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Abstract

Background: Malaria is a major public health issue in Burundi in terms of both morbidity and mortality, with
around 2.5 million clinical cases and more than 15,000 deaths each year. It is still the single main cause of mortality
in pregnant women and children below five years of age. Because of the severe health and economic burden of
malaria, there is still a growing need for methods that will help to understand the influencing factors. Several
studies/researches have been done on the subject yielding different results as which factors are most responsible
for the increase in malaria transmission. This paper considers the modelling of the dependence of malaria cases on
spatial determinants and climatic covariates including rainfall, temperature and humidity in Burundi.

Methods: The analysis carried out in this work exploits real monthly data collected in the area of Burundi over
12 years (1996-2007). Semi-parametric regression models are used. The spatial analysis is based on a geo-additive
model using provinces as the geographic units of study. The spatial effect is split into structured (correlated) and
unstructured (uncorrelated) components. Inference is fully Bayesian and uses Markov chain Monte Carlo techniques.
The effects of the continuous covariates are modelled by cubic p-splines with 20 equidistant knots and second
order random walk penalty. For the spatially correlated effect, Markov random field prior is chosen. The spatially
uncorrelated effects are assumed to be i.i.d. Gaussian. The effects of climatic covariates and the effects of other
spatial determinants are estimated simultaneously in a unified regression framework.

Results: The results obtained from the proposed model suggest that although malaria incidence in a given month
is strongly positively associated with the minimum temperature of the previous months, regional patterns of
malaria that are related to factors other than climatic variables have been identified, without being able to explain
them.

Conclusions: In this paper, semiparametric models are used to model the effects of both climatic covariates and
spatial effects on malaria distribution in Burundi. The results obtained from the proposed models suggest a strong
positive association between malaria incidence in a given month and the minimum temperature of the previous
month. From the spatial effects, important spatial patterns of malaria that are related to factors other than climatic
variables are identified. Potential explanations (factors) could be related to socio-economic conditions, food
shortage, limited access to health care service, precarious housing, promiscuity, poor hygienic conditions, limited
access to drinking water, land use (rice paddies for example), displacement of the population (due to armed
conflicts).

Background
In Burundi, malaria is a major public health issue in
terms of both morbidity and mortality with around 2.5
million clinical cases and more than 15,000 deaths each
year. In 2001, Burundi was the world’s most affected
country by malaria [1]. Malaria is the main cause of
mortality among pregnant women and children under

five years of age, accounting for more than 50% of all
cases.
Many studies have been undertaken to understand

factors that are associated with malaria in many coun-
tries. Most of them found a strong association between
malaria and climate [2-5]. For example, the results in [2]
suggest that the variability of the climate played an
important role in initiating epidemics of malaria in the
highlands of East Africa. A significant positive correla-
tion between the number of malaria cases and tempera-
ture and rainfall has been identified. Pemola and Jauhari
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[3] found higher positive correlation between monthly
malaria parasite incidence and climatic variables (tem-
perature, rainfall and humidity) in Dehradun, India.
Gallup and Sachs [4] suggested that the location and
severity of malaria are mostly determined by climate
and ecology. Bouma et al [5] concluded that rainfall and
humidity were able to predict malaria rates fairly well in
Pakistan.
However, other studies on the same topic suggested

that factors other than climate may explain the distribu-
tion of malaria [6-11]. For example, Cox et al [6] noted
that the relatively high rates of malaria morbidity in
Africa could result from poor access to health services,
inadequate case management, overwhelmed health
services, poor immunological competence because of
malnutrition, a general disruption to livelihoods because
of often-associated flooding, or a combination of these
factors. Patz and Lindsay [7] suggested the existence of
many variables affecting malaria transmission beside the
climatic changes, such as environmental factors, the
population growth, a limited access to health care
systems, and lack of or unsuccessful malaria control mea-
sures. Kigbafori et al [8] concluded that risk factors for
malaria infection include age, socioeconomic factors, not
sleeping under a bed net, lack of health care facilities and
various environmental features, such as vegetation, rain-
fall and distance to rivers. Tren [9] suggested that though
climate can affect the incidence of malaria, man’s eco-
nomic activities and malaria control policy play a very
important role in the incidence of the disease. Hay et al
[11] suggested that the claimed association between local
malaria resurgence and regional changes in climate, in
Eastern Africa, is overly simplistic. They suggest that eco-
nomic, social and political factors explain recent resur-
gence in malaria and other mosquito-born diseases with
no need to invoke climate change.
In this study, a geo-additive model is proposed to under-

stand the dependence of malaria cases on spatial effects
and climatic covariates including rainfall, maximum and
minimum temperature, maximum and minimum humid-
ity in Burundi.

Methods
Study area
Burundi is located in East-central Africa, between 2°20 and
4°27 of latitude south and between 28°50 and 30°53 of
longitude east; the altitude varies between 775 metres
(Lake Tanganyika) and 2,670 metres (Crest Congo - Nil).
Burundi has in general a tropical highland climate with a
significant daily temperature variation in many areas [12].
Temperature also varies significantly from one region to
another mainly due to differences in altitude. The area in
the central plateau is cool, with temperature averaging
20°C. The area near Lake Tanganyika is warmer, averaging

23°C; the areas in the highest mountains are cooler with
temperature averaging 16°C. Rain is irregular and falls
most heavily in the northwest region [12]. Dry season
varies in length with sometimes longer periods of drought.
Most parts of Burundi receive rainfall between 130 cm
and 160 cm per year [12]. Bounded on the north by
Rwanda, in south-east by Tanzania and in west by the
Democratic Republic of Congo, Burundi covers an area of
27,834 km2 (of which 2,634 km2 are occupied by Tanga-
nyika Lake) and has a population estimated at about 8 mil-
lion. In terms of habitat, it remains essentially rural, with
91.6% of the population living in rural area. The urban
population is 8.4% with an annual growth rate of 5.7%.
The Burundi population is young: 46.1% are under
15 years of age, while people aged 60 and above represent
only 5.4%. With an average density of 266 inhabitants per
km2, a population growth rate of 3.44% and a total fertility
rate of 6 children per woman, Burundi is one of Africa’s
most densely populated countries [13]. Burundi is struc-
tured in 17 provinces. The epidemiological profile can be
summarized as follows. The health system suffers from a
shortage of qualified personnel with 1 doctor per 34,750
inhabitants and 1 nurse for 3,500 inhabitants [13]. 17.4%
of patients do not have access to health care, while 81.5%
of patients are forced to go into debt or sell property to
pay the health costs. There is a big disparity between the
capital Bujumbura and the remainder of the country as
80% of doctors and more than 50% of nurses are engaged
in Bujumbura. Responsible for more than 50% of hospital
deaths in children under five years of age and more than
40% of all consultations in health centres, malaria is
undoubtedly the main public health problem, the main
cause of mortality and morbidity in Burundi [13].

Data description
The goal in our study is to understand the dependence of
malaria cases on factors such as climatic variables and
spatial (correlated and uncorrelated) effects in Burundi.
Monthly data on malaria morbidity in Burundi over
12 years (from 1996 to 2007) were collected from EPI-
STAT (Epidemiology and Statistics in Burundi) [14], a
department of the Burundi Ministry of health in charge
of collecting and storing data on epidemiology all over
the country. The well-known nearest neighbour method
was used to fill the missing data (~5%). The estimated
population for each province, for the study period, was
obtained from the Institute of Statistics and Economic
Studies in Burundi (ISTEEBU)[[15] Malaria incidence in
a given province was computed by dividing the number
of malaria cases by the total population of the province,
assuming that the whole population is susceptible.
Monthly data on cumulative precipitation, monthly aver-
age of daily maximum temperature, minimum tempera-
ture, maximum humidity and minimum humidity for
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1996-2007 was obtained from the Geographic Institute of
Burundi (IGEBU) [16]. The record of these variables
from 1996 through 2007 has remained uniform, with the
same calibration and the same precision. The missing
data (2% - 3%) were filled by the same method as in
Malaria data (nearest neighbour and cross-validation).
Data for three provinces (Bubanza, Bujumbura rural and
Cibitoke) were not available for the study period; they
were estimated using ordinary kriging [17]. The data are
available on different scales and units (malaria incidence
and humidity are unit free, rainfall is measured in centi-
metre (cm), temperature in degree centigrade (°C)). They
were then standardized to avoid the effect of scale in the
modelling.

Model formulation
In a previous study [18], assuming that climatic covariates
have a nonlinear effect on malaria incidence and based on
the Akaike information criterion (AIC) using the algo-
rithm described in [23], the following generalized additive
mixed model (GAMM) [24] was proposed to assess the
dependence of malaria cases on climatic variables.

ηit = α0 + f1(Rnit) + f2(Hxit) + f3(Txpit)

+ f4(Hxpit) + α1Txit + α2Tnit + α3Tnpit + εit
(1)

Here hit is the predictor of malaria incidence assumed
to have a gamma distribution, Rnit is the rainfall, Hxit is
the maximum humidity, Txit is the maximum tempera-
ture and Tnit is the minimum temperature, of the pro-
vince i in month t. Txp ,Tnp ,Hxp are the same variables
for the previous month. f1, ···, f4 are unknown nonlinear
smooth functions of the covariates. The ai (i = 1,···, 3)
are the regression coefficient of the linear effects. a0 is
the intercept (accounting for unmeasured covariates).εit
is the error.
The aim here was to assess the climatic factors that

are highly associated with monthly malaria incidence in
Burundi; hence spatial effect was not included in the
model. The results have shown that malaria incidence in
a given month is positively associated with the mini-
mum temperature in the previous month. In this study,
the GAMM in (1) is replaced by a geo-additive model
by incorporating the spatial effects as follows [25-32].

ηit = α0 + f1(Rnit) + f2(Hxit) + f3(Txpit) + f4(Hxpit)

+α1Txit + α2Tnit + α3Tnpit + fspat(pi) + εit
(2)

Here, as above, f1,···, f4 are nonlinear smooth functions
of the metrical continuous covariates and fspat is the
effect of the spatial covariate pi ,(i = 1, ···, 17) represent-
ing province i. The spatial effect fspat is then split up
into correlated (structured) and uncorrelated (unstruc-
tured or random) effects as follows [30,31].

fspat(pi) = fstr(pi) + funstr(pi) (3)

The logic behind this is that a spatial effect is usually
a combination of many unobserved influences, some of
them obeying a strong spatial structure and others being
present only locally [26-31,33]. Eq. (2) is then written as

ηit = α0 + f1(Rnit) + f2(Hxit) + f3(Txpit) + f4(Hxpit)

+α1Txit + α2Tnit + α3Tnpit + fstr(pi) + funstr(pi) + εit
(4)

This geo-additive model assumes that the nonlinear
effects f1,···, f4 are the same for all provinces.

Prior assumptions and inference
For Bayesian inference, the unknown functions f1,...., f4
in predictor (4), the vector of the linear effects para-
meter a = (a0, a1, a2, a3), are considered as random
variables and are supplemented by prior assumptions. In
the absence of any prior knowledge, diffuse priors are
the appropriate choice for fixed effects parameters, i.e.
p(ai ) ∝ const [32,34,35]. Another common choice are
highly dispersed Gaussian priors [31].
For the continuous (smooth) functions f1,...., f4 , a sec-

ond order random walk prior is considered for f defined
as follows. Consider the case of a metrical covariate x
with equally spaced observations xi , i = 1, ···, m , m ≤ n
(n is the number of observations). Suppose that x(1) < ···
<x(t) < ··· <x(m) is an ordered sequence of distinct values
for a covariate and define f(t) = f(x(t)). The second order
random walk is then defined by

f (t) = 2f (t − 1) − f (t − 2) + u(t) (5)

with Gaussian errors u(t) ~ N(0, τ2) and diffuse priors
f(1) ∝ Cst and f(2) ∝ Cst, for initial values. A second
order random walk penalizes deviations from the linear
trend 2f(t-1)-f(t-2) [33,36,37]. For the spatially correlated
effect fstr , Markov random field prior is chosen [32,38].
This prior indicates spatial neighborhood relationship.
For geographical data, a common assumption is that
two sites or regions r1 and r2 are neighbors if they have
a common boundary [25-32]. Thus, a spatial extension
of the random walk model leads to the following condi-
tional spatially autoregressive specification [25-32]

fstr(p)/fstr(p′), p′ �= p, τ 2
str ∼ N

⎛
⎝ 1
Ns

∑
p′∈∂p

fstr(p′),
τ 2
str

Ns

⎞
⎠ (6)

Here Ns is the number of adjacent provinces and p’
Îp denotes that province p’ is a neighbour of province
p. The prior is called a Markov random field (MRF)
[31,32,38]. We define provinces as neighbours if they
share the same boundary and assume that the effect of a
province p is conditionally Gaussian with expectation
equals to the mean of the effects of neighbouring
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provinces and a variance that is inversely proportional
to the number of its neighbours Ns [26,31]. The condi-
tional mean of fstr (p) is an unweighted average of func-
tion evaluations of neighbouring provinces. For the
spatially uncorrelatated (unstructured) effect, funstr are
assumed to be i.i.d. Gaussian (this is a common assump-
tions) [26-31]:

funstr(s)/τ 2
unstr ∼ N(0, τ 2

unstr) (7)

The variance parameters τ 2
j , j = 1, · · · , 4, str, unstr

control the trade-off between flexibility and smoothness
[36,37]. They are also considered as unknown and esti-
mated simultaneously with corresponding unknown
functions fj . Weakly informative inverse Gamma hyper-

prior τ 2
j ∼ IG(aj, bj) are assigned to τ 2

j . The corre-

sponding probability density function is given by [39].

p
(
τ 2
j

)
∝

(
τ 2
j

)−aj−1
exp

(
− bj

τ 2
j

)
(8)

Using proper priors for τ 2
j (aj > 0 and bj > 0) ensures

propriety of the joint posterior [39].
Bayesian inference is based on the posterior of the

model and is carried out using MCMC simulation tech-
niques. For the predictor (4), let g denotes the vector of
all unknown parameters in the model. Then, under con-
ditional independence assumptions, the posterior of the
model is given by [26-31].

p(γ /y) ∝
n∏
i=1

Li(yi, ηi)
4∏
j=1

{
p
(
fj/τ 2

j

)
p
(
τ 2
j

)} 3∏
i=0

p(αi)p
(
fstr/τ 2

str

)
p
(
funstr/τ 2

unstr

)ð9Þ

The full conditionals for the parameter vectors fj , j = 1,
···. 4 as well as the full conditionals for fstr , funstr are mul-
tivariate Gaussian. The MCMC simulation is used for

successive draw of f1, · · · , f4, fstr , funstr , τ 2
j , j = 1, · · · , 4

from the full conditionals [26-31]. The model is imple-
mented in BayesX, a public domain software for Bayesian
inference in structured Additive Regression Models [40].
Only the main effects are modelled. The effects of two-
factor interactions are assumed to be smaller and are
omitted. The main reason is that we wish to preserve the
simplicity and easy interpretation of the effects, which
are often lost by including interactions [24]. The effects
of the continuous covariates are modelled by cubic p-
splines [41,42] with 20 equidistant knots and second
order random walk penalty [36,43]. Positive hyperpara-
meters a = 0.0001 and b = 0.0005 have been chosen for
τ2 to ensure the propriety of the posterior [39]. 12,000
iterations of the MCMC were run with a burn-in phase
of 2,000 iterations. Thinning was applied to the Markov

Chain to reduce autocorrelations, by requiring the pro-
gramme to store only every 10th sampled parameter. Sin-
gle block updating scheme is adopted, with inverse
weighted least square (IWLS) proposal [35,37]. Sensitivity
of the results with respect to changes in the hyperpara-
meters a and b was checked. The model was then re-esti-
mated with different choices for the hyperparameters a
and b for each effect in the model by (a = 1, b = 0.005);
(1 = 0.001, b = 0.001); (a = 0.001, b = 0.005); (a = 0.001,
b = 0.005) (a = 0.0001, b = 0.0001); (a = 0.001, b =
0.0005) to assess the dependence of results on minor
changes in the model assumptions. The results showed
any significant change.

Results and discussion
The aim in this study is to analyse the dependence of
malaria cases on factors, such as climatic variables and spa-
tial (correlated and uncorrelated) effects in Burundi. Table
1 presents the estimate of the linear effects parameters.
In Table 1. a0, a2 and a3 have a positive mean. a0

and a3 have a positive credible interval (CI). a1 has a
negative mean with a negative 95% credible interval
(CI). These results suggest that malaria incidence in a
given month is positively associated with the minimum
temperature of the same month and more strongly with
the minimum temperature of the previous month. In
contrast, the results suggest that malaria incidence in a
given month is negatively associated with maximum
temperature of the same month. a0 (the intercept) has
the largest value, suggesting that unmeasured covariates
have larger effect on malaria incidence. Figure 1 pre-
sents the nonlinear effects in model (4), with 95% cred-
ible interval. The upper-left plot of Figure 1 suggests
that malaria incidence in a given month is negatively
associated with rainfall of the same month. The above
results may be explained as follows. Minimum tempera-
ture is the most influential factor of malaria incidence
as it is observed at night and mosquitoes are active only
at night; by day time they hide themselves in houses or
vegetation. Moreover, when the night temperature is
high, people do not cover themselves, increasing the risk
of being bitten by Mosquitoes. Furthermore, due to the
development cycle of the parasite into mosquitoes and
the incubation period, those who became ill in a given
month were bitten by mosquitoes in the previous

Table 1 Estimate of the linear effects parameters of
model (4)

Parameter Mean Std. Dev. Median 95% Credible Interval(CI)

a0 0.8470 0.0551 0.8482 [0.7410, 0.9586]

a1 -0.0303 0.0134 -0.0300 [-0.0563, -0.0019]

a2 0.0144 0.0156 0.0140 [-0.0152, 0.0463]

a3 0.0595 0.0142 0.0591 [0.0323, 0.0873]
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month. This explains why malaria incidence in a given
month is strongly associated with the minimum tem-
perature of the previous month.
In contrast, the maximum temperature has a negative

effect because mosquito’s development is interrupted at
higher temperature [44]. Too much rainfall may flush
away the breeding larvae, decreasing the number of
mosquitoes. Figures 2 and 3 show distinct spatial pat-
terns that point to the influence of variables other than
climate on malaria.
Figure 2 presents the posterior mean estimates of the

structured smooth spatial component fstr . The map
shows two main patterns: the western part, less affected
by structured effect and the eastern part displaying a
high risk of structured spatial effect. Figure 3 displays
the posterior mean estimates of the unstructured (ran-
dom) component funstr . The map shows similar trend as
in Figure 2, but two provinces (Bujumbura Rural and
Gitega) seem to present higher risk than others. This is
probably because those provinces have a high popula-
tion density, but more explanations are needed to
understand the clear difference among provinces. The

generated maps in this study could be used for targeting
provinces of high risk of malaria in view to initiate con-
trol policy.

Conclusion
In this paper, semiparametric models were used to model
the effects of both climatic covariates and spatial effects
on malaria distribution in Burundi. The spatial analysis
was based on a geo-additive model in which the province
is the geographic unit of analysis. The spatial effect was
split into smooth structured and unstructured (random)
components. Inference was fully Bayesian and was based
on Markov chain Monte Carlo techniques. The effects of
climatic covariates and the effects of other spatial deter-
minants were estimated simultaneously, in a unified
regression framework. The obtained results suggest that
malaria incidence in a given month is positively asso-
ciated with the minimum temperature of the same and
the previous months. In contrast, it is found that malaria
incidence is negatively associated with rainfall and maxi-
mum temperature of the same month. From the spatial
effects, important spatial patterns of malaria that are

            

          

Figure 1 Nonlinear effect of the continuous covariates, with 95% credible interval.
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related to factors other than climatic variables were iden-
tified without being able to explain them. Potential expla-
nations (factors) could be related to socio-economic
conditions, food shortage, limited access to health care

service, precarious housing, promiscuity, poor hygienic
conditions, limited access to drinking water, land use
(rice paddies for example), displaced population camps
(due to armed conflicts) [6,10]. Unfortunately most of
these factors are difficult to quantify in the context of
poor countries like Burundi, where the record of such
features is rare or nonexistent.
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