk partitions or low level formatting of drives

• Corruption and manipulation of comms ports, including:
Byte swapping and data corruption on modem links
Initiation of "rogue" telephone calls by virus, allowing possible compro
mise of classified or sensitive information
Insertion of damaging commands, e.g. "rm -rf *" into remote login
sessions

• Interception and alteration of keyboard input
Swapping of keyboard keys to simulate typing errors or dyslexia
Rejection of certain characters such as the "OrI-AIt-Del" warm reboot
sequence
Insertion of amusing or embarrassing additional input into the keyboard
buHer

70 A Pathology of Computer Viruses

• Interception and alteration of printer output, induding the full range of
corruption and alterations, such as that demonstrated by the "Mixl/Typo"
viruses

• Modification of system dock: gradual speedup or slowdown, random re sets
and jumps

• Dummy routines, causing system slowdown of either global or selective
routines

• Activation of other system interfaces: playing of short tunes or tones on the
system speaker, toggling of keyboard state flags (Caps Lock, Num Lock),
relocation or reversal of mouse activity .
Finally, interception of the DOS service interrupt (as against all the above

effects achieved via the BIaS) allows a wide range of abstract manipulations to
be performed, such as:

• Renaming or hiding of data files
• Moving or remoyal of data files
• Swapping of contents from selected system files

• Reversal of file text

In general, a virus may manipulate any aspect of system operation. Subtle
manipulations such as bad sector or byte swapping may often be mistaken for
hardware errors.

4.11 Activation Criteria

The reasons why a virus activates are as varied as the manipulations the virus
may cause once active. In general, many viruses are engineered to activate (and
perform a manipulation task, be it benign or destructive) on specific dates or on
exhaustion of a specific delay or counter. In the former case, many dates have
been chosen by virus authors as activation dates. A summary list is given
below:

Operation of pe Viruses

Virus

1210 (Prudents)
1253
1554 (ren bytes)
1704 Fonnat
4096 (Stea1th)
Advent
Alabama
Anarkia
Anarkia-B
Cascade
Christmas
Christmas
Datacrime
Durban
FuManchu
Jerusalem
Jerusalem-D
Jerusalem-E
Joshi
July 13
June 16
Kennedy

Mendoza
Murphy
New Jerusalem
Payday
South African
Sunday
SURIV 1.01
SURIV2.01
SURIV3.00
Traceback
Traceback

Activation Date

May 1-4
Dec24
Sep-Dec
Oct-Dec (Not 1993)
On or after 22 Sep
4th Sunday before Xmas
Friday
Tuesday 13
October 12
Sep-Dec 1980/88
Aprl
Dec 24-Jan 1
Oct12+
Saturday 14
Aug 11989+
Friday 13
Friday 13 > 1990
Friday 13 > 1992
Jan 5
July 13
June 16
June6
Nov 18 &22
July - Dec
10-11 am
Friday 13
Friday not 13
Friday 13
Sunday
April 1
April 1
Friday 13
Dec 281988
Dec 51988

Effect

Changes disk writes to verifies
Overwriting diskette
Corrupts first 10 bytes of any files written
Refonnatting of disk
Hang infected systems
Advent crown and Old Tanenbaum tune
File swapping via FAT manipulation
File deletion
File deletion
Falling letters display
Destroy partition table
Full screen Christmas tree
Low level fonnat

71

Overwrite 100 sectors on drive C, B and A
Keyboard buffer character insertion
File deletion
Destroy both FATs
Destroy both FATs
Message and hangup
Bouncing ball
All entries in root directory & FAT zapped
Message
Message
File deletion
Speakerpip
Deleted file
Deleted file
File deletion
Message
Hangup and message
Hangup
File deletion
Cascade display
Direct infection started

One particularly common activation date is Friday 13th. This is the activation
date chosen by the "Israeli" virus (and derivatives) and the "South African"
virus. In this regard, the Friday 13ths for the remainder of the century are:

72

1991
1992
1993
1994
1995
1996
1997
1998
1999

A Pathology of Computer Viruses

September, December
March, November
August
May
January,October
September, December
June
February, March, November
August

In addition (presumably to catch those users moving the system dock forward
by one day to avoid Friday 13th) the "Durban" virus activates on Saturday
14th.

Regular advisories are sent out by bodies such as the Department of Defense
Security Co-ordinalion Center on the approach of dates such as Friday 13th,
April 1st, Hallowe'en and Christmas Day.

During the period from the release of a virus to its first activation date
(known by analogy with biological viruses as the "incubation" period), the
virus can spread rapidly with few symptoms. It is often the case that a virus is
not detected prior to its activation date, thus a Ion ger period between release
and activation makes it likely that a virus will spread widely, but increases the
probability that such a virus will be detected and effectively countered prior to
activation. The previously introduced concept of a binary virus might permit
the author to send an activation component when his virus is first discovered
by the research community.

The extreme example is the Century virus, timed to activate on 1 January
2000. Many commentators expect that the conventional IBM PC may be
obsolete by that time!

Other viruses use generation counters as a trigger. This is particularly
common in boot sector viruses. This counter allows us to generate a family
history of the spread of such a virus by charting the occurrences of each
generation. This may allow a crude localisation of the initial infection source.
The generation counter does, however, allow a virus author to upgrade his
virus by releasing a new version with an updated generation number.
Presumably older generations will avoid infection of executables infected by
newer generations. The Israeli virus used a similar technique of backward
compatible signatures to prevent older strains from destroying newer
generations.

The Jerusalem virus strain A (commonly known as Friday 13th) has three
predecessor strains also originating in Israel. These strains are known (by
reference to identifying text within the binary) as "sURIV 1.01", "sURIV 2.01"
and "sURIV 3.00". These strains (and the common Jerusalem strain which
indudes the text "sUMsDos" in the binary) all use compatible signature
strings. sURIV 1.01 looks for the string "sU" at offset 3 in COM files. sURIV

Operation of pe Viruses 73

2.01 looks for the presence of the checks um 1984h in the EXE file checksum
field. sURIV 3.00 infects both COM and EXE files and inserts a compatible
signature (with sURIV 1.01) in COM files and (with sURIV 2.01) in EXE
headers. The infection test for sURIV 3.00 is the presence of the "sURIV" string
at the end of the inJected program. The standard strain uses a "sUMsDos"
signature in place of the "sURIV 3.00" signature, but retains (although not
checking for) the 1984h checksum in EXE files. Thus a family development path
may be established since sURIV 3.00 is backward compatible with the sURIV
1.01 and sURIV 2.01 strains. The standard virus breaks the mould slightly but
still uses very similar signatures. Thus a sURIV 3.00 virus will automatically
infect a sURIV 2.01 or sURIV 1.01 file, although the latter viruses will detect the
sURIV 3.00 signature and ignore the file.

The activation criteria can be exceptionally complex, such as that of the
Italian "Bouncing Ball" virus which activates when a disk transfer re-occurs
within a 1 second interval every 20 minutes. Such complex criteria often make
the reproduction of a '{irus erratic and irreproducible, complicating analysis of
the virus.

A particularly worrying form of virus is one which exploits multiple
"vectors", an example being a trojan horse pro gram which has an encrypted
copy of the virus. The trojan releases the virus at annual or monthly intervals.
The virus program then proceeds to spread rapidlyon the system. Such a virus
is easily detected and removed. This cleaning of the system may appear
effective until the trojan utility again activates to release a new (possibly subtly
modified) virus. Not only does this result in re-infection, but the trojan horse
itself may act as a vector by being manually copied between systems.

This is the concept of a "retrovirus", as introduced by Peter Denning. This
virus comprises a trojan horse launcher which at regular intervals checks for
the presence of the child virus. If the virus is removed the trojan will wait for a
fixed period of time, and then re-release the virus. Thus system re-infection
appears to occur at regular intervals.

4.12 Camouflage

The virus field has demonstrated a worrying trend towards complex and
cunning viruses which exploit many and varied concealment and camouflage
strategies. Many of these techniques are targeted at specific anti-viral products,
or at measures belonging to a "generic" classes of anti-viral product. These
classes are described in detail in Appendix 10.

Camouflage techniques revolve around:

• Concealment of viral code in infected files via encryption or careful
manipulation of disk space

• Concealment of the viral code when active in memory, and the associated
changes in "memory control blocks" (MCBs) and interrupt vectors

74 A Pathology of Computer Viruses

• Concealment of the activity of the virus in replicating its code (specifically
the invocation and effects of disk access commands)

4.12.1 Concealment in Infected Files

The viral code can be detected by a characteristic series of bytes, by expansion
of the file size, by alteration of file timestamps, and by changes in file
checksums and signatures.

In this regard camouflage techniques can be divided into:

• Avoiding infection of files of particular interest (e.g. COMMAND.COM)
• Encryption of the viral segment in the infected file
• Hiding of viral code in spare disk space
• Storing the original timestamp and file attributes, infecting, then restoring

the original valu~s
• Recakulating the checksum after infection has occurred
• Preventing the detection of the above changes by programs using DOS

services

4.12.2 Encryption of Viral Code

The virus may employ simple encryption techniques to conceal the majority of
the viral code in a file. Such a method is often "perturbed" or modified by some
characteristic of the host file (time of modification, size of file , etc.). The
encryption techniques utilised are often extremely simple. The Cascade virus
was one of the first viruses to exploit such encryption. This virus consisted of a
short decryption routine, the remaining bytes of the virus being encrypted
while on disko

The virus thus consists of:

HostCode

When the decryptor had completed execution, the decrypted virus was
present in memory and ready to execute, thus:

Operation of pe Viruses 75

The sampie decryptor routine decrypts the encrypted virus before executing
the code. Such "bulk" decryptors are simple but effective in reducing the
length of the recognisable virus signature to as few as 16 bytes of object code.
Even this short decryptor is perturbed in the 1260 virus through the random
introduction of padding instructions (such as operations on unused registers
and no-ops). This reduces the recognisable instruction sequence to one single
machine instruction (maximum of around 3 bytes).

The 1260 virus incorporates a complex encryption and padding scheme
which comprises the following decryptor routine:

mov ax,key_a
mov cx,key_b
mov di,start _ of _virus

main: xor [di],cx
xor [di],ax
inc di
inc ax
loop main

The decryptor uses two key values which are both xor' ed with an encrypted
byte in the virus to produce the plaintext instruction. On completion of
decryption the virus code is executed. The second key is incremented as
instructions are decrypted to prevent the non-trivial decryption of the virus by
xor'ing with a fixed value (as was possible with encrypted strings in the
Internet worm). Thus a dear text byte is given by:

Clear [i] .. Crypt [i]®(keYa +i)®(keyb)

The above decryptor routine is padded via the random addition of one or
more of the following dummy instructions - nop; dec bx; inc si; dc; xor bx,cx.
Other than the dummy instruction padding this routine is similar in format to
the decryptor in the Cascade/Autumn Leaves/1704 virus, which induded the
instruction sequence:

main:
mov
xor [si], si

; load start of virus into si
sp, length _ oe virus

xor [si], sp
inc si
dec sp
jnz main

76 A Pathology of Computer Viruses

This decryptor generated a clear text byte by xor'ing the encrypyted byte by
its offset in the virus and the remaining number of bytes to be ~ecrypted. Thus:

Clear [i]-Crypt [i]®(start _ o[_virus _offset +i)®(length -i)

In general, encryption schemes rely on ciphers based on the Exclusive Or
operator. This method has the advantage that the decryption routine can be
used to encrypt, and vice versa. The following summary is based on work by
Fridrik Skulason:

Virus

Pretoria
July 13th
Slow
Cascade
Datacrime 11

800 virus
1260

SUOIni
Evil

Algorithm

Basic XOR with fixed value A5 hex
Basic XOR with a fixed value
XOR with a fixed value modilled on each infection
Complex XOR dependent on host length
Basic XOR with a fixed value kcy rotated right
by one bit after encryption of each instruction
includes code to detect single step of encryptor routine
Basic XOR with a key computed from XOR of virus body
Twin key XOR varying with instruction ofIset
including random padding of encryptor routine
Inclusion of random instructions at fixed offsets in encryptor
Basic XOR with a key computed from XOR of virus body
includes programmed modification of registers used during

Multi-level encryption may be included to complicate disassembly and
analysis. In this case the decryptor routine is itseif encrypted using a second
(possibly different) encryption algorithm.

The bulk decryptors normally mean that the unencrypted virus is visible in
main memory during the short window in which the viral code is active. The
. "ripple" decoder goes one stage further and minimises the window of
unencrypted virus visible in memory during virus execution. The decryptor
makes use of the 80X86 series single step/trace mode.

This mode is entered by setting the "T" status flag. After this flag is set the
80X86 will generate an interrupt after each instruction is executed. This allows
the ripple decoder trapping the single step interrupt vector to decode the next
instruction for execution. The previous instruction can be re-encoding or
purged.

One issue related to encryption is that of compression. Cohen cited the file
compression virus which appends to a host, compresses (using an algorithm
such as Huffman or Lempel-Ziv coding) the host to save disk space, and
arranges to decompress the host on execution. While a laudable aim, such a
method can be used to prevent any extension of a host file on infection. The
virus compresses the host using CI, basic compression algorithm, then creates a

Operation of pe Viruses 77

new executable comprising the virus (together with a host decompression
routine) and the compressed host data. When the resultant file is run the virus
spreads, then runs the decompressor to restore the host, and then runs the
host pragram. Result - no detectable increase in file size on infection.

A final twist in the use of cryptographic techniques is the feature built into
the "Vacsina" virus of using an error detecting Hamming code. This code
permits the virus to correct for up to 16 modified bytes in the virus. Thus
damage due to byte corruption in transit can be repaired, as can attempts by
inexperienced hackers to modify the virus operation.

4.12.3 Hiding of Viral Code

The viral code can be concealed in an area in which the BIOS or DOS does not
expect code to exist. Two examples are:

1. Use of track 40 or 80 on floppy disks - these can be formatted and used by a
boot sector virus to store its code sectors, or the displaced code sectors of the
host program or boot sector. The "Denzuk" virus uses this technique by
storing the original boot sector on head 0, track 40, sector 1-9 of the disko This
track is directly formatted by the virus prior to infection.

2. Use of unused space beyond the logical DOS end of file, but still within the
clusters allocated by the BIOS to the file. As cluster size increases (to allow
expansion of disk capa city without corresponding increase in FAT table size)
this residual space increases. Thus a 3300 byte file might consist of four 1024
byte clu,Sters (each comprising two sectors of 512 bytes), leaving 796 bytes of
spare space. This technique is used by the Number of the Beast virus. This virus
("512" virus) was discovered in January 1990 in Bulgaria. It intercepts the DOS
service interrupt (21h) together with the BIOS (13h) interrupt and critical error
handler vector (24h). The virus utilises two concealment techniques: first, the
virus conceals its code in the first DOS disk buffer in memory (rather than
allocating and attempting to conceal a memory contral block), and second, it
relocates the first 512 bytes of the infected COM file to beyond the logical end of
file (in free space at the end of the cluster), replacing it with it own viral code.
Infection of COM files occurs when a file is closed (int 21h function 3Eh) or is
executed (int 21h function 4Bh).

These locations are in addition to the use of free sectors (marked as bad by"the
virus to prevent reuse) and the use of files with the "hidden" attribute set in the
directory.

The DOS load and execute command will not of course load code concealed
in such areas. It is however possible to conceal a minimal virus code in a
program which then passes control to code which is in a concealed location.
Such an extension area may be shared between every copy of the infected file.
Naturally, the virus must carry the shared extension with it when copied to a
removable media.

78 A Pathology of Computer Viruses

4.12.4 Checksum Calculation

The EXE file and boot sectors contain a checksum of the associated program or
data sectoT. This checksum provides a primitive means of detecting file or
sector alteration. This can be coupled with checksums generated by proprie
tary anti- virus or security software. The virus must therefore attempt to
inelude dummy instructions to alter the infected file to possess a checksum
identical to that of the original file.

In the ca se of simple checksums such as the "XOR" or numeric sum of all
long words in the file this is unfortunately very easy. Such checksums can be
recognised and defeated. Computationally complex checksum algorithms may
prove difficult (or in the ca se of signatures based on public key techniques,
exceedingly difficult) to invert. Unknown (user specific) checksums are also
likely to be safe from viral forgery.

4.12.5 Prevention of Alteration Detection

The final approach, that of the viral 11 shell" , is to ensure that when an anti-virus
utility attempts to detect the alteration of a host it will not succeed. This is
achieved by interception of the DOS or BIOS interrupt calls executed by the
anti-virus utility, and the substitution of the unaltered host's details.

This ineludes:

• Interception of directory read calls, ensuring an unaltered timestamp or file
length is returned when the directory is read

• Interception of file read calls, ensuring that any checksum or signature
recognition utility opening an infected file will read aversion of the host
which appears to be uninfected

80th methods are adopted by the 4096 virus. This virus, one of a new generation of
Stealth viruses, is extremely difficult to detect since checksum utilities will always Te

. calculate the checksum based on the apparently unaltered host file.
The 4096 (IDF or Stealth virus) is a memory resident COMIEXE file infector

which was discovered in January 1990. This virus adopts a wide range of
concealment techniques, ineluding modification of the DOS (21h) handler by
inserting a jump to the virus code (thus avoiding detectable alteration of the
DOS vector in the interrupt vector table); interception of the find-first and
find-next directory access DOS functions (modifying the returned file lengths
to conceal the extension caused by viral infection); and also trapping the DOS
file open, causing temporary disinfection of the file (thus returning an
uninfected file to checksum and signature scanning utilities) which is then
reinfected on file elose. Infected files are flagged in the directory by the virus
changing their year to exceed 100 (e.g. 1990 is normally represented as being 10
years forward from 1980, i.e. value 10. When infected, the virus changes this to
110 in bits 9-15 of the date of last update directory field).

Operation of pe Viruses 79

Interception of BIOS sector reads was also used by the early Brain boot sector
virus to conceal its alteration of the boot sector. The virus trapped the BIOS
read disk sector function (02h) and returned the stored original boot sector for
all reads of head 0, sector 1, track 0 rather than the infected actual boot sector.

4.12.6 Concealment of Viral Code in Memory

This can be carried out by manipulation of the available system memory, by:

1. Reducing the physical memory seen by DOS - a common technique
amongst boot sector viruses which re du ce the physical memory reported by
the BIOS memory check, thus securing a safe area at the top of memory in
which to store viral code.

2. Utilising device buffers and operating system areas for temporary code
storage. This technique is utilised by the Number of the Beast virus described
earlier. '

3. Modifying the DOS memory allocation chain to reserve an area of memory
for the virus. This area can then either be unlinked from the allocation chain or
the MCB can be altered to make it appear to be an innocent DOS system block.
This technique is utilised by the Icelandic virus (and by the Dark Avenger virus)
which modifies the headers on the allocated MCBs. DOS arranges all memory
blocks into a pool chained together via a header field (the MCB). The MCB
records wh ether the block is the last in the chain, whether it has been allocated,
the size of the block and the owner of the block. The Icelandic virus, first
detected in June 1989, carries a dummy MCB within its code. This MCB appears

. to be the last in the allocation chain. The memory block of the host program is
then split into two blocks, one for the program and one for the viral code (which
is tagged using the dummy MCB). The virus can thus guarantee that when the
host exits, the memory block for the host will be released, leaving the virus (in
its own memory block) intact in memory.

4. Utilise "extended" or "expanded" memory which may not be subject to
checking by anti-viral products, although this will impact on the number of
hosts with the required configuration to execute the viral code. Extended
memory is memory in excess of the 1 Mb addressing range of the 8086
processor. It can be accessed by 80286 and later processors in protected mode.
Expanded memory uses a special driver to map pages of memory into the
normal memory space. The anti-viral program can be prevented from reading
memory occupied by the virus code. This method is exploited by the EDV boot
sector virus which uses the system dock interrupt to pass control to the viral
code. When active, the virus code inspects the system stack to determine the
area of memory referenced by the data and extra segment (OS and ES) registers
of the currently active application. If these point to the virus code segment in
memory the system is halted. Thus, any simple scan of memory to locate a
virus signature will cause a system lockup.

80 A Pathology of Computer Viruses

Finally, the virus may minimise the amount of unencrypted viral code in
memory through the use of ripple decoders, and may frustrate attempts to use
single step debugging by intercepting the single step and break point vectors.

4.12.7 Concealment of Viral Activity

The virus must conceal its use of the system to achieve replication. In this
regard it must:

• Conceal its alteration of the interrupt vector table
• Conceal disk activity resulting from the virus
• Conceal system slowdown resulting from the virus

The two cases the virus must protect against (regarding interrupt table
modification) are:

• The virus is active be fore the anti-virus utility - the latter can thus detect that
a non-standard interrupt vector is in place

• The anti-virus utility is active before the virus - - the anti-virus utility can thus
detect the alteration of the interrupt vector table by the virus, and intercept
the activity of the virus

In the first case the virus can directly modify the DOS or memory resident
BIaS components to pass control to the virus without altering the vector table,
i.e.:

21h

21h

The virus patches the DOS interrupt vector handler to branch.to the virus
code. The virus then executes, and returns control to the DOS handler. With
appropriate knowledge of the structure of a PC-DOS or MS-DOS release a virus
author can scan memory to accurately locate the start of the DOS handler. The
handler can then be modified in a manner transparent to the user. No alteration
to the interrupt vector table has been made.

Operation of pe Viruses 81

In the second ca se the virus attempts to bypass an anti-virus utility which has
intercepted the interrupt vectors:

21h

Anti-virus monitor active

21h

Simplistic virus is trapped by the anti-virus utility

The Icelandic strain 2 virus does exactly this by directly jumping to the DOS
handler routine in memory. The virus carries a set of recognition byte
sequences which allow it to identify the location of the DOS handler in memory
(for a variety of DOS releases). Once located the virus fakes an interrupt by
forcing the status register onto the stack and invoking a standard subroutine
caH to the DOS handler. This effectively ensures that when the DOS handler
exits with a "iret" instruction, the stack contents are identical to those
generated by areal interrupt.

21h

Icelandic strain 2 bypasses the filter by direc! call

FinaUy, a virus can indude its Own code to interpret the DOS file system
structure, allowing the virus to utillse low level BI OS caUs to carry out its

82 A Pathology of Computer Viruses

infection work, thus bypassing monitoring of DOS interrupt vectors. This
could theoretically be extended to include direct manipulation of the disk drive
controller in hardware. Such controllers support a comparatively high level of
functionality (normally including the ability to write particular sectors on
demand). A virus which directly manipulated hardware would of course be
specific to a particular platform or platforms.

4.12.8 Concealing Disk Activity

This is achieved by piggy-backing viral disk writes onto legitimate disk activity.
Thus the virus may queue an infection write until the user attempts disk 1/0
(thus preventing unexpected 1/0), or more subtly until disk 1/0 is attempted on
the same (or an adjacent) track. The latter method removes the final symptom
of viral disk activity -;- the unexpected skip to an unrelated track on disk - which
often causes an audible seek on the drive. Hard disk activity is normally
inaudible or barely audible and is less often the subject of elaborate
concealment.

A final aspect of concealment of disk activity relates to the concealment of
errors resulting from failed 1/0. These errors cause the "critical error" handler
to be invoked via interrupt 24h. This handler will normally cause the program
to be terminated and an error message to be displayed on the console. Critical
errors include attempting to write to a write-protected media. This error may
therefore be indicative of an infection attempt by a virus to a write-protected
media.

4.12.9 Concealing System Siowdown

In general the reduction in system performance caused by a memory resident
virus is not easily concealed. This can however by confused by a large number
of active user TSR programs. The process of virus replication can also be spread
over aperiod of time by basing the virus on a finite state machine in which the
virus cycles between passive directory search and active infection. This
technique was adopted in the Internet worm incident in November 1988. The
use of an abstract instruction set executed by an interpreter in the virus could
also allow such spreading of activity.

We have seen in detail how a virus can strive to conceal its presence. Chapter
5 gives a detailed review of the methods the user can exploit to detect even
these viruses. Each camouflage technique is analysed in turn, and a suitable
software or hardware counter measure proposed.

Operation of pe Viruses 83

4.13 Replication

4.13.1 locating a Host

To complete the section on PC viruses it is necessary to consider briefly how a
virus locates a new host to infect, and how multiple infection of hosts is
prevented.

The problem divides into:

• Boot sector and master boot record viruses

• Link (COM/EXE infecting) viruses

The boot sector virus must detect the insertion of a new media (floppy disk)
into the computer system. Since no media change detection facility exists on
the IBM PC system, the boot sector virus is forced to intercept all disk IIO. It
may then verify whether the boot sector is infected, and, if not, infect it.
Periodic attempts mayaiso be made to infect the media.

Master boot record viruses are normally capable of existing on boot sectors of
floppy media, as the incidence of hard media movement is very low. The
Bernoulli portable hard disk is, however, one such case.

Link viruses must locate uninfected EXE or COM hosts. To do so they can
rely on one or both of the following:

• Direct infection - the virus scans the disk directory hierarchy looking for
suitable hosts to infect

• IndiTect infection - when an executable file is accessed it is infected by the
virus

The indirect infectors are always memory resident since they must intercept
the DOS service interrupt. On ce resident, they can infect even when:

• A file is loaded for execution
• A file is opened, read or written

The former is the most frequent and is the method used by such common
viruses as Israeli and Cascade. The latter is extremely dangerous as it can lead
to exceptionally rapid proliferation. This method was utilised by the Dark
A venger virus with the result that many early anti-virus scanning or checksum
ming programs caused infection of aB executables on the system.

Both infection methods opera te by interception of DOS functions, namely:

Function OFh
3Dh
4Bh

Open file (FCB)
Open file (handle)

Execute file

The name of the file being opened is passed as a parameter to these functions

84 A Pathology of Computer Viruses

(either by an address register reference or in the 11 file control block" (FCB». The
virus can thus either: .

• Store the name of the file being opened and use this to open and infect the
file (now or at a later time)

• Execute the DOS ca11 on behalf of the user and use the open file handle or
FCB to perform the infection. The handle or FCB is then retumed to the user
making the ca11

The equivalent of a indirect infector in the boot sector or master bootrecord
ca se would be the virus in which operations accessing absolute disk locations
are trapped and cause infection, especia11y those accessing track O.

Direct infectors may be either resident or tran sie nt. These viruses operate by
scanning a11 or part of the disk directory hierarchy in search of suitable hosts.
These viruses show a wide variation in rate of file infection, extent of search,
choice of target directories and delay in infection.

Searching of the disk hierarchy is carried out using the DOS directory search
ca11s (i.e. functions 4E and 4Fh), which a110w the use of complex regular
expressions for file names (a11owing restriction to specific types of file). The
virus may terminate a search, delay for a few minutes or until heavy disk 1/0 is
in progress and then restart. Only the current directory may be searched, a11
directories in the executable file path (variable in the environment), aselection
of common executable directories (such as bin, dos, util) or the entire file
system may be searched. In a similar manner a11 disk drives may be searched,
only hard drives or a selection.

Direct infectors can cause considerable system infection even on lightly used
personal computer systems. Indirect infectors norma11y infect only a com
monly used sub set of commands such as DOS utilities, pro grams under test,
word processors, databases and spreadsheets. Both forms of virus can be
modified to bias the infection towards particular forms of file, e.g.:

• Recently alte red utilities

• EXE only or COM only
• Files sufficiently large to conceal the viral code addition

• Proprietary files from a specific company

4.13.2 Signatures

To avoid continual re-infection (and consequent uncontro11ed growth in file
length or depletion of system memory) most viruses exploit a "signature"
which indicates that the file or system memory block has been infected.
Examples of such signatures include:

• File characteristics (used by parasitic or link viruses):

Operation of pe Viruses 85

(i) Particular byte or series of bytes at a known location - normally at the start
of the virus if a prepender, or at the end if an appender. This allows the virus
to check wh ether these bytes are present at a known offset from the start or
end of the file.
(ii) Information in the directory entry - including the use of an impossible
seconds value in the time of last alteration field (Vienna virus), use of
exceptional value in the date of last alteration field (4096 virus), use of
reserved file attribute bits (bits 6 and 7), use of the reserved information field
(10 bytes). By using such information in the directory a virus can avoid the
overhead of actually opening the potential host' s code file to check for
infection. For example, the Datacrime 1A virus strain uses a complex
signature which utilises both the minutes and seconds fields of the time of
last alteration in the host' s directory entry. On infection, the last three bits of
the second field are set to be equal to the three least significant bits in the
minutes field, bits 3 and 4 being set to o.
(iii) Information in the file header - in the case of EXE files field such as the
checks um (Israeli virus = 1984h, Fu Manchu = 1988h), minimum para
graphs required field, and the reserved space between header and start of
relocation table.

• Memory characteristics:
(i) Particular byte or series of bytes in a known location - normally used by
boot sector viruses which can guarantee to load at top of memory, or
possibly in unused or non-critical system variables.
(ii) Presence of one or more special interrupt vectors or functions of standard
DOS vectors provided by the resident portion of the virus. An example is the
Israeli virus, which uses a number of special functions available via the
standard DOS interrupt vector (21h), namely: function DDh causes the
resident portion of the virus to relocate an infected host program so that the
host's main program can be run; function DEh comprises redundant code to
execute the same operation for EXE files; function EOh returns the version
number of the virus in register AH.
(iii) Modification of amount of available system memory or DOS memory
control blocks .

• Disk characteristics (used by boot record viruses):
(i) Particular bytes or series of bytes at a known location - normally an offset
at a well-known absolute sector location.
(ii) Reserved information field in the bios parameter block (BPB). The BPB
contains detailed information on the structure of the disk, sectors per track,
tracks per disk, etc. It includes a number of reserved fields available for viral
use:

DOS version
2
3
4

Offset
15h
19h
2Bh

Size
11 bytes
7 bytes
8 bytes

86 A Pathology of Computer Viruses

Signatures prevent continual re-infection, thus making the virus more
difficult to detect (i.e. less obvious disk activity). Once recognised, they can
provide a convenient recognition method for virus scanning utilities (although
one which is often subject to trivial change by a virus modifier).

One interesting implication of including signatures at fixed offsets from the
start or end of file, is the inability of viruses to correctly recognise files infected
by multiple viruses. For example, in the case of the "10 005" virus incident, the
system was infected by the Jerusalem and "Plastique" viruses. The Plastique
virus adds itself to the beginning of the executable file. Then the Jerusalem
virus inserts itself at the beginning, moving the Plastique virus to make room.
The Plastique virus again examines the file, looking for its signature at a fixed
offset, fails to find it (since Jerusalem has relocated the original Plastique virus),
and thus decides to infect. The file therefore ends up being extended by 10 000
bytes plus the 5 byte Jersualem signature (10 005 bytes). This story has two
noteworthy features: first, when two or more viruses are active all sorts of
composite infectiops can occur; second, when disinfecting a file do not assume
it is clean when a single virus has been removed - always rescan it.

4.13.3 Miscellaneous lopics

Finally, to end this detailed review of computer viruses on the IBM PC
platform, it is worth mentioning a few unusual forms of virus.

4.13.3.1 Corresponding File Virus

A "corresponding file", "companion" or "spawning" virus makes use of the
way in which DOS selects between a EXE or COM file with the same base
name. DOS will always select the COM file in preference to the EXE file, if one
exists. This technique is used by the "AIDS 2" virus, discovered in April 1990.
The virus places its code in a COM file with the same base name as the EXE
being infected.

When the user tries to run the EXE he will instead run the viral COM file,
which will playa melody, and then display the text:

Your computer is infected with
Aids Virus 11

- Signed WOP & PGT of DutchCrack -
before executing the original unaltered EXE file. When the user pro gram exits
the virus will again activate and display:

Getting used to me?
Next time, use a Condom

The corresponding file technique can be generalised to describe any "virus"
which operates by including its code earlier in the search path of DOS. This
includes creation of a file in a directory in the "P ATH" searched prior to the

Operation of pe Virus es 87

target file, or in the above case use of the fact that COM is always tried as a
suffix prior to EXE.

4.13.3.2 SYS Virus

This virus, reported in an early Homebase virus listing, is a boot sector infector
which, when active in memory, will detect any attempt by the user to execute
the "SYS" DOS command. This DOS command will write an uninfected boot
sector, together with MSDOS.syS and IO.SYS files to the specified drive. The
virus detects the attempt to use the SYS command and then emulates the text
messages normally produced by the program.

4.13.3.3 Multi-vector Viruses

The traditional distinetion between boot sector and parasitic/link viruses has
been blurred by the arrival of multi-vector viruses which can propagate both
via boot sector and infection of COMIEXE files. The first example of this trend
was the Ghostballs virus.

The Ghostballs virus was discovered in October 1989. This virus is a transient
(non-resident) COM infector. In addition, the virus will overwrite the boot
sector on disk with a modified version of the Italian (Bouncing Ball) boot sector
virus. After boot sector disinfection any execution of an infected COM file will
cause re-infection of the sector. It is a sm all step to a generalised multi-vector
virus capable of propagating both via EXE/COM infection and via boot/master
boot record propagation.

A fully operational example of a multi-vector virus is the 1253 virus. The 1253
virus, isolated in August 1990, infects four types of object code: the master boot
record, DOS boot sector, COMMAND.COM, and COM executable files. The
virus will become memory resident when an infected COM file is executed and
will intercept interrupts 08h, 13h, 21h and 60h, installing itself as a system TSR.
The TSR is 2128 bytes in length. At the time at which the virus becomes resident
it will attempt to infect the master and DOS boot sectors. Other diskettes
accessed when the virus is active in memory will also be infected. When the
system is booted from a disk containing the virus in the master or DOS boot
sectors, the virus becomes resident in high system memory, reducing the
available memory by 77840 bytes. The virus will then attempt to infect any
COM programs executed.

4.13.3.4 Multi-architecture Viruses

It is also worth noting that the trend to permit other hardware architectures
(such as the Atari ST) to read DOS formatted disks has led to the risk of multi
architecture viruses. Since both the Atari ST and IBM PC will read a boot sector

88 A Pathology of Computer Viruses

from a DOS formatted disk and attempt to execute the incorporated code, it
becomes possible to produce a boot sector virus which will spread on both
systems. The significant difference between architectures is of course the use of
the Intel80X86 processor on the IBM PC, and the Motorola 68000 processor on
the Atari. Tailoring of the initial jump instruction in the boot sector can produce
an instruction sequence which will read:

Hex Motorola 68000 Intel 80386

60 BRA.S PUSHA
90 offset NOP
EB JMP
XX offset
XX offset

This instruction sequence allows two separate jumps to be incorporated
within the available 11 bytes, thus splitting flow of control in two ways,
depending on the executing processor.

4.13.3.5 Architecture Dependent Viruses

The opposite to a multi-architecture virus must be the extreme examples of the
IBM PC-DOS viruses which will not execute on different processor chips (8086,
80286, 80386 and 80486). This non-operability may be caused by the use of
extensions in the processor instruction set or in the case of the "Yale" virus by
its use of an instruction marked as "undefined" in the 8086 set.

The 8086 processor (despite Intel specification that the instruction code was
not used) interpreted instruction code OF as being POP CS. This caused the
virus (which relied on the instruction) to fail on 80386 processors. The latter
processor had used the code as an escape to a two byte enhanced instruction
set.

The original Yale virus thus caused an invalid opcode exception when run on
a 80386 processor. The virus had thus become obsolete through the introduc
tion of new (and not strictly backward compatible) hardware.

A similar example is the use of the "MOV CS,AX" instruction by the Italian
virus which was permitted on the 8086, but trapped as illegal by the 80286/386
processors.

Other examples are viruses which exploit less obvious features of the
processor architecture such as the instruction pre-fetch queue or pipeline. The
virus modifies an instruction which is immediately in front of the instruction
being executed. This will cause the virus to execute the unmodified instruction
(since this has already been fetched by the processor and is awaiting
execution). Disruption of the flow of control (such as might be caused by single
step debugging) will flush the pipeline, and cause the virus to execute the

Operation of pe Viruses 89

modified instruction. The length of this pipeline varies between processors.
Examples are 4 bytes for the 8088, and 6 bytes for the 8086.

Chapter 5

Management of pe Viruses

5.1 Perspective on Security

In Chapter 4 we painted a bleak picture of the wide range of camouflage
techniques and replication strategies adopted by PC viruses. In this chapter,
methods to prevent, contain and re cover from computer virus infection will be
discussed. Together, these methods provide comprehensive protection from
significant damage to vital programs and da ta from virus (and trojan horse)
activity.

The first important point to note is:

A trade-off between security and convenience always exists

A possible means of preventing computer virus infection would be a PC with
a pre-formatted and installed hard disk, no floppy drives and anti-tamp er
alarm systems. This has significant disadvantages, namely:

Inability to install or transfer data and programs

In some environments such an inconvenience may be acceptable; in others it
is crippling. The extent of the anti-viral precautions adopted by an organisation
is a management decision. Such adecision must be based on:

• An estimate of the risk of data and program corruption by viruses
• The financial cost of such damage to the organisation
• The recurrent financial cost of regular anti-virus measures

In most circumstances, organisations may accept an element of risk to
minimise security overheads and employee inconvenience. At the moment,
when considering each proposed policy, ask:

Do the advantages of this policy justify its implementation costs?

5.2 Components of a Virus Control Scheme

The components of an organisation's reaction to computer viruses can be
divided into:

92 A Pathology of Computer Viruses

• Prevention
• Detection
• Containment
• Disinfection

• Recovery

Prevention of a virus refers to precautions such as controls on software run
on test systems, physical and electronic security controls on external software
installation, policy constraints on shareware and public domain software, and
user education in software use and clean machine practices.

Detection of a virus refers to the careful monitoring and logging of
anomalous system activity, together with the use of a range of anti-viral and
software integrity verification schemes.

Containment refers to the establishment of clear procedures for reporting of
viral infection, controls instigated when a virus is detected in an organisation
and the establishment of skilled anti-virus groups within the organisation.

Disinfection refers to the removal of all viral material from the organisation' s
computer systems through the reformatting of disks, removal and re
installation of software or the use of specialist viral disinfection tools.

Recovery refers to the ability of an organisation to restart vital work
disrupted by the virus, including the ability to restore potentially damaged
data from archive materials. Techniques such as redundant copies of data files,
standby systems and careful contingency planning are all part of an organisa
tion's recovery plan.

Management plans must also address issues such as the maintenance of
public confidence in an organisation after a viral attack.

5.3 Prevention of Virus Attack

Viral infection can be prevented by controlling the ingress of viral material into
the controlled environment which represents the company computers. Such
environments can be broad, encompassing the entire company (including PCs
removed by the user for horne working), or restricted, covering a minimal
range of PCs in a controlled access and closely supervised area.

In general such environments are structured in a hierarchy of risk:

• Universal- all computer systems with unrestricted software use and traffic
• Horne use - computer systems taken off the corporate site or outside

corporate control, Le. horne use of company PCs

• Corpora te use - computer systems physically restricted to the corporate site
but with no forms of access control

• Restricted use - computer systems restricted to the corporate site and
employing a range of access controls and subject to supervision and auditing

Management of pe Viruses 93

As the value of the data stored on systems increases, or the imperativeness of
retaining uninterrupted operation increases, so increasingly restricted
environments must be established. Software flow either physically (via media
transportation) or electronically (via networks) must be restricted to preserve
the integrity of the environment.

To prevent a virus attack, we can constrain the propagation of viral code
using a wide variety of methods. These may be divided into three categories:

• Physical constraints on the movement of viral code via media (or personneI)
between environments

• Electronic constraints on the communication of viral code via networks
• Ideological constraints on the desire of the user to initiate either of the above

5.3.1 Physical Access Constraints

The most effective way to prevent viral code spreading is to isolate systems
pl}ysically and electronically, then to control the movement of viral code either
via media (floppy disk, tape, removable hard disk, CD-ROM etc) or personnel
(through entry by keyboard or OCR). This can be achieved by:

1. Physically segregating PCs - restricting access to the PC by lock or guarded
access control point. Depending on the installation, this can include drastic
measures such as "mantrap" access gateways under human supervision with
electronic card locks and personal code entry. In general, such measures are
only appropriate when:
(i) Data integrity is vital (e.g. finance or banking)
(ii) Prevention of denial of service is vital (e.g. air traffic control)
(iii) Data confidentiality is vital (e.g. military)
Less stringent physical segregation may just consist of preventing PCs being
removed from the corporate office by suitable alarm mechanisms, thus
restricting the opportunities for installation of alien software.

2. Media transportation controls - such as physically searching employees
entering or leaving the secured environment, or through the use of detectors
capable of signalling the passage of a metallic media (such as the ferric and
chrome dioxide coating on magnetic disks, or the metallic backing plate on
quarter-inch cartridge tapes).

3. Minimisation and centralisation of replaceable media - this technique
involves restriction of the number and location of machines with removable
media. This sub set of machines is placed under careful supervision and
contro!. From these machines software is transferred by network to the hard
disks on other machines for day-to-day use. (Naturally this has the disadvan
tage of rapidly spreading infection should an infected program bypass the
careful checks.) ,

94 A Pathology of Computer Viruses

Serverwith
bulk disk

Secure gateway
with floppy

drive

Oient disldess
machines

Physical access
control barrier

4. System operation constraints, such as the inclusion of physicallocks which
prevent the machine being opera ted by unauthorised personnel (preferably
not easily bypassed by shorting two wires when the IBM pe case is open,
possibly enforced by tamp er resistant casings and alarm mechanisms). Access
to the media mayaiso be restricted by locks preventing access to floppy or tape
drives.

5. Network security constraints - restricting access to, and tampe ring with,
networks through the use of such methods as:

(i) Pressurised ducting, with pressure drop detectors and alarms

(ii) Line characteristic monitors, capable of detecting breaks (such as unplug
ging of an Ethernet connector to insert a tap) or changes in line capacitance or
inductance caused by such a tap

(iii) Minimising cable in vulnerable or accessible locations

5.3.2 Electronic Measures

A wide variety of electronic access restriction and user authentication
. techniques exist, many of which can easily be adapted to the personal
computer environment. They form a less onerous, although less foolproof,
alternative to physical constraints.

In many cases an expert can circumvent electronic access control mecha
nisms by exploiting known bugs or loopholes in the mechanism.

Electronic access control is based on three characteristics of the user:

1. What the user is - physical feature verification.
2. What the user knows - knowledg€ verification.
3. What the user has - possession verification.

The most common techniques are adopted from groups 2 and 3, since such
knowledge or possession can easily be confirmed electronically. Unfortunately
such knowledge or possessions ca,n easily be transferred, making these checks
easy to circumvent.

Management of pe Viruses 95

Group 1 mechanisms are most difficult to forge (consider the difficulty in
forging a fingerprint to gain such access) but are still in the development phase.
They are often unreliable and error prone, causing the following types of errors
at a rate which is unacceptable:

• Accidental permission of access to an unauthorised person
• Accidental denial of access to an authorised person

The mechanisms mayaIso involve considerable personal inconvenience or
prove ideologically unacceptable (i.e. all employees must be fingerprinted for
recognition) .

5.3.2.1 Physical Feature Verification

Examples in this group include (in order of inconvenience):

• Retinal pattern recognition - recognition of the pattern formed on the retina
of the human eye by blood vessels, normally involving personal inconve
nience although difficult to forge

• Fingerprint recognition - often ideologically unacceptable
• Voice recognition - unreliable and easily distorted by stress or illness
• Reaction time recognition - insufficiently discriminating in isolation; nor

mally coupled with password entry using typing rate analysis
• Facial recognition - unreliable and easily distorted by facial hair, tanning or

make-up

5.3.2.2 Knowledge Verification

Into this category fall the bulk of all computer user authentication schemes. The
verification of knowledge can take the form of:

• Passwords
• Pass phrases
• Background his tory enquiry

These include the installation of password checkers on IBM systems.
Obviously, an authentication mechanism must be in place as soon as possible
in the boot sequence, and should be tamperproof. In this respect the
authentication system should be in ROM, or incorporated into the master boot
record on the hard disk or network server. It must be secure against being
bypassed by:

1. Insertion ofbootable floppy media (which will be selected prior to execution
of hard disk initialisation code).

2. Abort sequences such as Ctrl-Alt-Del and Ctrl-C from the keyboard.

96 A Pathology of Computer Viruses

3. Execution of a command sequence from a trojan horse pro gram run under
the control of an authorised user, such as the installation of a "trapdoor"
wh ich can be utilised by an unauthorised user.

A number of IBM PC authorisation mechanisms have flaws which may allow
them to be bypassed. This is one case of a general problem related to tampering
with system software. It is preferable from an integrity viewpoint to incorpor
ate as much as possible of the system boot and initialisation code into ROM.
The incorporation of the BIOS, DOS and COMMAND.COM into ROM would
ensure a clean system environment at boot time (up to the point at which the
user invoked a non-built-in command from the command interpreter). Even in
such ROM based systems (such as the Atari ST and newer Mac OS releases)
facilities normally exist to override components of the ROM code to allow the
installation of system patches and upgrades. The additional incorporation of
the authentication mechanism into ROM would ensure that only initial
authorised use would be permitted. On ce an authorised user was active he or
she might inadvertently introduce a trojan horse or virus infected utility into
the clean environment. The issue of ensuring software integrity is addressed in
the Biba extension to the Bell-LaPadula security model dealt with in Chapter 7.

5.3.2.2.1 Passwords

The password is the principal method of authenticating a user in most systems.
A wide range of guidelines exist (such as the DOD password management
guideline) on the choice of passwords. A well designed password control
system would include:

• Restriction of acceptable passwords:
(i) to be in excess of a minimum length
(ii) to be chosen from a rich character set (multicase and alphanumeric)
(iii) not to be related to the user's login name or real name
(iv) not to appear in the standard English dictionary
(v) not to be a pronounceable word through restriction on the trigrams (groups
of three letter combinations) appearing in the word to those which do not occur
in the English language
• Reduction of system information wh ich might allow passwords or logins to

be guessed:
(i) avoidance of system login banners and welcome messages, which might
permit identification of the type of operating system and thus derivation of the
characteristics of typical passwords
(ii) non-repudiation of invalid logins until a password has been entered,
prohibiting a rapid search for possible logins
(iii) insertion of a time delay into the password verification routine, thus
delaying a response until a number of seconds after password entry which
reduces the rate at which login/password doublets can be tried

Management of pe Viruses 97

Passwords can be extended to include complete phrases or sentences, thus
allowing further complexity and increasing the search space for password
guessing. Such pass phrases may still be comparatively simple for the user to
memorise. Finally, the password mechanism can include an analysis of typing
rate and inter-character delays (offering limited physical feature verification).

5.3.2.2.2 Background Veri/ication

The user may be queried during the login session to determine his identity.
Such queries can be genera ted from a system database of personal information,
e.g. the infamous example used by some credit card firms: What is your
mother's maiden name? This method has fundamental drawbacks:

• Personal resistance to compilation of such a dossier and its storage on
computer (including the implications of the Data Protection Act)

• Limited background research by unauthorised users (who may be a friend or
relation of the legitimate user) can allow the correct answers to be discovered

5.3.2.2.3 Other Techniques

A twist in the knowledge verification technique is to require the user to
memorise a simple algorithm. Achallenge issued by the system is transformed
by the user (using a stand-alone system or calculator) under the known
algorithm. The response is then entered at the keyboard and is verified by the
system.

5.3.2.3 Possession Veri/ication

The final category involves such systems as magnetic card or badge readers
attached to the computer system. These are, however, easily duplicated, stolen
or borrowed by other users. The use of complex patterns of magnetic flux
intensity can complicate the duplication process. Possession verification
includes the issue of "boot disks" without which the system is unusable
(although this is a potential channel for the introduction of viral code in the
form of the boot sector virus), and of software protection "dongles". The
dongle is a hardware module attached to an external system interface (possibly
in the form of a compact "smart" card) which in its simplest form comprises a
PROM readable by the host. More complex varieties include stand-alone
cryptographic modules which can be "challenged" by the host and will return
an encrypted version of the host' schallenge for verification.

5.3.3 Media Access Controls

The previous methods have concentrated on the restriction of personal use of
the computer system. Virus code can also be restricted by limiting the loading

98 A Pathology of Computer Viruses

of code from physical transportable media. Examples include:

• Restricting automatic loading of code on media insertion ,
• Checksumming or scanning for viral code on all inserted media
• Prevention of unauthorised software installation

A major problem on the Macintosh series has been the WDEF virus. This
virus appears in a configuration file on each disk known as the "Desktop". This
file controls the placement of ieons and windows on the screen and permits the
location of application programs via a four-byte signature. This file is
automatieally included in the code search path when the disk is inserted into
the system, thus causing the implicit loading of the viral code in the WDEF
virus infected Desktop. In the IBM PC, and other related systems, which are
incapable of detecting media changes (i.e. removal or insertion of a floppy disk)
such implicit loading is fortunately not a problem.

The integrity of the inserted disk can be automatically verified if the medium
carried a unique value identifier. The identifier may comprise either aserial
number (e.g. the Atari ST disk BPB) or a value identifier (in the Mac volume
information block or IBM PC root directory). Unfortunately IBM PC systems
have not adopted a standard convention regarding volume labels, and these
are often duplicated across disks or missing entirely.

If a disk change can be identified (which may not imply automatie loading of
code on media change) the system can: .

• automatically calculate a checksum over the boot sector, directory informa
tion and disk areas then verify this against a checks um stored on the disk, or
in a master directory in the hard disk

• automatically scan for known virus signatures or code within the executable
files on disk

An example of such an automated scanner is the desk accessory "Virus
Detective" on the Macintosh. This is capable of detecting disk insertion, which
causes a scan for aseries of search strings (defined using a simple but flexible
definition language).

5.3.4 Network Access Controls

The preceding sections have dealt with physical and electronie user authentica
tion and media authentication. In the modern corporate environment many
systems are interconnected via local and wide area networks such as Ethernet
and X25. It is common practice to provide a wide range of services from remote
sites, including login and remote execution of code or utilities.

Networking increases the potential for unauthorised access, and permits the
rapid spread of viral code. The partieular problems posed by networks are:

• Identification of access channels

Management of pe Viruses 99

• Distributed trust
• Centralised network file servers
• Network transport by public carriers

5.3.4.1 Identification of Access Controls

A number of alternative routes normally exist by which code can be transmitted
across the network either for local storage (with delayed execution via a trojan
horse mechanism) or immediate execution under remote control. The identi
fication of all possible channels, together with their audit and control is vital.
Typical channels include:

• Remote logins or command shells
• Remote file transfer or access facilities
• Remote code execut~on or procedure call
• Electronic mail facilities

Other network services providing restricted services may be open to
subversion bugs and loopholes in the (often highly privileged) utility providing
the service.

A gateway or gateways should be established which represent the interface
between the outside world, external corpora te sites and local networks, e.g.:

Public
Network

Gate~ay
Gat~way

. . ··········LöCär··········
Area

Network

Corporate
Network

Such systems tend to implement enhanced security and integrity controls,
including extensive auditing and monitoring of network traffie. Such monitor
ing often includes expert systems to identify anomalous activity which may be
characteristic of a security breach.

5.3.4.1.1 Centralised Network File Servers

Similarly, central file servers may be established on LANs to allow attachment

100 A Pathology of Computer Viruses

of diskless machine nodes, or sharing of specialist software. Such servers offer
a haven for viruses, which may replicate rapidlyon the server machine. The
infected server may then spread the infection to the dient machines which it
serves (the infected binary being transferred from the server for local execution
on the dient machine). Having spread to the dient, the virus may spread
normally amongst the local media of the client.

Servers must therefore exercise a high level of security controls, induding
extensive anti-viral and checksumming software, security measures in the
form of discretionary or mandatory access controls, physical access controls to
the server, and careful monitoring of the server.

With careful control, the server can provide an assurance that the system and
application software remains uninfected (induding that run on diskless dient
machines). Obvious measures are:

• Use of an alternative operating system on the server to prevent infection of
the server through execution of viral code introduced from a client system

• Write-protection of all executable files, with limited dient rights to modify or
remove the write-protection attribute

5.3.4.1.2 Distributed Trust

Network systems often make use of less stringent access controls between
nodes on local networks, and between trusted nodes such as related or
customer firms. This can lead to the establishment of a hierarchy of trust in
which:

Node A trusts Node B, Node B trusts Node C, etc.

A viral infection of node C can therefore spread rapidly through the remote
execution of code on node B und er the control of a user on node B, and thence
to node A. In a similar manner a virus executing on node C can copy its code to
the file system on node B, from whence it may execute and copy its code to
node A. This bi-directional propagation of trust is a typical feature of traditional
discretionary access models. Thus, complex multi-link infection paths can
exist, often leading to infection of distant machines which are not trusted by the
source machine (except indirectly).

5.3.4.1.3 Network Transport by Public Carrier or Accessible Media

Finally, consideration must be given in high security environments to the
accessibility of all communication channels linking secure systems. On
broadcast network systems (such as Ethernet CSMNCD) any node is capable
of intercepting packets destined for another node (a confidentiality risk), or of
injecting packets appearing to originate on another node (an integrity risk).

Management of pe Viruses 101

Thus an untrusted node can intercept arequest to load a remote file, and can
transfer a virus infected file in its place.

Where a network is routed via a public space, or indeed over intermediate
public carriers (PTTs), it becomes possible to intercept a file transfer request
destined for a remote system. Such arequest can then be answered by the
untrusted intercepting system.

A number of digital authentication schemes can be adopted based on public
key cryptosystems such as RSA prime factoring algorithms. The interested
reader is referred to Appendix 16 for details of suitable further reading.

5.3.5 Ideological Controls

Anti-viral techniques require the co-operation of the user community in
observing:

• "Good" software policies
• Use of technical anti-virus utilities
• Monitoring of anomalous system behaviour
• Reporting of possible viral infection

This co-operation is vital and can only be achieved through careful
management of personnel - a mixture of education, involvement and
supervision. It is not sufficient to educate users in the technical aspects of anti
viral software utilities without addressing the rationale for such inconve
niences. It is vital that the potential for viral damage is described (possibly
using illustrative case histories), and that measures are taken to ensure that
employees realise that they have a responsibility for viral protection and can
take an active role in detecting and destroying this menace.

The principal ways of establishing user acceptance of good anti-viral policies
are:

• Education
• Motivation
• Supervision
• Discipline

5.3.5.1 User Education

A wide range of training materials are now available from commercial security
firms such as Sophos, S & SInternational Ltd., ISIS or the Federation Against
Software Theft (FAST), including provision of instructional seminars, demon
strations of computer viruses, information packs, software documentation and
news bulletins. Contact addresses for these organisations are given in
Appendix 14.

102 A Pathology of Computer Viruses

Training tends to split into three phases:

1. A basic introductory course - for end users.
2. Detailed technical courses - for systems programmers and administrators.
3. Management overviews - for senior management and executive levels.

A typical two-day introductory course might comprise:

• What is a virus? Terminology, descriptions of trojan horses, logic bombs,
viruses and worms

• How does it operate? Brief overview of how a virus spreads in the PC
environment, examining a few selected viruses, possibly with a demonstra
tion of viral spread (preferably simulated)

• What damage can it do? Look briefly at the damage caused on activation.
Show how da ta and program code may be destroyed and indicate the cost of
suchdamage

• How do we prevent it? Describe good software practices. Describe technical
preventive measures and demonstrate use of selected in-house anti-virus
software. Backup and integrity policies

• What to do when a virus is detected? Corporate reporting procedures.
Recovery procedures: re-installation and disinfection. Public relations and
legal aspects

During the entire course the corporate data security policy (described below)
must be stressed. As much visual material as possible should be used,
including demonstrations of viral activation, hands-on use of anti-viral
software, etc.

Unfortunately, there is a need for accurate simulations of the behaviour of
anti-viral products on detection of a virus. In this respect, harmless simulators
can be constructed which:

• Demonstrate the virus' obvious symptoms, such as characteristic screen
displays, musical effects, etc. Such simulators can also simulate the growth
of files on infection and change in file characteristics

• Cause activation of the "Alert" messages on anti-viral products (by
simulating an attempt to write to an executable file, for instance)

In some cases a need may exist for the use of live (unattenuated) viruses,
although this should be carefully considered and minimised to reduce the risk
of accidental spread to live corporate systems (or indeed copying by partici
pants on the training course). In the event that such a potentially risky
demonstration is undertaken, always:

• Backup all data on hard drives
• Select a number of scratch floppy disks for demonstration use, and clearly

label them as "infected"

• Segregate the demonstration system both physically and electronically

Management of pe Viruses 103

• Supervise the infected machines at an times; do not permit anyone to insert
or remove media while the machine is infected

• After the demonstration switch the machine off and leave for at least 30
seconds. Switch on and boot from a "clean" write-protected copy of the
system master boot disk

• Reformat an hard drives (using a clean copy of the formatter program),
preferably at low level. Altematively, always rewrite the master boot record
for each physical drive

• Erase (using magnetic flux coils) or destroy an removable infected media
• Maintain a careful watch on an systems for aperiod of time after the

demonstration

Normany such demonstrations are of limited use (other than the glamour of
handling live viral material), and are best left to specialists.

Technical courses are appropriate only for personnel who need to know the
details of viral replication and of the detailed operation of anti-viral measures.
An example might be the virus control or personal computer security group
within a firm.

The technical course might also be held over two days (preferably on
completion of the end user course), and might include:

• Detailed examination of how viral code can be executed, i.e. the boot
sequence

• How a virus replicates, i.e. patching of binary files by link viruses
• How a virus remains active: terminate and stay resident methodologies
• Detailed examples and descriptions of the operation of common viruses,

such as Israeli, Cascade, Brain, Italian, WDEF and n VIR
• An examination of the operation of anti-viral software products: checksum

ming, vector interception and signature recognition (including
shortcomings)

• Re-installation and disinfection of infected systems
• A hands-on walk-through of the detection, analysis and disinfection of an

infected system
• Possible panel or discussion session on future trends and developments in

virus technology - always interesting, often worrying

The final form of course is aimed at senior management and thus has a risk
assessment, public relations and legal aspects bias. Such a course might run
over one day and cover:

• General introduction to computer viruses - intro du ce the concept and give
examples of damage caused to affected organisations, including illustrative
media coverage

• Risk assessment - if possible, give illustrative statistics on the risk from
computer viruses, and review the potential seriousness of damage to
corpora te data, denial of service or data compromise

104 A Pathology of Computer Viruses

• Corporate policy - outline the corporate data security policy and detail the
management and procedural structures in place to handle virus infection

• User education - detail the education programs available within the
company, and the emphasis during induction courses

• Public relations - detail the handling of reporting to the press, relations with
clients, reporting to official organisations and dissemination of information
within the organisation

• Contingency planning - detail the corporate data recovery policy and the
contingency plans available to permit data recovery and uninterrupted
operation

• Discipline and legal issues - discuss the contractual recourse against guilty
employees, and the corporate policy on initiation of legal proceedings
against employees or outsiders guilty of virus or trojan horse introduction

The flavour of each course is very different, and in each case the material and
style of presentation are highly biased towards the audience requirements.
Brainstorming and active participation is vital.

User education does not finish with the introductory course - it is an ongoing
activity seeking to continue the high profile of software security measures as
well as informing users of new trends in viral threats.

A large number of specialist magazines are available for technical staff, such
as Virus Bulletin, Virus News International, Computers and Security and Computer
Fraud and Security Bulletin, together with detailed reference listings and
catalogues of known or reported viruses, such as the University of Hamburg
virus catalogue, Homebase Bulletin Board catalogue, Virus Bulletin catalogue,
and the Dirty Dozen trojan horse listing.

A similar range of electronic discussion forums deals with reporting of new
viruses and discussion of the general field of anti-viral measures. The principal
forum, Virus-I, is co-ordinated by Ken Van Wyk of CERT.

These detailed discussion forums are often inappropriate for end users and
management, who may benefit from a precise or abstract service. This service
might take the form of a monthly electronic mail bulletin, occasional warning
circulars or a column in the company magazine. Such bulletins may contain:

• Warnings of new viruses or errant software

• Notices of upgrades to selected anti-virus software

• Changes in, or reminders of, corporate data security policies and standard
anti-virus procedures

• Contact numbers of people in the reporting chain for virus discoveries or
who can provide technical advice

• Dates of anti-virus courses and descriptions of educational resources

Management may benefit from a similar condensation including revised risk
assessments and changes in current legislation.

Management of pe Viruses 105

5.3.6 Management Policies

This seetion is eoneerned with the detailed measures available to reduee the
threat of computer viruses (and trojan horses). From it ean be extracted a
management poliey framework. Such policies must be tailored to the individ
ual needs of the eompany (including an assessment of the value of the
eompany's data and eomputing resourees). Aspects of a poliey include:

• A general statement of the eompany's desire to ensure the seeurity and
integrity of its eomputing systems, normally signed by the managing
director or eompany chairman

• Poliey on training and edueation of employees
• Poliey on anti-viral measures, including:

(i) Use of external software
(ü) Use of teehnical anti-viral measures and software
(üi) Reporting of viral infeetion
(iv) Establishment of a group with special responsibility for viral advice and
disinfeetion

• Publie relations poliey
• Disciplinary and legislative poliey
• Poliey on eontingeney planning for data recovery

Such an anti-virus policy will normally form an integral part of the broader
general eorporate seeurity or eorporate IT seeurity poliey.

5.3.6.1 Training of Employees

An edueation poliey should provide for initial training of new employees
(possibly via eompulsory aUendanee at the end user course as part of the
corpora te induetion program). It should also provide aeeess to advaneed
courses where appropriate (Le. to system programmers and members of the
anti-virus unit in the ca se of the teehnical course, and to senior management in
the ease of the management course).

Edueational policy should also require that updates to new viral
developmets be traeked, and that employees be informed. This ean either be
aehieved in-house by the anti-virus group or externally by eonsultaney services
from specialist seeurity firms.

5.3.6.2 Use of Anti-viral Measures

This is a major eomponent of the management poliey statement. It sets the
eompany attitudes and praetiees for viral prevention. Firstly, it must address
the installation proeedures for new software, and may include:

106 A Pathology of Computer Viruses

1. Restrietions on software not from trusted vendors (including items from
public domain bulletin boards, "cowboy" firms and other unknown sourees).
While this may restrict viral infection, it is worth noting tnat the so-called
"shrink-wrapped" software does not provide absolute protection. Even
reputable companies have distributed virus infected software by accident.
Examples are given in Chapter 2 and Appendix 9. Certain major bulletin boards
now apply extensive anti-viral scans on new products. They may, however, be
an attractive target for the upload of software infected by newer viral strains.
Thus, there is a reasonable guarantee of software free from known existing
strains. These boards include major archives such as Simtel-20, Lancaster
POS OFT and Usenet (a UNIX conference system), providing many news
groups which distribute software in binary form. Most are now applying quite
advanced checksums to software posted. Unfortunately since such news
messages can easily be altered in transit (or indeed forged) this provides limited
proteetion. It is likely that boards will move to digital signature algorithms
based on "public key" cyphers in the near future. Key distribution could then
be via an alternate channel (indeed including a single master public key
distributed with the news software which authenticates public keys for known
authors, which are then used to authenticate software sent by these authors).
Software policies must be enforced. This can be achieved either by casual
observation or by direct auditing of installed software. Organisations such as
FAST can provide guidance in this area.

2. Recording of software configurations: in conjunction with restrictions on
software installation, there is a need to accurately record the software
configuration on each system. This allows monitoring of file characteristics
changed by viruses, provides an aid to diagnosis of abnormal behaviour and
finally permits rapid re-installation and recovery after infection. Such a log may
be kept manually in logbook format, or electronically (possibly automated).
The latter must be carefully backed up (possibly separately from the normal
backup procedures, via alternate media or hard copy printout).

3. Use of technical anti-viral measures: this policy roust describe the "pre
scribed" anti-viral measures wh ich must be taken by the organisation. There
are many anti-viral software utilities available, often purporting to be best in
the field. In general they divide into: (i) utilities which are resident on the PC
and will detect and attempt to prevent a virus spreading; (ii) utilities which may
be run on an irregular basis to find characteristics of files indicative of a viral
infection; and (iii) utilities which can identify a change from a standard
configuration (which may be due to viral infection).

A software policy should describe which products (possibly in each
category) are to be run on computer systems. The need to ensure the
"cleanliness" of systems may of course vary. The most important are generally:

• Production and operational systems, whose disruption may be immediately
visible to clients and may delay critical projects

Management of pe Viruses 107

• Administrative systems, where a significant rate of change in da ta occurs
with consequent rapid disruption of the organisation if impeded

• Development systems: with correct backups little delay or loss should occur
• Other systems, induding public machines, managerial systems, etc.

While the criteria above are dictated purely by the direct impact on corpora te
operation, other indirect criteria (such as the risk of infecting a valuable dient)
may alter priorities.

Many of these products change rapidly while attempting to track new viral
developments. In this regard the policy must address:

• Responsibilities for monitoring of software updates
• Frequency and procedures for issuing and installing updates within the

organisation
• Measures to audit or monitor the versions in active use

5.3.6.3 Compartmentalisation

A technical area which should be covered by the management policy is that of
compartmentalisation. This is taken to be the division of an organisation' s
computer installations into one or more groups, between which software
interchange (and therefore networking) is forbidden or restricted. Each group
mayaiso indude requirements for different anti-viral measures, audit pro
cedures and backup procedures.

A typical segregation is to group all operational and production systems into
one (or· more) compartments which are isolated from the remainder of the
organisation. Thus if a function of an organisation is the bulk copying of
software for distribution, then it is vital that the copying machine and the
repository of production master copies are free from infection.

The production compartment may impose severe restrictions on the
introduction of untrusted software, use extensive anti-viral checking and use
secure operating systems and hardware support.

Compartmentalisation mayaiso be required by standard financial security
practices (such as the segregation of operational systems using live data from
development systems modifying program code).

5.3.6.4 Centralisation

While apparently contradictory to good viral practice (since it encourages
software sharing) some form of software centralisation is beneficial as it may
permit greater control to be exercised over software update, issue and
modification.

A common example is the establishment of a group master software
re po si tory in which all "master" copies of software are maintained. When a

108 A Pathology of Computer Viruses

user initially wishes to use a package, a copy is obtained from this master
archive and transferred (either electronically or manually) to his/her work
machine. The repository is subject to continuous monitoring, careful anti-virus
checking and possibly physical access control. No writes are permitted via
network facilities to its storage. This allows:

• Control over all "master" copies of software
• Backup of master copies
• Use of stringent anti-viral measures

The repository machine would normally be under the control of the anti-viral
group within the organisation, although preferably segregated from any
analysis or testing machines.

Compartmentalisation and centralisation basically permit identification of a
critical component within the organisation, and the cost-effective improve
ment of security and integrity measures within this critical component.

5.3.6.5 Personnel Policies

Finally, viruses can be prevented or reduced in probability by personnel
measures such as:

• Incorporation of "darnage" clauses and disciplinary clauses into contracts of
employment

• Encouragement of professional ethics within the group
• Disciplinary action against viral perpetrators
• Vetting of personnel

In the first case the organisation may wish to ensure that an employee can be
held liable in a civil action for any damage which may be caused to the
employer's system by the introduction of a virus or trojan horse.

In the final case we seek to apply psychological testing (and possibly
background investigation) to determine if an employee has a history of
hacking, software copying or abuse, or the creation of viruses, or has a profile
which would suggest unethical or cavalier behaviour. This technique is of
course very rough but may enable an organisation to avoid obvious risks. This
mayaiso reduce premiums on software related damage insurance policies.

5.3.7 Vaccination and Inoculation

The analogy between biological and computer viruses can be extended to
inc~ude the concept of a vaccine which when administered will prevent viral
replication. Such viruses operate by attaching a virus signature or signatures to
the boot sectors and files within the system environment to prevent infection

Management of pe Viruses 109

by common viruses. Thus the Vienna timestamp flag (setting the seconds field
in the date/time stamp to 31 = 62 seconds) could be added to all executable files
within the system, thus preventing the virus (and most of its derivatives) from
infecting the system. This technique is particularly useful in the ca se of boot
sector viruses. On non-system disks it is often possible to add a wide range of
signatures including those of most common boot sector viruses. Since the boot
sector is effectively unused in a non-system disk, these signatures may safely
be added without cost to the user. They guard against possible accidental
infection of a non-system disk by a boot sector virus (and subsequent transfer
of the infection if an attempt is made to boot from the non-system disk).

Examples of multiple inoculations of a boot sector include:

Virus Offset in boot sector Signature

Italian 1FC hex 5713
Brain 004 hex 3412
Disk Killer 03E hex CB3C
New Zealand o hex EA0500CO

An extension of the vaccination principal is the self-propagating vaccine. In
this case the vaccination code and signatures are coupled with a replication
component which will automatically write the vaccine and associated replica
tion code onto all available drives. The vaccine thus spreads throughout the
community, being transported when disk media are moved between systems.
As with the concept of anti-virus viruses (discussed later in this chapter) which
seek to disinfect and destroy other viruses, self-replicating vaccines raise a
number of problems. It is questionable whether many users would wish any
form of self-replicating code to be active within their system environment,
whether virus or anti-virus.

5.4 Detection of Viral Code

5.4.1 Monitoring and logging

The first (and simplest) way in which a virus may be detected is through the
symptoms it causes within a computer system. Each system (or group of
systems) should have a log of abnormal activity (which will also prove of use to
engineers when debugging hardware faults). Examples of unusual activity
caused by viruses are:

• Graphical displays - bouncing balls, falling letters, cryptic messages,
colourful graphics, etc.

110 A Pathology of Computer Viruses

• Musical displays - selection of tunes, abnormal beeps or clicks
• Keyboard and text manipulation - substitution of characters in text files,

toggling of keyboard Caps Lock or Num Lock, insertion of new characters
into the keyboard buffer

• Memory - reduction in available memory or corruption of user memory
blocks

• Disks - unexpected disk activity, loss of available disk space, growth of files,
changes in attributes or alteration dates, cross-linking of disk sectors,
in ability to read a disk partition, missing or lost files

• Programs -longer startup or execution times, unexpected failures
• Machine - changes in standard reboot sequence, hangup or spontaneous

reboot of machine, general slowdown

Once active, a virus can genera te a wide range of such activity by
manipulating any facet of the IBM PC s operation al characteristics.

Automated tools are available to aid in the monitoring of system configura
tion. These include the checking of the directory layouts, file lengths, alteration
times and attributes, and, finally, checksumming of file contents.

The former are comparatively simple utilities which generate a saved state in
a file, which can later be compared against the current system state. This will
allow the detection of deletions or creations of new executables, and change in
characteristics of an executable.

A more powerful technique is checksumming. Since most modern viruses
actively conceal their presence (by restoring changed file attributes, alteration
times, etc.), this is vital. The checks um of a file is a complex function of all bytes
within the file. An important characteristic of the function is that it should
reflect any change to the file. Many examples exist in other fields of computing,
such as:

• Cyclic redundancy checks, commonly used in communications such as
CCCITT CRC 64 algorithm

• Hash keys, used in standard hash indexing techniques
• Digital signatures generated using variants of the data encryption standard

(DES), or based on public key algorithms such as RSA

Possible choices include the MD4 message digest algorithm proposed by
Rivest, or the SNEFRU One Way Hash function adopted by Xerox. Implemen
tations of both algorithms are available in the public domain.

The checksum utility is run to generate checksums over all files (or, less
stringently, over all executable files), The resultant checks um may either be
stored locally or backed up on an alternate system or archive. Checksum
utilities typically take a considerable amount of time to generate checksums on
all files (an important characteristic being the "unforgeability" of the checksum
- often ensured via complexity of the checksum function).

The checksum generator must be re-run on a regular (daily or weekly) basis
to compare the current system against that saved earlier. Any change in

Management of pe Viruses 111

checksum represents a change in executable file content, and thus a possible
viral infection. NaturaBy, when active code development work is being carried
out false alarms may be generated.

On Macintosh systems, the CODE resomces together with any additional
resomces containing executable code (see Chapter 6) in the resomce fork of aB
files must be checksummed. Note that data files may contain resomce forks.
Such forks will be inserted in the search path for executable code when the data
file is opened by the application.

On IBM PC systems it is normaBy appropriate to checksum the entire
executable file (normaBy those with COM, EXE, BIN, OVL or SYS suffixes). To
ensme full protection it is worth remembering that data files may be
interpreted or compiled by applications such as macros, batch files (BAT),
hypertext or program somce. Such files must also be checksummed to give fuB
protection.

The checksumming can be extended to other static code areas in the system,
such as:

• Checksumming of DOS boot sectors

• Checksumming of master boot re cords

A regular checksum verification does however permit a limited window in
which a virus can infect before detection on the next verification run. The
assessment of this risk must determine the frequency of such verifications, and
the need for other, more specific, detection techniques.

There is also the risk that if a checksum package is weB known (e.g.
"Checkup"), the virus will specificaHy target its algorithm by:

• Modifying each infected executable by adding padding bytes to ensme that
the eventual checks um is identical to that of the original application. This is
complicated if the checksum algorithm is difficult to "invert", so that the
requisite padding bytes cannot be determined. Multiple checksum
algorithms can also be utilised by the same product. A fmther technique is to
dynamicaHy (on aper host basis) vary the size of the block in the executable
over which the checks um is generated.

• Locating and modifying the saved checksum file - avoided by backup of the
file, or encryption of the saved checksums.

• Locating and modifying the actual checksum pro gram to ignore the
modifications to specific files - difficult unless the program is weH known,
but easily prevented by running a clean copy from a software master disko

General attacks which might be applied to defeat checksumming (and
signature recognition) operate by concealing the alteration to the code of the
original executable. This is the technique adopted by Stealth viruses such as the
4096.

Checksums can also be verified on program load (aBowing rapid detection of
executable alteration), by:

112 A Pathology of Computer Viruses

1. A small TSR which intercepts the DOS load and execute interrupt,
recalculates the checks um and compares it against a stored value.

2. Self-checking code incorporated into the program itself (normally recom
mended for anti-virus software which must ensure its own integrity).

3. Hardware support to checksum executable code segments and compare
against a saved checksum stored in the executable file. This may require
support for public key algorithms to inhibit forgery of the signature value
when the algorithm is known.

In the IBM PC environment, approach 1 is easily implemented. On more
complex architectures (where the hardware has a segmented memory architec
ture and virtual memory support) it is possible to checksum each executable
code segment associated with a utility at load time and to compare the resultant
checksum(s) against a vector stored in a well-known location in the kernel or
supervisor space.

5.4.2 Signature Recognition

While a checksum seeks to detect change, the techniques described in this
section seek to detect a characteristic of a known trojan horse or virus. Viruses
may be recognised by the presence of a code pattern in the infected executable;
by the actual signature marker used by the virus itself; or by generic "expert"
systems capable of recognising suspect code sequences.

Virus specific recognition sequences require that the signature recognition
utility detects a specific sequence ofbytes (normally 8-16 bytes) within the code
file. Such systems require a database of built-in recognition strings which must
be constantly updated as new viral strains appear. Tables of such recognition
strings regularly appear in Virus Bulletin.

The choice of a virus recognition string is a non-trivial task. It must be:

1. Unlikely to give rise to false alarms when scanning uninfected files. Thus
strings in the locale of common DOS call sequences are inappropriate, as are
strings appearing in libraries used by common compiler systems, and
typical code sequences such as register save/restores. In general, testing
against a wide range of commercial utilities is vital.

2. Common to all files infected by the virus, i.e. not dependent on a particular
characteristic of the host being infected or part of the variable area of the
virus.

3. A vital part of the "core" of the virus, such as its replication code.

Item 3 is aimed at allowing the recognition of the common form of viral code
produced by simple modification of an established virus, the so called
"clones". Choice of multiple search strings, one of which is a common
characteristic of the virus family (e.g. Jerusalem strains) and a second which is

Management of pe Viruses 113

characteristic of a particular member, may be advisable. This technique allows
the flexibility of family identification, coupled with exact id of the actual virus.

When a virus is roughly identified it is possible to confirm the initial
identification of the virus by comparing a checksum of the static portion of the
virus with that of the reference sampie. This allows a detailed analysis such as:

Virus is Jerusalem family, particular strain Anarkia

or

Virus is Jerusalem family, Anarkia signature but sampIe has been modified

In the Macintosh ca se the patterns of resource ids, names, sizes and types
can also be used as an input into the virus signature recognition process. A
large number of n VIR B clones avoided detection by the simple expedient of
changing the type of the auxiliary resources used to store viral code. The type
was changed from "n VIR" to "Hpat" , "AIDS", "MEV #", "Jude", ete. It is vital
that a chosen signature or characteristic must be robust and resistant to simple
modification (e.g. binary editing) of a viral string.

It is of course possible to look for the same recognition string, directoryentry
or resident call characteristic as the virus itself uses as a signature. This is
discouraged because this string is frequently changed when a virus is modified
(or even upgraded by the author) to produce a new strain.

Whatever the chosen recognition string it is vital that it is encrypted in the
scanner. Unencrypted recognition strings are often detected by other scanners
as virus fragments (thus causing the common problem of virus scanners
detecting each other as being multiply infected). A further advantage is that it
may prevent the virus author from discovering the minimal modification
necessary to his virus to avoid detection.

Checksum and scan utilities can be converted into incremental scanning
utilities which are permanently resident in memory, carrying a slow incremen
tal scan or checksum verification of the directory hierarchy (in much the same
way as a direct action virus does).

Utilities can also be automatically executed at system startup or termination,
or on insertion of a new disk media (possible in the Mac case, uncertain on IBM
PC systems because of the lack of a hardware media change indication).

5.4.3 Generic Code Recognition

The final form is potentially unreliable, but has the potential to detect new
emergent strains without being upgraded. It also provides a method of
detecting trojan horse code (without running the potentially damaging code).

A generic recogniser consists of an expert system which attempts to
recognise sequences of code that are suspect, hostile, or represent virus
camouflage, replication or manipulation code. Examples include:

114 A Pathology of Computer Viruses

• Manipulation code: calls to formatting DOS calls, direct BIOS calls, calls to
absolute DOS sector 1/0, calls to modify the DOS/BIOS vector table,
interrupt call simulation code (by pushing the flag register prior to a
subrautine call), suspicious text strings (including expletives)

• Replication code: calls to DOS TSR functions, sequences of byte moves
wh ich originate within the executable code or are targeted to the executable
code (self- modifying)

• Camouflage code: writes to track 40/80 or beyond, manipulation of system
file table or file contral blocks, modification of memory control blocks,
known camouflage modules (such as the 80386 pipeline mode test code), etc.

Recognition is complex, and, as explained in Chapter 3, can never be 100 per
cent effective. A code sequence can normally be rewritten to perform the same
task, but with a completely different set of instructions, e.g.

Y=X+4
Y = (X-3) + 7

Z = X + 2; Y = Z + 2;
PUSH X; POP Y; Y = Y + 4; etc.

This is a developing area which, despite its many false alarms, may tag public
domain software which requires further inspection or investigation.

Signature recognition utilities suffer from three major drawbacks:

• In a similar manner to checksum utilities, they must be run regularly (ta king
a considerable time to scan all executables on disk) and must therefore leave
a window of time between which infection and replication may occur

• niey (excluding generic techniques) require regular update as new viruses
appear

• Second generation self-encrypting viruses minimise the recognisable code
string within the virus

The signature recognition can be carried out at object load time (in a similar
mann er to the dynamic checksumming process described earlier).

5.4.4 Sacrificial Lamb

A final common technique used to detect viral infection (and indeed trojan
horses) is the sacrificiallamb. All new software is installed on the system, all
games and public domain software likely to be used is collected and installed.
This is done to ensure that the system will become infected if a virus is
circulating. The system dock is normally run at least a fortnight in advance in
the hope of detecting activation of unknown viruses or time bombs. The time
advance must be calculated to match the estimated time to analyse a new virus
and disseminate effective warnings within the company.

Management of pe Viruses 115

The sacrificiallamb system is then carefully monitored, and has a range of
anti-viral software run upon it. If an infection is detected it is traced to its
originating package and a warning sent to the remainder of the organisation.

Software releases can be delayed for a few weeks while samples are under
test. Such testing, if extensive, may also detect general bugs or software inter
operability problems.

5.4.5 Auditing

A further approach to the detection of viral code is to apply auditing using
manual or electronic mechanisms to significant components of the system's
behaviour. Such auditing is incorporated in many implementations of secure
systems (including the DOD TCSEC at level C2). The auditing normally tracks
all security related events (i.e. those wh ich arise from the user authentication
process and the transfers of information subsequently initiated by that user).

A typical audit trail (based on the Sun C2 security option) is considered
below. In this scheme audit trail entries comprise records written to a secure
directory (owned by a special audit user id) for each of eight classes of system
event, namely:

short name

dr
dw
dc

, da
10
ad
pi
p2

longname

dataJead
data_write
data_create
data_access_change
10gin_Iogout
administrative
minor yrivilege
major yrivilege

short description

Read of an object
Write or modification of an object
Creation or deletion of an object
Change in object access controls
Login, logout or batch job commence
Various operator administrative functions
Privileged operation
Privileged operation

The records written to the audit trail contain sufficient information to
identify the time, date, initiating user and terminal, and the object being acted
upon or operation being invoked. A typical sample record is for the "execve"
process creation operation. This writes arecord in the following format:

• Current root directory being used by the parent
• Current working directory being used by the parent
• Pathname of program to be invoked

Added to this specific record is a general header including the event time,
real and effective user and group ids of the program causing the event, process
id of the invoking process and the result code returned by the operation.

Such audit trails can be generated on most systems by interception of low
level system calls at the BIaS/DOS interface, Mac OS or at the level of UNIX
system calls. Important features of the audit trail generation mechanism are:

116 A Pathology of Computer Viruses

1. That the audit generation mechanism must be tamp er resistant.
2. That the generated audit trail must be tamperproof.

The former requirement implies that the audit mechanism (if using system
call interception via the interrupt vector table) must prevent any alteration of
the system interrupt vector table which might allow disconnection of the audit
facility. Equally, it must also prevent undermining of the audit mechanism by
use of low level facilities, direct subroutine jumps to memory resident OS
components or direct use of the system hardware.

At the very least, it should detect such attempts even if the system security
environment is incapable of inhibiting such tampering. In an environment
without memory management protection facilities this is probably impossible.
Thus, certified audit subsystems are unlikely on PC or Mac platforms (except as
part of a re-engineered kernel/OS which make use of the memory protection
facilities provided by the 80386/68030 chip and associated memory manage
ment hardware). Thus, many personal computer audit trails are advisory
rather than definitive (i.e. they may detect hostile behaviour, but this is not
guaranteed).

The latter requirement can often be satisfied via "WORM" (Write Once,
Read Many) devices. Such devices are tamper resistant in that the audit trail
once written cannot be modified.

To detect viral code propagation, auditing must detect all creations or
modifications of objects (to detect corresponding file techniques) which might
be potentially executable. Such objects may be comparatively low level, such as
an operating system boot block, or as abstract as the C source for a program or
utility.

In general it is also useful to monitor behaviour which might be characteristic
of a virus attempting to bypass the audit mechanism (such as utilising OS calls
to modify interrupt vectors or operating system memory, or unexpected state
changes in external hardware characteristic of direct manipulation by a virus).

For information on auditing requirements the user is referred to the NCSC
manual, A Guide to Understanding Audit in Trusted Systems.

5.4.6 Use of Expert Systems to Analyse Viral Behaviour

Unfortunately, indiscriminate auditing can genera te vast quantities of informa
tion. This results in the typical"needle in a haystack" problem. The audit trails
are thus often relegated to a me ans of tracing the source of erroneous system
behaviour after the event. To be of use in immediate detection of problems the
audit trail must either be condensed (losing vital information) or the human
administrator must be aided when interpreting the trail.

To achieve the latter, it is possible to design an expert system to perform
occasional (or, in larger systems, on-line) audit trail analysis. Such an expert
system includes a number of heuristics and metrics relating to the form of user

Management of pe Viruses 117

behaviour which is indicative of hostile action. In a similar manner, activity
profiles can be constructed for users. When a user shows a significant
departure from his/her activity profile (such as a secretary who uses the system
only for editing and printing beginning to compile and run programs; or a user
suddenly shifting from his favourite language, compiler, editor and utility set)
a warning can be flagged. A possible example is the runtime intrusion
detection system developed at Stanford.

To detect the presence of a virus it is normally sufficient to flag any
generation of executable code by unexpected (i.e. non-compiler) utilities, to
detect the modification of source code or batch files by unexpected utilities (i.e.
non-editors). The audit trail mayaIso detect the violation of system software
policies (i.e. copying of utilities or importation of bulletin board software).

The auditing trails and expert system can thus provide a limited degree of
relief from failures in the security environment provided by the operating
system.

5.4.7 Fighting Fire with Fire

A common method of viral code detection on the Commodore Amiga platform
is the idea of an anti-virus virus. The virus detection software is written as a
boot sector virus which when booted will become memory resident auto
matically. The anti-virus then checks all disks inserted (including hard disk
partitions) for known viruses. If a virus is detected it is overwritten by the anti
virus. In most cases the anti-virus also replicates on all available disks and
partitions.

It is questionable wh ether the concept of a anti-virus spreading unchecked is
preferable to a genuine virus infection. Both anti-virus and virus use valuable
system memory and slightly degrade performance. It is also likely that anti
viruses which exploit undocumented system functions may become poten
tially damaging on future operating system releases.

The picture that can be painted in the Amiga world is one of anti-virus
chasing virus, and indeed anti-virus chasing anti-virus since most upgrades
automatically detect and remove previous versions of themselves. Admittedly,
the removal of the anti-virus or virus is normally done with the user' s consent
and knowledge.

The table below gives details of the known anti-viruses on the Commodore
Amiga platform as of July 1990:

118 A Pathology of Computer Viruses

Detccts

Byte bandit
SCA
NorthStarI
North Star II
SystemZ3.0
SystemZ4.0
Paramount
Lamcr exterminator 1.0
Lamcr cxterminator 2.0
Byte warrior

Anti-virus virus produet
ASS 1.0 North Star I

X X
X X

North Star II
X
X
X

X

Detects Anti-virus virus product

Byte bandit
SCA
NorthStar I
NorthStarll
System Z 3.0
SystemZ4.0
Paramount
Lamer extcrminator 1.0
Lamer exterminator 2.0
Byte warrior

System Z4.0
X
X

X
X

X

SystemZS.O
X
X

X
X
X

X

X

Pentagon Cirche
X
X
X
X
X
X
X

SystemZ3.0
.X

X

System Z S.3 VKILL1.0
X X
X X

X
X
X

X
X
X

Of the viruses in the above table only "SCA", "Byte Bandit", "Byte
Warrior", "Paramount" and "Lamer Exterminator" are actually viruses; a11
others are anti-virus products whieh are earlier or riyal systems.

On the IBM PC platform there have been a few cases of anti-virus viruses,
one example being the Denzuk virus which contained (buggy) code to
recognise and remove Brain virus variants.

In the Macintosh world the existence of the commoner n VIR strain is directly
attributable to the recognition of an early destructive nVIR strain (occasiona11y
referred to as n VIR C), whieh randomly removed files from the system folder.
The person who detected the strain then modified the destructive n VIR strain
to produce the (now ubiquitous) benign nVIR strain. The newer strains
(including n VIR A whieh uses MacTalk to speak the words "Don't Panie!")
beep when an infected system is rebooted or an infected application is
launched (for n VIR A 1/16 and 15/128 probability of each, for n VIR B 1/8 and
7/32 probability of each).

5.5 Containment of Viral Code

Containment can be achieved via a variety of techniques mainly dependent on
hardware support for correct operation. It is into this category that the

Management of pe Viruses 119

mainframe security kerneIs belong, as do the cruder pe interrupt monitoring
utilities.

5.5.1 Hardware Compartmentalisation

The most effective proteetion is provided by dedicated hardware techniques
backed by formally verified secure kerneIs. This is an extremely costly
technique. A limited hardware support environment is, however, available
even in readily obtainable 80386 processors.

5.5.1.1 Virtual Machine

The virtual machine concept supported by the Intel 80386 (and 80486) chips is
based on a simple idea: that of providing each user (human or pro gram) of the
machine with a segregated environment in which the user is unaware that hel
she/it is sharing with other users. The user can access a subset of system
memory, files tore and hardware peripherals which present a "virtual"
machine to the user. The user cannot access any of the physical machines
facilities which have been allocated to other user's "virtual" machines without
the intervention of the operating system.

Physical Machine

Vinua1
Machine

1

Each virtual machine comprises:

Vinua1
Machine

2

1. A virtual memory space which appears to the user as contiguous physical
memory. Such virtual memory is a subset of the physical memory of the actual
machine (in advanced versions data in part of the virtual memory space may be
paged or swapped out onto secondary storage media; the operating system will
manage reloading of data when the user accesses the seetion of memory which
was paged out).

120 A Pathology of Computer Viruses

2. A virtual processor whieh appears to run only the user's program (this may
include even concealing variations in loading caused by other virtual pro
cessors running on the same physieal processor).

3. A set of virtual peripherals whieh permits use of a subset of disk space, and
limited access to printers and communication facilities. Part of the physieal disk
appears to each user as his own (exclusive use) disko Printout sent to printer
deviees is automatieally spooled to prevent interference with other users of the
printer (whieh is basically an exclusive access device).

This idealised virtual environment effectively isolates every user of the
system. While totally preventing viral propagation across boundaries (except
via external communication links), this does also inhibit useful exchange of
data. Thus a limited number of closely controlled channels are provided whieh
can cross virtual machine boundaries. Each channel is carefully monitored by
operating system components whieh themselves execute in a privileged virtual
machine.

The 80386 processor provides extensive hardware support for this concept
including:

• Segment and paging support for virtual memory
• Task switching with automatie context switching
• Hierarchy of protection levels
• Privileged instruction

5.5.1.1.1 80386 Task Switching Support

The 80386 chip includes support for a number of hardware supported tasks and
their associated contexts. The latter comprise a block of system registers which
are automatically switched when processing transfers from one task to
another. These registers include traditional da ta registers, memory manage
ment registers, stack pointers and privilege flags.

The 80386 has four levels of privilege which are fundamental to the
implementation of segregation between components of the operating system
and the user' s application. These are numbered commencing at level 0 (highest
privilege) to level 3 (lowest). The suggested use of these levels (whieh are
implemented on aper task basis) is to allocate level 0 to the kernel of the
operating system, level 1 to the remainder of the operating system and level 3
to applications, level 2 being retained for supervisory applications such as
printer spooling, mail daemons or user level batch schedulers.

5.5.1.1.2 80386 Paged Segmented Memory

The 80386 chip when operating in protected mode (i.e. not 8086 emulation in
real mode) provides the facility toestablish complex mappings between the

Management of pe Viruses 121

process virtual memory space and physical memory. These mappings are
achieved via two levels.

Segmentation introduces the concept of a segment of memory which is a
variable sized block of memory identified by a handle - the segment id. All
memory references are expressed as a 48 bit address containing a 16 bit
segment selector, and a 32 bit offset within the addressed segment. The
segment may either be implicitly specified using the active segment value in
the segment register appropriate to the transfer taking place (e.g. OS, the data
segment register, or es, the code segment register) or through an explicitly
specified segment override.

15 .. 0 31..0

Selector Offset within segment

Each memory reference is mapped by the 80386 via one of two tables: aglobai
descriptor table (GOT), and a local descriptor table (LOT). Each of these tables
holds 213 segment descriptors. When a memory access request is made the
segment register associated with the address (e.g. ES) is used to index one of
the two segment descriptor tables. The table accessed depends on the state of
bit 2 in the segment register. If this bit is 0 then the GOT is accessed, otherwise
the LOT.

The LOTs are context switched each time a change in executing task occurs,
and thus permit task specific memory to be referenced. The GOT is global to a11
tasks within the system permitting access (under strictly contro11ed conditions)
to data and memory in the virtual memory space of other tasks or the operating
system.

Normal references to da ta or executable code are mapped by the 80386 by
locating the segment referenced by the segment register associated with the
address register being used to access the da ta or code. This is achieved by
indexing the segment descriptor table entry specified by the selector, then
accessing the location given by the base field of the segment descriptor plus the
offset specified in pro gram address register/program counter or stack pointer.

122 A Pathology of Computer Viruses

"'" __ "_"_" .. __ H __ H __ [~~=~~:::~:::::~H:::~=:::::H ... HH ... H .. H H.H HHH.HH· __ ·· __ ··_··_··1

I ! ! i
I I I I
I I Data! I I I : •
I ! : !
i i i !
I ! I 1
• I I Cod !
I I '!
I Cod i j i
! I I i
• j i i

l ! I
e i i
I : :

I I I
: : I
i i i

i i I i i I I
11: • i I . Global .
j I Descriptor !
I i Table : . i I
I, Local :

i I LoDesCal. ~~f~ptor
i cnptor TASK B '.' I Table
!TASKA !
i Data ':.! I
I TASKASPACEI I ____ _ .. _ ... H ___ j._H __ .. ____ _.H _ _H_ .. _H....... T ASK B SPACE j

L ___ _ _ .. _ _ _ ... _ 1

illustration Of 80386 Descriptor Table Addressing

The format of the segment descriptor (for standard memory segments) is:

1 byte: 31..24 2 bytes 3 bytes: 23 •. 0 2 bytes: 15 •. 0

Segment base Segment limit

Umit 19 .. 16 1 P 1 DPL 11 1 Type l
The fields which are important from a security viewpoint are:

Management of pe Viruses

Base
Limit
Granularity (G)
DPL
Type

32 bit
20 bit
1 bit
3 bit
4 bit

Pointer to base of segment in linear memory
Size of segment in bytes or pages
Whether size is specified in bytes or pages (4K)
Descriptor privilege level
Protection information for segment

123

Other fields are connected with memory management and the impIe
mentation of the illusion of virtual memory (which may require data to be
transferred to and from backing store) in software.

First, during address translation the offset is verified against the segment
limit value (causing an exception if in excess). This prevents addressing
outside the memory segment boundary, such as overwriting the base of the
stack.

Second (for executable code), the protection bits serve to control access to
the associated segment. The current privilege level (CPL) of the task
attempting the access to memory is checked against the descriptor privilege
level (OPL). If the task has a privilege equal to the privilege of the descriptor

. then the access is allowed. Otherwise a protection violation is generated.
Code segments can be marked as "conforming" in which ca se they will
permit calls to be made when the CPL is greater than (remember 0 is the
highest privilege) the OPL. This is the ca se when library routines (such as
the maths library) are exported (from say ring 2) to an application (in ring 3).

Thus, memory can be effectively divided into segments at each level of
privilege, i.e.:

os

8

Furthermore, since each task has its own LOT, it can be further limited in
the segments it can address. Thus each ring can be divided into further

124 A Pathology of Computer Viruses

compartments restricted to the segments (at that privilege level) which can
be accessed by the task.

Modification of descriptor tables is also a privileged operation. In fact the
GDT contains segment descriptors which point to each LDT and determine
the access allowable to the LDT.

5.5.1.1.3 Accessing OS Code

In the strict model above it is impossible to execute a code module which has
a higher privilege level than the active application. In older processors with
hardware protection levels this was implemented by generating an
interrupt when the access was attempted. The interrupt would be pro
cessed by the processor in "supervisor" mode. In this mode the processor
could determine by analysis of the saved registers on the stack whether this
action is allowable. The processor could then service the interrupt request
and return control (with consequent resetting of supervisor status on
return) to the invoking "user" mode application. This was the technique
used by the 68000 processor. This chip had two modes of operation
(supervisor and user). The mode was signalled to the external memory
management unit (MMU) using the chip function code lines. Thus, the
MMU could flag a proteetion violation when the user attempted to access a
location in the supervisor space. By reloading the MMU registers and epu
registers (in supervisor state) the operating system could affect a task
switch. Certain basic instructions were inhibited in user mode (namely
modification of the epu mode and interrupt masks, stop and reset
processor).

The 80386 processor introduced the concept of a "gate". The gate is a
mechanism which permits the controlled execution of privileged sub
routines or code by a user application. The gate is a special form of segment
descriptor which contains an indirect pointer to a further code segment.
When the user references a gate segment via the LDT or GDT, the user's
ePL must be more or equally privileged to the gate descriptor's DPL. The
gate descriptor contains a new segment selector which is used to again
reference the LDT or GDT. This points to the actual code segment which
will be executed. A further permission check is applied to ensure that the
task' s ePL is equal to the DPL, or vitally in the case of conforming code that
the task' s ePL is greater than or equal to the DPL (note caUs to less
privileged rings are not supported - only returns from procedures in the
inner ring which have been invoked by the outer ring).

In the latter ca se a change in task privilege occurs as the ePL is lowered
(increasing privilege) to that of the DPL of the called code. This includes
storage of the previous ePL on the stack ready to be restored when areturn
is made. In summary, the sequence of access to a privileged system routine
via the 80386 gate mechanism is:

Management of pe Viruses 125

1. Application segment register or segment override references a descrip
tor in the LOT or GOT which is flagged as agate.

2. Check that the application's CPL is less than or equal to the gate's OPL,
otherwise protection violation.

3. Use the new segment selector in the gate descriptor to access the LOT or
GOT.

4. Check that the application's CPL is greater than or equal to the
referenced descriptor' s OPL.

5. If the application' s CPL is greater than the descriptor' s OPL then create a
new stack saving the old CPL value, upgrade the CPL to the descriptor's
OPL value.

6. Execute the code specified by the segment base in the referenced
descriptor offset by the offset value specified in the gate descriptor.

7. On return restore the stack and the task's old CPL.

Thus, the gate concept allows the temporary raising of process privilege
while executing an operating system function. The latter are carefully
delimited thraugh the creation (by the operating system when establishing

, a new task) of gate descriptors in the GOT or the per task LOT.

5.5.1.1.4 Segment Permissions

Finally, in addition to the privilege level ring mechanism and LOT
compartment mechanisms, each descriptor carries aseries of read/write/
execute attributes. These are stored in the "type" field of the segment
descriptor. The values available are:

Data segments Code segments

o R~doruy 8
1 R~d oruy, accessed 9
2 R~d/write A
3 R~d/write, accessed B
4 R~d oruy, grow down C
5 R~d oruy, grow down, accessed D
6 R~d/write, grow down E
7 R~d/write, grow down, accessed F

Execute oruy
Execute oruy, accessed
Execute/~d

Execute/~d, accessed
Execute oruy, conforming
Execute oruy, conforming, accessed
Execute/~d, confonning
Execute/~d, confonning, accessed

The attribute "accessed" records the fact that the segment has been written,
read or executed. "Conforming" was described previously. The read, write
and execute attributes provide fine contral over the segments referenced by
the descriptor. Note that descriptor table entries can only be changed by
tasks with write permission to the LOT (referenced by the GOT), or in the
ca se of the GOT pragrams at privilege level O.

126 A Pathology of Computer Viruses

5.5.1.1.5 Paged Memory Operation

Below the segmented memory subsystem is the paging subsystem. Each
segment may be further divided into 4 K pages of memory. A mapping can
be established via the use of page tables held in RAM between each logical
page within a segment and its actual physical address in memory.

This permits the operating system to page out blocks of user processes
onto secondary storage. The entry in the page table is carefully marked with
the address at which the 4 K block has been stored on backing store. Any
access to this "paged out" block is trapped by the 80386 chip and causes an
exception to be raised. This exception is trapped by the operating system,
which then reloads the block and marks it as present in memory, permitting
the 80386 to complete its memory access.

This powerful system permits the "virtual" memory to exceed that
available on the system, by using disk as an extension of the memory space. It
also permits a (iner granularity of protection through the use of page level
protection bits. Each page table entry (PTE) has two protection bits associated
with it, namely the RIW (read/write bit) and the U/S (user/supervisor bit).
These bits only restrict access at the lowest privilege level (level 3) and are
bypassed by more privileged tasks. The D/S bit if set permits the page to be
accessed by applications at level 3, otherwise onlj level 0-2 tasks can access
the page. The RIW bit is set to indicate that a page can be read, written or
executed. If re set it restricts access to reading or execution.

Management of pe Viruses 127

LDT

Base I Limit f--

CR3 1
1

----.... ... I-- f-

r

GDT Page Page
Directory Table

Verify Address
within limit

~
Frame I Olfset

i I Seg I Address ... Dir I Pag Olfset +

Segment Address 10 10 12 bits
Selector Register Final

Address

Simplified Simplified
Segmentation Paging
System System

80386 Paged Segmented Memory Address Translation

5.5.1.1.6 Input/Output Operations

The 80386 next addresses the protection of 1/0 operations using the IN, INS,
OUT and OUTS instructions. Each task when created has an IOPL (input/
output privilege level) stored in the EFLAGS register in the task context. This
register determines the minimum privilege required to execute an 1/0

128 A Pathology of Computer Viruses

instruction. If the task' s current CPL is less than or equal to the IOPL field
then the 1/0 instruction is permitted. This coarse mechanism is further
modified through the inclusion of the 1/0 permission bitmap. This bitmap is
stored in the task context and includes up to 64 K of bits. Each bit if clear (0)
indicates that the associated byte in the 1/0 space may be accessed. Thus if
bits 2 and 3 are cleared then access will be permitted to bytes 2 and 3
irrespective of the IOPL field value.

5.5.1.1.7 Virtual Machine in Software

The 80386 provides a range of hardware facilities which if correctly utilised by
the operating system supply the requisite hardware support for a code
integrity model (such as the Biba extensions to the Bell-LaPadula model).
Additional operating system support is required to implement the hierarchi
cal security classification aspect of the Bell-LaPadula model (since the 80386
does not verify'the CPL against the OPL for data read/write requests). This
can easily be provided as an extension of the compartmentalisation mecha
nism provided by the LOT concept.

Viral code is restricted to execution at lowest privilege (assuming it is a
component of user application running at level 3) since the memory
protection model will:

1. Inhibit infection of operating system memory or code areas (due to the
absence of the requisite segment descriptor entries in the task LOT).

2. Prevent the operating system from directly invoking application code
(since subroutine calls to less privileged code segments are inhibited).

3. Constrain the virus' calls to the operating system to those conforming
code segments in the GOT or task LOT (at the same CPL) or via gates
defined by the operating system to higher privilege levels.

4. Inhibit access to external peripherals via the IOPL and 1/0 permission
bitmask mechanisms.

Gates can be subject to careful access control constraints and audit by the
operating system. This may, however, allow limited trojan horse activity by
viruses invoking "risky" operating system functions via the call gate
mechanism.

The memory management model outlined above also provides scope for
the automatic verification of executable code checksums at task load time.
The operating system maintains a public key encrypted vector of checksums
for each executable segment in the task object file as a special segment. This
special segment may either be genera ted by a trusted compiler (possibly after
requesting a password from the user). The password is the private key used
to encrypt the checks um vector for all executable code segments. When the
kernel loads the task the public key part is used to decrypt the checksum
vector, and each checksum is verified against the corresponding object code

Management of pe Viruses 129

segment. As with any checksumming approach this implies existence of a
trusted component in the system which handles the private key. It does
however reduce the problem to verification of compiler integrity.

5.5.1.2 Automatie Flow Verifieation

A further approach to the automatie verification of program integrity is the
use of signed flow graphs for each process. It has been proposed that a
second co-processor be utilised to verify the operation of the main CPU. The
primary function of the co-processor would be the verification that the CPU
has not departed from the execution behaviour expected of the currently
executing program. To detect such deviations the creation of a program flow
monitor (PFM) was proposed. The PFM detects unexpected branches from
the normal sequence of program execution (such as might be generated by a
virus). To detect such branches each compiled program has a control flow
graph (CFG) associated with it. The CFG is a signature wh ich represents the
flow of control within the associated program. Deviations can thus be
detected by the co-processor.

A possible technique for CFG generation is to produce a graph which has
as its leaves a checksum generated for each sequential (i.e. non-branching)
sequence of instructions in the user program. The graph of checksums is then
loaded at execution time onto the co-processor system. The support
hardware then regenerates the checks um as the CPU executes the sequence
of instructions. Whenever a branch is encountered the co-processor takes the
current checksum and compares it with the stored checksum in the CFG. If
the values differ then it can infer that a change in flow pattern has occurred. If
the values remain identical then the co-processor can permit the main CPU to
branch to the next sequential code block. The co-processor then fetches the
next checksum value for this block and begins to recalculate the checksum as
the CPU continues execution.

If the values differ the co-processor will abort the main CPU and re cord the
location of the deviation for further analysis. The program may be restarted
to determine if this is a transient variation (possibly caused by a memory
parity error) or a permanent variation representing a change in executable
code. The co-processor may be relieved of the work of checksum generation
by using a hardware linear feedback shift register (LFSR) to generate a CRC
polynomial.

It has been further suggested that one of a variety of checksums be selected
at compile time, and that the LFSR generator be programmed with the
checks um characteristic. The CFG and perturbation characteristic are
encrypted for further proteetion. This verification scheme (as with the
cryptographic schemes) does not rely solelyon write-protection of code files
to ensure system integrity maintenance.

In CFG schemes which do not employ encryption using user supplied
keys, a possible attack scheme has been proposed. This scherne, known as

130 A Pathology of Computer Viruses

"back track", relies on the fact that the assembler is considered trusted (i.e.
has access to the CFG encryption keys). Thus a possible way in which the
virus can forge the CFG is to: '

1. Disassemble the executable (or indeed decompile).
2. Add the virus to the disassembled assembly code.
3. Assemble and re-link (this process generates a new valid signed CFG).
4. Replace the old version with the forged infected version.

In general, if a route can be found to the source code (either by
decompilation or by direct access to the appropriate file) then it can be
tampered with and then recompiled.

5.5.1.3 Software Distribution: Ensuring Trust

The encryption .and CFG approaches can both be used with public key
systems to verify the integrity of distributed software. This operates by
encrypting software using the vendor's private key (or possibly just the
checksum or CFG value). This software is then loaded and verified at
load time (using the checks ums decrypted by the vendor's public key) or at
runtime (using the CFG). A hierarchy of trust backed by the assurance of
tamper free distribution can thus be established.

5.5.2 Software Compartmentalisation

The previous methods have effectively relied on hardware to support a basic
protection model or to support flow verification. This section addresses the
extensions to the existing software environments wh ich are necessary to
contain viral code.

The first cases considered are those methods appropriate as a stopgap in
operating systems which are not designed for security (ern, PC-DOS!).
Consideration is then given to how such systems can be redesigned to
conform to a formal security model.

5.5.2.1 Interrupt Trapping Code

The first technique (commonly used by PC anti-viral utilities) is to attempt to
intercept all system activity through the use of interrupt vector trapping
utilities. As previously mentioned, all DOS system (and Mac OS/toolbox)
calls are routed via an interrupt vector table. By revectoring all significant
interrupts it is possible to intercept all system activity.

The interrupt vector monitor thus re-vectors all interrupts to point to its
own code. Thus a virus invoking Int 21h (the DOS service interrupt) will

Management of pe Viruses 131

cause a branch to the monitor routine in RAM. The monitor can then screen
potentially unacceptable behaviour such as writing to executable files.

On detecting "suspect" or "risky" behaviour the monitor will genera te a
warning message on the user' s screen, and request whether the user wishes
to permit such activity to continue. This infers that a trusted channel exists
for the messages produced by the monitor, and the user's responses to such
messages. If this is not the case then the monitor' s messages may be
intercepted by the active viral code, and suitable responses inserted directly
into the keyboard buHer on the target system. (The general issue of ensuring
that a trusted path exists between the security kernel and the user is
addressed by the B-2 TCSEC criteria. These criteria include a further
requirement that such a trusted channel is uniquely identifiable and distinct
from all other communication channels.)

In general, interrupt monitors provide a useful tool in non-development
environments. In environments where active development is under way, a
significant number ,of false alarms can be generated, which may screen
illegitimate virus activity. For instance in the typical "edit-compile-run"
development environment, a significant number of writes (admittedly by
trusted compilers) are genera ted to code files.

5.5.2.1.1 Configurable Monitors

To be useful in such a development environment, the interrupt monitor must
be configured to permit trusted utilities to execute certain functions without
user intervention. An example is the "gatekeeper" public domain software
package on the Apple Macintosh. This package traps all attempts to modify
oramend:

File attributes:
Resource information:

Self
Self

System
System

Other
Other

In this case events are divided into two categories: file attribute modification
and amendment of resource contents. Each program is permitted to modify
either file attributes or resources for itself, system files or all other files. When a
program attempts a monitored operation (such as adding a new CODE
segment to a resource fork) the gatekeeper will trap the request and verify the
program's name against the access controllist configured with the utility. If
access is denied (i.e. the user has not configured the utility to permit the
program to carry out that category of operation) an alert will be presented and
the user prompted for adecision.

Careful configuration of such a utility is required, but once in place it can
prove extremely successful. Examples of functions permitted to programs may
include:

• Permit trusted programs such as binary editors, compilers and linkers to
write executable code resources

132 A Pathology of Computer Viruses

• Permit resource editors general rights to modify resources
• Permit certain self-modifying utilities rights to modify their own code (a

common practice when pro grams carry internal configuration information
in their executable files, an example being paths to various files)

A typicallist of trusted program utilities might include:

• Binary editors: can alter executable code
• File manipulation utilities: can alter file attributes
• Disk backup software: can write to executable files and manipulate file

attributes
• Compilers, linkers: can write to executable files
• Archive maintenance utilities: can write to executable files and manipulate

file attributes
• Executable manipulation utilities (e.g. stripping symbol table): can alter

executable files '
• Patching utilities: can write to executable code

Such configurable utilities normally come with lists of privileges required by
standard programs, together with a simple facility to add such privileges. It
should be noted that when powerful binary editing or manipulation services
are available these may be used by a virus to bypass the restrictions, i.e. virus
runs trusted pro gram (e.g. DEBUG) which can write executable files.

The concepts of trusted channels and the grouping of objects in the file
system by type have been fundamental to integrity schemes such as the F6
Information Technology Security Evaluation Criteria (ITSEC) high integrity
scheme (described in Chapter 7) and the Burroughs file system architecture. In
the latter case every file has a file type which reflects the program which created
the file. Certain file types (mainly executable) could only be created by trusted
system compilers. The compilers thus provided a barrier to direct manipulation
of executable code.

r--------, r--------.,
: Program I

r'~Editor -: Source :----0011 Compiler
i ~ : File

: Program :
I----~: Object :

: File :

11=-1 1 >("---r-" I"---'~:. 1 x"---r-"
: ... u :

Only trusted components may modify specific file types. Dotted lines
indicate reverse engineering of object, which may permit a virus to insert itself
by source modification. To complete trust, the editor must be invoked by the
user via a trusted channel mechanism.

Management of pe Viruses 133

5.5.2.1.2 Operation of a Monitor

A monitor utility redirects one or more system interrupts (or traps) when it
begins operation. These interrupts are changed to invoke the monitor utility' s
code. The monitor screens the interrupt request and then passes control (if the
request is permitted) to the operating system.

In the IBM pe, for instance, a monitor would intercept the BIOS and DOS
service interrupts (including such auxiliary DOS interrupts as the absolute disk
read and write interrupts).

I3h

21h

Interrupt vector
table

BIOS
Code

DOS
Code

The point at which such a monitor becomes active is crucial in that a virus
must become active after the monitor for the latter to be effective. For instance,
if the virus is resident be fore the monitor (and has intercepted the DOS/BIOS
interrupts) and then the monitor becomes active, we have:

13h

21h

Interrupt vector
table

MONITOR
BIOS
Code

DOS
Code

VIRUS

The virus may thus use the unaltered DOS and BIOS interrupt calls. If the
virus becomes active after the monitor is resident in memory, then the monitor

134 A Pathology of Computer Viruses

will be effective. The virus redirects the DOS/BIaS interrupts to point to its
own code, and executes its infection/manipulation task. During this task any
services it requests of DOS/BIaS will be made via the interrupt address - which
points to the monitor. Thus the monitor is effective. The monitor cannot,
however, prevent viral code from being invoked: it can only prevent the virus
utilising DOS/BIaS services via the conventional route.

Intemlpt vecoor
table

This problem of a virus activating earlier than the monitor, thus bypassing
the monitor, can be addressed using similar techniques to those adopted by
virus writers, namely the direct modification of the memory resident DOS or
BIaS handler.

The monitor patches the DOS handler to contain a jump to the monitor
routine, storing the original bytes (which were modified) in a storage location.
Thus, irrespective of the time at which the virus becomes resident, it will cause
a jump to be made to the monitor. The monitor executes its code, and then
executes the stored DOS handler instructions followed by a jump to the
remainder of the DOS handler. This technique requires a degree of knowledge
of the structure of a particular DOS release to permit:

1. Location of the DOS handler in memory, without relying on the potentially
compromised interrupt table pointer.

2. Determination of a suitable strategy for ensuring that the original handler
code is executed correctly.

With the presence of viruses wh ich also alter the DOS handler it becomes
on ce more a ra ce between virus and anti-virus program. Specifically, if a virus
alters the DOS handler after the monitor has modified the handler, it will ga in
control but will be subject to monitoring by the monitor.

A hack is to arrange for the monitor to use a number of interrupts, some of
which would not be used by a virus (i.e. dock, mouse or video). The monitor
when invoked can verify the integrity of its "tap" on the main DOS and BIaS
interrupt vectors and if these have been disconnected reconnect them. This
technique was used by a multi-tasking virus on the Commodore Amiga which

Management of pe Viruses 135

consisted of two tasks. One was the actual virus, the second a simple utility
which verified that the virus was still in control and connected to the interrupt
vectors. If this was not the ca se the virus was reconnected.

5.5.2.1.3 Extensions to Real Time Monitoring

While not strictly part of viral containment, it should be noted that the resident
monitor can be extended to carry out incremental scanning of memory for viral
code, checksumming of critical system areas and validation of the interrupt
vector table. Such a utility would provide a degree of "defence in depth" by
acting as a monitoring utility, virus scanner and checksum verification utility.

5.5.2.2 OS Support

It is greatly preferable for an operating system to provide (with hardware
support) an extensive security environment which permits the establishment
of user specified compartments within the system. Such compartments may
reflect natural divisions in function or data, or be driven by confidentiality or
integrity requirements. Often such software compartments may serve as a cost
effective substitute for organisational compartmentalisation or segregation.

A number of formal security models which are appropriate to a mainframe or
mini computer system with hardware support (e.g. an 80386 processor) are
addressed in Chapter 7. These models reflect the commercial or military
requirements for data confidentiality and integrity.

5.5.3 Network Compartmentalisation

With the advent of networks many of the physical compartments which had
existed either strictly through machine segregation or effectively (due to
constraints On physical movement of media between systems) were removed.
Networks permit interconnectivity and are thus opposed to compartmentalisa
tion. A natural trade-off between the obvious benefits of information exchange
and the risks of information compromise or alteration exists.

Network software normally permits the establishment of barriers between
systems which restrict information flow. Normally such barriers are estab
lished at "gateway" hosts which link smaller LAN s. Such gateways may run an
extremely restricted range of carefully verified software, providing a minimal
(and management approved) range of services. In general, a careful manage
ment decision needs to be made about the benefits of elose or loosely coupled
networks, based partlyon an assessment of the value of the service and partly
On the integrity of the networks being interconnected.

The principal network protocols are considered in Chapter 8, which gives a
detailed introduction to the problem of virus propagation via networks. At this

136 A Pathology of Computer Viruses

time it is sufficient to note that a significant risk attaches to uncontrolled file
server systems.

In such open file servers a virus infected file may be uploaded or written.
This file is then instantly available to all other dient systems. If the file server is
transparent then a virus on a dient system may infect any of the files from the
server.lt is vital that the software environment on the server is configured to
restrict access by dients to read-only. The need for careful configuration again
adds weight to the case for the server being und er the direct supervision and
administration of the systems group (possibly even the computer security
group) within an organisation.

Without a file server it requires the explicit action of a user to transfer a virus:
with a transparent file server the virus can spread organisation-wide in a matter
of seconds.

Used carefully, a file server can provide an extremely secure repository of
software. If anti-virus software is operational on the server it can provide a high
level of assurance that software used by the organisation is dean, and permit
an infected system to be booted easily to a clean state from which disinfection of
local disks can begin. The security environment on the server can often permit
detection of viruses active on dient systems (by detecting suspicious write
requests to executables on the server originating from an infected dient).

The ultima te solution is of course to completely centralise file storage on a
single (or group of) server wh ich is dosely controlled. All other nodes are
diskless or at the least have a security environment at startup (booted by
network from the server) which inhibits the introduction of executable code.

5.5A Investigation and Response

Finally, it must be accepted that a virus infection may occur. If this happens the
structure to react to the incident rapidly and effectively must be in place. Such a
structure must permit rapid analysis of the threat, rapid dissemination of
advice and counter measures, supervision of disinfection or removal of the
virus infection (or trojan horse) and, finally, recovery of damaged programs or
data. Such a response must also address the difficult area of maintaining
confidence (dient, employee or public) in the company. The public relations
issues are addressed later in the section on recovery from viral infection. At the
moment we will concentrate on investigation, determination of the extent of
spread, and dissemination of information on the virus infection.

5.5.4.1 What is the Infection?

The first question must be to determine the type of the infection. This can be
achieved in most cases through the use of virus specific scanning software.
These utilities will recognise an infection by its signature or by checksum

Management of pe Viruses 137

comparison with known virus sampies. This will permit reference to be made
to one of the many catalogues of known viruses, and an assessment of the
potential damage which the strain may cause.

In a few cases, however, it will be necessary to analyse the sampie either
using on-site expertise or with the co-operation of one of the many specialist
firms consulting in anti-virus measures. The latter is often preferable because
virus disassembly is highly specialised. Many viruses utilise common tech
niques which are weIl known within the anti-virus community.

Analysis comprises:

1. Acquisition of an active sample.
2. Logging of all information relating to the infection: unexplained activity,

corrupted da ta files, etc.
3. Disassembly of the sample.
4. Assessment of the risk based on the disassembled virus.

In some cases where the virus appears to be destroying data or programs it
may be necessary to issue warnings based purelyon symptoms or initial testing
of the virus under supervision. Such testing provides an incomplete picture of
the virus' operation because of the complexity of the activation criteria of many
viruses, an example being the Italian or Bouncing Ball virus.

The Italian virus has a small activation window during which it will display
its characteristic display of a small ball (a rhombus character 07h in the IBM set)
bouncing off the boundaries of the screen and moving through all text on the
screen. This window occurs every 30 minutes and lasts 1 second. If a disk
access occurs inside this window the effect will be activated.

Testing will normally include the accelerated advancement of the system
clock to detect manipulations (possibly destructive) on fixed dates.

5.5.4.1.1 Acquisition

First, it is necessary to acquire a sample for analysis. In many cases this can be
as straightforward as copying an infected program to a floppy disko In the ca se
of boot sector infectors it may require aseries of operations to be carried out on
the newly inserted sampling media before it be comes infected (e.g. directory
listings, file co pies back and forth between media). In the case of specialist
infectors the COMMAND.COM or system files may have to be copied to the
floppy disko

If a boot sector virus is not prepared to infect the media, it becomes necessary
to take an exact copy of the boot sector and any likely auxiliary sectors (the
determination of which sectors should be dumped is complicated by viruses
such as Denzuk which use specially formatted tracks). At the very least this
should include the master boot record and DOS boot records. Ideally a
complete sector by sector copy should be made of the disk (if it is an infected
floppy). Such a copy must be done on a clean system (witness the camouflage

138 A Pathology of Computer Viruses

attempts by Brain wh ich involve returning the user an uninfected copy of the
boot sector).

The transfer of infections by electronic me ans is even more complex. In the
ca se of boot sector viruses, utilities are available which will take a complete
image of a disk, compress it to save space, and store the resultant information
as a standard file which can be downloaded.

5.5.4.1.2 Logging of Relevant Information

All unusual activity should be logged. This should include the determination of
which files have been corrupted (if any) by the virus. A selection of these files
should be copied for analysis. This is particularly the case with such viruses as
"dBase" which cause corruption that can easily be reversed. Analysis of such
files may permit a simple data recovery utility to be produced. Logs should
include information on the detailed system configuration on which the virus
was detected as being active. This should as a minimum include: machine type,
memory configuration, processor type, active memory resident pro grams and
peripheral types (disks, screen drivers etc).

At this stage it is also necessary to carefully keep track of the actions taken in
sampling from, and subsequent analysis of, the infected system. Introduction
of computer viruses is a criminal offence under the Computer Misuse Act. If at
a later date it is decided that the company wishes to re port the incident and
press for a prosecution by the police, then accurate records will be required in
court which indicate:

1. Which systems were infected.
2. Extent of damage caused by the infection.
3. Means used to determine the cause of the infection.
4. Loss due to the infection (including the programmer time spent in analysing

the virus, and due to system downtime).

5.5.4.1.3 Disassembly

To be certain of the effects of a virus, it is necessary to disassemble the virus,
and then to analyse the resultant assembly (or high level) language. To aid in
this work a wide range of tools are available, including:

1. Software debuggers, which are resident in the system and permit single
stepping and breakpointing du ring execution of the virus, the contents of
the processor registers being displayed on screen.

2. Disassemblers, which will disassemble a block of code on disk or in
memory.

3. Hardware debuggers, which use additional specialist hardware to monitor
the activity of the processor, and permit hardware single step and
breakpoint facilities by directly manipulating the processor bus.

Management of pe Viruses 139

4. In-circuit emulators (ICE), which directly emulate the execution of the
processor in real time, permitting extensive tracing of memory accesses,
instructions executed and processor timing behaviour.

Each of the above has its own disadvantages and advantages. These are
summarised below:

1. Software debuggers. The virus is active while being debugged and can thus
attempt to detect debugging activity and to combat the operation of the
debugger. This indudes the use of the instruction pipeline detection technique
in Chapter 4, the modification of the single step and breakpoint interrupts used
by the actual debugger and interference with debugger code in memory,
keyboard buffers or screen displays. Software debugging is inexpensive, but
can be combatted by newer viruses, the so-called "armoured" viruses.

2. Disassemblers. These can operate on static inactive copies of infected files.
They thus have the advantage that no malicious activity by the virus will be
invoked. The major difficulty is the extensive (often multi-level) encryption
that viruses are adopting. This encryption, while aimed at frustrating signature
recognition, also complicates disassembly. No plaintext instructions are visible
in the infected file other than the decryptor. The person analysing the virus is
therefore required to analyse the decryptor, decrypt the remainder of the virus,
and then proceed with disassembly. Self-modifying viruses also slow down the
process of disassembly. The decompilation stage can be taken one step further
(particularly when the virus is written in a high levellanguage) by decompiling
the assembly code to produce a pro gram in a high levellanguage. Decompilers
are complex, and apply a large variety of heuristics to determine the structure
of the iterative and conditional programming constructs which genera ted the
original virus code. Such utilities may be subject to export controls similar to
those imposed on cryptographic software.

3. Hardware debuggers. These are potentially more powerful than software
debuggers as they are not subject to interference by the active virus. Theyare,
however, not executing in real time and as such are subject to detection by the
virus using careful observation of external system events (such as the system
dock). This technique was commonly used by software protection code to
detect the use of such devices. Hardware debuggers are also more expensive
than their software cousins, costing in the region of flOO-flOOO. Debuggers
normally rely on the bus contention logic in the processor by manipulating the
system bus. This permits the processor to be suspended after a single
instruction or at a particular location. All address and data on the system buses
are also readily visible (and recordable). The use of hardware debuggers may
be subject to UK copyright legislation, preventing the availability of such
devices, or restricting their use in reverse engineering code.

4. ICE. Finally, the most expensive mechanism is the ICE. This device executes
the full instruction set of the processor being emulated. In fact, the device
directly replaces the processor (hence the term "in-circuit"). The device may
permit docking of the emulator at a speed comparable with the target processor

140 A Pathology of Computer Viruses

on slow system architectures, thus frustrating detection using timing attacks.
The emulator can accurately determine the sequence of instructions executed
by the processor and permits advanced debugging. ICE devices are extremely
expensive, often costing tens of thousands of pounds.

An alternative (and highly specialist) approach is to produce accurate
simulations of the entire system environments (processor, memory, docks,
peripheral drivers, etc.) in software. Such simulators permit the virus code to
be introduced, and its effects to be carefully monitored in virtual time through
software simulation of each instruction. The virtual time concept permits the
simulator to mimic exactly the timing of each system component (admittedly, a
single microsecond of processor time may take milliseconds or whole seconds
of simulator time). A variety of system configurations may be tested by simple
modification of the software carrying out the simulation.

Simulators provide facilities for exhaustive testing of viruses: they are,
however, expensive to develop and require significant time to execute the
simulation. Development of such simulators is under way at the University of
Queensland for the purposes of detailed viral analysis.

5.5.4.2 Dissemination of Information

Following initial detection of the virus, there is often an immediate need to
react to the infection. This is particularly the ca se if the virus is unknown or
known to be damaging or destructive. In these cases it is necessary to issue a
warning within the organisation concerning the possible implications of the
virus. Before issuing such a warning consider:

• What will the impact of the warning be on employees? Will they be capable
of acting to combat the threat, or does disinfection require specialist
technical knowledge?

• What will the effect of the warning on customer confidence be? Hand and
hand goes an assessment of the risk of the infection being spread to
customers

• If (and this is an assumption with large organisations) the warning is passed
to the press, will it cause a loss of confidence in the company which may
affect future business or current stock values?

• What is the potentialloss to the company caused by damaged data, lost
pro grams and denial of machine service?

Each of the above factors must be considered before the warning is
authorised, the detailed technical information in the warning is decided, and
the potential audience determined.

It is advisable to issue an immediate brief warning if the threat is significant.
This warning will just note that a virus has been detected (possibly giving the
strain if the user community is knowledgeable), giving symptoms and a contact
point to which any possible infections should be reported. Such a warning

Management of pe Viruses 141

might also re-iterate good anti-viral precautions. Initial disinfection work can
begin at this point, as can tracing of possible introduction channels for the
infection.

Arelease of a specialist signature detector for the virus may be considered at
this point if the virus will potentially evade detection by the anti-virus software
in use within the company.

When detailed analysis has reached the stage at which the virus can be
positively identified, specialist software to disinfect this particular virus and to
repair damaged or corrupt da ta may be made available.

In each case a balance should be struck between the level of technical
information made available to the user, and that required by the user. Certainly
the distribution of disassembled or decompiled source would be unwise,
possibly in breach of professional codes of conduct, and open to consideration
as an incitement to breach the Computer Misuse AcL Information about the
symptoms, identity and procedures for the removal of the virus can normally
be justified. Where the virus' identification as a particular strain would cause
unjustified "panic" or ill reaction then it may be possible to suppress the
identity by allocation of an in-house identifier. It should be borne in mind that
virus catalogues are widely available (certainly at academic or regular bulletin
board using corpora te sites) and an in-house identifier will be discovered, and
the correct virus strain determined.

Consideration should also be given to distribution of samples (particularly
for new viruses) to the research community. If necessary, anonymous
"donations" will be accepted by most researchers, although some information
on the effects and extent of spread would be of use. Information on research
establishments working in the area of computer viruses is given in Appendix
14. .

The police force also wishes to be informed of any virus infections so that a
dossier of damage caused by each virus can be compiled for future criminal
proceedings.

5.5.4.3 General Containment

Finally, general containment may include segregation of infected systems,
temporary suspension of network services or external gateways, temporary
controls on the traffic in storage media, and the removal of computers from
corporate sites.

Infected systems should be isolated immediately from other clean systems to
prevent further infection. Similarly, infected networks should be isolated from
other networks within the company. An assessment of the damage caused by
the potential spread of the virus against the denial of service caused may
temper this disconnection policy.

Backups should immediately be taken of any system with an unidentified
virus or worm active. This will permit recovery of data in the event of loss or
corruption due to viral activation. These backups should be marked as infected

142 A Pathology of Computer Viruses

and segregated from all other backups on the system. In the case of infection by
a known or easily identifiable virus, or in which the value of da ta is
insignificant, backups may be avoided. '

Network disconnection may be partly avoided by installation of filters on
server or gateway machines. Such filters can flag infected code en route via the
network and abort the transfer. It must be borne in mind that a large variety of
transfer mechanisms exist, often with mutually exclusive protocols. In this case
the filter can be established at:

1. Application layer: for specific applications such as networked filing sys
tems, remote copy facilities or electronic mail services.

2. Network layer: to screen all data en route to external sites.
3. Data link layer: to screen all outgoing data.

The possibility of false drops should be borne in mind. The patterns should
thus be sufficiently long and discriminating to minimise this possibility.

Where a high lev"el of infection exists it may be necessary to segregate specific
systems from the network, not because of infection, but because of the risk that
they may become infected. Thus, high integrity systems may be isolated from
the network while disinfection of general access systems is under way.

Infections should thus lead to a re-assessment of the requirements for
network and physical data compartmentalisation. .

As a footnote it is worth mentioning that disconnection of gateways in the
face of wide area network worm propagation may significantly inhibit the flow
of information from the network community on combating the worm. It is
therefore preferable to offer a limited gateway service (probably restricted to
email) on a system whose architecture is not attacked by the worm. Such an
example might be a XENIX system during the Internet worm attack.

5.5.4.4 Tracing of Infection Source

. A final component of investigation and response must be the tracing of the
infection to original source, and determination of the extent of spread both
within and without the organisation. The logs of software installation can be
used, together with file modification date/timestamps (if these were not re set
by the virus) to establish the spread within a system, and the possible source of
the infection.

Normally, however, a virus will re set the timestarnps on infected files. In this
case re course to the reports of unusual behaviour must be made, coupled with
scans of old backups to determine the date of infection.

On ce a date of infection has been determined the flow of software to and
from the system can be analysed. Software installed immediately before the
initial infection date is obviously a prime candidate (although bear in mind the
possibility of a trojan horse releasing a virus, in which case the trojan may still
be resident on the system). Systems within the organisation can be placed in a

Management of pe Viruses 143

tree structure based on the date of infection, the initial point of infection
forming the root of the tree. Software traffic from infected systems must be
traced. This includes the location and disinfection of potentially infected
backups, and the tracing of disks which have left the site or organisation.

Basically, the tracing of infection is a slow, hierarchical process, beginning
with determination of the system' s point of infection, and the initial file
infected. lt continues with determination of the organisation' s point of
infection, and the initial system infected.

Certain viruses can carry version numbers, generation numbers or other
information which can permit determination of the order or source of infection.
The Yale boot sector virus, for instance, carried a generation counter in the
infected boot sec tor which was decremented between each generation. A
noteworthy example of a virus capable of being traced to source is the
"Traceback" virus.

The Traceback virus was an IBM PC direct and indirect file infector. After 5
December 1988 the virus would begin to scan the system directory when
executed. If a COM or EXE file was found it would be infected. If an existing
infected file was discovered then the virus would scan the current directory for
a file to infect. When the file is infected by the direct search technique a buffer
within the written virus code will contain the full directory path of the file being
infected. However when the virus infected using the indirect method (trapping
the load DOS subfunction) this string would be unaltered. Thus the infected
file would contain the directory path of the file which infected it, permitting a
limited tracing of infection - hence the virus' common name, Traceback.

In addition, archives created on disk as backups will normally not be subject
to later infection. They can thus be unpacked and checked for infection at the
time the archive was built.

Hruska provides a brief summary of the characteristics of a computer virus
which may be an aid to further investigation and tracing of infection sourees.
His list includes:

• Characteristics of assembler used (for instance the idiosyncratic assembly
instructions genera ted by the A86 public domain assembler were detected in
the Yale virus)

• Use of hardware specific features such as processor dependent opcodes or
pre-fetch pipeline characteristics

• General programming style such as register and stack use preferences,
techniques to TSR, clear register blocks, etc.

• Language and spelling of text messages within the virus

• Place and time of initial detection

• Traceable ancestors using compatible signature techniques or common code
blocks

All of the above can possibly point to the author of the virus, or at least
establish common authorship. The most obvious indication is, however, the

144 A Pathology of Computer Viruses

specific targeting of the virus (such as the Scores virus) against a product or
products of a particular firm.

5.5.5 Disinfection of Viral Code

This section deals with the procedures to disinfect an infected system, and by
extension an infected network. Disinfection can be achieved by system re
installation (either complete or restricted to infected components), or by the
use of virus specific disinfection software.

5.5.5.1 Re-installation

Re-installation requires access to an uninfected backup or write-protected
master diskette. In the extreme case where no critical data has been lost
between backups, then re- installation may be complete. This consists of
performing a cold reboot of the infected system using a write-protected system
master disko A copy of the format is then run from a clean master disk to
reformat all connected hard disk media. All software is then restored from the
original master diskettes (preferable) or from an uninfected system backup. All
data is restored from' the latest backup (if the virus does not corrupt data) or, if
necessary, from earlier backups.

The procedure (and requirements) can be summarised as:

1. Switch the infected system off for at least 30 seconds.
2. Boot from a clean write-protected system master disk (which should include

clean format, virus scanning, res tore and copy programs).
3. Run the format utility from the system master disk to reformat all connected

drives.
4. Re-install all software from original master diskettes.
5. If software cannot be installed from master then insert latest backup, scan

for virus infection using scanner on system master disk, if clean then copy to
reformatted disk, otherwise use next youngest backup.

6. Re-install data from last backup. If a data corrupting virus is present then
installation from earlier backups may be necessary.

Partial re-installation to replace infected utilities may be possible, In this ca se
proceed as above, except the master diskette should also contain a delete or
remove pro gram (preferably one which scrubs the sectors belonging to the
deleted file, rather than just marking the file as deleted in the directory). At
stage 3, delete all infected programs rather than reformatting connected drives.
In the ca se of boot sector viruses use the "SYS" DOS command or equivalent
(e.g. M-DISK public domain utility) to replace the boot sector on each
connected drive with uninfected code.

Management of pe Viruses 145

It should also be noted that formatting occurs at two levels on most IBM pe
systems, namely:

1. Low level format: all tracks on the media are erased and a new pattern of
sectors laid down.

2. High level format (or logical format): a new boot sector is genera ted, the F AT
table and root directories are cleared.

High level formatting is carried out via the standard DOS format. Low level
formatting must be invoked using a device dependent call via the OE BUG or
HFS commands. Execution of the DOS format command on a floppy disk
carries out a low level format, followed by a logical format.

Low level formatting is expensive in terms of time, and is not required to
disconnect a boot sector virus from the execution path. The DOS format
command will replace the boot sector with a clean copy, and will ensure that
the original data is no longer accessible from DOS. A low level format does,
however, give the assurance that the da ta on disk has been scrubbed and
erased, and thus no fragments of virus code can be read using low level BIOS
calls.

5.5.5.2 Recompilation from Source

An alternative to re-installation from master diskettes or saved backups is to
recompile from source. This implies that all programs in the compilation path
must be uninfected, including compilers, linkers, and object manipulation
utilities (such as symbol table strippers).

Recoinpilation from source using trusted components can provide a high
level of assurance that the resultant executables are uninfected. This also has
the advantage of reducing the requirement for inspection of incoming code for
viruses. It becomes sufficient to screen a subset of operating system utilities
together with the compilation path. This can include inspections of the
programs for potentially suspect code sequences or testing on a sacrificial
machine.

The trusted compiler may then be used in a clean system environment to
generate clean object files (assuming of course that a source code virus is not
active).

5.5.6 Checking for Re-infedion

A vital part of an attempted disinfection must be monitoring for re-infection.
Even with the most careful disinfection of hard disks it is likely that re-infection
will occur from floppy or other removable media in the hands of users. Such
media should therefore be screened (often impractical due to the large number
of such flop pies, although bulk loaders are available to speed the disinfection

146 A Pathology of Computer Viruses

process), failing which software should be installed on the clean system to
prevent re-infection from an infected floppy (a simple example might be
installation at boot time of a resident monitoring utility which is known to
detect the virus).

Checks should be made at regular intervals after disinfection to ensure that
the protection in place is proving sufficient. This can be delegated by educating
end users or junior managers in the operation of the virus scanning utilities.
Utilities can be optimised (if necessary) to scan for the single virus being
monitored - this will result in a significant speedup.

5.5.7 Disinfection Utilities

Finally, disinfection utilities are available both commercially and in the public
domain to remove a virus from an infected file. Such disinfection utilities are
useful as an emergency measure when backups or original masters are not
available. Disinfection in COM files is normally possible via a general or
specific technique, i. e.:

• Specific. Using knowledge of the particular structure of a virus to determine
where the saved jump or first few bytes of the original host are stored within
the virus. These bytes can then be restored. The infected host can then be
truncated to its originallength, effectively discarding the virus code.

• General. General techniques rely on analysis of the virus to determine the
start of the host program. Specifically, if the original object file consists of a
jump over an area of static initialisation data, then this stored jump
instruction can be located within the appended virus, and restored. This can
be as simplistic as scanning for a jump to the host program within the virus
code.

Disinfection in EXE files tends to be more unreliable due to rounding of file
sizes to paragraph boundaries, coupled with the common problem of an
erroneous length specification in the EXE file header. The latter has in the past
led to viruses overwriting part of the host file, and effectively causing no visible
extension of the host.

Finally, the alteration of the host program may not be directly reversable
because of corruption by the virus. In these case limited patching of the utility
may be possible.

An important point when disinfecting an application is that the virus code
should be purged from the infected file. This prevents a hostile or malicious
user from reconnecting the residual virus code. Ideally, therefore, an infected
file should be truncated, and the area beyond the new logical EOF but within
the physical EOF scrubbed.

Management of pe Viruses 147

5.6 Recovery from Virallnfection

The final section in this chapter deals with ensuring a rapid and complete
recovery from viral infection. This section is divided into three topics:

1. Backup and recovery procedures.
2. Contingency planning.
3. Remedial action.

5.6.1 Backup Procedures

Backups should be regularly taken of all systems which require data integrity or
protection against denial of service. The frequency of backups may be variable,
depending on the value of data stored on the system. This might inc1ude:

• Monthly backups on public access low integrity systems, or demonstration
systems

• Weekly backups on casual use, general or archive sites
• Daily backups on critical development systems and line of business systems
• More frequent backups on integrity critical systems

Basically, the cost in terms of personnel (to take backups) and lost time (due
to reduced system performance or downtime) together with the cost of
magnetic media must be offset against the risk to the organisation of data loss
(either directly via failure of system operation, indirectly via contract penalties
or via litigation for failure to provide services).

The most extreme cases may be traffic control services where system
recovery without data loss may be vital. Such issues are often addressed by
redundancy in system design, standby machines, etc. At the other extreme,
public access systems may have no requirement for da ta integrity, in which
case the system may be restarted, the disk reformatted, and the operational
software re-installed from master diskettes.

Between these two extremes lie most systems. It is worth noting that
automated backup systems can take much of the time and effort out of ta king
backups - these inc1uded automated backing up of live systems (once a
specified amount of data change has occurred), use of bulk storage WORM
devices, etc.

Viruses and trojan horses introduce no further requirements in terms of
frequency of data and program backup. They do, however, introduce a
requirement to retain long term backups to permit fallbacks in cases where
recent backups are infected, or da ta has been incrementally corrupted.

A nu mb er of tiered incremental backup strategies exist, inc1uding simple
strategies such as:

148 A Pathology of Computer Viruses

Day 1 2 3 4 5 6 7 8 9 10 11 12

Level 1 2 1 3 1 2 1 4 1 2 1 3

in which each higher level of backup includes an files modified since the last
backup at that level or above. Thus, a level 3 backup stores an changes since the
last level 3 or 4 backup. A level 1 backup stores an changes since the last backup
(irrespective of level). This strategy minimises the number of backups which
must be retained and minimises the number of backups which must be applied
to return the system to a valid state. This scheme may, for instance, be applied
over a month, with a fun backup at the start of the month, and tiered
incremental daily backups at 5 levels over the remainder of the month. Thus,
any failure would require (at most) restoration of level 5, 4, 3, 2 and 1 backups.
This requires five tapes for the active month and one tape per inactive month,
and provides theability to back track for a minimum of 14 days using early
backups.

Backups should always be verified after writing. There have been a large
number of cases in which organisations have genera ted backups which were
then carefully stored. Months later when the backup was restored it was
discovered that:

1. A tape was too short for the amount of da ta to be backed up, no error
message had been genera ted when the backup was aborted.

2. The head or transport mechanism on the drive was faulty and the tape had
not been written.

Very high density storage media can be fairly drive specific, so while the
original drive may re-read the data, other similar drives may not do so. A trial
on a separate system should be attempted.

Backups should be accelerated during critical project developments or prior
to important demonstrations. It is during this period that the risks from da ta
corruption are greatest, and the impact of a disgruntled employee can be most
effective.

5.7 Contingency Planning

Contingency planning addresses a wide range of issues in an organisation's
response to the viral threat. Many issues, such as the organisation of a virus
response team, have been addressed elsewhere in the chapter. The issues
considered here are:

• Redundancy and reserve system configurations
• Insurance

Management of pe Viruses 149

• Public and media relations

The first item is concerned with making provision of continuedoperation of
the organisation's computing facilities, the se co nd with compensation for
failure to continue operation.

5.7.1 Redundancy

Key systems should be identified within the organisation. If they are easily
accessible then they may be at risk from malicious software. In this ca se a
decision must be made whether to reduce accessibility or to make provision for
reserve systems. The reserve systems can rapidly be brought up and into
operation following activation of malicious software. Ideally the environments
on both systems should be identical, although a lapse in software installation
between the production and reserve system may be advisable. Redundancy is
similar: in this case sufficient reserve capacity is provided for within the
organisation to absorb the impact of isolated system failures due to malicious
software. In both cases it is vital that the reserve or redundant systems be
isolated in terms of access (both physical and electronic) to minimise the
likelihood that both systems will be affected by such software. It is crucial to
identify key points within the computing provision in an organisation and, if
the possible financialloss justifies it, to make provision to reduce vulnerability.

5.7.2 lnsurance

A small number of firms now offer insurance against the specific effects of
malicious software. Such a firm is Lloyds of London. It is however worth
noting that most computer damage policies wh ich insure the user for damage
from physical destruction (or even from intrusion) specifically exclude damage
caused by malicious software. This an area of fine print which should be
carefully checked.

5.7.3 Public Relations

The third item is the most complex and potentially sensitive of all issues. It is
vital that a company maintains the confidence of its customers, and that
enquiries from the media do not interfere with the recovery process. Many
organisations choose not to re port viral infection because of the danger of
adverse publicity. It is worth noting that a positive and carefully worded media
statement may often bring praise rather than criticism, e.g.:

150 A Pathology of Computer Viruses

Following detection and successful elimination of a computer virus XXX today
temporarily suspended network services to significantly enhance their network
security by installing advanced virus detection software on all cönnections. This is
part of XXX's ongoing commitment to improved system security.

XXX were today forced to disconnect their network to eliminate a virus spreading
rapidly throughout the organisation. XXX made no comment on this issue, other
than to state that measures had been taken to prevent a recurrence.

The tone and style of a public relations statement can significantly alter the
press' reaction to an incident, and may convert a major incident into a plus for
the company. In large organisations it is likely that a major incident willieak to
the press, and it is preferable to have informed opinion (even if misquoted)
rather than uninformed speculation.

The security policy must therefore indicate whose responsibility public
relations is, who decides whether an incident should be reported, and who
drafts the press releases.

In large corpora fes it may be advisable to establish a public relations officer
designate who will deal with all press queries if a major incident is und er way.
The technical staff of the organisation should not be bothered by press or
customer enquiries if this can be avoided, as they have a vital role to perform in
the rapid analysis and elimination of the threat. In the Internet worm incident
the MIT press office were complemented for their handling of the incident, and
the non-interference with the technical work under way.

Measures to regain customer confidence, such as the provision of disinfec
tion software and information on the virus, should be considered, especially if
there are any indications that the virus may have spread from the company.

Part of the public relations policy must address wh ether the incident will be
reported on open networks (corpora te or external such as Virus-I), and
whether returns will be made to bodies carrying out surveys of such infections
(e.g. the Audit Commission).

The UK Computer Crime Unit has indicated an interest in any incidents of
viral infection which may occur, and is keen to have such incidents reported.
This permits the construction of a dossier of damage attributable to a single
malicious software component, and strengthens the ca se for a legal suit against
an author of malicious software.

5.8 Remedial Action

Finally, punitive action may be considered against the perpetrator of any
malicious software incident. This action may be contractual or legal. If an
employee is the perpetrator of malicious software or has through deliberate
action or negligence permitted the software to become active within the
organisation, then he or she may be in breach of their contract of employment.

Management of pe Viruses 151

The contract of employment is not solely limited to the contract signed on
appointment by the employee but may include either the additional codes of
conduct which the employee agrees to abide by (either implicitly or explicitly),
such as a statement of "conditions of use" for corporate computer equipment.
It is advisable to ensure that every employee has read (and signed!) such a
document.

In such cases the employee may be subject to internal disciplinary action
under the corporate disciplinary codes, or may be subject to civillitigation for
recovery of damages resulting from his/her breach of contract.

Alternatively, a criminal legal sanction is available under the Computer
Misuse Act 1990. This Act makes it an offence to alter computer data without
permission. Such an offen ce may with malicious intent carry a penalty of up to
5 years' imprisonment.

Chapter6

Apple Madntosh Viruses

6.1 Introduction

This chapter examines a further personal computer system which has been
heavily afflicted by computer viruses, namely the Apple Macintosh. It shows
the significant differepces caused by the resource based abstract structure of
Macintosh object files, and the complexity of the system initialisation
sequence. The other two primary targets of virus writers (the Atari ST and
Commodore Amiga) are also mentioned briefly.

The University of Hamburg virus catalogue project's remit also extends to
other personal computer platforms. The Hamburg June 1990 catalogue
(together with the IBM PC October 1990 Homebase and Disinfectant 2.4
documentation for the Mac) give the following distribution of viruses per
annum. The figures for 1990 are partiat as a result of reliance on catalogues for
mid-year together with the lead time for analysis of viral sampies. In general a
figure of 20 Amiga, 20 Atari ST, 10 Apple Mac and 120 IBM PC viruses can be
postulated, thus yielding a total for 1990 of 170new viruses, and a grand total of
310 viruses (induding four Apple 11 strains - "Elk Cloner", "Festering Hate",
"CyberAIDS" and "Lode Runner").

Number of detected viruses during year
Platform 1986 1987 1988 1989 1990 Total Source

Amiga 1 7 27 35 Hamburg
Atari ST 5 13 18 Hamburg
mMPC 3 11 16 43 81 154 Homebase
Macintosh 6 1 3 7 17 Norstad

3 18 29 86 88 224

The non-IBM PC platforms undoubtedly have fewer strains of virus. It is
however generally the ca se that existing viral strains are far more common
(especially on games machines such as the Atari and Amiga). A significant
number of users will have encountered "Byte Bandit" on the Amiga, "Mouse
Inverter" on the Atari or n VIR B on the Mac.

In gene rat the characteristics of the viruses on the four platforms are
significantly different. The high level support environment on the Mac permits

154 A Pathology of Computer Viruses

straightforward production of link viruses, but in general discourages the low
level camouflage techniques observed on the IBM PC, Atari and Amiga
systems. The absence of convenient access to executable code files via directory
search services on the Atari ST has severely restricted the number of non-boot
sector viruses, although the software protection utilised in prevention of
games piracy has developed a number of complex camouflage and anti-tamper
mechanisms. Software protection mechanisms were indeed the first to exploit
the "ripple" decoder technique utilised by the fourth generation of IBM PC
viruses.

This chapter seeks to outline the differences in operating system environ
ment and to detail how shortcomings of each have affected the types of virus
prevalent on the system. Each system is analysed using the common
methodology described in Chapter 4, namely identification of all avenues of
implicit and explicit code execution and assessment of their associated
vulnerability to viral infection.

6.2 Macintosh: The Abstract Operating System

The Apple Macintosh represents the highest level, most abstract and most
complex operating system of any of the personal computers dealt with in this
work. The Macintosh operating system and associated "toolkit" provide a
wide range of services for the user, supporting a window, icon, menu and
pointer environment with sound and colour support. The operating system
divides into a number of clearly defined modules. Each module has a well
documented interface to its users, and a detailed description of the services it
provides. The modules and their inter-relationships are illustrated below:

Apple Macintosh Viruses 155

I Application program J
~

USER INTERFACE TOOLBOX (ROM)
Resource Manager

QuickDraw
Font Manager

Toolbox Event Manager
Window Manager OlHER IDOH-LEVEL SOFTW ARE (RAM)
Contrei Manager Binary-decimal Conversion
Menu Manager International Utilities

TextEdit Slandard File Paclcage
Dialog Manager
Desk Manager
Scrap Manager

Toolbox Utilities
Paclcage Manager

~

OPERATINO SYSTEM (ROM)
Memory Manager
Segment Leader OTHER LOW LEVEL SOFTWARE (RAM)

OS Event Manager RAM Serial Driver
FtleManager Printing Manager

Device Manager Printer Driver
Dis~ Driver AppleTalk Manager

Sound Driver Disk lnit Package
ROM Serial Driver Floating Point Package

.Vertical Retrace Manager Transcendental Function Package
System Error Handler

OS Utilities

~
I Hardware I

This diagram (modified from Inside Macintosh, volume 1) represents the
firmware and software configuration for the early Mac models. A nu mb er of
newer components have been added as peripheral complexity has increased.
Of the traditional and newer modules, the following are of specific interest to
the virus author:

• Resource manager: a vital component of the Mac toolbox wh ich permits the
user to manipulate applications as functional modules either containing
executable code or parameters to routines within the toolbox which manage
the user interface

• Memory manager: responsible for allocation of blocks of memory from the
system heap

156 A Pathology of Computer Viruses

• Segment loader: responsible for loading of CODE modules into memory for
execution

• File manager: responsible for the provision of a file based abstraction of
secondary storage peripherals

• Device manager: a low level general interface to storage peripherals capable
of block structured 1/0

• Disk driver: the actual interface to a specific disk storage peripheral
• Vertical retrace manager: responsible for allowing the installation of

subroutines to be executed during the period when the Mac is not
generating part of the displayed image (i.e. the electron beam is returning to
the top of the screen after completing a scan)

• Disk initialisation package: responsible for the formatting of disk storage
media

• Apple desktop bus manager: responsible for handling slow speed da ta 1/0
peripherals atta<;:hed to the proprietary ADB interface

• Start manager: responsible for the initialisation of the Mac and associated
peripherals at startup

• Deferred task manager: responsible for permitting the installation of
subroutines to be executed on return from an interrupt handler

• SCSI manager: responsible for the small computer systems interface to fast
secondary storage devices

• Shutdown manager: responsible for termination of all activity on the Mac
and associated peripherals before power down

Each of the above devices (plus the network services offered via the Apple
proprietary LAN, AppleTalk) offers facilities which may be utilised by a virus
author.

To commence analysis of this exceptionally complex hierarchy of software
and firmware modules we can consider in detail the Mac initialisation
sequence. This sequence is part of the functionality of the Start manager.

6.2.1 Initialisation

Initialisation comprises a number of hardware and firmware actions following
the application of power. These actions are connected with the initialisation of
all peripheral devices, establishment of the window environment and the
Iocation and execution of either a user specified application or the window
manager. The components of the initialisation procedure are (virus critical
components in bold):

• Testing of critical hardware devices such as the peripheral drivers, on-board
timers and interface chips. A complete test of RAM is also carried out
(although a partial test is only carried out if the machine is restarted)

Apple Macintosh Viruses 157

• Interrupt vector table is initialised and certain system global variables
instantiated. The Package manager and Time manager are initialised

• Slot manager (if present) is initialised and the ROM initialisation code on
each slot device executed

• Apple desktop bus (connecting keyboard and mouse) is initialised

• SCSI, disk and sound managers are initialised

• The parameter RAM (EAROM) is interrogated to retrieve the internal SCSI
drive id. A search is then carried out for astart device from which can be read
various system parameters and the RAM resident component of the
operating system. The search checks 3.5" drives (beginning with the
specified interna I drive), then the device specified as default startup device
by the user is checked, then the SCSI bus devices starting with internal hard
drives, and finally the remaining drives in reverse order of unit number are
checked (6 to 0). The device driver for each device is read into memory

• The configuration information in the system startup block on the selected
device is read (if the block is marked as executable the code in the block is
executed - this provides the Mac equivalent of a boot sector virus)

• . The resouree, system error and font manager are initialised from the system
file located from a "blessed" directory on the start device

• The debugger specified in the startup block is executed, providing a Mac
equivalentof a virus executed via the CONFIG.SYS file on the IBM PC (e.g.
a virus masquerading as a device driver)

• ROM patch resources (the concept of a resource is described below) of type
PTCH are installed into memory

• Apple Desktop bus code is loaded from resources of type ADBS and
executed

• Tracking of mouse movement begins (this may utilise mouse tracking
code)

• Device drives read from ROMs in devices slotted into the backplane are
executed

• Initialisation code contained in resources of type INIT in the system file is
executed

• Initialisation and driver code contained within files in the system folder
(the blessed folder in which the system file resides) is executed

• If a startup application is specified it is launched (started) , failing which the
finder or multifinder is launched

In the above list a large number of routes exist for incorporation of viral code
during the system initialisation. Additional routes (described later) permit
ineorporation of viral code du ring disk insertion or applieation startup. Before
proeeeding further, it is important to understand the "resouree" based
structure of the system file and applications in general.

158 A Pathology of Computer Viruses

6.2.2 Resources

Within the Mac, eaeh file (whether data or applieation) has two distinet
eomponents known as "forks". The two forks are the data fork which eontains
data used by a user applieation, and the resouree fork. The latter is of partieular
interest to the anti-viral software writer. This fork eontains parameters for
system modules (such as adefinition of a window to be displayed on the
sereen, a sequenee of sound to be interpreted by the sound manager or the
pattern of an ieon or graphie), together with exeeutable code. Eaeh resouree is
identified by three features:

1. Resouree type: a four-eharacter identifying string unique to that particular
format of resouree - many are reserved for use by Apple.

2. Resouree id: a numerie value wh ich differentiates between different
resourees of the same type.

3. Resouree name:'an optional user speeified name for an individual resouree,
specified as astring of eharacters.

A typical user applieation would eomprise a large variety of resourees (only a
portion of whieh eontain exeeutable code), permitting the simple definition of
windows, ieons, pictures, sounds, menus, dialogu~s, alerts, eolours and lists
through the use of data in a format specifie to the operating system eomponent
which interprets the resouree. The resourees of partieular eoneern are those
which eontain exeeutable code. These are a subset of all resouree types, and
include the following resouree types:

TyPe Function Type Function
ADBS Apple desktop service routine CACH RAM cache code
CDEF Control definition function CODE Application code segment
DRVR Desk accessory or device driver FKEY Command-Shift-Number routine
FM1R 3.5" disk formatter code INIT Initialisation resource
LDEF Ust definition procedure MBDF Default menu definition proc
MDEF Menu definition procedure MMAP Mouse tracking code
PACK Package PDEF Printing code
PTCH ROM patch code ROvr ROM override code
SERD Serial RAM driver WDEF Window definition function
NBPC AppleTalk bundle
atpl Internal AppleTalk resource boot Boot block copy
cDev Control panel devices mppc AppleTalk configuration code
snth Sound synthesiser code

Other code resourees may have been added in later system files and ROMs.
Resourees may be loaded into memory as the result of the system initialisation
proeedure or as the result of being loaded and exeeuted by an applieation or by
a system utility. In the ca se of system initialisation, code in ADBS, CACH,
DRVR, INIT, MBDF, MMAP, PACK, PTCH, ROvr, SERO and mppe resourees

Apple Macintosh Viruses 159

will be exeeuted. Through the normal actions of the user in utilising the Apple
window manager "finder" or "multifinder" , other resourees will be loaded
and exeeuted implieitly through aetions of the user. Such aetions as the
opening of a window, or use of a list, menu or system defined eontrol will eause
the execution of CDEF, LDEF, MDEF and WDEF resourees. Further resourees
such as FKEY are exeeuted as a result of a partieular key sequenee (Ctr-Shift-3
or 4 normally), or as the result of the use of a system function e.g. FMTR.

To loeate a resouree for exeeution the system uses a standard "seareh" order.
This seareh order looks through the resouree forks of a number of files in a
specified sequenee. First is the resouree fork of the applieation data file whieh
(through assoeiation) has eaused launehing of the applieation, seeond is the
resouree fork of the launehed applieation, third is the system file, and fourth is
the system ROM. (This order may be modified by a number of factors - in
general it is representative. The last two items may be swapped in seareh order
using standard resouree manager eaUs.)

Thus, opening of a window (which eauses the window manager to seareh for
and exeeuted a WDEFresouree appropriate to the window type) may invoke
code in the applieation or its da ta file, system file or ROM. It is important to
note that data files on the Mac may eontain resourees, whieh may in turn
eontain exeeutable code. The distinetion between data and exeeutable code is
less clear than in the IBM PC environment.

Other system applieations may open additional resomee files whieh will be
inserted into the seareh sequenee. All resouree files are searehed in a last
opened first-searehed sequenee. An important example is the window
manager "finder" whieh permits the user to manipulate files and execute
programs via a window interface. This program makes use of data on eaeh
mounted disk volume. This data is used to loeate a partieular requested
applieation on disk via the use of a "signature". The mapping between
signature and actual file name is stored in a "desktop" file on eaeh volume. This
file additionally stores information on the loeation of ieons and windows on the
sereen. It may unfortunately also include exeeutable code resourees such as
MDEF, WDEF, CDEF and LDEF. These resourees may therefore override the
standard resourees stored in the system file (sinee the volume desktop resouree
file was opened after the system file, and is thus searehed before it). This is the
teehnique used by the so-eaUed "implied loader" viruses such as the WDEF
and CDEF viruses. These viruses exist as exeeutable viral code in the desktop
on eaeh storage volume. The act of inserting a disk will eause the finder to open
the desktop on the volume, and will thus plaee the WDEF or CDEF viral code
into the finder's resouree seareh path. These ean broadly be eonsidered to be
boot sector viruses sinee they are transported by movement of medium rather
than applieation, and are an integral part of the initialisation of a storage
volume. They are however extremely dangerous, as loading of viral code
oeeurs as a result of disk insertion without the requirement to run any
applieation.

160 A Pathology of Computer Viruses

Previously in this work the possibility of transferring large eomponents of
the operating system code into ROM was mooted. It is worth noting that the
Mac has taken this approach, and includes a variety of system ROM sizes
ranging from 64 K on early Mac models to 256 K on ne wer models. Apple has,
however, included the flexibility of overriding code in the ROM. This ean be
aehieved in a number of ways:

1. Pateh resourees, eontaining fixes to the ROM. These are loaded at
initialisation time from the system file: on exeeution they may re-veetor
system traps to pass eontrol to pateh code.

2. ROM override resourees, providing the ability to replaee one or more ROM
resourees eompletely by areplacement resouree. The system exeeutes a
ROvr resouree at the time the resouree manager is initialised. The funetion
of this specialist resouree (not included in the standard system file) is to
loeate speeified resourees in the ROM and to override them using system file
eopies.

3. Inclusion of an overriding resouree in a resouree file opened later (this is not
appropriate for deviee drivers and other resident code loaded at system
startup time).

Eaeh of these routes permits a virus to bypass ROM code: eaeh must
therefore be eheeked for and prevented by anti-viral software.

The system ROM includes a number of standard resourees whieh may be
used by applieations permitting virus free code to be exeeuted. These inc1ude:

CDEFO
DRVR3
DRVR9
DRVR28
MDEFO
PACKS
SERDO
WDEFI

Default button definition
Sound driver
AppleTalk driver
AppleTalk driver
Default menu definition
Transcendental functions package
Serial driver
Default window definition (rounded)

CDEFI
DRVR4
DRVRA
MDBFO
PACK 4
PACK?
WDEFO

Default scroll bar definition
Disk driver
AppleTalk driver
Default menu bar definition
Floating point arithmetic package
Binary-decimal conversion
Default window definition (document)

Resouree loaded from the system file (not eontained in ROM) include:

PACK 0
PACK 3
PACK 12
DRVR18

List manager
Standard file package
Colour picker package
Control panel desk accessory

PACK 2
PACK 6
DRVR2
LDEFO

Disk initialisation package
Internation utilities package
Printer driver
Standard list definition

and additionally further WDEF, MDEF, CDEF, LDEF, FKEY (3 and 4), MMAP
0, ADBS 2, KCHR and INIT resourees.

Apple Macintosh Viruses 161

6.2.3 Trap Oispatch Table Structure

In a similar manner to the vector table in an IBM PC system, the Mac utilises a
central nexus known as the "trap dispatch table". This table uses a finer
grained approach to that of the IBM PC vector table (in which all main DOS
services are represented as functions of the main Int 21h trap), and includes
separate vectors or trap addresses for all operating system and toolbox
routines. Thus, a virus can intercept any facet of the Mac's behaviour via the
dispatch table. Equally, an anti-viral monitor can apply a fine grained approach
to the monitoring of system behaviour by intercepting only those functions
which can be utilised for viral code propagation. These functions are primarily
those of the "resource manager", "file manager" and lower level drivers.

The resource manager (unfortunately) offers extensive facilities to add new
or modify existing resources within an application. These facilities make the
production of a link virus trivial on this platform. It is however possible for a
virus to undermine the abstraction provided by the resource manager and to
directly access the resource fork of a file via the "file manager". Theoretically,
with added viral complexity, a virus can undercut even the file manager and
directly utilise "device manager" or "disk driver" calls.

In general, the key functions to monitor in the Mac environment are:

Resource OpcnResFile Opcn spccified resource file for 10
Resource OpcnRFPerm
Resource SetResAttrs Modify thc attributes of a resource (including read only)
Resourcc ChangedResourcc Indicate that a resource has been modified and

should be wrilten out when convcnient
Resource AddResource Add a new resource to the Ille
Resourcc SctResFileAttrs Modify resource file attributes (again read only)
File OpenRF Open a resource fork for direct 10
File PBOpcnRF
File PBHOpenRF "n (using hierarchical file system HFS)
Device PBWrite Write to file specified by paramcter block
SCSI SCSIWrite SCSI driver low lcvel write
SCSI SCSIWBlink

In addition, remote file manipulation calls via the AppleTalk manager may
allow introduction of viral code to remote systems.

The considerations described in Chapter 4 for interrupt monitors apply
equally in the Mac environment. It is however somewhat easier to jump
directly to a resource which is present in ROM (using resource manager calls to
place the ROM resource map in front of the file based resources), and thus
bypassing of interrupt monitors is a significant risk. This is a major problem
with trojan horse utilities.

It is possible to invoke viral code implicitly by redirection of a number of
system pointers stored as globals. These pointers are jump vectors used by
specific components in the Mac operating system. If they were redirected to

162 A Pathology of Computer Viruses

virus code present in memory then they would effectively cause execution of
the virus under operating system control. This is one of a number of techniques
wh ich a virus or trojan horse might apply to remain resident in system
memory. Others to be guarded against include:

Time manager Use of delayed execution facilities
Vertical retrace manager Use of execute on vertical blanking facilities

Shutdown manager Use of shutdown procedme installation facilities
together with the usual options of redirecting system vectors, restructming
jump tables and RAM resident system code modification.

6.2.4 Non-link Viruses

The viruses which can exploit implicit loading of code by the operating system
fall into a number of groups:

1. Boot code viruses: directly exploiting the ability to store executable code in
the system startup block on each volume.

2. Initialisation code viruses: making use of executable code resomces within
the system file loaded and executed at initialisation time. These include
viruses exploiting INIT, ADBS, DRVR, PTCH and RÖvr resomces. These
also include viruses which exploit the so-called "INIT 31" mechanism. This
function (provided via an INIT resomce id 31 in the system file) searches all
files in the system folder for DRVR and INITs: if found, they will be
executed. This is a common route by which a trap monitoring anti-virus
utility is started.

3. Auto-load viruses: making use of the facility to load adebugger or startup
application specified via the system startup block on the volume.

4. Implied loader viruses: loaded indirectly via the execution of finder which
causes the execution of certain window system definition resomces.

To protect against such non-link viruses it is vital to continuously monitor or
trap alterations to the system startup blocks (block 0 and 1) on each volume, to
the system file and to all files within the system folder.

6.2.5 Link Viruses

Applications on the Mac comprise a number of executable code segments of
maximum size 64 Kb. Each segment is relocatable in memory. Inter-segment
jumps are made via a centralised segment jump table. This jump table permits
dynamic loading of segments on an as-required basis. It also permits the simple
restructuring of modularised programs to introduce viral code.

A typical application on the Mac comprises a number of code segments
wh ich are loaded from code resoutces of type "CODE". The jump table is

Apple Macintosh Viruses 163

stored in its initial form in a special "CODE 0" resouree. When an applieation is
exeeuted the segment loader loads the jump table from the CODE 0 resouree
into memory. Eaeh entry (deseribing a proeedure entry point for a proeedure
which may be invoked from outside its home segment) is initially in an
"unloaded" state.

A jump to the table entry will automatieally invoke the segment loader,
which will load the segment into memory and then rewrite the jump table entry
to a direct jump to the proeedure entry point (the loaded state). Should the
segment be unloaded the jump table entries will be returned to their unloaded
state.

CODE 0

Before
Infection

CODE 0

CODE 1

CODE 2

CODE 3

CODE 4
-l

VIRUS

Type 1
Infection

-
-
-

~

~ r--

I-

Dotted line represents restoration of original jump entry
for the CODE 1 resource

In type 2 an intra-segment relative jump may be used
to pass control to the original CODE 1 resource

r
I
I
I
I
I
I
I
L

-!>

-

A link virus normally operates by one of two methods:

CODE 0

CODEl

VIRUS

CODE 2

CODE 3

Type 2
Infection

r--
f---

I-

1. Addition of a new viral resouree of type "CODE" to the resouree fork of the
application. The initial jump table entry is modified to point to the viral CODE

164 A Pathology of Computer Viruses

resouree, the original being stored by the virus. The launeh of the applieation
thus eauses the viral code resouree to be run. On eompletion, the virus restores
the original applieation's jump table entry and jumps to the applieation via the
entry.

2. Modification of the applieation's CODE 1 main proeedure. In an analogous
manner to the link viruses in traditional IBM PC COM files, the virus may
append its code to the proeedure. The jump table entry is then modified to
point to the start .of the virus (alternatively the initial part of the CODE 1
segment is replaeed by a intra-segment jump to the virus). The virus is thus
exeeuted on launeh. On eompletion it restores the jump table entry (or initial
bytes of the CODE 1 segment) and jumps to the applieation's main proeedure.

Viruses of both forms exist on the Mac platform. Examples are the n VIR virus
(first form) and the Anti-virus (seeond form). The problem of detecting code file
modifieation thus reduees to the detection of the alteration of the jump table
(CODE 0) segment and the modifieation (and possible extension) of the CODE
n segments of the applieation.

In general, while IBM PC virus ean be eharacterised by a signature or seareh
string, and a eharacteristie extension of the host file on infeetion, Mac viruses
are eharaeterised by:

• The types and ids of resourees ereated by the virus
• The length of such resourees or the extension of existing resourees
• Reeognisable signatures within resourees

Early virus deteetion systems tended to rely on the first two methods.
Unfortunately this made the production of "clone" viruses exeeptionally
simple. The clone virus uses slightly different resouree ids and types to store
the virus code. The ehanges were designed to evade deteetion by seanning
utilities which depended on a partieular pattern of resouree types. The most
obvious example of this is the n VIR B virus and its numerous clones. The n VIR
B virus uses a number of additional resourees (of type nVIR) to store auxiliary
virus code and saved data. The clones were produeed by using a resouree
editor or binary editor to modify the types (and in one ease the id) of these
auxiliary resourees. The modified viruses were funetionally identieal to n VIR B,
but evaded detection by early anti-viral software.

Clone Name Detected Clone Name Detected

Hpat Dec 1988, Arizona AIDS Mar 1989, Netherlands
MEV# Apr 1989, Belgium nFLU Aug 1989, Minnesota
Jude Nov 1989, Swilzerland fuck Jan 1990, USA
MODM Nov 1990, USA zero Nov 1990, USA

The zero strain has a resouree name which eonsists of four null hex bytes.
Later software uses "generie" deteetion algorithms which reeognise either

specifie signatures or patterns of flow within an applieation. In the latter ease,

Apple Macintosh Viruses 165

we ean look for potential anomalies sueh as an initial jump to a non-CODE 1
resouree. This may be indicative of a virus having modified the host. The publie
domain "Interferon" produet applies a number of sueh heuristies, including:

1. A CODE 0 resouree jumping to the last CODE resouree (id = n) when
resouree CODE n-I does not exist.

2. A CODE 0 resouree jumps to the last CODE resouree.
3. A CODE resouree exists in a data or system file.
4. Existenee of INIT resourees in user applieations.

The seareh for exeeutable virus eode ean be further restricted by eonsidering
only those files within the Mae file system whieh have a "file type" whieh
indicates that they eontain executable eode (or eode that will be implicitly
loaded and exeeuted as part of system initialisation). These file types are:

APPL

INIT
PRES
ZSYS

Application

lnitialisation code
Serial printer driver
System file

cDev
FNDR
PRER
RDEV

Control panel device
Finder
Non-serial printer driver
Other device driver or desk accessory

6.2.6 Notes on Keyboard Sequences

Before eompleting this seetion on Apple Macintosh viruses, it is worth
mentioning a number of keyboard sequenees which, like the "OrI-Alt-Del"
sequenee on the IBM PC, earry out special functions.

Firstly the Command-Option key eombination will eause the desktop file on
the media being mounted to be rebuilt. The rebuilding operation involves
seanning the hierarehical direetory strueture for all applieations. The bundled
resourees for the applieation are added to the desktop - including ieons and
signatures. This operation will also remove (by overwriting) any implied loader
virus in the desktop. This sequenee ean be held down at system boot time to
rebuild the desktop on the startup volume, or when inserting a floppy disk to
rebuild the desktop on the floppy.

Seeondly, the Command-Option-Shift key eombination when opening the
control panel desk aeeessory will eause the system parameter RAM to be reset
to its default values. This ean avoid the specifieation of a non-standard startup
volume in the PRAM.

6.2.7 Summary of Mac Protection

Macintosh anti-viral products divide into trap/interrupt monitoring utilities,
whieh are normally small "INIT" resourees plaeed within the system file or

166 A Pathology of Computer Viruses

folder (the laUer loaded via the INIT 31 mechanism described earlier), or
signature scanning programs existing as applications or desk accessories. A
range of checksum utilities is also available, some of which are tailored to
genera te checksums of critical system areas on disk (such as the startup blocks)
as weIl as checksumming arestricted range of resources types (only those
which are executable). The list of functions to be monitored includes:

1. Addition (or modification) of executable resources to applications, desk
accessories, device drivers or desktop.

2. Addition (or modification) of executable resources to components of the
boot sequence (system file, files in the system folder, startup blocks).

3. Relocation of an existing file into the system folder (where it will become a
part of the startup sequence).

4. Direct manipulation of the resource fork of a file via the file manager.
5. Modification (via lower level device drivers or direct hardware manip

ulation) of the volume boot blocks, directory structure (possibly moving
executable code blocks into the system folder, or adding blocks of executable
code to existing files).

6. Actions to disable the file change monitoring facilities such as modification
of the trap dispatch table, direct overwriting of the utility in memory, etc.

In general, the level of technology exhibited by Mac viruses is approximately
18--24 months behind that of the IBM pe virus field. There has been little
indication of the development of self-modifying and encrypting virus tech
niques, the use of low level system access to undermine protection or the
inclusion of extensive anti-debug routines. There have, however, been
examples of viruses directly calling routines in ROM (such as the WDEF virus)
to bypass anti-viral utilities monitoring the trap dispatch table.

Chapter 7

Mainframe Systems: The Growing Threat

7.1 Introduction

Previous chapters have concentrated on the spread of viruses on personal
computer platforms. This chapter examines (first in theory and then in fact) the
threat posed by viruses within the formal security models implemented by
high confidentiality or high integrity mainframe and mini computer systems.

While such environments do inhibit the propagation of viral code, there is
little doubt that viruses can successfully circumvent most existing protection
mechanisms. This chapter also examines the introduction of the concept of
data and code "integrity" and its incorporation into existing security models
and protection mechanisms.

7.2 Hardware Architectures

All mainframe and mini computers now include hardware support for the
concepts of segmentation and paging to provide a user virtual memory space
(as discussed previously with regard to the 80386 chip), together with some
form of support for privileged operations by trusted software components. As
with the 80386, these privileged operations normally include:

• 1/0 to external peripherals
• Modification of the virtual to physical memory translation
• Interference with privilege level flags

The significant change is that the hardware compartmentalisation facilities
are utilised and integrated with the access control modules embedded in the
host operating system.

168 A Pathology of Computer Viruses

7.3 Software Architecture

The principal features of the software access control system are:

• Authentication of the user
• Establishment (and enforcement) of a set of access rights for that user
• Propagation of access rights to all processes activated by the user

Significantly, the third point applies to a virus or trojan horse utility executed
by the user. The system confidentiality (and, as will be seen later, integrity)
control functions opera te to restrict the spread of viral code or the execution of
hostile trojan code.

Two principal classifications of access control mechanisms exist (described in
the DoD Orange Book, and its associated Discretionary Access Control
Handbook):

• Discretionary access control (DAC) - at levels Cl/C2
• Mandatory access control (MAC) - at levels B1- B3

These two classes reflect significantly different approaches to the ownership
of information, namely:

• DAC - user ownership
• MAC - corpora te or state ownership

The concept of ownership dictates which body places the primary restric
tions on the security of the information.

7.3.1 Discretionary Access Controls

DACs may be placed on access to data created by a user. The user normally has
full rights to control access to the data (possibly subject to the inheritance of a
default set of system access rights). Access rights can be specified in a number
of ways, including:

• Access controllists (ACLs) or matrices
• Capability based systems
• Cryptographic techniques

ACLs permit the user to specify a list of users, groups of users, or processes
which are permitted access to his data (or executables) and to specify the
constraints on access to the data by such users. The reverse form (specifying
which users shall be denied access) is often also available.

A simplistic example of an ACL is the UNIX protection mechanism. UNIX
associates three sets of permissions with each file (executable or not) in the file
system. These are:

Mainframe Systems: The Growing Threat 169

• Owner access rights
• Group access rights
• World access rights

The term "owner" refers to the creator of the file, "group" to his peer group,
and "world" to all other users with logins to that system. Each set of
permissions includes 3 bits:

R Read permission
W Write permission
X Execute permission

Thus the full permission set is 9 bits long, and consists of:

IR 1 W 1 xii R 1 W 1 xii R 1 W 1 Xl
Owner Group World

These permissions permit the owner coarse control over access to his data.
To aid consideration of the operation of a virus or trojan horse within such a

DAC framework, the following scenarios are presented:

Scenario 1: infection by the instigator User A wishes to infect as many users as
possible with his virus or to install his trojan horse in their filespace. The access
controls on user B's directory (RWXR-XR-X) prevent user A writing into it, and
thus prevent the virus writing to his files or the insertion of a trojan horse. User
C's directory may be (RWXRWXRWX), in which ca se user A can insert a trojan
horse, or replace one of user C's files by the virus or trojan horse. If user C's
executable code files are writable, the virus can infect the file directly. Even if
they are non- writable, but readable, user A can copy the file, change its
permissions (since he is owner of the copy), infect and re- install the infected
file in place of the original. Thus for security against direct insertion of viral or
trojan horse code a user must:

• Deny write permission on all directories containing executable code (this
definition is examined later)

• Deny write permission to the executables themselves

Scenario 2: infection by the target User A realises that he cannot directly write to
user B' s executable code files. He therefore· moves his trojan or virus to a public
software area on the system and announces the presence of an "all singing, aB
dancing" utility. A possible examples might be a trojanised or virus-infected
virus scanning utility (such as the numerous incidents of the Homebase virus
scanner being converted into a trojan horse by an unscrupulous user). User B
notices this utility and decides to try the program out to see what it can do. At
that point the utility is running with user B's permissions, and can thus easily
infect his files and executables.

DAC techniques are vulnerable to attacks via Scenario 2, and by user default
to attacks via Scenario l.

170 A Pathology of Computer Viruses

The definition of wh at constitutes a directory containing executable code is
particularly crucial. This is defined as:

Any directory searched automatically for executable code as a result of a direct or
indirect action of the user

UNIX specified a "PATH" (similar to DOS) which consists of a list of
directories which will be searched when the user requests execution of a code
file. Thus if any branch on this PATH is writable, a direct infection by insertion
of viral or trojan horse code can occur, similarly if an executable in any branch is
writable, a direct replacement by viral or trojan horse code can occur.

The corresponding file technique mentioned in Chapter 4 can be exploited
both in UNIX and DOS to allow infection even if the user does not have write
permission on the executable. Basically, the ho stile user inserts his viral code
earlier in the search path, in a file of the same name as the user wishes to run.
The user then executes this code (unintentionally) in place of the intended
utility. No change to the original utility can be detected (this is comparable to
the EXE/COM corresponding file virus in DOS).

In UNIX a standard search P ATH might be:

. :-Ibin:/usr/locallbin:/usr/ucblbin:/usrlbin:lbin:/usr/et c:/etc

Thus a utility in the system binary directory "/usr/binl" can be overridden by
a viral utility in the system local directory "/usr/localJbin" or the user's own bin
directory "-/bin", or even the current working directory ".".

In summary, for UNIX DAC, trojan horse or viral code can be insinuated by:

• Direct inclusion if the target user has: (i) a writable directory in his search
path; (ii) a readable directory in his search path with a writable executable
file; or (iii) a searchable directory in his search path with a writable
executable file. The difference between (ii) and (iii) is that in (ii) the attacker
can read the directory to discover the names of all files in the directory , in (iii)
the filenames are unknown and must be probed for by guesswork or
exhaustive search .

• Indirect inclusion if the target user runs a virus or trojan horse utility.

It may be possible using an extension of DAC to limit the propagation of viral
or trojan horse code via restrictions on data flow. We can associate a flow limit
with each executable file or data file, which determines a limit on the
propagation of such data or code within the system, e.g.

A data file is created by user A and is tagged by the system as having maximum
spread 3. User B uses his access right to open the file and read data into a program.
This program inherits a spread factor of 2 (actually the minimum of the spread factors
of all opened data files - 1). Any da ta written by this program to a file inherits the
minimum of the spread factor for the data file and the spread factor of the writing
program. Thus, user B writes data with spread 2. This process continues until the

Mainframe Systems: The Growing Threat 171

spread factor becomes 0, at which point the system prevents writing by any utility
reading spread 0 data.

USERA B C D

I T-H 13 1 I T-H 12 1 I T-H 11/ COPYFAILS

I J I J I J
TROJAN HORSE PROPAGATION LIMITATION

This approach will constrain viral or trojan horse propagation if the spread
factor is mandatorily assigned by the system when an executable or data file is
created, e.g.

In the absence of spread limitations DAC can, if carefully controlled,
establish compartments within the user space. Theyare, however, vulnerable
if a user can be tricked into malicious software execution.

Other DAC systems include extensions to UNIX ACL mechanisms, adding
general ACL schemes such as:

• Per user access right specifications
• Rights to "append", "modify access rights", "propagate access rights", etc.
• Time or login channel restriction

The most general technique (and one which can utilise embedded viral or
trojan horse code detection) is the specification of an access control or
gateke~per program which is invoked whenever access to an object is
requested. This pro gram can then use complex user defined criteria to
determine whether access should be permitted. This may include verification
that the program requesting access does not contain recognisable viral or trojan
horse code, or that it does not attempt to execute certain damaging system
functions.

CapabiIity based systems operate by associating one or more "capabiIities"
with each data item. Any program possesslng a matching " capability" is
permitted access. The capabiIities may be distributed by the owner of the file,
or an agent acting on his behalf.

Thus the writer of a virus might associate a null or widely distributed
capabiIity with this virus, and then publicise his utility. His virus may however
lack (because he himself lacked) capabiIities which permitted access to object/
executable files. In fact these capabilities may be restricted to utiIities in
compilation route, e.g. compilers, assemblers and linkers. This technique may
prevent viral code propagation by effectively installing a trusted channel via
which object code may be modified. This channel approach prevents both self
modifying and non-self-modifying code, and effectively centralises trust in the
compilation route, operating system and hardware (rather than in all executa
ble programs). Naturally this does not inhibit source virus propagation,

172 A Pathology of Computer Viruses

although similar measures can be taken to establish editors as the trusted route
to modify source files (or indeed to enforce software configuration manage
ment by establishing source code control utilities as this route).

Propagation of capabilities by utilities holding those capabilities is not
restricted unless by addition of two further capability attributes:

• Ability to propagate a capability (which may itselfbe determined by a further
capability - thus users holding capability A may only propagate it if they
hold capability B)

• Maximum spread of capabilities - capabilities may be aged on propagation
carrying either validity windows, or spread counts as described for ACLs

Capability based systems have been implemented in hardware via associa
tion of a capability (or capabilities) with each segment of virtual memory
maintained by the memory management subsystem.

The capability system suffers from similar problems to ACL based systems,
namely:

• Propagation of access rights
• Inheritance of access rights from the user by his utilities
• Implementational rather than model base technique (this issue is addressed

later)

Finally, cryptographic techniques may be applied, such as the use of "DES
to implement data confidentiality. Thus, in place of a capability to access data,
the user has access to the secret key for the data. This scheme can compensate
for shortfalls or absences of access control in the host operating system,
although a requirement for key submission and handling to be secure still
exists. In terms of avenues for viral infection or trojan horse attack this scheme
is identical to other DAC schemes.

7.3.2 Integrity Versus Confidentiality

The above implementational schemes for security mix two separate compo
nents, those of:

• Data Confidentiality: ensuring that data is not read by parties not authorised
to receive it

• Data Integrity: ensuring that data is not modified by parties not authorised
to change it

The DAC scheme controls both data confidentiality and data integrity in a
single scheme. A functional separation could be achieved by controlling read
access to affect confidentiality, and write access to affect integrity.

Malicious code propagation relies on defeating data integrity mechanisms,
and is thus primarily a system integrity issue. Viruses which rely on

Mainframe Systems: The Growing Threat 173

embedding of code into an application or system also raise data confidentiality
issues for two reasons: ,
• They require read access to the host executable to determine the necessary

modifications (unless the structure of the executable is sufficiently stan
dardised to allow inference of such characteristics)

• They may attempt to compromise da ta as part of their manipulation task

The functional split between confidentiality and integrity can be clearly
identified in the following public key encryption scheme:

l. A user has a private key with which he encrypts (signs) all executables
before storage - anyone can decrypt his programs using the public key. No
one can, however, forge a signed executable as this requires the user's
private key. Integrity of the program is thus ensured.

2. A user has a public key with which he encrypts all executables before
storage - only those users with a matching private key can decrypt the
executable and examine or run its contents. Confidentiality of the program
is thus ensured.

Approach 1 permits anyone to read the contents of the executable and
affords no confidentiality. Approach 2 permits anyone to alter the contents of
the executable and thus affords no integrity.

Thus a DAC can be extended to implement discretionary confidentiality and
discretionary integrity using either ACL, capability or cryptographic
techniques.

In this environment integrity controls will inhibit viral infection or trojan
horse introduction; security controls will inhibit link virus infection or data
compromise by viruses.

7.3.3 Mandatory Access Controls

The Bell-LaPadula security model is an example of a MAC based on the military
classification scheme. This classification scheme is based on assessment of the
threat to national security caused by the potential compromise of data by an
enemy. The UK and US military classification hierarchy is given below:

US
Top secret
Secret
Confidential
Sensitive
Unclassified

UK

Top secret
Secret
Confidential
Restricted
Unclassified

Damage potential

Expected to cause exceptionally grave damage
Expected to cause serious damage
Expected to cause damage

The "sensitive" classification is informal, based on an exemption for release
under the Freedom of Information Act in the USo

174 A Pathology of Computer Viruses

The user is required to classify all data at the point of introduction to the
system environment (this may require the consent of multiple users). Two
criteria are applied to control data flow:

• No Read-Up (simple security property): a user cannot read data classified
higher than his" clearance"

• No Write-Down (*-property): a user cannot declassify data by writing it to an
object of lower classification

The model is implemented as aseries of protection rings, thus:

Data flow is restricted to be within a classification ring, or to be to a more
restrictive classification ring. A virus cannot propagate its code to lower
classification levels and is thus restricted und er Bell-LaPadula to propagate:

• Within a classification
• To a more restrictive classification

Thus a virus existing at a "restricted" classification may rapidly propagate to
the executables at "top secret" classification. When run by a user with a "top
secret" clearance the virus may then compromise data at this classification or at
any lower classifications. This compromise is restricted by the security model
to covert channel techniques. This restriction may be insufficient when
attempting to contain high security data (often with implied integrity
requirements) .

Trojan horses can similarly be copied from a lower to higher classification by:

1. A user cleared at the lower classification (absence of Write-Up restriction).
2. A user cleared at the higher classification (absence of Read-Down

restriction).

The Bell-LaPadula model has been extended in two ways. First, compart
ments have been added within classifications to further restrict data flow based

Mainframe Systems: The Growing Threat 175

on a coarse "need to know" principle. This does not fuHy inhibit viral or trojan
horse code propagation - viruses can still propagate to the highest classification
and strictest compartments. It does however prevent infection of da ta which is
not marked as being part of the infected compartment.

Second, integrity controls (Biba extensions) have been added to this model to
address the issue of malicious and untrusted software. This addition has taken
the form of integrity classifications analogous to confidentiality classifications.
Two criteria are applied to data in the Biba model, namely:

• No Write-Up: a program running in a low integrity environment cannot
write to executable or data files in a higher integrity environment

• No Read-Down: a program running in a high integrity environment cannot
read data or execute code in a lower integrity environment without affecting
its own integrity level

The second point requires a limited amount of explanation, namely reading
of da ta may modify the control flow of a program in a manner which may
compromise its integrity, particularly the case when major assumptions are
made by the reading program about the structure of the file.

Viruses normally exist in "low" integrity software - such viruses are
inhibited from:

• Propagation to high integrity software
• Modifying the behaviour of high integrity software via modifications to

configuration files

Integrity compartments may be added in a similar manner to confidentiality
compartments, with extended criteria:

• A pro gram may only write to equaHy or less restrictive integrity
compartments

• A program in a restrictive compartment may not read data from a less
restrictive compartment

Thus when a user introduces an executable into the system he (or the system
tools used to introduce the program) must:

• Specify a confidentiality classification and compartment
• Specify an integrity classification and compartment

The assessment of integrity may be based on distributed trust via restrictions
to specific sources of software, and internallY to software developed using
specific tools or techniques, or by specific programmers. Thus in the same
manner as users are cleared to handle da ta at a specific classification,
programmers or data preparation staff are cleared to generate data and
executables at a specific integrity level.

Integrity "locks" can thus be created which permit the introduction of
executables to a specific integrity level. Such locks may require the use of
"trusted software" components, thus a route to an arbitrary integrity level 4
may require:

176 A Pathology of Computer Viruses

• Use of a compiler, assembler and linker certified at level 4 or above
• Clearance of the user to integrity level 4 based on an assessment of his

programming skills and professional responsibility
• Application of certain internal inspection and quality control criteria

A possible list of software integrity classifications (based on Pozzo and Gray)
mightbe:

Origin

User files
User contributed software
S/W from bulletin boards
S/W from system staff
Commercial application S/W
S/W from OS vendor

Credibility

0- Lowest
1
2
3
4
5 - Highest

Risk

0- Highest

5 - Lowest

To maintain integrity, distributed trust is still in evidence. We must still trust
the compiler, linker, assembler, operating system and hardware. This requires
the extension of the integrity model (either formally or informally) beyond the
boundaries of our own system.

The integrity and confidentiality classifications and compartments can be
visualised as a two-dimensional structure in which the X axis represents the
movement from high confidentiality to low confidentiality, and the Y axis the
movement from low integrity to high integrity. The system access controls
therefore prohibit movement away from the origin along either the X or Yaxis,
and constrain viral flow towards the centre of the model both in terms of
cOrifidentiality and integrity.

Within the model can be placed various "locks" or "tunnels" permitting the
transition from one confidentiality or integrity level to another. Such tunnels
include routes for declassifying information via human intervention, or routes
for increasing software integrity as a result of applying a specific test. One such
integrity tunnel might be the use of a virus or malicious code detection system
which might permit the movement of code from low integrity to medium
integrity. Such tunnels permit carefully defined localised violations of the
generalised confidentiality and integrity policy to occur.

Without such tunnels all programs carrying out mass data aggregation
would eventually migrate to the highest confidentiality and lowest integrity
compartment.

Two systems operating the Biba extensions to Bell-LaPadula may be coupled
via the use of communications channels with cryptographic assurance of trust,
i. e. use of encryption to prevent data compromise of confidentiality data, use of
digital signature to prevent data corruption of high integrity data.

Mainframe Systems: The Growing Threat 177

7.3.4 Commentary on Security Standardisation

The previous sections have concentrated primarily on the DoD Orange Book
standard "Trusted computer system evaluation criteria", and have in sum
mary indicated that:

1. Viruses are primarily an integrity rather than a confidentiality problem, and
can propagate in the absence of strict DACs to the highest confidentiality
ring and most restrictive compartment of the MAC model.

2. In the absence of MACs the virus can compromise data across all
confidentiality levels and compartments.

3. In the presence of MACs but absence of covert channel restriction the virus
can compromise data via covert channel mechanisms.

4. In the presence of covert channel restrictions or auditing the virus is
restricted to covert channel propagation beneath the threshold bandwidth
indicated in the covert channel guideline (Orange Book, Section 8.0).

In terms of viral propagation and subsequent da ta compromise according to
the Orange Book classification, it follows that:

• Class D: minimal protection. Complete propagation and full da ta compro
mise, no auditing of spread or compromise available

• Class Cl: discretionary security protection. Active propagation restricted by
DAC, passive propagation by running of malicious software unrestricted,
data compromise unrestricted, no auditing of spread or compromise
available

• Class C2: controlled access protection. As above. Audit trail available to trace
spread and data compromise

• Class BI: labelled security protection. Propagation prevented to security
classifications below point of infection, or to compartments less strict than
point of infection. Data compromise restricted to covert channel
mechanisms

• Class B2: structured protection. Compromise restricted to covert channels
below threshold (0.1 bit/sec) wh ich may be subject to auditing

• Class B3: security domain. Propagation or da ta compromise may be subject
to evaluation of suspicious activity by the security kernel

• Class A: verified design. No new specifications

The maximum damage resulting from data compromise caused by viral
infection can be estimated by considering the Yellow Book requirements for
use of specific Orange Book protection classes. This yields the following table
of possible compromise (assuming an open security environment):

178

Qass

C2
B1
B2
B3
Al
•

Risk rating

o
1
2
3
4
>4

A Pathology of Computer Viruses

Compromisc asscssmcnl

UnrcstriCled
Rcstricted to non-bandwidlh limiled covert channel
Rcstricted to bandwidlh limitcd covert channcl
SubjCCl to expert system analysis to detcrmine suspicious activity
asabove
Beyen<! statc oe an

The risk index is based on the difference between the highest classification of
data in the system and the lowest level of user clearance. The maximum data
sensitivity gives a risk value of 0 (Unclassified), 1 (Sensitive), 2 (Confidential), 3
(Secret) and 5 (Top Secret). The minimum user clearance giving a risk modifier
of 0 (Unclassified), 1 (Authorised to access sensitive information), 2 (Con
fidential), 3 (Secret), 4 (Top secret - current background investigation), 5 (Top
secret - special background investigation).

The risk index is given by: Risk value - Risk modifier. Thus secret material
(risk 3) stored on ci system used by users cleared to confidential (modifier 2)
would attract a risk factor of 1, and require a BI system.

Therefore, in a scenario in which a multi-level secure system was connected
to a public network the permitted risks would include:

Unlimited covert channel compromise of data at the "not classified but sensitive"
classification, restricted < 0.1 bit/sec compromise of data at the "confidential"
classification and possible limited compromise of data at the "secret" classification.

The connection of systems holding "top secret" data to public networks
(inferring the adoption of the open security environment criteria) is forbidden.
Theissue of malicious software penetration of trusted systems is addressed in
Appendix C of the technical rationale behind the Yellow Book.

The Orange Book is one of a group of national security criteria. These include
the Red Books published by the Communications and Electronic Security
Group at the Government Communications headquarters in the UK, the Green
Books published by the Department of Trade and Industry Commercial
Computer Security Centre in the UK, and the new proposed "Information
Technology Security Evaluation Criteria" (ITSEC). The ITSEC is the result of
the merging of the national evaluation criteria of France, Germany, The
Netherlands and the United Kingdom.

The ITSEC is based on an abstract specification of the security philosophy to
be adopted at each level of system trust, together with specifications of security
criteria applying to configuration control, startup, operation and development
security. Thus the criteria are far wider reaching than the original Orange Book,
but they do not address implementational issues such as the specific access
control mechanism which will be implemented within the system. Thus the
ITSEC would define a level E3 access mechanism as being:

1. A translation or mapping from a well-defined functional specification.
2. Required to possess a clearly defined interface with other components.

Mainframe Systems: The Growing Threat 179

3. Subject to analysis of side effects and unjustified functionality.
4. Subject to testing at the object code and source inspection levels.

The ITSEC does include a number of draft functionality classes, FI-FIO,
which are functional descriptions of controls which might be appropriate to a
system whose design and implementation had been certified as being trusted
at a specified evaluation level EI-E6. These functional classes are broadly based
on the German information security agency criteria which are themselves
modelled on the Orange Book. These classes are:

Functional class Orange book class Definition

F1 Cl
F2 C2
F3 B1
F4 B2
F5 B3/A1
F6 High integnty
F7 High availability
F8 High integnty communications
F9 High confidentiality communications

A system can have one or more functional classes implemented, such as: F5
kernel, with F6 high integrity support and F8 high integrity communications
support. Of these functional classes, F6 and F8 are of particular interest. These
classes specifically address the integrity of the system and associated data
communications.

Class F6 is summarised as:

Each object within the system is typed. Access to a particular type of object is
constrained to be via a specified process or processes (gatekeeper, as mentioned in
the DAC section). Objects may only be introduced into the environment by
authorised users. All communications between users and the security kernel is via a
trusted path (wh ich is immune to spoofing by a virus or trojan horse). A full audit
trail of object access attempts shall be maintained.

F6 would constrain the introduction of a virus or trojan horse into the system
environment and would further constrain attempts by a virus to modify
executable objects. Sole authority to modify such executable objects would be
vested in the system compilation utilities, which might require authentication
from the user before generating or modifying an executable. To satisfy this
criteria it is impHed that the security kernel is resistant to tampering and
maintains its own integrity.

F6 is not an implementation of the Biba integrity model, but reHes instead on
the creation of arbitrary groups of objects with associated access/modification
routes. Thus text files are under the control of system editor utilities,
executables under the control of system compilers, spreadsheets under the
control of spreadsheet programs, etc. These are the only routes by wh ich the

180 A Pathology of Computer Viruses

object can be created or modified. Thus the filesystem is compartmentalised by
usage (rather than by confidentiality or integrity).

Data communications integrity is the subject of functional dass F8. This dass
specifies that peer authentication will occur on all data exchanges, and that all
data (and protocol control blocks) will be subject to error detection and
correction. This will apply both in the case of inadvertent corruption due to
datacomm problems or to deliberate manipulation.

7.4 UNIX: A Viral Risk Assessment

The previous seetion concentrated on the access control mechanisms available
in UNIX, and indicated possible MAC frameworks for confidentiality and
integrity of data. <;:ommercial UNIX systems are available at a wide range of
Orange Book certification levels, most falling in the range C2-B3. Commercial
UNIX systems can be approved at level C2 with minimal modification (audit
and shadow password system incorporation).

This section considers the assessment of the risk posed by a computer virus
on a C2 seeure UNIX system based on the Berkeley Software Distribution
release 4.3 (BSD 4.3), in this case Sun OS 4.0 with the security software option.

The methodology established previously can easily be extended to a complex
operating system such as UNIX. The techniques require the identification of all
routes via which viral code can be executed, either directly or indirectly as a
result of user action, system initialisation, termination or network activity.

Ta commence this analysis we will consider the UNIX boot/startup process,
with a view to identifying each component in this sequence.

7.4.1 System Startup

Initial execution commences with the location of a system boot block on the
root file system or from a media specifically designed to be read at system
startup. This boot block is the "primary bootstrapper" and is located at a fixed
offset on the storage media. The boots trapper is responsible for locating and
loading a secondary boots trap program from the filesystem.

The secondary boots trap can be a standard UNIX file with data blocks
scattered throughout the file system, as against the sequential primary
bootstrap. The location of each block of the secondary boots trap is stored as
part of the primary boots trap program to avoid the overhead of interpreting the
complex structure of the UNIX file system (earlier versions were able to do this
and thus located the boot pro gram by name within the root directory).

The secondary bootstrapper initialises the system hardware in a machine
dependent manner - such as setting up a stack, initialising the memory

Mainframe Systems: The Growing Threat 181

management system, and creating a hardware context for the initial process.
The boots trapper then loads the kernel binary from the file "vmunix" in the
root directory on the startup volume, and jumps to the function entry point
"main" within the program.

The kernel then creates the heart of the UNIX multitasking environment -
the scheduler process (process id = 0). The kernel then proceeds to carry out
further configuration of the memory management system, device and hard
ware driver configuration and creation of two further processes: the initialisa
tion or init process (process id = 1) and a swap space manager (process id = 2).

The initialisation process "/usr/etclinit" carries out the next stages in system
initialisation. These are:

1. Run all commands in the command interpreter "shell" script letclrc.boot:
this file configures the network interfaces and checks the root filesystems.

2. Run all commands in the shell script letclrc: this file runs a wide variety of
daemon (background) processes and system services; it also runs the script
letclrc.local containing local service initialisation information.

3. When initialisation scripts have completed, init commences multi-user
operation by running the programs specified in the file letclttytab on each
connected terminalline.

The normal command specified for each terminal in the ttytab file is lusr/etcl
getty. This command writes the system banner on to each terminal and then
awaits user login.

The daemon processes started from a typical series of letclrc files include:

182 A Pathology of Computer Viruses

File Daemon Function
rc rwhod Propagation of information on users to other network machines
rc inetd Spawns internet protocol service daemons on request
rc lpd Line printer spooler daemon
rc update Daemon to flush 10 buffers at regular intervals
rc cron Timed command execution service
rc.1ocal portmap Provide remote procedure call address mappings
rc.local keyserv Key management system
rc.1ocal named Domain name server (DNS)
rc.1ocal biod Block 10 service daemon (used in NFS)
rc.local syslog System logging daemon
rc.1ocal auditd Security audit trail daemon
rc.1ocal sendmail Electronic mail handling daemon
rc.local ndbootd Network disk daemon
rc.1ocal nfsd Network filing system (NFS) daemon
rc.local mountd Remote procedure call (RPC) - file system mounter
rc.1ocal rarpd Reverse address.resolution protocol daemon
rc.1ocal bootparamd Client boot parameter provision service
rc.1ocal statd Network status monitor
rc.1ocal lockd Network file locking service
rc.1ocal pwdauthd Shadow password authentication service
rc.1ocal x29 X29 terminallogin service

All of the above daemons are run with root privilege before full multi-user
operation completes with full root privileges. Thus it is vital that all daemon
binaries are fully protected from infection by viruses or modification to
incorporate trojan horse code. Of particular importance are the "cron" and
"inetd" daemons, since these permit execution of further UNIX commands
specified in their respective configuration files.

Cron provides the "dock daemon". This daemon reads a number of files in
the directory "/var/spooVcron/crontabs". Each user may establish his own
crontab file which contains commands run und er his user id at timed intervals.
The file format perrnits specification of the month, day of week, day of month,
hour and minute fields (with limited wildcarding) at which the user command
will be run. Obviously, the spool directory and individual crontabs must be
protected to prevent indirect execution of malicious or harmful code.

The cron daemon also supports the batch command execution system
provided by the UNIX "at" command. This command stores command scripts
in the subdirectory " atjobs" for executionby the cron daemon. Similarly,
introduction of viral or trojan horse code into the scripts in this directory must
be guarded against.

The inetd provides a similar command execution function, in this ca se in
response to arequest by a remote system for a network service. Such network
services indude file transfer, remote login, remote shell, time and user id
services and various RPC services. Each service is attached to a specific
network address or port on the local system. A call to this port will cause inetd

Mainframe Systems: The Growing Threat 183

to invoke the appropriate UNIX command to handle the request. Thus the file
/etc/inetd.conf (which contains details of these commands) must be protected
against writing.

Finally, as previously mentioned, the file /etc/ttytab which conti,üns the
pro grams to be run on completion of initialisation by init must also be
protected. In summary, therefore, the components of the UNIX initialisation
sequence are:

1 ROM boots trap eode
2 Primary bootstrap eode at fixed otfset in startup filesystem
3 Secondary bootstrap code in /boot
4 VMUNIX operating system kernel in /vmunix
5 /ete/re and fete/re. boot UNIX eommand seripts
6 all daemons run from these eommand seripts
7 eron daemon's erontab and "at" bateh files
8 inetd daemon's eonfiguration file and daemons
9 ttytab.eonfiguration file and daemons

At this point the startup sequence has completed and multi-user operation
has commenced.

7.4.2 login and User Commands

The getty program (run by init on each terminalline) displays the login banner
for the system. When a user supplies his user id, the getty program overwrites
itself with the standard login command "login" . This program is responsible
for prompting for a password from the user and for verifying the supplied user
id and password combination. This verification may include the use of the
pwdauthd if the shadow password facility is operating.

If the password is correct then the login program overwrites itself with the
"shell" specified in the /etc/passwd (system password) file for the user. This
pro gram commences operation and may then read one or more initialisation
files prior to providing the command interpreter/shell prompt to the user.

The initialisation files depend on the type of shell specified in the passwd
file, these include:

Shell File Funetion

sh .profile Sequenee of eommand exeeuted at login time
sh fete/profile System supplied sequenee of initial eommands

esh .eshrc Sequence of eommand exeeuted whenever a shell starts up
esh .login Sequence of eommand exeeuted at login time (after .eshrc)
esh .logout Sequence of eommand exeeuted on logout

184 A Pathology of Computer Viruses

The files .profile, .login, .logout and .cshrc are found in the horne directory
for the user (a directory specified in the user' 5 entry in the /ete/passwd file). All
of these files must be write-protected to prevent malicious software being
inadvertently executed by the user via his command script. The file fete/profile
is even more sensitive as it is executed by all users logging in to the system who
have specified the boume shell "sh" as their command interpreter.

After shell initialisation has completed, the user is prompted to enter
commands for execution. This provides the final opportunity to invoke
malicious software - either by direct execution of a trojan horse or viral utility
by a careless user or by incorporation of the utility earlier in the user' 5 search
path. Modification of the user' 5 shell initialisation files may permit the PATH
variable (which controls the search for executable files by the shell) to be altered
to include viral or trojan horse code in the search path.

Even if the user explicitly specifies the path to an executable file (using an
absolute pathname commencing at the root of the file system, e.g. /bin/test), he
may still be open to spoofing. The sheB has no hard wired concept of what
constitutes a separator in command sequences. This is specified by another
shell variable, the inter-field separator list, IFS. This variable may be altered to
make the shell interpret the pathname separator "/" as aspace. Thus the
command "/bin/ls -la" which is an attempt by the user to specify an absolute
path to the list directory command, may be interpreted by the shell as "bin 15
-la", causing the execution of the command "bin" in the horne directory.

This, together with general security principles, suggests that the PATH of
super-users (normally with login id root, who can bypass aB file system
security and have fuB privileges on the system) should not include the horne
directory.

A final twist in the search path technique is the .observation that users
frequently make spelling mistakes when invoking basic commands. Thus a
viral code may be incorporated in an executable with a name closely related to a
common system function such as ps, 15, mv or cp. Thus possible names may be:

px ks Ix Id pd mc mb nc nv xp co

aB differing by one keyboard place from a standard two letter UNIX command.
Thus any checksumming of commonly used utilities as part of a security scan

must address the inclusion of new or modified utilities with similar command
names.

7.4.3 Bugs and loopholes

In an operating system as complex as UNIX there are a number of bugs and
loopholes in the user interface. Such bugs often permit the user to gain root!
super-user privilege. It is possible for a virus, worm or trojan horse to probe for
such known bugs in order to upgrade its privilege level be fore attempting to

Mainframe Systems: The Growing Threat 185

infect other systems or executables, or to execute damaging privileged system
functions. Such bugs divide into two categories:

1. Configuration errors - related to erroneous configuration of the UNIX
access control and user authentication mechanisms.

2. Software errors - bugs in the operating system and pro grams which
comprise the trusted computer environment.

A variety of utilities such as the "COPS" expert system package exist to
verify the correctness of a system configuration. Such packages typically
operate by assuming user privileges and then attempting to trace a path· (via
modification of the initialisation or user command environment) that permits
super-user status to be gained.

Software errors are loopholes in the environment which permit the
assumption of high er privilege levels. It is vital to realise that such errors can
occur in the operating system, startup files, bootstraps, daemons (both local
and network service) and authentication mechanisms. The user interface in
UNIX is extremely complex and diverse due to a design decision to limit the
complexity of each software component, by providing a flexible toolbox of
simple utilities. Thus user login is handled both by the getty and login
programs, and aseparate command shell is then run.

Any loopholes in a program running with "root" privilege is critical - this
includes the initialisation utilities and the authentication mechanisms, as weIl
as a wide variety of administrative tools run directly by the root user (as against
those which are run automatically by the system).

A number of such loopholes have unfortunately been detected. The
Computer Emergency Response Team (CERT) (described in Appendix 12)
provides short descriptive reports on such loopholes and the appropriate bug
fixes. A sampie list of CERT advisories is included in Appendix 13.

7.4.4 Mechanics of UNIX Viruses

7.4.4.1 Batch Viruses

The previous sections have dealt with the means by wh ich a ho stile user can
invoke viral code, and have provided adescription of the various avenues for
the introduction of a UNIX boot virus. This section addresses the remaining
two areas of cancern, namely the UNIX batch virus and the UNIX link virus.

The two command shells offer extremely powerful batch programming
environments which permit access to iterative and conditional branch con
structs, as weIl as access to the fuIl range of UNIX command utilities. Thus,
construction of a batch virus is unfortunately straightforward. Both the UNIX
bourne sheIl and csh provide iterative, conditional and limited subroutine call
facilities, together with access to the external file system via the "cat", 1/0
redirection and "echo" operations.

186 A Pathology of Computer Viruses

Hybrid viruses can be produced which exploit the macro or initialisation files
used by a number of common utilities. Many of these files permit either
specification of alternative search paths for common functions (such as the
default system pager and editors in the case of news software) or permit direct
execution of shell commands on utility startup. One particularly serious ca se is
the .exrc initialisation file used by the "vi" and "ex" editors. This initialisation
file can cause the shell command to be run. Worse, the editors also check the
text file being edited for lines of the form "ex: command:" or "vi: command:".1f
these occur within the first five lines then they will be directly executed. Thus
the act of editing a text file may permit a virus or trojan horse to become active.
The editor initialisation commands might also include commands to delete
themselves from the text file, so remaining unnoticed.

7.4.4.2 Link Virus es

Object code viruses can also be produced - witness Fred Cohen' s early work on
UNIX platforms. The structure of a UNIX object code file varies depending on
the architecture of the system concerned. The example below is based on the
AT & T Bell system V common object file format (COFF). In this ca se the object
file comprises:

File Header

UNIX system header

Section 1 .. n headers

Section l..n data

. Section 1..n relocation information

Seetion 1 .. n line number info

Symbol table

String table

The file header identifies (using a magie number) the structure of the
executable file, records the number of seetions of da ta or executable text, and
contains apointer to the symbol table within the object file.

This is followed by a system specific header containing a further magie
number, total size of the initialised data segment, total size of the uninitialised
data segment, entry point for the executable and base address for loading text
and da ta section (broadly equivalent to a segment in DOS).

Each seetion is described by a section header containing:

Section name

Virtual address of section in process memory

Size of seetion

Pointer to raw data for seetion

Pointer to relocation table for seetion

Mainframe Systems: The Growing Threat

Pointer to line number info for seetion
Size of seetion relocation table
Size of line number table

187

When an executable is processed by the UNIX link editor (ld) all symbol
references between executable modules are resolved to absolute pointers
within the virtual memory space of the process generated by the executable. At
this point the user may request the relocation table and line number
information to be deleted from the executable (the action of stripping an
executable).

The "exec': system call in UNIX loads the executable into memory,
establishing three (or possibly more) areas of memory:

Stack segment

~

t
Data segment

BSSsegment

Text segment

The text and BSS segments contain executable code and initialised data
(respectively) loaded from seetions defined in the executable file. The stack
segment grows downwards in process virtual memory and is extended
automa'tically. The uninitialised data segment grows upward from the end of
the BSS segment through the use of the "sbrk" system call.

Depending on the system, a virus may either amend the object file to add a
new viral section, or alternatively append itself to the existing text section.
These options are comparable to the two distinct forms of link virus of the
Macintosh; those which add new CODE resources, and those which append to
existing CODE 1 resources.

In the first case the virus creates a new object file which consists of the header
information, section headers, a new seetion header for the viral seetion, the
original BSS and text sections and finally the new viral code seetion. This viral
seetion can be placed anywhere in the process virtual memory space which
would not be subject to overwriting either by stack or uninitialised da ta seetion
extension.

In the second ca se (which is generally applicable to non-COFF systems) the
virus must directly modify the main pro gram text section. In many cases this
can be simply achieved in situ by exploiting the fact that text segment sizes in
UNIX are rounded to multiples of a minimum section size. This minimum size
is often a function of the underlying system page size - in the ca se of the Sun 3

188 A Pathology of Computer Viruses

system it is 8 K. Thus, on average, approximately 4 K is available without
restructuring of the object file.

If the virus finds sufficient space it adds its code directly to the end of the text
segment and amends the entry pointer in the file header to point to the viral
code. If insufficient space exists the virus is forced to restructure the object file
by extending the text segment by a multiple of the minimum seetion size,
adding its code and amen ding the entry pointer. This restructuring operation
may require the movement and copying of relocation, line number and string
table information in unstripped binaries.

7.4.4.3 Dynamic Loading

A final possible mechanism available for viral initialisation in newer UNIX
systems is via the dynamic library loading mechanism. Because of the
considerable size of newer UNIX libraries (particularly graphics and communi
cations libraries), ci mechanism has been developed whereby entry points to
library files can be resolved at the time the object file is run (rather than
statically at the time the file is linked). A virus can be incorporated into such a
dynamic library and will be activated by any pro gram exploiting the dynamic
library. Thus a virus added to the standard "libe" library will potentially be run
by all programs using this dynamic library (thus all pro grams compiled in the
language C). This compares with the effects of deliberate addition of a virus to a
static library. In this case the viral code will be linked whenever a program is re
linked (or compiled), and non- retrospective infection will occur.

7.4.4.4 Other Considerations

Virus operation in a UNIX environment is constrained by the operation of the
memory management system. This effectively restricts the ability of viral code
to remain active in memory when its host has terminated. To do so a virus must

. explicitly create a new process containing the resident portion of the virus, or
delay termination of the host process. In general both techniques are available
on UNIX.

Process creation is achieved using the UNIX "fork" command, which will
generate a new exact copy of the original program. The copy will commence
execution immediately after the point in the original at which the fork
command was executed. Thus a virus can fork, create a new process, and then
permit the continued execution of the original host program. The copy is
capable of recognising the fact that it is a copy (using the return value from the
fork system call) and of acting accordingly.

Process delayed termination is achieved by interception of the "exit" C
library routine. This can either be done directly by modifying the address of the
call to the exit function, or indirectly by the installation of a termination handler
via the "on_exit" library call.

Mainframe Systems: The Growing Threat 189

Delayed termination can normally be detected for interactive processes, but
may be invisible for background or server processes.

The virus can unfortunately conceal its identity by overwriting the argument
vector (a data structure used to pass command line arguments to programs, the
first element of which is the name of the program). This structure is displayed
by "ps". It mayaiso exploit the "fork" when resident for a certain time - the
technique that the Internet worm exploited. In addition processes running at
sufficiently high privilege levels can directly modify the system accounting files
(to delete references to the process) and active process table (to modify the
process control structure).

Indeed, processes with access rights to /dev/kmem and /dev/mem (two
special files in UNIX which allow direct access to kernel and physical memory)
can arrange to directly infect processes in memory (including special processes
such as init, and the standard daemon processes); r:elocate the virus code
segment into the kernel address space (from where system interrupt and UNIX
system calls can be redirected to the virus code); or a wide range of system data
structures such as password buffers, disk 1/0 buffers, etc.

In general, once /dev/kmem write permission has been gained a virus has the
potential to modify or alter system operation in a manner comparable to PC
vituses.

A further vital channel which must be protected is the raw or block disk files
which provide a low level direct access route to the peripheral devices. Such
files permit a complex virus to directly bypass the UNIX filesystem and thus
modify individual sectors on the storage media.

With regard to the signatures utilised by a resident UNIX virus, many
possible channels are available (fewer on systems which inhibit covert channel
data transfer, such as B2 or above) which can be exploited, including:

1. Files created in public filespace.
2. Ports created in the network space.
3. Processes with special names.
4. Shared memory or semaphores in the System V IPC package.
5. Use of advisory locking on existing files.
6. Timing channels such as processor, network and memory behaviour.

Finally, the principal technique for identification must be considered to be
direct search of the file system (in general, indirect infection is exceptionally
complex because of the requirement to directly intercept kernel system calls). A
wide range of library functions are available to make directory search trivial.

7.4.4.5 Protecting Against UNIX Viruses

The principal techniques for protecting against UNIX viruses are:

1. Careful use of the standard UNIX DACs to prevent access to object, shell
script and system initialisation files.

190 A Pathology of Computer Viruses

2. Correct setting of the P ATH and IFS shell variables to prevent correspond
ing file attacks.

3. General controls on software installation including curtailing use of
automatie archiving systems without integrity verification facilities.

4. Use of regular checksumming on system object and initialisation files.
5. Checking of system audit trails to flag potentially subversive program

behaviour.
6. Scanning of incoming code files for suspect code which indicates trojan

horse functions.
7. Fixing of known bugs and loopholes which permit root status to be gained.
8. Use of a shadow password system to prevent exhaustive search of the

password space.

Expert systems are under development to help with each of these tasks, and
include the COPS system, which carries out acheck of file system permissions
to detect potential channels for acquiring root privilege within the system.

7.4.4.6 Cohen: Early UNIX Virus es

As a final word on the UNIX virus risk, it is worth considering some early work
completed by Dr Fred Cohen on virus propagation within the UNIX environ
ment. These experiments began on 3 November 1983 and consisted of a trial
using an infected system utility on a VAX 111750 system. The availability of the
utility was advertised on a system bulletin board, and five infection trials were
carried out. Root privileges were gained in all cases, normally within an hour,
although in one ca se within 5 minutes. This is a clear example of the DAC
weakness which permits a program to inherit the permissions of its user. At
that point the virus had considerable potential for infection of available object
files. The significant difference is that the careful administrator who tried out
the pro gram using his/her usercode rather than "root" would infect a number
of his own binary files. When he/she later ran one of the infected binaries as
"root" full system privileges would be granted. In this respect virus attacks
under DAC are much more insidious in that they can incrementally penetrate
the DAC permission hierarchy, rather than trojan horses which must directly
gain "root" permission to be globally destructive (other than direct denial of
service attacks). .

Cohen's virus was written in 8 hours and infected within half a second. The
reaction of the systems administratiqn was to prohibit any further testing of
viral material, including installation of virus tracking utilities and augmented
password security controls.

Later, in July 1984, Cohen was involved in an experiment to test virus
propagation und er the Bell-LaPadula model. This experiment, based on a
UNIV AC 1108 system, used a clumsy virus (due to inexperience of the authors)
which was 200 lines of Fortran code, 5 lines of assembler and 50 lines of

Mainframe Systems: The Growing Threat 191

command script. Nevertheless the virus infected within 20 seconds. The trial
clearly indicated that penetration to higher security levels in the model was
occurring.

In August 1984 trials began on tracking the incidence of code sharing (and
potential viral spread) on a UNIX VAX system. Initial results reported that a
clear pattern existed in code sharing. Specifically, a few users shared widely, a
moderate number occasionally, and the bulk of users rarely. Cohen noted that
systems administrators tended to try all new programs, leading to rapid
penetration by viruses infecting such programs. Normal users were content
with a small subset of standard UNIX utilities.

Cohen presents the results of his infection trials in a summary table:

Unix-C Bell-LaPadula Unix-Shell VMS Basic PCNe!

Write in(hours) 8 18 0.25 0.5 4 8
Infec! in (s) 0.5 20 <1 <1 10 0.5
Code (lines) 200 260 1 9 100 100

Chapter8

Network Viruses: The Worms

8.1 Introduction

The rapid expansion in wide area and local area networking has led to the
establishment of a glol;>al internetwork linking millions of systems. Through
this network, which interlinks many diverse hardware architectures, a limited
range of basic network functions are available - normally restricted to
electronic mail and file transfer. The component networks within the global
internetwork often use standardised protocols and architectures (thus avoid
ing the extensive protocol conversion carried out by gateway systems). Within
these networks many "closely" coupled services are available. Such services
include remote login, remote execution of code and transparent file systems
across numerous machines.

As an, example electronic mail is now possible from a Joint Academic
Network (JANET) host at a UK university to:

• Internet: DARPA Internet in USA, Canada and Europe. Mainly university,
government and commercial contractors

• UUNET: an early (but now extensive) network connecting UNIX systems
using dial up or leased line circuits

• BITNET: a tree structured international network linking university and
research si tes

• Fidonet: a diverse worldwide dial up network of bulletin board systems
• MILNET: US unclassified military network
• HEPNET: high energy physics network run by NASA
• SP ANET: space physics analysis network run by NASA

In addition, there are many regional or national networks such as the
Japanese University network (JUNET). The DARPA Internet consists of 3200
interconnected networks, including the networks of many vendors, govern
ment organisations and laboratories. A typical network might include hun
dreds of local systems connected on one or more LANs. Fidonet consists of
approximately 10000 bulletin boards spread from Alaska to Zimbabwe.
Interconnected commercial bulletin boards include BIX, CONNECT, Genie
and Prodigy, each with many thousands of users.

194 A Pathology of Computer Viruses

The number of interconnected hosts (loosely - for email purposes) is
certainly in the millions. The global network offers incredible potential for
information interchange. With such information comes the risk of malicious
software replication - either self-replication or via human intervention.

To place the risk in context it is necessary to differentiate between various
degrees of "coupling" between networked systems, namely:

Loose

Tight

Electronic mail transfer only
Limited file transfer facilities

Reliable "virtual" circuit data links
Remote login facilities

Remote command execution

Networked transparent access to file systems
Distributed processing and load balancing

As the degree of coupling increases (from loose to tight) so the risk of self
replicating code becomes greater. In loosely coupled systems worms or viruses
are restricted to propagation by electronic mail techniques which normally
require the intervention of a human user to start execution of the received virus
orworm.

Into this category fit the trojan horses copied by users and the chain letters
which are bulk mailed and then run on receipt by a user. Unfortunately, even
email may allow re mo te command execution - the uudecode alias security
loophole in UNIX is a typical example. The risk in a weIl designed mail system
is normally minimal. Gateway mail systems may filter (using techniques such
as permitting only ASCII text transmissions), and pad (by adding padding
characters in co lu mn 1 of a message which will prevent its execution by a
system command interpreter such as the UNIX sheIl) messages.

Intermediate systems permit establishment of a reliable da ta connection
between two processes via the network. This ineludes remote login with all the
related problems of distributed trust and electronic password search. This is
normally sufficient to allow copying and execution of viral code under remote
control.

Finally, and most dangerous, are the systems which support elose coupling.
Such systems normally have an exceptionally complex network interface
composed of many separate applications. These inelude network transparent
file systems and remote procedure call facilities. Worms and viruses can utilise
these systems to copy code to hosts under remote control.

8.2 Standardisation

At the moment communications protocols are effectively at the "Tower of
Babel" stage, with a large number of proprietary and network specific

Network Viruses: The Worms 195

protocols. This has led to the construction of complex gateways between
networks, such gateways carrying out protocol conversion at the application
level (e.g. email relay or ftp-ftam file transfer relays). Such gateways have
resulted in loose coupling between networks, reducing the risk of viral or
worm code spread. An example is the restriction of the Internet worm to the
DARP A Internet due to the email-only gateway between the Internet and
JANET.

In the near future two streams of standards are likely to predominate,
namely:

1. The de jure Open Systems Interconnection (OSI) standards promulgated by
the International Organisation for Standardisation.

2. The de facta Internet Protocol standards promulgated by the Internet
Engineering Task Force (IETF).

This standardisation will lead to tighter coupling between networks and will
unfortunately lead to"increased risk of worm or virus propagation. There is
little doubt that the benefits from such dose coupling are considerable.
However, security must be considered. It is only now with the maturity of both
protocol suites that initial work is under way on security functionality. It is
likely that the incorporation of confidentiality, integrity and access control in a
standardised and consistent manner will not occur fOJ; a number of years. At
this stage network applications such as FTAM, SMTP, MHS, etc. are expected
to provide their own access control facilities, often in an ad hoc mann er.

A further problem evidenced in the Internet worm and DECNET worm
incidents is the inertia of such large networks to update and change. Thus
patches fielded to security loopholes take a considerable time to achieve
significant penetration of the network hosts. Even now it is likely that a large
nu mb er of Internet hosts (and indeed some software vendors) still contain the
loopholes used by the Internet worm.

This chapter considers the Internet Protocols, DECNET and OSI protocols
and assesses their vulnerability to virus/worm activity. Examples of previous
worms are also given.

8.3 History of Network Pests

8.3.1 Early Work: Pre-1980

The earliest network worms were reported in 1970 - the Creeper and Reaper
programs described in Chapter 2. These early experiments in distributed
computation introduced the concept of migrating computation, and
counterworms.

196 A Pathology of Computer Viruses

Early experimenters at Harvard then integrated the Creeper with a dis
tributed flight simulation package under way. This produced a distributed self
replicating flight simulation with various distributed components representing
each component of the flight space.

Xerox worm research built upon these initial experiments to investigate the
concept of self-distributing computation. This work included research into:

1. Initialisation of worm binaries.
2. Location of idle machine units.
3. Use of multicast addressing (only recently incorporated into the IP suite) to

communicate between worm components.
4. Distributed and centralised worm control algorithms.

The Xerox work reported by Shoch and Hupp in 1982 was far in advance of the
technology incorporated in the malicious worms in terms of the complex worm
control algorithms used to detect and correctly compensate for:

• Fragmentation of the network
• Unexpected termination of a worm segment
• Changes in network configuration and utilisation

During the development phase a number of problems were encountered,
including one instance of a worm segment being corrupted during migration.
The corrupted segment then crashed each machine it attempted to spread over.

8.3.2 Recent Benign and Malicious Worms

Since 1987 there have been a significant number of incidents during which
worms were released onto public access networks. The target networks
included BITNET, DECNET and Internet. A summary of these incidents is
given below:

Network Date released Description

BITNET 9 Dec87 CHRISTMA EXEC chain letter replicating on IBM CMS
systems on VNET, BITNET, EARN

INTERNET 3 Nov 88 Internet worm replicating on Sun 3 and VAX UNIX
BITNET 5 Dec88 CHRISTMA EXEC re-released on BITNET
DECNET 22Dec88 ID.COM Christmas worm replieating on DECNET/SPANNET/

HEPNET
BITNET 8 Mar 89 BUL EXEC released on Turkish EARN node
BITNET 5 Apr 89 ORGASM EXEC released from PSUVM BITNET node
BITNET 8 Apr 89 HEADACHE EXEC found at Ottawa BITNET node
DECNET 160ct 89 WANK worm replieating on SPAN network
DECNET 300ct89 OILZ variant of WANK worm on SPAN network
BITNET 25 Nov89 DIR EXEC replieating on BITNET
BITNET 24 Sep 90 Souree of CHRISTMA EXEC sent to alt.hackers newgroup
BITNET 8 Oet 90 TERM EXEC replicating on BITNET

Network Viruses: The Worms 197

The outrage of the Arpanet on 27 October 1990, despite being cited by a
number of writers as a worm incident, was attributable to a hardware fault on
an Interface Message Processor (IMP) coupled with vulnerabilities in the
distributed routing algorithms used on the network.

In the case of BITNET each "worm" was actually a chain letter written in the
REXX command language. It relied on the recipient of the chain letter to run the
resultant file, which purported to print a Christmas tree on his/her screen. The
Christmas EXEC was modified to produce the BUL, DIR and TERM exec
modules.

The Internet and DECNET worms were, however, self-propagating and did
not rely on any intervention by the user. They represent the first true incidents
of malicious worm propagation on their host networks.

A description of the DECNET and Internet worms is given later in this
chapter, together with information on the protocols and features which
permitted these worms to spread.

In the meantime a brief look at the CHRISTMA EXEC program (infamous)
will show that the term "chain letter" is appropriate.

8.3.3 CHRISTMA EXEC Chain Letter

The term "chain letter" is chosen because the program spread by way of an
electronic mail message sent to a number of users. This message contained a
program script which purported to be benign and entertaining. In fact, when
run by the user, it replicated by sending copies of itself by email to a large
numbet of addresses.

The Christmas chain letter, was written in the command language REXX used
by the IBM mainframe CMS operating system. The chain letter circulated
widely amongst BITNET, the European Academic Research Network (EARN)
and IBM's interna I network (VNET). Infection commenced at 1300 GMT on
Wednesday 9 December and originated from EARN node (DCZTU1) at
Clausthal-Zellerfeld in West Germany. From here the chain letters spread
rapidly through most of BITNET, and successfully crossed via a gateway site
onto IBM' s internal VNET network. The chain letter was apparently written by
a student to send Christmas greetings to his friends. One of the recipients,
unaware of its nature, ran the received greeting and started the bulk infection.

Within BITNET, infection was cleared by 14 December, although within IBM
a major network shutdown occurred on 11 December to clear the infection.

The REXX command script when run:

1. Displayed a message and Christmas tree on screen.
2. Checked that the current year was 1988 or earlier, and that the month was

December, January or February.
3. If this was the case the script examined two CMS files - NAMES and

NETLOG. NAMES is a CMS file which contains mappings between mai}

198 A Pathology of Computer Viruses

aliases used by the user and fuIl email addresses. NETLOG is an audit trail
of users whom you have sent or received mail or files from. Together these
files provided the script with a rich collection of mail addresses.

4. Mailed a copy of itself to each address in the NAMES and NETLOG files.
5. Deleted itself.

An important point is that the NAMES and NETLOG files contained users
whom the person running the script regularly communicated with, and this
made it likely that the recipient (seeing that the chain letter originated from a
known colleague) would run the script. The script was also structured to
include the innocuous tree printing code first:

*
*

followed by a message that:

A

VERY

HAPPy

CHRISTMAS

AND

BEST WISHES

FOR THE NEXT

YEAR

Browsing this file is no fun at all, just type CHRISTMAS from CMS

Thus many users (who might be unfamiliar with the REXX command
language) neglected to read any further, and ran the script.

The script was published by a number of sources (as weIl as being widely
available), including the book Computer Viruses: A High-tech Disease. The
CHRISTMA EXEC has since been modified on a number of occasions and was
re-released onto BITNET on 5 December 1988 (possibly accidently se nt from
Louisiana State University). Modified versions included the BUL EXEC
released from the EARN backbone si te in Turkey on 8 March 1989 (it was found
because of a warning from its author within 10 minutes of release), and the DIR

Network Viruses: The Worms 199

EXEC released on 25 November 1989 (which purported to produce an MS-DOS
format directory listing of CMS files) and detected at BITNET node
TECMTYVM.

Other CMS chain letters have included the ORGASM EXEC released from
Pennsylvania State University on 4 April 1989, which spread to the University
of Central Florida; the HEADACHE EXEC found at the University of Ottawa on
8 April 1989, and TERM MODULE, originating from Turkey (a REXX exec to
pretty print the CP QUERY NAMES command), which spread to the USA and
Canada.

8.3.4 Chain letters on UNIX

The CMS exec chain letters above can be placed in the same category as
transmission of shell scripts by UNIX email. The latter is now a significant
problem because of the large number of automated archiving sites which
receive source code postings from USENET electronic news groups. At the
least, such archiving utilities will store the shell script for later request and
execution by other users; at the worst the archiver will attempt local unpacking
of the shar (shell archive), which may result in trojan horse code being
executed.

UNIX source news groups are countering this risk by adding checksumming
to transmitted archive files. Until the advent of extensive digital signature
utilisation such automated distributed archiving via an untrusted electronic
mail channel will be vulnerable.

8.4 Internet Protocols

The first of the popular suites of network protocols to be considered in this
chapter is the Internet Protocol (IP) stack. This suite was developed by the
Defense Advanced Research Project Agency (DARPA) network user com
munity. This community is spread across the military, research and commer
cial sectors. The protocols are specified by aseries of "request for comments"
(RFC) documents available via the network itself. Since the original network
has now expanded to embrace gateways to thousands of other networks, it is
generally referred to as the Internet. The protocols used on this network are
now an integral part of BSD UNIX and have been adopted by many other
vendors. It is true to say that the Internet Protocols represent the de facto
standards in the UNIX community, as against the de jure standards being
promulgated by the ISO.

The Internet Protocols provided the carrier medium for the Internet worm of
November 1988. Before examining' the case history of this incident, it is

200 A Pathology of Computer Viruses

necessary to consider briefly the protocols and their vulnerability to virus/
worm attack.

8.4.1 Architecture

The IP stack comprises a number of layers of protocols, each responsible for
some component of the two abstractions provided by the suite, namely:

• A reliable error-free data stream between two application pro grams

• An unreliable packet delivery service (the datagram)

The stack includes the following elements:

Application

UDP I TCP ICMP

Internet protocol

Media access control

Network

The media access controllayer interfaces to the underlying network drivers,
supplying packet headers and trailers appropriate to the underlying network.

The IP provides a network layer which supports an unsequenced, unreliable
packet transmission service between two host systems carrying out routing
and fragmentation services. Each host is identified by a four byte Internet
address.

Above this layer are two separate transport layers - the user datagram
protocol (VDP) which supports unreliable, unsequenced packet transmission
between two host applications, and the transmission control protocol (TCP),
which supports the abstraction of a reliable data stream linking two application
programs. Each pro gram executing within a host is allocated a separate "port"
address for each network connection. Thus a program may have two
connections open: "port 5122" and "port 5123" on Internet host
"192.9.201.23". Thus a message at the transport layer is addressed using the
host address, and the port on that host. The communications software will
then deliver the message to the application "listening" on the specified port.

The IPs are extremely open due to their developmental environment. Only
now are security features being incorporated to protect data confidentiality and
integrity.

Network Viruses: The Worms 201

8.4.2 Peer Authentication

Each host on the network is trusted to identify itself correctly by supplying its
Internet address. Hosts may masquerade as other systems by forging the
source IP address of a transmitted packet .. Gateways amd the hosts being
imitated may flag security warnings when being impersonated. Since the IP
layer is unreliable the real host may be tricked into ignoring the dummy packet
bya deluge of valid packets (this may cause the buffer space on the host to be
exhausted, causing received packets to be dropped).

Equally, by using the dynamic network redirection facilities provided in the
Internet Control Message Protocol (ICMP - a network management and error
reporting protocol), it is possible for a hostile system to intercept traffic
destined for a valid system. This is achieved through the host of the ICMP
redirect message. Receipt of such a redirection request causes a system to
update its routing tables according to the information in the request. Thus host
A can be tricked into sending all traffic intended for host C, to host B; by host B
sending a redirect message to A. This message then causes A to update its
routing table.

Used in conjunction the two techniques allow host B to redirect all traffic
from host A to C via itself, and then to impersonate host C during accesses to
host A. If host Band C are not on the same physical network then the
masquerade may never be detected. This technique potentially undermines the
concept of trust between posts based on peer authentication.

By masquerading, a host may initiate services on a destination system which
would normally be restricted to the host being impersonated:

1. Host B sends a redirect request to host Athat indicates a shorter route to
host C.

2. Host Athen begins sending all traffic to host C via host B.
3. Host B sends a forged request appearing to come from host C to host A.
4. Host A performs the trusted function based on the forged message.
5. Host Asends the results via the shortest route to host C; this route is via host

B.
6. Host B captures the reply and falls to forward the packet to host C.

Equally it is possible to forge the original source port id. This will ensure that
the message appears to originate from a trusted application or daemon.

Of crucial importance are two concepts in the Berkeley IP implementation:

• Trusted ports which only the super-user or administrator may allocate, they
have port numbers < 1024.

• Fixed port id used by standard services such as mail, file transfer and remote
login

The ability to forge host and port ids permits a worm to spread by copying its
code via trusted network services, and then to execute such code remotely.

202 A Pathology of Computer Viruses

8.4.3 Access Controls

Access controls depend on two features at the transport level:

• Source host id (trusted host id)
• Source port id (trusted or known port id)

As previously mentioned, both can be forged. Thus Internet access control is
susceptible to a breach of trust by any host connected to the network (or
dependent on gateways to the local network).

This major difficulty can be overcome by the new extensions to application
protocols which incorporate authentication via cryptographic techniques, e.g.
privacy enhancements for electronic mail- RFC 1113.

8.4.4 Data Stream Integrity

An established da ta stream using TCP is highly reliable, providing recovery
facilities for lost or duplicated packets or data. This layer is however susceptible
to a number of weIl known attacks, first described by Robert Morris (father of
the au thor of the Internet worm) in 1985. These weaknesses centred around the
implementation of the initial sequence number (ISN) generation used in the
TCP transport protocol in Berkeley systems.

The sequence numbers are used to order all packets in the TCP session and to
permit recovery from lost packets. When a connection is established the
initiator transmits its ISN to the destination. The destination system then
replies with its own ISN.

A foreign host may masquerade as a trusted host using TCP. This is achieved
by sen ding a connect request to the destination alleging to have originated at a
trusted host. This connect request carries the ISN to be used by the foreign
host. The destination system will then acknowledge this request, sen ding its
own ISN to the trusted system. If the masquerading host can successfully
predict the pseudo-random ISN generated by the destination host, it may inject
data or commands that purport to have originated at the trusted host. This
attack does not require manipulation of routing tables, since the foreign host is
relying on its ability to "predict" the contents of the acknowledgement packet
being sent to the trusted host. This attack permits:

• Injection of malicious code into code being transmitted by applications (e.g.
into remote copy requests (RCP))

• Insertion of malicious command into login, file transfer or remote execution
sessions

It is worth noting that one of the most common remote filing system
protocols (NFS) uses VDP as its transport layer, and is thus subject to trivial
manipulation by hostile (or infectetl) systems on the local network.

Network Viruses: The Worrns 203

8.4.5 Daemons and Servers

Above the transport layer are placed the numerous application services of the
Internet, each of which listens on a special fixed port for incoming service
requests. These services if spoofed allow remote copying and execution of viral
or worm code.

Port Remote SelVice
Id Copying Execution Description

21 X File transfer protocol (FfP)
23 X X Telnet remote logio protocol
25 X (X) Simple mail transfer protocol (SMTP)
69 X Trivial file transfer protocol (TFTP)
79 (X) Finger protocol
111 X Remote procedure caU (RPC)
512 X Remote execution service (REXEC)
513 X X Remote login selVice
514 X X Remote sheU selVice (RSH)

In the above table, X indicates that remote execution may be possible
through bugs in the daemon, rather than through a design feature.

The remote procedure call facility also allows a range of special functions to
be executed which include the rexd (remote execution service).

Each service carries out its own user authentication and access control
functions, possibly using the standard system login procedures. The services
of particular note are those with known bugs or loopholes which could be
exploited by a worm to gain access:

• Sendmail: numerous bugs, e.g. CIAC advisory A-13, BSD Fix 1.67, CERT
Advisory 9001 including the DEBUG option loophole exploited by the
Internet worm

• Rsh: BSD Fix 1.36
• Rlogin: BSD Fix 1.36, BSD Fix 1.60
• Telnet: BSD Fix 1.60
• Ftpd: BSD Fix 1.65
• Tftpd: absence of security checking for readaccess to filesystems
• Rcp: BSD Fix 1.82, CERT Advisory 8907
• Fingerd: BSD Fix 1.69

The sampies above indicate that the majority of the applications forming the
network interface have known bugs or loopholes which as a minimum permit
reading of system password files, and thus allow remote cracking of passwords
stored in encrypted form.

8.4.6 Distributed Trust

Of particular interest are the "r" series protocols provided by BSD UNIX as
extensions to the IP application layer. These are "rlogin", "rsh" and "rexec"

204 A Pathology of Computer Viruses

(remote eopy makes use of rsh). To simplify the tedious proeess of remote login
and program exeeution, Berkeley introdueed a way for trusted hosts and users
to login direetly without supplying a password. The extent of the "distributed
trust" was specified by the administrator of the system, and eould be extended
by individual users.

The loeal system eould speeify a list of "trusted" hosts in its /etc/hosts.equiv
file. Eaeh user on a remote trusted host eould login to an aeeount on the loeal
system with the same user id. Thus user "fred" on "helios" eould login without
supplying a password to the loeal system "solaris". This implies that the
mapping of user name to user id must be the same on both systems. If this was
not the ease user Fred Alexander who has user id "fred" on helios and user id
"alex" on solaris, eould log into Fred Smith's aeeount (user id fred) on solaris.

If host helios is eompromised, a route immediately exists to login or remotely
exeeute eommands on host solaris. The only exeeption is the "root" user who is
foreed to explicitly specify a list of trusted hosts (who would be permitted
password-Iess login) in the file /.rhosts. The /etc/hosts.equiv file is ignored for
the root user.

Had this been the extent of trust, then it is arguable that it might have been
manageable. However, eaeh individual user eould also specify additional
trusted hosts and users in the file .rhosts in his/her horne direetory.

Thus, user fred on solaris might specify in his .rhosts file:

• ormazd = user fred on ormazd is trusted to login as user fred on solaris

• osiris james = user james on osiris is trusted to login as user fred on solaris

A eomplex graph of trust was thus established which was impossible to
administer, and led to eomplex routes of vulnerability, such as:

solaris oberon loki
fred .rhosts = .rhosts =

oberon oberon nigel

nigel .rhosts = .rhosts =
loki solaris nasty

nasty

In the above ca se, user nasty on solaris eould login as nigel to loko, then from
loki to oberon, change user to fredon oberon and finally login as fred to solaris.
Fred eertainly does not trust nasty, but he trusts nigel, who does.

Network Viruses: The Worms 205

8.4.7 Trusted Ports

Finally, as previously mentioned, there exists in the "r" protocols the notion of
trusted ports. Machine solaris will accept a remote login originating from
oberon on trusted port 513. It will then expect the remote system to send the
user id of the remote user, together with the user id he wishes to login as on the
local system. If oberon is compromised then the remote user can link to the
login server via a trusted port (he is root and can thus originate a call from a
trusted port) and send any user id he wishes as his local user id. This problem
was made even more severe by a bug in rsh/rlogin which caused these
processes to accept "trusted" connections from any port whatsoever.

8.4.8 Problems and Solutions

Thus, in summary, w9rms can attack the IPs by:

• Masquerading or forging IP or port addresses at network and transport
layers

• Injection of malicious code or commands via faults in transport protocols
• Bugs in server/daemon processes implementing application layer
• Utilising distributed trust in "r" protocols to suppress access controls

MIT has addressed the issue of an untrusted workstation being connected to
a LAN and has redesigned BSD UNIX to incorporate authentication, da ta
confidentiality and integrity services. The environment developed at MIT is
known as "Kerberos" , named after Cereberus, the three-headed dog which
guarded hell in Creek mythology.

The environment is based on the concept of centralised trust in a number of
authentication servers. These authentication servers support a large number of
untrusted networked workstations. Thus when a user logs into such an
untrusted workstation, the workstation will communicate with the central
authentication server to establish the user's identity and network credentials.

The connection of untrusted hosts to the· network also means that the
authentication mechanisms in Kerberos must be resilient to impersonation and
replay attacks by other hosts. Kerberos supplies support for centralised rather
than distributed trust.

Kerberos may become an integral part of the BSD 4.4 operating system
release. For further details of the key management facilities in corpora ted in this
secure distributed communications environment the reader is referred to the
paper from the MIT Athena project cited in the further reading section.

8.4.9 Internet Worm: Slack Thursday - 3 November 1988

On the 2 November 1988 at around 1800 EST, Robert T. Morris, a Cornell
student and son of a senior scientist at the US National Computer Security

206 A Pathology of Computer Viruses

Centre (NCSC) executed a binary image of a UNIX worm program on a public
access machine at MIT - prep.ai.mit.edu. This machine ",:as used for the
storage and distribution of shareware - in this case the widely used gnu
software packages.

This worm was to spread across the USA and infect an estimated 6000
computer systems.

8.4.9.1 Internals

The worm exploited a number of features and bugs in the da em on processes
that implement the applications layer in the IP suite. These included:

1. Fingerd: The fingerd bug, mentioned previously, allowed the worm to
overwrite an IIO buffer in the program, corrupting the stored pro gram counter
in the stack frame. Thus, when the daemon executed a procedure "return"
instruction it was tricked into execution of aseries of instructions causing it to
overlay itself witha copy of the UNIX shell. This shell remained connected to
the original network connection which had invoked the fingerd. The shell ran
with the permission of the fingerd which had invoked it - i.e. root! The buffer
overrun bug potentially exists in programs which make use of a wide range of
UNIX library calls, including gets, scanf, fscanf, sscanf, strcat and strcpy. The
inclusion of such library calls (whose existence has been perpetuated via the
POSIX international UNIX standards) has been a frequent source of UNIX
software bugs.

2. Sendmail: The sendmail mail handler daemon in standard BSD UNIX had
been distributed with debugging code enabled. Sendmaillistens on port 25 for
aseries of commands in the SMTP protocol. These commands take the form of:

MAlL PROM: davidf@cs.hw.ac.uk Sender address
RCPT TO: fred@anywhere.org Recipient address
DATA

QUIT
Text of letter
Close connection

The address is restricted to a valid email address.Byissuing the command
"DEBUG" , the worm placed themail daemon in a debugging mode which
would permit the destination address to be a UNIX command. This command
would receive the text message as its input. The command started by the worm
was the UNIX shell.

3. Rsh: Not a bug, but a feature. The worm utilised the distributed trust
features in the Berkeley "r" protocols to spawn a remote shell on the target
system.

4. Passwords: Finally, the worm would attempt to spread using the accounts
of other users on its local system. The worm used a variety of brute force

Network Viruses: The Worms 207

techniques to break the password of a user on the local system. If the attack was
successful the worm would attempt to use the remote execution service
"rexec" to start a shell on a target remote system using the cracked user id and
password. If this failed the worm started a command under the cracked user id
and password locally, and then attempted to use the "rsh" protocol to start a
shell on the remote system.

On UNIX passwords are stored in encrypted publicly readable form in the
file /etc/passwd. The encrypted form consists of using the password as a key to
encrypt a fixed constant. The worm did not try to invert the cipher, but
attempted a brute force technique which consisted of trying large numbers of
passwords and comparing the encrypted constant with the value in the
password file. This search of the plaintext domain was accelerated by selecting
obvious choices of password for testing:

1. No password.

2. User id used as password.
3. User id appended to itself and used as password.

4. A nickname from the GECOS field in the password file.

5. User's surname from the GECOS field in the password file.
6. Reverse of the user's surname.

7. A 432 word built in dictionary of likely passwords.

8. Full UNIX on-line dictionary of 24474 words.

The worm appeared to use an optimised DES encryption routine, which
appeared stylistically distinct from the remainder of the worm, and was
significantly faster than the DES encryption routine distributed with UNIX.

When the worm had successfully obtained a shell on a remote system it
proceeded to transfer a small vector or carrier program, together with the shell
commands to compile and execute the carrier. It is worth noting that the carrier
was essentially architecture independent since it was written in the C high level
language, and was compiled and executed using high level commands in the
shell command language.

The carrier opened a network connection to the infected source host. Over
this connection two executable modules were transferred (actually the worm
had facilities to transfer up to 19 such executable modules. Only two were used
- modules for the DEC VAX and Sun 3 systems). If either of the transferred
modules executed successfully it caused repetition of the infection process on
the remote system - the worm had spread. In summary the worm:

• Exploited known bugs in fingerd and sendmail
• Exploited distributed trust in Berkeley "r" protocols

• Attempted exhaustive searches for encrypted passwords
• Used an architecture independent carrier/vector program to transfer two

executables for the VAX and Sun 3 architectures

208 A Pathology of Computer Viruses

8.4.9.2 Action and Reaction

The brief chronology below gives an illustration of the spread of the Internet
worm, and the reaction of the community to the worm. It is important to realise
that at this time the community was unorganised and relied primarily upon the
"old- boy" network to co-ordinate its response. With the advent of the
Computer Emergency Response Team (CERT), which was directly attributable
to the Internet worm incident, it is likely that any future event will be dealt with
rapidly. (All times below are in Eastern Standard time (EST).)

Date

29 Oe! 88

2Nov 88

3'Nov88

Time

1702
1926-2100

2100
2124
2130
2130
2204
2234
2240
2248
2252
2254
2255
2259
2345
2349
0007
0033
0100
0105
0130
0200

0228

0315
0334

0400
0400
0700

Site and event

Epoch

Comell: extensive testing of sendmail - probably attempting
direct binary transmission of worm modules
Comell: infection of a Comell system by the worm
Massachusetts Institute of Technology:
infection of PREP.AI a public access shareware repository
Stanford: infected
Rand Corporation, Santa Monica: infected via University ofPittsburgh
MIT: Project Athena worlcstation infected
University of Minnesota: infected
University of Califomia: Berkeley infected
Princeton University: infected
University ofNonh Carolina: infected
SR! International: infected
Camegie Mellon University: attacked by worm
University of Maryland: infected
Comell University: auacked by warm
Pennsylvania University: attacked by warm
Dartmouth College and Army Ballistic Research Lab: infected
University of Utah: infected
University of Arizona: infected
University of Delaware: infected
University of Michigan: attacked
Lawrence Livermore National Labomtory: infected
University of Califomia: Los Alamos site infected
University of Harvard: infected

Black Thursday: first waming and reaction

A message is sent by Peter Yee ofUCB to the tcp-ip mailing
list waming of extensive infection
University of Chicago: infected
An anonymaus posting is sent by Andrew Sudduth waming of the
wann, apparently at the request of Roben Morris the aulhor
Colomdo State University: attacked
Purdue University: attacked
Georgia Institute: infected

The chronology of initial infections (of which these are a selected subset)
shows that the worm rapidly spread during the early evening of Wednesday 2
November, infecting many sensitive sites (including the Lawrence Livermore
National Laboratory). The worm appears to have been under development on

Network Viruses: The Worms 209

a Cornell system since mid-October 1988. The authorities at Cornell suc
cessfully retrieved and decrypted (because of the use of crypt, an insecure
UNIX encryption tool) a number of versions of the worm, including:

1. An early source code version dated 15 October 1988.

2. An almost completed version dated 2 November, 1213 EST.

3. A completed version dated 2 November, 2026 EST.

The early version has comments which indicate that the fingerd bug was
known, and that additional bugs were to be exploited, including a fault in the
"yellow pages" directory service daemons. It is significant that the early
version makes no mention of the sendmail DEBUG attack technique. Testing of
this may have commenced on 19 November, although the Provost's enquiry at
Cornell notes that Morris visited Harvard between 20 and 22 November. After
this point, the Cornell enquiry notes that backups of the worm files included
this attack technique.

After the release of" the worm, Robert Morris made a phone call to Paul
Graham of the Aiken Computational Laboratory, Harvard. Paul, who was at
the time (2300 on 2 November) conversing with Andrew Sudduth, also of
Harvard, mentioned to hirn that "something big was up". On being pressed by
Andrew he mentioned that Robert Morris had released a virus which was
overloading computers at Cornell and might spread all over the country.

Robert Morris (after a prompting mail message from Andrew Sudduth)
called hirn at 2330 and told hirn that "something was going on", but did not
admit releasing the worm. At 0230 on 3 November he again called Andrewand
asked hirn to send a letter of apology across the network. The anonymous letter
(using a common sendmail forgery technique) was sent out at 0330, and
included the text:

A possible virus report:
There may be a virus loose on the internet.
Here is the gist of a message I got:
I'm sorry.
Here are some steps to prevent further transmission:

1) Don't ron fingerd, or fix it to not overrun its stack when reading
arguments.

2) recompile sendmail w/o DEBUG defined

3) don't ron rexecd

Hope this helps, but more,. I hope it is a hoax.

This message was trapped at an overloaded relay site (relay.cs.net) before
reaching the distribution point for thetcp-ip mailing list. In the absence of these

210 A Pathology of Computer Viruses

crucial warning the community was forced to disassemble and analyse the
worm from scratch.

The initial message from Peter Yee to tcp-ip flags an initial warning to the
entire community:

Date: Wed, 2 Nov 88 23:28:00 PST
From: Peter E Yee
Subject: Internet VIRUS alert

We are currently under attack from an Internet VIRUS. It has hit UC
Berkeley, UC San Diego, Lawrence Livermore, Stanford, and NASA Ames.
The virus comes in via SMTP (ed. Simple Mail Transfer Protocol is the
mall protocol used by the TCP/IP based Internet, which includes
ARP ADet, MILNET, and a whole slew of others all over the world), and
then is able to attack aIl4.3BSD and SUN (3.X?) machines. It sends a
RCPT TO that requests that its data be piped through a shell. It
copies in a program, compiles and executes it. This program copies in
VAX and SUN binaries that try to replicate the virus via connections
to TELNEfD, FTPD, FINGERD, RSHD, and SMTP (ed. these are the standard
background tasks, or daemons, tbat ron on TCP/IP equipped machines;
the tasks performed by them include remote login sessions, We
in tbem. They appear in lusr/tmp as flies that start with the letter
lL ·Removing them is not enough as tbey will come back in the nen
wave of attacks. For now, turning off the above services seems to be
the only help. The virus is able to take advantage of .rhosts files
and hosts.equiv. We are not certain what the final result ofthe
binaries is, hence the warning.

Work was under way at the University of California at Berkeley, resulting in
an initial fix posted at 0558 by Keith Bostic. This fix suggesting recompilation of
the sendmail program without the OE BUG option, and the stopgap of
renaming the standard C compiler (cc) which the worm required to compile
itself. A second bug-fix message was posted at 1112 and suggested the use of
the UNIX "strings" command to search for the string "debug" in the sendmail
program - a test of whether a site was vulnerable. The Berkeley group was
joined by the MIT telecommunications network group, who successfully
captured VAX and Sun worm binaries. The fingerd attack was discovered at
1921 by the University of Rochester (although MIT claims to have discovered
the bug at about the same time).

The bulk of disassembly and analysis work took place on the evening of 3
November when work was under way in the Student Information Processing
Board (SIPB) at MIT to disassemble the worm. This work included recognition
of the encoded form of text strings in the worm (using a basic XOR technique).
The phage-l mailing list was established by Eugene Spafford of Purdue. This
electronic maillist was to be the first formalisation of the old boy network, and

Network Viruses: The Worms 211

was to act as a crucial focal point for discussion and information exchange. One
of the first messages was posted at 2120 as a result of the analysis work under
way at Purdue, it was the so-called "condom": a simple fix to prevent infection
by creating a directory "/usrltmp/sh". The worm tries to use the file" /usr/tmp/
sh" to store temporary code: this condom prevented successful creation of the
temporary file.

At 2218 Keith Bostic made the first bug fix for the fingerd bug, including new
source code which utilises fgets, rather than gets. Decompilation of the worm
was completed in the morning of 4 November due to an incredible overnight
effort at a number of sites. Decompilation went hand-in-hand with direct
testing of captured worm binaries on isolated systems. The use of the rexeclrsh
attack was noted at 0422 on 4 November. The MIT group finally exchanged
code with the Berkeley decompilation team at 0545. Decompilation work at
UCB finished at 0900.

The MILNET responded to the Internet worm by disconnection of its
mailbridges (hosts gatewaying between the public internet, and the
unclassified but sensitive MILNET) at 1130 on 3 November. The two networks
remained disconnected until 1100 on 4 November. It is questionable whether
the approach of disconnection to avoid infection (of which this was but a single
case) inhibited the distribution of bug fixes and interchange of information
between analysis staff.

Finally it is worth noting that the worm did in corpora te primitive camouflage
and concealment measures, including:

1. Renaming the executing worm "sh" to imitate one of the many command
shells normally running on an active system.

2. Removing the original binary from the filesystem and killing of its parent
task.

3. Using the UNIX fork system call to create a new copy of itself whenever its
elapsed processor time reached a critical value, thus avoiding the obvious
indicator of a system shell with excessive elapsed processor time.

4. Trivially encrypting the strings and password dictionaries used within the
worm.

5. Attempting to detect the presence of other copies of the worm on the local
system, and to negotiate their termination.

There was little doubt therefore that Morris was actively trying to conceal the
presence of the worm.

8.4.9.3 The Aftermath

When the dust had settled from this incident Robert T. Morris was indicted
under the US Computer Fraud and Abuse statute and found guilty on 4 May
1990 by US District Judge Howard Munson in Syracuse, New York. He was
sentenced to 3 years' probation, a $10 000 fine and 400 hours of community
service.

212 A Pathology of Computer Viruses

The Provost' s report from Comell University concluded that Robert Morris
had:

1. Probably not intended to destroy da ta or other files or to interfere with the
functioning of the computers that were penetrated.

2. Intended the worm to spread widely but to remain undiscovered. It was
uncertain whether an announcement of its existence would be made at a
later date.

3. Clearly viola ted the Comell computer science department's "Policy for the
use of the research computing facility" .

4. Made minimal efforts to halt the worm once it had propagated, nor did he
inform a person in a position of responsibility of his actions.

5. That it was an uncharacteristic act for the student who was normally
concemed to protect against abuse of computers.

Comell University, acting on its commission's report, suspended Robert
Morris for a minimum of one year, the faculty to consider re-admission after
this time frame.

The damage caused by his creation has been variously estimated as being:

• $97 million: John McAfee, President, Computer Virus Industry Association
• $10 million: Cliff Stoll, security consultant and author of Cukoo's Egg
• $250 000: Cost of reacting to worm at Los Alarnos National Laboratory
• $200 000: Gene Spafford' s personal estimate of cost
• $100 000: Cost of reacting to worm at Lawrence Livermore National

Laboratory
• $72 500: Cost of reacting to worm at NASA' s Ames Research Center

• 8000: Gene Spafford's estimate of personnel hours lost battling the worm
• 6000: NCCD's estimate of number of these hours which were not

compensated

• 6000: Most common estimate of number of hosts infected

The actual figure of loss due to the worm will never be exactly known. There
is general agreement, however, that it lies in the region of $100 000 to $10
million. The figure quoted by McAfee has been widely criticised as being
excessive. However, the cumulative loss figure for the three govemment
laboratories quoted together totals $422 500. It is likely that of 56 000 connected
hosts, a significant proportion were infected. One site alone (MIT) quotes an
infection rate of 10 per cent (200 hosts out of 2000 infected). This statistic has
been extrapolated to produce the widely quote statistic of around 6000 infected
hosts.

Infection reports from apparently active worm instances continued to be
detected until early December 1989.

There is little doubt that the legacy left in the aftermath of the worm will
continue to significantly influence the entire computer security community. In

Network Viruses: The Worms 213

its aftermath the CERT organisation was born, an organisation now being
extended worldwide. The bugs exploited by the worm still exist on some hosts
despite the patches being globally available. The potential for a repeat of the
incident still100ms over the Internet, a network which developed in an open
academic environment and is only now beginning serious consideration of the
issue of network security.

8.4.10 DISNET: A Child of the Internet

As abrief aside, I would like to consider the planned architecture of the
Defense Integrated Seeure Network (DISNET) which forms the classified
backbone service provided by the Defense Communications Agency in the USo
This network relies on extensive end-to-end encryption (E3) at the network
layer.

The network is designed to permit the carriage of secret, top secret and
compartmented top secret da ta over a physical network classified at the secret
level.

DISNET provides extensive support for data confidentiality and traffic flow
analysis prevention. Data integrity is the responsibility of the host system with
support from the network service. The access constraints appropriate to the
secret classification of DISNET will substantially reduce the probability of
malicious software introduction by direct physical access to the network. All
data in transit is also encrypted, complicating the insertion of malicious code
(to insert useful commands or data it is necessary to determine the encrypted
form of the malicious software - this knowledge of the private key component,
insertion of random garbage or corruption of data is of course less difficult).
Support for the detection of data integrity violations will be provided.

The DISNET effectively extends the Orange Book MAC proteetion model by
offering network support for security classifications and compartments,
together with support for access identification of a user community' s classifica
tion and compartment permissions. The interface between DISNET and the
unclassified MILNET segment will be TCSEC B-2level systems. Such systems
could be subject to bandwidth limited covert channel attacks at < 0.1 bit/sec by
malicious software exploiting possible bugs in the network applications layer
on the gateway. The only form of communication supported by the gateway is
electronic mail store and forward - this restriction should severly limit the size
of the applications interface and permit extensive verification of mail handling
software.

Such a mail bridge (also including traffic limitations to prevent denial of
service attacks) would however still permit chain letter attacks and the
exploitation of bugs on destination system email servers. The MILNET to
Internet backbone links would be via TCSEC B-l level systems, again
restricting service to email forwarding.

The E3 encryption system (Blacker) is front-ended by a filter (BFE) which
implements the mandatory access control requirements of the 000 security

214 A Pathology of Computer Viruses

policy. Use of strict filtering at the BFE would minimise the trust placed in the
mail gateways and would prevent covert channel compromise as a result of
trojan horse introduction via chain letter, mail server access or direct posting.

In summary, the proposed DISNET is protected due to its loose coupling to
public access networks, simplification of the application layer interface on
gateways, and backbone support for data integrity and confidentiality. The
network is still vulnerable to chain letter attacks and electronic mail handling
server bugs causing possible data compromise at low bandwidths, and
possible corruption of data on connected host systems not implementing
integrity extensions to the basic Bell-LaPadula model.

8.5 OSI: Security in the Making

The International Organisation for Standardisation (ISO) has standardised on a
seven layer model for da ta communications - the open systems architecture
(051) model. This is formalised in the international standard ISO 7498-1, and
comprises:

Application -------->
Presentation -------->

Session -------->
Transport -------->
Network -------->

Data Link -------->
Physical

Application

Presentation

Session

Transport

Network

Data Link

Physical

7

6

5

4

3

2

1

Confidentiality and integrity services are located at a number of levels in the
051 hierarchy including:

Data origin authentication
Connection integrity with recovery
Connection integrity without recovery
Selective field connection integrity
Connectionless integrity
Selective field connectionless integrity
Access control

OSI Model Level
1234567

Y Y Y
Y Y

Y Y Y
Y

Y Y Y
Y

Y Y Y

Network Viruses: The Worms 215

The principallayers involved in information integrity are the network,
transport and application layers. The level of data integrity is indicated to the
network and transport layers by a protection quality of service (QOS)
parameter supplied as part of the connection process. The OSI Security
Management Information Base (SMIB) maps the protection levels required to
each module level, thus an application requesting support for a particular
combination of security services may cause specific values of transport
protection QOS and network protection QOS to be requested. Ouring
connection establishment a negotiation process takes place between the
requester and responder. This negotiation process attempts to derive a
common QOS based on the requester' s requirements and the services available
from the responder. Unfortunately, at this time (November 1990) the QOS can
only be negotiated towards less restrictive or secure protection. Facilities are
under discussion to allow the responder or network service to require a stricter
protection QOS. Thus a remote host which implements a high integrity
environment may require all incoming network connections (over untrusted
networks) to be negotiated to use the "connection integrity" protection QOS.

At the application layer users can select from a variety of OSI communication
security and integrity services, including the provision of connection integrity
using checksum and cryptographic signature algorithms. By selecting an
appropriate set of OSI security modules the user can establish a checksummed
or signed data transfer session with positive authentication of data origin or
communicating peer identity. Access control facilities can then permit the
establishment of a mapping from transmitted da ta integrity identifier to local
data integrity levels.

The OSI security model is still at the specification stage with the implementa
tion of many of the security features being deferred. Any implementation may
still be open to similar problems to the BSO implementation of the data
integrity feature in TCP, namely an implementational flaw.

8.6 DECNET: Insecurity Through Default

The proprietary OECNET protocols were the subject of two well- known virus
attacks, namely the HI.COM (Christmas) and the NETW (WANK) worms.
Both of these worms spread worldwide across the SPAN and HEPNET
sponsored by NASA. Both worms exploited a number of poorly configured
network services to propagate.

OECNET, like its Internet cousin, permits transfer and remote execution of
code files to occur. This facility is implemented through the use of the "TASK
0" remote execution service, and via adefault OECNET account which is
comparable to the anonymous ftp service in the Internet (allowing download
ing of public file without user authentication). Together, these facilities
permitted the worms (both using similar techniques) to copy their code to a
remote system and to trigger its execution.

216 A Pathology of Computer Viruses

In general, the problems on DEC systems were caused by lax security
installation procedures. On many sites the DECNET account password
remained its default value on system setup of "DECNET". This, coupled with
the numerous examples of users possessing the same password as their login
name, led to a fertile breeding ground for worms.

8.6.1 HI.COM: The Christmas Worm

The HI. COM DECNET worm was released from a European HEPNET node
(20597::NEDCU2) at 2152 (Swiss time) on 22 December 1988. The worm
originated in a widely used group account (PHSOLIDE) at the University of
Neuchatel, Institute of Physics in Switzerland. The account itself was shared by
15 scientists, and the password was therefore weIl known around the campus
site. Login records for this account indicate that except for a number of logins
from terminal servers all logins originated from hard-wired terminallines or
trusted remote nodes.

The timing of these terminal server logins is crucial. The actual logins are
given below and may have originated either on campus or via a connected
modemline:

Date
22 December

23 December

Login
2109
2116
2246
0658

Logoff
2114
2157
2324
0723

The worm was placed in the batch queue on the system at 2152 and terminated
at 2316. SPAN reports that a minimum of 47 of its hosts were infected by the
worm during the period 2214 on 22 December to 0820 on 23 December.

The Christmas worm opera ted in the following manner:

1. The infected node copied a DCL command procedure named "HI.COM" to
the target node to the default DECNET account.

2. It then attempted to start remote execution of this procedure via the T ASK 0
facility, or via the batch submission facility of the DECNET account (using
the string "DECNET" as its password).

3. If execution is successful the worm runs on the target node, modifies its
process name to "MAIL-178DC" (attempting to conceal its process as an
innocuous mail service) and deletes the HI.COM procedure from the
directory.

4. Sends the system announcement banner (containing the system name) to
the PHSOLIDE account on node 20597.

5. Checks the system time and if between 0000 and 0030 on 24 December 1988
sends a Christmas greeting by mail to all authorised users of the system and
terminates. If the system time is after 0030 the worm exits, otherwise it
remains active in the system.

Network Viruses: The Worms 217

6. The worm randomly generates anode number in the range 1..63K and
attempts to eopy the HI.COM file to the target node using the teehnqiues
above. This eontinued until midnight on Christmas Day arrived.

The greeting message sent by the worm eontained the text:

Hi,

how are ya ? I had a hard time preparing aß the presents. "
It isn't quite an easy job. I'm getting more and more"
letters from the children every year and it's not so easy"
to get the tenible Rambo-Guns, Tanks and Space Ships up here at"
the N orthpole. But now the good part is coming."
Distributing aß the presents with my sleigh and the"
deers is real fun. When I slide down the chimneys"
I often find a Iittle present olfered by the children, "
or even a Iittle Brandy from the father. (Yeah!)"
ADyhow the chimneys are getting tighter and tighter"
every year. I think 1'11 have to put my diet on again. "
ADd after Christmas I've got my big holidays :-)."

Now stop computing and have a good time at home Im"

Merry Christmas
and a happy New Year

Your Father Christmas

During the last login to the PHSOLIDE aeeount at 0723 on 23 Deeember all
reeeived banners were deleted, and mail forwarding was set up to forward all
ineoming messages to the aeeount "STOP".

8.6.1.1 Reaction of the DECNET Community

Eight minutes after its release, the worm was notieed at the Goddard Spaee
Flight eentre. At 0312 (Swiss time) a warning message was sent by the network
security manager at the NASA jet propulsion la bora tory to the administrator of
the node NEDCU2 and other seeurity administrators on SPAN/HEPNET. This
message was followed by a detailed analysis of the attaek at 0456 (Swiss time).
A formal warning was se nt to site managers by the SPAN seeurity manager at
2030 (Swiss time). The worm was reported as having been purged from SPAN
by the evening of 23 Deeember.

The NEDCU2 system was separated from the main baekbone by seheduled
maintenanee of the intereonneetion to the CERN routing eentre. This isolation
oeeurred at 0841 (Swiss time) and effeetively fragmented the worm into a loeal
eomponent and a network-wide eomponent. The former eontinued to run until
1820 (Swiss time).

218 A Pathology of Computer Viruses

The worm was thus killed within 24 hours of its activation by the combined
action of the JPL, SPAN, HEPNET security and site management. In the event,
the worm successfully managed to infect a number of system's during this
period. Arecord of the infections occurring in each hour time slice is given
below.

Time slice
2200-2300
2300-0001
0001-0200
0200-0400
0400-0600
0600-0732

Hosts infected during time slice
6
10
7
6
6
2

These figures indicate that the rate of new infection peaked rapidly at about
2330 (Swiss time). Because of the rem oval of themail records at 0732 it is
impossible to definitely identify the hosts which did send announcement
banners to PHSOLIDE. In the period from 0732 until network disconnection at
0841 a total of 12 hosts sent their banners (which were discarded due to mail
forwarding).

The security bulletins clearly identified the weaknesses which the worm
exploited, including advising the disabling of TASK 0, changing of the
DECNET account password, and inhibition of remote batch submission
privileges for other user accounts.

8.6.1.2 Worms Against Nuclear Killers

On the 16 October 1989 at around 0430 (EST) a further worm was released on
the SPAN network. This worm spread slowly and was reported as having
infected approximately six machines by mid- afternoon. The worm ironically
exploited the same weaknesses as its predecessor.

The WANK worm opera ted in the following manner:

1. The worm checks that no other instances are active (by checking for a
process with name "NETW _"), otherwise it ceases execution. This check is
restricted to checking for worm processes which the user can view using
the GETJPI service. Thus the worm may not detect copies running under
other usercodes.

2. The worm changes the default DECNET account password to a random
character string.

3. The infected node, together with the new DECNET password, is mailed to
the user GEMPAK on SPAN node 6.59.

4. The process name is changed to "NETW _" followed by a random numeric
string.

5. If the worm is running with "SYSPRV" it changes the system announce
ment banner to the banner illustrated below, disables mail to the SYSTEM
account, and modifies the standard login procedure to apparently delete
aB user files.

Network Viruses: The Worms 219

6. The worm then searches for any command procedures within the
directories specified in the logical name table. If the procedure is world
writable trojan horse code is inserted to change the FIELD account
password and account permissions. This would allow the original author
to login remotely to this account.

7. Next, anode is picked at random, the PHONE service used to determine
the active users, and each active user sent a "fortune cookie".

8. The RIGHTSLIST file is then read for usernames. The worm then attempts
to access a random remote system using the usernames found in the
RIGHTSLIST file (together with a list of 82 built-in usernames). A
password which is the same as the account name is tried. All successful
probes are recorded ..

9. If the worm finds an account with access to the SYSUAF.DAT file it is
copied to that account and executed, otherwise a non-privileged account is
chosen.

10. The worm goes back to step 7 and continues to probe systems.

Depending on the version of the worm, it attempted to use additional
password values in the probe. Examples included DIGITAL, PSIPAD and
MANAGER. The author had originally intended to probe for the null
password, but a bug in the worm prevented this code operating correctly.

If the worm successfully penetrated a privileged account the system banner
was set to:

WORMS AGA INS T N U C L E A R K I L L E R S

\ 1
\ \ \ 1\ 1 1 1 1\ \ \ \ 1 1 1 1/ 1 1

\ \ \ 1 \ 1 1 1 1 - \ \ I 1\ \ I I I 11 1 1
\ \ \1 1\ V .I 1 \ I I \ \1 I I 1\ \ 1
_\ 1 - \ '_I I \ _1 1_\ I I_I 1_\ \j

\ 1
\ 1

\ Your System Has Been Officically WANKed 1
\ 1

You talk of times of peace for all, and then prepare for war.

A CERT advisory (dated 17 October 1989 at 154610cal time) once more gave
the official advice to disable TASK 0, change the default DECNET password
and use passwords which are not identical to the account name. Administra
tors were also advised to disable BATCH, REMOTE, INTERACTIVE and
DIALUP access methods on the DECNET account.

Had this advice been followed by all nodes on the network, then the
replication of the WANK worm would have been considerably restricted. A
variant of the WANK worm was restarted on DECNET on 30 October 1988.
This worm renamed itself to "OILZ_" and a random numeric string. This

220 A Pathology of Computer Viruses

variant changed the password of the account it penetrated irrespective of
privileges, and thus caused severe denial of service to network users.

Chapter 9

Reactions of the IT Community

This chapter is concerned with a review of the organisation of the IT world to
combat the threat of computer viruses and malicious software in general. It will
consider the establishment of rapid response centresto provide advice, the
formalisation of discussion and debate, the ethical and moral pressures on
virus writers and finally the legal sanctions in place within the UK.

9~1 Discussion and Advice

The world has reacted in a comparatively ad hoc mann er to the risks of malicious
software, driven particularly by major incidents such as the Internet worm of
November 1988. Each identifiable user community has reacted in its own, and
often uncoordinated mann er, leading to the establishment of a number of
organisations with similar aims and objectives.

The principal sub-groups can be identified as:

• Bulletin board and casual computer users
• Academic establishments
• Government research establishments
• Military organisations
• Commercial organisations
• Criminal investigation organisations
• Professional organisations

Each community is discussed briefly in turn, followed by a discussion on the
moves afoot to co-ordinate the overall response to malicious software.

9.1.1 Bulletin Board and Casual Users

Casual users of computers and software are served by a network of bulletin
boards around the world. The bulletin board community relies on a network of

222 A Pathology of Computer Viruses

"trusted" bulletin board sites which carry information on new anti-virus
products, general advice, discussion and information on discovered viruses.
Many of the boards are run by authors of public domain anti~virus products,
induding:

Author

Tjark Auerbaeh
RiehLevin
Ross Greenberg
Erle Newhouse
Alan Solomon
lohn MeAfee
Patrieia HofIman
lohn Norstad
George Woodside
lefI Shulman
ICVI

Produet

AVSeareh
Checkup
Flu Shot
Dirty Dozen
Dr Solomon's Antivirus
Virus Sean
Virus Summary List
Disinfectant
VIGIler
Virus Detective

Bulletin board

+49754252110
+12153338275 (Mother Board)
+ 1 212 889 6438
+16174920892 (Crest)
+44 494791090 (S&S)
+ 1 988 4004 (Homebase)
+ 1 408 244 0813 (Exealibur!)
CompuServe 76666, 573
CompuServe 76537,1342
CompuServe 76136, 667
+15034882251

The principal bulletin board in the IBM PC world must be considered to be
the CVIA bulletin board (Homebase) on which updates of the extensive range
of shareware anti-virus products can be obtained. The board also has an area
for the uploading of discovered viruses, and a number of restricted areas on
which CVIA anti-virus workers can share disassemblies and sampies.

In general, theQlatest release of each product can be obtained direct from the
author's board with a dear guarantee of receiving an unaltered product. By its
very nature the bulletin board community tends to be loosely organised; the
possible exception to this structure is the Fidonet network of boards. These
boards are networked via dialup telephone links (in a similar structure to the
UNIX community's USENET) over which file transfer and electronic mall
discussion forums are carried. In particular Fidonet supports a VIRUS echo
discussion list.

A number of principal magazines provide anti-viral software services,
induding disks of shareware products. An example is the MacUser magazine
which offers disks with John Norstad's Disinfectant program.

9.1.2 Academic Establishments

The academic community is organised via an ad hoc combination of global and
regional network administration services coupled with user groups. The
principal academic networks are the NSFNET (National Science Foundation
Network) which provides the backbone of the DARPA Internet, the BITNETI
CREN (Corporation for Research and Education Networking), the NASA
administered HEPNET and SPAN, and various other regional networks.

Reactions of the IT Community 223

Because of the incidence of network worms or chain letters (coupled with
general security concerns) on all of the above networks, the administrative
authorities have established network security centres and approved conditions
of use.

Each network has specified its own contact and incident reporting pro
cedures. These procedures, together with extracts from the codes of conduct,
are given below.

9.1.2.1 CRENICSNET

CREN provides a network to "facilitate the exchange of information consistent
with academic, educational and research purposes" . Four principles govern
the administration and use of the network. All use must:

• Be consistent with the purposes and goals of the networks
• Avoid interfering with the work of other users of the networks
• Avoid disrupting the network host systems (nodes)

• A void disrupting network services

The acceptable use statement then proceeds to specifically prohibit the
sending of "messages that are likely to result in loss of recipients' work or
system", and requests all users to be responsible in their use of chain letters or
broadcast messages. The BITNET chain letter incident can clearly be seen to
have influenced this policy. The loosely coupled nature of BITNET and CSNET
have not forced detailed prohibitions on worm propagation over the network.

On BITNET/CSNET, network co-ordination is provided by the Co- ordina
tion and Information Centre (CIC) which can be reached by email as
"cic@cs.net", or in an emergency by telephone on + 16178732777.

9.1.2.2 NSFNET

The backbone of the DARPA Internet is provided by the high speed
interconnections between super computing centres in NSFNET. An interim
acceptable use policy has been published for NSFNET, which includes a
statement of categories of message traffic which are deemed to be acceptable.
The issue of malicious software propagation is not directly addressed, other
than by authorising the NSFNET project office to at any time determine that a
particular use or uses of the network are not consistent with the purposes of
NSFNET.

The DARP A Internet in general is controlled by the Internet Activity Board
(lAB), whose roles include the formation of Internet communication stan
dards, strategic planning for the Internet, and management of the Internet
Engineering and Internet Research Task Forces (IETF and IRTF). The IETF has
an active interest in the development of security and data integrity standards

224 A Pathology of Computer Viruses

for the Internet, including a variety of electronic mail privacy standards (RFC
1113-1115). The lAB has issued a statement on ethics and the Internet (RFC
1087), which endorses the view of the division advisory panel of the National
Science Foundation division of network, communications research and
infrastructure, which described as unacceptable any activity which:

• Seeks to gain unauthorised access to the resources of the Internet
• Disrupts the intended use of the Internet
• Wastes resources (people, capacity, computer) through such actions.
• Destroys the integrity of computer based information.
• Compromises the privacy of users.

Within the Internet community the principal centre for the monitoring of
network security incidents, and the provision of advice and information on the
prevention of such incidents, is the Computer Emergency Response Team. The
CERT organisation, based at the Software Engineering Institute at Carnegie
Mellon, has a broad remit (summarised in Appendix 12) to assist the research
community in responding to emergency situations. In its initial press release,
part of CERT's role is explicitly cited as being "response to computer security
threats such as the recent self-replicating computer program that invaded
many defence and research computers". Certainly, the Internet worm must be
considered as one of the main driving forces behind the establishment of the
initial CERT group. CERT's role is also cited as providing a focal point for the
identification and re pair of security vulnerabilities; it is in this role that CERT
has issued advisories on a wide range of issues (summarised in Appendix 13).
These CERT advisories are regularly re-issued by other similar organisations.

CERT maintains an extensive electronic mailing list for warnings, including
the publication of warnings in the "comp.security.announce" newsgroup on
USENET. A central archive of tools and general security information is
maintained at the "cert.sei.cmu.edu" host on the Internet. A mailing list for
security tools is maintained by CERT, requests for membership are sent to
"cert-tools- request@cert.sei.cmu.edu", submissions to "cert
tools@cert.sei.cmu.edu".

CERT has a 24-hour hotline service for the community on + 14122687090 for
reports of security incidents on the Internet.

9.1.2.3 HEPNETISPAN

These two NASA sponsored networks were attacked during the DECNET
worm incidents. Both networks have established acceptable use statements
and have a security co-ordination and response structure in place. In the
HEPNET case the acceptable use statement restricts traffic to particle physics
related issues, with non-particle physics traffic accepted under specific closely
controlled arrangements. Such traffic must be of a scientific nature, and must
be subject to national and international HEPNET rules (which include
restrictions related to network security).

Reactions of the IT Community 225

SPAN JPL site rules discourage uploading of files into public directories and
the use of TASK 0 inter-node communication. The use of procedures designed
to remotely execute DCL commands is considered an attempt to penetrate
security on the remote node, and has been prohibited by NASA/SPAN and
HEPNET managements.

9.1.2.4 General Community Responses

The academic community has established a number of moderated (controlled)
mailing lists dealing with aspects of system security and integrity. These lists
serve an information, discussion and warning function. The lists consist of a
central mail address (normallyon the moderator's host) from which the
submitted message will be bulk mailed to all readers of the list.

The electronic mailing lists have established ade facto, rather than officially
sponsored, role in warning of security incidents. Nevertheless they are a
crucial component of the IT community' s response (particularly due to the
wide redistribution thcit these lists receive).

In the area of general system security, the main mailing list is the UNIX
system security list " zardoz", distributed by the " cpd.com" host under the
management of Neil Gorsuch. This mailing list has a number of mail aliases
including:

• General security postings: security@uninet.cpd.com
• Emergency alert postings: security- emergency@uninet.cpd.com
• Requests for membership: security- request@uninet.cpd.com

Membership is restricted to system administrators of UNIX systems.
Postings are unencrypted, although sites are strongly advised to encrypt
before archiving

This mailing list is redistributed via the "uk-unix-security" mailing list
located at Imperial College in the UK. This list also carries copies of the CERT
tools list.

Unmoderated discussion forums also exist for security issues, including the
USENET newsgroup " alt.security" and " misc.security", the latter being
available as the mailing list security-l on BITNET.

In the virus field the principal mailing list is the Virus-l BITNET list. This list
is moderated by Ken Van Wyk at CERT and discusses all aspects of computer
viruses (stopping short of technical details which might aid the writing of
potential viruses). The list includes information on new viruses, discussion
and social commentary on the virus problem, updates on availability of
commercial and public domain anti-virus software, and details of anti-virus
techniques. Many of the authors of anti-virus software products regularly
monitor this list. The list is gatewayed to the UK via Heriot-Watt University as
UK-VIRUS-L.

The Virus-l list also has a large number of archive sites which carry clean
copies of anti-viral software and general information on protective techniques.
A summary of the archive sites and means of access is given in Appendix 17.

226 A Pathology of Computer Viruses

Virus-l also maintains an emergency virus alert list (V alert- 1), which is also
moderated by Ken Van Wyk. The contact points for both lists are:

• Submissions: virus-l@ibm1.cc.lehigh.edu
• Membership requests: listserv@ibm1.cc.lehigh.edu
• Alert messages: valert-l@ibm1.cc.lehigh.edu

9.1.3 Government Research Organisations

Within the US, the Department of Energy has established a Computer Incident
Advisory Capability (CIAC). This organisation has provided advice on a large
number of issues (the list of issued bulletins is given in Appendix 13), including
general security measures, known loopholes and personal computer security.
CIAC is based at the US Lawrence Livermore nationallaboratory and can be
contacted by email via the address "ciac@tiger.llnl.gov".

The principal responsibility for the security of classified computer systems
within the US is vested in the National Computer Security Centre (NCSC)
based at Fort George G. Meade in Maryland. This organisation has produced a
series of guidelines for trusted computer security evaluation based on the
Department of Defense' s Orange Book standard.

The security of sensitive and unclassified military and commercial systems
falls within the responsibility of the National Institute of Standards and
Technology (NIST), based at Gaithersburg in Maryland. This organisation has
had a high profile and crucial role in the organisation of the US security
community. NIST has two current initiatives, namely:

1. A proposal for an industrially-backed computer virus research consortium.
This consortium would have an extensive remit, marshalling expertise and
resources to "facilitate finding and sharing of solutions to the problem of
computer viruses and related threats". It is seeking industrial funding of
$1 000000 for its first year (1991). The activities proposed for the consortium
include the provision of:

(i) Virus protection guidance
(ii) Virus prevention, detection and recovery information
(iii) Anti-virus product information
(iv) A virus signature, nomenclature and technical characteristics database
(v) Research activity database and information exchange mechanisms
(vi) Virus disassembly and research sam pie database
(vii) Incident statistics gathering and reporting
(viii) Alert notification mechanisms
(ix) Threat analysis and standards research

2. A move to unify the range of computer emergency response teams which
exist within different user communities, and to provide a communications and

Reactions of the IT Community 227

information exchange infrastructure between CERTs. The proposal includes
establishment of a steering committee, CERT system operation al framework
and unified code of conduct for member CERTs. The CERT system would
embrace a number of US CERTs (such as the Internet CERT at Carnegie-Mellon
and the Department of Energy CIAC).

At this time, no comparable government-backed initiatives exist within the
UK to combat the malicious software problem in the IT community.

9.1.4 Military Organisations

Similar CERT structures exist within each US arm of service, and for the
Defense Data Network (the DDN security co-ordination centre). The latter
organisation publishes a number of public security bulletins available from the
DDN network information centre by anonymous FTP (nic.ddn.mil).

9.1.5 Commercial Organisations

A number of specialist corporates offer a wide range of consultancy and
software services to facilitate control of malicious software. A selection of
contact addresses are given in Appendix 14. Most management and IT
consultancy firms now include the provision of specialist advice on malicious
software control within their portfolios. This book does not explicitly seek to
market the products of any particular organisation. I have therefore provided a
general list of (UK) contact points from which consultancy and information
services can be obtained.

9.1.6 Criminallnvestigation Organisations

Within the UK a small Computer Crime Unit (CCU) has been established by the
Metropolitan and City of London Police at New Scotland Yard. This team has
expressed an interest in re ports of all malicious software incidents, to permit
compilation of dossiers on the damage caused by known computer viruses,
and to gather accurate information on the level of crime related to malicious
software. The CCU can be contacted on +44 71 7252409.

9.1.7 Professional Organisations

Each professional organisation has adopted a code of conduct which regulates
the actions of its members and provides a reference framework for the

228 A Pathology of Computer Viruses

members' professional conduct. The various codes of conduct were sum
marised by C. Dianne Martin and David H. Martin in the paper "Professional
codes of conduct and computer ethics education". The codes include the
common theme of professional dignity and high standards. Examples are the
canons of the ACM, which state that each member shall:

• Canon 2 Strive to increase competence and prestige of the profession
• Ca non 4 Act with professional responsibility

and the IEEE code of ethics which states that its members shall:

Artic1e I.e Advance the integrity and prestige of the profession

The British Computer Society code of conduct specified that its members
shall:

1. Uphold the dignity, reputation and good standing of the profession.
2. Shall not by unfair means do anything that would harm the reputation,

business or prospects of another member.
3. Shall have proper regard to the public interest ...

It seems certain that the release of malicious software would be in violation of
the maintenance of the dignity of the computing profession, and in particular
could be noted as being detrimental to the interests of other members of the
profession. The argument that the Internet worm incident was beneficial to the
community (through its publicity of the lack of security within a major
network) has been widely contested. The worm was explicitly condemned by a
statement made by the organisation of Computer Professionals for Social
Responsibility (CPSR) as:

being an irresponsible act that cannot be condoned. The internet should not be
treated as a laboratory for uncontrolled experiments in computer security.

The value of open networks depends upon the good will and good sense of
computer users. Computer professionals should take upon themselves the respon
sibility to ensure that systems are not misused.

While the codes of conduct of such institutions generally condemn the
release of malicious software, the involvement of such bodies in organising the
community to combat malicious software has been low level. A number of
independent (mixed academic and commercial) initiatives are, however, under
way.

Within the general IT community moves are currently under way to establish
a European Institute for Computer Virus Research (EICVR), which will
embrace the various commercial and government organisations researching
into computer viruses. The outcome of this proposal is not known at this time.

A second proposal is to establish a European International CERT organisa
tion (ICO) encompassing the work of the German CERT teams (Hamburg -

Reactions of the IT Community 229

virus/anomaly test centre, Karlsruhe - MicroBIT virus centre, IBM Stuttgart
and Siemens Munich), a proposed UK CERT team and that of the US CERT
system organisation.

1990 has seen the beginning of a large number of (often independent and
uncoordinated) moves to form a worldwide malicious software analysis and
response infrastructure. Such an organisation, when operational, would
permit rapid response to new viruses or trojan horses before they spread across
international boundaries. In the modern world of global data transfer to restrict
legislative or reactive responses to national boundaries is to significantly
restrict the ability of the community to respond to malicious software.

9.2 legislative Issues

Within the UK two cOmprehensive surveys of computer legislative require
ments have been carried out, namely:

• The Scottish Law Commission (report 106, on computer crime) in July 1987
• The English Law Commis si on (report 186, on computer misuse) in October

1989

The latter report formed the basis of the text of the Computer Misuse Act
1990, which received royal assent on 29 June 1990, and entered into force on 29
August 1990.

The two reports differ significantly in their recommendations and in
particular in their treatment of casual hacking. The Scottish Law Commission
recommended that casual hacking should not be per se a crime, but only where
there was a demonstrable intent to:

• Pro cu re an advantage for hirnself or another person; or
• Damage another person's interests

Both Law Commissions agreed that alteration or erasure of computer data
should become a crime. Again, a difference in emphasis was clear, with the
Scottish commission recommending that the crime should require the estab
lishment of an intent to damage another person's interests, while the English
commission defined intent in broader terms of:

• Impairing the operation of a computer
• Preventing or hindering access to any program or data held in any computer;

or
• Impairing the operation of any such program or the reliability of any such

data

The Law Commission reports are interesting in their extensive coverage of
existing legislation which is applicableto computer crime. Before analysing the

230 A Pathology of Computer Viruses

extent and application of the new computer misuse legislation, it is useful to
review the state of the existing legislation.

9.2.1 Scottish law Commission

The Commission identified eight categories of computer misuse, specifically:

1. Erasure or falsification of data or programs so as to obtain a pecuniary or
other advantage.

2. Obtaining unauthorised access to a computer.
3. Eavesdropping on a computer.
4. Taking of information without physical removal.
5. Unauthorised borrowing of computer disks or tapes.
6. Making unauth?rised use of computer time or facilities.
7. Malicious or reckless corruption or erasure of data or programs.
8. Denial of access to authorised users.

The report then proceeds to summarise the applicability of existing Scottish
legislation. The report's findings relating to malicious software incidents are
summarised below.

With regard to the erasure or falsification of data or programs so as to obtain a
pecuniary or other advantage, the Scottish law of fraud was found to be capable
of extension to cover incidents where the subject of the false pretence was a
computer system. The definition of fraud given by Macdonald (Criminal Law
of Scotland) is:

A false pretence made dishonestly in order to bring about some definite practical
result

The applicability of the concept of a false pretence in the absence of a human
mind was questioned, although the Commission considered this concept to be
more flexible than the concept of" deception" required in the English law Theft
Act 1968.

The Commission agreed that it was not a crime under existing legislation to
obtain unauthorised access to a computer.

The taking of information without physical removal was also considered not
to be covered by existing legislation (except when covered by national security
interests under the Official Secrets Act), due to the fact that Scots law did not
recognise information as being property, and thus information cannot be the
object of theft. The taking of information does not deprive the original user of
the use of the information, and thus the only change has been in the exclusivity
of the information.

The unauthorised use of computer time or facilities was not considered to fall
within the scope of existing legislation (since no physical removal of the

Reactions of the IT Community 231

computer system was involved). The Commission noted that civil or internal
disciplinary action for breach of contract may be an appropriate re course in the
case of an employee making such unauthorised use of computing facilities. The
possibility of prosecuting for the crime of theft of electricity was noted but feIt
to be inappropriate due to the artificial and intangible nature of the crime.

The malicious or reckless corruption or erasure of da ta was feIt to fall within
the scope of the Scottish common law offence of malicious mischief or the
statutory offence of vandalism. The former offence (triable on indictment) is
restricted to deliberate damage, the latter offence (only tried summarily) is
restricted to reckless damage. The Commission thus noted the inappropriate
ness of the vandalism offence to punish substantial destruction of pro grams or
data.

Finally, the Commission decided that denial of service implied the occur
rence of one or more of the above offences, and thus constituted either
vandalism or malicious mischief, depending on the intent of the perpetrator.

In summary, therefQre, prior to the Computer Misuse Act coming into force,
the insertion of malicious software into a computer system with intent may .
constitute an act of malicious mischief or vandalism depending on intent. The
insertion of software designed to compromise da ta security was not a crime
(due to the absence of a casual hacking offence coupled with the insubstantial
nature of information). Thus, a significant requirement existed for the creation
of a crime of unauthorised access to a computer system with a view to the
compromising of data or programs.

9.2.2 English law Commission

The Commission summarised the available legislation relating to malicious
software in the following mann er:

• Theft Manipulation of a computer system to dishonestly obtain property or
money is a crime under the Theft Act 1968 punishable on indictment by up to 10
years' imprisonment.

• Obtaining property by deception The applicability of the Theft Act 1968 to the
acquisition of property by the act of deceiving a computer was questioned on
the basis that deception required the existence of a human mind (rather than
the more general Scot's law requirement of false pretence).

• Falsification of accounting records The Theft Act also includes an offence of
falsification of accounting re cords to cause a gain or loss to one or more
persons. This offence was considered to be applicable to a wide range of
computer manipulations, including manipulations where the re cords involved
were not maintained solely for the purposes of accounting.

• Obtaining unauthorised access to a computer The House of Lords has ruied that
the Forgery and Counterfeiting Act 1981 may not be applied to the transitory
storage of electronic impulses in the memory of a computer system, as this does

232 A Pathology of Computer Viruses

not embody the concept of information storage for an appreciable period, nor
the concept of the information being stored for subsequent retrieval or
recovery. Thus no tangible instrument could be identified in the Prestel
hacking case which was forged to ob ta in entry. The definition of a forgeable
instrument as including "any disc, tape, soundtrack or other device on or in
which information is recorded or stored by mechanical, electronic or other
means" was not feit to be capable of being extended to the electronic memory of
a computer system.

The charge of abstraction of electricity (Theft Act 1968) is again disregarded
because of the obvious artificiality of application of this statute, and the
difficulty in proving that the computer system has indeed consumed additional
power during the period of the external manipulation.

• Destruction 01 data or programs The Criminal Damage Act 1971 has been
applied to the destruction of data on a "smart" card used for circular saw
contro!. The future application of this Act requires that the concept of property
be extended to embrace the general destruction of information (including those
incidents in which the information is stored in the insubstantial form of
magnetic flux on a storage media, or transitory electrical impulses in memory).
This extension is expected in cases in which the alteration takes place within a
tangible media (such as a magnetic disk), and thus a general charge of criminal
damage may lie. The Commission acknowledges this Act will not be appIicable
in instances where the hacker merely gains access to the system and does not
modify data.

• Offensive or indecent communications The offence of sending a message that
is grossly offensive or of an indecent, obscene or menacing character over a
public telecommunications network is triable under the Telecommunications
Act 1984. This form of offence may be applicable to incidents such as the
WANK form (although indecency may be questionable). Where the communi
cations media is a private circuit then this offence will not be applicable.

• Unauthorised copying or acquisition 01 data Copying and acquisition of da ta
will not generally be a crime under the Theft Act due to the intangible nature of
the data, and indeed the fact that when data is copied no deprivation of use
occurs. Naturally such coping may be in violation of specific statutes
addressing copyright and intellectual property rights.

Thus the introduction of malicious software may lay the author open to a
charge of criminal damage (until the enactment of the Computer Misuse Act
specifically excluded this possibility) due to the software, or alternatively a
charge under the Theft Act if the software alters or amends accounting records
with a view to the causing of financial gain or loss. In general the offence of
obtaining access to the computer system does not appear actionable under the
Forgery and Counterfeiting Act. Where the software contains copyright or
offensive material additional charges may be laid against the author.

Reactions of the IT Community 233

9.2.3 Computer Misuse Act

The Computer Misuse Aet created three new offences, namely:

1. An offence of unauthorised access to computer material. This offence carries
a maximum 6-month period of imprisonment and/or a fine at level 5 on the
standard scale. This offence is a summary offence triable by a magistrate' s court
in England and Wales, or by a sheriff in Scotland. A person is guilty of the
offence if: (i) he causes a computer to perform any function with intent to
secure access to any program or data held in the computer; (ii) the access he
intends to secure is unauthorised; and (iii) he knows at the time when he causes
the computer to perform the funetion that this is the case.

2. An offence of unauthorised access with intent to commit or facilitate
commission of further offences has also been created which carries a maximum
sentence of 5 years' imprisonment and/or a fine not exceeding the statutory
maximum if tried on indictment; or a maximum of 6 months' imprisonment
and/or a fine not exceeding the statutory maximum if tried summarily. A
person is guilty of the offence if he commits an offence under section 1
(described above) with intent: (i) to commit an offence to which this section
(section 2) applies; or (ii) to facilitate the commis si on of such an offence
(wh ether by hirnself or by any other person). The above offence applies only
where the offence which is committed or facilitated is one which would
normally attraet a fixed sentence, or a sentence of five years' imprisonment (if
not previously convieted and over the age of 21).

3. Finally, an offence of unauthorised modification of computer material is
create<;l which carries the same penalties as the section 2 offence above. A
person is guilty of the offence if: (i) he does any act which causes an
unauthorised modification of the contents of any computer; and (ii) at the time
when he does the aet he has the requisite in te nt and the requisite knowledge.

The Aet also includes provision for the issuing of search warrants by circuit
judges, permitting constables to enter and search premises where there are
reasonable grounds to believe that a seetion 1 offence has been or is about to be
committed.

The territorial scope of seetion I, 2 and 3 offences may extend beyond
national boundaries where the computer which is the object of the hack or
unauthorised modification exists within the national boundary. In these cases,
where the hack is being initiated from another country, the prosecutor may
apply for extradition proceedings to be initiated for section 2 and section 3
offences under the 1870 Extradition Aet.

The Aet also resolves the issue of the applicability of the Criminal Damage
Aet 1971 to damage caused to computer data, by specifically excluding
modifications to the contents of a computer "unless its effeet on that computer
or computer storage media impairs its physical condition" (section 3 (6».

The Computer Misuse Aet was specifically intended to apply to the insertion
of malicious software (this is an incident which the Law Commission had

234 A Pathology of Computer Viruses

intended the unauthorised modification offence to address). The author of
such malicious software (self-replicating or otherwise) can thus be charged
with causing of unauthorised modification to the content of the computer
which he infects (or, indirectly, which his virus infects due to its replication or
spread). The question of wh ether, and to what extent, the author can be held
responsible for the action of his virus or trojan in violating section 3 may prove
interesting. The non-retrospective nature of the Act (specified in section 18(3))
must raise a possible defence that the initial date of the virus' or trojan horse's
release predates the date on which the Act comes into operation.

The requisite intent expressed in section 3(2) requires that the introducer of
the alteration must intend to impair the operation of the computer, prevent of
hinder access to any program or data held in any computer, or impair the
operation of any such program or the reliability of any such data. In this regard
a user who writes a benign virus may be able to question his intention to
materially affect or impair the operation of the computer system.

The Computer Misuse Act is extremely sweeping in its wording of the
unauthorised access and alteration offences, and thus a body of case law can be
expected to define the limits of the applicability of the Act.

Finally, despite effectively removing the offence of criminal damage, a
number of sanctions still remain under the Theft Act, Telecommunications Act
and Copyright Act.

9.2.4 Summary of Legislation

The legislative measures now specifically address the question of unauthorised
access to computers and the issue of damage or alterations to computer data.
There are, however, a number of open questions relating to offences which
may constitute incitement to breach the Computer Misuse Act, specifically:

1. Is publishing the source code of a virus an offence?
2. Is the creation and uploading of viruses for research purposes an offence?
3. If such a research virus escapes can its writer be held responsible for damage

caused?

4. Does the uploading of benign viruses constitute an offence?
5. If the user is unaware of potential bugs in his virus does he commit an

offence?

The answer to many of these questions must lie within the scope of case law
under the Computer Misuse Act. Certainly, in most of the above cases the
establishment of the requisite intent under section 3(1)(b) can be questioned.

Second, the principal difficulty must lie in the tracing of authorship of a
computer virus to a particular person or persons. The intangible coding style
differences must be considered to be insufficient to prove authorship "beyond
a reasonable doubt". Thus it seems unlikely, unless the author specifically

Reactions of the IT Community 235

targets a virus against a firm or organisation, or unless he is caught in the act of
releasing a virus, or with access to original source code, that authorship may be
proved.

9.3 Professionalism and Software Development

Finally, to complete this chapter I would like to consider a number of issues
relating to the ethics and professional responsibilities of software developers. It
seems clear that software developers (despite many disclaimers to the contrary
which normally accompany commercial software) have a general obligation to
ensure that to the best of their knowledge their productis free of trojan horses,
viruses or destructive bugs.

This obligation must extend to any organisation carrying out the bulk
copying or distribution of software. Certainly, the instances of shrink-wrapped
and publisher-distributed infected software cause an unacceptable risk to the
IT community. .

Generally, the lack of ethics in the software development field has been
commented on by Thimbleby et al. Specifically, the high level of bugs in
distributed software (often distributed with the knowledge of the vendor) is
unacceptable. There is a need to encourage the adoption of software develop
ment metrics and formal development routes (possibly integrated with the
Biba integrity mechanisms detailed in Chapter 7). The establishment of the
legal rei'ponsibilities of developers to their customers is vital (the AIDS trojan
horse test case should prove interesting in this regard).

Thimbleby cites a scenario in which software development is gran ted a
professional status comparable to the medical profession, with illegal software
development being punishable. While this represents an extreme situation,
moves towards requiring safety critical software legally to comply with
development standards is vital. In such carefully controlled and verified
environments we can have a degree of assuredness in the trust we place in the
operating system (and indeed hardware) of the system.

Chapter 10

Condusions: The Future Ahead

In summary, this book has attempted to provide a broad view of computer
viruses and the general problem of malicious software. In particular, we have
covered:

• History of computer viruses
• Operation of computer viruses
• Defences against computer viruses
• Community's reaction against viruses

It is clear that a considerable potential for mi schief exists in the form of
malicious software, and it seems clear that such software is not adequately
prevented by the open architectures of today's personal and mainframe
computer systems.

The issue of malicious software has raised the much more general question of
software integrity, and its incorporation in the security architectures and
models of future generations of computer systems. The specification of formal
development routes and controls to ensure such integrity are a necessary part
of the extension process.

The book has also indicated the reliance on trust which is vital to the correct
operation of our computer systems, and has indicated the requirement for a
clear analysis of the relative risks and costs involved in restricting such trust to
prevent the spread of malicious software.

The theory of computer viruses has been seen to be at an early stage, with
initial undecidability proofs. Theoretical studies have the potential to provide
information on the minimal set of restrictions in the open architectures of
computer systems to limit virus propagation, and may prevent the throwing
out of the baby (of networked global computing) with the bathwater (of system
abuse).

The global internetworks are vulnerable to malicious acts and, despite the
moves now under way to address data confidentiality and integrity, will
always be vulnerable to breaches of trust by the user community.

The ethical and moral codes which should be promoted to prevent such
breaches of trust have been described, together with the extensive legislation
now in place to permit prosecution of such breaches. It is now up to the
community as a whole to take effective action in terms of organisational

238 A Pathology of Computer Viruses

structures to combat the malicious software threat, in terms of education in the
responsibilities of the professional, and in terms of the willingness to enforce
the ethical, moral and legal obligations of the community.

A number of on-going (potentially fruitful) areas of research have been
identified, including the concept of software integrity and its incorporation
into security architectures, the formalisation of distributed trust using public
key digital signatures, and the theoretical studies on the minimal restriction on
functionality required to combat the threat.

Finally, at all times, remember that computer viruses have only highlighted a
number of traditional issues of security and professional integrity, and that
they are only one small (if widely publicised) security issue. As with any other
security or integrity issue it is vital that the costs of counteracting the threat
never exceed the potential damage caused by the threat.

Appendix 1

DOS Filestore Structure

1.1 Introduction

The DOS filesystem is described in this appendix, which should be read in
conjunction with the lower level disk structure description in Appendix 2.

The BIOS provides a low level interface to the underlying physical devices.
This interface presents a view of the device which consists of sectors, tracks and
heads. Thus, a user may request n sectors starting at sector 2 on track 14, side 1
to be read from drive 1. This low level interface is the basis for the DOS
file system abstraction.

DOS permits a physical drive to be divided into a number of logical drives
(each identified by its own letter). Each logical drive may have a DOS file system
(or indeed may be used by a foreign operating system such as UNIX). The
mapping between physical disk drive and logical disk drives is determined by a
special table known as the partition table. This table, which "partitions" a
physical disk into logical disks, is part of the master boot record stored at head
0, track 0, sector 1.

1.2 Master Boot Record

The master boot re cord contains lBEh bytes of executable code followed by a
40h partition table, followed by a 2-byte sector checksum. The executable code
is jumped to by the BIOS during the initialisation procedure for the IBM Pe. It
is responsible for the location (by interpretation of the partition table) of a boot
sector on a logical drive which can continue the initialisation procedure.

Each entry in the partition table (of which there can be four in the table) is 16
bytes long and comprises the following fields:

240 A Pathology of Computer Viruses

Field Field Description
Offset Length of field

0 byte Boot indicator (80h = bootable, 0 = non)
1 byte Head on which partition starts
2 byte Sector on which partition starts

(bits 6-7 are the MSBs for the start cylinder)
3 byte Cylinder (track) on which partition starts
4 byte System ID (ü=unknown, I=DOS 12bitFAT,

2= DOS 16 bite FAT, 3= DOS extended disk 16 bit FAT)
5 byte Head on which partition ends
6 byte Sector on which partition ends

(bits 6-7 are the MSBs for the end cylinder)
7 byte Cylinder on which partition ends
8 long First partition sector
C long Sectors in the partition

This table delimits the extent of each logical drive. The boot indicator also
determines whether the BIOS will look for an executable boot sector on the first
sector of the logical drive. It is worth noting that many hard disks contain
nothing on head 0, track 0 other than the master boot record. The system id
determines the File Allocation Table (FAT) structure on the partition.

1.3 DOS Boot Sector

The boot sector on each media (which is the first sector in each partition, or the
first sector on a floppy disk) also contains executable code. This code is
executed by the master boot re cord in the case of a hard drive, or directly by the
BIOS in the case of a floppy disko The boot sector is organised as:

0000 JUMP I SYSTEM NAME I
0010 BPB

0020 I
01FO

The sector commences with a jump instruction which passes control to the
executable code after the BIOS parameter block (BPB). The jump instruction is
followed by an 8-byte system name, which is in turn followed by the BPB. The
BPB is used to determine the structure of the disk partition. It includes details of
the size of each disk sector, size of the root directory and FATs, etc. The

Appendix 1: DOS Filestore Structure 241

structure of the BPB (which varies depending on the DOS release) is given
below. This structure is echoed in the BPB on an Atari ST pe, except for those
fields marked ., which are not interpreted or have null values.

Field Field Description
Offset Length ofitern

0 word Bytes per sector
2 byte Sectors per cluster
3 word Reserved sectors starting at sector 0
5 byte NurnberofFATs
6 word Nurnber of root directory entries
8 word Total number of sectors (if < 65536)
A byte ·Media descriptor
B word Sectors per FAT
D word Sectors per track
F word Nurnber of heads
11 long oHidden sectors

15 11 bytes Reserved in DOS versions prior to 3.0

15 long Total number of sectors (if >= 65536)
19 7 bytes Reserved in DOS versions prior to 4.0

19 byte Physical drive nurnber
1A byte Reserved
1B byte Signature byte for extended boot record
1C long Volurne serial nurnber
20 11 bytes Volurne label
2B 8 bytes Reserved

Atari ST boot sectors use a system-generated serial number (at offset 8h in
the sector) in place of the system name, otherwise the sector appears to be a
standard pre-3.0 pe-DOS IBM boot sector.

The reserved sector field indicates the number of sectors before the start of
the first file allocation table, in this case one (the boot sector itself). Other values
may indicate that a virus has reserved space for its own code prior to the FAT.

1.4 File Allocation Table

Following the reserved sectors comes the FAT (or rather two identical copies).
This contains one entry for each cluster (group of sectors) on the disk, the
number of sectors per cluster being specified in the BPB. Each entry records
wh ether the cluster is part of a file, unallocated or bad (i.e. corrupt on the
media).

The root directory (described later) contains the number of the first cluster
allocated to a file. If this is the only cluster allocated to the file then its entry in
the FAT will contain the special value in the range FFF8-FFFFh. This value
indicates that it is the last cluster in a file. Otherwise it will contain the cluster

242 A Pathology of Computer Viruses

number of the next cluster allocated to the file. The FAT entry for that cluster
will either have this special field or the number of the next file cluster, and so
on. Thus, a linked list of clusters is formed in the FAT, representing each file.

Additional special values exist for free (unallocated) clusters - Oh - and a bad
cluster - FFF7h. DOS maintains both FAT copies when an update is made.
Thus,. the second FAT can often be used to reconstruct a damaged first FAT. It
is worth noting that certain viruses which manipulate the first FAT directly do
not correctly update the second copy. DOS itself (other than maintaining it)
does not utilise the information in the se co nd FAT.

The FAT is often manipulated by viruses to conceal code (by using a cluster
then marking it as bad to prevent DOS re-use) or as part of their destructive
manipulation task (cross- linking or breaking of FAT chains, or random
marking of clusters as bad). Examples include the Icelandic and 4096 viruses.

1.5 Root Direttory

The next area on disk is the root directory . This is the heart of the filesystem and
it is from here that all subdirectories branch. The maximum number of entries is
specified in the BPB. Each entry has the following format:

Field Field
Olfset Size Description

0 8 bytes File name
8 3 bytes File extension
B byte File attribute
C 10 bytes Reserved
16 word Time of update
18 word Date of update
lA word First disk cluster
lC long File size (bytes)

The file name and extension, together with an implied "." between them,
form the standard name of a DOS file. The first character of the file name has
special significance and if given the value E5h indicates that the file has been
erased. OOh indicates an empty directory entry. Erasure of the file using DOS
file deletion, i.e. delete command, only sets this first character. The cluster
chain is left intact, and it is therefore possible to res tore the file by setting the
first character in the filename to a valid value. When deleting a virus-infected
executable the file must be scrubbed be zeroing all component clusters (or at the
very least all clusters in the chain should be unlinked and marked as free).

The directory entry is commonly used by viruses as a signature marker
which can be rapidly verified without the overhead of opening the executable
code file. All fields (including the reserved field) are possible candida te
signature markers and should thus be part of any checksum operation.

Appendix 1: DOS Filestore Structure 243

The file attribute field contains bits indicating whether the file is read-only,
hidden, a system file, a volume label, has been recently updated, or is a
subdirectory. Two bits are unused in the attribute field. The hidden attribute
will suppress the file entry in any directory listings. Unfortunately it can also be
set for a directory entry which will suppress listing of the directory, but still
permit a "cd" to the hidden directory.

Appendix 2

Low Level Disk Layout

This appendix gives details of the internaIlayout of a floppy disk formatted via
the Western Digital WD1772 disk controller chip. This chip (used in the Atari
ST) is typical of such controllers, and is compatible with previous WD179x and
WD279x series controllers.

The controller offe(s a high level interface, permitting retrieval and storage of
block structured data on disko Data is located by a head, track and sector
specifier.

IBM PC disks are laid out in one of a number of fixed formats, depending on
the capacity of the disk, namely:

Disktype DOSFATID Sides Tracks Sectors Capacity
per disk per side per track Kilobytes

3.5" High Capacity 2 80 18 1440
3.5" DSDD 2 80 9 720
5.25" High Density F9 2 80 15 1200
5.25" DSDD FD 2 40 9 360
5.25" SSDD FC 1 40 9 180
5.25" DSDD FF 2 40 8 320
5.25" SSDD FE 1 40 8 160

On Atari ST systems, the media description byte in the BPB is unused, as all
3.5" floppy disks are normally of 9 sectors per track, 80 tracks per disk.

The general structure of the disk is as follows: data is laid out in a number of
concentric circles (tracks) on both sides of the floppy disko Tracks are numbered
from the outermost track (0) to the innermost track. Depending on drives, the
innermost track may be 79 to 83. Thus, additional tracks in excess of the 80 track
limit can often be formatted. Such additional tracks are accessible via the BIOS
interface. Each track has a format-dependent number of sectors from 8 to 18,
numbered commencing at 1. Macintosh computers depart from the standard
PC format in a number of ways, including using a variable number of sectors
per track, which decreases as track number increases (and physical size of
sector decreases since the head is moving towards the centre of the disk).

Each track conceptually consists of data sectors laid out in sequence: in fact,
two deviations from this logical abstraction occur:

246 A Pathology of Computer Viruses

1. Data sectors are "interleaved" so that logical sectors are spaced out over the
track. This permits a program to read a stream of sectors without data loss. If
this were not the ca se the program would read sector 1 and then after abrief
pause try to read sector 2. By this time sector 2 has already passedthe disk
head (due to the rotation of the disk), thus the user must wait until this
sector returns. By interleaving, we increase the likelihood that the user will
request the next sector before it has passed under the read head.

2. The disk controller requires further "hidden" synchronisation information.
This information permits the reading logic to detect the start of the next
sector without error and then to reconfigure internally before the actual start
of the sector data commences.

This synchronisation information is the subject of this appendix, which
seeks to indicate how a sophisticated low level virus might conceal additional
data in unused portions of the disk, or within the gaps used by the disk
controller.

The physical structure of a track on a magnetic disk is as folIows:

I--_TRACX __ UlAD __ BR_--'.1-1 __ RBCO __ RD_l _-&-'..,. •• :-:-.-:-. RBCO __ RD_2 _ L: : : :: : >: : : : : : : :] ntACK END

,co

[PRR-RBClORD GAP J INDI!XFIElD I. INTBR-RBClORD GAP

'"
'"

".

[ID-AM Tnclt Sido

.

DATAFIElD

". ".

. ...

The track leader consists of a minimum of 32 bytes of 4Eh characters followed
by a number of records, each containing a data sector together with its own
headers and trailers. The last re cord is followed by a track end which consists of
a minimum of 16 bytes of 4Eh characters. In fact, on a typical Atari ST disk with
9 sectors the gap left for the track end is 644 bytes; on a typical10 sector format
50 bytes remain.

Each re cord comprises a pre-record gap of minimum size 8 bytes of OOh
characters followed by 3 SYN (A1h) characters. This is followed by the index
field containing the index address mark (FEh) followed by a byte track id, byte
side id, byte sector id and a byte length field. The length field has the value 02
for a 512 byte sector, 03 for a 1024 byte sector. The index field is followed by a
2-byte CRC check. This is then followed by the inter-record gap of 22 4Eh
characters, 12 OOh characters and 3 A1h SYN characters. This gap is then
followed by a data address mark (FBh), a data sector and a 2-byte CRC check.
Finally the record finishes with the post record gap of 24 bytes of 4Eh
characters.

Appendix 2: Low Level Disk Layout 247

An important issue is that the Atari ST (and other PCs) tend to be highly
conservative in their use of gaps. Specifically, the track leader, track end, and
pre- and post-re cord gaps are significantly larger than the values which will
permit reliable operation of the disk controller chip.

The table below summarises these values:

Gap Atari ST length Minimum length

Track leader 60 bytes 32 bytes
Track end -664 bytes 16 bytes
Pre-record 12 bytes 8 bytes
Post-record 40 bytes 24 bytes

The implication of this is that a sophisticated virus could exploit this residual
space. A typical conservative 9 sector per track format leaves 648 bytes free
space, a minimal gap format leaves 865 bytes free space.

In general, the implication is that if we wish to ensure complete protection
from viral or trojan horse code we must consider the possibility that potentially
ho stile code may be concealed in non-standard formatted tracks.

The precedent of using tracks beyond the normal limit for data storage has
already been demonstrated by the Denzuk virus. This virus uses the BIaS to
format track 40 (one beyond the normal maximum range for 40 track disks of
track G-39), and then uses this formatted track for storage of auxiliary viral
code.

This technique can be extended to use of non-standard numbers of sectors or
use ofsmaller inter-record or track leader/end gaps. It is debatable whether the
complexity of such code makes the creation of such a virus extremely unlikely.

Finally it is worth noting the interface provided by the WD1772 controller as
an indication of the difficulty of directly manipulating such secondary storage
controllers. The WD1772 provides the following command set:

• Restore: Move head to track 0
• Seek: Move head to track specified
• Step: In various forms to move one track in or out
• Read sector: Read sector n from current track
• Write sector: Write sector n to current track
• Read address: Read next id field on disk
• Read track: Read a complete image of a track
• Write track: Write a complete image of a track

Thus the controller presents an interface at a similar level to the BIaS
absolute sector 1/0 facilities. Naturally, the disk controller is hardware specific,
but in general with the limited variety of controllers on PCs this is not a
significant restriction.

Interception of direct disk controller manipulation is impossible without
memory management or 1/0 space protection facilities in hardware. It is,

248 A Pathology of Computer Viruses

however, possible to monitor the controller status to detect possible viral or
trojan horse manipulation. This may be indicated by changes in chip status
register values. It is unlikely that link viruses will directly drive hardware
(except as static auxiliary storage) since there are considerable costs in
interpreting the structure of the DOS file system to determine the actual disk
sector/tracks to be modified. This is not the case with boot sector viruses, which
normally operate on absolute disk addresses as a matter of course.

Appendix 3

EXE File Format

The format of an IBM EXE file is moderately complex, consisting of a standard
he ader followed by a relocation table. The relocation table consists of aseries of
pointers to segment overrides within the pro gram itself. These segment
overrides are modified to reflect the actual allocated memory segment by the
DOS loader. Thus code segment "2" may be loaded into physical memory
segment "23", in which case all segment references to segment 2 will be
modified by the loader to be references to segment 23.

The EXE file header contains the following information:

Offset Field size Description

0 word .EXE file signature "MZ"
2 word length of file modulo 512
4 word size of file in 512 byte pages
6 word number of entries in relocation table
8 word size of header in paragraphs (16 bytes)
A word minimum number of paragraphs of memory required
C word maximum number of paragraphs of memory required
E word dis placement of stack segment in paragraphs
10 word SP register offset
12 word checksum of program (not normally used)
14 word IP register offset
16 word code segment displacement
18 word first relocation item displacement
1A word overiay number (0 = program)

Within the EXE file structure there are two areas of reserved space, namely
immediately after the EXE file header and immediately after the relocation table
structure. The relocation item displacement field in the header is the offset
from the start of code file at which the relocation table begins.

Appendix 4

Mac Filestore Structure

The Apple Macintosh uses two filestore structures, namely the Macintosh File
System (MFS) and the later Hierarchical File System (HFS). This appendix
concentrates on the latter (and now more common) structure.

An HFS volume is formatted in logical blocks of 512 bytes. Each allocated file
has space allotted in 11 allocation blocks" which are multiples of the logical block
size. Thus a significant amount (normally up to 1023 bytes) may exist which is
beyond the logical end of file, but within the physical end of file (i.e. space
unused by the file but allocated to the file).

A typical 800K double sided floppy disk HFS volume is laid out as folIows:

Logical Block 0 ~Y.~~~l!.~~~~~~P
Logical Block 1

Logical Block 2

Logical Block 3

Logical Block n

information

Volume infonnation

Volume bit map

File contents

The system startup information (which is null if the disk is not a startup
volume) is stored in logical blocks 0 and 1 on the volume. This information
comprises details of the location of the system file, debugger, startup
application, finder and certain system configuration parameters. Additionally,
aversion field id of 44h indicates that the block is followed by executable boot
sector code.

252 A Pathology of Computer Viruses

OfIset Size Function

0 word System startup information id
2 long Entry point ofboot code (ofIset)
6 word System startup version id
8 word . NULL
A I6byte Name of system file
IA I6byte Name of system shell
2A I6byte Name of debugger
3A I6byte Name of debugger
4A I6byte Startup screen name
SA I6byte Application to be launched
6A I6byte Scrap file name
7A word Number of file contral blocks
7C word Number of events in event queue
7E long System heap size for I28K system
82 long RESERVED
86 long System heap size for SI2K system

The startup information blocks (and associated executable initialisation
code) are followed by the volume information block stored in logical block 2,
This block contaiIis information (equivalent to the IBM BPB) used to interpret
the structure of the remaining blocks on the volume. Specifically, it contains
the volume attributes (including read-only), modification dates, media alloca
tion blocks size and details of the number of blocks utilised by the volume
bitmap and following extent and catalogue trees.

Factors to be noted from the point of view of low level access to a formatted
media volume are:

1. Executable code can be stored in the startup information block.
2. Selection of alternative applications and debuggers is possible.
3. Residual space exists on disk at the end of the startup information block,

volume information block and volume bitmaps.
4. Allocation of blocks for concealment of viral code is straightforward via

manipulation of the volume bitmap.
5. Manipulation of directory entries is more complex due to the b-tree

structure of the catalogue and extent trees. This may restrict the scope for
direct manipulation of filesystem by non-boot sector viruses.

Appendix 5

PC Virus Relationship Chart

The following chart, reproduced from "Virus Information Summary List" by
Patricia Hoffman with additional information provided by Fridrik Skulason,
indicates the inter-relationships between computer viruses on the IBM pe
platform.

512 • 512B .. 512C .. 5120

1226 • 1226M ... 12260

4096 -=:::::::::: ;:B
.. WHALE

ALAMED~ AL<MEDAB
.. ALAMEOAC

ALAMEOA2

GOLDENGATE .. B .. C .. 0

SFVIRUS

~~~-CLONE ... CLONEB 

CHAOS 

SHOE .. SHOEB 

EOV 

CASCADE ~ 1701 B 

1704B ----•• 1704C 
1704 ~ 1704 FORMAT 

17Y4 

CUNNING 

OATACRlME ~ OATACRIME B 

OATACRIME 11 - DATACRIME IIB 

FRI0AY13 COM ~B------"C 

VIRUS B 

HM2 -----.... PLASTIQUE --_. PLASTIQUE 4.21 "" PLASTlQUE 5.21 

lCELANDIC ~ SARATOGA 

lCELANDIC2 ~ ICELANDIC3 

OECEMBER24 

MIX 1 ... MIX1B 

INVADER 

OHIO ----.... DENZUK ~ OENZUKB 

SEARCH HO - SYS~ SYS B 

SYSC 

PERFUME .. SORRY 

PHOENIX ~ PHOENIX 0 

V1701 NEW B - V1701 NEW 



254 

PINGPONG 

~ 
PING PONG B - PING PONG C 

BIG ITAUAN - TYPO 

PRINT SCREEN -- PRINT SCR 2 

GHOSTBAU.S 

A Pathology of Computer Viruses 

PIXEL ---=::::::::::: AMSTRAD- V847B 
V345 • V299 ---.... V277 

STONED~ STONED B ~ STONED C 

~ STONEDD 
STONEDIl 

SURIVl.01 - SURIV2.01 - SURIV3.00 - JERUSALEM ~ FUMANCHU 

JERUSALEMB 

NEW JERUSALEM 

PAYDAY 

SUNDAY~SUNDAYB 

~SUNDAYC 
" JERUSALEM C ~ BLACK HOLE 

\ CENTURYA 
CENTURYB 

JERUSALEMD 

JERUSALEME 

JERUSALEMF 

1720/PSQR 

1210/PRUDENTS 

FRERE JACQUES 

- ANARKIA --_ .. ANARKIA B 

~~:WOOD t: 1605 

SYSLOCK ~ MACHO .... ---...... MACHO B 

-"""""ADVENT 

TINY 198 - 167 -----"" 160 ----...... 159 ----· .. 158 

TRACEBACK 11 ~ TRACEBACK- TRACEBACK B - TRACEBACK B2 

TRACEBACK 2B 

V1024 .. DARK A VENGER ~ V6S1 

\ V800 .. V800M 

V2000 -=::::::::::: V2000B 
. V2100 

VIENNA -=:::----- USBON 

GHOSTBAU.S 

1260 .. V2P2 -----,.. V2P6 - V2P6Z 

W13N534 - W13BNS07 

WIEN 

VIEN6 

VIENNAB - B 645 

VHP348 --_. 353 -----.. 367 - 435 

VHP623 .. 627 

VIRUS 90 ----. VIRUS 101 
MURPH·'tf----..... MURPHY 2 



Appendix 6 

Macintosh Virus Relationship Chart 

The following chart indicates the relationship between viruses on the Apple 
Macintosh platform. 

nVlRC ~nVlRA 
nVlRB Hpat 

Jude 

nFLU 

Fuck 

AIDS 

MEV# 

ANTIA ~ ANTIB 

WDEFB ~ WDEFA 

MDEFA ~ MDEFB ~ MDEFC 

PEACE RR - PEACE DR 



Appendix 7 

pe Boot Sequence 

The following dia gram indicates the components of the IBM pe boot sequence. 
Square boxes indicate an individual software component within the sequence, 
whose inter-relationship is indicated by interconnected arrows. The behaviour 
of each boot component is modified by one or more configuration files, 
indicated as filenames (not boxed) linked to their interpreting component by an 
arrow. 

IBM PC BOOT SEQUENCE 

APPLICA TION 

DATA 

CONFIG 
SYS 

AUTOEXEC 
BAT 

APPLICATIONS 



Appendix 8 

AI DS T rojan: Accompanying Licence 

AIDS Information: Introductory Diskette 

Please find enclosed a computer diskette containing health information on the 
disease AIDS. The information is provided in the form of an interactive 
computer program. It is easy to use. Here is how it works: 

The program provides you with information about AIDS and asks you 
questions 

You reply by choosing the most appropriate answer shown on the screen 
The program then provides you with a confidential report on your risk of 

exposure to AIDS 
The pro gram provides recommendations to you, based on the life his tory 

information that you have provided, about practical steps that you can take to 
reduce your risk of getting AIDS 

The program gives you the opportunity to make comments and ask 
questioRs that you may have about AIDS 

This pro gram is designed specially to help: members of the public who are 
concerned about AIDS and medical professionals 

Instructions 

This software is designed for use with IBM (R) PClXT tm microcomputers and 
with all other truly compatible microcomputers. Your computer must have a 
hard disk drive C, MS-DOS (R) version 2.0 or higher, and a minimum of 256K 
RAM. First read and assent to the limited warranty and to the license 
agreement on the reverse. [If you use this diskette, you will have to pay the 
mandatory software leasing fee(s).] Then do the following: 
Step 1: Start your computer (with diskette drive A empty). 
Step 2: Once the computer is running, insert the Introductory Diskette into 
drive A. 
Step 3: At the C prompt of your root directory type: A:INST ALL and then press 
ENTER. Installation proceeds automatically from that point. It takes only a few 
minutes. . 



260 A Pathology of Computer Viruses 

Step 4: When the installation is completed, you will be given easy-to-follow 
messages by the computer. Respond accordingly. 

Step 5: When you want to use the program, type the word AIDS at the C 
prompt in the root directory, and press ENTER. 

On the reverse side of the blue paper it has: 

Limited Warranty 

If the diskette containing the programs is defective, PC Cyborg Corporation 
will replace it at no charge. This remedy is your sole remedy. These programs 
and documentation are provided lias is" without warranty of any kind, either 
express or implied, including but not limited to the implied warranties of 
merchantability aIid fitness for a particular purpose. The entire risk as to the 
quality and performance of the pro grams is with you. Should the programs 
prove defective, you (and not PC Cyborg Corporation or its dealers) assurne 
the entire cost of any servicing, repair or correction. In no event will PC Cyborg 
Corporation be liable for any damages, including loss of profits, loss of savings, 
business interruption, loss of business information or other incidental, 
consequential, or special damages arising out of the use of or inability to use 
these programs, even if PC Cyborg Corporation has been advised of the 
possibility of such damages, or for any claim by any other party. 

License Agreement 

Read this license agreement carefully. If you do not agree with the terms and 
conditions stated below, do not use this software, and do not break the seal (if 
any) on the software diskette. PC Cyborg Corporation retains the title and 
ownership of these programs and documentation but grants a license to you 
under the following conditions: You may use the programs on microcompu
ters, and you may copy the programs for archival purposes and for purposes 
specified in the programs themselves. However, you may not decompile, 
disassemble, or reverse engineer these programs or modify them in any way 
without consent from PC Cyborg Corporation. These programs are provided 
for your use as described above on a leased basis to you; they are not sold. You 
may choose one of the following types of lease (a) alease for 365 user 
applications or (b) alease for the lifetime of your hard disk drive or 60 years, 
whichever is the lesser. PC Cyborg Corporation may include mechanisms in 
the programs to limit or inhibit copying and to ensure that you abide by the 
terms of the license agreement ana to the terms of the lease duration. There is a 



Appendix 8: AIDS Trojan: Accompanying Licence 261 

mandatory leasing fee for the use of these programs; they are not provided to 
you free of charge. The prices for "lease a" and "lease b" mentioned above are 
U5$189 and U5$378, respectively (subject to change without notice). If you 
in stall these programs on a microcomputer (by the in stall program or by the 
share program option or by any other means), then und er the terms of this 
license you thereby agree to pay PC Cyborg Corporation in full for the cost of 
leasing these programs. In the case of your breach of this license agreement, PC 
Cyborg Corporation reserves the right to take any legal action necessary to 
recover any outstanding debts payable to PC Cyborg Corporation and to use 
pro gram mechanisms to ensure termination of yoUf use of the programs. These 
program mechanisms will adversely affect other program applications on 
microcomputers. You are hereby advised of the most serious consequences of 
YOUf failure to abide by the terms of this license agreement; YOUf conscience 
may haunt you for the rest of YOUf life; you will owe compensation and possible 
damages to PC Cyborg Corporation; and YOUf microcomputer will stop 
functioning normally. Warning: 00 not use these pro grams unless you are 
prepared to pay for them. You are strictly prohibited from sharing these 
programs with others, unless: the programs are accompanied by all pro gram 
documentation including this license agreement; you fully in form the recipient 
of the terms of this agreement; and the recipient assents to the terms of the 
agreement, including the mandatory payments to PC Cyborg Corporation. PC 
Cyborg Corporation does not authorize you to distribute or use these programs 
in the United 5tates of America. If you have any doubts about YOUf willingness 
or ability to meet the terms of this license agreement or if you are not prepared 
to pay a11 amounts due to PC Cyborg Corporation, then do not use these 
programs. No modification to this agreement sha11 be bin ding unless specifi
cally agreed upon in writing by PC Cyborg Corporation. 

Programs (c) copyright PC Cyborg Corporation, 1989, 
Compiler runtime module (c) copyright Microsoft Corporation, 1982-1987 
All Rights Reserved 
IBM (R) is a registered trademark of International Business Machines 

Corporation. Pc/XT TM is a trademark of International Business Machines 
Corporation. Microsoft (R) and M5-005 (R) are registered trademarks of 
Microsoft Corporation. 



Appendix 9 

Software I nfected at Sou rce 

This appendix is based on the memorandum for record: ASQNC-TWS-RA 
(380-380a) from Chris MacDonald, entitled "Viral infections in commerciall 
government software", together with additional material from the Virus-l 
mailing list archives. 

Software 

MSDOS 

Nonhern Computer 
(shipping infected systems) 
Bureau of the Census 

Desktop Fracta1 Design System 
Unlock Masterkey 
SARGONID 
ASYST RTDEMOO2.EXE 

Macintosh 

FreeHand 
QLTECH MegaROM 
MSWord4 
STELLA2.0 
CMS Hardrive utilities 3.4 
NoteWriter 
Brady Hypercard 1.2.2 
Grammitik 
Chessmate 2100/Cribgin 

AtariST 

WordUp2.0 

Amiga 

Sama Software Inc 
(infected disk distributed in 
Arniga Times) 

Reportinglocation 

Iceland 

Government printing 

Various 
Kennedy Space Centre 
Ice1and 
Fort Be1voir 

Various 
Various 
Various 
EARN 
Nov88 
Colgate College 
Sep 89 
Various 
Various 

Various 

Leonard Fetterhoff 

Date Virus 

Mar90 Disk Killer 

Jan 90 Jerusalem-B 

Jan90 Jerusalem-B 
Oct89 Vienna 
Sep 89 Cascade 1704 
Aug89 Jerusalem-B 

Mar88 MacMag 
Oct88 nVlR 
Oct 88 nVlR 
Oct88 nVlR 
Scores 
Sep89 Scores & n VlR 
nVlRA 
Jan90 WDEFA 
Apr90 WDEF 

Sep 89 Key 

1988 Byte Bandit 



Appendix 10 

Nomenclature 

Each group of workers in the computer virus field has developed its own 
unique naming conventions for each dass of virus. This appendix attempts to 
offer a cross-referenced listing of terms adopted. In certain cases it is impossible 
to offer a direct translation for a term. In these cases, a brief explanation is 
given. 

10.1 Types of Virus 

10.1.1 Master Boot Sector Viruses 

• Virus. Bulletin, CVIA: master boot sector infector 
• University of Hamburg: system virus 
• S & S International Ud.: partition record virus (PRV) 

10.1.2 DOS Boot Sector Viruses 

• Virus Bulletin, CVIA: boot virus 
• University of Hamburg: system virus 
• S & S International Ud., Fridrik Skulason: boot sector virus (BSV) 
• Rich Levin: boot sector infector (BSI) 

10.1.3 Executable COM/EXE Viruses 

• Virus Bulletin and CVIA: parasitic virus 



266 A Pathology of Computer Viruses 

• University of Hamburg: program or link virus 
• 5 & 5 International Ltd., Fridrik Skulason: file virus 
• Rich Levin: general purpose infector (GPI). Specialist variants include a 

command processor infector (CPI) which infects the COMMAND.COM and 
file specific infectors (FSI) 

• Computer Virus Handbook: executable program infector 

10.1.4 Memory Resident Viruses 

• Virus Bulletin, CVIA, Fridrik Skulason, University of Hamburg: resident 
virus 

• 5 & 5 International Ltd.: indirect action (non-resident viruses are referred to 
as direct action) 

• Rich Levin: memory resident infector (MRI) 

10.1.5 Overwriting Viruses 

• Virus Bulletin, CVIA, Fridrik Skulason, University of Hamburg: overwriting 
virus 

• Gene Spafford: injective virus 

10.1.6 Prepending Viruses 

• University of Hamburg: prefix virus 

10.1.7 Appending Viruses 

• University of Hamburg: postfix virus 

10.2 Generations of Virus 

The following generations of IBM PC virus have been identified by Jim Bates: 



Appendix 10: Nomenclature 267 

1. Basic: early 1986, the original PC computer viruses such as Jerusalem. 
2. Camouflage: the trend for viruses to attempt to camouflage their presence 

within the system environment using encryption techniques, the earliest 
example being the Cascade virus detected in Autumn 1987. 

3. Stealth: the technique of providing a shell around the user which completely 
hides the alterations made by the virus (e .g. by intercepting all directory and 
file reads). This was first used in the 4096 virus discovered in January 1990. 

4. Armour: the use of extensive debug detection and interference code to 
prevent disassembly and delay analysis. The first example may be the 
Whale virus discovered in July 1990. 

The fourth generation viruses are large (9K in the case of the Whale virus) 
and often unwieldy, and it has therefore been suggested that this level of 
complexity is too much for current system memory and disk capacities (in that 
the virus can be detected by its impact on system performance, rather than 
directly byobservation of file alterations). Indications are therefore that third 
generation (referred to as second stage by the CVIA) viruses will probably still 
represent the limit of successful virus technology. 

10.3 Classes of Anti-virus Product 

The lack of consistent terrninology extends to types of anti-virus software. 
Possibly the most extensive classification is the University of Hamburg system 
which identifies five categories of product, namely: 

• Category 1: Monitor, software which detects attempted changes in files 
(type 1.1), system vectors (type 1.2) or system areas such as boot blocks (type 
1.3) 

• Category 2: Alteration detection, a program which detects changes of given 
files - checksumming techniques 

• Category 3: Eradication, programs which erase viruses from files or RAM 
• Category 4: Vaccine, programs which alter files in such a manner that 

viruses will regard them as already infected 
• Category 5: Hardware methods, to detect or prevent alteration or infection 

of files, vectors or system areas 

The classification used by Ted Shapin in his review of IBM protection 
programs is different, and includes three classes of product: 

• Class 1: Alteration detectors, detecting changes after the fact such as 
checksum checkers 

• Class 2: Terminate and stay resident monitors attempting to block undesir
able activity 

• Class 3: Combination programs which have both a checksum and monitor
ing component 



Appendix 11 

UNIX Boot Sequence 

The following dia gram outlines the boot sequence for a 4.3 Berkeley Software 
Distribution (BSD) UNIX system, indicating each software component in the 
boot sequence and the configuration files which may modify the behaviour of 
the component. 

UNIX BSD 4.3 BOOT SEQUENCE 

/etc/passwd 

.Iogin 

.Iogout 

.cshrc 

Secondary boot distribution 

.profile 

r---~--~.-___________ ~~m 
/etc/m.Iocal 

/etc/inetd.conf 

Crontabs 
At files 



Appendix 12 

CERT Press Release 

DARPA Established Computer Emergency Response Team 

The Defense Advanced Research Projects Agency (DARPA) announced today 
that it has established a Computer Emergency Response Team (CERT) to 
address computer security concerns of research users of the Internet, which 
includes ARPANET. The Coordination Center for the CERT is located at the 
Software Engineering Institute (SEI), Carnegie Mellon University, Pittsburgh, 
PA. 

In providing direct service to the Internet community, the CERT will focus on 
the special needs of the research community and serve as a prototype for 
similar operations in other computer communities. The National Computer 
Security Center and the National Institute of Standards and Technology will 
have a leading role in coordinating the creation of these emergency response 
activities. 

The CERT is intended to respond to computer security threats such as the 
recent self-replicating computer program ("computer virus") that invaded 
many defense and research computers. 

The CERT will assist the research network communities in responding to 
emergency situations. It will have the capability to rapidly establish communi
cations with experts working to solve the problems, with the affected computer 
users and with government authorities as appropriate. Specific responses will 
be taken in accordance with DARP A policies. 

It will also serve as a focal point for the research community for identification 
and repair of security vulnerabilities, informal assessment of existing systems 
in the research community, improvement to emergency response capability, 
and user security awareness. An important element of this function is the 
development of a network of key points of contact, including technical experts, 
site managers, government action officers, industry contacts, executive-Ievel 
decision makers and investigative agencies, where appropriate. 

Because of the many network, computer, and systems architectures and 
their associated vulnerabilities, no single organization can be expected to 
maintain an in-house expertise to respond on its own to computer security 
threats, particularly those that arise in the research community. As with 
biological viruses, the solutions must come from an organized community 



272 A Pathology of Computer Viruses 

response of experts. The role of the CERT Coordination Center at the SEI is to 
provide the supporting mechanisms and to coordinate the activities of experts 
in DARPA and associated communities. 

The SEI has elose ties to the Department of Defense, to defense and 
commercial industry, and to the research community. These ties place the SEI 
in a unique position to provide coordination support to the software experts in 
research laboratories and in industry who will be responding in emergencies 
and to the communities of potentially affected users. 

The SEI is a federally-funded research and development center, operating 
under DARP A sponsorship with the Air Force Systems Command (Electronic 
Systems Division) serving as executive agent. Its goal is to accelerate the 
transition of software technology to defense systems. Computer security is 
primarilya software problem, and the presence of CERT at the SEI will enhance 
the technology transfer mission of the SEI in security-related areas. 



Appendix 13 

CERT /CIAC Advisories 

The Computer Emergency Response Team has issued 16 advisories concerning 
the security of mainframe and mini computers from its inception in December 
1988 to its second anniversary. 

These advisories are available by anonymous FTP from the Internet site 
cert.sei.cmu.edu (128.237.253.5), or by email from .. cert@cert.sei.cmu.edu ... 
The CERT organisation can be contacted on + 1412-268-7090 and is based at: 

Computer Emergency Response Team 
Software Engineering Institute 

Carnegie-Mellon University 
Pittsburgh, PA 15213-3890 

List of CERT advisories issued to December 1990: 

Number Title Date of Issue 

8801 Ftpd vulnerability 12 Dec88 
8901 Passwd hole Jan89 
8902 Sun restore hole 26Jul89 
8903 Telnet Breakin warning 16 Aug 89 
8904 WANK worm on SPAN network 170ct89 
8905 DECMtrix 3.0 systems 17 Oct 89 
8906 DECMtrtx 3.0 systems (update) 18 Oct 89 
8907 Sun RCP vulnerability 26 Oct 89 
9001 Sun Sendmail vulnembility 29Jan 90 
9002 Internet intruder waming 19 Mar90 
9003 UNISYS U5000 /etc/passwd problem 7May90 
9004 Apollo Domain/OS suid _ exec problem 27 Jul90 
9005 SunView selection_svc vulnerability 14 Aug 90 
9006 NeXT's system software 20ct90 
9007 VMS analyse/process_dump 250ct90 
9008 IRIX 3.3 & 3.31 /usrlsbin/Mail 310ct90 
9009 V AX/VMS break ins 8Nov90 
9010 Rumour of alleged attack 16 Nov 90 
9011 Security probes from ltaly 10 Dec 90 



274 A Pathology of Computer Viruses 

The Computer Incident Advisory Capability (CIAC) was established by the 
US Department of Energy and has a broader (although similar) remit to CERT, 
encompassing aB aspects of computer security and integrity including that of 
personal computers. Thus CIAC have supplied a wider range of advisories 
covering incidents such as the Columbus Day (Datacrime) virus infection. 

CIAC is based at the Lawrence Livermore laboratory in the USA. CIAC 
advisories can be obtained by anonymous ftp from toger.BnI.gov, or by email 
from ciac@tiger.BnI.gov. 

List of CIAC warnings issued to December 1990: 

Authentication bypass in Sun 386i machines 
Notice of vulnerabili1Y aJIecting Mac/IBM running Telnet 
Notice of trojan horse affecting internet Teinet 
nVIR virus information 
Notice of availability of Sun patch for RCP & Rdist 
Announcement of vulnerability in S unOS resUlre 
Security holes in UNIX systems 
A vailability of pa1ch for rwalld/wall 
DecWindows under UL TRIX vulnerability 
Jerusalem virus incidents 
Notice of Columbus day virus 
Information about Columbus day virus 

Al Internet hacker attack 
A2 Tbe W.COM worm affecting VAX VMS systems 
A3 Tools available 10 check the spread of the WANK worm 
A4 Information aboU1 a new version of the WANK worm 
A5 Information aboU1 a new vulnerability in the SUN 

rcp utili1y 
A6 Information about a trojan horse in Norton utilities for 

mM PCs and clones 
A7 UNICOS Vulnerability 
A8 Information about a UNICOS problem 
A9 Information about the WDEF virus 
AIO Information about the PC CYBORG (AIDS) trojan horse 
All Problem in the Texas instruments D3 process control system 
Al2 DECNET hacker attack alert 
A13 Vulnerability in DECODE alias 
A14 Additional information on the vulnerability in the UNIX decode alias 
A15 Virus infonnation update 
A16 Vulnerability in SUN sendmail program 
A17 Eradicating WDEF using Disinfectant 1.5 or 1.6 
Al8 Patch for SmarTenn 240 
A19 Internet attack advisory 
A20 Tweive tricks trojan horse 
A21 Additional infonnation on current UNIX internet attacks 
A22 Logon messages and hacker/cracker attacks 
A23 New internet attacks 

Undated 
Undated 
Undated 
Undated 
Undated 
Undated 
Undated 
Undated 

Apr 141989 
Jun 51989 
Sep 91989 

Sep221989 
Oet91989 

Oet 161989 
Oet20 1989 
Oet30 1989 
Nov 11989 

Nov 71989 

Nov291989 
Dec 181989 
Dec 191989 

Jan 41990 
Jan 181990 
Jan 191990 
Jan231990 

Jan 291990 
Feb21990 

Feb 231990 

Mar 161990 
Mar 161990 
Apr 111990 



Appendix 13: CERT/CIAC Advisories 

A24 Password problems with UNISYS U5000 
A25 MDEF of Garfield virus on Mac computers 
A26 A new Macintosh trojan horse threat - Steroid 
A27 The disk killer (Ogre) virus on MS DOS computers 
A28 The Stoned virus on MS DOS computers 
A29 The 4096 virus on MS DOS computers 
A30 Apollo domain/OS suid exec problem 
A32 Sunview/Suntools selection_svc vulnerability 
A33 Virus propagation in Novelle and other networks 
A34 End of FY90 update 
BI Security problem on NeXT operating system 
B2 UNIX security problem with Silicon Graphics Mai! 

275 

May 81990 
May231990 

Jun 71990 
Jun 281990 
Ju1121990 
Ju1181990 
Ju1301990 

Aug231990 
Sep 211990 
Sep 231990 

Oct51990 
Oct 121990 

A number of other CERT centres exist which are members of the interna
tional CERT structure, including the DON security co- ordination centre, 
SPAN security centre and various vendor specific security centres. 



Appendix 14 

Contact Points 

This appendix details the contact points for organisations with an interest in 
malicious software contral. 

Emergency Electronic Mail Contacts 

Computer Emergency Response 
Team 
Computer Incident Advisory 
Capability 
US Department of Defense Security 
Co-ordination Center 

Virus alert list 
Zardoz security alert list 

UK UNIX security list 

cert@cert. sei. cm u. edu 

ciac@tiger.llnl.gov 

scc@nic.ddn.mil 

valert-l@ibm1.cc.lehigh.edu 
security
emergency@uninet.cpd.com 
uk-unix- security@doc.ic.ac.uk 

Administrative Electronic Mail Contacts 

CERT tools list 

Virus-l mailing list 
UK Virus-l mailing list 
Virus alert mailing list 
Zardoz security list 

cert-tools- request@cert.sei.cmu.edu 

listserv@ibm1.cc.lehigh.edu 
virus-l- request@cs.hw.ac.uk 
listserv@ibm1. cc.le high. ed u 
security- request@uninet.cpd.com 

Emergency Telephone and Fax Contacts 

Computer Emergency Response 
Team: 
Computer Incident Advisory 
Capability: 
000 Security Co-ordination Centre: . 

Tel. + 1 4122687090 

Tel. + 1 4154239878 
Fax + 1 415423 0913 
Tel. + 1 8002353155 



278 

UK Computer Crime Unit: 
Federation Against Software Theft: 
Virus Bulletin: 

Virus News International: 

University of Hamburg catalog 
project: 
Computer Fraud and Security Bulletin: 
Bates Associates: 
Grey Matter Ud.: 
Information Systems Integrity and 
Security: 
International Computer Virus 
Institute: 
International DataSecurity: 

McAfee Associates: 

Newcastle Computer Services: 
PC Security: 

Park Guardian: 

Price Waterhouse: 
SA Software: 
S &S International Ud.: 

Sophos: 

Symantec (UK) Ud.: 

Sypro: 

Walsham Contracts: 

Zortech: 

A Pathology of Computer Viruses 

Tel. +44 71 725 2409 
Tel. +44 71 2406756 
Tel. +44 235 555139 
Fax +44 235 559935 
Tel. +44 494 791900 
Fax +44 494 791602 
Tel. +4041234158 

Tel. +44 865 512242 
Tel. +44 533 883490 
Tel. +4436453499 
Tel. +44831 223120 
Fax +44316606839 
Tel. + 1 503 488 3237 

Tel. +44631 0548 
Fax +44580 1466 
Tel. + 14089883832 
Fax + 1 408 970 9727 
Tel. +44 661 25515 
Tel. +44 628 890390 
Fax +44 628 890116 
Tel. +44 71 7208715 
Fax +44 71 622 4706 
Tel. +44 378 7200 
Tel. +44 81 9982351 
Tel. +44442877877 
Fax +44 442 877882 
Tel. +44 235 559933 
Fax +44235 559935 
Tel. +44 628 776343 
Fax +44 628 776775 
Tel. +44 452 370144 
Fax +44 452 613135 
Tel. +44 273 597115 
Fax +44273870020 
Tel. +44 81 316 7777 

A list of anti-virus software manufacturers is included in Computer Viruses and 
Anti-virus Warfare by Jan Hruska. The above list is only a sample of the UK 
firms. 



Appendix 15 

Abbreviations 

The following list gives the meaning of all abbreviations used within this work 
(including appendices): 
ACL Access controllist 
ACM American Association for Computer Machinery 
ADS Storage "standard" for virus after logical EOF 
BAT Batch file format (IBM PC) 
BBN Bolt, Beranek and Newman 
BBS Bulletin board system 
BCVRC British Computer Virus Research Centre 
BFE Blacker front end (DISNET) 
BFV Batch file virus 
BIOS Basic input/output subsystem (IBM PC) 
BPB BIOS parameter block (IBM PC) 
BSD Berkeley Software Distribution (UNIX) 
BSI Boot sector infector 
BSV Boot sector virus 
CCC Chaos Computer Club 
CCITT International tele graph telephone consultative committee 
CCU Computer Crime Unit 
CDEF Control definition resource (MAC) 
CERT Computer Emergency Response Team 
CESG Communications/Electronic Security Group 
CFG Control flow graph 
CIAC Computer Incident Advisory Capability 
CIC Coordination and Information Center 
CODE Executable code resource (MAC) 
COFF Common object file format (UNIX) 
COM Object file format (IBM PC) 
CoTRA Computer Threat Research Association 
CPI Corrupted Programming International 
CPSR Computer Professionals for Social Responsibility 
CRC Cyclic redundancy check 
CREN Corporation for Research and Education Networking 
CVCM Computer virus counter measures 



280 

CVIA 
CPL 
DAC 
DAFV 
DARPA 
DON 
DEA 
DES 
DISNET 
DNA 
000 
DOS 
DPL 
E3 
EARN 
EAROM 
ECM 
EEROM 
EICVR 
EOF 
EST 
EXE 
FAST 
FAT 
FCB 
FSI 
GCHQ 
GDT 
GPI 
HEPNET 
HFS 
lAB 
IAFV 
ICE 
ICMP 
ICO 
IEE 
IEEE 
IETF 
IFS 
IMP 
INIT 
10 
10PL 
IP 

A Pathology of Computer Viruses 

Computer Virus Industry Association 
Current privilege level (80386) 
Discretionary access control 
Direct action file virus 
Defense Advanced Research Projects Agency 
Defense Date Network 
Data encryption algorithm 
Data encryption standard 
Defense Integrated Secure Network 
Deoxyribonucleic acid 
Department of Defense 
Disk operating system (IBM PC) 
Descriptor privilege level (80386) 
End-to-end encryption 
European Academic Research Network 
Ele.ctronically alterable ROM 
Electronic counter measure 
Electronically erasable ROM 
European Institute for Computer Virus Research 
End of file 
Eastern standard time 
Object file format (IBM PC) 
Federation Against Software Theft 
File allocation table (IBM PC) 
File control block (IBM PC) 
File specific infector 
Government Communications Headquarters 
Global descriptor table (80386) 
General purpose infector 
High Energy Physics Network 
Hierarchical file system (MAC) 
Internet activities board 
Indirect action file virus 
In-circuit emulator 
Internet control message protocol 
International CERT Organisation 
Institute of Electrical Engineers 
Institute of Electronic and Electrical Engineers 
Internet Engineering Task Force 
Inter-field separator 
Interface message processor (TCP/IP) 
Initialisation resource (MAC) 
Input/output 
IIO privilege level 
Internet protocol . 



Appendix 15: Abbreviations 

IPC 
IRTF 
ISN 
ISO 
ITSEC 
JANET 
JUNET 
LAN 
LOT 
LFSR 
MAC 
MBR 
MCB 
MD4 
MFS 
MIT 
MMU 
MRI 
MS-DOS 
NASA 
NCSC 
NFS 
NIFTP 
NIST 
NSA 
NSFNET 
OSI 
OVL 
POS OFT 
PFM 
PRAM 
PRV 
PSP 
PTE 
QoS 
RCR 
ROM 
ROvr 
RFC 
RPC 
RSA 
RTVM 
RIW 
SBIR 
SCA 

Inter-process communication 
Internet Research Task Force 
Initial sequence number (TCP/IP) 
International Standards Organisation 
Information Technology Security Evaluation Criteria 
Joint Academic Network 
Japanese Academic Network 
Local area network 
Local descriptor table (80386) 
Linear feedback shift register 
Mandatory access control 
Master boot record (IBM PC) 
Memory control block (IBM PC) 
Message digest algorithm 4, RFC 1186 
Mac file system (MAC) 
Massachusetts Institute of Technology 
Memory management unit 
Memory resident infector 
Microsoft DOS (IBM PC) 
National Aeronautics and Space Administration 
National Computer Security Centre 
Network fHing system (TCP/IP) 
Network independent file transfer protocols 
National Institute of Standards and Technology 
National Security Agency 
National Science Foundation Network 
Open systems interconnection, ISO standard 
Executable overlay format (IBM PC) 
Lancaster public domain software project 
Program flow monitor 
Parameter RAM 
Partition record virus 
Program segment prefix (IBM PC) 
Page table entry 
Quality of service 
Remote copy request 
Read-only memory 
ROM over-ride resource (MAC) 
Request for comments 
Remote procedure call (TCP/IP) 
Rivest, Shamir and Adleman public key cryptosystem 
Run time validation mechanism 
Read/write 
Small Business Innovative Research 
Swiss Cracker' s Association 

281 



282 

SIB 
SIPB 
SMIB 
SNEFRU 
SPANET 
TCB 
TCP 
TCSEC 
TNI 
TSR 
UDP 
UEV 
U/S 
Valert-l 
Virus-l 
WDEF 
WORM 
XOR 

A Pathology of Computer Viruses 

Startup information block (MAC) 
Student Information Processing Board 
Security Management Information Board 
XEROX secure hash function 
Space Physics Analysis Network 
Trusted computer base 
Transmission control protocol (TCP/IP) 
Trusted computer security evaluation criteria 
Trusted network interpretation 
Terminate and stay resident (IBM PC) 
User datagram protocol (TCP/IP) 
Undecidable evolutionary virus 
User/supervisor 
BITNET virus alert email list 
BITNET virus discussion email list 
Window definition resource (MAC) 
Write-once, read-many device 
Exclusive or operation 



Appendix 16 

Further Reading 

Many of the following references are only available in electronic mail or news 
format. These references can be obtained from one or more of the major archive 
sites accessible via the DARPA Internet. The cert.sei.cmu.edu archive site at 
the Software Engineering Institute at Carnegie-Mellon University can provide 
copies of the majority Qf these items. 

Information on emergent standards for computer security can be obtained 
from the UK Department of Trade and Industry (Green and White Books), US 
Department of Defense and the National Computer Security Center (Orange 
Bü'oks), the UK Government Communications Headquarters (Red Books) and 
the International Organisation for Standardisation (OSI standards). 

Internet Worm Incident 

Eugene Spafford, The Internet worm program: an analysis. Purdue Technical Report, 
CSD-TR-823, Department of Computer Science, Purdue University, West Lafayette 

US General Accounting Office, Computer security - virus highlights need for improved 
Internet management. Report to the chairman, subcommittee on telecommunications 
and finance, committee on energy and commerce, House of Representatives, GAO! 
IMTEC-89-57 

Donn Seeley, A tour of the worm. Department of computer science, University of Utah 
(Electronic media: cert.sei.cmu.edu archives) 

The computer worm - areport to the provost of Cornell University on an investigation 
conducted by the commission of preliminary enquiry. Cornell University, February 
1989 

Bob Page, Areport on the Internet worm. University of Lowell, November 1988 
Mark Eichin, Jon Rochlis, With microscope and tweezers: an analysis of the Internet 

virus of November 1988. Massachusetts Institute of Technology, February 1989 

DECNET Christmas Worm Incident 

US Department of Defense Network Information Center, Defense data network 
management bulletin 50, December 1988 (Electronic media: nic.ddn.mil archives) 

Pat Sisson, Space Analysis Physics Network (SPAN) report, SPAN-027. NASA 
Goddard Space F1ight Center, February 1989 



284 A Pathology of Computer Viruses 

DECNET Wank Worm Incident 

SPAN Management Office, Security guidelines to be followed in la test worm attack. 
Inter-network memorandum, Oetober 1989 (Electronic media: cert.sei.cmu.edu 
archives) 

SPAN Management Office, Information regarding the DECNET worm and protection 
measures. Inter-network memorandum, October 1989 (Electronic media: 
cert.sei.cmu.edu archives) 

Kevin Oberman, Report on the W.COM worm. Engineering Department, Lawrence 
Livermore National Laboratory, October 1989 (Electronic media: cert.sei.cmu.edu 
archives) 

IBM Christmas Chain Letter Incidents 

Valdis Kletnieks, Bitnet worm spotted. Valert-l electronic mailing list, October 1990 
Ralf Burger, Computer viruses - a high-tech disease. Abacus Software, 1988 (ISBN 

1-55755-043-3) > 

AIDS Trojan Horse Incident 

Jim Bates, Report on the AIDS disk. Virus Bulletin (Available from Virus Bulletin Ud, 21 
The Quadrant, Abingdon Science Park, Abingdon, Oxfordshire) 

OSI Security Standards 

International Organisation for Standardisation (ISO), Guide to open system security. 
ISO/IEC JTC lISC 21 N5049, July 1990 

International Organisation for Standardisation (ISO), Information processing systems
open systems interconnection - basic reference model. Part 2: security architecture. 
ISO 7498-2,1989 

International Organisation for Standardisation (ISO), Lower layers security model. 150/ 
IEC JTC I/SC 6, November 1989 

International Organisation for Standardisation (ISO), Security frameworks overview. 
ISOIIEC JTC I/SC 18 N2606, August 1990 (Includes associated frameworks for access 
contro!, authentication and data integrity) 

General Mainframe and Network Security Warnings 

Computer Incident Advisory Capability '(CIAC) bulletins, various dates. US Depart
ment of Energy (Electronic media: cert.sei.cmu.edu archives) 

Computer Emergency Response Team (CERT) advisories, various dates. CERT, 
Software Engineering Institute, Carnegie-Mellon University (Electronic media: 
cert. sei. cmu.edu archives) 

US Department of Defense Security Co-ordination Center security bulletins, various 
dates. Defence Communications Agency (Electronic media: nic.ddn.mil archives) 



Appendix 16: Further Reading 285 

S. Bellovin, Security problems in the TCP/IP protocol suite. ACM Computer Communi
cation Review 19(2) April 1989 

Defence da ta network security architecture. ACM Computer Communication Review 
20(2) April 1990 

Richard D. Pethia, Kenneth R. Van Wyk, Computer emergency response, an 
international problem. CERT, Software Engineering Institute, Carnegie-Mellon 
University 

Early Worm.Experiments and References 

John Shoch, Jon Hupp, The worm programs - early experience with a distributed 
computation. Communications of the ACM 25(3) March 1982 

Department Of Defense Orange Book Standards 

US Department of Defense, Trusted computer system evaluation criteria (Orange 
Book). DOD 5200.28-STD, December 1985 

US National Computer Security Center, A guide to understanding discretionary access 
control in trusted systems. NCSC-TG-003, September 1987 

US Department of Defense, Technical rationale behind CSC- STD-003-85 (Yellow Book). 
CSC-STD-004-85, June 1985 

US Department of Defense, Trusted network interpretation (Red Book). NCSC-TG-005, 
July 1987 

US Department of Defense, Password management guideline (Green Book). CSC
STD-002-85, April 1985 

US National Computer Security Center, Audit in trusted systems. NCSC-TG-OOl, June 
1988 

UK DTI Green and GCHQ Red Book Standards 

UK Department of Trade and Industry, Evaluation levels manual, V22-version 3.0. 
February 1989 

UK Government communications headquarters, UK systems security confidence 
levels. CESG computer security memorandum no. 3, February 1989 

Harmonised European Standards 

Information Technology Security Evaluation Criteria (ITSEC), Harmonised criteria of 
France, Germany, Netherlands, United Kingdom, Draft 1, May 1990 (Available from 
UK Department of Trade and Industry, computer security branch) 



286 A Pathology of Computer Viruses 

UNIX Operating System Security 

Sun Mierosystems, Security features guide, Part number 800-1735-10,1987 
Patrick Wood, Stephen Kochan, UNIX system security. Hayden Books, 1985 (ISBN 

0-810-46267-2) 
Rik Farrow, UNIX system security. Addison-Wesley (ISBN 0-201- 57030-0) 
Russell Brand, Coping with the threat of computer security incidents - a primer from 

prevention through recovery. Lawrence Livermore National Laboratory, June 1990 
(Electronic media: cert.seLcmu.edu archives) 

Network Working Group of the Internet Engineering Task Force, Site security poliey 
handbook, Draft, October 1990 (Electronie media: cert.seLcmu.edu archives) 

Samuel Leffler, Marshall McKusiek, Mike Kareis, John Quarterman, The design and 
implementation of the 4.3 BSD UNIX operating system. Addison-Wesley, 1989 (ISBN 
0-201-06196-1) 

x/OPEN Group, X-Open security guide. Prentice-Hall, 1989 (ISBN 0-139-72142-8) 
Clifford StolI, The cuckoo' s egg - tracking a spy through the maze of computer 

espionage. Doubleday, 1989 
Simson Garfinkei, Gene Spafford, Practieal UNIX security. O'Reilly and Associates, 

1991 (ISBN 0-937-17572-2) 

Encryption Techniques and Digest Ciphers 

Dominic Welsh, Codes and cryptography. Oxford Science Publications, 1988 (ISBN 
0-198-53287-3 ) 

R. Rivest, MD4 message digest algorithm, request for comments 1186 (Electronic media: 
uunet.uu.net archives) 

Ralph Merkle, A software one way hash function. Xerox Corporation (Snefru algorithm) 

Project Athena 

Jennifer G. Steiner, Clifford Neuman, Jeffrey Schiller, Kerberos: an authentication 
service for open network systems, Massachusetts Institute of Technology, January 
1988 (Electronie media: uunet.uu.net archives) 

Apple Macintosh Virus Internals 

David Ferbrache, Known apple Macintosh viruses. Virus Bulletin, October 1990, pp 6-7 
David Ferbrache, INIT 29 infectious, but your data is safe. Virus Bulletin, December 

1989, pp 6-7 
David Ferbrache, nVIR and its clones. Virus Bulletin, October 1989, pp 13-14 
John Norstad, Disinfectant 2.1 anti-virus software documentation. May 1991 (Electronie 

media: rascal.ics.utexas.edu archives) 
Joe McMahon, Anti-viral documentation stack, Hypercard. NASA Goddard Space 

Flight Center, 1989 (Electronic media: rascal.ics. utexas.edu archives) 
L. Brown, Anatomy of a Macintosh n VIR virus. Australian Defence Force Academy, CS 

88/29, December 1988 



Appendix 16: Further Reading 287 

Danny Schwendener, Anti virus. ETH-Zentrum, Switzerland (Electronic media: 
rascal.ics. utexas.edu archives) 

Thomas Bond, The eleventh word: an investigation into the 712 byte RINIT 29S Mac 
virus. Mac Consultant (Electronic media: rascal.ics. utexas.edu archives) 

Apple Macintosh System Operation 

Apple Computers Inc., Inside Mac, vols 1, 2 & 3. Addison-Wesley, 1985 (ISBN 
0-201-17737-4) 

Apple Computers Inc, Inside Mac, vol4. Addison-Wesley, 1986 (ISBN 0-201-05409-4) 
Apple Computers Inc, Inside Mac, vol5. Addison-Wesley, 1988 (ISBN 0-201-17719-6) 

Federal Information Processing Standards: Information Protection 

US National Institute of Standards and Technology (NIST), Executive guide to 
proteetion of information resources. Federal Information Processing Standard (FIPS) 
169 

US National Institute of Standards and Technology (NIST), Management guide to the 
protection of information resources. Federal Information Processing Standard (FIPS) 
170 

US National Institute of Standards and Technology (NIST), Computer user's guide to 
the protection of information resources. Federal Information Processing Standard 
(FIPS) 171 

US National Computer Security Center, Personal computer security considerations. 
NCSC-WA-002-85, December 1985 

IBM pe Virus Internals 

4K - a warning of data corruption. Virus Bulletin, November 1990, pp 5-6 
Fridrik Skulason, Virus encryption techniques. Virus Bulletin November 1990, pp 13-16 
Jim Bates, Whale - a dinosaur heading for extinction. Virus Bulletin, November 1990, pp 

17-19 
Jim Bates, From Brain to Whale- the story so far. Virus Bulletin, October 1990, pp 12-14 
Fridrik Skulason, The Bulgarian computer viruses - the virus factory. Virus Bulletin, 

June 1990, pp 6-9 
How does an IBM PC virus infect a computer? Virus Bulletin, April 1990, pp 11-13 
Fridrik Skulason, IBM PC viruses: the new generation. Virus Bulletin, March 1990, pp 

10-11 
Joe Hirst, Jerusalem virus - the early days. Virus Bulletin, August 1989, pp 10-12 
Virus infected media and routes of infiltration. Virus Bulletin, May 1990, pp 3-5 
Patricia Hoffman, Virus information summary list, October 1990 (Electronic media) 
University of Hamburg Virus Test Centre, Computer virus catalog, July 1990 (Electronic 

media: cert.sei.cmu.edu archives) 
George Woodside, Virus 101 - an elementary course in virus technology (Electronic 

media: cert.sei.cmu.edu archives) 
Brad Stubbs, Lance Hoffman, Mapping the virus battlefield - an overview of personal 

computer vulnerabilities to virus attack. GWU-IIST-89-23, George Washington 
University, August 1989 



288 ~ Pathology of Computer Viruses 

Joe Hirst, Fighting infections on PCs. Tech PC User, December 1988 

IBM PC Internal System Operation 

Terry Dettman, DOS programmers reference. Que Corporation, 1989 (ISBN 
0-88022-458-4) 

IBM PC Virus Protection and Precautions 

Steve White, David Chess, Coping with computer viruses and related problems. IBM 
Thomas J. Watson Research Centre, research report RC 14405, January 1989 

Raymond Glath, Computer viruses: a rational view. RG Software Systems Ine., April 
1988 (Electronic media) 

David Stodolsky, Net hormones, infection control assuming co-operation amongst 
computers, 1989 (Electronic media) 

Interpath Corporation, Anti-virus measures (Electronic media) 
Stephen Kiel, Raymond Lee, The infection of PC compatible computers. Georgia 

Institute of Technology, summer 1988 
Eugene Spafford, Kathleen Heaphy, David Ferbrache, Computer viruses - dealing with 

electronic vandalism and programmed threats. ADAPSO 
IBM, Good security practices for personal computers. G320-9280-0, March 1984 
Computer virus handbook. Price Waterhouse/Auerbach, 1989 
John Wack, Usa Carnahan, Computer viruses and related threats: a management 

guide. US National Institute of Standards and Technology 
Harold Highland (ed.) Computer virus handbook. Elsevier Advanced Technology, 1990 

(ISBN 0-946395-46-2) 
Philip Fites, Peter Johnson, Martin Kratz, The computer virus crisis. Chapman and Hall, 

1989 (ISBN 0-442-28532-9) 
Ralf Burger, Computer viruses - a high tech disease. Abacus Software, 1988 (ISBN 

1-55755-043-3) 
Richard Levin, The computer virus handbook. Osborne/McGraw-Hill, 1990 (ISBN 

0-078-81647-5) 
Jan Hruska, Computer viruses and anti-virus warfare. Ellis Horwood, 1990 (ISBN 

0-131-71067-2) 
Myron Cramer, Stephen Pratt, Computer virus countermeasures. Defence Electronics, 

October 1989 
Stanley Kurzban, Viruses and worms - what can you do? ACM SIGSAC 1987, IBM 

Systems Research Educational Centre, 1987 
Tim Sanakary, Developing virus identification products. Homebase bulletin board 

(Electronic media: cert.sei.cmu.edu archives) 

Hardware and Cryptographic Anti-virus Techniques 

Maria Pozzo, Terence Gray, An approach to containing computer viruses. Computers 
and Security 6(4) 1987 

George Davida, Yvo Desmedt, Brian J. Matt, Defending systems against viruses 
through cryptographic authentication. IEEE symposium on computer security and 
privacy, 1989 



Appendix 16: Further Reading 289 

Virus Infection of Commercial Software 

Chris MacDonald, Viral infections in commercial/government software. Memorandum 
for record, ASQNC-TWS-RA (380-380a), US Army, April 1990 

Legal Issues of Computer Misuse 

Anne Branscomb, Rogue computer programs and computer rogues: tailoring the 
punishment to fit the crime. Rutger's Computer and Technology Law Journal 16(1) 
1990 

General License GTDA, Technical data available to all destinations. CREN information 
centre, May 1990 (US cryptographic export regulations) 

Colin Tapper, Computer Law, 4th edn. Longman, 1989 (ISBN 0-582-02481-1) 
Criminallaw - computer misuse. Law Commis si on report 186, HMSO, October 1989 
Computer misuse. Law Commis si on working paper 110, HMSO, 1988 
Report on computer crime. Scottish Law Commission report 106, HMSO, 1987 
Computer Misuse Act 1990. HMSO 

Theory of Viruses 

Ken Thompson, Reflections on trusting trust. Communications of the ACM 27(8) 
August 1984 

Harold Thimbleby, Bugs, viruses and liveware. University of Stirling, UK, 1989 
Computer viruses, theory and experiments. 7th DOD/NBS security conference, 

September 1984 
Leonard Adleman, An abstract theory of computer viruses. Lecture Notes in Computer 

Science vo1403, Springer-Verlag, 1990 
Fred Cohen, Computational aspects of computer viruses. Computers and Security 8(4) 

1989 
Winfried Gleissner, A mathematical theory for the spread of computer viruses. 

Computers and Security 8(1) 1989 
Fred Cohen, On the implications of computer viruses and methods of defence. 

Computers and Security 

Bio logica 1 Analogies to Computer Virus es 

William H. Murray, The application of epidemiology to computer viruses. Computers 
and Security 

Daniel Guinier, Biological versus computer viruses. ACM SIGSAC 1989, IBM Systems 
Research Educational Centre, 1989 

Codes of Ethics 

Dianne Martin, David Martin, Professional codes of conduct and computer ethics 
education. Social Sciences Computer Review 8(1) spring 1990 



290 A Pathology of Computer Viruses 

Corporation for Research and Educational Networking (CREN), Acceptable use policy. 
CREN Information Center, Washington, October 1990 

British Computer Sodety, Code of conduct, handbook no. 5, 1985 
High Energy Physics Network, Acceptable use statement, draft 2, June 1989 (Electronic 

media) 
Riehard D. Pethia, Steve Crocker, Internet security policy, working draft, October 1990 

(Electronie media: uunet. uU.net archives) 
Interim NSFNET acceptable use poliey (Electronie media: uunet.uu.net archives) 

Social Issues and General Commentary 

Harold Thimbleby, Ian Witten, The worm that turned: a sodal use of computer viruses. 
University of Stirling, UK, September 1989 

Artificial Lite 

Eugene Spafford, Computer viruses - a form of artificiallife, Purdue Technical Report, 
CSD-TR-985, Department of Computer Science, Purdue University, West Lafayette, 
June 1990 



Appendix 17 

Virus-I Archive Sites 

The following sites carry archives of anti-viral software and information as part 
of the Virus-l archive system: 

cs.hw.ac.uk 

Maintained by David Ferbrache 
Based at Heriot-Watt University, Edinburgh, this archive carries information 

on general security, Amiga, Atari, IBM PC, Apple 11 and Apple Macintosh 
shareware anti-virus software. 

The archive is accessible by an email info-server on address "info
server@cs.hw.ac.uk". 

ms.uky.edu 

Maintained by Sean Casey 
An Internet FTP based archive of Amiga anti-virus software (stored in the 

directory Ipub/amiga/Antivirus). 

pdsoft.1ancs.ac. uk 

Maintained by Steve Jenkins 
This is the UK public domain software archive and is accessible by email info

server on address "archive- server@lancs.pdsoft" , and by direct dialup on the 
following numbers: +44 524 63414, +44 524 67671, +44 524 67754, +44 524 
62423, and +44 524 381819. 

This archive is also accessible using UK JANET guest network independent 
file transfer protocols (NIFTP). The archive contains Amiga, Atari, IBM PC and 
Apple Macintosh software. 

uxl.cso.uiuc.edu 

Maintained by Mark Zinzow 
An Internet FTP based archive of Amiga and IBM PC software (stored in the 

directories lamiga/virus and Ipe/virus). 

brownvm. bitnet 

Maintained by Chris Chung 
The Apple 2 listserver archive which is accessible via the BITNET listserver 

address "listserv@brownvm.bitnet". 



292 A Pathology of Computer Viruses 

eert.seLemu.edu 

Maintained by Kenneth Van Wyk 
The CERT Virus-l archives carrying back issues of Virus-l together with 

general information on virus prevention. This is an Internet FTP based archive 
stored in the directory /pub/virus-l. 

esre. nesl.nist. gov 

Maintained by John Wack 
This is the NIST archive of security bulletins issued by NIST, CERT, NASA 

SPAN, DON and LLNL-CIAC. It is accessible via Internet FTP. 

mibsrv.mib.eng.ua.edu 

Maintained by James Ford 
An Internet FTP based archive of IBM PC software (stored in the directory 

/pub/msdos/ AntVirus). 

vega.hut.fi 

Maintained by Timo Kiravuo 
This Finnish Internet FTP archive contains IBM anti-virus software stored in 

the directory /pub/pc/virus. 

wsmr-simte120.army. mil 

Maintained by Keith Peterson 
This is the largest IBM PC public and shareware software archive in the 

world, and is accessible by Internet FTP or by email via the Trickle servers 
"listserv@ndsuvml. bitnet" and "listserv@rpiecs.bitnet". PC anti-virus soft
ware is stored in the directory "PDl:<MSDOS.TROJAN-PRO>". 

A Macintosh archive is maintained by Rober Thum, and stored in the 
directory "PD3:<MACINTOSH. VIRUS>". 

raseal.ics. utexas.edu 

Maintained by Werner Uhrig 
An Internet FTP based archive of Apple Macintosh software (stored in the 

directory mac/virus-tools). 

wuarehive. wustl. edu 

Maintained by Chris Myers 
An Internet FTP based archive of Apple Macintosh and IBM PC software 

which mirrors the INFO-MAC archive at SUMEX and the Simtel MSDOS 
archive. 



Appendix 18 

Relative Frequencies of IBM Viruses 

The table below presents the estimates of three researchers in the IBM PC virus 
field of the relative frequencies of each virus. The figures are based on articles 
by David Chess, Fridrik Skulason and Morton Swimmer in Virus-I, and they 
reflect, respectively: 

1. The relative frequencies of viruses reported to IBM (informal) over the last 
few years. 

2. The relative frequencies of viruses in Iceland estimated at mid-1990. 

3. The relative frequencies of viruses in Germany estimated at mid-1990. 

Virus strain US frequency Icelandic frequency German frequency 

Italian 
Cascade 
Jersualem 
NewZealand 
Vienna 
Brain 
Vacsina 
Dark A venger 
Disk Killer 
Yale 
Macho 
Yankee Doodle 
765 
Lehigh 
Sunday 
Sylvia 
Advent 
5120 
Icelandic 
Ghostbal1s 

26% 
23% 
21% 

9% 
7% 
7% 

<1% 
1% 

<1% 
<1% 
<1% 
<1% 
<1% 

30% 
55% 

5% 
2% 

2% 

2% 

3% 
1% 

10% 
25% 
15% 
10% 
10% 

5% 
2% 
5% 

1% 

<1% 
<1% 

Rough estimates were also provided by Fridrik Skulason in September 1989, 
and John McAfee (based on Viruscan software reports). These point estimates 
provide an interesting comparison with the 1990 mid-year statistics: 



294 A Pathology of Computer Viruses 

Virus strain US frequency Icelandic frequency 

Jerusalem 62% 
Cascade 17% 60% 
ltalian 9% 30% 
New Zealand 8% 
Brain not quoted 5% 

lcelandic not quoted 5% 
Others 4% 

Recent indications are that the Stoned/New Zealand virus is spreading 
rapidly together with a number of 4096/Stealth virus incidents. Cascade 
maintains a high profile (approximately 25 per cent of infection) although it has 
been reported less frequently during the late-1990 period. This spread can be 
attributed to the absence (since outside the activation window) of the 
characteristic display which had previously permitted easy detection of the 
virus. Jerusalem now appears to be in decline, due possibly to the widespread 
publicity the virus has received. 

Interestingly, the Vienna strain (and variants) have been reported as 
becoming considerably more common. This can be related to the widespread 
availability of disassemblies for this virus. 



Subject Index 

Access control 
electronic 94 
ideological 101 
media 97 
network 98 
physical 93 

ACM 228 
Activation criteria 70 
AIDS trojan horse 25,27,259,283 
Amiga viruses 

anti-virus viruses 117 
SCA virus 13 

Animal rabbit 5 
Anti-virus software 

bogus versions 28 
Anti-virus viruses 117 
Apple II viruses 

ElkCloner 8 
Archive sites 291 
Armoured virus 267 
Artificiallife 47 
Atari viruses 

Goblins 29 
Key 50 
multi-architecture 87 
Pirate Trap 13 
virus construction set 15 

Auditing, C2 security 115 
Automatie flow verification 129 

Back door 3 
Backup procedures 147 
Batch viruses 60, 185 
BCVRC 23 
Bell-LaPadula model 128,173,190 
Biba extensions 175 
Biological analogies 42 

carriers 46 
latency 46 
vaccination 45 

BIOS 57 
parameter block 85,240 

Blacker 213 
Boot sector 58,240 
Boot sequence 

IBM PC 56, 257 
UNIX 269 

Bulgarian Virus Factory 30 
Bulletin boards 222 

Camouflage 
activity 80 
checksum avoidance 111 
disk activity 82 
encryption 74 
hiding of code 77 
unused memory 69 
UNIX 189 
viral shell 78 

Capabilities 171 
Catalogue 

University of Hamburg 104 
CD-ROM infections 16, 27 
Centralisation 107 
CERT 19,24, 104, 185, 271, 273 
Chain letter 3 

BITNET 19,196,283 
Headache 199 
Orgasm 199 
Term 199 
UNIX 199 

Chaos Computer Club 11 
Checksumming 78,110 
CHRISTMA EXEC 197 
CIAC 226,273 
Classification of viruses 37 
Clone viruses 164 
COMvirus 61 
COMMAND.COM 60 
Compartmentalisation 107, 119, 130, 

135 
Compression virus 35 
Computer Crime Unit 26, 27, 227 
Computer Misuse Act 29,233 



296 

Confidentiality 172 
Containment 119, 141 
Contingency planning 148 
Control flow graph 129 
Corresponding virus techniques 86 
Corrupted Programming International 11, 

21 
CoTRA 20 
CPSR 228 
Creeper and Reaper 6, 195 
CREN 223 
Cron daemon 182 
CVIA 16,222 
Cyberpunk 10 

Daemons 203 
DARPA 199,271 
Dates of activation 71 
Debuggers 139 
DECNET 215 
DECNET worms 

further reading 283 
HI.COM 19, 196,216 
OILZ 24, 196,219 
WANK 24,196,218 

Desktop file 98, 158 
Dirty Dozen list 10 
Disassembly 138 
Discretionary access controls 168 
Disinfection 144 
Disk, low level format 245 
DISNET 213 
DOS 57 
Dynamic loading 188 

Education, training courses 101 
Effects of viruses 69, 11 0 
Elk Cloner 8 
Encryption 

public key 128 
software distribution 106 
virus camouflage 74 

English Law Commission report 229 
Evolution of viruses 49 
EXE 

file format 249 
viruses 61, 64 

Expert systems for behavioural 
analysis 116 

File aIlocation table 59, 241 
File servers 99, 135 
Filter, remote 142 
Fingerd daemon 206 
Frequencies of viruses 293 

A Pathology of Computer Viruses 

Friday 13ths 72 

Gate, 80386 task 124 
Gateway machine 99 
Genetic algorithms 43,48,50 
Germ ceIl 37 
Getty, UNIX 183 
Growth models 52, 54 

HEPNET 224 
Hoaxes 

Robert Morris III 18 
2400 virus 17 
10005 virus 86 

Host, selection 83 

IBM pe, boot sequence 56, 239 
IBM PC viruses 

Aids 2 86 
Austrian 64 
boot sector 56 
Brain 11 
Cascade 74 
COMIEXE 61 
Cookie Monster 15 
Datacrime 24 
Denzuk 77 
Disk Killer 29 
general principles 55 
GhostbaIls 87 
Icelandic 23, 79 
Italian 88 
Jerusalem 16, 27, 72 
New Zealand 57 
Pacman 15 
Spam 15 
SYS 87 
Valert-l 28 
VIRDEM.COM 12 
Virus-90 14 
Virus-101 14 
Yale 88 
405 63 
512 77 
1253 87 
4096 78 
10005 86 

ICE 10,139 
IFS 184 
Implied loader viruses 159 
Information policies 140 
Initial serial number 202 
INIT 31 mechanism 162 
Inoculation 108 



Subject Index 

Integrity 
classification 176 
data stream 202 
locks 175 

Intel80X86 
instruction dependencies 88 
paged segmented memory 120 
pipeline 89 
virtual machine 120 

Internet protocols 199 
Internet worm 19 

Cornell report 20, 212 
further reading 283 
indictment 23,211 
operation of 205 
sentencing 28 
trial 24 

Interrupt mechanism 66, 80, 130 
Investigation 136 
ITSEC standard 178,285 

1<erebros 205, 286 

Legislation 
Computer Fraud and Abuse Act 23 
Computer Misuse Act 29,233 
further reading 289 
Law Commission reports 226 

Link virus 162, 186 
Literature 

anti-virus 104 
Cyberpunk 10 
Neuromancer 10 
Shockwave Rider 6 
Star Trek 20 
When Harlie Was One 6 

Logicbomb 4 

Macintosh personal computer 
checksumming 111 
desktop 158 
files tore format 251 
further reading 286 
general 153 
init 31 mechanism 162 
initialisation 156 
memory management 120 
protection 165 
ROM override 160 
trap dispatch table 161 

Macintosh viruses 
CDEF 29,159 
MDEF 29 
nVIR 12, 14, 16, 19, 163 
Peace 12 

Scores 15, 30 
VVDEF 12,28,98,159 

Macrovirus 
Lotus 1-2-3 21 

Mailing lists 
Phage-l 210 
Valert-l 28,225 
Virus-l 15, 28, 104, 225 
Zardoz 225 

Management of infection 91 
Mandatory access controls 168,173 
Manipulation effects 69, 110 
Master boot record 57, 239 
Memory control block 79 
Memory map 68 
Military virus use 23, 26 
Monitor, anti-virus 81, 130, 133 
Multiple infection 86 
Mutation 48 

NCSC 226 
Network 

compartmentalisation 135 
DECNET 215 
filtering 142 
Internet 199 
security 193 
use policies 223 

Neuromancer 10 
NIST 24,226 
NSFNET 223 

Operation SunDevil 28 
Orange book, see TCSEC 
OSI 214 

Passwords 
general guidelines 96 
UNIX 206 

PATH variable 170 
Peer authentication 201 
Personnel policies 108 
Phage-l mailing list 210 
Pipeline, instruction 89 
Policy 

management 105 
network use 223 

POPCS 88 
Prevention of infection 92 
Professionalism 235 
Program segment prefix 62 
Public domain software 106 
Public key cryptosystems 128 
Public relations 150 

297 



298 

Publication of disassemblies 14 
Publication of executable viruses 

MacPublishing 28 
PC BeneIux World 29 
PC Today 29 
Valert-l 28 

Rabbit 
Animal 5,7 
definitions 4 
RobinHood 7 

RC files 182 
Redundancy 149 
Replication 

locating hosts 83 
rates of 54 

Resident virus 65 
Resources, MAC 158 
Ripple decoder 75 

Sacrificiallamb 114 
Sam pie acquisition 138 
SBIR 23 
Scanner, signature 112 
Scottish Law Commission report 229 
Security classifications 174 
Segment descriptor 123 
Self-correcting virus 77 
Self-encrypting virus 74 
Shareware 106 
Shockwave Rider 6 
Shrink-wrapped software 

Desktop Fractal Design System 27 
Microsoft Word 4 beta test 19 
QLTech MEGA-ROM 16 
USGPO 27 

Signature 
anti-virus technique 112 
Austrian virus 64 
generic recognition 113 
Jerusalem virus 72 
use of 84 

SMTP 206 
SNEFRU 110 
Standards for viruses, CPI 22 
Stealth viruses 78,267 
Student Information Processing 

Board 210 
SYS command 87 

TASKO 215 
TCP 200 
TCSEC 

auditing 115 
standard 177,285 

A Pathology of Computer Viruses 

Theory of viruses 31 
Timebomb 

Datacomp 21 
definition 4 

Tracing sources 143 
Track, (on disk) 

40/80 77 
low level format 246 

Training 101 
Transient virus 65 
Trap dispatch table 161 
Trap door, definition 4 
Trojan horse 

AIDS 25,27,259,284 
BBSMON.COM 16 
definition 4 
Dirty Dozen 10 
UNIX 169 

Trojan mule, definition 4 
Trust, distributed 100,203 
Trusted 

compilation path 38, 131 
path 131 
port 205 

Typed objects 132,179 

UDP 199 
Undecidability 35 
UNIX 

access control 169 
batch viruses 185 
C compiler trojan 38 
further reading 286 
initialisation 180,269 
link viruses 186 
security alert 225 

Urban myths 14 

Vaccination 45, 108 
Vector, multi-viruses 87 
Virtual machine 119 
Virus 

activation 70 
anti-virus 117 
appending 31 
Apple 11 8 
batch 60, 185 
biological analogies 42 
boot sector 58 
classification 37 
COMIEXE 61 
definition 1 
effects 69 
evolution 49 



Subject Index 

link 162 
macro 21 
overwriting 31 
prepending 31 
VAX 9 

Virus Bulletin 22, 104 
Virus-l mailing list 15, 28, 104, 225 

Worm 
Creeper and Reaper 6, 195 
definition 2 
Internet 19,196,205 
Xerox 7,196,285 

Zardoz mailing list 225 

299 




