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Abstract

It is still unknown whether there is some deep structure to modern wars and terrorist cam-

paigns that could, for example, enable reliable prediction of future patterns of violent events.

Recent war research focuses on size distributions of violent events, with size defined by the

number of people killed in each event. Event size distributions within previously available

datasets, for both armed conflicts and for global terrorism as a whole, exhibit extraordinary

regularities that transcend specifics of time and place. These distributions have been well

modelled by a narrow range of power laws that are, in turn, supported by some theories of

violent group dynamics. We show that the predicted event-size patterns emerge broadly in a

mass of new event data covering all conflicts in the world from 1989 to 2016. Moreover,

there are similar regularities in the events generated by individual terrorist organizations,

1998—2016. The existence of such robust empirical patterns hints at the predictability of

size distributions of violent events in future wars. We pursue this prospect using split-sample

techniques that help us to make useful out-of-sample predictions. Power-law-based predic-

tion systems outperform lognormal-based systems. We conclude that there is indeed evi-

dence from the existing data that fundamental patterns do exist, and that these can allow

prediction of size distribution of events in modern wars and terrorist campaigns.

Introduction

Polymath Lewis Fry Richardson showed, in his seminal work, that war sizes follow a fat-tailed

distribution which, he suggested, could be well captured by a power law [1, 2]. Later research

has updated and confirmed this finding using more rigorous statistical methods [3–5]. It turns

out that the Richardson insight for sizes of whole wars extends to event sizes within wars. For

this analysis the size of a discrete event, such as a suicide bombing or a battle, is defined by the

number of people killed in the event. The distributions of event sizes within nine modern wars

are all well approximated by a power law with the estimated power coefficients clustering

around 2.5 [6]. The size distribution for global terrorist events, merging together all events
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perpetrated by all terrorist groups, is also well captured by a power law with a coefficient

around 2.5 [7]. This latter finding has practical utility because the identified empirical regulari-

ties can be used to predict the probability of a terrorist attack comparable in scale to the 9/11

one [8, 9].

The present paper has three main objectives. First, we exploit a mass of new event data on

armed conflict and terrorism [10, 11] to offer the most complete exploration ever presented of

the empirical patterns in the size distributions of violent events within the contexts of both

armed conflict and terrorist campaigns. For our conflict analysis we use the new version of the

data employed in previous research [12], enabling us to extend our reach to no fewer than 273

armed conflicts, including more than 100 Asian conflicts never before included in this research

program. Our empirical work on terrorism innovates by operating at the organization level,

enabling us to demonstrate that the size distributions of violent events perpetrated by 60 indi-

vidual terrorist organizations resemble the size distributions we find for belligerent groups

entangled in armed conflicts. This finding deepens an already identified link between terrorist

and insurgent organizations [6], which is reassuring given the notorious difficulty in separat-

ing the two types of organizations conceptually [13]. Indeed, although it may be possible to

draw valid distinctions between insurgent versus terrorist organizations, e.g., concerning their

ideologies, they both remain collections of decentralized operatives that must adapt quickly to

avoid detection and annihilation [14]. These common pressures should force both types of

groups into common David-versus-Goliath tactics that should yield similar attacking patterns

and, indeed, we find this in our empirical work. Note, however, that we only include terrorist

campaigns that survive long enough to make at least thirty attacks. Such persistent terrorist

organizations are the best candidates to resemble insurgencies.

Second, we explore the empirical robustness of the event-size patterns we find in our 273

armed conflicts. Ref. [6] found strongly consistent patterns in 9 modern wars and global ter-

rorism but the scope of that study is dwarfed by the present one which covers all conflicts in

the world since 1989 with at least 30 events. So there remains an open empirical question: do

all modern conflicts share some deep structure that transcend specific characteristics of indi-

vidual conflicts and that expresses itself in largely common event-size patterns? We tackle this

question by testing our ability to make reasonably accurate predictions about the mixtures of

event sizes in randomly chosen conflicts, based only on the range of empirical power-law coef-

ficients we have observed in entirely different conflicts. We find that we can, indeed, make

accurate out-of-sample predictions. The main conclusion we draw from this predictability in

event-size patterns is that there is a deep underlying structure for modern conflicts that

remains stable from conflict to conflict. A practical implication of this finding is the insight

that even conflicts that have generated only small events for long periods of time are likely to

still retain a latent potential to eventually generate some very large event sizes. Indeed, there is

a maximum event size of 20 in 50 of our 273 conflicts, 17 of which were still active in 2016

including in Kenya, Thailand, Myanmar, the Philippines, ISIS activity in Russia, and drug car-

tels in Mexico: these countries should prepare to potentially suffer some much larger events.

Third, we test the predictive performance of the power-law representation of armed conflict

event sizes against that of a lognormal-based system, the most obvious fat-tailed rival distribu-

tion. We find that power-law based prediction systems outperform lognormal ones, confirm-

ing the value of power laws for modelling event-size distributions for armed conflict and

terrorist campaigns.

It is worth pausing for a moment to clarify two potentially confusing points. First, we pur-

sue a rather non-standard prediction agenda. For example, we never predict that an event of

size x will occur with some probability within some spatial or temporal interval. Rather, we

predict broad event-size patterns within known conflicts based only on data from other
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conflicts. We do this in pursuit of fundamental knowledge about how modern conflicts work.

The predictability in event-size patterns we find in all significant conflicts reaching back to

1989 presents a theoretical challenge; how can we explain the underlying consistency that

ranges across so many conflicts? A more standard prediction agenda aims to provide directly

actionable intelligence, e.g., that a particular country is at risk of slipping into war or political

instability in a particular year [15]. That said, we think there is some practical utility to our

main finding that the size distribution of events in randomly chosen modern conflicts can be

well predicted by a particular range of power laws because this suggests that all modern con-

flicts retain a latent potential to generate very large events even if they have only produced rela-

tively small ones for a long time. In other words, there seems to be no such thing as a modern

conflict that can only generate small events. Conflict-torn countries should prepare for big

events.

Second, one might reasonably ask how surprising our results are given that Ref. [6] had

similar findings and predicted that all modern wars would greatly resemble the 9 wars ana-

lyzed in that paper. The answer is that Ref. [6] made a prediction which we are now largely

confirming, subject to some variation, based on data from all conflicts since 1989 with at least

30 events, 273 in all.

Materials and methods

We take our armed-conflict data from the Georeferenced Event Dataset (GED) of the Uppsala

Conflict Data Programme [10]. This is the most comprehensive and accurate georeferenced

dataset on armed conflict available [16–18] that systematically collects information on the

number of people killed in each event. The GED records details that include the location, tim-

ing, and severity of conflict events along with information on the warring parties that generate

these events. The data collection effort covers conflicts between governments and rebel groups,

non-state based conflicts (also known as communal violence), and violence perpetrated by the

state or insurgency groups against civilians. We use the most recent version of the dataset

available at time of writing (v.17.2) which covers all conflicts across the globe between 1989-

2016. The GED coding rules exclude some low-intensity conflicts by imposing a minimum

fatality threshold of 25-battle related deaths in a given year. However, this restriction hardly

matters for us since it excludes only minor conflicts that may have been excluded anyway due

to not having enough events to allow us to reliably fit a power law to the size distribution of

their violent events.

We include only true single events in our analysis, removing a number of aggregate fatality

counts that are not broken down to the event level; and we also drop conflicts with fewer than

30 events, based on the included conflict identifier. The first restriction is necessary so that we

work with true event data without mixing in items that appear to be very large events but

which are really composites of multiple smaller events. We fit a power law to every conflict so

something along the lines of the second restriction is also necessary to avoid fitting power laws

to just a handful of data points. If anything, we should require a larger number of events such

as 50 or 100 to get better fits than we do to individual conflicts but this would be at the cost of

excluding more conflicts from our analysis. The two restrictions combined mean that of the

original 997 conflict in the dataset, with 135,181 events, we are left with 272 conflicts and

105,685 events, or 78% of the original events. For Afghanistan we split the state-based data

into two separate conflicts so that the fighting after the beginning of Operation Enduring Free-

dom is treated separately from the pre-invasion conflict, bringing our total count up to 273

conflicts.

Fundamental patterns and predictions in modern wars and terrorist campaigns
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We offer a parallel analysis of terrorist incidents since, as noted above, there is evidence sug-

gesting that terrorist organizations may behave similarly to insurgent groups [6, 19, 20]. For

this work we use the Global Terrorism Database (GTD, the 2017 version), which is provided

by the National Consortium for the Study of Terrorism and Responses to Terrorism (START).

A novel feature of the GTD dataset is that it includes both domestic and trans/inter-national

terrorist incidents. The GTD is updated annually and provides the most comprehensive data-

set on terrorist events that is publicly available, covering the period from 1970 to 2016 and

including detailed information on incident times, locations, fatality counts and, when identifi-

able, the perpetrating group or individual. We include only events that are, according to the

coding, definitely acts of terrorism causing at least one fatality and that are attributed to a

known organization that has perpetrated at least 30 attacks. Finally, we use only events occur-

ring after 1997 because the GTD coding procedures changed in that year. This leaves us with

16,399 terrorist attacks carried out by 60 groups between 1998-2016.

Results

We use the “poweRlaw” package in R [21] to fit the model Ms−α to the data for each conflict

above an estimated cut-off value smin using maximum likelihood estimation [12, 22] where s
denotes the number of fatalities in an event, α is the power-law coefficient and M is a normali-

sation factor ensuring that the cumulative probability distribution sums to unity. Fig 1 pro-

vides examples of power laws fitted to four conflicts, The smin parameter, the lower threshold,

is estimated using a Kolmogorov-Smirnov approach, where the distance between the cumula-

tive density function of the data and the fitted model is minimised [21, 22]. To account for

parameter uncertainty, the estimates are obtained using a bootstrap procedure with 1,000 iter-

ations. Fig 2 plots the estimated α values for the 273 conflicts in our sample against the p-values

of bootstrapped tests of the hypotheses that their data are generated by the fitted power laws

for these conflicts; here the null hypothesis is that the power law distribution cannot be ruled

out. To be clear, each data point in Fig 2 summarizes a power law fit for one particular conflict

such as each one of the conflicts in Fig 1.

Most conflicts do have size distributions for their violent events that are well fit by power

laws with coefficients clustering around 2.5. At the same time, some conflicts do display α val-

ues far from 2.5. Moreover, some conflicts have very low p-values, thereby deviating from the

empirically and theoretically grounded patterns uncovered in earlier research [6, 8, 9] by sug-

gesting that the power-law hypothesis should be rejected. Low p-values are not necessarily a

serious worry since no distribution of violent conflict events will be, literally, generated by an

exact power law so we would normally expect to reject the power-law hypothesis with enough

data even when this distribution is still useful for modelling the event-generating process of a

conflict. Estimated α’s far from 2.5, on the other hand, are a more important challenge to the

received wisdom in the field. These results could stem from data problems, e.g., not having

enough data or having serious flaws in the data-gathering processes for particular conflicts. In

fact, in earlier research [12] the conflict in Angola had a very high value of α but now, with a

few more years’ worth of data, Angola’s α has settled in at 2.2. Or it could be that some modern

conflicts really are fundamentally different from the great majority of conflicts we have

encountered so far in this research program.

Fig 3 provides the same sort of p versus α information given in Fig 2 but this time for terror-

ist groups using the GTD data. Note that the nature of these results is substantially different

from earlier work fitting power laws to global terrorist events [7] because we fit a separate

power law to each terrorist organization whereas the previous work merged together all the

events generated by all terrorist organizations. It shows that power laws with α values that
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cluster around 2.5 also tend to fit well the distributions of violent events generated by terrorist

organizations. Thus, there appear to be close parallels in the behavior of terrorist and insurgent

organizations, at least with respect to the processes that generate their violent events. This

empirical commonality is reassuring given the blurred distinctions between the two types of

organizations [13].

We now exploit the empirical findings displayed in Fig 2 to make predictions about event-

size patterns. For clarity, recall that we do not make definitive and specific statements about

the timings and locations of a conflict events (point prediction) or probabilistic statements

covering longer time periods (forecast) [23]. Predicting armed conflict in these senses is

extremely difficult, although potentially worthwhile if it can be done well. Rather, we focus on

predictions over broad patterns [24], a task that is, perhaps, easier than point prediction and

forecast although still a great challenge.

For the cross-validation we generate out-of-sample predictions for the expected ratios of

event counts for various pairs of size ranges and then calculate the successes and failures of

these predictions. Specifically, we implement the following procedures.

1. Randomly split the sample into two parts and use one third of the conflicts to generate out-

of-sample predictions for the remaining two thirds of the conflicts.

Fig 1. Fitted power laws for four conflicts. Event sizes measured as number of people killed are plotted on the x-axis against the fraction of events of that size or larger

on the y axis. Red solid lines indicate fitted power laws. Data: UCDP-GED.

https://doi.org/10.1371/journal.pone.0204639.g001
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2. Fit power laws to the third that was selected.

3. Order the α estimates from the selected third from smallest to largest and calculate the

range of α’s running from percentile 2.5 to percentile 97.5.

4. Use the lower and upper bounds of this range to predict the upper and lower bounds,

respectively, of the ratios of event-size counts for various ratios of event size ranges.

• For example, if the lower bound for α is 2.0 then the upper bound for the ratio of the num-

ber of events of size S or greater to the number of events of size 2S or greater is 2 while if

the upper bound for α is 3.5 then the lower bound for the same ratio of event-size ranges is

about 5.7S. The corresponding figures for S and 1.5S are 1.5S and 2.8S respectively.

5. Check these predictions against the data for the two thirds of conflicts that were not ran-

domly selected. Although we could check a near-endless list of predictions we confine our-

selves to just checking the ratios for which we multiply the event size by either 1.5 or 2.0.

6. Start over, taking a new draw of 1/3 of the conflicts and again testing the out-of-sample pre-

dictions on the remaining 2/3 of conflicts.

Fig 2. Estimates of α parameter, along with 50% uncertainty interval, versus p values for power-law hypotheses for global violent armed conflicts. Grey shaded area

corresponds to goodness-of-fit p� 0.05.

https://doi.org/10.1371/journal.pone.0204639.g002
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We repeat this procedure 1,000 times. Fig 4 displays the results for this simulation exercise.

For most event-size ratios the success rates exceed 60% for at least 75% of the draws of 1,000.

The best prediction performance is for the event-size ratios of 10/20 and 20/40 for which the

median success rates are in the 80’s and even the worst runs tend to score well above 60%. The

worst prediction performances are when the events are either very small or very large. The rel-

atively low success rates for small events make sense since the estimated power laws are not

even meant to apply below some cut-off level smin. Thus, if anything, the success rates for the

low-end predictions are a bit of a bonus. Relatively weak performance at the high end also

makes sense since the data on big events are sparse, providing only a thin empirical basis for

prediction. Note, further, that these good prediction scores are not generally due to vacuously

wide prediction intervals as the typical intervals are around 1.2 to 3.5 and 1.4 to 8.6 for size

ranges of the form S to 1.5S and S to 2S respectively (with the upper limit of 8.6, admittedly,

rather high).

Fig 5 shows that out-of-sample prediction works almost as well as in-sample prediction for

our power-law based scheme. The solid curves give the success rates when we use all data to

generate the α range and then test the predictions (self-referentially) on the whole dataset. The

grey-shaded area indicates the middle 50% of the success rates for the 1,000 out-of-sample

runs.

Fig 3. Estimates of α parameters versus p values for power-law hypotheses for terrorist organizations. Grey shaded area corresponds to goodness-of-fit p� 0.05.

Data: GTD.

https://doi.org/10.1371/journal.pone.0204639.g003
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Next we compare the performance of our power-law-based predictions with a similar

scheme that uses the lognormal distribution instead. Each point in Fig 6 gives two statistics

describing the outcome of out-of-sample predictions for a particular randomly split sample.

The x-axes give the percentages of within-boundary predictions for the 10/15 ratio, ranging

over all the out-of-sample conflicts. The y-axes provide a measure that combine considerations

of how accurate and how unhedged, i.e., how narrow, each prediction interval is. Specifically,

we define the Accuracy Hedging score (AH score) for a prediction interval as the inverse of the

root mean squared distance from its boundary predictions (percentiles 2.5 and 97.5) to the

actual 10/15 fatalities ratio. Thus, the AH score most strongly rewards prediction intervals that

are both accurate, i.e., centered around the true value, and minimally hedged, i.e., narrow. Fig

6 shows the power law system beating the lognormal system: the power-law based prediction

intervals have systematically higher AH scores than the lognormal-based intervals do with little

or no cost to the percentage of correctly predicted ratios.

Our success at out-of-sample predictions based on a range of power-law models indicates

that our approach should work well for predicting the mixtures of event sizes in future armed

conflicts. Both the median and the mean α for our 273 power-law fits is 2.5 so this is the single

best rule-of-thumb value to use for such predictions. Ordering the 273 α’s from smallest to

largest we find that an α of 1.6 stands at percentile 2.5 and an α of 4.0 is at percentile 97.5.

Thus, we can predict that for any s the ratio of the number of events of size s or more to the

number of events of size 1.5s or more will be approximately 1.8 with a prediction interval of

1.3 to 3.4. For events of sizes s and 2s the analogous numbers are 2.8, 1.5 and 8.0. It is worth

noting that in the working paper version of the present paper we had data only through 2014

Fig 4. Boxplots for the distributions of the percentage of successful out-of-sample predictions for a variety of ratios of event-size ranges.

https://doi.org/10.1371/journal.pone.0204639.g004
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and found a marginally wider range for α running from 1.5 to 4.1 rather than from 1.6 to 4.0

[25].

Conclusion

We have investigated the size distribution of violent events in modern conflicts and terrorist

campaigns, finding that these are generally well approximated by power laws with α coeffi-

cients clustered near 2.5. There are some exceptions, though Figs 2 and 3 show that these

exceptions also tend to have large uncertainties in the values of their coefficients. It will be

interesting in the future to look in detail at what might make these few conflicts and campaigns

so different. We exploit these empirical regularities in the conflict data, without ignoring the

anomalies, and are able to make good predictions about the relative frequencies of violent

events falling within various size classes. Our success at out-of-sample predictions indicates

that our approach should work well for predicting the mixtures of event sizes in future armed

conflicts. We recommend using an α near 2.5 for making such predictions, with a possible

range of 1.6 to 4.0.

We stress once again that the main value of our findings is the fundamental knowledge

about modern conflicts that they afford. At the same time there is practical value in knowing

Fig 5. The success rates for in-sample predictions compared to the success rates for out-of-sample predictions. The shaded area indicates the 50% interval for the

out-of-sample results.

https://doi.org/10.1371/journal.pone.0204639.g005
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that modern conflicts do have a tendency to generate very large events if they continue long

enough. We can use our prediction ranges to quantify this observation. For example, we can

say that the number of events in which at least 80 people are killed is rather unlikely to be

smaller than 1/8 the number of events in which at least 40 people are killed.

In the future, one could use the empirical findings in this paper concerning the power-law

testing and exponent, as a way of evaluating the appropriateness of models that seek a genera-

tive, minimalistic explanation of human conflict. Among these, is a coalescence-fragmentation

model originally proposed in Ref. [6] in which two populations fight, and which takes into

account the tendency of clusters of insurgents to assemble for clashes or attacks and then dis-

perse afterwards. It was shown in Ref. [6] that this two-population model gives very good

agreement for the entire distribution of casualties in various conflicts—not just the approxi-

mate power-law tail, but also the low-casualty and high-casualty deviations. If one is interested

only in examining the tail of the distribution, as we do in the present paper, then a simpler ver-

sion of this theory is possible in which the dynamical clustering is treated as a stochastic noise

term. In this case, the effect of this co-existing coalescence and fragmentation of clusters of

Fig 6. Prediction intervals for the power-law-based prediction system tend to be narrower than the prediction

intervals based on the lognormal model at little or no cost to prediction accuracy. Blue circules are for power-law

based predictions while black squares are for lognormal based predictions.

https://doi.org/10.1371/journal.pone.0204639.g006
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fighters produces a distribution of cluster sizes that has a robust power-law form with a mathe-

matically derivable exponent of 2.5. Taking the size of a cluster as a measure of its potential for

damage, this suggests that the distribution of casualties should also be a power-law with expo-

nent around 2.5. As first explained in 2005 [26], this model corresponds to the picture that an

organization’s total attack strength N is continually being re-partitioned through coalescence

and fragmentation events. The value of this attack strength N derives from the number of its

members, its weaponry, its information etc. and hence does not lead to the conclusion that the

size of the organization bounds the severity in any way. We know of no other model that has

such a plausible microscopic mechanism, and yet which also predicts a clustering of power-

law exponents around 2.5 without specifically cherry-picking model parameter values. Gener-

alizing the model to allow for larger or smaller clusters to be even more rigid or more fragile

than expected, yields a prediction that the casualty distribution should be power-law-like with

an exponent ranging from approximately 1.5 to approximately 3.5 [12]. This is broadly consis-

tent with our findings that place this range between 1.6 (percentile 2.5) and 4.0 (percentile

97.5).

Resolving exactly what mechanisms such a generative model should include, would of

course require observing the inner workings of necessarily secretive insurgencies and terrorist

organizations—which is practically impossible. Yet there is direct evidence that online ISIS

communities display the coalescence and fragmentation behaviors that are central to this coa-

lescence-fragmentation model [27]. We note that other models have been proposed, in partic-

ular by Ref. [7], Ref. [28], and Ref. [14]. However the fact that the spread of empirical values

seem to be centered around 2.5, is not explained by these other models. For example, the

model of Ref. [7] predicts any exponent value of 2 or larger with a priori equal likelihood,

which is not what we observe.

These results also deepen our understanding of the connections between terrorism and

modern warfare. These apparently different phenomena display deep common patterns that

transcend their surface-level differences. Analysts of modern war and terrorism have been cor-

rect to broadly view these contentious situations as archetypal David versus Goliath confronta-

tions [13, 19, 20].
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