David Ferbrache

A Pathology
of Computer
Viru es

A Pathology of Computer Viruses

David Ferbrache

A Pathology of
Computer Viruses

SPRINGER-VERLAG

London - Berlin - Heidelberg - New York
Paris - Tokyo - Hong Kong

Barcelona - Budapest

David Ferbrache, BSc(Hons)

Defence Research Agency (CS1)

Royal Signals and Radar Establishment
St. Andrew’s Road

Great Malvern

Worcestershire, UK

ISBN-13: 978-3-540-19610-5 e-ISBN-13: 978-1-4471-1774-2
DOI: 10.1007/978-1-4471-1774-2

British Library Cataloguing in Publication Data
Ferbache, David 1965-

A pathology of computer viruses.

1. Computer. Viruses

L. Title

004

Library of Congress Cataloging-in-Publication Data
Ferbrache, David, 1965—

A pathology of computer viruses / David Ferbrache
p. cm.

Includes index.

1. Computer viruses. 1. Title.

QA76.76.C68F45 1991

005.9--dc20 91-12483
CIp

Apart from any fair dealing for the purposes of research or private study, or
criticism or review, as permitted under the Copyright, Designs and Patents Act,
1988, this publication may only be reproduced, stored or transmitted, in any form
or by any means, with the prior permission in writing of the publishers, or in the
case of reprographic reproduction in accordance with the terms of licenses issued
by the Copyright Licensing Agency. Enquiries concerning reproduction outside
those terms should be sent to the publishers.

© Springer-Verlag London Limited 1992

The use of registered names, trademarks etc. in this publication does no imply,
even in the absence of a specific statement, that such names are exempt from the
relevant laws and regulations and therefore free for general use.

The publisher makes no representation, express or implied, with regard to the
accuracy of the information contained in this book and cannot accept any legal
responsibility or liability for any errors or omissions that may be made.

Typeset from disk by Saxon Printing Ltd, Dérby
34/3830-543210 — Printed on acid-free paper.

To Ann

Disclaimer

While every effort has been made to ensure the accuracy of the
information provided in this work, no responsibility can be
accepted for damages caused directly or indirectly through the use
or interpretation of the information.

Note
Within the text all references to “’h” as a numeric suffix designate a
number in hexadecimal format.

This work has been carried out with the support of Procurement
Executive, Ministry of Defence.

Contents

1 Introduction.................... ettt reteaeeneeeeeanenraneneanans 1
1.1 Preamble.....ccovveiiiiiiii s 1
1.2 What is a Computer Virus?oooen 1
1.3 Worms: Networked Viruses............cccoeviviiiiinnnn.n, 2
1.4 Terminologyccovvinviiiiiiiiiii 3

2 Historical Perspectives..............ccoceiiiiiiiniiiniiinnennn.. 5
2.1 Introductionccoviiiiiiiii s 5
2.21960s: Early Rabbits............ccoooiviiiiininninnnn 5
2.31970s: Fiction and the Wormcocvveiieinnnn.n. 6
2.4 1980-1983: GENESIS....cvivieiririniniiiiiiieeieeeineneninenns 8
2.51984-1986: EXOAUS ...vuvvvneiiiieiinirineniiinininenenennes 10
2.6 1987: Mac, Atari and Amiga Next...........ccoceuvienneen. 12
2.7 1988: Proliferation and Disbelief............................ 14

2.7.1 January-March...........cooiiiiiiinnnne, 14
2.7.2 April-Septemberooo 15
2.7.3 October-Decembercccevvieieiiiininenninnn. 16
2.8 1989: Reaction by the Community 19
2.8.1 January-March............cooovii 19
282 April-June.......coooiiiiii 20
2.8.3July-Septemberooiiniiiiiiiiiiinin, 22
2.8.4 October—Decemberccccviiiiiiinininann.. 24
2.9 1990: Organisation and Litigation.......................... 27
2.9.1 January—-Aprilooooii 27
2.9.2 May-Septembercoooiiiiiin, 28
2.9.3 October-Decemberccccovviviiiiniiiinnininnn, 29
2. 10 SUMMATY.....ooiiiiiniii e 30

3 Theory of VIrusesccooovvviiiiviiniiniinniineniieennnes 31
3.1 INtroduction ...o.eeeiniiiiiii s 31
3.2 Addition of Viral Code............coveviiiiiiiiiiiiiiiinnnn, 31
3.3 Detection of Virusesc.coevvieiniiiiiininieininnns 35
3.4 Classes Of VITUSEScuvvivirreiiiieeriniriiiieniieeneninenenes 36

3.5 Thompson: and Trusting Trust.............coooeenieennnen. 38

viii

A Pathology of Computer Viruses

3.6 Biological Analogiescccooouiiiiiiiiineniiin. 42
3.6.1 Biological Virusescccceevniinniinniinniinne. 43
3.6.2 Parallels Between Low Level Operation 44
3.6.3 High Level Parallelscccoceviiviinninnn.. 45

3.7Questfor Life.....ccooiiiiniiiiiiiiiiiieiiereee 46

3.8 Evolution: Genetic Algorithmsccocoeinnnn. 48
3.8.1 Random Mutation..............coceviiniiiniinninnn. 48
3.8.2 Programmed Mutationcooe. 48
3.8.3 Genetic Algorithmscooooviiiininn 50
3.8.4 Growth and Deathcoooviininn 51

Operation of PC Viruses................cccoccovviiiiiniinnn.n. 55

4.1 Introductioncooooiiii 55

4.2 PC Boot Sequence: Initialisation............c...c...cuueene. 56

4.3BIOSand DOSccocoiiiiiiiiiiiiiin 56

4.4 Master Boot Recordcooeiiiiiininnn 57

4.5DOS Boot Sector......cccvvvvnviiniiiiiii e, 58

4.6 System Initialisationccooii 59

4.7 Batch Processing Viruses...............cccocceeeiiiieiinn... 60

4.8 COM and EXE Viruses............ccooccovveuniinniinninnnnnn. 61
4.8.1 Non-overwriting Prepending COM Infectors ... 62
4.8.2 Overwriting COM Infectors.................ceceunis 63
4.8.3 Non-overwriting Appending COM Infectors.... 63
4.8.4EXE VIruses..........ccoooevniiiineiiinniiinniiiicnnnn, 64

4.9 Resident and Transient Viruses 65

4.10 Manipulation by Viral Codeccoeoeinnil 69

4.11 Activation Criteria..............oooeiiiiinn . 70

412 Camouflage..........ocoviiiiiiiiiiiiiii 73
4.12.1 Concealment in Infected Files 74
4.12.2 Encryption of Viral Code 74
4.12.3 Hiding of Viral Code..............cc..coeeiiinn. 77
4.12.4 Checksum Calculationc.ooouiiniinnii. 78
4.12.5 Prevention of Alteration Detection................ 78
4.12.6 Concealment of Viral Code in Memory.......... 79
4.12.7 Concealment of Viral Activity 80
4.12.8 Concealing Disk Activityoeeinn. 82
4.12.9 Concealing System Slowdown..................... 82

4.13 Replication.........ccovviuviiniiniiiiiini e, 83
4.13.1 Locatinga Host..................ccoonin, 83
4.13.2 Signatures..........ccooviiiiiiiieiii, 84
4.13.3 Miscellaneous TOpicsccoeeveniinniinniinneen. 86

4.13.3.1 Corresponding File Virus 86
4.13.3.2SYS Viruscoovevviiniiinniiniiciiiiiecin e, 87
4.13.3.3 Multi-vector Viruses...............ccoocceuneenn. 87
4.13.3.4 Multi-architecture Viruses 87

4.13.3.5 Architecture Dependent Viruses............. 88

Contents ix

5

Management of PC Viruses................cocoeviininienn 91
5.1 Perspective on Securitycccoeeiiniiiiiiiininn. 91
5.2 Components of a Virus Control Scheme................. 91
5.3 Prevention of Virus Attack............oceviuiiiniinninnn 92
5.3.1 Physical Access Constraints.......................... 93
5.3.2 Electronic Measuresccoceeiiiiniinninnn, 9
5.3.2.1 Physical Feature Verification 95
5.3.2.2 Knowledge Verification.......................... 95
5.3.2.2.1 Passwords..........ccooeuviiniiiiiinninninnnen. 96
5.3.2.2.2 Background Verification.................... 97
5.3.2.2.3 Other Techniquescooee 97
5.3.2.3 Possession Verification...............c..couveee. 97
5.3.3 Media Access Controls.............cooevvenviniinnennis 97
5.3.4 Network Access Controls...........ccoceviunennnens 98
5.3.4.1 Identification of Access Controls 99
5.3.4.1.1 Centralised Network File Servers........ 99
" 5.3.4.1.2 Distributed Trustccocoveinnennn. 100
5.3.4.1.3 Network Transport by Public Carrier
or Accessible Media..........c.ooovvviiiiiiiinniinne. 100
5.3.5 Ideological Controlscccouvevnievnninnienneee. 101
5.3.5.1 User Educationccocciiiiiiiiniicennn, 101
5.3.6 Management Policies...........c.c...ccouviniiinnnn... 105
5.3.6.1 Training of Employeesc.......... 105
5.3.6.2 Use of Anti-viral Measures...................... 105
5.3.6.3 Compartmentalisation............................ 107
5.3.6.4 Centralisation............ccocoveeiiiieneniiiiann.. 107
5.3.6.5 Personnel Policiesccccccovuiiinnnnn. 108
5.3.7 Vaccination and Inoculation.......................... 108
5.4 Detection of Viral Code..........c...ccoeevviiiniieniinniennne. 109
5.4.1 Monitoring and Loggingccc.cceveneennnee. - 109
5.4.2 Signature Recognitioncooo 112
5.4.3 Generic Code Recognitioncceeeeiunnee 112
5.4.4 Sacrificial Lamb ... 114
5.4.5 Auditingooooiiiiiiiiiini 115
5.4.6 Use of Expert Systems to Analyse Viral
Behaviour.............oooooii 116
5.4.7 Fighting Fire with Fireo 117
5.5 Containment of Viral Code................cccvviniiniiinnnn. 118
5.5.1 Hardware Compartmentalisation................... 119
5.5.1.1 Virtual Machinec.ccoociveienniann... 119
5.5.1.1.1 80386 Task Switching Support............ 120
5.5.1.1.2 80386 Paged Segmented Memory........ 120
5.5.1.1.3 Accessing OS Code...............cc.ceeuneees 124
5.5.1.1.4 Segment Permissions 125

5.5.1.1.5 Paged Memory Operation 126

A Pathology of Computer Viruses

5.5.1.1.6 Input/Output Operations 127
5.5.1.1.7 Virtual Machine in Software............... 128

5.5.1.2 Automatic Flow Verification.................... 129
5.5.1.3 Software Distribution: Ensuring Trust 130

5.5.2 Software Compartmentalisation 130
5.5.2.1 Interrupt Trapping Codec........ 130
5.5.2.1.1 Configurable Monitors...................... 131
5.5.2.1.2 Operation of a Monitor 133
5.5.2.1.3 Extensions to Real Time Monitoring 135

5.5.2.2 05 Support......ccoviiiiiiiiiiii 135

5.5.3 Network Compartmentalisation 135
5.5.4 Investigation and Response 136
5.5.4.1 What s the Infection?...............coooeeennin 136
5.5.4.1.1 Acquisition..........c..cooeviiniiinininninn 137
5.5.4.1.2 Logging of Relevant Information 138
5.5.4.1.3 Disassemblycccooeiiiiiininan. 138

5.5.4.2 Dissemination of Information 140
5.5.4.3 General Containment............................. 141
5.5.4.4 Tracing of Infection Source...................... 142

5.5.5 Disinfection of Viral Code............................. 144
5.5.5.1 Re-installationccooviiiiniininnn, 144
5.5.5.2 Recompilation from Source 145

5.5.6 Checking for Re-infection...........c...coocuiinnnin 145
5.5.7 Disinfection Utilities..............ccoociiiiniiniinn, 146
5.6 Recovery from Viral Infection...................co.eeinl. 147
5.6.1 Backup Proceduresc.ccovviuviiniiinniann. 147

- 5.7 Contingency Planningcoovvuviiiiiniinniinnn, 148
5.7.1Redundancycoeeiineiiiini i, 149
5.7.2INSUrancecocoviieiiniiiiiinia, 149
5.7.3 Public Relations....................... e 149
5.8 Remedial ACHONvivvviiiiiiiiiii 150
Apple Macintosh Virusescocceevviiiiininiiinnn, 153
6.1 Introductionoooviiiiiiiiii 153
6.2 Macintosh: The Abstract Operating System 154
6.2.1 Initialisation.............ccoooviiiniiiiiininn 156
6.2.2 ReSOUICES.....cuuiiniiiiniiniiii i 158
6.2.3 Trap Dispatch Table Structure 161
6.2.4 Non-link Virusescc.ccoovviniiniiniinnnenneee. 162
6.2.5Link VIrusesc..ccoeeviviiniiniiniiniiincennnen. 162
6.2.6 Notes on Keyboard Sequences 165
6.2.7 Summary of Mac Protection............c..c.......... 165
Mainframe Systems: The Growing Threat.................. 167
7.1 Introductioncoooiiiiniiiini 167

7.2 Hardware Architectures,..........cccooeviiiiiiiiininnnnnn.. 167

Contents . xi

7.3 Software Architecture...........c.ccceeeennenes e 168
7.3.1 Discretionary Access Controls....................... 168
7.3.2 Integrity versus Confidentiality 172
7.3.3 Mandatory Access Controlsceue. 173
7.3.4 Commentary on Security Standardisation........ 177

7.4 UNIX: A Viral Risk Assessment.............cccecevevnennnn. 180
7.4.1 System Startup........c.cooviiiviiiniiniini, 180
7.4.2 Login and User Commands 183
7.4.3 Bugs and Loopholes..................ccoooeinini. 184
7.4.4 Mechanics of UNIX Virusescccevevevnnenn. 185

7.4.4.1Batch Virusescocvveieiiiniiiiiiiiiinnnnnns 185
7.4.4.2 Link VIIUSES ..o.eovviiviiiieieiiiiieieieeanen, 186
7.4.4.3 Dynamic Loading........cc.ccevvevveerererennnnn. 186
7.4.4.4 Other Considerations...........cccoeeveeevinnnen. 186
7.4.4.5 Protecting Against UNIX Viruses 189
7.4.4.6 Cohen: Early UNIX Viruses..................... 190
8 Network Viruses: The Wormscccocevvviiininennnn. 193

8.1 INtroductioncccoininiiiiiii s 193

8.2 Standardisationcocveiiiieiiieiiiiiine e 194

8.3 History of Network Pestsccoceviiiiiniinnnn, 195
8.3.1 Early Work: Pre-1980...........ccocvviiniiiniinnnnn. 195
8.3.2 Recent Benign and Malicious Worms.............. 196
8.3.3 CHRISTMA EXEC Chain Letter..................... 197
8.3.4 Chain Letterson UNIXccooeiiiiiininnnnn. 199

8.4 Internet Protocolsccoevvviiiiiiiiiiiiiineie e 199
8.4.1 Architecture........ccoovviiiiiiiiiiiieiie i erenns 200
8.4.2 Peer Authenticationccceeevivviieneninnnnnns 201
8.4.3 Access CONtrolS......ccvveviviniiiiiiiiiei e enennns 202
8.4.4 Data Stream Integritycc.cooviiiiiniiinnnnnn. 202
8.4.5 Daemons and Servers...........c..coceveeninennnenenn. 203
8.4.6 Distributed Trustccooviiiiiiiiiieienne. 203
8.4.7 Trusted POItsceovviiiiiiiiiiiiiiiee e 205
8.4.8 Problems and Solutionscccccvvvvieeninnnn. 205
8.4.9 Internet Worm: Black Thursday — 3 November
1988t 205

8.49.1Internals......coevviniiiiiiiiiiiiiiiiiens 206
8.4.9.2 Action and Reaction............ccccovvvveiinnenns 208
8.4.9.3The Aftermath........................l. 211
8.4.10 DISNET: A Child of the Internet................... 213

8.5 OSI: Security in the Makingccooonnnn, 214

8.6 DECNET: Insecurity Through Default.................... 215
8.6.1 HI.COM: The Christmas Worm..................... 216

8.6.1.1 Reaction of the DECNET Community 217

8.6.1.2 Worms Against Nuclear Killers 218

A Pathology of Computer Viruses

9 Reactions of the IT Communityceeeeeeeeennnn 221
9.1 Discussion and Advice...........c..cceeiiiiiiiiiniinnnn. 221

9.1.1 Bulletin Board and Casual Users.................... .22

9.1.2 Academic Establishments...........cc.ccoocuvinnnnn. 222

9.1.221 CREN/CSNET.......ccooivniiiiiiniiiniiieennn, 223
9.1.22NSENETccoviiiiiiiiiiiiiiii e, 223

9.1.2.3 HEPNET/SPANcccoovinviiiiiiiiniiin, 224

9.1.2.4 General Community Responses 225

9.1.3 Government Research Organisations.............. 226

9.1.4 Military Organisationsc...cceevinnn. 227

9.1.5 Commercial Organisationsccccouueee. 227

9.1.6 Criminal Investigation Organisations 227

9.1.7 Professional Organisations 227

9.2 Legislative Issues...........ccccovviiniiiiiininn 229

9.2.1 Scottish Law Commissioncceccuueuneen. 230

9.2.2 English Law Commission............................. 231

9.2.3 Computer Misuse Act.........cccovvvuniinniinnninnie. 233

9.2.4 Summary of Legislation 234

9.3 Professionalism and Software Development 235

10 Conclusions: The Future Ahead.................c........... 237
Appendices.............ooiiiiiiiiiiii e, 239
1 DOS Filestore Structurecooeviiiiiniinniinneen. 239
L1Introductioncoooiiiiiiiiiiiiiiii e 239

1.2 Master Boot Recordccocoviniiiiiiiiiiiiiiinnn. 239
1.3DOS Boot Sector.........viiiiiiiiiiiirc e, 240

1.4 File Allocation Table...........ccc.ccoviinieiiiiniinninnn... 241
1.5Root Directory........ccooovviiiiiiiiiiniiiiiiic e, 242

2 LowlLevel Disk Layout...............cooooviiiniiiiiiinnnnnen. 245
3 EXEFileFormat.............coooviiiiiiiiiiiiiiiin e, 249
4 MacFilestore Structurecoooiiiiiiin, 251
5 PC Virus Relationship Chart.................................. 253
6 Macintosh Virus Relationship Chart 255
7 PCBootSequence................coeeuiiiiiiiiiiiiiiinniineein, 257
8 AIDS Trojan: Accompanying Licence 259
9 Software Infected at Sourcecooeiiiinn.. 263

Contents xiii

10

11

12

13

14

15

16

17

18

Nomenclature..........ooviiiiiiiiiiiiiic e eraeans 265
10.1 Types of Viruscocevviiiiiiiiiiiniiiincee 265
10.1.1 Master Boot Sector Viruses..........c.cceeuvnenen. 265
10.1.2 DOS Boot Sector Viruses..........cccoeeevvinnenenn.. 265
10.1.3 Executable COM/EXE Viruses.........cc..c.eue.... 265
10.1.4 Memory Resident Viruses.................cocouueeee 266
10.1.5 Overwriting Virusescoeeeuvernninneinneen. 266
10.1.6 Prepending Virusescccoooeeiininnnn.. 266
10.1.7 Appending Virusesccooeuviiiniinninnnees 266
10.2 Generations Of Virusc.ocovvvviviiniiiiiiiiniiniiiennns 266
10.3 Classes of Anti-virus Product.............ccooovvvinennnn.. 267
UNIX Boot Sequencecocvviiiiiiiiniiinnnnn, 269
CERT Press Release........ccccovvviiiiiiiiiiiiiiiiiiiiiiinenns 271
CERT/CIAC AAVIiSOTIeS.........veeeeeeeeeeeeeeeeeeeeeeeeeenens 273
(@111 7 Td & 1) 111 +- T S 277
Abbreviationscocooiiiiiiiiiiis 279
Further Reading................coooiviiiiiniinnn 283
Virus-1 Archive Sitesccovviiiiiiiiiiiiiiiiiiiienn, 291
Relative Frequencies of IBM Viruses......................... 293

SubjectIndexcoooviiiiiiiii 295

Chapter 1
Introduction

1.1 Preamble

This book considers in depth the problem of the computer virus — what it is;
who it affects; and, most importantly, what can be done to prevent or destroy
it.

I aim to give a comprehensive description of the history of the computer
virus “explosion’” we are experiencing at this time, a detailed analysis of how a
virus might operate on the IBM PC and Apple Macintosh computer platforms,
and a complete review of management precautions to reduce the viral threat.

The issues of trojan horses and network worms are also covered in some
detail, with particular emphasis on the security of local area networks (LANs).
During this work a limited knowledge of computing is assumed, although
introductory material is included in the preface to each chapter.

1.2 What is a Computer Virus?

A computer virus is informally defined as:

A self-replicating segment of executable computer code embedded within a host
program

To explain the above description, the case of a simple computer virus can be
considered. A computer executes a series of instructions, which are simple
commands (such as add or multiply two numbers). These instructions are
represented by codes known as ““object” or “machine” code. High level
languages such as Pascal and C are compiled into such basic instruction
sequences.

A virus is a similar short instruction sequence embedded within the object
code of a larger “host”” program, thus:

2 A Pathology of Computer Viruses

Host Original host program
Virus Small virus segment
Host Virus New infected host program

The virus additionally modifies the host so that when the computer begins
execution of the host program, control is passed to the virus code. When the
virus code is run, it rapidly searches for a new host into which it can copy its
code. ‘

Thus, if we show both the flow of control (execution sequence) and code
before and after infection, we have:

Host Original host program

L

Host Virus Infected host program

Although appearing complex, the flow of control in the infected case is:

Computer tries to execute the host program
Modified host causes virus code to be run
Virus runs and multiplies by infecting new files
Virus returns control to the host

Host appears to run normally

In brief, this is the essence of a computer virus. It spreads by infecting host
programs; the host program appears to run but in doing so activates the virus,
which spreads even further.

Virus are propagated between machines by the physical movement of
infected media (disks) or electronic movement of infected programs.

1.3 Worms: Networked Viruses

The current trend in computing appears to be towards mass wide area
networking of both mainframe and personal computer systems. This rich

Introduction 3

environment allows the rapid spread and replication of both the computer
virus and its cousin, the worm. A worm is an independent program which,
when run on a computer, will attempt to infect other connected computer
systems.

This is achieved by making use of the extensive set of services provided by
the network, which often - and critically - includes the ability to execute
computer code under remote control. Networks also allow traditional viruses
to spread more rapidly through organisations by allowing the sharing of
infected files and utilities. Thus with a networked “file server”” a PC virus can
spread without manual movement of software (i.e. disks) between computer
systems.

The worm is analogous to the virus and differs only in terminology. In this
case the host program is the operating system of the computer, and the infected
code is a stand-alone process or thread of execution running under the
operating system.

The computer worm was originally developed as an innocuous method of
load balancing and distributed computation at Xerox. This work created worms
which identified free processors on the distributed workstation network.
When a free processor was located a copy of the worm would be started on that
system. Thus, workstations in locked offices could make a useful contribution
to the overall processing power of the network. The worms developed at Xerox
were exceptionally intelligent in that they could detect the death of a
“segment” (an instance of the worm code) running on a remote system, and
restart it if necessary. Similarly they could detect the compartmentalisation or
division of the network into sub-networks and the rejoining of such
compartments.

The carefully controlled and engineered worm at Xerox was a far cry from the
uncontrolled spread of the major worm known as the “Internet” worm which
spread on the US Defense Advanced Research Projects Agency (DARPA)
Internet in November 1988. This case and its implications for the computer
security community are considered in Chapter 8.

1.4 Terminology

A feature of the anti-virus community has been the adoption of a wide range of
(often conflicting) terminology, based mainly on the analogy between biolog-
ical and computer viruses:

® Back door A software feature programmed by the original designer which
will permit him to carry out operations denied to normal users of the
software (e.g. a login program which will accept the designer’s hard-wired
password irrespective of the contents of the system password file)

® Chain letter A program encapsulated within an electronic mail message,
which, when run, will send copies of itself to a number of users by electronic
mail

4 A Pathology of Computer Viruses

® Logic bomb Malicious code incorporated within a program which will
activate when a particular set of circumstances exists (e.g. code to crash the
system when the author’s name is deleted from the company payroll)

® Rabbit A program designed to exhaust some resource within the system by
its unchecked replication (e.g. exhaust disk space or saturate CPU
utilisation)

® Time bomb A logic bomb timed to activate on particular ““activation” dates

® Trap door A feature, normally added by a hacker, which will permit later
privileged access to a computer system without the use of valid authentica-
tion codes or passwords. A form of back door

® Trojan horse Any program which includes code designed to carry out
functions not intended by the user running the program, or advertised in the
system documentation. This includes the incorporation of logic bombs or
benign hidden code

® Trojan mule A program which will emulate some aspect of the system’s
standard behaviour, such as the login prompt, with a view to collecting
system passwords or authorisation codes

® Virus A program that can infect other programs by modifying them to
include a possibly evolved copy of itself

® Worm A program that spreads copies of itself via network connections to
other computer systems. Unlike a virus, a worm does not require a host
program, but is a stand-alone executable program. There is also an older
meaning of the term “worm’”, namely a logic bomb incorporated by a
software designer with a view to causing denial of service on expiry of
software licence agreements, or when software is pirated

Further terms are introduced in Chapter 3, when a comparison between the
replication of biological and computer viruses is made. In general, the term
“virus” is used to describe any self-replicating code where an obvious host
program can be defined (this includes code executed as part of a system boot or
startup process). The term “worm” tends to be reserved for self-replicating
code spreading via a network where the code is a stand-alone program within
the operating system environment. The distinction is often unclear; for
example, the Massachusetts Institute of Technology (MIT) research group
branded the Internet worm as a virus.

Viruses and worms need not be malicious, other than causing limited denial
of service as a result of their use of central processing unit (CPU) capacity to
self-replicate.

Chapter 2
Historical Perspectives

2.1 Introduction

This chapter gives a brief introduction to the history of the computer virus,
demonstrating its origins in the early mainframe “rabbit’” programs and the
science fiction literature of the “Cyberpunk’” genre.

2.2 1960s: Early Rabbits

The earliest self-replicating programs were probably the mainframe rabbits.
These programs, normally written in command languages (which are inter-
preted rather the compiled), rapidly created clones of themselves and caused
severe degradation of system performance.

In many cases, the command language supported direct facilities for process
creation and manipulation. The rabbit could thus clone itself thousands of
times, completely filling all queues of processes waiting to be executed (in
batch environments) or causing the load on the machine to rise to the point at
which useful work could not be achieved.

The problem of a single user completely swamping systems is one which
recent designers have countered using the concept of a ““fairness’ scheduler.
This technique allocates each user a fixed share of system processing power.

An example of such a replicating batch job is a rabbit written by two
undergraduate students in 1966 which used a RUNCOM command script on a
CTSS system. The script would invoke itself continually, generating large
numbers of temporary files which would exhaust disk space. Unfortunately,
because of a bug in the system, this caused CTSS to crash, leaving the disk
directory in an invalid state (due to cached disk blocks in memory not being
flushed).

A further early example was the ““Animal”” game on the Univac 1108. This
program in its normal form asked a variety of questions, in an attempt to guess

6 A Pathology of Computer Viruses

the type of an animal. This innocuous game was modified to produce
“Pervading Animal”. This program, when run, would attempt to add itself to
every writable program file (directory). The program would check for an
existing copy in the program file, and would also mark each created program
with an illegal creation time (thus distinguishing between user- and program-
created copies).

2.3 1970s: Fiction and the Worm

During the 1970s the concept of a self-replicating program continued to interest
hackers, and appeared in a variety of forms in the works of John Brunner and
David Gerrold.

The book When Harlie Was One by David Gerrold was published in 1972. This
book carried a brief subplot (removed from later editions) which described a
virus that used auto-dialler modems to establish links from its host system to
remote systems. The virus then copied itself to the remote system, and deleted
the original copy. Thus a single copy slowly spread across the public telephone
network. Unfortunately, a bad connection resulted in corruption of the code
for self-erasure. The corrupted version then rapidly began to clone itself
exponentially across the network. This description is akin to a modern worm:
indeed the description closely matched the functioning of the “Creeper”” and
““Reaper” programs.

These programs were developed by two researchers at Bolt Beranek and
Newman (BBN), and were used to demonstrate the Tenex operating system.
The Creeper mirrored Gerrold’s concept exactly. The program started to print a
file on a system, paused, transferred its code and state information to a remote
system, deleted the original version, and then recommenced on the remote
system. The Creeper was modified to replicate itself (in addition to migration).
A further program, the Reaper, was then designed to migrate across the
network looking for copies of the replicating Creeper, which it would then
destroy. This was possibly the first anti-virus program. No exact date is
provided for the developments, although they are described as having taken
place in the early 1970s.

The term “worm” was coined by John Brunner in his book The Shockwave
Rider, published in 1975. A key part of the plot of Brunner’s book was the
concept of a “tapeworm” which replicated across networked systems. Brun-
ner’s tapeworm was exceptionally advanced, carrying with it access codes and
passwords for large numbers of official systems. The worm was self-
replicating, with each segment checking on the status of its counterparts. Thus,
any attempt to destroy a segment would only succeed in activating a stored
copy. In Brunner’s words:

And -no, it can’t be killed. It's indefinitely self-perpetuating so long as the net exists.
Even if one segment of it is inactivated, a counterpart of the missing portion will

Historical Perspectives 7

remain in store at some other station and the worm will automatically subdivide and
send a duplicate head to collect the spare groups and restore them to their proper
positions.

He provides a vision of a global internetwork with dozens of tapeworms
active, each being pursued by counterworms. This vision is closer to reality
than it may first appear, as indicated by the work by Shoch and Hupp at the
Xerox Palo Alto Research Center. This work in the mid-1970s centred on
distributed load balancing using worm programs. The worm located free
systems within the local network (Ethernet), and started segments running on
these nodes. The segments would run diagnostics of various forms. The Xerox
work also addressed the problem of network failure, co-ordination between
worm segments, and emergency termination of worms. Amusingly, Shoch
and Hupp report a worm experiment in which a (possibly corrupted) worm
sought out machines and started a corrupted copy of its program, which then
crashed the host. The end result of this was dozens of crashed machines.

The development of rabbit programs continued during this period, with
further documented examples. These included a program called “Rabbit”
which ran on IBM 360s. This program, developed in 1974, was written in a
batch programming language. When run, the program would copy itself, and
insert the copy twice into the batch queue. Thus, the number of copies of the
program active in the queue would grow rapidly. The ASP operating system
reacted poorly under heavy loads. In particular, processing of operator input
was delayed. Thus, once Rabbit had been running for a few minutes, the load
factor was sufficiently high to prevent operators from terminating it.

The concept of the rabbit was extended in the mid-1970s by a pair of
processes created by systems programmers at Motorola. These processes were
created through the use of a bug on Xerox CP-V timesharing. The errant
programs would cause a variety of symptoms, including;:

® Rapid seeking of disk drives
® Card punches punching a lace card (all holes punched)
® Strange messages on the system console
When the operators attempted to kill off one of the two jobs (named Friar

Tuck and Robin Hood), the other would detect the death of its peer, and restart
the killed job. Thus the following sequence was reported:

Xid1

id1: Friar Tuck... I am under attack! Pray save me! (Robin Hood) id1: Off (aborted)

id2: Fear not, friend Robin! [shall rout the Sheriff of Nottingham’s men!

id3: Thank you, my good fellow! (Robin)

To terminate the programs it was necessary to kill both jobs in rapid
succession, or to restart the system. In the latter case the programs were

automatically restarted. This was achieved by patching the list of programs to
be automatically invoked at system startup.

8 A Pathology of Computer Viruses

The 1970s ended with complex self-replicating network worms; the 1980s
began with the first true viruses.

2.4 1980-1983: Genesis

The first reported incidents of true viruses, rather than rabbits or worms, were
in 1980 and 1981 on the Apple Il computer. The earliest of these was written for
research purposes in 1980, and was never released into the wild. The virus
operated by:

® Trapping the CATALOG command
® Checking for the existence of a marker byte in the directory on disk

® [f the marker byte was not present, then the DOS code in memory (complete
with virus code) was written to the disk boot sectors

A generation counter was maintained to monitor the spread of the virus.
This version was modified by a friend of the virus author to improve its
efficiency and to reduce the amount of executable code written to disk. The two
viruses (old and new) were capable of dual infection, thus producing a disk
carrying both strains in active form.

A publicly documented example of an Apple II virus is the “Elk Cloner”,
reported in mid-1981. This virus was a boot sector virus loaded from disk,
which intercepted the DOS RUN, LOAD, BLOAD and CATALOG commands.
The virus inserted a USR (interrupt) vector which generated a wide range of
diagnostics, including;:

e Printing a poem
® Printing the version number
® Infecting a disk

A counter in the boot block was then incremented. This counter was used to
check whether a special event would be generated, including inverting screen,
clicking speaker, flashing text, letter substitutions, lockup computer, poem
printing, reboot, and crash to monitor program.

Finally, the virus would remain resident and infect any non-write-protected
disks inserted into the computer system. This virus includes the concept of a
signature, version number, resident special interrupt vector (the USR) and a
wide range of manipulation tasks.

Historical Perspectives 9

ELK CLONER:
THE PROGRAM WITH A PERSONALITY

IT WILL GET ON ALL YOUR DISKS
IT WILL INFILTRATE YOUR CHIPS
YES IT’S CLONER!

IT WILL STICK TO YOU LIKE GLUE
IT WILL MODIFY RAM TOO
SEND IN THE CLONER!

A further Apple II virus was reported by Joe Dellinger, its author, in 1982.
This virus spread under Apple Il DOS 3.3. A faulty early copy was reported as
having been released by friends of the virus author. This copy corrupted
graphics in an Apple II game “Congo”. Dellinger reports than many pirated
copies of Congo ceased operation over a two-week period. To solve this
problem, a modified copy of the virus was produced with the bug corrected.
This modified copy was released into the environment, and rapidly displaced
the original version. The concept of self-upgrading viruses was one which was
to reappear in the Amiga anti-virus and IBM PC “Jerusalem” virus strains
many years later.

In 1989, Associated Press reported the death (aged 39) of Jim Hauser of San
Luis Obispo, US. Hauser was reported to be the author of an early Apple II
computer virus in 1982. The virus was described as having been designed to
give users a “guided tour”” of the Apple II system.

In 1983 a key event occurred, namely Ken Thompson’s Association for
Computer Machinery (ACM) Turing award speech. In this speech he outlined
a early trojan horse in the C compiler at AT & T Bell. This trojan exploited the
concept of a trusted software component completely vanishing within the
system (it is described in detail in Chapter 7). When in place, the trojan (which
modified the compiler and login program) permitted login using a well-known
hard-wired password. This speech clearly outlined the problems of placing
trust in software components, particularly when a virus or trojan horse can be
incorporated into the component.

This was also the year in which Fred Cohen carried out many of the early
experiments with VAX viruses, which culminated in his demonstration on 10
November at a seminar on computer security. Cohen’s virus was implanted in
a trojan program called “vd”. In five trials his virus gained full system
permissions, taking between 5 and 60 minutes. These trials are described in
detail in Chapter 7.

10 A Pathology of Computer Viruses

2.5 1984-1986: Exodus

1984 saw the continuation of Fred Cohen’s work on viruses. This continued
with a series of experiments in July 1984 on a Bell-LaPadula (military security)
system on a UNIVAC 1108 machine. These experiments demonstrated that a
virus could propagate even on systems designed for high-security applica-
tions, and indicated the distinction between the confidentiality and integrity of
information.

This year also saw the publication of a book by William Gibson which was to
create a cult. The book was Neuromancer; the cult was Cyberpunk. In
Neuromancer, Gibson created a world in which all computers were interlinked
by a global network. A person could enter this “Cyberspace’’, and navigate the
network as a three-dimensional space in which all computer systems (and
information) were represented as solid objects. Artificial intelligences created
beings within cyberspace, and computer system defences could kill interlopers
via neural feedback. The world which Gibson created is only now been realised
via virtual reality research (providing computer- generated three-dimensional
visual simulators which users can enter and interact with via bio-feedback
devices). Gibson also introduced the concept of computer defences, known as
“ICE”, which appeared as physical barriers in Cyberspace, and which, in the
case of ““Black ICE”, could injure the user via sensory feedback.

Cyberpunk provided a genre which glorified the hacker fighting the large
corporates who populated the Cyberspace with their computer networks and
systems. Paul Saffo, in his paper “Consensual realities in Cyberspace”,
comments that an entire new generation of hackers may be basing their code of
ethics on Gibson. Certainly Robert T. Morris, the author of the Internet worm,
was noted as having a well-thumbed copy of Gibson’s book, which was
described by his mother as:

her teenage son’s primer on computer viruses and one of the most tattered books in
young Morris’ room

1985 saw a steady increase in the number of non-replicating malicious
programs — trojan horses. This was countered by the creation on 20 October of
the Dirty Dozen list produced by Tom Neff. The list of trojans extended rapidly
during the period 1985-1990, and passed into the hands of Eric Newhouse
when Tom lost interest.

The Dirty Dozen includes details of trojan horses, and hacked or pirated
commercial software or software which is in breach of copyright.

Historical Perspectives 11

Version Release Date Number of files
1.0 Oct 20 1985 12
2.0 15
3.0 37
4.0 65
5.0 103
6.0 120
7.0 Jan 3 1987 166 (15 Trojan)
8.0 Feb 5 1988 200 (24 Trojan)
9.0 Jun 9 1989 323 (62 Trojan)

1986 was the year in which the first IBM PC computer viruses began to
appear. The “Brain” virus originated in Lahore, Pakistan in January 1986. This
virus was reputedly written by Basit and Amjad Farooq Alvi. Their names,
addresses and telephone numbers were included within the Brain virus boot
sector. Computer lore suggests that the brothers ran a flourishing software
business, and included copies of the Brain virus on all software provided to
non-Indian clients. The Brain virus was reported in 1990 as comprising around
7 per cent of all reported infection incidents. The virus was also the first case of
limited camouflage being employed. When the virus was active in memory no
alteration of the boot sector (from its standard value) could be detected.

1986 also saw the first computer virus forum being held at the Chaos
Computer Club (CCC) in Hamburg. The CCC is one of the more infamous
groups of hackers, meeting regularly to exchange ideas and information, and
to discuss the social justification for their hacking activities. It is worth noting
that computer viruses have had a comparatively low profile in the computer
underground of hackers, pirates, phreakers and carders. The underground is
segregated into many, often exclusive, groups with particular interests. The
authors of viruses have maintained a low profile within the general computer
underground. Certainly in the large mass of published computer underground
literature, little mention of virus programming appears. Examples do,
however, include a number of items in the 2600 magazine from alleged virus
authors, republication of Burger's virus sources and a disassembly of the
““Alameda’’ virus in the Phreakers/Hackers Underground Network newsletter,
as well as an underground magazine devoted entirely to viruses (Corrupted
Programming International).

The complexity of later viruses clearly indicated that some exchange of ideas
was occurring between writers of viruses. This is borne out by the variations in
coding style evidenced in examples such as the Internet worm (DES encryption
versus remainder of code) and “Whale” virus (variety of concealment
techniques). ,

It is interesting that at the December 1986 congress of the CCC, 20
programmers admitted to having experience of viruses (out of 200-300

12 A Pathology of Computer Viruses

attenders). It is therefore likely that a considerable body of virus experience
was in existence in the computer underground.

Ralf Burger, author of Computer Viruses — A High-tech Disease, produced a
demonstration virus program, “VIRDEM.COM”, which was made available at
the Hamburg congress. The Virdem virus was an extremely simple non-
resident virus which infected COM files on the A: drive on the IBM PC. The
virus was 1236 bytes in length. Burger also published sources for a variety of
other viruses in his book, including assembly code for IBM PC, Pascal, Basic
and Batch viruses. The majority of the viruses date from the period 1986-1987,
and have appeared largely unchanged since the first edition of the book in
1987.

2.6 1987: Mac, Atari and Amiga Next

1987 saw the spread of viruses to a variety of other computer platforms,
including the Apple Macintosh, Commodore Amiga and Atari ST. By the end
of 1987 the number of virus strains had risen to twenty-one.

The ubiquitous “nVIR" virus for the Apple Macintosh was detected in West
Germany during this year. The original strain of the virus was malicious and
would randomly delete a file from the system folder on the Mac. This virus was
discovered, and re-engineered into a benign form. This benign form was then
released, and has been successful in replacing most copies of the original virus.
The nVIR strain has remained among the most common Mac viruses, possibly
only recently usurped by the “WDEF"” A strain. nVIR comes in two common
strains, nVIR A and nVIR B, the former notable for its habit of using MacinTalk
to speak the words “Don’t Panic!”’. Many clones of the nVIR B strain have been
produced using basic binary or resource editing.

Also benign, but considerably more controversial, was the ““Peace” virus
released in December 1987. This virus was engineered by a contract program-
.mer at the request of Richard Brandow, publisher of MacMag magazine. The
virus carried a message of world peace:

RICHARD BRANDOW, publisher of MacMag, and its entire staff would like to take
this opportunity to convey their UNIVERSAL MESSAGE OF PEACE to all Macintosh
users around the world.

and included a graphic of the globe. The virus was timed to activate when a
Mac was booted on 2 March 1988. On this date the message would be
displayed, and the virus would delete itself from its hiding place in the Mac
system file. Infected Macs booted after this date would silently disinfect
themselves, thus the virus is now believed to be extinct (other than a few
research samples).

The Peace virus was also uploaded in a hypertext stack “NEWAPP.STK" to
the CompuServe hypercard forum (CompuServe is a commercial electronic

Historical Perspectives 13

bulletin board system) on 6 February 1988. In an interview with the Chicago
Tribune, Brandow was quoted in the following terms:

I called Brandow, who readily accepted responsibility for the virus. “Actually, we
like to call it a message,” he told me. “We look at it as something that’s really
positive.”

1987 also saw a virus being created for the new Commodore Amiga machine.
This virus, believed to be written by the Swiss Cracker’s Association (SCA),
was detected in November 1987. The virus infects the boot sector of disks, and
caused the following message to be displayed on every 15th infection:

Something wonderful has happened Your AMIGA is alive !!! and, even better...
Some of your disks are infected by a VIRUS !!! Another masterpiece of The Mega-
Mighty SCA !!

On the Atari ST similar boot sector viruses were so being written. An
example is the “Pirate Trap” virus which carries the “copyright” message:

*** The Pirate Trap ***
* Youre being watched *
A [C]P.M.S. 1987 ***

The Atari was also host for the first cross-platform viruses, in this case the
“Aladdin” and “Frankie” viruses written to execute on a Mac emulator
running on the Atari ST. The University of Hamburg virus catalogue describes
the Aladdin virus as having been written by Aladdin producer Proficomp,
apparently in order to destroy cracked illegal software copies of their Aladdin
hardware/software emulator.

On the IBM PC platform a large number of new viruses were discovered,
including the 405" overwriting virus from Austria, the ““Alameda/Yale” virus
discovered at Merritt college in California, the ““Cascade” virus in Germany,
the “Friday 13th” virus in South Africa, the Jerusalem virus in Israel and the
“Lehigh” virus in the US. Of particular interest is the fact that the early viruses
are responsible for a significant proportion of current virus infections. German
incidence figures for 1990 indicate that Jerusalem is responsible for 15 per cent
of incidents, and Cascade for 25 per cent. Yale was comparatively rare due to
the fact that it would only propagate when a soft-reset (Ctrl-Alt-Del) was
attempted on an infected machine. 405 was readily detectable due to the
corruption of the host files.

Of particular interest was the incorporation of self-encryption techniques
into the Cascade virus (renowned for its classic falling letters display, which
earned it the aliases “Falling Tears”, and “Autumn Leaves”). This virus is
considered by some to mark the second generation of IBM PC viruses, namely
the use of camouflage techniques.

1987 also saw the production of an IBM MVS 370 virus in April and a UNIX
virus in June, in addition to the original viruses developed by Cohen in 1984
(for UNIX, UNIVAC and VAX VMS).

14 A Pathology of Computer Viruses

Finally, in December 1987, network saturation occurred on the BITNET
computer network (and on IBM’s internal VNET network) due to the rapid
proliferation of the BITNET Christmas chain letter. This incident, described in
Chapter 8, involved the execution by innocent users of a command script
designed to display a Christmas tree on screen. When run, the script would
mail copies of itself to users who regularly corresponded with the person
running the virus.

2.7 1988: Proliferation and Disbelief

2.7.1 January—March

As 1988 dawned, many of the current computer viruses had been released and
were slowly spreading globally via traffic in disks, and electronic network
transfer of infected programs. To date, Cascade, Jerusalem and Brain are
believed to have spread worldwide with incidents as far afield as Taiwan,
India, Japan, Australia and Canada.

CompuServe carried an article on 10 February 1988 indicating disbelief in the
existence of computer viruses, citing the inability of people to produce living
copies of viruses. Professor Brunvard of Utah cited the computer virus as the
latest in a series of urban legends. This sentiment was supported by Peter
Norton, who told Insight magazine, “We’'re dealing with an urban myth”, and
compared the existence of viruses to stories of alligators in New York sewers.

This sentiment, while accurately indicating the penetration of computer
viruses within the computing community in 1988, was unfortunately followed
one month later by the recall by the Aldus Corporation of 5000 copies of its
FreeHand drawing program which had been infected by the “MacMag” virus.
The infection route was traced to a Chicago subcontractor who had received a
games disk from Brandow. This disk then infected a demonstration copy of
‘Aldus FreeHand, which was eventually returned to Aldus, causing the
infection outbreak.

CompuServe had also carried (briefly) in January a disassembly of a modified
nVIR sample, as an indication of how a Mac virus operated. This was posted to
enable the production of anti-virus utilities. This virus was one of a number of
such postings of viruses for research purposes, including a posting by Patrick
Toulme of “Virus-90” and ““Virus-101" in December 1989 and January 1990.
These were intended as educational tools, with the virus source available on
request. Possibly more laudable was the production of the ““1260” virus by
Mark Washburn as an indication of the encryption techniques which a virus
could employ, and how these could defeat existing anti-virus scanning
programs.

Virus sources have been published in a variety of locations including the
Computer Underground Magazine (Yale), Pixel magazine (“Pixel”), Computer

Historical Perspectives 15

viruses: A High-tech Disease”” (“Vienna”, Virdem), numerous reports (Brain and
“Italian” boot sectors in hex), CompuServe (nVIR, “Dukakis”) and even Virus-1
itself (“Valert-1"). This high level of source availability coupled with the ease of
modification have ensured a high level of simple clones (either binary edits, or
reassemblies with slight modifications).

The complexity of producing an Atari computer virus was eased in March
1988 by the availability of a virus construction set. This program allowed the
user to construct custom viruses using the GEM window interface, specifying
manipulation tasks, files to be infected, drives to be infected, etc. Distribution
of the program and documentation was restricted to those over 18 years of age.
The package also included a removal utility for the generated viruses, and was
released at the Hanover Computer Fair, CeBIT.

2.7.2 April-September

The ““Scores”” Macintosh virus was detected in April 1988. This virus was
unusual in being specifically targeted at two programs produced by the firm
Electronic Data Systems (EDS). These programs contained resources with the
signatures “ERIC” and ““VULT” which the virus tested for. Four days after the
initial date of infection the virus checks for applications with these signatures,
and if it finds them crashes the system. Seven days after the initial date of
infection the virus will cause any attempted disk writes to fail after 15 minutes,
and 10 minutes later the application will crash. Internal sources within EDS
indicated that some time after a programmer was fired, a disk arrived
anonymously at the EDS Dallas office. Shortly afterwards the speed reduction
and random crashes caused by Scores were noticed on various machines.

On 22 April 1988 a new mailing list was established. This list — “Virus-1"" -
was set up by Kenneth R. van Wyk of Lehigh University (the institution struck
by the virus of the same name in 1987). The mailing list was to grow to be read
by over 14 000 subscribers in October 1989.

Roger Gonzalez wrote to Virus-1 describing three malicious programs he had
written but never released. These programs include:

® “Spam”: an infector of the COMMAND.COM file on the IBM PC. After five
infections this virus will randomly print the text “Spam’’ on screen

® “Cookie Monster””: similar to Spam. This virus prints the text “Gimme
Cookie” at random intervals, requiring the response OREO or CHOCO-
LATE CHIP. If the incorrect response is provided the program changes the
COMMAND.COM file to the name MUNCHED, and prints the text “never
mind”’

e “Pacman’: appended to MSDOS.SYS. Apparently traps the vertical sync
timer interrupt. The virus causes a “pacman” to appear on screen, which
will then eat a character and vanish

If the above report is accurate, then Pacman is the only known MSDOS.SYS
infector on the IBM PC system. Cookie is based on a considerably earlier trojan

16 A Pathology of Computer Viruses

horse on a mainframe system. The trojan displayed the standard prompt on
each user’s terminal, and required a valid response before permitting continua-
tion of operations.

On Friday 13th May, the Jerusalem virus activated worldwide. Unlike later
occurrences in 1989, damage appeared to be limited. The British Medical Journal
carried a report of a virus at the Royal Infirmary in Glasgow. The virus is
reported as having infected software destined for the cardiac intensive care
unit. This incident, reported in July 1988, is one of a number of such infections.
Normally damage is limited to possible destruction of patient information,
rather than immediate danger via infected equipment. Risk to life is therefore
indirect via possible loss of patient records, and other vital information.

The summer of 1988 brought two court cases related to systems damaged
due to the creation of malicious software. In the first case (11 July) a
programmer in Fort Worth, Texas was tried for the mass destruction of 168 000
records belonging to his former employee. Donald Burleson allegedly intro-
duced a program, described in the words of the Tarrant council district attorney
as being “just like a human virus”. Further investigation indicated that the
intruder had entered the system via a back door, deleted log files, and
manually deleted the records in question. Burleson was convicted on 20
September under the Texas computer sabotage legislation, and sentenced to
pay damages of $12 000 to his former employee, USPA.

In the second case, William Christison, operator of a New Mexico bulletin
board, filed a suit against Michael Dragg accusing him of uploading a trojan
horse program “BBSMON.COM”. The program contained code to delete
system files and to corrupt the file allocation tables (FAT) on the PC. Christison
asked for $1000 damages for each uploaded trojan horse, and enjoined Dragg
not to send trojan horses, viruses or other vandalising programs.

The Computer Virus Industry Association (CVIA) was formed in June of this
year under the leadership of John McAfee, president of ‘the Interpath
Corporation, Santa Clara, California. Through the Homebase bulletin board,
the CVIA became one of the leading centres for virus research and provision of
anti-virus products. John led a high-profile, and often controversial, role in the
fight against computer viruses, a role culminating in his inclusion in the
Microtimes third annual selection of the 100 most influential leaders in the
computer industry (22 January 1990).

2.7.3 October—December

October saw the infection of a new media form, namely a CD-ROM. In this case
the Quantum Leap Technologies QLTech MEGA-ROM was reported as being
infected by no fewer than three copies of the nVIR Macintosh virus. The CD-
ROM collection of public domain and shareware software was withdrawn, and
a new volume issued in December 1988. This was unfortunately too late for the
University of Toronto, which reported twenty infected systems.

Historical Perspectives 17

In the same month one of the biggest virus hoaxes was started, that of the
2400 baud modem virus. This hoax began with a message from Mike RoChenle
(a number of users later pointed out the obvious similarity in name to
Microchannel). This message (a copy extracted from a Seattle bulletin board is
reproduced below) described a virus which migrated across the subcarrier
frequencies on a 2400 baud modem line. An infected modem would then
replicate the virus by transmitting it to any other modems it communicates
with. Finally the virus attached to incoming binary data and thus generated
infected executables:

SUBJ: Really nasty virus
AREA: GENERAL (1)

I’ve just discovered probably the world’s worst computer virus yet.
1 had just finished a late night session of BBS’ing and file trading
when I exited Telix 3 and attempted to run pkxarc to unarc the
software I had downloaded. Next thing I knew my hard disk was seeking
all over and it was apparently writing random sectors. Thank god for
strong coffee and a recent backup. Everything was back to normal, so
I called the BBS again and downloaded a file. When I went to use ddir
to list the directory, my hard disk was getting trashed agaion. I
tried Procomm Plus TD and also PC Talk 3. Same results every time.
Something was up so I hooked up my test equipment and different modems
(I do research and development for a local computer telecommunications
company and have an in-house lab at my disposal). After another hour
of corrupted hard drives I found what I think is the world’s worst
‘computer virus yet. The virus distributes itself on the modem
sub-carrier present in all 2400 baud and up modems. The sub-carrier
is used for ROM and register debugging purposes only, and otherwise
serves no othr purpose. The virus sets a bit pattern in one of the
internal modem registers, but it seemed to screw up the other
registers on my USR. A modem that has been "infected" with this virus
will then transmit the virus to other modems that use a subcarrier (I
suppose those who use 300 and 1200 baud modems should be immune). The
virus then attaches itself to all binary incoming data and infects the
host computer’s hard disk. The only way to get rid of the virus is to
completely reset all the modem registers by hand, but I haven’t found
a way to vaccinate a modem against the virus, but there is the
possibility of building a subcarrier filter. 1 am calling on a 1200
baud modem to enter this message, and have advised the sysops of the
two other boards (names withheld). I don’t know how this virus
originated, but I'm sure it is the work of someone in the computer
telecommunications field such as myself. Probably the best thing to
do now is to stick to 1200 baud until we figure this thing out.

18 A Pathology of Computer Viruses

The hoax continued to spread rapidly through the virus community, even
resulting in a warning memo being circulated at the NASA jet propulsion
laboratory. The initial advice was to avoid infection by utilising on 1200 or
lower baud rate modems. A parody of this message was sent to the USENET
security mailing list in January 1989, and advised:

Date: 11-31-88 (24:60) Number: 32769
To: ALL Refer#: NONE
From: ROBERT MORRIS III Read: (N/A)
Subj: VIRUS ALERT Status: PUBLIC MESSAGE

Warning: There’s a new virus on the loose that’s worse than anything
I’ve seen before! It gets in through the power line, riding on the
powerline 60 Hz subcarrier. It works by changing the serial port
pinouts, and by reversing the direction one’s disks spin. Over

300,000 systems have been hit by it here in Murphy, West Dakota alone!
And that’s just in the last twelve minutes,

It attacks DOS, Unix, TOPS-20, Apple II, VMS, MVS, Multics, Mac,
RSX-11, ITS, TRS-80, and VHS systems.

To prevent the spread of this dastardly worm:

1) Don’t use the powerline.

2) Don’t use batteries either, since there are rumors that this virus
has invaded most major battery plants and is infecting the positive

" poles of the batteries. (You might try hooking up just the

negative pole.)

3) Don’t upload or downlead files.

4) Don’t store files on floppy disks or hard disks.

5) Don’t read messages. Not even this one!

6) Don’t use serial ports, modems, or phone lines.

7) Don’t use keyboards, screens, or printers.

8) Don’t use switches, CPUs, memories, microprocessors, or mainframes.

9) Don’t use electric lights, electric or gas heat or airconditioning,
running water, writing, fire, clothing, or the wheel.

I’m sure if we are all careful to follow these 9 easy steps, this
virus can be eradicated, and the precious electronic fluids of our
computers can be kept pure.

---RTM III

Historical Perspectives 19

The two messages indicate that while the virus paranoia in the community
had risen to extreme levels (also fuelled by the Internet worm incident in
November 1988), it was vital to take each report with a pinch of salt.

In November 1988 the Internet worm incident began. This incident com-
menced on 3 November when Robert T. Morris, a student at Cornell, released a
self-replicating worm on the DARPA Internet. This worm spread across the
closely coupled research network, infecting an estimated 2000-6000 host
systems, and causing damage estimated by one person at $96 million. The
worm exploited two known bugs in UNIX system software on DEC VAX and
SUN Microsystems SUN-3 machines. Despite rapid reaction by the research
community to combat the worm, active copies were still to be detected in
December of the following year. Details of the Internet worm incident are given
in Chapter 8.

Finally, the month of December brought two further network incidents: a re-
release of the BITNET chain letter on 6 December, and the creation and release
of the HI.COM DECNET worm. This worm spread rapidly over the Space
Physics Analysis Network (SPAN) and High Energy Physics Network
(HEPNET), and displayed a Christmas tree and a message suggesting that the
user should not work so hard over Christmas.

The source for all three of these network pests had been made available via a
variety of sources: the Internet worm by the 2600 hacker magazine, the
DECNET Christmas worm from numerous archive sites due to its posting in
the aftermath of the worm, and the BITNET chain letter in Burger’s book and
on the alt.hackers discussion forum on USENET. This, coupled with the wide
distribution achieved by these worms and chain letters, has ensured that
repetitions in modified form are likely.

The Internet worm was the prime mover in the establishment of the
Computer Emergency Response Team (CERT) in December 1988. The team’s
remit extends to action to combat all known security threats on mainframe and
networked systems connected to the DARPA Internet, including providing
information and fixes for known security loopholes and acting as a clearing
house for information during incidents. The initial press release establishing
CERT is attached as Appendix 12.

2.8 1989: Reaction by the Community
2.8.1 January—March

During 1989 viruses continued to spread rapidly through the IT community.
This year also marked the test case of the Internet worm, and the establishment
of the infrastructure to combat viruses.

The continued spread of the common viruses resulted in a number of further
shrink-wrapped software infections, including Microsoft's Word 4 beta test
version 10 by nVIR.

20 A Pathology of Computer Viruses

Friday 13th January saw another activation of the Jerusalem virus, which was
described by Alan Solomon in these terms:

It is a pesky nuisance and is causing a lot of problems today

February 1989 saw the attempted formation of a UK equivalent to CERT, but
with a far broader remit. The Computer Threat Research Association (CoTRA)
was formed by a consortium of interested members under the chairmanship of
Mark Gibbs of Novell. The association’s constitution covered investigation of
all threats to computer systems, including viruses, trojan horses, general
security loopholes and data integrity control. The organisation was unfor-
tunately split by personality conflicts, and inability to address its extensive
remit adequately. By the end of 1989 CoTRA had become inactive, leading to a
vacuum within the UK response to malicious software. This lack of co-
ordinated response became apparent during the “AIDS” trojan horse incident,
and during discussion of the formation of an international CERT organisation.

In March 1989 viruses were the topic of science fiction once more, as the Star
Trek: The Next Generation episode ““Contagion” was screened. In this episode
the USS Enterprise downloaded virus-infected data from a ship in the Romulan
neutral zone. The transmitting ship began to experience intermittent system
failures, and finally self-destructed. The Enterprise then began to suffer similar
problems as the virus adapted to the system environment and duplicated
throughout the computer systems. Ironically the high-tech solution was to
shut down the computer system, and re-install the system from a backup
maintained on board!

On a more serious note, two hospitals reported computer virus infections,
on 22 March in the image display station for cardiac studies (reported as being
carried on a hard disk manufactured by CMS Enhancements), and a delayed
report in the New England Journal of Medicine of a nVIR virus infection at three
Michigan hospitals which disrupted patient diagnosis in Autumn 1988.

2.8.2 April-June

The Cornell Provost’s commission of enquiry into the Internet worm incident
reported in April, concluding that Morris released the Internet worm. They
described the incident as “a juvenile act that ignores the clear potential
consequences’’. The commission was unable to trace Paul Graham, a Harvard
graduate student, who Morris reportedly contacted on the day the worm was
released; or to speak to Morris himself, who on the advice of his attorney had
decided not to co-operate. The commission found that:

® Morris had violated departmental computer misuse policies
® No other members of the Cornell community were aware of Morris” work
® Morris made only minimal efforts to halt the worm once released

Historical Perspectives 21

e He did not intend the worm to destroy data, but did intend it to spread
widely

® The number of infected systems was in the thousands, although the
estimate of 6000 computers could not be confirmed

® The CVIA’s estimate of $96 million was grossly exaggerated and self-serving

® The worm, although sophisticated, could have been created by many
students, graduate or undergraduate

The commission’s report repeatedly emphasised that the release of the worm
was not a “heroic” event designed to demonstrate weaknesses in UNIX
security, but was a reckless act which did not consider the possible con-
sequences for the community. It further stated that an academic community
was based on mutual trust, and that violations of this trust can not be
condoned.

On 12 April, the Philadelphia Inquirer reported that a former employee, Chris
Young of Trenton, Cambden County had been charged with computer theft by
altering a database belonging to his former employers, the Datacomp Corpora-
tion. It was alleged that Young gained access to the system on 7 October (the
day of his resignation) and inserted a time bomb due to commence destruction
of data on 7 December (the anniversary of Pearl Harbour). This case was yet
another example of a trojan horse program being dubbed as a “virus”.

An example of viruses in high level languages was reported at the end of
April, in this case affecting the logic programming language, Prolog. The virus
in question added its code to the end of Prolog source files, altering the
operation of the Prolog predicate “consult’’. A simple signature comprising an
arity 0 predicate “virus” is appended to infected files to prevent re-infection.

This example of a high level language was augmented by the discussion in
Computers and Security of a virus written in a macro set utilised by the Lotus
1-2-3 program. This virus was designed to alter a single value in a specific
column each time the Lotus 1-2-3 spreadsheet was loaded. The change was
restricted to a small percentage range, and could be either added or subtracted
from the original value.

The article (reproduced in the Computer Virus Handbook) notes that such a
macro virus would be:

® Undetectable by general virus scanning utilities, since it exists in a data file
which is regarded as executable code only by the interpreting program

® Easily detectable by alert users unless highly sophisticated

The work was based on a number of reports of a spreadsheet macro virus
during the summer of 1988.

The first edition of a new hacker magazine was published in electronic form.
Corrupted Programming International (CPI), written by a hacker styling himself
Doctor Dissector, was described as “‘a protagonist’s point of view”. While
many of the items in issues 1 and 2 were superficial and indicated a lack of
detailed knowledge, the publication of such a bulletin (and an associated

22 A Pathology of Computer Viruses

telephone bulletin board contact number) gave rise to concern. Issue 1included
the following list of suggestions for new virus techniques:

® CSRuirus a CMOS memory resident virus (presumably to avoid deletion on
system reboot) '

® Failsafe virus preserving all file sizes and attributes, infecting all files and
corrupting data on trigger. Possibly an early suggestion of ““Stealth”
techniques

® Format virus whenever a DOS format is called it will format every second
track on the disk

® Write virus intercepting writes to disks, and marking written sectors as bad

® Low level format virus formats hard disk in background while recopying data
from original hard disk (compression and defragmentation utility)

® Hide virus incrementally sets the hidden attribute on files

® Crash virus emulates system crashes and freezes

® Modem virus monitors data on serial ports and adds random noise

Issue 2 introduced a number of ideas including use of slack space in allocated
clusters in an article by a hacker named Ashton Darkside. It even went as far as
proposing standards for CPI viruses. These standards included:

1. Aninactive (latent) period and limited activation period for virus malicious
effects in order to conceal virus activity.

2. Use of Int 12h as a request by the virus to determine if a system is ““friendly”
before attempting infection, together with the circulation of recognition
codes which friendly systems will return on this request.

3. Upload of the virus to the CPI section on the Andromeda strain bulletin
board system (BBS) for peer review.

4. Use of end of cluster slack space for storage of virus code (so called ADS
standard).

5. Maintenance of a list of CPI standard viruses and identification strings.

The future of CPI after its second bulletin issue (27 July 1989) is unknown.
The existence of such a group of virus authors was to be noted in 1990 in
Bulgaria — the so-called Bulgarian Virus factory.

The summer ended with the publication of a special edition of the
Communications of the ACM dealing with the Internet worm incident. This
edition (volume 32, No. 6) included reprints of detailed reports from Purdue,
MIT and Cornell.

2.8.3 July—September

In July the Virus Bulletin was launched by Sophos. This publication, based at
Abingdon, UK, offered detailed technical information on virus development,

Historical Perspectives 23

anti-virus techniques, recognition strings and software product reviews. The
publication was priced at 195 for 12 monthly issues. The publication is now in
its second year, and has a worldwide readership.

Later that month an incident occurred which demonstrated the risks of
trusting users with viral disassemblies and materials. The “Icelandic” virus
was disassembled by Fridrik Skulason at the University of Iceland. Before
distributing the disassembly to the remainder of the research community he
made a modification (presumably to detect any re-assembly of this text).
Within one month a copy of the Icelandic virus was uploaded to the virus
analysis area on the Homebase board. This was analysed, and a statement
made by the CVIA that a virus named the ““Saratoga’ virus had been detected
in the US, and (based on the initial date reported by the discoverer) predated
the Icelandic strain. Unfortunately the Saratoga virus carried the modification
made by Fridrik, and had thus clearly been re-assembled from his disassembly.
Discussion on the ethics of the original alteration, and of the person who had
re-released the sample continued within the community for many months
afterwards.

The establishment by Joe Hirst of the British Computer Virus Research
Centre was announced (BCVRC). This centre aims to collect and catalogue
computer viruses, to disassemble and analyse samples, and to disseminate
information between anti- virus researchers worldwide. The centre is estab-
lished as a personal venture in the aftermath of the failure of CoTRA, and it is
hoped that it will act as the nucleus of a UK virus response.

Associated Press reported that Robert Morris had been indicted by a federal
grand jury in Syracuse, New York, to stand trial on a count of accessing without
authorisation at least six computers in which the federal government had an
interest. This charge was brought as a test case under the 1986 Computer Fraud
and Abuse Act. If convicted, Morris would face a maximum sentence of five
years in federal prison, and a $250 000 fine.

The US army solicited applications from small business contractors under
the Small Business Innovative Research (SBIR) programme, for research into
computer virus electronic counter measures (ECM). The programme’s objec-
tive was cited as:

Objective: The objective shall be to determine the potential for using “computer
viruses”” as an ECM technique against generic military communications systems/nets
and analyzing its effects on various subsystem components.

Description: The purpose of this research shall be to investigate potential use of
computer viruses to achieve traditional communications ECM effects in targeted
communications systems. These effects can include data (information) disruption,
denial, and deception, but other effects should also be researched such as effects on
executable code in processors, memory, storage management, etc. Research in
effective methods or strategies to remotely introduce such viruses shall also be
conducted. Efforts in this area should be focused on RF atmospheric signal
transmission such as performed in tactical military data communications.

24 A Pathology of Computer Viruses

The programme is scheduled to begin in fiscal year 1990, and is divided into
two phases. Funding for phase I may be up to $50 000; and up to $500 000 for
phase II. Phase Lis a feasibility study of the use of viruses as an ECM technique;
phase II the development of a demonstration which will validate the ECM
concept.

The US National Institute of Standards and Technology (NIST) issued a
warning concerning the “Datacrime” or ““Columbus Day” virus. This virus
would, when activating on 13 October, perform a low level format of cylinder 0
of the IBM PC hard drive. An exceptionally large number of warnings of the
destructive effects of this virus, first detected in March 1989, were distributed
by a number of organisations. In the event, very few occurrences of the virus
were detected, and the Jerusalem virus once more took the heaviest toll.

The US NIST is responsible for security standardisation for federal agencies,
and for security guidelines for unclassified systems. At this time, NIST was also
moving to establish a network of computer security response and information
centres modelled on the Internet CERT organisation. These centres were to
serve as sources of information and guidance on viruses and related threats,
and would respond to computer security incidents. These proposals continued
to develop during 1990, and culminated in an international CERT structure
proposal.

2.8.4 October—December

On 4 October IBM announced the release of its own anti-virus product. This
product, based on the virus analysis work at the Thomas Watson Research
Centre, operated by scanning for known virus signatures in system files. A
token charge of $35 was levied for this utility. Initial problems included the
detection of a number of legitimate products as viruses by the scanner. Within
the UK IBM now offer upgrades to the scanner, together with general guidance
on virus prevention in the form of a publication based on David Chess’ original
paper on “Coping with computer viruses” and a series of workshops on virus
issues.

October 16 saw the release of a second worm on to the SPAN network. This
worm called itself the “Worm Against Nuclear Killers”, and displayed a
graphic with the acronym of “WANK"”. The advice supplied during the
HI.COM incident was re-iterated by CERT. Had this advice been followed to
the letter, the impact of the WANK worm would have been considerably less.
This indicated a general problem with ensuring that security patches and fixes
are installed by a wide range of system administrators with varying experience
spread worldwide. A variant of the WANK worm — “OILZ" — was activated on
30 October.

In November, the Washington Post reported that US District judge Howard
Munson had permitted the case against Robert Morris to proceed to trial,
despite requests by the defence for the felony charge to be dismissed. This plea

Historical Perspectives 25

was based on the allegation that the Justice Department had improperly
revealed to a reporter (before the indictment) that Morris had made a
statement, and that the Department was considering whether he should be
permitted to plead guilty to a misdemeanour charge.

The month of December saw the AIDS trojan horse incident in the UK. In
some ways this was to become the UK equivalent of the Internet worm
incident. The AIDS trojan was bulk-mailed during a five-day period from the
8th to the 12th of December from postal districts in west and south-west
London to computer users in the UK, Europe, Africa, Scandinavia and
Australia. The bulk mailing utilised 7000 names purchased from the PC
Business World circulation department in October, together with 3500 names
extracted from the World Health Organization’'s (WHO) databases. The
mailing comprised a computer diskette in a square white envelope together
with a small blue piece of paper (the licence agreement). The disk label
announced itself to be ““AIDS Information Introductory Diskette Version 2.0”.
The disk itself was in IBM DOS format and contained two files:

INSTALL.EXE Sept 28 1989 146188 bytes
AIDS.EXE Aug 71989 172562 bytes

The user is requested to start his/her computer, insert the disk in drive A,
type “A:install” to DOS and then press Enter. This action invoked the
INSTALL.EXE program which then proceeded to create a series of hidden
directories on the C: drive. These directories are given names which are
combinations of spaces and ASCII character 255 (FFh). Within one of the
deeper directories five files are created which contain counters and program
serial numbers. Next the INSTALL.EXE program copies itself as REM#.EXE
into the hidden directory ““C:#"’ where the “#"’ character is ASCII 255. Next the
AIDS.EXE program is copied to the root directory of the C: drive. Finally, the
AUTOEXEC.BAT batch file in the root directory is modified to:

echo off

C:

cd #

rem# PLEASE USE THE auto.bat FILE INSTEAD OF
autoexec.bat FOR CONVENIENCE

auto.bat

Note the “#"’s representing ASCII 255. The inclusion of these characters in the
rem statement changed the normal comment into a request to execute the
program named rem# (since the ASCII 255 character is not interpreted as a
space, even though DOS displays it as such).

Thus the AIDS trojan had arranged for regular execution of the REM#.EXE
program. When the machine has been rebooted approximately ninety times,
the AIDS trojan will begin encryption of all file names on disk. The directory

26 A Pathology of Computer Viruses

entry for each file is encrypted using a simple substitution code, with file name
extensions being encrypted by look-up in a static table. After encryption the
modified directory entry is marked read-only and hidden. Following encryp-
tion the trojan provides a DOS look-alike shell which emulates a small subset of
DOS commands, providing an unaltered listing of the directories. AREAD.ME
file in the top level contains the text:

You are advised to stop using this computer. The software lease has expired.
Important: Renew the software lease before you use this computer again.

The AIDS.EXE program was itself innocuous, consisting of an AIDS risk
assessment interactive questionnaire. The “licence’”” document accompanying
the trojan program contained:

1. Introduction.
2. Instructions for installation.

3. Limited warranty stating that in the event of the program being defective PC
Cyborg (the alleged manufacturer) would replace it at no charge. This was
followed by a standard disclaimer indicating that the programs are supplied
"“as is”, without warranty of any form.

4. Licence agreement stating the conditions under which PC Cyborg would
renew the licence beyond the initial trial period, and noting that in the event
of a breach of licence PC Cyborg would be permitted to use “program
mechanisms to ensure termination of your use of the programs”.

The text of the licence agreement is reproduced in Appendix 8. This
agreement led to considerable legal discussion as to whether PC Cyborg was
legally permitted to corrupt data and executables on disk after termination of
the licence period.

Disassembly and analysis of the AIDS trojan horse was done on an ad hoc
basis by a loosely knit group of specialists (in a manner which mirrored the US
community’s initial reaction to the Internet worm), including Jim Bates (of
Bates Associates), Dr Alan Solomon (Director of the UK data recovery firm S &
S International Ltd.) and Dr Jan Hruska (Director of Sophos). Reports of AIDS
cases were passed on to the UK police Computer Crime Unit (CCU) who were
investigating the incident.

Finally, as the year ended, the CCC in Hamburg held their 6th Congress,
with the title “Open frontiers: CoComed together”. Included in this congress
was the second virus forum, including discussions by Professor Klaus
Brunnstein, Ralf Burger, Wau Holland (founder of the CCC) and Juergen
Wieckmann (editor of the CCC book). Particularly controversial was the
argument by Ralf Burger that the publication of computer virus code does not
contribute to the virus threat. Brunnstein indicated his estimate of 250 hours to
analyse and classify a new virus. An issue raised was whether there were

“good uses’ of viruses — an example cited being disabling nuclear defence
(SIOP) systems.

Historical Perspectives 27

2.9 1990: Organisation and Litigation
2.9.1 January-April

The year opened with yet another example of shrink-wrapped software being
infected, in this case the “‘Desktop Fractal Design System’ software supplied
by Academic Press, which was infected by the Jerusalem virus. This software
was a companion program to Michael Barnsley’s “Fractals Everywhere”. By
the end of 1990 the problem of shrink-wrapped software was to become
particularly acute, through the distribution of infected diskettes to thousands
of customers by computer magazines. Academic Press reacted in a responsible
manner and within two days had issued letters informing customers, and
asking them to contact the customer service department for disinfection
information. .

Robert Morris was called to trial on 15 January. Of note was the decision by
the US Justice Department to select jurors with no technical knowledge of
computer systems. Morris’ conviction was announced a week later, although
sehtencing was delayed until May.

Meanwhile in the UK, the CCU of the Metropolitan Police had applied on 18
January to the Bow Street Magistrate Court for a warrant to arrest Dr Joseph
Lewis Popp, a US citizen, charged:

That on the 11th December 1989, within the jurisdiction of the central criminal court,
you with a view to gain for another, vis the PC Cyborg corporation of Panama, with
mendces made unwarranted demand, vis a payment of one hundred and eighty nine
US dollars, or three hundred and seventy eight US dollars from the victim.

Popp was a zoologist who had conducted research into animal behaviour for
UNICEF and WHO, and who had examined the initial links between monkeys
carrying AIDS and the human population. Popp denied any connection with
the board of PC Cyborg. A spokesman for the FBI indicated that the FBI had
information to suggest that Popp was prepared to mail a further two million
disks. Popp alleged that the WHO was involved in a secret plot to raise funds to
conduct AIDS research via the trojan, and that WHO officials comprised the
board of PC Cyborg.

Popp appeared before the Cleveland District Court on 2 February faced with
extradition proceedings. US Magistrate Joseph Bartunek ordered psychiatric
reports after Popp’s attorney described his client as depressed and possibly
suicidal.

On 30 January the US Government Printing Office issued an urgent warning
to all depositories that a floppy disk accompanying the latest issue of the
County and City Data Book CD-ROM had been infected by the Jerusalem B
virus. This was particularly worrying as a more malicious virus could have
caused significant destruction of data in libraries worldwide.

28 A Pathology of Computer Viruses

The second issue of a new magazine, MacPublishing, was the unfortunate
carrier of a Macintosh virus — the WDEF virus. This virus was accidentally
included on 2000 copies of a font disk distributed free with the magazine. The
infection was apparently contracted from the US via a disk carrying hypercard
stacks. The magazine reacted rapidly by distributing copies of the shareware
anti-virus product “’Disinfectant”.

Valert-1is the worldwide virus alert list maintained in parallel with the virus-1
discussion list. This list aims to provide a channel for rapid global dissemina-
tion of warnings on newly discovered virus strains. This worthwhile medium
was also the unfortunate carrier of the Valert-1 virus (“1554"") which was mailed
to the alert list. The user mailing the virus had not considered his actions,
which led to the global distribution of the virus binary. This action led to the
moderation (monitoring) of the Valert-1list. It does, however, indicate the two-
edged sword that global warning mechanisms may provide.

2.9.2 May—September

On 4 May the sentencing of Robert Morris was carried out in Syracuse, New
York. Morris was sentenced to three years’ probation, a fine of $10 000 and 400
hours of community service. Morris smiled broadly after his sentencing but
gave no comment. Strong condemnation of the failure to sentence Morris to
imprisonment was expressed by Representative Wally Herger, author of
legislation to specifically outlaw viruses. A Justice Department spokesman
noted his disappointment in the sentence.

On 9 May the US Attorney for the District of Arizona announced the serving
of 27 search warrants over the period 7-8 May. These warrants served
throughout the US were part of a two-year investigation into illegal hacking
activities. An estimated 23 000 computer disks and 40 computers were seized.
The operation, known as SunDevil, was to result in the attempted prosecution
of a number of leading figures in the hacker/computer underground.

A research paper by Dr Peter Tippett entitled “The Kinetics of computer
virus replication” predicted an explosive binary growth of virus infections.
This has been questioned by a number of researchers in the field.

John McAfee issued a warning about the increasing number of bogus trojan
horse programs masquerading as anti-virus scanning utilities. By November
seven trojan versions had been reported:

Flushot Versign 4
Flushot Plus Version 1.3
Virus scan Versions 51, 65, 68, 70 and 72

The Homebase software is now bundled with a CRC checksum generator
“VALIDATE". Lists of valid CRCs are published for all current anti-virus
software releases.)

Historical Perspectives 29

The UK Computer Misuse Act entered into force, creating three new
offences, namely a basic hacking offence with up to six months’ imprisonment,
an enhanced offence where the hacking is a component of a further criminal
offence carrying a maximum of five years in jail, and an offence of unauthorised
alteration of computer data carrying a similar penalty. Associated with the Act
are extensive search and seize powers exercisable under Magistrate’s warrant.
The crime of releasing a computer virus was explicitly addressed in the Law
Commission White Paper on Computer Misuse which subsequently formed
the basis of the legislation. The non-retrospective nature of the legislation may
raise problems in prosecuting authors who released viruses prior to the date of
enactment.

A trojan horse was discovered on Apple Macintosh systems which repro-
grammed the attached laser writer systems to alter the default printer
password. This was possibly one of the first examples of manipulation of
intelligent peripheral devices (in this case the Postscript interpreter program in
the printer). :

The PC Today magazine mailed 40 000 copies of an inactivated version of the
“Disk Killer” PC virus in July. The boot sector virus was partially overwritten
during the duplication process and thus made inoperable. PC Today rapidly
recalled the infected disks, and stated that they would be taking action to
prevent such a recurrence, including the scanning of master disks for known
viruses, both in-house and at distribution facilities.

The Ithaca Journal reported on 25 September that a 16-year-old high school
student who created the “MDEF" and “CDEF” Macintosh viruses had been
identified by police. The student who was responsible for virus infections at
Ithaca High School, BAKA Computers Inc. and Cornell University is not being
prosecuted at this time because of his co-operation with police. One estimate
placed damage at hundreds of hours of lost programmer time.

2.9.3 October—December

In November it was reported that PC Benelux World had mailed 16 000 copies of
disks infected with the Cascade (*“1704”") PC virus. These disks were mailed
within Belgium, the Netherlands and Luxembourg. The magazine imme-
diately notified the media, and sent letters to all subscribers warning of the
infection. This, combined with the cost of providing disinfection utilities, was
estimated as having cost £40 000.

A further report indicated a ““Goblins” Atari virus infection in the cover disk
of a major Atari magazine.

The problem of shrink-wrapped virus software, both published and dis-
tributed by software manufacturers, has grown to be a significant risk. It has
demonstrated the need for all software distributors to take exceptional care in
screening their systems for virus infection. While many users will carefully
consider using software from bulletin boards, how many will think twice
before installing a commercial product?

30 A Pathology of Computer Viruses

In December the Dallas prosecutor’s office announced that it intended to file
charges against the alleged author of the Macintosh Scores virus. Lt Walter
Manning of the Dallas Police Department requested organisations infected by
the virus to report details to him to permit an assessment of the damage caused
by the virus.

The year ended with an eyewitness account by Bryan Clough in the
December issue of Virus Bulletin. The article described the Bulgarian Virus
Factory, which had produced over 100 strains and 30 distinct types of virus.
New viruses have been quoted as appearing at the rate of one per week from
this source. Products of the factory have included the infamous “Dark
Avenger” virus, together with two further retro-viruses named “Evil” and
“Phoenix” by the same author, and the V, TP and VHP series of viruses. The
complexity of the virus family structure is indicated in Appendix 5. The
Bulgarian output has also included subverted anti-virus programs which will
themselves release viruses under certain conditions.

2.10 Summary

In this chapter I have tried to give a range of reports and examples of virus
incidents and details of how the computer community has reacted to those
incidents. The chapter seeks to indicate that a wide variety of malicious
software has been distributed, and that viruses represent a significant threat,
often through unexpected channels such as shrink-wrapped or published
software. This chapter also attempts to give a flavour of the authors who write
such software, and how they are treated by the community.

In the following chapter we will look at how viruses operate on a variety of
hardware platforms, and to consider how we can prevent such viruses.

Chapter 3
Theory of Viruses

3.1 Introduction

This chapter is structured into three main sections dealing with the following
questions: How is viral code added to a system? How can it be detected? and
What are the analogies between biological and computer viruses?

Viruses are dealt with at an abstract level in this section. For details of how
viruses replicate on specific hardware platforms, e.g. IBM PC, Mac, or UNIX,
the reader is referred to later chapters.

We begin by looking in abstract at the operation of a computer virus.

3.2 Addition of Viral Code

The first question is: How can a virus insert its code into the host system? This
can be achieved in a variety of ways — there are four primary methods of
inserting a block of viral code into a host executable program, namely:

1. Prepending: moving the original host’s code (or part of the code) to a later
memory or disk location, leaving a gap into which the virus can insert its
code.

2. Appending: simply adding the virus’ code to the end of the host program.
Shell: embedding the host’s original code within the virus as a subroutine.

4. Overwriting or injective: the host is destroyed by being overwritten by virus
code.

w

In each technique the flow of control is slightly different. In the prepending
example the virus code is entered first, the virus replicates and then passes
control to the host program which executes and exits. In the appending case
the host executes first, exits and then passes control to the virus. In the shell

32 A Pathology of Computer Viruses

case the host program forms a subroutine of the virus. The virus is thus
executed before and after host program execution.

Depending on the complexity of the object code file structure it may be
difficult or impossible to arrange for the execution of viral code after the host
program has terminated. In general this is due to the multiplicity of exit or
return instructions in a subroutine or program. The appending virus must
therefore patch the original host so that control passes to the virus first (this is
normally achieved by modifying a few instructions at the start of the host).
Thus, true appending viruses require support for interception of host
initialisation or termination calls, rather than relying on execution to start at the
lowest address in memory and continue onward.

In the shell virus the host program becomes a single subroutine, and can thus
be run under complete control of the virus. The virus can execute initialisation
and termination code, allowing complex replication and manipulation strat-
egies to be included.

Each of the techniques is illustrated below:

I Host Program I I Virus I

Original Host and Virus

| — Infected Host Program - | - |

]
Appending Virus Example
—— I Infected Host Program —
Prepending Virus Example
[—> I Infected Host Program — > l — l
— Shell Virus Example
I Virus —> l Damaged Host

— Overwriting Virus Example

Theory of Viruses 33

A virus must have a certain degree of access to its environment. Specifically,
it must be able to write to executable or potentially executable code within the
system. The virus, by its activity, affects a permanent change in the
environment of the system (i.e. the infection of one or more host programs).

The algorithm used by a possible virus has been summarised (by Fred
Cohen) as:

program virus
signature 1234567

subroutine infect_executable
begin
loop: get random file
if first line of file = 1234567
then goto loop
prepend virus to file
end

subroutine do_damage
begin

<variety of possible damage routines>
end

subroutine trigger_pulled
begin

<check for a particular system state>
end

begin

infect_executable
if trigger_pulled then do_damage

end

host program starts here

This simple pseudo-code virus demonstrates a number of characteristics
shown by real viruses. First, the virus must infect an executable by adding its
code in a manner which ensures the code will be executed (here by prepending
to the host); second, the virus checks for a signature to avoid infecting the same
host file over and over again; and third, the virus checks for a certain
combination of system conditions and if satisfied will execute a damage
routine. ‘

34 A Pathology of Computer Viruses

Not all viruses are malicious and in many cases the do_damage may be an
amusing display or message or, indeed, may be absent altogether.

In the example above it should be noted that the infected code may occur
anywhere within the system, it may include the system initialisation (boot
sequence), termination (shutdown) sequences, user or system executable
programs or indeed data which is interpreted by other programs (such as a
script of an editor or command interpreter instructions).

The examples above have assumed that the host’s code remains intact (in all
bar the overwriting case) and thus the infected file is longer by a certain
amount. Each virus causes a characteristic length extension of a host program —
for instance, the Cascade virus on the IBM PC extends all hosts by 1701 or 1704
bytes when infecting.

This is not necessarily the case. Consider a virus that compresses its host
before infecting. This virus modifies the above algorithm as follows:

program virus
signature 1234567

subroutine infect_executable
begin
loop: get random file
if first line of file = 1234567
then goto loop

compress host program
prepend virus to file

end

subroutine do_damage
begin

<variety of possible damage routines>
end

subroutine trigger_pulled
begin

<check for a particular system state>
end

begin
infect_executable
if trigger_pulled then do_damage
uncompress host program

end

Theory of Viruses 35

The virus now compresses the host program using one of a variety of well-
known algorithms such as Huffman or Lempel-Ziv coding. This results in a
significant saving in space — possibly 50 per cent or more of the original size.
The virus can then add its own code. The virus code includes instructions to
uncompress the host after the viral code has executed. The user of such a virus
detects no file extension, and indeed may detect a file compression or
shortening when the virus is active.

Cohen has argued that such a virus with no damage routine can be
considered a useful application of viral code. Later examples of anti-virus
viruses, self-replicating vaccines, are also cited later in this book as possibly
useful applications.

The criteria for detecting the action of virus code cannot be as basic as
detection of extension of infected object size. Indeed there are a number of
proofs that no possible set of criteria or characteristics can be used to identify a
virus absolutely.

3.3 Detection of Viruses

Cohen provides the following basic proof of the undecidability of whether an
object is a virus. He proposed the construction of a function “is_a__virus”.
This function returns “true” if a program s a virus, otherwise it returns “’false”.

By including this function in the virus propagation code itself, we can invoke
a contradiction which can be used to prove that this function cannot be written.
Namely:

Main program

begin
if (is_a_virus = FALSE) infect_executable
if trigger_pulled then do_damage
uncompress host program

end

If the function returns ““true”’, then the program will never call its
infect_executable function and thus cannot be a virus. If the function returns
““false’” (i.e. not a virus), then the program will call its infect executable function
and must therefore be a virus.

Thimbleby notes that this proof has a number of shortcomings:

1. The time taken to compute the ““is_a_virus” function is not considered. If the
function takes an infinite time to compute then no contradiction is invoked.
2. Itis argued that a program must infect to be classed as a virus. Thimbleby
argues that it is sufficient that a program contains code to potentially infect,

36 A Pathology of Computer Viruses

and thus no contradiction exists since “‘is_a_virus”’ can return “’true” in the
case of the contradictory virus above without raising a contradiction.

3. The code “infect_executable”” may be null, in which case the proof relates to
a non-replicating object which may or may not cause damage —i.e:. a trojan
horse.

Alternative proofs have been proposed by both Thimbleby and Adleman
regarding the undecidability of virus (or trojan horse detection).

The proof presented by Thimbleby is based on the refutation of the concept
that all trojan horse programs are enumerable (i.e. can be listed). Basically, he
presents a short contradictory program which attempts to enumerate all
possible trojan horses. If the program succeeds in locating itself within the list
of trojans, it runs the host normally, thus it is not a trojan. If it is not in the
generated list of possible trojans it loops forever, causing a denial of service and
indicating that it is indeed a trojan horse.

Variable N is an integer

N=0

‘While Enumerate(N) is not equal to my program
doN=N+1

Execute host code

The function “Enumerate” generates the code for the nth possible trojan
horse from a finite list of possible trojan horses.

This proof makes the assumption described as ““trivial” that the trojan horse
can in fact access its own code. This implies a degree of access to the system
environment that is certainly allowable in open unprotected architectures such
as most personal computers, but may be questionable in architectures which
explicitly prevent read access to code or closely monitor access to code files.

3.4 Classes of Viruses

Adleman offers a series of classifications of viruses based on their behavioural
characteristics, which unifies the concept of trojan horse with that of a virus.
He decomposes the set of viruses into four disjoint subsets based on whether
they are pathogenic and/or contagious. While formal definitions of these two
criteria are given, it is sufficient here to note that a pathogenic organism will
cause damage to the host system, while a contagious organism will cause its
host to spread the organism.

Theory of Viruses 37
A program infected by a specific virus is:

Benignant if it is not pathogenic and not contagious
Trojan horse if is pathogenic but not contagious
Carrier if it is not pathogenic but is contagious

Virulent if it is pathogenic and contagious

Forinstance, a carrier is incapable of causing injury to the host, but will infect
other programs (which may not be carriers after infection).

This classification of the characteristics of an infected program is extended to
produce a general classification of viruses with respect to all programs. Thus a
virus is:
® Benign if all possible programs infected by the virus are non-pathogenic and

non-contagious

® Epeignl if all possible programs infected by the virus are non-contagious, but
at least one possible program infected by the virus will be pathogenic

® Disseminating if all possible programs infected by the virus are non-
pathogenic, but at least one possible program infected by the virus will be
contagious

® Malicious if at least one possible program infected by the virus will be
pathogenic, and at least one (possibly a different program) will be
contagious

Adleman also provides a number of proofs of significance based on this
categorisation:
® Programs infected by a benign virus are benignant
Programs infected by an Epeian virus are benignant or trojan horses
Programs infected by a disseminating virus are benignant or carriers
Programs infected by a malicious virus can be of any category
It is impossible to detect all viruses
Viruses which increase the length of the host on infection are isolatable
It is impossible to isolate all viruses

The concept of a germ is also introduced. The germ is a virus which can infect
a host, but can itself never be generated by an infected host. An example may
be the launcher used to create an initial infected host — such launch code may
exist as part of a trojan horse program. Possible examples include the hypertext
stacks used to launch the Peace virus on the Macintosh.

Much further work is required in the area of virus theory, particularly with
regard to the minimal restrictions on the generality of computing systems
which will permit detection of viral replication or malicious software activity.

1. The term “Epeian” is based on the name of the builder of the original Greek trojan
horse cited in the Odyssey of Homer.

38 A Pathology of Computer Viruses

3.5 Thompson: and Trusting Trust

While on the subject of the inherent difficulties in detecting viruses (or indeed
trojan horses), mention must be made of Ken Thompson’s 1983 ACM award
speech which described a trojan horse in an AT & T Bell C compiler. He
indicated the potential for such a trojan, incorporated into a trusted component
in the compilation path, to completely vanish.

The UNIX C compiler is written in C itself, and bootstrapped using either a
previous release of the C compiler or a minimal handwritten compiler in
assembly or another high level language. The new C compiler is compiled by
the previous C compiler to produce a program which will correctly compile C
using the features of the new compiler, but with the code generated by the
previous compiler. This stage 2 compiler can then be used to recompile itself to
produce a stage 3 compiler with the syntax and semantic analysis features of
the new compiler and the new code generator. This complex bootstrap process
is typical of the installation of a new compiler on a mainframe system.

Theory of Viruses 39

Phase 1

New Compiler Source

l

Old Compiler

|

New Compiler Executable

Generated by inefficient or
buggy old compiler

Phase2

New Compiler Source

l

New Compiler Executable

|

New Compiler Executable

Generated by efficient

new compiler

Two phases in porting a new compiler version

The difficulties began when a trojan horse was planted in the C compiler.
The trojan horse proposed by Thompson would look for a particular sequence
in the source and, if detected, miscompile the source program, e.g.

40 A Pathology of Computer Viruses

compile (program)

begin
if match(program, "login pattern")) then
compile ("login trojan")
return
else

end

He reports planting a bug which would recognise the compilation of the
UNIX login command. The modified login program would accept either the
correct password or a special hard compiled password. This type of program
recognition is an intractable problem, but fortunately the matching process
could apply a significant degree of knowledge about the expected structure of
the login program (it was unlikely that the program would change dramatically
from the previous release version).

The trojan code is easily recognisable in the compiler itself, therefore he
proposes a further match pattern. This match pattern looks for the C compiler
being itself compiled:

compile (program)

begin

if match(program, "compiler pattern")) then
compile ("compiler trojan")
return

else if match(program, "login pattern")) then
compile ("login trojan")
return

else

end

The compiler will still recognise the login program, and will generate a
trojanised executable. It now also recognises an attempt to compile a new C
compiler, and will insert the code sequence above into any future C compiler.
Thus all following C compilers will contain code to insert the trojan into login,
and the compiler trojan into all future compilers.

Once the C compiler has been recompiled (and the trojan code automatically
inserted), the original source for the trojan can be removed from the C compiler
source. When the C compiler is recompiled, the clean source will have the
compiler and login trojan code added by the buggy executable, producing a

Theory of Viruses 41

new generation of the compiler. So the bug is self-perpetuating, and in Ken
Thompson's words:

It is as close to a “learning” program as I have seen

Actually, the compiler need not be the target of the trojan horse. It is
sufficient to attack any element in the compilation sequence. A trojan can be
inserted in the assembler which recognises assembly of a new assembler, in the
linker which recognises linking of a new linker, etc. At lower levels the
complexity of correctly adding code to support the trojan increases, due to the
loss of information and structure during the compilation. Theoretically the
concept could even be extended to an operating system which recognised
when an attempt was being made to write a file containing the executable for
the next release of the operating system, and to insert a similar trojan into the
file.

The problem is simply “trusting trust”. When we compile a program on our
system, we must trust the hardware, operating system, editors, compilers,
assemblers and linkers. All are vital parts of the mapping operation from the
source we type in, to the code we run. The source code may be formally
verified, but unless the compilation path is also verified, this cannot provide
complete protection.

42 A Pathology of Computer Viruses

Valid Login Source —={ Trojan T Trojan Login
Compiler

Valid Compiler Source

———-{ Trojan .. New Trojan

Compiler Compiler

Valid Assembly Code

for an Assembler ——=J Trojan | — . New Trojan
Assembler Assembler

Impossibility of generating a valid program with
an untrusted compilation path

Editor Compiler Assembler "1 Loader
Souice Object
Code Code

Components of the compilation path

This concludes a brief introduction to the abstract theory of viruses. To
continue we will look at biological analogies, and consider what —if anything —
they can tell us about computer viruses.

3.6 Biological Analogies

The obvious analogy between the replication of a computer virus and that of a
biological virus has been a major driving factor behind the terminology that has
evolved within the field. Although care should be taken regarding the
extension of this analogy to extremes, it can provide a useful comparative
model, suggesting a number of possible protection schemes.

Theory of Viruses 43

Biological life also provides a range of possible models for the replication of a
virus within a computer system, and within the computing community as a
whole.

3.6.1 Biological Viruses

Life is based on the existence of the genetic code which determines the
structure of an organism, and on the replication of such genetic material.
Structure is encoded as a chain of chemical groups consisting of a phosphate
and a deoxyribose. Attached to this backbone is one of four possible bases,
namely:

Purines: Adenine (A) Guanine (G)
Pyrimidines: Thymine (T) Cytosine (C)

The base, phosphate and deoxyribose form a single nucleotide. Two chains of
nucleotides are paired, with hydrogen bonds forming between purines on one
chain and pyrimidines on the other chain. The chain molecules (deox-
yribonucleic acid, DNA) have four possible pairings for each element in the
chain: A-T, T-A, G-C and C-G. The arrangement of the nucleotides forms the
genetic code, with groups of nucleotides forming genes. Each gene contains
details of the structure of a single protein in the organism. Proteins are
comprised of combinations of twenty amino acids. Each nucleotide has four
possible states (A, G, T or C). Thus a minimum of three are required to specify
an amino acid. This group is called a codon.

The DNA is replicated by a complex series of operations during which an
enzyme produces a ribonucleic acid (RNA) fragment transcribed from a gene or
group of genes in the DNA. The messenger RNA is a single strand of
information which can pass through the cell nucleus membrane (which
segregates the genetic material from the remainder of the cell). The messenger
RNA is transcribed by transfer RNA which assembles a series of amino acids
(dictated by the codons in the messenger RNA) to produce a protein.

In biological systems a virus is a simple structure which is capable of self-
replication only through the use of the complex cellular protein construction
mechanisms outlined above.

A virus injects its genetic material in the form of RNA or DNA into a host cell.
The genetic material is then replicated using the internal protein biosythesis
mechanisms of the cell, effectively producing a large number of viruses within
the cell itself. The build-up of toxins and viral material within the cell walls
causes breakdown of the cell, and eventual release of a large number of virus
clones into the environment.

Thus the operation of a biological virus can be described algorithmically as:

® Inject genetic material into the cell
® Cellular transcription and synthesis mechanisms cause replication

44 A Pathology of Computer Viruses

® Virus proteins are assembled to generate copies of the virus
® Cell wall rupture causes release of copies into environment

3.6.2 Parallels Between Low Level Operation

A computer virus is a small segment of computer code which is incapable of
replication without being incorporated into a host program. The code of the
computer virus can be compared to the codon or nucleotide structure level in
the DNA of a biological virus. The parallel between the inability of both forms
of virus to propagate without the agency of a host program is obvious (in the
biological case injection of genetic material into a cell, in the computer case
injection of code into computer program).

A significant difference is the concept of the cell environment. If it is argued
that a cell represents a computer program, then how could viral spread across
program boundaries occur?

The program would by analogy generate a large number of copies of the
short viral code segment, and would then release them into the environment.
The viruses would seek out and infect further programs. In the case of a
computer virus it is more accurate to imagine the virus subverting the host cell
and manipulating the cell to infect other cells directly. To modify the computer
virus analogy to closely resemble the biological virus, it is necessary to
postulate that the environment consists of:

1. All host programs being active and subject to direct manipulation in system
memory (the alteration of an executable which may be loaded into memory
at a'later time may be considered an acceptable extension of this concept).

2. Further fragments of computer code active in the environment which may
have been generated by the host programs. These represent viruses active
within the system.

An infected host program would have its executable code altered (on disk or
‘in memory) to commence replication of the virus code fragment. The replicated
viruses would be executable code fragments which would be run and launched
into the environment. These fragments would then seek out and attach to
further host programs. This example implies a multi- processing environment.
The small resident virus executables are similar to the resident virus compo-
nents on the IBM PC discussed in the next chapter.

The concept of genetic code also differs significantly between current
computer systems and biological systems. Specifically, while computer object
code may be likened to a codon or nucleotide, it is questionable whether any
discernible high level structure exists in most computer code. The procedural
structure imposed by compilers of high level languages may possible be
likened to the gene structure level, but this is questionable.

This key issue of high level structure is one which has significantly retarded
the application of genetic algorithmic techniques to computer viruses.

Theory of Viruses 45
3.6.3 High Level Parallels

The comparison of the more abstract aspects of computer virus and biological
virus behaviour is potentially more useful at this time. The symptoms of an
infected system can be paralleled to an infected organism, the behaviour of a
computer virus at an abstract level to that of a biological virus, and the
prevention of biological infection paralleled to that of computer infection.

William Murray describes the analogy between computer and biological
virus propagation in clear terms, in the following manner:

A virus is expelled (sneeze, SENDFILE) from an infected member (carrier or
originator) of a community (family, users of a common system or network), on a
vector (mucus, data object, file or program), through a medium (air, network or
shared I/O devices or media) through a portal of entry (nose, network reader) to a
target member of the community.

1. Portals of entry Thewide variety of portals through which viral material can
be introduced in a human being (by ingestion, via the circulatory system, via
respiration, etc.) is mirrored by a wide range of network services by which code
can be introduced and executed in a computer system.

2. Vectors Vectors are organisms which carry viral infection (possibly without
noticeable effect) between third parties. An example is the tsetse fly carrying
sleeping sickness. Vectors for viral infection are data or program objects, an
example might include a useful system utility which was infected before
release to the network.

3. Hygiene To prevent infection a wide range of hygiene measures are
suggested, including non-contact with contaminated materials (such as soiled
articles in the human case) and general bodily cleanliness. The computer
parallels would be the avoidance of the ingress of suspect computer code (such
as anonymous games software) coupled with the regular verification of the
integrity of protective software (password controls, etc.).

4. Vaccination Vaccination provides an extremely powerful technique in
biological systems, promoting the development of natural immunity using
attenuated viral material. Within the computer environment fragments of viral
material may also be used —in this case the signature recognition strings which
the virus uses to prevent repeated replication. These fragments may safely be
added to existing cells (computer programs) and will protect against the virus.

5. Antibodies Antibodies to specific infections would be equivalent to the
introduction into the computer environment of specific disinfection software,
which would recognise the infected program and destroy the virus. Such
antibodies can be introduced prior to the point of the infection in order to raise
the general level of protection. In the same way as the level of antibodies in the
bloodstream decreases after infection has been destroyed, so the probability
that the systems administrators will be conscientious in their use of scanning
and disinfection utilities decreases.

46 A Pathology of Computer Viruses

6. Isolation and quarantine Isolation of infected organisms from the remainder
of the community is suggested for all highly infectious diseases. In a similar
manner, constraints on electronic and physical media traffic between infected
and clean systems can significantly reduce the likelihood of infection
spreading.

7. Latency and incubation Many diseases have a significant delay between the
point of infection and the point at which the organism begins to demonstrate
the symptoms of the infection. This latency or incubation period exists in
computer virus infections too. The latency may be expressed as the time
between initial infection and the time at which the degradation in system
performance (due to widespread infection of executables) becomes unaccept-
able to the user. It may also depend on the delay between a virus initially
infecting a program, and the commencement of malicious activity by the virus.
This delay may be considerable (decades, in the case of the “Century”” IBM
virus). Viruses may, however, cause damage during this period which is not
readily detectable by external symptoms (such as the steady interlinking of
data sectors caused by the “4096" virus strain) during this period.

8. Carriers If the computer system is considered to be an organism, then a
carrier would be a host on which the virus was incapable of replicating or when
replicating would cause no obvious symptoms. This might be due to the
specific targeting of a virus against a specific host type, or hosts on which
specific code exists (e.g. the Scores Mac virus targeted against products of
Electronic Data Systems Ltd.) or may be unable to propagate due to host
architectural differences (such as the incompatibility between Intel 80386 and
8086 processors — the POP CS instruction).

9. Diagnosis The process of diagnosis of an infected system can be compared to
that of an infected organism. External signs contribute to the diagnosis (e.g. the
symptoms of a viral infection), internal checks may be run (similar to inspection
of the contents of data on disk or in system memory). The patient may be
queried as to his health, possibly similar to the use of system auditing and
‘monitoring, and the subsequent use of expert systems to interpret system logs.

10. AIDS Finally, the organism’s internal protective systems may recognise
legitimate cell material (erroneous decisions resulting from a scan for a virus, or
analysis of system activity logs) and may remove legitimate programs. Equally,
the virus may alter the operation of the anti-virus software in such a manner as
to cause the deletion or corruption of valid data or programs. This could be
compared to the Acquired Immuno-Deficiency Syndrome (AIDS) in humans.

3.7 Quest for Life

The clear parallels between biological and computer viruses lead naturally to
the question: Do computer viruses constitute artificial life? To answer this

Theory of Viruses 47

question, a definition of what constitutes life is critical. A list of criteria required
for artificial life was given by Farmer, and included:
1. Life is a pattern in space—time.
Self-reproduction.

Information storage of a self-representation.

A metabolism.

Functional interactions with the environment.
Interdependence of parts.

Stability under perturbations.

The ability to evolve.

Growth or expansion.

O XN LN

Computer viruses are physical manifestations represented by computer
object code spread both locally within the file system storage and globally
throughout the world. Atany given moment the code comprising a single virus
is likely to be in execution by many separate systems. The code representing an
individual virus instance has a distinct existence in memory, and a distinct
lifespan in terms of the duration of its presence in memory.

Self-reproduction is the principal feature which distinguishes a computer
virus from other executable code in the system environment.

The self-representation of a computer virus is clearly the object code which
constitutes the virus. This code is replicated as part of the virus’ replication
cycle, and is broadly analogous to the genetic code of a living organism.

The existence of a metabolism (i.e. a conversion between matter and energy)
is questionable in the case of a virus. It is possible to argue that the definition of
metabolism is insufficiently broad to encompass the significantly different
characteristics of any potential computer life form. The dependence of
computer viruses on the existence and manipulation of computers by external
entities does not directly void the definition of life. The parasite which depends
on its host’ s existence and its host’s reproductive or digestive functions for
replication can be cited as a biological counter example. Metabolism in the case
of the computer virus may be considered as the conversion of computational
effort to increased information content or structure in the computer’s second-
ary storage. Thus the virus has consumed 1000 cycles of CPU time and has
generated a structured image where random data might have previously
existed.

A virus clearly interacts with its environment by altering system memory,
secondary storage or peripheral states. Equally, the components of a virus are
interdependent to a certain degree. Certainly the removal at random of a block
of instructions would significantly modify the behaviour of the virus.

Stability under perturbation is a significant question which is closely related
to the ability to adapt to environmental changes. A virus can modify its
execution paths within tightly defined logical parameters to compensate for
limited environmental changes. This is probably comparable to the limited
range of environments in which many life forms can survive.

48 A Pathology of Computer Viruses

Putting aside the question of evolution (which must be considered the
significant hurdle for computer viruses), it is clear that following the release of a
computer virus it will grow, spreading potentially worldwide'. The increase in
the variety of computer viruses must, however, be ignored as this is a
representation of interference by another life form (man) and not of the
replication and growth of viruses.

Finally, evolution. This is the single area in which current viruses fall short of
the goal of artificial life. The next section discusses the limited degrees of
evolution or mutation which have been witnessed, and then considers the
extension of the genetic algorithm to computer viruses.

3.8 Evolution: Genetic Algorithms
3.8.1 Random Mutation

A limited number of random mutations of computer viruses have been
recorded, caused by data corruption in transit, or by failure of system memory
or disks. One example is the single byte modification in the 1704 strain of the
IBM Cascade virus, detected in Yugoslavia. This has been attributed to random
corruption rather than to deliberate modification. It is worth noting that some
newer viruses incorporate self-correcting (Hamming) codes to avoid such in-
transit corruption.

The possibility of random bit corruption causing virus code to be generated
in an executable program has been addressed by both Cohen and Burger. Both
give results which vary by orders of magnitude, due mainly to differing
assumptions. As a simplistic estimate, consider a virus of length 1000 bits (or
125 bytes — not unrealistic considering the “Tiny’’ series of viruses on the IBM
PC which are around 158 bytes in length). The probability of extensive random
corruption of a block of 1000 bits generating an exact match against the 1000 bit
test virus is 1/21000 or =10-301,

If we consider that a 90 per cent chance of each bit correct may generate a
viable virus, then this probability reduces to 1/1.821000 or =10-25°. Thus a single
computer randomly generating 1000 bit patterns and testing the resultant
patterns at the rate of one pattern every millisecond would generate a new
operational virus (assuming the 90 per cent criteria) once in every 10+24° years.

Even with the expansion of the computer base worldwide it seems highly
unlikely that such a random mutation would generate a new computer virus.
The probability of an existing virus mutating by random bit corruption into
another viable virus is considerably higher, however.

3.8.2 Programmed Mutation

A simple evolutionary virus was cited by Cohen which added random
statements between the functional statements of the virus when producing a

Theory of Viruses 49

new copy. He demonstrated that it was impossible to decide the functional
equivalence of two programs (even though it is comparable easy to prove in a
limited subset of cases), by producing an undecidable evolutionary virus
(UEV). The evolutionary virus is reproduced (in modified form) below:

program evolutionary virus

subroutine print_random_number

begin
print random_variable_name = random_variable_name
loop:
if random_bit = 1 then
print random_operator
goto loop
print semicolon
end

subroutine copy_virus_with_insertions

begin
loop:
copy evolutionary virus until semicolon
if random_bit = 1 then
print random_statement

if not end of input file then goto loop

end
begin

copy_virus_with_insertions
infect_executable

if trigger_pulled then do_damage
end

host program

This programmed mutation is designed to operate within carefully control-
led criteria, and thus while generating a potentially infinite number of
mutations, will not functionally modify the behaviour of the core of the virus
replication task. Limited programmed mutation has been incorporated into
viruses such as the 4096 (random reordering of procedural code blocks within
the virus) and the 1260 (random padding instructions in the decryption
routines).

50 A Pathology of Computer Viruses
3.8.3 Genetic Algorithms

An extension of the degree of programmed mutation is to utilise binary virus
techniques. A binary virus, first proposed by Hruska, is a virus which carries
one part of a double payload. Two strains of the virus exist, A and B. Both
strains are innocuous in isolation but when they meet, the payloads combine to
produce a malicious function. An example might be the introduction by an
author of a virus whose sole function is to replicate. At a later time the author
releases a trigger virus which itself replicates. On detecting the operation or
presence of the trigger virus, the original virus will become active, potentially
destroying data and information.

A possible example of this might be the Atari ST “’Key”’ virus. This basic boot
sector virus replicates. When active, the virus will check for the existence or
insertion of a key disk (carrying a special signature word). The code on the key
disk is loaded into memory, and immediately executed.

Binary viruses do, however, provide the ability to model sexual reproduction
in living organisms. The virus must be programmed in such a manner to
incorporate a number of variable “genes”. These genes may control functions
such as:

Replication strategy
Replication rate

Latency time
Manipulation task choice
Infection mechanism
Residency time
Encryption techniques
Camouflage techniques

These basic attributes are represented either as integer gene values which
select or modify the operation of standard code in the virus, or indeed as
procedures with standardised interfaces which are randomly swapped
between “mating” viruses.

Thus, we can design a skeleton virus with slots into which code blocks are
placed. Examples might be a procedure in one slot which scans the file system
hierarchy and selects a host to be infected, another which encrypts and
decrypts the remainder of the virus, and others which determine the
manipulation task of the virus.

Using the binary techniques above it becomes possible to design a virus
kernel which on detecting a file infected by another variant will randomly swap
code modules between the two viruses, thus producing a third strain based on
the gene values or code from each virus. As a variant of natural selection comes
into play (based on the ability of man to detect and eliminate each strain) the
percentages of each gene will slowly alter to provide the optimal combination
of criteria for reproduction and evasion of detection.

Theory of Viruses 51

Structure of a genetic virus

L il 2] 3] ¢ sT 6] 77 8] 9 vinscor |

—— Latency time
————— Replication selector
Replication rate
Encryption/Decryption

Camouflage routine

Stealth routine

Manipulation criteria selector

Manipulation task

Memory residence code

Virus core is responsible for handling gene recombination and may itself by
modularised and subject to gene swapping. Additional gene possibilities are:

Signature recognition code

® Automatic disinfection of other viruses
® Anti-virus software counter measures
® Code aimed at specific software or files
® Information compromise functions

The author of the virus could potentially upgrade his virus in situ by releasing
a new strain which would compete with other existing strains, adding its new
genes to the gene pool. With sufficient flexibility in the structure of the gene
selection mechanisms, and a large pool of genetic material, considerable
natural selection and optimisation might occur.

The reported existence of a virus construction set (with window-driven
interface) for the Atari ST was possibly the first example of the static (rather
than dynamic genetic) approach to modular virus construction.

Certainly, the picture of a virus using a genetic algorithm is far closer to the
concept of life than the traditional viruses we have encountered to date.

3.8.4 Growth and Death

Finally, biological life can provide a useful source of experience in the
modelling of computer virus propagation characteristics. The growth of
computer viruses can be compared to the growth of isolated populations of
organisms in the presence of competition and inhibition.

52 A Pathology of Computer Viruses

The viruses left to their own devices would replicate rapidly within the
system, observing the traditional “S” growth curve (if random file selection is
used) or a far more rapid exponential growth curve (if a more complex
incremental directory search algorithm is adopted). Thus, a single system
would rapidly become completely infected depending on the replication
characteristics of the virus. This system is loosely coupled by the traffic in
removable media (floppy disks) to adjacent systems, and through common
access to electronic network services. Thus a similar viral growth curve
between system partitions can be predicted.

At this point we are forced to modify the growth model to add inhibition, in
this case the intervention of a human being or beings. When a virus population
grows, so does the population’s probability of detection. If the virus is detected
then a rapid response will be invoked from the virus research community,
culminating in the release of a new anti- viral product. This product (if a
traditional signature based scanning utility) will slowly percolate throughout
the community, and will result in the death of many of the virus colonies. A
limited degree of re-infection will occur from rarely used systems or backup
tapes, and isolated infection pockets will continue to exist in systems which do
not use the anti-viral software. The situation may thus be compared to the
biological analogy of a campaign of mass vaccination to exterminate a viral
infection.

The model must be further extended to again deal with human factors, in this
case the author’s response to the destruction of his virus, and his release of a
potentially modified strain into the environment. This represents a degree of
competition between anti-virus software authors and virus authors.

In summary, a growth model can be constructed with the following features:

1. Rapid initial growth on the source system (exponential or S curve).

2. Fixed probability of infection being coupled between isolated systems via
disk or program transport.

3. Lag-time dependent on virus latency period or success of camouflage
between release and initial detection.

4. Further lag between detection and commencement of significant anti-viral
effort.

5. Penetration of anti-virus software throughout community over time with
inhibition of the virus.

6. Low probability of re-infection from isolated infection pockets or infected
backups.

7. Counter-reaction from virus author and release of new strain.

A rough graph of a possible virus infection within an organisation is shown
below. This is of course highly speculative.

Theory of Viruses 53

A possible model of virus infection

within a networked organisation

Phases:

Rapid initial spread of infection throughout organisation.

Latency time before detection.

Effective use of anti-virus.

Limited number of systems not disinfected.

Re-infection from backups as anti-virus precautions fall into disuse.

Slow tail-off of infection within organisation as infected systems are
upgraded, reformatted, decommissioned, or eventually disinfected.

SANCLEE Rl

A number of authors have addressed the problem of viral growth modelling,
including models based on the concept of an environment partitioned into
system, partitioned into user spaces, or partitioned into files. A single infected
file is inserted into the system with a descriptive model of its replication
strategy, latency time, time resident in memory, etc. The model can be
extended to impose a mandatory or discretionary confidentiality framework on
top of the general partitions.

Gleissner quotes a simplified model in which the following assumptions are
made:

M program in a single account. All programs called with equal frequency 1/M.
Initially only one program infected.

His results indicate that for an account with 80 programs, infection of all
programs will occur after 378 program calls. The graph of the infection process
is approximately exponential.

Peter Tippett has produced a paper entitled the “Kinetics of computer virus
replication”. This paper extrapolates viral growth based on a number of basic

54 A Pathology of Computer Viruses

assumptions, including the assumption that infection is a binary replication
process and that infected systems have a broadly equal chance of causing
infection to other systems. Based on this model he predicts exponentlal growth
of viruses within the community.

This, as with other basic growth models, suffers from oversimplification of
the structure of the computing base. Padgett Peterson has proposed the
categorisation of computing systems into three groups:

1. Source nodes — manufacturers and software developers.
2. Transit nodes — bulletin boards and open educational PCs.
3. End nodes — home or corporate PCs.

He proposes that infection on an individual node is basically exponential, as
it is within a specific networked community (such as a group of corporate end
nodes). He does however propose slow spread over type 1 and 2 nodes
(probably in the face of extensive anti-viral software measures) coupled by
rapid spread amongst the systems comprising a cluster of type 3 nodes. The
human factor is noted (i.e. the reaction of the anti-virus community) which
leads to counter measures on the type 1 (and possibly type 2) nodes restricting
the infection sources of the virus to local and intercommunicating type 3 nodes.
The model is thus based on a rapid anti-viral response within the expert
community, followed by a deferred local response.

David Chess confirms Peterson’s comments on the “sharing” topology of
the computing community and comments that significant levels of anti-virus
scanner use can result in reversal of the exponential growth prediction. Models
adopted at the High Integrity Computing Laboratory at IBM have indicated
(albeit crudely) that stabilisation of virus frequencies at very low values (<1 per
cent of the systems infected) may occur. Chess also denies that IBM data
indicate that an exponential growth of infections is occurring.

In general, it is certain that the topological structure of the community must
be considered, as must the intervention and inhibition of viral spread as a result
of action by the community. It is, however, likely that growth models will
evolve to include heuristics to address these issues.

Chapter 4
Operation of PC Viruses

4.1 Introduction

The lifecycle of a typical PC virus can be divided into three stages, namely:

® Activation
® Replication
® Manipulation

To achieve a spread of viral material, the virus must arrange for its code to be
executed by the computer system on which the virus resides, or by a computer
system interconnected to that system.

A typical computer has many ways in which a user may invoke object code,
either directly as the result of the execution of a command or indirectly through
system functions carried out automatically on behalf of the users.

Four main types of code are executed by computer systems:

1. Initialisation code: executed as part of the system startup or boot phase
before system login or command interpreter prompts are generated.

2. User code: executed as a direct or traceable result of a command by the user.

3. Daemon code: regularly run by the system to carry out administrative
functions such as accounting, background mail transfer, etc.

4. Termination code: executed as part of system shutdown.

Any analysis of viral propagation on a specific hardware platform must
address all the above routes and carefully consider the avenues by which viral
code may be executed.

This chapter specifically addresses the avenues for viral infection of IBM PC
compatible systems, together with the techniques adopted by known PC
viruses to evade detection and analysis. A general knowledge of IBM PC
system architectures is assumed.

56 A Pathology of Computer Viruses

4.2 PC Boot Sequence: Initialisation

The initialisation code executed by a PC is known as the boot sequence and is
comparatively complex, leaving open many avenues for viral code to be
introduced. The sequence can be summarised as:

System bootstrap read-only memory (ROM)

Master boot sector

DOS boot sector

Initialisation “SYSINIT" program code

DOS code

COMMAND.COM code

oo AUTOEXEC.BAT command file

eee Startup utilities executed via AUTOEXEC.BAT

Initially when a user reboots, the system control passes to address
FFFF:0000h in the system ROM, which then passes control to an initialisation
routine in ROM. The principal function of this routine is to locate a ““boot”
record or sector on a secondary storage device from which the boot sequence
can continue.

In this regard all devices are searched in physical device order (normally
floppy drives followed by hard drives) for such a record.

ROM is of course unalterable by computer viruses (normally such memory is
implemented as an array of program-once fusible links, or has its structure
directly etched onto the silicon substrate). This is, however, not true of newer
electronically alterable/erasable read-only memory (EAROM/EEROM) used
primarily as non-volatile memory to hold configuration information during
power down periods.

In standard IBM PCs such ‘“parameter” RAMs do not contain executable
code and thus can be ignored for the purposes of virus infection. A further
development in this area is low power consumption CMOS RAM chips which
can be powered by a battery or capacitive backup. Such RAM chips can retain
viral code in memory across system power downs. The use of non-volatile
RAM in laptops thus permits the continuation of system (and virus) operation
after the system power is restored.

The capacitance in standard IBM PC power supplies may also allow retention
of information in volatile RAM for periods up to about 30 seconds. Thus when
itis suggested that the IBM PCis switched off, it must be for at least this period.

4.3 BIOS and DOS

The operating system of the IBM PC consists of two main components:

Operation of PC Viruses 57

® Basic input/output system (BIOS) — a set of basic potentially device
dependent routines which allows simple unstructured access to data on
storage devices

® Disk operating system (DOS) — utilising the BIOS, a far more complex
operating system which structures basic data (i.e. sectors and tracks on disk)
into files, which are in turn structured into hierarchical directories

4.4 Master Boot Record

The location of the next component in the boot depends on whether the storage
media being booted is a hard or floppy disk drive. In the former case control
passes to a boot sector at a well-known location on the floppy disk (sector 0,
track 1, side 0), known as the boot sector.

In the case of a hard disk drive this sector contains a master boot record
including a partition table. The later encodes information on the location of one
or more “logical” disks into which the physical disk has been divided. Thus a
100 Mb physical disk may be divided into four separate logical drives of 25 Mb
capacity. The format of the master boot record is given in Appendix 1.

Execution starts at location 0 of the master boot record, which consists of up
to 1BEh (446) bytes of executable code. This code is responsible for locating a
“boot sector” on a partition to continue the boot sequence. The partitions
marked as “bootable” in the partition record table are searched sequentially,
the first sector in each partition being read tolocate a suitable boot sector.

The master boot record represents the first location which can be altered by a
virus to contain viral code. The “New Zealand” or ““Stoned”” virus does exactly
this. This virus relocates the original master boot record to a well-known
location on disk, namely:

Hard disk Floppy disk
Version 1 Track 0 head 0 sector 2 Track 0 head 1 sector 3
Version 2 Track 0 head 0 sector 7 Track 0 head 1 sector 3

and replaces the code portion of the master boot record with its own viral code.
The flow of control before and after infection can be described as:

58 A Pathology of Computer Viruses

3
Master; Boot Boot . .
Boot Sector Sector Before infection
[
)
Virus Saved| Boot Boot After infection
Code Boot |Sector Sector with New Zealand

The partition table is interpreted by the BIOS in ROM and is independent of
the DOS system. Thus UNIX and other foreign operating systems may be
allocated partitions co-resident with DOS partitions on disk. Master boot
record altering viruses are becoming increasingly commonplace.

Corruption of a master boot record will generate the message “Partition not
found”. Such corruption is caused by New Zealand infecting any non-standard
master boot record or by the destructive effects of viruses such as the
“Datacrime”’ virus.

4.5 DOS Boot Sector

The next stage in initialisation is the execution of code from the boot sector
located at the well-known location head 0, sector 1, track 0 on floppy drives, or
at the start of the partition in hard drives. This sector also contains information
detailing how DOS will interpret the data in the partition. The structure of a
boot sector is given in Appendix 1.

The boot sector comprises a maximum of 1C3h (451) bytes of executable code
in DOS versions 2 and 3, or 1COh (448) bytes in DOS version 4. This code is used
to locate the next component in the system initialisation, namely the I0.SYS or
IBMBIO.COM program on the logical partition. This code can be replaced or
modified by a virus: it is this which forms the mode of attack of one of the most
common classes of virus, the boot sector virus.

An example of such a virus is the Brain virus. This virus relocates the original
boot sector, storing its own viral code (plus pointers to additional viral code and
the original boot sector) in the DOS boot sector. Thus, when the boot sector

code is called as part of the boot sequence, the virus is loaded into memory by
the BIOS and executed. .

Operation of PC Viruses 59

For further details of the organisation of DOS data on disk the reader is
referred to Appendix 1. In particular the following description uses the concept
of a “File Allocation Table”” (FAT). This table contains a linked list of disk
clusters allocated to a file. Clusters may be corrupt because of media flaws on
the floppy or hard disk. In such cases the FAT table entry for the cluster will be
set to a special value indicating a “‘bad’’ cluster.

It is common practice for boot sector viruses to scan the FAT to locate a free

cluster. This cluster is then marked as bad, and used as storage for virus code
which exceeds the available space in the original boot sector.
* An indication of boot sector infection is therefore the presence of a bad
cluster on a floppy disk (the majority of which are now supplied as error free by
manufacturers). Please note that all magnetic media tend to degrade pro-
gressively with use, causing bad clusters. Formatting programs normally mark
an entire track bad when formatting a disk, thus if a track has a small group of
bad clusters this may be an indication of virus activity.

Final jump to original
stored boot sector

[

@)

Virus loads
\ additional
code sector

Jump to disk
boot sector now
infected by virus

Structure of a typical boot sector virus on disk

4.6 System Initialisation

Following the location of the boot sector on floppy or hard disk, the boot
sequence will continue by:

1. Loading the 10.5YS or IBMBIO.COM (the former for MS-DOS, the latter for
PC-DOS) program from the booted disk partition. This is the first file in the root

60 A Pathology of Computer Viruses

directory of the partition. This program contains two components: the BIOS
code (including device specific drivers and initialisation code) and the SYSINIT
program. The latter program is responsible for supervising the remainder of
the initialisation process.

2. SYSINIT checks memory and then loads the next file in the initialisation
sequence, the MSDOS.SYS or IBMDOS.COM (the former for MS-DOS, the
latter for PC-DOS) into memory. This file contains the code for the operating
system.

3. Control passes to DOS, which initialises and runs the command interpreter
specified by the shell variable in CONFIG.SYS (normally COMMAND.COM).
Various device drivers specified in the CONFIG.SYS file are loaded into
memory (such as extended screen and printer drivers). The command
interpreter then accepts a series of user commands to be executed by DOS.
Initially it will consult a batch file called AUTOEXEC.BAT which contains lists
of user commands (such as setting data and time, clearing the screen and
starting system services such as printer spoolers). Each line of the batch file is
interpreted and the appropriate command executed.

4. The COMMAND.COM prompts for commands from the PC user.

Although they are potential targets for infection, no known viruses infect the
I0.SYS or MSDOS.SYS files (other than the unconfirmed report cited in
Chapter 2). Viruses can also be incorporated in the device drivers loaded as a
result of the interpretation of the CONFIG.SYS file. The COMMAND.COM file
was the target of one of the earliest computer viruses, the Lehigh virus.

The COMMAND.COM executable program is written in one of the two
conventions for IBM object or executable files, namely “COM”. Many COM
infecting viruses specifically ignore the COMMAND.COM file in order to
frustrate simple detection by monitoring the length or alteration date/time of this
file.

It is also worth noting that boot sector viruses can only utilise BIOS functions
(allowing simple unstructured disk I/O) prior to completion of the DOS
-initialisation sequence. As such, they tend to access virus code by absolute
sector/track and side location. Hybrid viruses now exist which do infect both
boot sector and COM or EXE executable files.

4.7 Batch Processing Viruses

The DOS command language provides a rich and varied set of user commands,
which can be invoked either directly or indirectly through the use of batch file
techniques. These commands include:

® Batch file call functions (similar to procedure call)
® [teration via “goto” and “for” -

Operation of PC Viruses 61
® Conditional command execution via “if”’

With such a rich set of facilities it is therefore possible to create a general
“batch” virus. Such a virus is an implementation of the virus algorithm:

Open target file

If no virus signature
Append virus code to target file
Add virus signature

Batch viruses have been proposed by both Burger and Levin: the latter is
reproduced below:

ctty nul

for %%f in (*.BAT) do copy %%f + BFV.BAT
ctty con

cls

In general, a virus can be written in any language capable of changing
command flow via a conditional test (to allow signature verification) and with
limited file access or low level /O primitives (to allow appending of code). This
is true of high level languages such as C and Pascal, and also (often
unexpectedly) of less powerful “Macro” languages provided by software such
as Lotus 1-2-3 and text editors such as “vi”” and “emacs” (the latter executing a
subset of the Lisp program language).

Batch viruses, although theoretically possible, would tend to be fairly clumsy
and relatively slow in comparison with a machine code virus.

4.8 COM and EXE Viruses

A virus embedded in an EXE or COM file (the two IBM PC executable file
formats) can thus be activated by direct execution of a user command or by
inclusion in a .BAT batch file.

The structure of COM and EXE files is described in Appendix 3. In brief it is
sufficient to indicate that a COM file comprises a single image of the object code
as it would appear in memory. Such a COM file is loaded into a 64 Kbyte
memory segment allocated exclusively to the program. All memory accesses by
the program are theoretically restricted to this segment. The IBM PC contains
no memory management hardware (or in the case of the 80386 and later, when
running under DOS compatibility mode rather than OS/2, such hardware is
effectively disabled), thus allowing an errant program to write any location in
the PC address space.

62 A Pathology of Computer Viruses

The COM program is loaded into its 64 Kbyte segment and then called by
DOS executing a jump to offset 100h in the segment. When loaded into
memory a COM (and EXE) image is preceded by a “Program Segment Prefix”’
(PSP) which contains details of the files and memory allocated to the program,
together with the string used to invoke the command.

An EXE program is far more complex (and more versatile), permitting
programs to exceed 64 Kbytes in size. The EXE file contains information which
allows DOS to break the program into a number of separate segments of
variable length. EXE infecting viruses are rarer than the simpler COM infectors
because of the increased complexity required to correctly manipulate the EXE
file header block and relocation table, which are part of the EXE structure.

In the case of a COM virus, the virus code may be simply inserted by
prepending or appending to the COM executable. The virus must also modify
the first few bytes at offset 100h to pass control to the prepended or appended
virus.

Example of a COM virus (1200h user code, 400h virus code):

[PSP I User Code l Before infection
oh 100h 12FFh
r PSP Virus Code User Code | Prepended Virus
Oh 100h 500n 16FFh
f PSP |1 User Code Virus Code |J Appended Virus

In the above diagrams, two cases are considered: the prepending virus
(which appends the host’s code to the virus to produce an infected version) and
the appending virus (which appends the virus to the host’s code). The blocks
marked “J” are jump instructions. Jump 1 is a replacement of an initial jump in
the host code by a jump to the virus code. Jump 2 is the stored jump instruction
from the original host which is used by the virus to return control to the host.

4.8.1 Non-overwriting Prepending COM Infectors

In the prepended case the virus creates a new copy of the executable COM file,
consisting of the virus code to which the original contents of the COM file has
been appended. The virus code is then executed first (by the DOS load and

Operation of PC Viruses 63

execute subfunction); the viral code runs, then jumps to the original COM file
code (appended to the virus). This approach will allow a COM program using
relative addressing for jumps to operate correctly. :

A slightly more sophisticated approach is for the virus to relocate the original
COM file’s code by copying it from its location in memory (after the virus code)
to overwrite the start of the virus. The short relocation routine can easily be
located temporarily in free memory or system buffer space while executing.
This method unfortunately allows full transparent execution of COM files
without restriction on the addressing modes of jump and call instructions.

Ilirus Code l User Code Before restoration

[User Code I After restoration

4.8.2 Overwriting COM Infectors

The simplest form of virus destroys its host by directly overwriting part of the
host’s code with the virus code. The damage to the host can be minimised by
overwriting the end component of the host program, thus allowing the
initialisation (and probably a large component of the host code) to operate
correctly.

The virus captures control by overwriting the initial three bytes of the host
with a jump to the virus code. The original three bytes of the host program are
stored for later restoration. Thus, DOS causes a branch to the virus code
whenever the host is run. The virus may then replicate, infecting other
potential hosts. When the virus completes operation, it restores the saved
bytes to the start of the host, and then jumps to the restored host.

Overwriting viruses do not alter the length of the infected file (which is a
major indicator of infection by non- overwriting viruses) but do show up
through occasional crashes or malfunctions of the infected host (due to part of
its code being destroyed on infection).

A simple example of an overwriting virus is the 405 strain, a basic COM
infecting virus which overwrites the first 405 bytes of the host when infecting.
The virus extends the host to 405 bytes if the latter is less than 405 bytes in
length. Multiple infections will occur because the virus does not check for a
signature value when infecting. Infection is restricted to the current directory.

4.8.3 Non-overwriting Appending COM Infectors

The appending virus operates by appending the virus code to the end of the
host code in the COM executable, as shown in the above diagram. The virus

64 A Pathology of Computer Viruses

must also modify the user code to gain control when the COM file is run. This
modification is carried out in the same manner as the complex COM
overwriting virus.

An example of a simple COM appending virus is the Vienna or “Austrian”
virus. This virus was first reported in Moscow in April 1988 at a UNESCO
summer camp. The virus (the code for a variant of which has been published by
Burger) is a simple 648-byte-long non-overwriting COM infector. The virus
saved the initial three bytes of the host, replacing them by a jump to the virus’
code which had been appended to the host. The virus executes by selecting a
COM file in the current path to infect, then restores the saved three bytes to
restore the host’s code in memory. It then jumps to the start (100h offset) of the
host. The virus utilises a simple signature to detect infection (thus preventing
multiple infection) — namely, the setting of the time of last update seconds field
to 31 (corresponding to an invalid value of 62 seconds since the field represents
the value in seconds/2). The seconds field of the time of last update is not
displayed when using the DOS “dir” command. Eighteen variant viruses
(including ““Lisbon”, “Ghostballs”, “1260”, “VHP-435"" and “VHP-623"") have
been produced based on the Vienna strain.

4.8.4 EXE Viruses

In the case of the EXE file it is possible for the virus to either append or prepend
its code in the form of a separate segment of code. The appending virus adds its
code to the end of the EXE file, modifying the EXE program header as follows:

® Extend the file length field
e Extend the relocation table size

® Add relocation table entries to permit relocation of the jump from the virus
segment to host program code segment

® Modify the EXE file checksum value (if used)

® Modify the segment displacement and IP register offsets to point to the viral
code segment

The virus is not required to modify the host program code segment as control
can be gained merely by modifying the EXE program header.

In the case of a virus which prepends to an EXE file the situation is
complicated by the need to rewrite the relocation table offsets to point to the
newly moved host code segment, i.e.:

Operation of PC Viruses 65

EXE Relocation Host Code
Header Table Segment
Host program before infection
EXE Relocation Virus Code Host Code
Header Table Segment Segment

This allows the EXE program loader (in DOS) to correctly locate segment
values in the shifted host code segment, thus permitting it to complete its
function of relocating program inter-segment jumps at runtime.

In summary, the principal modes in which an IBM PC can be infected by viral
code are:

Type Frequency Example
Master boot record virus Common New Zealand
Boot sector virus Common Brain
I0.SYS/MSDOS.SYS virus Theory Pacman
COMMAND.COM virus Rare Lehigh
AUTOEXEC.BAT virus Theory Many published examples
COM overwriting virus Occasional 405

COM non-over prepending Occasional Israeli

COM non-over appending Common Datacrime
EXE prepending Rare sURIV2.01
EXE appending Common Dark Avenger

4.9 Resident and Transient Viruses

A virus becomes active through one or more of the means described
previously. Hybrid viruses which exist in multiple forms (e.g. boot sector and
COM infector) do exist (such as the ““1253” virus). The virus can arrange to

66 A Pathology of Computer Viruses

retain control of the PC operating system even after its parent or host program
has exited. This is achieved by terminating and staying resident (TSR). A virus
which attempts this is described as “’resident”. A virus which is only active
when its host has branched to its code and ceases to be active when control
returns to its host is described as ““transient’” or “‘non-resident”.

To become resident, a virus must exploit the interrupt driven facilities in the
operating system. An interrupt is generated either by a hardware related
event, e.g. external device data transfer, bus error, parity error or system timer,
or by a software event, e.g. divide by zero, overflow or user “int” instruction.
All interrupts cause the processor to transfer control to the address in the
interrupt vector table appropriate to that interrupt.

Offset Interrupt Function

00h Oh Divide by zero

04h 1h Single step

08h 2h Nonmaskable interrupt
52h 13h BIOS service entry
84h 21h DOS service entry

For instance a DOS system call such as ““open file (handle)” is performed by
placing values in the AH, AL and D registers. The AH register is set to contain
the DOS function required, in this case 3Dh. AL and D contain parameters to
the
system ‘call. The program then executes the “int 21h” instruction, causing a
software interrupt. This interrupt places the flag register on the stack, together
with the return address, and then jumps to the address given in the correspond-
ing entry in the interrupt vector table (in this case the address given at offset 84h in
the table). On completion of the DOS interrupt service routine DOS executes a
“iret” instruction, which pops the flag status and returns control to the calling
routine.

This centralisation of functionality unfortunately makes it simple for a virus
to redirect or intercept system activity. For instance a virus might have copied
its code into a free block of memory, or used the various TSR functions
provided by the operating system. By changing one or more interrupts to point
to the virus code in memory it can arrange to be activated:

® Atregular timed intervals

® During disk activity

® When a program is loaded for execution
® On user keyboard input

and on many other such events, e.g.

Operation of PC Viruses

BIOS
/ =
13h DOS
Code
VIRUS
21h
Interrupt vector
table
After modification
BIOS
Code
13h DOS
Code
VIRUS
Interrupt vector
table

67

The virus is thus activated whenever any input/output or DOS service is
required. A brief list of the commonly used interrupt vectors (from the virus
writer’s point of view) is given below:

68 A Pathology of Computer Viruses

Address Description Use by virus

O1h Single step interrupt In ripple decoders (see camouflage)
08h System timer For regular activation

0%h Keyboard interrupt To intercept user keyboard activity

10h BIOS video driver To perform screen manipulation and transformation
13h BIOS disk driver To intercept all disk activity

14h BIOS comms driver To intercept remote communications
15h BIOS misc funcs Keystroke translation

16h BIOS keyboard driver To intercept user keyboard activity

17h BIOS printer driver To intercept all user print activity

15h System warm boot To prevent virus deactivation on reboot
1Ah BIOS clock driver To perform clock alteration and slipping
1Ch Timer tick A secondary timer called from 08h

21h DOS service interrupt To intercept ail DOS service calls

25h Absolute disk read

26h Absolute disk write

27h Terminate and stay resident To monitor programs going TSR

In general, most boot sector viruses will intercept 13h (BIOS disk driver),
while COM/EXE viruses will normally intercept 21h (DOS service). Thus boot
sector viruses make use of lower level disk functions provided by the BIOS,
which deal with sector-by-sector access (rather than the DOS abstraction of
logical files in hierarchical directories).

When a virus becomes resident in memory it must also arrange that its code
is not overwritten by the normal memory allocation operations of the operating
system. A number of locations exist in the DOS memory map which can be
utilised. A memory map of a typical 1 Mb DOS allocation scheme is given
below:

FFFFh
Reserved for BIOS
E000h
Unused
CCO00h|—
Disk adaptor, BIOS
C800h P
Used by video
A000h
Transient program area
Resident COMMAND.COM
Disk buffers
DOS kernel
BIOS
In
0000h Interrupt vectors

Operation of PC Viruses 69

Of these areas the following can be used:

® Unused allocated memory, such as unused DOS system variables and rarely
used or reserved buffer space, e.g. the Lehigh virus in the COM-
MAND.COM stack area and “Number of the Beast” in the first DOS disk
buffer

e Expanded or extended memory, outside of the normal 640 K DOS address-
ing range, such as the area CC000h to DFFFFh in the above map, e.g. the
“EDV” virus

® Unallocated memory in the transient program area, e.g. the Icelandic virus’
manipulation of memory control blocks; or the use of the DOS TSR
functions, e.g. Jerusalem

® Reserved memory: boot sector viruses which commonly install in high
memory and then reduce the amount of physical memory available when
DOS loads

® BIOS and Video RAM areas: above the 640 K DOS memory limit

4.10 Manipulation by Viral Code

A virus can potentially manipulate any aspect of PC system operation,
including:
® Unusual screen displays, graphics, logos or displayed text strings often
carrying a political, personal or ideological message
® Corruption or alteration of user data files, including;:
Byte swapping or alteration of data
Marking of disk clusters as ““bad”, causing reduction in usable disk space
Damage to BIOS parameter block, boot sector code or partition tables,
giving the appearance of reformatted or destroyed data
Reformatting of disk partitions or low level formatting of drives
e Corruption and manipulation of comms ports, including;:
Byte swapping and data corruption on modem links
Initiation of “rogue’ telephone calls by virus, allowing possible compro-
mise of classified or sensitive information
Insertion of damaging commands, e.g. “rm -rf *’ into remote login
sessions
® Interception and alteration of keyboard input
Swapping of keyboard keys to simulate typing errors or dyslexia
Rejection of certain characters such as the “’Ctrl-Alt-Del” warm reboot
sequence
Insertion of amusing or embarrassing additional input into the keyboard
buffer

70 A Pathology of Computer Viruses

® Interception and alteration of printer output, including the full range of
corruption and alterations, such as that demonstrated by the “Mix1/Typo”
viruses

® Modification of system clock: gradual speedup or slowdown, random resets
and jumps

® Dummy routines, causing system slowdown of either global or selective
routines

® Activation of other system interfaces: playing of short tunes or tones on the
system speaker, toggling of keyboard state flags (Caps Lock, Num Lock),
relocation or reversal of mouse activity '
Finally, interception of the DOS service interrupt (as against all the above

effects achieved via the BIOS) allows a wide range of abstract manipulations to

be performed, such as:

® Renaming or hiding of data files

® Moving or removal of data files

® Swapping of contents from selected system files
® Reversal of file text

In general, a virus may manipulate any aspect of system operation. Subtle
manipulations such as bad sector or byte swapping may oftén be mistaken for
hardware errors.

4.11 Activation Criteria

The reasons why a virus activates are as varied as the manipulations the virus
may cause once active. In general, many viruses are engineered to activate (and
perform a manipulation task, be it benign or destructive) on specific dates oron
exhaustion of a specific delay or counter. In the former case, many dates have
been chosen by virus authors as activation dates. A summary list is given
below:

Operation of PC Viruses 71
Virus Activation Date Effect
1210 (Prudents) May 14 Changes disk writes to verifies
1253 Dec 24 Overwriting diskette
1554 (Ten bytes) Sep-Dec Corrupts first 10 bytes of any files written
1704 Format Oct-Dec (Not 1993) Reformatting of disk
4096 (Stealth) On or after 22 Sep Hang infected systems
Advent 4th Sunday before Xmas Advent crown and Old Tanenbaum tune
Alabama Friday File swapping via FAT manipulation
Anarkia Tuesday 13 File deletion
Anarkia-B October 12 File deletion
Cascade Sep-Dec 1980/88 Falling letters display
Christmas Aprl Destroy partition table
Christmas Dec 24-Jan 1 Full screen Christmas tree
Datacrime Oct 12+ Low level format
Durban Saturday 14 Overwrite 100 sectors on drive C, B and A
FuManchu Aug 1 1989+ Keyboard buffer character insertion
Jerusalem Friday 13 File deletion
Jerusalem-D Friday 13 > 1990 Destroy both FATs
Jerusalem-E Friday 13 > 1992 Destroy both FATs
Joshi Jan 5 Message and hangup
July 13 July 13 Bouncing ball
June 16 June 16 All entries in root directory & FAT zapped
Kennedy June 6 Message
Nov 18 & 22 Message
Mendoza July - Dec File deletion
Murphy 10-11am Speaker pip
New Jerusalem Friday 13 Deleted file
Payday Friday not 13 Deleted file
South African Friday 13 File deletion
Sunday Sunday Message
SURIV 1.01 April 1 Hangup and message
SURIV 2,01 April 1 Hangup
SURIV 3.00 Friday 13 File deletion
Traceback Dec 28 1988 Cascade display
Traceback Dec 5 1988 Direct infection started

One particularly common activation date is Friday 13th. This is the activation
date chosen by the “Israeli” virus (and derivatives) and the ““South African”
virus. In this regard, the Friday 13ths for the remainder of the century are:

72 A Pathology of Computer Viruses

1991 | September, December
1992 | March, November
1993 | August

1994 | May

1995 | January, October
1996 | September, December

1997 | June
1998 | February, March, November
1999 | August

In addition (presumably to catch those users moving the system clock forward
by one day to avoid Friday 13th) the “Durban” virus activates on Saturday
14th.

Regular advisories are sent out by bodies such as the Department of Defense
Security Co-ordination Center on the approach of dates such as Friday 13th,
April 1st, Hallowe’en and Christmas Day.

During the period from the release of a virus to its first activation date
(known by analogy with biological viruses as the “incubation” period), the
virus can spread rapidly with few symptoms. It is often the case that a virus is
not detected prior to its activation date, thus a longer period between release
and activation makes it likely that a virus will spread widely, but increases the
probability that such a virus will be detected and effectively countered prior to
activation. The previously introduced concept of a binary virus might permit
the author to send an activation component when his virus is first discovered
by the research community.

The extreme example is the Century virus, timed to activate on 1 January
2000. Many commentators expect that the conventional IBM PC may be
obsolete by that time!

Other viruses use generation counters as a trigger. This is particularly
common in boot sector viruses. This counter allows us to generate a family
history of the spread of such a virus by charting the occurrences of each
generation. This may allow a crude localisation of the initial infection source.
The generation counter does, however, allow a virus author to upgrade his
virus by releasing a new version with an updated generation number.
Presumably older generations will avoid infection of executables infected by
newer generations. The Israeli virus used a similar technique of backward
compatible signatures to prevent older strains from destroying newer
generations.

The Jerusalem virus strain A (commonly known as Friday 13th) has three
predecessor strains also originating in Israel. These strains are known (by
reference to identifying text within the binary) as “sURIV 1.01”, “sURIV 2.01”
and “sURIV 3.00”. These strains (and the common Jerusalem strain which
includes the text “sUMsDos” in the binary) all use compatible signature
strings. sSURIV 1.01 looks for the string “sU” at offset 3 in COM files. sURIV

Operation of PC Viruses 73

2.01 looks for the presence of the checksum 1984h in the EXE file checksum
field. sURIV 3.00 infects both COM and EXE files and inserts a compatible
signature (with sURIV 1.01) in COM files and (with sURIV 2.01) in EXE
headers. The infection test for sURIV 3.00 is the presence of the “sURIV” string
at the end of the infected program. The standard strain uses a “sUMsDos"”
signature in place of the “sURIV 3.00” signature, but retains (although not
checking for) the 1984h checksum in EXE files. Thus a family development path
may be established since sURIV 3.00 is backward compatible with the sURIV
1.01 and sURIV 2.01 strains. The standard virus breaks the mould slightly but
still uses very similar signatures. Thus a sURIV 3.00 virus will automatically
infecta sURIV 2.01 or sURIV 1.01 file, although the latter viruses will detect the
sURIV 3.00 signature and ignore the file.

The activation criteria can be exceptionally complex, such as that of the
Italian ‘“Bouncing Ball” virus which activates when a disk transfer re-occurs
within a 1 second interval every 20 minutes. Such complex criteria often make
the reproduction of a virus erratic and irreproducible, complicating analysis of
the virus.

A particularly worrying form of virus is one which exploits multiple
“vectors”, an example being a trojan horse program which has an encrypted
copy of the virus. The trojan releases the virus at annual or monthly intervals.
The virus program then proceeds to spread rapidly on the system. Such a virus
is easily detected and removed. This cleaning of the system may appear
effective until the trojan utility again activates to release a new (possibly subtly
modified) virus. Not only does this result in re-infection, but the trojan horse
itself may act as a vector by being manually copied between systems.

This is the concept of a “retrovirus”, as introduced by Peter Denning. This
virus comprises a trojan horse launcher which at regular intervals checks for
the presence of the child virus. If the virus is removed the trojan will wait fora
fixed period of time, and then re-release the virus. Thus system re-infection
appears to occur at regular intervals.

4.12 Camouflage

The virus field has demonstrated a worrying trend towards complex and
cunning viruses which exploit many and varied concealment and camouflage
strategies. Many of these techniques are targeted at specific anti-viral products,
or at measures belonging to a ““generic” classes of anti-viral product. These
classes are described in detail in Appendix 10.

Camouflage techniques revolve around:

® Concealment of viral code in infected files via encryption or careful
manipulation of disk space

® Concealment of the viral code when active in memory, and the associated
changes in “memory control blocks”” (MCBs) and interrupt vectors

74 A Pathology of Computer Viruses

® Concealment of the activity of the virus in replicating its code (specifically
the invocation and effects of disk access commands)

4.12.1 Concealment in Infected Files

The viral code can be detected by a characteristic series of bytes, by expansion
of the file size, by alteration of file timestamps, and by changes in file
checksums and signatures.

In this regard camouflage techniques can be divided into:

Avoiding infection of files of particular interest (e.g. COMMAND.COM)
Encryption of the viral segment in the infected file
Hiding of viral code in spare disk space

Storing the original timestamp and file attributes, infecting, then restoring
the original values

Recalculating the checksum after infection has occurred

® Preventing the detection of the above changes by programs using DOS
services

4.12.2 Encryption of Viral Code

The virus may employ simple encryption techniques to conceal the majority of
the viral code in a file. Such a method is often ““perturbed” or modified by some
characteristic of the host file (time of modification, size of file, etc.). The
encryption techniques utilised are often extremely simple. The Cascade virus
was one of the first viruses to exploit such encryption. This virus consisted of a
short decryption routine, the remaining bytes of the virus being encrypted
while on disk.
The virus thus consists of:

Decrypt| Encrypted

HostCode | " e | Viral code

When the decryptor had completed execution, the decrypted virus was
present in memory and ready to execute, thus:

Host Code | Decrypied
Virus

t |

Operation of PC Viruses 75

The sample decryptor routine decrypts the encrypted virus before executing
the code. Such “bulk” decryptors are simple but effective in reducing the
length of the recognisable virus signature to as few as 16 bytes of object code.
Even this short decryptor is perturbed in the 1260 virus through the random
introduction of padding instructions (such as operations on unused registers
and no-ops). This reduces the recognisable instruction sequence to one single
machine instruction (maximum of around 3 bytes).

The 1260 virus incorporates a complex encryption and padding scheme
which comprises the following decryptor routine:

mov ax,key a

mov cx,key b

mov di,start_of_virus
main: xor [di],cx

xor [di],ax

inc di
inc ax
loop main

The decryptor uses two key values which are both xor’ed with an encrypted
byte in the virus to produce the plaintext instruction. On completion of
decryption the virus code is executed. The second key is incremented as
instructions are decrypted to prevent the non-trivial decryption of the virus by
xor'ing with a fixed value (as was possible with encrypted strings in the
Internet worm). Thus a clear text byte is given by:

Clear [i]=Crypt [i |®(key, +i Y®(keyp)

The above decryptor routine is padded via the random addition of one or
more of the following dummy instructions — nop; dec bx; inc si; clc; xor bx,cx.
Other than the dummy instruction padding this routine is similar in format to
the decryptor in the Cascade/Autumn Leaves/1704 virus, which included the
instruction sequence:

; load start of virus into si

mov sp, length_of_virus
main: xor [si], si

xor [si], sp

inc si

dec sp

jnz main

76 A Pathology of Computer Viruses

This decryptor generated a clear text byte by xor'ing the encrypyted byte by
its offset in the virus and the remaining number of bytes to be decrypted. Thus:

Clear [i |=Crypt [i |®(start_of _virus_offset +i Y®(length —i)

In general, encryption schemes rely on ciphers based on the Exclusive Or
operator. This method has the advantage that the decryption routine can be
used to encrypt, and vice versa. The following summary is based on work by
Fridrik Skulason:

Virus Algorithm

Pretoria Basic XOR with fixed value AS hex

July 13th Basic XOR with a fixed value

Slow XOR with a fixed value modified on each infection
Cascade Complex XOR dependent on host length

Datacrime II Basic XOR with a fixed value key rotated right

by one bit after encryption of each instruction

includes code to detect single step of encryplor routine
800 virus Basic XOR with a key computed from XOR of virus body

1260 Twin key XOR varying with instruction offset

including random padding of encryptor routine
Suomi Inclusion of random instructions at fixed offsets in encryptor
Evil Basic XOR with a key computed from XOR of virus body

includes programmed modification of registers used during

Multi-level encryption may be included to complicate disassembly and
analysis. In this case the decryptor routine is itself encrypted using a second
(possibly different) encryption algorithm.

The bulk decryptors normally mean that the unencrypted virus is visible in
main memory during the short window in which the viral code is active. The
“ripple” decoder goes one stage further and minimises the window of
unencrypted virus visible in memory during virus execution. The decryptor
makes use of the 80X86 series single step/trace mode.

This mode is entered by setting the ““T” status flag. After this flag is set the
80X86 will generate an interrupt after each instruction is executed. This allows
the ripple decoder trapping the single step interrupt vector to decode the next
instruction for execution. The previous instruction can be re-encoding or
purged.

One issue related to encryption is that of compression. Cohen cited the file
compression virus which appends to a host, compresses (using an algorithm
such as Huffman or Lempel-Ziv coding) the host to save disk space, and
arranges to decompress the host on execution. While a laudable aim, such a
method can be used to prevent any extension of a host file on infection.The
virus compresses the host using a basic compression algorithm, then creates a

Operation of PC Viruses 77

new executable comprising the virus (together with a host decompression
routine) and the compressed host data. When the resultant file is run the virus
spreads, then runs the decompressor to restore the host, and then runs the
host program. Result — no detectable increase in file size on infection.

A final twist in the use of cryptographic techniques is the feature built into
the “Vacsina” virus of using an error detecting Hamming code. This code
permits the virus to correct for up to 16 modified bytes in the virus. Thus
damage due to byte corruption in transit can be repaired, as can attempts by
inexperienced hackers to modify the virus operation.

4.12.3 Hiding of Viral Code

The viral code can be concealed in an area in which the BIOS or DOS does not
expect code to exist. Two examples are:

1. Use of track 40 or 80 on floppy disks — these can be formatted and used by a
boot sector virus to store its code sectors, or the displaced code sectors of the
host program or boot sector. The “Denzuk” virus uses this technique by
storing the original boot sector on head 0, track 40, sector 1-9 of the disk. This
track is directly formatted by the virus prior to infection.

2. Use of unused space beyond the logical DOS end of file, but still within the
clusters allocated by the BIOS to the file. As cluster size increases (to allow
expansion of disk capacity without corresponding increase in FAT table size)
this residual space increases. Thus a 3300 byte file might consist of four 1024
byte clusters (each comprising two sectors of 512 bytes), leaving 796 bytes of
spare space. This technique is used by the Number of the Beast virus. This virus
(""512” virus) was discovered in January 1990 in Bulgaria. It intercepts the DOS
service interrupt (21h) together with the BIOS (13h) interrupt and critical error
handler vector (24h). The virus utilises two concealment techniques: first, the
virus conceals its code in the first DOS disk buffer in memory (rather than
allocating and attempting to conceal a memory control block), and second, it
relocates the first 512 bytes of the infected COM file to beyond the logical end of
file (in free space at the end of the cluster), replacing it with it own viral code.
Infection of COM files occurs when a file is closed (int 21h function 3Eh) or is
executed (int 21h function 4Bh).

These locations are in addition to the use of free sectors (marked as bad by the
virus to prevent reuse) and the use of files with the “hidden’ attribute set in the
directory.

The DOS load and execute command will not of course load code concealed
in such areas. It is however possible to conceal a minimal virus code in a
program which then passes control to code which is in a concealed location.
Such an extension area may be shared between every copy of the infected file.
Naturally, the virus must carry the shared extension with it when copied to a
removable media. '

78 A Pathology of Computer Viruses
4.12.4 Checksum Calculation

The EXE file and boot sectors contain a checksum of the associated program or
data sector. This checksum provides a primitive means of detecting file or
sector alteration. This can be coupled with checksums generated by proprie-
tary anti- virus or security software. The virus must therefore attempt to
include dummy instructions to alter the infected file to possess a checksum
identical to that of the original file.

In the case of simple checksums such as the “XOR" or numeric sum of all
long words in the file this is unfortunately very easy. Such checksums can be
recognised and defeated. Computationally complex checksum algorithms may
prove difficult (or in the case of signatures based on public key techniques,
exceedingly difficult) to invert. Unknown (user specific) checksums are also
likely to be safe from viral forgery.

4.12.5 Prevention of Alteration Detection

The final approach, that of the viral “’shell”, is to ensure that when an anti-virus
utility attempts to detect the alteration of a host it will not succeed. This is
achieved by interception of the DOS or BIOS interrupt calls executed by the
anti-virus utility, and the substitution of the unaltered host’s details.

This includes:

® Interception of directory read calls, ensuring an unaltered timestamp or file
length is returned when the directory is read

e Interception of file read calls, ensuring that any checksum or signature
recognition utility opening an infected file will read a version of the host
which appears to be uninfected

Both methods are adopted by the 4096 virus. This virus, one of a new generation of
Stealth viruses, is extremely difficult to detect since checksum utilities will always re-
‘calculate the checksum based on the apparently unaltered host file.

The 4096 (IDF or Stealth virus) is a memory resident COM/EXE file infector
which was discovered in January 1990. This virus adopts a wide range of
concealment techniques, including modification of the DOS (21h) handler by
inserting a jump to the virus code (thus avoiding detectable alteration of the
DOS vector in the interrupt vector table); interception of the find—first and
find—next directory access DOS functions (modifying the returned file lengths
to conceal the extension caused by viral infection); and also trapping the DOS
file open, causing temporary disinfection of the file (thus returning an
uninfected file to checksum and signature scanning utilities) which is then
reinfected on file close. Infected files are flagged in the directory by the virus
changing their year to exceed 100 (e.g. 1990 is normally represented as being 10
years forward from 1980, i.e. value 10. When infected, the virus changes this to
110 in bits 9-15 of the date of last update directory field).

Operation of PC Viruses 79

Interception of BIOS sector reads was also used by the early Brain boot sector
virus to conceal its alteration of the boot sector. The virus trapped the BIOS
read disk sector function (02h) and returned the stored original boot sector for
all reads of head 0, sector 1, track 0 rather than the infected actual boot sector.

4.12.6 Concealment of Viral Code in Memory

This can be carried out by manipulation of the available system memory, by:

1. Reducing the physical memory seen by DOS - a common technique
amongst boot sector viruses which reduce the physical memory reported by
the BIOS memory check, thus securing a safe area at the top of memory in
which to store viral code.

2. Utilising device buffers and operating system areas for temporary code
storage. This technique is utilised by the Number of the Beast virus described
earlier.

3. Modifying the DOS memory allocation chain to reserve an area of memory
for the virus. This area can then either be unlinked from the allocation chain or
the MCB can be altered to make it appear to be an innocent DOS system block.
This technique is utilised by the Icelandic virus (and by the Dark Avenger virus)
which modifies the headers on the allocated MCBs. DOS arranges all memory
blocks into a pool chained together via a header field (the MCB). The MCB
records whether the block is the last in the chain, whether it has been allocated,
the size of the block and the owner of the block. The Icelandic virus, first
detected in June 1989, carries adummy MCB within its code. This MCB appears

. to be the last in the allocation chain. The memory block of the host program is
then split into two blocks, one for the program and one for the viral code (which
is tagged using the dummy MCB). The virus can thus guarantee that when the
host exits, the memory block for the host will be released, leaving the virus (in
its own memory block) intact in memory. -

4. Utilise “extended” or “expanded” memory which may not be subject to
checking by anti-viral products, although this will impact on the number of
hosts with the required configuration to execute the viral code. Extended
memory is memory in excess of the 1 Mb addressing range of the 8086
processor. It can be accessed by 80286 and later processors in protected mode.
Expanded memory uses a special driver to map pages of memory into the
normal memory space. The anti-viral program can be prevented from reading
memory occupied by the virus code. This method is exploited by the EDV boot
sector virus which uses the system clock interrupt to pass control to the viral
code. When active, the virus code inspects the system stack to determine the
area of memory referenced by the data and extra segment (DS and ES) registers
of the currently active application. If these point to the virus code segment in
memory the system is halted. Thus, any simple scan of memory to locate a
virus signature will cause a system lockup.

80 A Pathology of Computer Viruses

Finally, the virus may minimise the amount of unencrypted viral code in
memory through the use of ripple decoders, and may frustrate attempts to use
single step debugging by intercepting the single step and break point vectors.

4.12.7 Concealment of Viral Activity

The virus must conceal its use of the system to achieve replication. In this
regard it must:

e Conceal its alteration of the interrupt vector table

® Conceal disk activity resulting from the virus

® Conceal system slowdown resulting from the virus

The two cases the virus must protect against (regarding interrupt table
modification) are:

® The virus is active before the anti-virus utility - the latter can thus detect that
a non-standard interrupt vector is in place

® Theanti-virus utility is active before the virus - - the anti-virus utility can thus
detect the alteration of the interrupt vector table by the virus, and intercept
the activity of the virus

In the first case the virus can directly modify the DOS or memory resident
BIOS components to pass control to the virus without altering the vector table,
ie.

DOs

21h

VIRUS

DOS

21h l__ VIRUS

The virus patches the DOS interrupt vector handler to branch to the virus
code. The virus then executes, and returns control to the DOS handler. With
appropriate knowledge of the structure of a PC-DOS or MS-DOS release a virus
author can scan memory to accurately locate the start of the DOS handler. The
handler can then be modified in a manner transparent to the user. No alteration
to the interrupt vector table has been made.

Operation of PC Viruses 81

In the second case the virus attempts to bypass an anti-virus utility which has
intercepted the interrupt vectors:

21h

Anti-Virus
Filter

Anti-virus monitor active

21h

Anti-Virus

| Filter

VIRUS

Simplistic virus is trapped by the anti-virus utility

The Icelandic strain 2 virus does exactly this by directly jumping to the DOS
handler routine in memory. The virus carries a set of recognition byte
sequences which allow it to identify the location of the DOS handler in memory
(for a variety of DOS releases). Once located the virus fakes an interrupt by
forcing the status register onto the stack and invoking a standard subroutine
call to the DOS handler. This effectively ensures that when the DOS handler
exits with a “iret” instruction, the stack contents are identical to those
generated by a real interrupt.

DOS

21h
Anti-Virus

Filter

VIRUS

Icelandic strain 2 bypasses the filter by direct call

Finally, a virus can include its own code to interpret the DOS file system
structure, allowing the virus to utilise low level BIOS calls to carry out its

82 A Pathology of Computer Viruses

infection work, thus bypassing monitoring of DOS interrupt vectors. This
could theoretically be extended to include direct manipulation of the disk drive
controller in hardware. Such controllers support a comparatively high level of
functionality (normally including the ability to write particular sectors on
demand). A virus which directly manipulated hardware would of course be
specific to a particular platform or platforms.

4.12.8 Concealing Disk Activity

This is achieved by piggy-backing viral disk writes onto legitimate disk activity.
Thus the virus may queue an infection write until the user attempts disk I/O
(thus preventing unexpected I/O), or more subtly until disk I/O is attempted on
the same (or an adjacent) track. The latter method removes the final symptom
of viral disk activity - the unexpected skip to an unrelated track on disk — which
often causes an audible seek on the drive. Hard disk activity is normally
inaudible or barely audible and is less often the subject of elaborate
concealment.

A final aspect of concealment of disk activity relates to the concealment of
errors resulting from failed I/O. These errors cause the “critical error”” handler
to be invoked via interrupt 24h. This handler will normally cause the program
to be terminated and an error message to be displayed on the console. Critical
errors include attempting to write to a write-protected media. This error may
therefore be indicative of an infection attempt by a virus to a write-protected
media.

4.12.9 Concealing System Slowdown

In general the reduction in system performance caused by a memory resident
virus is not easily concealed. This can however by confused by a large number
of active user TSR programs. The process of virus replication can also be spread
over a period of time by basing the virus on a finite state machine in which the
virus cycles between passive directory search and active infection. This
technique was adopted in the Internet worm incident in November 1988. The
use of an abstract instruction set executed by an interpreter in the virus could
also allow such spreading of activity.

We have seen in detail how a virus can strive to conceal its presence. Chapter
5 gives a detailed review of the methods the user can exploit to detect even
these viruses. Each camouflage technique is analysed in turn, and a suitable
software or hardware counter measure proposed.

Operation of PC Viruses 83

4.13 Replication
4.13.1 Locating a Host

To complete the section on PC viruses it is necessary to consider briefly how a
virus locates a new host to infect, and how multiple infection of hosts is
prevented.

The problem divides into:

® Boot sector and master boot record viruses
® Link (COM/EXE infecting) viruses

The boot sector virus must detect the insertion of a new media (floppy disk)
into the computer system. Since no media change detection facility exists on
the IBM PC system, the boot sector virus is forced to intercept all disk I/O. It
may then verify whether the boot sector is infected, and, if not, infect it.
Periodic attempts may also be made to infect the media.

Master boot record viruses are normally capable of existing on boot sectors of
floppy media, as the incidence of hard media movement is very low. The
Bernoulli portable hard disk is, however, one such case.

Link viruses must locate uninfected EXE or COM hosts. To do so they can
rely on one or both of the following;:

® Direct infection — the virus scans the disk directory hierarchy looking for
suitable hosts to infect

® Indirect infection — when an executable file is accessed it is infected by the
virus

The indirect infectors are always memory resident since they must intercept
the DOS service interrupt. Once resident, they can infect even when:

o A file is loaded for execution
® A file is opened, read or written

The former is the most frequent and is the method used by such common
viruses as Israeli and Cascade. The latter is extremely dangerous as it can lead
to exceptionally rapid proliferation. This method was utilised by the Dark
Avenger virus with the result that many early anti-virus scanning or checksum-
ming programs caused infection of all executables on the system.

Both infection methods operate by interception of DOS functions, namely:

Function OFh Open file (FCB)
3Dh Open file (handle)
4Bh Execute file

The name of the file being opened is passed as a parameter to these functions

84 A Pathology of Computer Viruses

(either by an address register reference or in the ““file control block”” (FCB)). The
virus can thus either: '

® Store the name of the file being opened and use this to open and infect the
file (now or at a later time)

® Execute the DOS call on behalf of the user and use the open file handle or
FCB to perform the infection. The handle or FCB is then returned to the user
making the call

The equivalent of a indirect infector in the boot sector or master boot record
case would be the virus in which operations accessing absolute disk locations
are trapped and cause infection, especially those accessing track 0.

Direct infectors may be either resident or transient. These viruses operate by
scanning all or part of the disk directory hierarchy in search of suitable hosts.
These viruses show a wide variation in rate of file infection, extent of search,
choice of target directories and delay in infection.

Searching of the disk hierarchy is carried out using the DOS directory search
calls (i.e. functions 4E and 4Fh), which allow the use of complex regular
expressions for file names (allowing restriction to specific types of file). The
virus may terminate a search, delay for a few minutes or until heavy disk I/O is
in progress and then restart. Only the current directory may be searched, all
directories in the executable file path (variable in the environment), a selection
of common executable directories (such as bin, dos, util) or the entire file
system may be searched. In a similar manner all disk drives may be searched,
only hard drives or a selection.

Direct infectors can cause considerable system infection even on lightly used
personal computer systems. Indirect infectors normally infect only a com-
monly used subset of commands such as DOS utilities, programs under test,
word processors, databases and spreadsheets. Both forms of virus can be
modified to bias the infection towards particular forms of file, e.g.:

Recently altered utilities
EXE only or COM only

Files sufficiently large to conceal the viral code addition
Proprietary files from a specific company

4.13.2 Signatures

To avoid continual re-infection (and consequent uncontrolled growth in file
length or depletion of system memory) most viruses exploit a “‘signature”
which indicates that the file or system memory block has been infected.
Examples of such signatures include:

® File characteristics (used by parasitic or link viruses):

Operation of PC Viruses 85

(i) Particular byte or series of bytes at a known location — normally at the start
of the virus if a prepender, or at the end if an appender. This allows the virus
to check whether these bytes are present at a known offset from the start or
end of the file.

(ii) Information in the directory entry — including the use of an impossible
seconds value in the time of last alteration field (Vienna virus), use of
exceptional value in the date of last alteration field (4096 virus), use of
reserved file attribute bits (bits 6 and 7), use of the reserved information field
(10 bytes). By using such information in the directory a virus can avoid the
overhead of actually opening the potential host’s code file to check for
infection. For example, the Datacrime 1A virus strain uses a complex
signature which utilises both the minutes and seconds fields of the time of
last alteration in the host’s directory entry. On infection, the last three bits of
the second field are set to be equal to the three least significant bits in the
minutes field, bits 3 and 4 being set to 0.

(iii) Information in the file header — in the case of EXE files field such as the
checksum (Israeli virus = 1984h, Fu Manchu = 1988h), minimum para-
graphs required field, and the reserved space between header and start of
relocation table.

e Memory characteristics:

(i) Particular byte or series of bytes in a known location — normally used by
boot sector viruses which can guarantee to load at top of memory, or
possibly in unused or non-critical system variables.
(i1) Presence of one or more special interrupt vectors or functions of standard
DOS vectors provided by the resident portion of the virus. An example is the
Israeli virus, which uses a number of special functions available via the
standard DOS interrupt vector (21h), namely: function DDh causes the
resident portion of the virus to relocate an infected host program so that the
host’s main program can be run; function DEh comprises redundant code to
execute the same operation for EXE files; function EOh returns the version
number of the virus in register AH.
(ili) Modification of amount of available system memory or DOS memory
control blocks.

@ Disk characteristics (used by boot record viruses):
(i) Particular bytes or series of bytes at a known location — normally an offset
at a well-known absolute sector location.
(ii) Reserved information field in the bios parameter block (BPB). The BPB
contains detailed information on the structure of the disk, sectors per track,

tracks per disk, etc. It includes a number of reserved fields available for viral
use:

DOS version Offset Size
2 15h 11 bytes
3 19h 7 bytes

4 2Bh 8 bytes

86 A Pathology of Computer Viruses

Signatures prevent continual re-infection, thus making the virus more
difficult to detect (i.e. less obvious disk activity). Once recognised, they can
provide a convenient recognition method for virus scanning utilities (although
one which is often subject to trivial change by a virus modifier).

One interesting implication of including signatures at fixed offsets from the
start or end of file, is the inability of viruses to correctly recognise files infected
by multiple viruses. For example, in the case of the ““10 005" virus incident, the
system was infected by the Jerusalem and “‘Plastique’ viruses. The Plastique
virus adds itself to the beginning of the executable file. Then the Jerusalem
virus inserts itself at the beginning, moving the Plastique virus to make room.
The Plastique virus again examines the file, looking for its signature at a fixed
offset, fails to find it (since Jerusalem has relocated the original Plastique virus),
and thus decides to infect. The file therefore ends up being extended by 10 000
bytes plus the 5 byte Jersualem signature (10 005 bytes). This story has two
noteworthy features: first, when two or more viruses are active all sorts of
composite infections can occur; second, when disinfecting a file do not assume
it is clean when a single virus has been removed - always rescan it.

4.13.3 Miscellaneous Topics

Finally, to end this detailed review of computer viruses on the IBM PC
platform, it is worth mentioning a few unusual forms of virus.

4.13.3.1 Corresponding File Virus
A “corresponding file”, ““companion” or “spawning’’ virus makes use of the
way in which DOS selects between a EXE or COM file with the same base
name. DOS will always select the COM file in preference to the EXE file, if one
exists. This technique is used by the ““AIDS 2" virus, discovered in April 1990.
The virus places its code in a COM file with the same base name as the EXE
being infected.
When the user tries to run the EXE he will instead run the viral COM file,

which will play a melody, and then display the text:

Your computer is infected with

Aids Virus II
- Signed WOP & PGT of DutchCrack -
before executing the original unaltered EXE file. When the user program exits
the virus will again activate and display:
Getting used to me?

Next time, use a Condom
The corresponding file technique can be generalised to describe any ““virus”
which operates by including its code earlier in the search path of DOS. This
includes creation of a file in a directory in the “PATH” searched prior to the

Operation of PC Viruses 87

target file, or in the above case use of the fact that COM is always tried as a
suffix prior to EXE.

4.13.3.2 SYS Virus

This virus, reported in an early Homebase virus listing, is a boot sector infector
which, when active in memory, will detect any attempt by the user to execute
the “SYS” DOS command. This DOS command will write an uninfected boot
sector, together with MSDOS.SYS and 10.5YS files to the specified drive. The
virus detects the attempt to use the SYS command and then emulates the text
messages normally produced by the program.

4.13.3.3 Multi-vector Viruses

The traditional distinction between boot sector and parasitic/link viruses has
been blurred by the arrival of multi-vector viruses which can propagate both
via boot sector and infection of COM/EXE files. The first example of this trend
was the Ghostballs virus.

The Ghostballs virus was discovered in October 1989. This virus is a transient
(non-resident) COM infector. In addition, the virus will overwrite the boot
sector on disk with a modified version of the Italian (Bouncing Ball) boot sector
virus. After boot sector disinfection any execution of an infected COM file will
cause re-infection of the sector. It is a small step to a generalised multi-vector
virus capable of propagating both via EXE/COM infection and via boot/master
boot record propagation.

A fully operational example of a multi-vector virus is the 1253 virus. The 1253
virus, isolated in August 1990, infects four types of object code: the master boot
record, DOS boot sector, COMMAND.COM, and COM executable files. The
virus will become memory resident when an infected COM file is executed and
will intercept interrupts 08h, 13h, 21h and 60h, installing itself as a system TSR.
The TSR is 2128 bytes in length. At the time at which the virus becomes resident
it will attempt to infect the master and DOS boot sectors. Other diskettes
accessed when the virus is active in memory will also be infected. When the
system is booted from a disk containing the virus in the master or DOS boot
sectors, the virus becomes resident in high system memory, reducing the
available memory by 77 840 bytes. The virus will then attempt to infect any
COM programs executed.

4.13.3.4 Multi-architecture Viruses

It is also worth noting that the trend to permit other hardware architectures
(such as the Atari ST) to read DOS formatted disks has led to the risk of multi-
architecture viruses. Since both the Atari ST and IBM PC will read a boot sector

88 A Pathology of Computer Viruses

from a DOS formatted disk and attempt to execute the incorporated code, it
becomes possible to produce a boot sector virus which will spread on both
systems. The significant difference between architectures is of course the use of
the Intel 80X86 processor on the IBM PC, and the Motorola 68000 processor on
the Atari. Tailoring of the initial jump instruction in the boot sector can produce
an instruction sequence which will read:

Hex Motorola 68000 Intel 80386

60 BRA.S PUSH A
90 offset NOP

EB - JMP

XX - offset
XX - offset

This instruction sequence allows two separate jumps to be incorporated
within the available 11 bytes, thus splitting flow of control in two ways,
depending on the executing processor.

4.13.3.5 Architecture Dependent Viruses

The opposite to a multi-architecture virus must be the extreme examples of the
IBM PC-DOS viruses which will not execute on different processor chips (8086,
80286, 80386 and 80486). This non-operability may be caused by the use of
extensions in the processor instruction set or in the case of the ““Yale”” virus by
its use of an instruction marked as “undefined” in the 8086 set.

The 8086 processor (despite Intel specification that the instruction code was
not used) interpreted instruction code OF as being POP CS. This caused the
virus (which relied on the instruction) to fail on 80386 processors. The latter
processor had used the code as an escape to a two byte enhanced instruction
set.

The original Yale virus thus caused an invalid opcode exception when run on
a 80386 processor. The virus had thus become obsolete through the introduc-
tion of new (and not strictly backward compatible) hardware.

A similar example is the use of the “MOV CS,AX” instruction by the Italian
virus which was permitted on the 8086, but trapped as illegal by the 80286/386
processors.

Other examples are viruses which exploit less obvious features of the
processor architecture such as the instruction pre-fetch queue or pipeline. The
virus modifies an instruction which is immediately in front of the instruction
being executed. This will cause the virus to execute the unmodified instruction
(since this has already been fetched by the processor and is awaiting
execution). Disruption of the flow of control (such as might be caused by single
step debugging) will flush the pipeline, and cause the virus to execute the

Operation of PC Viruses 89

modified instruction. The length of this pipeline varies between processors.
Examples are 4 bytes for the 8088, and 6 bytes for the 8086.

Chapter 5
Management of PC Viruses

5.1 Perspective on Security

In Chapter 4 we painted a bleak picture of the wide range of camouflage
techniques and replication strategies adopted by PC viruses. In this chapter,
methods to prevent, contain and recover from computer virus infection will be
discussed. Together, these methods provide comprehensive protection from
significant damage to vital programs and data from virus (and trojan horse)
activity.

The first important point to note is:

A trade-off between security and convenience always exists

A possible means of preventing computer virus infection would be a PC with
a pre-formatted and installed hard disk, no floppy drives and anti-tamper
alarm systems. This has significant disadvantages, namely:

Inability to install or transfer data and programs

In some environments such an inconvenience may be acceptable; in others it
is crippling. The extent of the anti-viral precautions adopted by an organisation
is a management decision. Such a decision must be based on:
® An estimate of the risk of data and program corruption by viruses
® The financial cost of such damage to the organisation
® The recurrent financial cost of regular anti-virus measures

In most circumstances, organisations may accept an element of risk to
minimise security overheads and employee inconvenience. At the moment,
when considering each proposed policy, ask:

Do the advantages of this policy justify its implementation costs?

5.2 Components of a Virus Control Scheme

The components of an organisation’s reaction to computer viruses can be
divided into:

92 A Pathology of Computer Viruses

® Prevention
® Detection

e Containment
® Disinfection
® Recovery

Prevention of a virus refers to precautions such as controls on software run
on test systems, physical and electronic security controls on external software
installation, policy constraints on shareware and public domain software, and
user education in software use and clean machine practices.

Detection of a virus refers to the careful monitoring and logging of
anomalous system activity, together with the use of a range of anti-viral and
software integrity verification schemes.

Containment refers to the establishment of clear procedures for reporting of
viral infection, controls instigated when a virus is detected in an organisation
and the establishment of skilled anti-virus groups within the organisation.

Disinfection refers to the removal of all viral material from the organisation’s
computer systems through the reformatting of disks, removal and re-
installation of software or the use of specialist viral disinfection tools.

Recovery refers to the ability of an organisation to restart vital work
disrupted by the virus, including the ability to restore potentially damaged
data from archive materials. Techniques such as redundant copies of data files,
standby systems and careful contingency planning are all part of an organisa-
tion’s recovery plan.

Management plans must also address issues such as the maintenance of
public confidence in an organisation after a viral attack.

5.3 Prevention of Virus Attack

‘Viral infection can be prevented by controlling the ingress of viral material into
the controlled environment which represents the company computers. Such
environments can be broad, encompassing the entire company (including PCs
removed by the user for home working), or restricted, covering a minimal
range of PCs in a controlled access and closely supervised area.

In general such environments are structured in a hierarchy of risk:

® Universal - all computer systems with unrestricted software use and traffic

® Home use — computer systems taken off the corporate site or outside
corporate control, i.e. home use of company PCs

® Corporate use — computer systems physically restricted to the corporate site
but with no forms of access control

® Restricted use — computer systems restricted to the corporate site and
employing a range of access controls and subject to supervision and auditing

Management of PC Viruses 93

As the value of the data stored on systems increases, or the imperativeness of
retaining uninterrupted operation increases, so increasingly restricted
environments must be established. Software flow either physically (via media
transportation) or electronically (via networks) must be restricted to preserve
the integrity of the environment.

To prevent a virus attack, we can constrain the propagation of viral code
using a wide variety of methods. These may be divided into three categories:

® Physical constraints on the movement of viral code via media (or personnel)
between environments

® Electronic constraints on the communication of viral code via networks
® Ideological constraints on the desire of the user to initiate either of the above

5.3.1 Physical Access Constraints

The most effective way to prevent viral code spreading is to isolate systems
physically and electronically, then to control the movement of viral code either
via media (floppy disk, tape, removable hard disk, CD-ROM etc) or personnel
(through entry by keyboard or OCR). This can be achieved by:

1. Physically segregating PCs — restricting access to the PC by lock or guarded
access control point. Depending on the installation, this can include drastic
measures such as “mantrap’” access gateways under human supervision with
electronic card locks and personal code entry. In general, such measures are
only appropriate when:

(i) Data integrity is vital (e.g. finance or banking)

(ii) Prevention of denial of service is vital (e.g. air traffic control)

(iii) Data confidentiality is vital (e.g. military)

Less stringent physical segregation may just consist of preventing PCs being
removed from the corporate office by suitable alarm mechanisms, thus
restricting the opportunities for installation of alien software.

2. Media transportation controls — such as physically searching employees
entering or leaving the secured environment, or through the use of detectors
capable of signalling the passage of a metallic media (such as the ferric and
chrome dioxide coating on magnetic disks, or the metallic backing plate on
quarter-inch cartridge tapes).

3. Minimisation and centralisation of replaceable media — this technique
involves restriction of the number and location of machines with removable
media. This subset of machines is placed under careful supervision and
control. From these machines software is transferred by network to the hard
disks on other machines for day-to-day use. (Naturally this has the disadvan-
tage of rapidly spreading infection should an infected program bypass the
careful checks.) h

94 A Pathology of Computer Viruses

Secure gateway
with floppy
drive
Server with L
bulk disk Physical access
Client diskless control barrier
machines

4. System operation constraints, such as the inclusion of physical locks which
prevent the machine being operated by unauthorised personnel (preferably
not easily bypassed by shorting two wires when the IBM PC case is open,
possibly enforced by tamper resistant casings and alarm mechanisms). Access
to the media may also be restricted by locks preventing access to floppy or tape
drives.

5. Network security constraints — restricting access to, and tampering with,
networks through the use of such methods as:

(i) Pressurised ducting, with pressure drop detectors and alarms

(ii) Line characteristic monitors, capable of detecting breaks (such as unplug-
ging of an Ethernet connector to insert a tap) or changes in line capacitance or
inductance caused by such a tap

(iii) Minimising cable in vulnerable or accessible locations

5.3.2 Electronic Measures

A wide variety of electronic access restriction and user authentication
.techniques exist, many of which can easily be adapted to the personal
computer environment. They form a less onerous, although less foolproof,
alternative to physical constraints.

In many cases an expert can circumvent electronic access control mecha-
nisms by exploiting known bugs or loopholes in the mechanism.

Electronic access control is based on three characteristics of the user:

1. What the user is — physical feature verification.

2. What the user knows — knowledge verification.
3. What the user has — possession verification.

The most common techniques are adopted from groups 2 and 3, since such
knowledge or possession can easily be confirmed electronically. Unfortunately
such knowledge or possessions can easily be transferred, making these checks
easy to circumvent. ’

Management of PC Viruses 95

Group 1 mechanisms are most difficult to forge (consider the difficulty in
forging a fingerprint to gain such access) but are still in the development phase.
They are often unreliable and error prone, causing the following types of errors
at a rate which is unacceptable:

® Accidental permission of access to an unauthorised person
® Accidental denial of access to an authorised person

The mechanisms may also involve considerable personal inconvenience or
prove ideologically unacceptable (i.e. all employees must be fingerprinted for
recognition).

5.3.2.1 Physical Feature Verification

Examples in this group include (in order of inconvenience):

® Retinal pattern recognition — recognition of the pattern formed on the retina
of the human eye by blood vessels, normally involving personal inconve-
nience although difficult to forge

e Fingerprint recognition — often ideologically unacceptable

® Voice recognition — unreliable and easily distorted by stress or illness

® Reaction time recognition — insufficiently discriminating in isolation; nor-
mally coupled with password entry using typing rate analysis

® Facial recognition — unreliable and easily distorted by facial hair, tanning or
make-up

5.3.2.2 Knowledge Verification

Into this category fall the bulk of all computer user authentication schemes. The
verification of knowledge can take the form of:

® Passwords
® Pass phrases
® Background history enquiry

These include the installation of password checkers on IBM systems.
Obviously, an authentication mechanism must be in place as soon as possible
in the boot sequence, and should be tamperproof. In this respect the
authentication system should be in ROM, or incorporated into the master boot
record on the hard disk or network server. It must be secure against being
bypassed by:

1. Insertion of bootable floppy media (which will be selected prior to execution
of hard disk initialisation code).

2. Abort sequences such as Ctrl-Alt-Del and Ctrl-C from the keyboard.

96 A Pathology of Computer Viruses

3. Execution of a command sequence from a trojan horse program run under
the control of an authorised user, such as the installation of a ““trapdoor”
which can be utilised by an unauthorised user.

A number of IBM PC authorisation mechanisms have flaws which may allow
them to be bypassed. This is one case of a general problem related to tampering
with system software. It is preferable from an integrity viewpoint to incorpor-
ate as much as possible of the system boot and initialisation code into ROM.
The incorporation of the BIOS, DOS and COMMAND.COM into ROM would
ensure a clean system environment at boot time (up to the point at which the
user invoked a non-built-in command from the command interpreter). Evenin
such ROM based systems (such as the Atari ST and newer Mac OS releases)
facilities normally exist to override components of the ROM code to allow the
installation of system patches and upgrades. The additional incorporation of
the authentication mechanism into ROM would ensure that only initial
authorised use would be permitted. Once an authorised user was active he or
she might inadvertently introduce a trojan horse or virus infected utility into
the clean environment. The issue of ensuring software integrity is addressed in
the Biba extension to the Bell-LaPadula security model dealt with in Chapter 7.

5.3.2.2.1 Passwords

The password is the principal method of authenticating a user in most systems.
A wide range of guidelines exist (such as the DOD password management
guideline) on the choice of passwords. A well designed password control
system would include:

® Restriction of acceptable passwords:

(i) to be in excess of a minimum length

(ii) to be chosen from a rich character set (multicase and alphanumeric)

(iii) not to be related to the user’s login name or real name

(iv) not to appear in the standard English dictionary

(v) not to be a pronounceable word through restriction on the trigrams (groups

of three letter combinations) appearing in the word to those which do not occur

in the English language

® Reduction of system information which might allow passwords or logins to
be guessed:

(i) avoidance of system login banners and welcome messages, which might
permit identification of the type of operating system and thus derivation of the
characteristics of typical passwords

(ii) non-repudiation of invalid logins until a password has been entered,
prohibiting a rapid search for possible logins

(iii) insertion of a time delay into the password verification routine, thus
delaying a response until a number of seconds after password entry which
reduces the rate at which login/password doublets can be tried

Management of PC Viruses 97

Passwords can be extended to include complete phrases or sentences, thus
allowing further complexity and increasing the search space for password
guessing. Such pass phrases may still be comparatively simple for the user to
memorise. Finally, the password mechanism can include an analysis of typing
rate and inter-character delays (offering limited physical feature verification).

5.3.2.2.2 Background Verification

The user may be queried during the login session to determine his identity.
Such queries can be generated from a system database of personal information,
e.g. the infamous example used by some credit card firms: What is your
mother’s maiden name? This method has fundamental drawbacks:

® Personal resistance to compilation of such a dossier and its storage on
computer (including the implications of the Data Protection Act)

® Limited background research by unauthorised users (who may be a friend or
relation of the legitimate user) can allow the correct answers to be discovered

5.3.2.2.3 Other Techniques

A twist in the knowledge verification technique is to require the user to
memorise a simple algorithm. A challenge issued by the system is transformed
by the user (using a stand-alone system or calculator) under the known
algorithm. The response is then entered at the keyboard and is verified by the
system.

5.3.2.3 Possession Verification

The final category involves such systems as magnetic card or badge readers
attached to the computer system. These are, however, easily duplicated, stolen
or borrowed by other users. The use of complex patterns of magnetic flux
intensity can complicate the duplication process. Possession verification
includes the issue of “boot disks”” without which the system is unusable
(although this is a potential channel for the introduction of viral code in the
form of the boot sector virus), and of software protection “dongles”. The
dongle is a hardware module attached to an external system interface (possibly
in the form of a compact “’smart” card) which in its simplest form comprises a
PROM readable by the host. More complex varieties include stand-alone
cryptographic modules which can be “challenged” by the host and will return
an encrypted version of the host’s challenge for verification.

5.3.3 Media Access Controls

The previous methods have concentrated on the restriction of personal use of
the computer system. Virus code can also be restricted by limiting the loading

98 A Pathology of Computer Viruses

of code from physical transportable media. Examples include:

® Restricting automatic loading of code on media insertion
® Checksumming or scanning for viral code on all inserted media
® Prevention of unauthorised software installation

A major problem on the Macintosh series has been the WDEF virus. This
virus appears in a configuration file on each disk known as the “Desktop”. This
file controls the placement of icons and windows on the screen and permits the
location of application programs via a four-byte signature. This file is
automatically included in the code search path when the disk is inserted into
the system, thus causing the implicit loading of the viral code in the WDEF
virus infected Desktop. In the IBM PC, and other related systems, which are
incapable of detecting media changes (i.e. removal or insertion of a floppy disk)
such implicit loading is fortunately not a problem.

The integrity of the inserted disk can be automatically verified if the medium
carried a unique value identifier. The identifier may comprise either a serial
number (e.g. the Atari ST disk BPB) or a value identifier (in the Mac volume
information block or IBM PC root directory). Unfortunately IBM PC systems
have not adopted a standard convention regarding volume labels, and these
are often duplicated across disks or missing entirely.

If a disk change can be identified (which may not imply automatic loading of
code on media change) the system can: '

® automatically calculate a checksum over the boot sector, directory informa-
tion and disk areas then verify this against a checksum stored on the disk, or
in a master directory in the hard disk

® automatically scan for known virus signatures or code within the executable
files on disk

An example of such an automated scanner is the desk accessory ‘*Virus
Detective” on the Macintosh. This is capable of detecting disk insertion, which
causes a scan for a series of search strings (defined using a simple but flexible
definition language).

5.3.4 Network Access Controls

The preceding sections have dealt with physical and electronic user authentica-
tion and media authentication. In the modern corporate environment many
systems are interconnected via local and wide area networks such as Ethernet
and X25. It is common practice to provide a wide range of services from remote
sites, including login and remote execution of code or utilities.

Networking increases the potential for unauthorised access, and permits the
rapid spread of viral code. The particular problems posed by networks are:

e Identification of access channels

Management of PC Viruses 99

® Distributed trust
® (Centralised network file servers
e Network transport by public carriers

5.3.4.1 Identification of Access Controls

A number of alternative routes normally exist by which code can be transmitted
across the network either for local storage (with delayed execution via a trojan
horse mechanism) or immediate execution under remote control. The identi-
fication of all possible channels, together with their audit and control is vital.
Typical channels include:

® Remote logins or command shells

® Remote file transfer or access facilities

® Remote code execution or procedure call
® Electronic mail facilities

Other network services providing restricted services may be open to
subversion bugs and loopholes in the (often highly privileged) utility providing
the service.

A gateway or gateways should be established which represent the interface
between the outside world, external corporate sites and local networks, e.g.:

: Gate.:way
Gateway : Corporate
Public : Network
Network : :
R Pt R
Area
Network

Such systems tend to implement enhanced security and integrity controls,
including extensive auditing and monitoring of network traffic. Such monitor-
ing often includes expert systems to identify anomalous activity which may be
characteristic of a security breach.

5.3.4.1.1 Centralised Network File Servers

Similarly, central file servers may be established on LANSs to allow attachment

100 A Pathology of Computer Viruses

of diskless machine nodes, or sharing of specialist software. Such servers offer
a haven for viruses, which may replicate rapidly on the server machine. The
infected server may then spread the infection to the client machines which it
serves (the infected binary being transferred from the server for local execution
on the client machine). Having spread to the client, the virus may spread
normally amongst the local media of the client.

Servers must therefore exercise a high level of security controls, including
extensive anti-viral and checksumming software, security measures in the
form of discretionary or mandatory access controls, physical access controls to
the server, and careful monitoring of the server.

With careful control, the server can provide an assurance that the system and
application software remains uninfected (including that run on diskless client
machines). Obvious measures are:

® Use of an alternative operating system on the server to prevent infection of
the server through execution of viral code introduced from a client system

® Write-protection of all executable files, with limited client rights to modify or
remove the write-protection attribute

5.3.4.1.2 Distributed Trust

Network systems often make use of less stringent access controls between
nodes on local networks, and between trusted nodes such as related or
customer firms. This can lead to the establishment of a hierarchy of trust in
which:

Node A trusts Node B, Node B trusts Node C, etc.

A viral infection of node C can therefore spread rapidly through the remote
execution of code on node B under the control of a user on node B, and thence
tonode A. In a similar manner a virus executing on node C can copy its code to
the file system on node B, from whence it may execute and copy its code to
node A. This bi-directional propagation of trustis a typical feature of traditional
discretionary access models. Thus, complex multi-link infection paths can
exist, often leading to infection of distant machines which are not trusted by the
source machine (except indirectly).

5.3.4.1.3 Network Transport by Public Carrier or Accessible Media

Finally, consideration must be given in high security environments to the
accessibility of all communication channels linking secure systems. On
broadcast network systems (such as Ethernet CSMA/CD) any node is capable
of intercepting packets destined for another node (a confidentiality risk), or of
injecting packets appearing to originate on another node (an integrity risk).

Management of PC Viruses 101

Thus an untrusted node can intercept a request to load a remote file, and can
transfer a virus infected file in its place.

Where a network is routed via a public space, or indeed over intermediate
public carriers (PTTs), it becomes possible to intercept a file transfer request
destined for a remote system. Such a request can then be answered by the
untrusted intercepting system.

A number of digital authentication schemes can be adopted based on public
key cryptosystems such as RSA prime factoring algorithms. The interested
reader is referred to Appendix 16 for details of suitable further reading.

5.3.5 Ideological Controls

Anti-viral techniques require the co-operation of the user community in
observing:

® “Good” software policies

® Use of technical anti-virus utilities

® Monitoring of anomalous system behaviour
® Reporting of possible viral infection

This co-operation is vital and can only be achieved through careful
management of personnel — a mixture of education, involvement and
supervision. It is not sufficient to educate users in the technical aspects of anti-
viral software utilities without addressing the rationale for such inconve-
niences. It is vital that the potential for viral damage is described (possibly
using illustrative case histories), and that measures are taken to ensure that
employees realise that they have a responsibility for viral protection and can
take an active role in detecting and destroying this menace.

The principal ways of establishing user acceptance of good anti-viral policies
are:

® Education
® Motivation
® Supervision
® Discipline

5.3.5.1 User Education

A wide range of training materials are now available from commercial security
firms such as Sophos, S & S International Ltd., ISIS or the Federation Against
Software Theft (FAST), including provision of instructional seminars, demon-
strations of computer viruses, information packs, software documentation and
news bulletins. Contact addresses for these organisations are given in
Appendix 14.

102 A Pathology of Computer Viruses

Training tends to split into three phases:

1. A basic introductory course — for end users.
2. Detailed technical courses — for systems programmers and administrators.
3. Management overviews — for senior management and executive levels.

A typical two-day introductory course might comprise:

e What is a virus? Terminology, descriptions of trojan horses, logic bombs,
viruses and worms

® How does it operate? Brief overview of how a virus spreads in the PC
environment, examining a few selected viruses, possibly with a demonstra-
tion of viral spread (preferably simulated)

® What damage can it do? Look briefly at the damage caused on activation.
Show how data and program code may be destroyed and indicate the cost of
such damage

e How do we prevent it? Describe good software practices. Describe technical
preventive measures and demonstrate use of selected in-house anti-virus
software. Backup and integrity policies

® What to do when a virus is detected? Corporate reporting procedures.
Recovery procedures: re-installation and disinfection. Public relations and
legal aspects

During the entire course the corporate data security policy (described below)
must be stressed. As much visual material as possible should be used,
including demonstrations of viral activation, hands-on use of anti-viral
software, etc.

Unfortunately, there is a need for accurate simulations of the behaviour of
anti-viral products on detection of a virus. In this respect, harmless simulators
can be constructed which:

® Demonstrate the virus’ obvious symptoms, such as characteristic screen
displays, musical effects, etc. Such simulators can also simulate the growth
of files on infection and change in file characteristics

® Cause activation of the ““Alert” messages on anti-viral products (by
simulating an attempt to write to an executable file, for instance)

In some cases a need may exist for the use of live (unattenuated) viruses,
although this should be carefully considered and minimised to reduce the risk
of accidental spread to live corporate systems (or indeed copying by partici-
pants on the training course). In the event that such a potentially risky
demonstration is undertaken, always:

® Backup all data on hard drives

® Select a number of scratch floppy disks for demonstration use, and clearly
label them as “infected”

® Segregate the demonstration system both physically and electronically

Management of PC Viruses 103

® Supervise the infected machines at all times; do not permit anyone to insert
or remove media while the machine is infected

® After the demonstration switch the machine off and leave for at least 30
seconds. Switch on and boot from a “clean” write-protected copy of the
system master boot disk

® Reformat all hard drives (using a clean copy of the formatter program),
preferably at low level. Alternatively, always rewrite the master boot record
for each physical drive

® Erase (using magnetic flux coils) or destroy all removable infected media

® Maintain a careful watch on all systems for a period of time after the
demonstration

Normally such demonstrations are of limited use (other than the glamour of
handling live viral material), and are best left to specialists.

Technical courses are appropriate only for personnel who need to know the
details of viral replication and of the detailed operation of anti-viral measures.
An example might be the virus control or personal computer security group
within a firm.

The technical course might also be held over two days (preferably on
completion of the end user course), and might include:

® Detailed examination of how viral code can be executed, i.e. the boot
sequence

e How a virus replicates, i.e. patching of binary files by link viruses

® How a virus remains active: terminate and stay resident methodologies

® Detailed examples and descriptions of the operation of common viruses,
such as Israeli, Cascade, Brain, Italian, WDEF and nVIR

® An examination of the operation of anti-viral software products: checksum-
ming, vector interception and signature recognition (including
shortcomings)

® Re-installation and disinfection of infected systems

® A hands-on walk-through of the detection, analysis and disinfection of an
infected system

® Possible panel or discussion session on future trends and developments in
virus technology — always interesting, often worrying

The final form of course is aimed at senior management and thus has a risk
assessment, public relations and legal aspects bias. Such a course might run
over one day and cover:

® General introduction to computer viruses — introduce the concept and give
examples of damage caused to affected organisations, including illustrative
media coverage

® Risk assessment — if possible, give illustrative statistics on the risk from
computer viruses, and review the potential seriousness of damage to
corporate data, denial of service or data compromise

104 A Pathology of Computer Viruses

® Corporate policy — outline the corporate data security policy and detail the
management and procedural structures in place to handle virus infection

® User education — detail the education programs available within the
company, and the emphasis during induction courses

® Public relations — detail the handling of reporting to the press, relations with
clients, reporting to official organisations and dissemination of information
within the organisation

e Contingency planning — detail the corporate data recovery policy and the .
contingency plans available to permit data recovery and uninterrupted
operation

® Discipline and legal issues — discuss the contractual recourse against guilty
employees, and the corporate policy on initiation of legal proceedings
against employees or outsiders guilty of virus or trojan horse introduction

The flavour of each course is very different, and in each case the material and
style of presentation are highly biased towards the audience requirements.
Brainstorming and active participation is vital.

User education does not finish with the introductory course — it is an ongoing
activity seeking to continue the high profile of software security measures as
well as informing users of new trends in viral threats.

A large number of specialist magazines are available for technical staff, such
as Virus Bulletin, Virus News International, Computers and Security and Computer
Fraud and Security Bulletin, together with detailed reference listings and
catalogues of known or reported viruses, such as the University of Hamburg
virus catalogue, Homebase Bulletin Board catalogue, Virus Bulletin catalogue,
and the Dirty Dozen trojan horse listing.

A similar range of electronic discussion forums deals with reporting of new
viruses and discussion of the general field of anti-viral measures. The principal
forum, Virus-l, is co-ordinated by Ken Van Wyk of CERT.

These detailed discussion forums are often inappropriate for end users and
management, who may benefit from a precise or abstract service. This service
might take the form of a monthly electronic mail bulletin, occasional warning
circulars or a column in the company magazine. Such bulletins may contain:

® Warnings of new viruses or errant software
® Notices of upgrades to selected anti-virus software

® Changes in, or reminders of, corporate data security policies and standard
anti-virus procedures

® Contact numbers of people in the reporting chain for virus discoveries or
who can provide technical advice

® Dates of anti-virus courses and descriptions of educational resources

Management may benefit from a similar condensation including revised risk
assessments and changes in current legislation.

Management of PC Viruses 105

5.3.6 Management Policies

This section is concerned with the detailed measures available to reduce the
threat of computer viruses (and trojan horses). From it can be extracted a
management policy framework. Such policies must be tailored to the individ-
ual needs of the company (including an assessment of the value of the
company’s data and computing resources). Aspects of a policy include:

® A general statement of the company’s desire to ensure the security and
integrity of its computing systems, normally signed by the managing
director or company chairman

¢ Policy on training and education of employees

® Policy on anti-viral measures, including;:
(i) Use of external software
(ii) Use of technical anti-viral measures and software
(iii) Reporting of viral infection
(iv) Establishment of a group with special responsibility for viral advice and
disinfection

® Public relations policy

® Disciplinary and legislative policy

® Policy on contingency planning for data recovery

Such an anti-virus policy will normally form an integral part of the broader
general corporate security or corporate IT security policy.

5.3.6.1 Training of Employees

An education policy should provide for initial training of new employees
(possibly via compulsory attendance at the end user course as part of the
corporate induction program). It should also provide access to advanced
courses where appropriate (i.e. to system programmers and members of the
anti-virus unit in the case of the technical course, and to senior managementin
the case of the management course).

Educational policy should also require that updates to new viral
developmets be tracked, and that employees be informed. This can either be
achieved in-house by the anti-virus group or externally by consultancy services
from specialist security firms.

5.3.6.2 Use of Anti-viral Measures

This is a major component of the management policy statement. It sets the
company attitudes and practices for viral prevention. Firstly, it must address
the installation procedures for new software, and may include:

106 A Pathology of Computer Viruses

1. Restrictions on software not from trusted vendors (including items from
public domain bulletin boards, “‘cowboy” firms and other unknown sources).
While this may restrict viral infection, it is worth noting that the so-called
“shrink-wrapped” software does not provide absolute protection. Even
reputable companies have distributed virus infected software by accident.
Examples are given in Chapter 2 and Appendix 9. Certain major bulletin boards
now apply extensive anti-viral scans on new products. They may, however, be
an attractive target for the upload of software infected by newer viral strains.
Thus, there is a reasonable guarantee of software free from known existing
strains. T<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>