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Abstract
 

 

 

 

The goal of this research was to provide clinicians with a new framework for preventing 

pelvic floor muscle tears during vaginal birth.  Currently these tears occur in 15% of first 

time mothers.  

 

In Chapter 2 we developed a theoretical anthropometric model to determine whether a 

fetal head could pass through the lower birth canal. In Chapter 3 we used a five 

parameter constitutive model to provide the first quantification of the viscoelastic 

behavior of the term-pregnant lower birth canal.  In Chapter 4, we quantified the 400-

fold variation in the longer of the two time constants among a cohort of 25 laboring 

nullipara.  This was incorporated into the theoretical model to predict the length of the 

second stage of labor and the risk for pelvic floor muscle tear in these nullipara.  In 

Chapter 5, we used secondary data from a clinical trial of the Materna device to test how 

well the models in Chapter 4 predicted the actual duration of the second stage of labor, 

and we also quantified the sensitivity and specificity of the pubovisceral muscle (PVM) 

tear predictions.  In Chapter 6, we employed birth simulations to consider the 

differential effect of forceps and vacuum instrumentation, as well as episiotomy depth, 

on predicted PVM tear rates and duration of the active second stage of labor. In Chapter 

7, we used birth simulation models to consider the effect of pre-distension of the birth 

canal during the first stage of labor on the predicted duration of the active second stage 

and on PVM tears.  

 

This dissertation provides a foundation and tool for clinicians to better discuss delivery 

options antenatally with women in order to prevent pelvic muscle tears, a focus which is 

generally lacking at present.  The next step would be a prospective clinical trial to 

validate the model predictions. 
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Chapter 1: On Injury during Vaginal Birth and the Epidemiology 

of Pelvic Organ Prolapse 

1.1 The Epidemiology of a Common Female Pelvic Floor Disorder - 

Pelvic Organ Prolapse 

1.1.1 General Description of Pelvic Organ Prolapse 

Pelvic organ prolapse, the descent of the vagina, uterus, bladder or rectum below the pelvic 

floor, is the most common reason a woman will undergo surgery for adult female pelvic floor 

disorders.  The term "Prolapse" had come into usage by 1706 through the use of terms such as 

"prolapsus uteri" and "prolapse of the bladder" [1], but the phenomenon was already described 

as early as 1835 BCE [2]. 

Today, the occurrence of prolapse has been assessed in three ways: lifetime need for surgery, 

self-report of symptoms, and physical examination findings. Of these three metrics, we are 

most certain of lifetime surgery rates for prolapse.  A 1997 study quantified this lifetime risk for 

surgery for prolapse at 7% [3]. However, more recent studies suggest this value to be closer to 

12 – 20% [4, 5, 6, 7]. The next most reliable metric appears to be the self-reporting of 

symptoms resulting in prevalence rates of 4 – 13% [8, 9, 10, 11, 12, 13, 14], which are much 
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lower than the values of 30 – 70% prevalence reported on physical examination [15, 16, 17, 18, 

19, 14, 20].  

Physical examination studies tend to over-report prolapse rates, because current classifications 

label some women as having prolapse (i.e., those with Stage I and some of women with Stage 

2) despite these findings being within the normal range.   Prolapse and its symptoms are 

present if the most distal portion of the prolapsing tissue is below the hymen, [21, 22], making 

it difficult to identify which subset of the reported women had prolapse below the hymen. Of 

the handful of studies which report physical examination findings, two do not specify the extent 

of prolapse [15, 17], while another does report stage-specific results, but does not specify 

location relative to the hymen [16]. The remaining show that there is a distinct cut off in 

prevalence when prolapse at or below the hymen is considered, with prevalence values 

decreasing to 7, 18, and 25% [Table 1.1] [18, 19, 14].  It is possible that these values are 

particularly sensitive to the precise cutoff location relative to the hymen, because the same 

study that reported a prevalence of 18% when the hymen was inclusively considered reported 

only 7% prevalence when considering only cases distinctly below the hymen, but still within the 

Stage II categorization [14]. Stage III prolapse, wherein the most distal portion of the prolapse 

lies more than 1 cm below the level of the hymen, has been shown to have the strongest 

correlation to self-reported symptoms [23, 24, 25].  
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 Threshold for Diagnosis 

Study Stage I Stage II 
(inclusive) 

≤ Hymen 
(inclusive) 

Below the 
Hymen 

Stage III 

Slieker-ten 
Hove et al.  
2009,   [14] 

76% 40% 18% 7% 5% 

Trowbridge et 
al. 2008,   [20] 

91% 70%   2% 

Swift et al. 
2005,   [19] 

76% 37% 7%  2% 

Nygaard et al. 
2004,   [18] 

98% 65% 25%  2% 

Table 1.1 - Reported prolapse prevalence values corresponding to minimum threshold criteria 
for diagnosis based on staging system and position of the most distal portion of the prolapsing 
tissue relative to the hymen 

 

1.1.2 What Causes Prolapse? 

As early as 1773, "falling of the womb" was attributed to childbirth [26]. Even though the time 

delay between a woman’s first vaginal delivery and the onset of symptoms is typically be 20 – 

35 years the relationship is so strong that this fact was already obvious at that time. [27, 28]. 

In 1968, the hypothesized link to childbirth was first quantified through correlations between 

parity, fetal head size, and prolapse surgery rates [29]. Since then, it has been observed that 

prolapse risk continues to increase with additional vaginal births, with odds ratios for levator 

muscle tears relative to nulliparous of at least 1.9 for first, 2.49 for the second, from 3.55 for 

the third, and 4.86 – 10.8 for the fourth or greater vaginal delivery [29, 30, 31, 32, 33, 34, 15, 

35, 36, 8] [9, 16, 37, 17, 38, 18, 39, 40, 19, 10] [41, 42, 11, 43, 12, 13, 44, 45, 46, 47] [48, 49, 50, 

27, 51, 52, 53, 54].  Additionally, high fetal birth weights have been reported as a risk factor for 

later development of prolapse [29, 15, 35, 37, 19, 55], while C-sections have consistently shown 

a protective effect, with odds ratios of 0.1 – 0.7 relative to at least one vaginal delivery [34, 36, 
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56, 40, 57, 41, 11, 44, 46, 47] [48, 50, 27, 5, 58, 51, 55, 53, 59]. Although this strong relationship 

between prolapse and birth has been demonstrated, the mechanism by which birth results in 

prolapse has been unknown. This review will discuss the role of levator ani muscle tears as one 

of the missing links in the causal relationship between birth and prolapse. 

1.2 Levator Ani Tears 

1.2.1 Levator - Prolapse Link 

A link between childbirth, abnormal levator muscle origin anatomy, and prolapse, was observed 

in 1889 and again in 1907 in anatomical studies of cadavers with prolapse [60, 61]. Whether or 

not levator injury played a role in prolapse was controversial during most of the 20th century.  In 

the late 20th century, the role of levator ani muscles in supporting pelvic organs in order to 

prevent prolapse received renewed interest [62]. Magnetic resonance imaging (MRI) and 

ultrasound studies allowed the muscles to be visualized for the first time, allowing a link 

between levator tear and prolapse to be consistently demonstrated [63, 64, 65, 66, 67, 68, 69, 

70, 71, 72] [73, 74, 75, 76, 28, 77, 78, 79, 80]. 

1.2.2 Levator Tear - Birth Link 

The hypothesis that levator tears were a missing causal link between vaginal delivery and 

prolapse was further supported by studies which considered correlations between the 

occurrence of levator ani injuries and birth. In the mid-20th century, palpation based studies of 

women following delivery reported levator trauma rates of 31% in "clinic" and 12% in private 

patient service births, the latter involving slow delivery assisted by forceps in conjunction with 

early episiotomy [81, 82]. An early MR imaging study also observed levator tears in 1 of 14 



5 
 

recent mothers 6 months after delivery [83]. This trend was substantiated in a larger 2003 

study, showing that these defects were visible on MRI after vaginal birth, but not in nulliparous 

women [84].  Further studies of this relationship between levator ani tears and birth reported 

prevalence values of 13 - 39% following vaginal delivery [85, 64, 86, 70, 87, 88, 72, 73, 89, 90] 

[91, 92, 93, 94, 95, 96, 97, 98, 99, 100] [101, 102, 103, 104], with 0% tear rates consistently 

reported for C-section groups [105, 88, 73, 89, 90]. This appears to suggest a mechanical 

relationship between delivery of the fetus and the levator tear. So, a primary focus of this 

dissertation is to try to use biomechanical models to predict and prevent levator ani tears, given 

the strength of the causal pathway between vaginal birth, levator injury, and subsequent 

prolapse. 

1.2.3 Exceptions to the Levator Ani Tear - Prolapse Link 

Despite the literature describing a relationship between levator tears and prolapse, not all 

prolapse cases can be explained by levator tears because these tears are only reported in 32 - 

83% of prolapse cases [66, 68, 28, 79, 106, 77]. The strongest links to levator ani tears have 

been shown for prolapse of the anterior and central compartments, such as cystocele and 

uterine prolapse [64, 69, 70, 74]. The fact that most studies show major levator injury in only 50 

to 60% of cases means that in 40% to 50% prolapse occurs despite a lack of major levator tear.  

Just how levator ani tears are related to the later development of prolapse therefore remains 

an open question, but for some at least, a levator tear appears to be important.  
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1.2.4 Why are Levator Ani Tears Related to Prolapse? 

As early as 1889, Dickinson had proposed that the levator ani muscles play an important role in 

providing support to the pelvic organs [61]. This proposed supportive role for the levator ani 

muscles carried through studies into the mid-20th century [107, 108, 109, 60]. 

For example, in 1953, Berglas and Rubin used radiographic imaging to demonstrate the role of 

levator ani muscles in maintaining pelvic organ positioning and suggested that a change in this 

role may be important in explaining pelvic organ prolapse [110]. 

1.2.5 Anatomical Description of Birth with Relevance to Levator Ani Tears 

We now turn to the anatomic relationships necessary for understanding the second stage of 

labor.  A recent detailed review of the anatomy of female pelvic floor structures may be found 

in Chapter 2 of the book entitled Biomechanics of the Pelvic Floor [111]. 

The levator ani muscles comprise the majority of the ‘U-shaped’ soft tissue pelvic floor which 

originates from the anterior portions of the bony pelvis and the arcus tendinous levator ani 

[Figure 1.1] and insert centrally and more distally on structures on or near the midline to 

surround a central opening called the levator hiatus.  The levator ani are comprised of several 

contiguous subdivisions; the pubovisceral muscle (also known as the pubococcygeal muscle), 

the puborectal muscle and the iliococcygeal muscle portions [Figure 1.1].  
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Stationary Anatomy 

 

Figure 1.1 - Schematic illustration of the levator ani muscles. The subcomponents of the 
pubovisceral muscle (puboperineal, PPM; puboanal, PAM, and pubovaginal, PVaM) are 
shown. Left: Schematic view of the levator ani muscles from below after the vulvar structures 
and perineal membrane have been removed showing the arcus tendineus levator ani (ATLA); 
external anal sphincter (EAS); puboanal muscle (PAM); perineal body (PB) uniting the two ends 
of the puboperineal muscle (PPM); iliococcygeal muscle (ICM); puborectal muscle (PRM). Right: 
The LA muscle seen from above looking over the sacral promontory (SAC) showing the PVaM. 
The urethra, vagina, and rectum have been transected just above the pelvic floor.  (The internal 
obturator muscles have been removed to clarify levator muscle origins.)  Recently, it has 
become clear that the origin of the PRM lies more caudal than is suggested in the illustration at 
left, a finding will be revisited in Chapter 2 [112].  Copyright © DeLancey 2003 [113].   

 

The pubovisceral muscle itself also has three components; the pubovaginal, puboperineal, and 

puboanal portions.  These latter three terms reflect the multifaceted insertion of the 

pubovisceral muscle rather than distinct muscles.  For the purposes of this dissertation, they 

will be considered to form a single muscle. The anterior portion of the upper ‘arms’ of the U-
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shaped levator ani, which are comprised of the pubovisceral muscle, take origin from the pubic 

rami on either side of the pubic symphysis and insert on the perineal body as well as the lateral 

margin of the intersphincteric groove on the anterior aspect of the anal sphincter (AS) [112, 

113, 114].  This U-shaped loop of tissue, along with the anterior portion of the perineal body 

and the puborectal muscle (PRM) form the urogenital hiatus (UGH); the UGH is the last portion 

of the levator ani through which the baby’s head must be driven during the second stage of a 

vaginal birth in order for the head to be delivered. 

Movement and Loading of Anatomy during Birth 

 

Figure 1.2 - Schematic diagram showing the possibility of the pubovisceral muscle (PVM) 
wrapping about the inferoposterior aspect of the pubic rami during the second stage of labor.  
Pubovisceral muscle (orange) originates from the anterior pelvis (green) (A) at rest and (B) 
stretching to accommodate a fetal head. (Redrawn from Tracy et al. 2016, [115]) 
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When the fetal head passes through the birth canal it is bounded by the anterior pelvis, 

comprised of the pubic symphysis with pubic rami on either side, and partly by the loop of U-

shaped soft tissue, described above, laterally and posteriorly.  As the second stage of labor 

progresses and the baby descends through the birth canal along the curve of Carus, the fetal 

head comes into contact with the more inferior regions of the pubic rami as well as different 

regions of the levator ani.  As the perineal body is pushed caudally by the fetal head and the 

pubovisceral muscle (PVM)1 stretches, the loop of tissue rotates caudally much like a bucket 

handle would if it were pivoted about hinges placed at the PVM origins on either side of the 

boney pelvis above [Figure 1.2]. 

It is during the final moments of labor, as the fetal head “crowns” and passes through the 

urogenital hiatus in the levator ani muscles, when levator avulsions occur [91, 102]. 

Additionally, it has been consistently reported that it is this PVM portion, and not the PRM 

portion, which is injured during delivery [112, 116, 117, 65, 84, 118]. However, it is not 

currently understood why this is the case, as they both form part of the canal through which 

the fetal head must be delivered.  This is a knowledge gap we wanted to address in Chapter 2 of 

this dissertation.  

1.2.6 Risk Factors for Levator Ani Tears 

A variety of obstetrical factors have been shown to be associated with levator tears.  Of these, 

the use of forceps instrumentation during delivery has been identified as the strongest risk 

                                                      
1
 We have chosen to use the term ‘pubovisceral muscle’ in place of ‘pubococcygeal muscle’ because it more 

accurately describes insertion of this muscle into the walls of the vagina and rectum (as well as the intervening 
perineal body) than the latter term that was chosen on evolutionary grounds rather than the standard of naming 
muscles according to their origin and insertion. 
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factor for levator ani tears, with reported odds ratios ranging from 3.4 – 25.6, relative to 

spontaneous vaginal delivery [85, 119, 86, 105, 88, 74, 89, 90, 94, 100] [103, 120], and tear 

prevalence often reported to be at least 50% [68, 121, 122, 92, 93, 95]. However, it is 

interesting that this trend is not observed for vacuum assisted deliveries, for which odds ratios 

of 0.6 – 0.9 relative to spontaneous vaginal deliveries have been reported [119, 88, 89]. 

Additionally, early studies considering intentionally slowed forceps deliveries in conjunction 

with early episiotomies and conduction anesthesia to relax the muscle observed a reduction in 

levator tear rates [81, 82]. The reason for the observed increase in levator tears with forceps 

instrumentation compared to vacuum is the focus of Chapter 6 of this dissertation. 

Many of the delivery variables shown to be associated with levator ani tears cannot be known 

before labor.  Intrapartum factors such as the duration of the second stage of labor, with an 

odds ratio of 2.2 per hour [119, 105, 89, 95, 96, 123, 100, 120], the previously discussed forceps 

instrumentation, and occipito-posterior positioning, with an odds ratio of 5.05 [89] are known 

to contribute significantly to levator injury. It has also been shown that the odds ratio for 

levator tear occurrence is 4.4 in births where obstetric anal sphincter injuries occur [119, 73, 

100, 104]. Additionally, one study showed a positive correlation between episiotomy use during 

delivery and levator tear occurrence [119], while a later study has shown the opposite trend 

[97]. 

Given the number of variables only known at the time of delivery, our goal of the antepartum 

prediction of levator injury is challenging.  There are several factors that could be assessed prior 

to labor, including older maternal age [85, 119, 86, 74, 123, 103], fetal head circumference 
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[105, 95, 96, 78, 124, 120], and large birth weight [105, 96, 125, 124, 120], but their predictive 

power is low.  In contrast, one study suggests that choosing to have an epidural administered 

may have a protective effect on the levator ani muscles, which aligns with late 19th century 

reports of delivery complications associated with levator ani contraction [89, 61]. Though these 

risk factors have been identified, the reasons why each of these individual factors affects 

levator tear rates remain unknown. 

1.3 Previous Attempts at Levator Injury Prediction  

1.3.1 Correlation Based Predictions 

Early antenatal prediction attempts were unsuccessful [90]. However, a recent study has shown 

the ratio of the levator hiatus circumference to the fetal head circumference can be correlated 

to levator tear state with a correlation coefficient of 0.67 [124]. This is the first indication that 

the “fit” of the fetal head size with the size of the mother’s pelvis is important.  

Additionally, one previous commentary proposed a tool to predict future development of pelvic 

floor disorders based on fetal weight, maternal age, BMI, ethnicity, and family history based on 

previous correlative studies [126].  As of yet no metrics on the effectiveness of this proposed 

prediction method have been reported. 

1.3.2 Previous Birth Simulations 

The first simulation of how much the levator ani had to stretch to accommodate passage of the 

fetal head through the birth canal was the geometric simulation of Lien et al. (2004) based on 

the anatomy of a healthy 34 year-old nullipara, as acquired through MRI. This analysis predicted 

a stretch ratio of 3.4.   
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Study Analysis Type Key Assumptions Main Results 

Lehn et al. 2016 
[127] 

Experimental 
replication of 
vacuum 
extraction 

Assumes latex to be an 
adequate material replica 
of the uterus 

Increasing fluid viscosity 
decreases the necessary 
fetal removal force 

Oliveria et al. 
2016 
[128] 

Finite element 
simulation 

active contraction of pelvic 
floor muscles and maternal 
anatomy based on 72 year-
old cadaver 

“Puborectalis” is most 
prone to damage 

Krofta et al. 2016 
[129] 

Finite element 
simulation 

Fits constitutive model 
coefficients to data from 
cadaver tissue 

Levator ani reaches a 
stretch ratio of 2.5 

Silva et al. 2015 
[130] 

Finite element 
simulation 

active contraction of pelvic 
floor muscles and maternal 
anatomy based on 72 year-
old cadaver 

Fetal head molding 
reduces reaction forces 
by 17% 

Yan et al. 2015 
[131] 

Finite element 
simulation 

Purely elastic constitutive 
model fit to data from 
cadaver tissue 

Biparietal diameter and 
fetal head circumference 
are sufficient for 
accurate predictions 

Berardi et al. 
2014 
[132] 

Finite element 
simulation 

Fits constitutive model 
coefficients to data from 
post-menopausal women 

Levator ani reaches a 
stretch ratio of 2.2 

Jing et al. 2012 
[133] 

Finite element 
simulation 

Fits constitutive model 
coefficients to data from 
cadaver tissue 

Levator ani reaches a 
stretch ratio of 3.55 

Yan et al. 2012 
[134] 

Finite element 
simulation 

Purely elastic constitutive 
model fit to data from 
cadaver tissue, and 10% 
molding of the fetal head 

Levator ani reaches a 
stretch ratio of 2.1 – 2.4 

Li et al. 2011 
[135] 

Finite element 
simulation 

Purely elastic constitutive 
model fit to data from 
cadaver tissue 

Levator ani reaches a 
stretch ratio of 3.3. 
Tissue anisotropy has 
10% effect on 
mechanical response. 

Parente et al. 
2010 
[136] 

Finite element 
simulation 

active contraction of pelvic 
floor muscles and maternal 
anatomy based on 72 year-
old cadaver 

Fetal head flexion may 
reduce reaction forces 

Li et al. 2010 
[137] 

Finite element 
simulation 

Purely elastic constitutive 
model fit to data from 
cadaver tissue 

Constitutive equation 
nonlinearity resulted in 
increased reaction forces 

Parente et al. Finite element active contraction of pelvic The pelvic floor muscles 
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2009 (J. 
Biomech.) 
[138] 

simulation floor muscles and maternal 
anatomy based on 72 year-
old cadaver 

reach a stretch ratio of 
1.67 

Parente et al. 
2009 (Eur. J. 
Obstet.) 
[139] 

Finite element 
simulation 

active contraction of pelvic 
floor muscles and maternal 
anatomy based on 72 year-
old cadaver 

The pelvic floor muscles 
reach a stretch ratio of 
1.63 for occiput anterior 
and 1.73 for occiput 
posterior 

Svabik et al. 
2009 
[140] 

Geometric 
Analysis 

Maternal capacity 
estimated as levator hiatus 
circumference 

Mean levator stretch 
ratios were 1.47 and 1.07 
based on hiatus 
measurements taken at 
rest and on Valsalva 
respectively 

Parente et al. 
2008 
[141] 

Finite element 
simulation 

active contraction of pelvic 
floor muscles and maternal 
anatomy based on 72 year-
old cadaver 

The pelvic floor muscles 
reach a stretch ratio of 
1.66 

Hoyte et al. 2008 
[142] 

Finite element 
simulation 

Purely elastic constitutive 
model fit to data from 
biceps brachii 

Levator ani reaches a 
stretch ratio of 1.6 

Martins et al. 
2007 
[143] 

Finite element 
simulation 

active contraction of pelvic 
floor muscles and maternal 
anatomy based on 72 year-
old cadaver 

Levator ani reaches a 
stretch ratio of 3.5 

Lien et al. 2004 
[144] 

Geometric 
Analysis 

Assumes 20% molding of 
the fetal head 

Levator ani reaches a 
stretch ratio of 3.26 

Table 1.2 - Summary of key results, assumptions, and analysis techniques of previous vaginal 
birth simulations. 

 

After that study, a series of finite element simulations of vaginal delivery have been carried out 

[Table 1.2].  The first finite element simulation relied upon a 72 year-old embalmed cadaver for 

its anatomical basis, and a constitutive model previously derived for the active contraction of 

cardiac tissue [143]. This was followed shortly by a simulation study which took its anatomical 

basis from MRI scans of a 21 year-old nullipara being seen for uterus didelphys, and which 

relied upon a purely elastic constitutive model fit to data from the biceps brachii [63]. In 2010, 
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the first simulation with a constitutive model based on tissues normally involved in parturition 

was published. However, the tissue that this model relied upon originated from a non-pregnant 

cadaver, and the nonlinear elastic constitutive model neglected viscous behavior [137].  In 

2012, data acquired from cadaveric human pelvic floor tissue was again used as the basis for a 

finite element simulation; however, this time, the viscous component of mechanical behavior 

was taken into account through the use of Quasilinear Viscoelasticity, with in vitro rat and 

squirrel monkey data incorporated to help account for material property changes late in 

pregnancy [133]. Current simulations of the birthing process predict that the levator ani muscle 

stretches to 1.6 – 3.5 times its original length in order to accommodate the fetal head [129, 

132, 133, 134, 135, 139, 142, 143, 144] [Table 1.2]. 

However, all these simulations lack a validated constitutive model for the term pregnant human 

birth canal, as well as a validated injury criterion.  They are, therefore, limited in their ability to 

predict levator tears.  Additionally, these simulations are limited in their scalability to apply to a 

variety of mothers in the population, as many publications take into account only one maternal 

and fetal head geometry pairing [143, 142, 139, 138, 137, 136, 133, 132, 130, 129] [128]. This 

may be due to the high computational costs for both model construction and simulation 

completion, as it can take up to 7 days to run a single birth simulation [131], with run times still 

at 3.5 hours when resolution is decreased to 10 minute increments [133].  If 10 minute 

increments are used, it would be impossible to account for the role of the periodic nature of 

contractions and pushing during labor, as three contractions with three contraction free 

intervals would be expected to occur during the period of time neglected between each 

calculation point. Therefore, multiple improvements to both the constitutive model basis and 
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computational methods are necessary in order to allow for accurate levator tear predictions on 

a population scale. This is a goal of the current dissertation.  

Before this type of prediction technique can achieve feasibility for large scale implementation 

as a screening technique for levator injury risk, ease of use issues would have to be addressed. 

Due to high computational cost, and specialty software and training requirements, there would 

be a high burden to implementation of individualized simulations for each expecting mother. 

However, given a sufficient library of simulation results spanning a large variety of geometries, 

it may be possible to match each patient with a predicted levator tear outcome without the 

need to run a new simulation specifically for them.  That is a goal for this dissertation.  

However, the development of such a tool box would still require a validated constitutive model 

describing the human birth canal at the time of labor as the basis for the birth simulations. 

1.4 Material Properties and Changes During Pregnancy 

1.4.1 Constitutive Models Previously Used for Birth Simulations 

Constitutive models used in previous birth simulations have relied upon data from levator ani 

specimens taken from postmenopausal women [132] or cadavers [130, 129, 128, 133, 137, 135, 

134, 131], or data measured for human tissues not involved in parturition [143, 142, 141].  

In interpreting these data, analysis has often focused on quantifying the elastic response, 

neglecting the viscous component that must be present in order to allow for progress to be 

made on subsequent pushes during the active second stage of labor [142, 137, 135, 134, 131].  
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Many simulations have relied upon constitutive models originally designed to mimic actively 

contracting muscle, which is hopefully not the case during labor, as mothers are instructed to 

relax the pelvic floor [143, 141, 139, 138, 136, 130, 128].  There is therefore a real lack of 

reliable constitutive models for the birth canal tissue at the onset of labor, which was another 

goal for this dissertation.  

1.4.2 Current Understanding of the Material Properties of the Birth Canal 

Characterization of the mechanical properties of the tissues surrounding the birth canal has 

also generally been limited to analysis of tissues excised from post-menopausal or cadaveric 

sources [145, 146, 147]. 

Recently, attempts have been made to indirectly quantify the mechanical properties of the 

pelvic floor of a 30 year-old nullipara based on inverse finite element analysis of Valsalva on 

MRI [148]. However, this type of characterization during pregnancy would likely not be safe due 

to the increase in intra-abdominal pressure that results from Valsalva [149, 150, 151] and the 

impracticability of using MRI during labor. 

It has, however, been possible to show in rodent and ovine models that the tissues surrounding 

the birth canal undergo a distinct ‘softening’, or increase in extensibility, in preparation for 

childbirth [152, 153, 154, 155, 156, 157, 158].This includes a 2.1 – 2.4 fold reduction in the 

elastic modulus during pregnancy [153, 156, 157] and up to a 5.4 fold increase in overall 

compliance by late gestation [158]. 

The distinct hysteresis response, or ability of the tissue to reach higher strains on each 

subsequent stretching cycle without increasing the force applied, can be observed even in post-
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menopausal [145, 146] and some cadaveric [147] human specimens, and has been shown to 

increase in pregnant sheep, with the maximum strain reached increasing 4-fold when compared 

to virgin sheep [157]. It is this hysteresis response which allows for a laboring mother to 

continue to make progress on each subsequent push despite the fact that the maximum 

pushing efforts remain constant. 

1.4.3 Changes to Maternal Anatomy and Tissue Composition during Pregnancy 

Other mechanical changes observed to occur during pregnancy include increases in 

distensibility and compliance of the cervix throughout pregnancy in mice [159, 160], with a 

distinct increase in distensibility shown in late pregnant human cervix [161]. 

Tissue composition has also been shown to change during pregnancy, with relaxin levels shown 

to increase in a pregnant rat model [162] and elastin and collagen levels increasing in the 

human uterus during pregnancy [163]. Collagen has also been shown to increase in the cervix 

and extracellular matrix of the pelvic floor muscles in pregnant rat models [164, 165, 166]. 

A recent study demonstrated an increase in sarcomere number, but not sarcomere length, for a 

net increase in muscle fiber length during pregnancy in a rat model [167]. An increase in hiatal 

dimensions has also been shown to occur in humans during pregnancy, with one study showing 

a 27% increase between nulliparous and late pregnancy cohorts [168]. Several longitudinal 

studies also show up to a 17% increase in hiatus measurements late in pregnancy [169, 170, 

171, 172, 173, 174].  
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It has also been shown, in rat vaginal tissue, that the smooth muscle cell phenotype changes 

from contractile to synthetic during pregnancy, and returns to contractile postpartum. It is 

postulated that this change helps to minimize trauma during delivery [175]. 

1.4.4 Fung Quasilinear Viscoelasticity (QLV) Model  

A reasonable constitutive model for birth simulations should adequately reflect the viscoelastic 

behavior that must be present in the birth canal, including the hysteresis effect that allows for 

progress to be made on subsequent pushes. Additionally, such a model should reflect the 

nonlinear nature of the elastic response of pelvic floor tissues. Finally, the model should be able 

to be validated by comparison to the behavior of the term pregnant human birth canal. 

One constitutive form that meets both the nonlinear elastic and viscous response criteria is the 

Quasilinear Viscoelasticity (QLV) form proposed for characterizing soft tissues [176]. QLV has 

been previously employed for the quantification of pelvic floor material properties in rodent 

and nonhuman primate models based on excised tissues [133, 154]. QLV has also been 

successful in characterizing a diverse array of soft tissues, including passive cardiac muscle, skin, 

patellar tendon, medial collateral and anterior cruciate ligaments, and hysteresis behavior in 

aortic valve leaflets [177, 178, 179, 180, 181, 182]. 

1.4.5 Failure Criteria 

In order to make meaningful predictions of levator tear occurrences, it is necessary to 

understand how and when soft tissue tears occur. General work considering strain as a criterion 

for muscle injury showed damage occurred when strains exceeded 0.5 for passive muscle, while 

active stimulation of the tissue resulted damage at a strain of 0.3 (a 40% decrease) [183]. This 
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higher threshold for injury in paralyzed muscle may help to explain why lower levator tear rates 

have been observed in some studies of patients receiving epidurals [89]. 

While strain does play a role in injury occurrence, data from ovine and rodent vaginal tissue 

suggest that the product of stress times strain, an injury criterion previously observed in 

ligament studies [184, 185, 186], may be the most appropriate in predicting levator ani tissue 

failures [152, 155, 156, 157].  For this reason we shall employ the product of stress and strain in 

this dissertation.  

1.5 Dissertation Structure 

The overall goal of this research has been to develop an antepartum framework for predicting 

levator tear risk and duration of the active second stage of labor, during a vaginal birth.  Our 

working hypothesis is that it is possible to use antenatal maternal and fetal measurements to 

predict those at risk for PVM tear prior to the onset of labor.  This would be significant because 

new preventative strategies could be implemented in those few women most at risk without 

imposing unintended harm on those who are not destined to be injured.  Those deemed likely 

to deliver without injury could be so informed so as to allay concern.  Both outcomes would be 

major steps forward and are goals of this dissertation. 

In Chapter 2 of this dissertation, we describe a new geometric “capacity-demand” analysis. The 

geometric ‘capacity’ of the maternal lower birth canal to accommodate the ‘demand’ of the 

fetal head for delivery without incurring maternal PVM stretch injury is assessed taking into 

account contributions of both variable bony and soft tissue factors. 
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In Chapter 3, we derive a constitutive model of the term-pregnant lower birth canal. We then 

validate this model using in situ force-displacement data from the human birth canal at the 

time of labor. 

In Chapter 4, we build upon the constitutive model derived in Chapter 3 to test the null 

hypothesis that there is no significant variation in the long time constant, τ2 among laboring 

women. We then test the null hypothesis that the variation in τ2 will not affect (1) the predicted 

duration of the active second stage of labor, or (2) the risk of a PVM tear. 

In Chapter 5, we make blinded PVM tear predictions based on ultrasound scans of nulliparous 

women taken at 37 weeks of pregnancy. The predictions were then compared to the subject’s 

clinical levator tear scores, then the specificity and selectivity of the injury prediction were 

calculated. 

In Chapter 6, we employ birth simulations based on the constitutive relations quantified in 

Chapter 3 in order to consider the differential effect of forceps and vacuum instrumentation, as 

well as episiotomy depth, on predicted PVM tear rates and duration of the active second stage 

of labor. 

Finally, in Chapter 7, we employ birth simulations to consider the effect of pre-distension of the 

birth canal during the first stage of labor on the duration of the active second stage and on 

predicted PVM tears. 
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Chapters 8, 9 and 10, describe the main conclusions from the dissertation, and discuss 

strengths and weaknesses of the approaches, the knowledge gaps that have been filled and 

those that remain, and suggestions for future research.   
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2.1 Abstract 

Because levator ani muscle injuries occur in approximately 13% of all vaginal births, insights are 

needed to better prevent them. In Part I of this paper we conducted an analysis of the bony and 

soft tissue factors contributing to the geometric ‘capacity’ of the maternal pelvis and pelvic 

floor to deliver a fetal head without incurring stretch injury of the maternal soft tissue.  In Part 

II we quantified the range in demand, represented by the variation in fetal head size and shape, 

placed on the maternal pelvic floor.  In Part III we analyzed the capacity-to-demand geometric 

ratio, g, in order to determine whether a mother can deliver a head of given size without 

stretch injury.  The results of a Part I sensitivity analysis showed that initial soft tissue loop 

length had the greatest effect on maternal capacity, followed by the length of the soft tissue 

loop above the inferior pubic rami at ultimate crowning, then subpubic arch angle and head 

size, and finally the levator origin separation distance.  We found the more caudal origin of the 
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puborectal portion of the levator muscle helps to protect it from the stretch injuries commonly 

observed in the pubovisceral portion.  Part II fetal head molding index and fetal head size 

revealed fetal head circumference values ranging from 253 to 351 mm, which would increase 

up to 11 mm upon face presentation.  The Part III capacity-demand analysis of g revealed that, 

based on geometry alone, the 10th percentile maternal capacity predicted injury for all head 

sizes, the 25th percentile maternal capacity could deliver half of all head sizes, while the 50th 

percentile maternal capacity could deliver a head of any size without injury.  If ultrasound 

imaging could be operationalized to make measurements of ratio g it might be used to usefully 

inform women on their level risk for levator injury during vaginal birth. 

2.2 Introduction 

The soft tissues surrounding the birth canal undergo remarkable elongation to allow a fetal 

head to emerge from the pelvis [1] [2] [3].  Unfortunately, the elongation can be such that 

approximately 13% of women delivering vaginally for the first time sustain stretch-related 

injuries of their levator ani (LA) muscles. These muscles partially surround the birth canal [4] 

and form the key soft tissue structures that must be dilated for delivery to occur.  Using 

magnetic resonance imaging, researchers have identified the injuries as partial or complete 

damage of the left and/or right side pubovisceral muscle (PVM) portion of the LA [5].  These 

injuries are presently not treated surgically because the risks of repairing such deep structures 

outweigh any benefit that might derive.  These injuries are found much more often in women 

with pelvic floor dysfunction, including pelvic organ prolapse. For example, the relative risk of 

prolapse compared to nulliparous women is 4 in women who have given birth to one child, and 

8 in women who have given birth to two children [6].  Indeed, approximately 11% of all U.S. 
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women undergo surgery later in life for pelvic organ prolapse, or urinary and fecal 

incontinence, with the leading risk factor for developing these conditions being vaginal birth 

(for review, see [7]).  At present it is not possible to predict which women will be injured during 

a vaginal birth.  Furthermore, we do not know which pre-labor maternal and fetal parameters 

might help predict injury.  The goal of this paper is to provide the conceptual and mathematical 

framework to consider these questions and to report the results of our first analyses.  

The factor of safety for a structure like a bridge is defined as the ratio of the capacity of the 

structure to resist, without failure, the loads applied divided by the maximum load, or demand, 

that it will be called upon to resist in service.  Using this capacity-demand concept, one can 

define the geometric capacity-demand ratio, g, for vaginal birth as the ratio of maternal 

geometric capacity to pass a fetal head through the birth canal divided by the demand, which is 

represented by the size of the fetal head.  More precisely, the maternal capacity can be defined 

as the largest internal circumference to which the soft tissues defining the narrowest part of 

the maternal birth canal can stretch without failure.  The fetal demand is maximum 

circumference of the fetal head presented to the narrowest part of the birth canal after 

molding of the fetal head; molding is the amount of fetal head compression needed to pass 

through the birth canal.  If we disregard time-dependent effects for the moment, then when g 

is greater than unity, no levator injury will result.  When g is much less than unity, levator injury 

will almost certainly result because the fetal head is too large to pass through the birth canal 

without stretching the maternal soft tissues beyond their ability to lengthen without rupture.  

But when g is just less than 1 there is uncertainty about whether injury will result. A goal of this 

paper is to determine the range of possible values for g based on the known variance in 
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maternal and fetal geometries.  In clinical practice knowledge of the value of g might help the 

expectant mother better evaluate her different delivery options.  

In terms of anatomy, when the fetal head passes through the birth canal it is bounded by the 

front of the boney pelvis, comprised of the pubic symphysis with pubic rami on either side, and 

partly by the “U”-shaped soft tissue forming a loop laterally and posteriorly.  As the second 

stage of labor progresses and the baby descends through the birth canal along the curve of 

Carus, the fetal head comes into contact with the more inferior regions of the pubic rami and 

different regions of soft tissue become progressively engaged by the fetal head.  There has not 

been a detailed analysis of which soft tissues comprise those different regions of the U-shape 

because there has not been a precise anatomic description of the orientation of those soft 

tissues until recently [8].   

 
Figure 2.1 - Schematic illustration of the levator ani muscles.  The subcomponents of the 
pubovisceral muscle (puboperineal, PPM; puboanal, PAM, and pubovaginal, PVaM) are 
shown. Left: Schematic view of the levator ani muscles from below after the vulvar structures 
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and perineal membrane have been removed showing the arcus tendineus levator ani (ATLA); 
external anal sphincter (EAS); puboanal muscle (PAM); perineal body (PB) uniting the two ends 
of the puboperineal muscle (PPM); iliococcygeal muscle (ICM); puborectal muscle (PRM). Right: 
The LA muscle seen from above looking over the sacral promontory (SAC) showing the PVaM. 
The urethra, vagina, and rectum have been transected just above the pelvic floor.  (The internal 
obturator muscles have been removed to clarify levator muscle origins.)  Recently, it has 
become clear that the origin of the PRM lies more caudal than is suggested in the illustration at 
left [8].  Copyright © DeLancey 2003 [9].   

In the case of the soft tissue loop, the levator ani muscles comprise the majority of the U-

shaped soft tissue loop which surrounds the central opening, called the levator hiatus, through 

which the baby must pass. The soft tissue is comprised of several subdivisions; the pubovisceral 

(also known as the pubococcygeal), the puborectal and the iliococcygeal portions (Figure 2.1).  

The pubovisceral muscle itself also has three components; the pubovaginal, puboperineal, and 

puboanal portions. These latter parts are simply aspects of the pubovisceral muscle rather than 

distinct muscles and will be considered here to form a single muscle. The upper arms of the “U’ 

attach to the pubic rami on either side of the pubic symphysis.  In the most important, distal, 

region of the U-shaped loop, the tissues which will undergo the greatest stretch are the PVM 

and the puborectal muscles (PRM) [1].  The PVM inserts distally onto the perineal body (PB) and 

lateral margins of the anal sphincter (AS).  The PVM and PRM together form the narrowest part 

of the birth canal. It will be shown to be functionally important that the PVM originates on 

either side of the posterior aspect of the pubic symphysis while the PRM originates more 

caudally [8].  The reason this is functionally important is because when muscle injury occurs, it 

is the PVM on one or both sides that is injured, and not the PRM [5]; this, despite the fact that 

they both arise from the posterior aspect of the bone near the pubic symphysis and both 

encircle the levator hiatus through which birth occurs.  There is presently no biomechanical 
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explanation for this difference in the propensity for stretch injury and that is a secondary goal 

of this paper.    

In Part I of this paper we conduct a geometric analysis of the contributions of variations in the 

bony and soft tissue factors to the geometric ‘capacity’ of the maternal pelvic floor to 

accommodate fetal head delivery without incurring maternal levator muscle stretch injury.  We 

also conduct a sensitivity analysis of the maternal factors that contribute to the 50th percentile 

maternal pelvis capacity to deliver a fetal head of given size.  The factors we considered include 

the subpubic arch angle (SPAA), PVM and PRM origin placement, initial soft tissue loop lengths, 

and the effect of the downward rotation of the PVM and PRM around the pubic symphysis. In 

Part II we quantify the range in demand represented by the variation in geometric size of the 

fetal head and variation in fetal head molding.  As to the main goal of this paper, Part III, we use 

the results from Parts I and II to analyze the interaction between maternal capacity and fetal 

demand by calculating the values for g to understand whether a mother can deliver a head of 

given size without stretch injury.  In the Discussion, we will consider the possibility of using pre-

labor ultrasound imaging to measure both maternal capacity and fetal demand in order to 

establish g for that individual. 
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2.3 Methods 

2.3.1 Part I: Quantification of factors contributing to the maternal capacity for the 

50th percentile woman.  

We hypothesized that anatomical differences between the PVM and PRM muscles help to 

explain why the PVM is injured but the PRM is not.  It is known, that in the standing posture, 

the PVM fibers angle downwards from their origin high on the inside of the pelvis in a posterior 

direction [8].  By contrast, the PRM fibers angle upward from their origin low on the pelvis [8].  

The two loops overlap one another laterally, with the PRM passing outside the PVM (Figure 

2.1).  As labor progresses, the posterior PRM tissue is engaged first, followed by the 

anterolateral portion of the PVM [10].  Then, as the head is forced downward along the Curve 

of Carus, we assume that both loops are pushed downwards, rotating about their origins, which 

lie on a mediolateral axis, much as a bucket handle about its hinges. Unlike bucket handles, 

however, they are stretched significantly as they rotate downward to reach the “ultimate 

crowning” configuration (Figure 2.2).  The lower margin of the pelvic bone forms an inverted 

valley, the SPAA, which is deeper as the fetal head moves downwards, causing the head to ride 

along the boney ridges on either side, thereby bridging the inverted valley.  The larger the 

subpubic arch angle, the further apart lie the ridge lines (Figure 2.3).  The origins of the PRM 

and PVM lie on the sides of the valley. As the head rides along the ridges most, ~90%, of the 

PVM soft tissue loop actually contacts the fetal head, while the remaining 10% of the PVM lies 

above the inferior pubic ramus (Point ‘2’, Figure 2.2) on either side of the valley not in contact 

with the fetal head.  Then, as the PVM loop is drawn and rotated downwards by the descending 

fetal head, the percentage of PVM length above Point 2 increases and the length in contact 
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with the greater part of the fetal head decreases to ~70%, because the valley is deeper.  This 

means that the PVM will have to stretch more to accommodate the passage of the fetal head.  

The effective length of the PVM in contact with the head decreases (Figure 2.2) because less of 

the loop can pass around in contact with the fetal head.  In contrast, the effective length of the 

PRM loop is unchanged as it rotates downward because its origins lie close to the inferior pubic 

ramus.  

 
Figure 2.2 - Upper Left: Left lateral view of 3D model of the pelvis (green), showing the high 
origin location (yellow arrow) of the PVM (orange) and the PVM insertion on the PB/AS (blue).  
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Upper Right: 3D model of the pelvis (green), showing the PRM (purple) originating from the PM 
(white). In the upper two figures, A, P, L, R, and I denote anterior, posterior, left, right, and 
inferior, respectively.  Lower left:  The pubic symphysis is projected in the sagittal view seen in a 
view from the left showing a downward rotation of the PVM loop.  Note the wrapping of the 
PVM around the inferior pubic ramus at point 2 at ultimate crowning.  The portion of the PVM 
between points 1 and 2 lying above the inferior pubic ramus point, 2, is the “non-contact” 
length because it cannot contact and encircle the fetal head due to the rigidity of the pubic 
bone. That part of the PVM lying between points 2 and 3 lies below the pubic ramus at 2 so it 
can contact and encircle the fetal head to allow it to pass inside the loop formed by the PVM. 
Lower right: This illustrates the downward rotation of the PRM from the pre-labor to the 
ultimate crowning position.  Note the absence of PRM wrapping. 

 

Acquisition of Maternal MRI Data 

MRI scans were acquired through the parent study “Evaluating Maternal Recovery from Labor 

and Delivery (EMRLD)” [11] [12], which followed primiparous women after childbirth 

(Institutional Review Board approval # HUM00051193).  In this article, we limit our 

consideration to subjects who served as controls and delivered via caesarean section, and who 

did not attempt to push prior to delivery.  This was to ensure that our geometric model 

represents the female pelvic floor prior to the development of delivery induced injuries. The 

complete MRI protocol has been described elsewhere [11] [12]. 

Maternal Capacity Model Generation 

Axial, sagittal, and coronal images were imported into 3D Slicer 3.4.2009-10-15 (Brigham and 

Women’s Hospital, Boston, MA, USA) imaging software.  The segmentation editor module was 

used to create label maps of each feature.  Label maps were based in the axial plane, but were 

traced using sagittal and coronal views as well.  Anatomic features modeled include the 
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anterior pelvis, pubovisceral muscle (PVM), puborectal muscle (PRM), perineal membrane 

(PM), and the AS.  

3-D models were generated for three individuals (Figure 2.2), and the individual closest to the 

50th percentile was selected based on comparison to a previous 50th percentile model 

generated in our group [13].  Fiducial points were placed on visible PVM and PRM fibers 

identified in sagittal slices to establish their line-of-action [8]. These fiber lines were then 

extended until intersection with the pelvis (PVM) or PM (PRM) for origin identification and 

checked against the original scans to confirm anatomical plausibility. The posterior limit of 

these fibers was determined by extending their trajectory to the posterior-most point of the 

corresponding label map.  

The subpubic arch was calculated using the right and left PRM and PVM origins, as well as a 

midpoint placed on the pubic septum at the level of the origins. Pythagoras’ theorem was 

employed to calculate  

Abbreviation Description 

𝐿𝑃𝑅𝑀 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑃𝑅𝑀, 𝑤𝑟𝑎𝑝𝑝𝑒𝑑 𝑎𝑟𝑜𝑢𝑛𝑑 𝑟𝑒𝑐𝑡𝑢𝑚 
𝐿𝑃𝑀 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑝𝑒𝑙𝑣𝑖𝑠 𝑎𝑛𝑑 𝑃𝑅𝑀 𝑜𝑟𝑖𝑔𝑖𝑛 𝑜𝑛 𝑃𝑀 

𝐿𝑃𝑉𝑀 𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑃𝑉𝑀 𝑓𝑖𝑏𝑒𝑟𝑠, 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑡𝑖𝑛𝑔 𝑓𝑟𝑜𝑚 𝑝𝑒𝑙𝑣𝑖𝑠 𝑎𝑛𝑑 𝑖𝑛𝑠𝑒𝑟𝑡𝑖𝑛𝑔 𝑜𝑛 𝑃𝐵
/𝐴𝑆 

𝐿𝐴𝑆,𝑃𝑉𝑀 𝑐𝑜𝑛𝑡𝑎𝑐𝑡 𝑙𝑒𝑛𝑔𝑡ℎ 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑃𝑉𝑀 𝑎𝑛𝑑 𝑃𝐵/𝐴𝑆 𝑎𝑡 𝑖𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛 

𝑑𝐴𝑆 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝐴𝑆 
𝑡𝐴𝑆 𝐴𝑆 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 

𝐿𝐴𝑆,𝑚𝑎𝑥 
𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑙𝑒𝑛𝑔𝑡ℎ 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑜𝑓

𝑃𝐵

𝐴𝑆
, 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑓𝑟𝑜𝑚 𝑑𝐴𝑆 𝑎𝑛𝑑 𝑡𝐴𝑆  

𝛿𝑜𝑟𝑖𝑔𝑖𝑛𝑠,𝑝𝑒𝑙𝑣𝑖𝑠 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑜𝑟𝑖𝑔𝑖𝑛𝑠 𝑎𝑙𝑜𝑛𝑔 𝑝𝑒𝑙𝑣𝑖𝑠 

𝜃 𝑠𝑢𝑏 𝑝𝑢𝑏𝑖𝑐 𝑎𝑟𝑐ℎ 𝑎𝑛𝑔𝑙𝑒 
𝐿𝑤𝑟𝑎𝑝 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑜𝑟𝑖𝑔𝑖𝑛 𝑜𝑛 𝑝𝑒𝑙𝑣𝑖𝑠 𝑎𝑛𝑑 𝑛𝑒𝑎𝑟𝑒𝑠𝑡 𝑃𝑉𝑀

− ℎ𝑒𝑎𝑑 𝑐𝑜𝑛𝑡𝑎𝑐𝑡 𝑝𝑜𝑖𝑛𝑡 
Table 2.1 - Variables used in the 3D Slicer analysis. 
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Maternal Capacity Calculations 

In what follows, the calculations were all performed in Microsoft Excel. 

Anatomical consideration: 

1) soft tissue loop length (SL) 

a. It has been observed in rat models that resting muscle fiber length can increase 

by 37% during pregnancy in preparation for birth [14]. This architectural 

elongation was incorporated as a 1.37 fiber elongation, FE. 

b. The striated muscle stretch ratio, RSM, may reach up to 1.6 prior to onset of 

injury [15].  

c. No human data are available on PM elastic properties, it is estimated that the 

PM stretch ratio, RPM, is able to reach up to 1.15 based on data available for the 

abdominal fascia [16]. 

d. The loops of tissue involve three main types of tissue. The PVM and PRM are 

striated muscle and the AS complex has both smooth and striated muscle. PM 

and PB are primarily connective tissue. 

i. The PRM loop takes origin bilaterally from a short length of passive fascia, 

called the perineal membrane, and passes anteroposteriorly as a right 

and left muscle portion that decussate posteriorly behind the rectum to 

form the anorectal angle. We assumed that the anal sphincter is able to 
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deform prior to injury with the 1.6 striated muscle stretch ratio 

mentioned previously. 

ii. The PVM takes origin from the pubic bone bilaterally at bony entheses 

[17] [18] and is comprised of striated muscle which inserts into the 

perineal body (PB) and smooth and striated muscle of the internal and 

external anal sphincters(AS) respectively, in the intersphincteric groove, 

which is located between these sphincters (Figure 2.2).   

(1.1) 𝑆𝐿𝑃𝑅𝑀 = 𝐹𝐸 ∗ 𝑅𝑆𝑀 ∗ 𝐿𝑃𝑅𝑀 + 𝑅𝑃𝑀 ∗ 𝐿𝑃𝑀 = 𝑠𝑜𝑓𝑡 𝑡𝑖𝑠𝑠𝑢𝑒 𝑙𝑜𝑜𝑝 𝑙𝑒𝑛𝑔𝑡ℎ 𝑓𝑜𝑟 𝑃𝑅𝑀 

(1.2) 𝑆𝐿𝑃𝑉𝑀 = 𝐹𝐸 ∗ 𝑅𝑆𝑀 ∗ 𝐿𝑃𝑉𝑀 − 𝐿𝐴𝑆,𝑃𝑉𝑀 + 𝐿𝐴𝑆,𝑚𝑎𝑥 = 𝑠𝑜𝑓𝑡 𝑡𝑖𝑠𝑠𝑢𝑒 𝑙𝑜𝑜𝑝 𝑙𝑒𝑛𝑔𝑡ℎ 𝑓𝑜𝑟 𝑃𝑉𝑀 

 

2) Maternal Capacity in the Ultimate Crowned State 

a.  We found that the PRM origin on the PM was so low that no wrapping of the 

PRM would occur about the inferior pubic rami in the downward rotation 

observed during birth. 

b. The PVM origin lies approximately 2 cm below the pubic tubercle, necessitating 

up to 4 cm before it wraps around the pubic ramus on the left and right sides 

(Distance between 1 and 2 on Figure 2.2) [19].  This is termed the non-contact 

length because it reduces the muscle length available for contacting and 

accommodating the fetal head. The non-contact length was assumed to be a 

straight line. Accounting for curvature of the pelvis in this cut plane had less than 

a 1.5% effect on maternal capacity. 
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(2)  𝐶𝑀.𝑙𝑜𝑤𝑒𝑟 = 𝑆𝐿 +  𝜋 ∗ 𝐷ℎ𝑒𝑎𝑑 ∗ (
180−𝜃

360
) − 𝐿𝑤𝑟𝑎𝑝,𝑙𝑒𝑓𝑡 − 𝐿𝑤𝑟𝑎𝑝,𝑟𝑖𝑔ℎ𝑡 

 

3) Population variation 

a. The H-line, which is the distance from the inferior posterior aspect of the pubic 

symphysis to the posterior rectal wall, and which represents the anteroposterior 

width of the levator hiatus, has been quantified, with a mean of 4.4 ± 0.7 cm in 

178 Caucasian women [20] It is assumed here that percent variation in levator 

hiatus is proportional to variation in the soft tissue loop length. 

b. The retropubic arch angle, in a study of 593 individuals, has been reported to 

have a mean of 109.3 ± 9.0o when measured in the axial plane at the level of the 

PVM origins [21].  

c. A study of 178 women found a mean lower pelvis SPAA of 83.7 ± 7.0o [20]. 

 
Figure 2.3 - Caudal view of anterior pelvis with variables used in the maternal capacity 
calculations.  The soft tissue loop originates high on the pelvis (filled arrow heads) and wraps 
around the fetal head (grey circular structure). The portion of the soft tissue loop in contact 
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with the fetal head is represented by the thick black band, while the portion not in contact with 
the fetal head is represented by the dashed lines. Θ = subpubic arch angle. Arch = pelvis/ 
subpubic arch. 

 
Figure 2.4 - Graphic illustration of the sensitivity analyses in caudal view.  Top: Nominal 
configuration using the convention in Figure 2.3.  Middle left: Varying soft tissue loop length 
(thick black band). Middle right: Varying soft tissue origin placement on pelvis (black arrow 
heads). Bottom left: Varying subpubic arch angle. Bottom right: Varying head size (grey circle).  
The variation in soft tissue length reduction in downward rotation is not shown. Factors were 
varied by ±10%. 
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 Sensitivity analysis was performed by individually varying subpubic arch angle, soft tissue loop 

length, origin separation along pelvis, and the non-contact length (Figure 2.4).  Each variable 

was increased and decreased by 10%. 

The distribution of geometric maternal capacity values was calculated by incorporating the 

previously discussed quantified variation in SPAA and H-line values. 

2.3.2 Part II: Quantification of Factors Affecting Fetal Head Demand  

4) Approximating the Suboccipitobregmatic Circumference from the Occipitofrontal 

Circumference 

a) The Centers for Disease Control and Prevention has reported a mean male head 

circumference at birth of 344.6 mm and a mean female head circumference at birth of 

338.8 mm [22] [23]. These data refer to the occipitofrontal circumference (OC), which is 

a function of the frontooccipital (FD) and biparietal diameters (BD) (Figure 2.5).   

b) The fetal head circumference that imposes the geometric demand on the pelvic floor 

during birth, the suboccipitobregmatic circumference (SC), is a function of the 

suboccipitobregmatic diameter (SD) and BD.   

c) Reduction of the biparietal and suboccipitobregmatic diameters and corresponding 

elongation of the mentovertical (maxillovertical) diameter results from compressive 

forces experienced during labor [24].   

i) A fetal head molding index (MI) for characterizing the degree of head deformation in 

the birth canal has been defined (eq 4.2, appendix), with a mean+SD value of 2.00 ± 

0.22 observed clinically [25]. 
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d) As a simplification we modeled the effective cross-section of the fetal head as circular at 

the time of labor (BD = SD). 

e) It was also assumed that the volume of the fetal head is constant. 

f) An instantaneous increase in BD of at least 0.5 cm following birth has been observed 

[26]. 

(4) 𝜋 ∗ 𝐵𝐷𝐿 =
𝑂𝐶√2

√1+
𝑀𝐼

1.22

−
𝜋

2
𝑐𝑚 = 𝑺𝑪 

 
Figure 2.5 - Cranial and right side views of the fetal head showing the suboccipitobregmatic 
(SD), mentovertical (MD), biparietal (BD), and frontooccipital (FD) diameters.  Figure adapted 
from Sobre et al. [27] 

 

Functional fetal head circumferences were calculated for locations throughout reported 

population distributions for fetal head OC [12] [13] and molding [6] (Figure 2.6 & Figure 2.11S). 

5) Usual and Abnormal Fetal Head Presentations 

a) The most common fetal head position during the second stage of labor, as the head is 

delivered, is an occiput anterior position or ‘vertex presentation’, with the back of the 

head oriented towards the pubic symphysis, and the nose towards the sacrum. 
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b) In a minority of births, the fetus presents in the occiput posterior or transverse position, 

with the nose oriented towards the pubic symphysis and the back of the skull towards 

the sacrum or placed sideways. 

c) This change in position does not change the head circumference itself. But it can, 

however, change the orientation of the head in the birth canal known as positional 

deflection of the head. The most extreme case of this deflection is a ‘face presentation’ 

[28] in which the presenting diameter typically becomes 7 mm longer than that 

experienced during the vertex presentation [29]. In our simulations, a normal occiput 

anterior or vertex presentation was assumed. 

(5)  𝐶𝑓 = √𝐶0
2+(𝐶0+𝜋∗7𝑚𝑚)2

2
 

2.3.3 Part III:  Geometric Capacity-Demand Calculations Using the Value of g 

A Capacity-Demand table for the values of g was created by using estimates of head size (SC) 

calculated for an average value of molding and using the minimum calculated maternal capacity 

for each population point which, interestingly, we shall see was always the PVM lower loop 

value rather than the PRM value (c.f., Figure 2.8 & Figure 2.10). 
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2.4 Results 

2.4.1 Part I: Quantification of factors contributing to the maternal capacity for the 

50th percentile woman.  

Maternal circumference values for the 50th percentile female at Ultimate Crowning were 425 

mm for PRM and 313 mm for PVM (Table 2.2). 

 Circumference Diameter 

PRM loop 425 135 

PVM without wrapping 347 110 

PVM with wrapping 313 100 

Table 2.2 - Effect of PVM wrapping on initial maternal capacities (in mm) for the 50th percentile 
female pelvis at ultimate crowning. 

 

Our initial results assumed zero PB/AS deformation.  We then investigated how reasonable 

geometric deformation of the PB/AS (Figure 2.11S) would contribute to maternal capacity to 

accommodate birth without injury (Table 2.3).  We began with the shape deformation of the 

PB/AS from a circular sphincter to an elliptical cross section with corresponding stretch of the 

perineal body resulting from lateral tension, without changes in cross sectional area or wall 

thickness. This resulted in a maternal capacity increase to 326 mm for PVM. A 1.6x stretch 

without injury of the smooth muscle lining comprising the PB/AS resulted in a further increase 

in maternal capacity to 349 mm for PVM. All subsequent results follow from a model with 

PB/AS shape deformation and 1.6x levator muscle stretch. 
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 No Shape 
Deformation 

Shape Deformation 
Only 

Shape Deformation + 
Soft Tissue Stretch 

PVM without 
wrapping 

347 357 374 

PVM with wrapping 313 326 349 

Table 2.3 - Effect of incorporating PB/AS shape deformation and soft tissue stretch on maternal 
capacity (in mm) in the presence and absence of PVM wrapping about the inferior pubic ramus 
(see Figure 2.2). 

 

Results for the sensitivity analysis (Table 2.4) showed that a 10% change in subpubic angle 

resulted in up to a 4% decrease or a 2% increase in circumference.  Further, varying soft tissue 

loop length by 10% resulted in up to a 15% change in maternal capacity for the PVM loop.  The 

same 10% change in soft tissue loop length resulted in up to an 8% change in circumference for 

the PRM loop.  Likewise a 10% change in origin separation along the pelvis allowed for a 2 % 

change in circumference.  Only two factors affected PVM circumference calculations: non-

contact length and head diameter.  A 10% change in non-contact length resulted in up to a 5% 

change in circumference.  So, the factors with the greatest effect on maternal capacity were 

initial soft tissue loop length, downward bending angle and narrowing of the subpubic arch 

angle, in that order.   
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 PRM PVM without 
wrapping 

PVM with 
wrapping 

Subpubic Arch Angle (-10%) -3% -2% -4% 

Subpubic Arch Angle (+10%) +2% +1% +2% 

Soft Tissue Loop Length (-10%) -8% -9% -15% 

Soft Tissue Loop Length (+10%) +8% +9% +15% 

Origin Separation Along Pelvis (-
10%) 

-2% -1% -2% 

Origin Separation Along Pelvis 
(+10%) 

+2% +1% +2% 

Non-Contact Length (-10%) 0% 0% +5% 

Non-Contact Length (+10%) 0% 0% -5% 

Table 2.4 - Results of the sensitivity analyses (expressed as a percentage change in maternal 
circumference) for the four factors in the presence and absence of PVM wrapping. 

 

Based on variations in SPAA and soft tissue loop length, the distribution in maternal capacity 

was calculated (Table 2.5).  The 50th percentile female had a capacity of 416 mm for PRM and 

349 mm for PVM. The 2.3rd percentile female had a capacity of 292 mm for PRM and 185 mm 

for PVM. The 97.7th percentile female had a capacity of 543 mm for PRM and 484 mm for PVM. 

From Table 2.2 and Table 2.3 we see that it is the PVM that is the levator structure that most 

constrains maternal geometric capacity after having rotated downward into its most inferior 

position at the end of the second stage.  This finding corroborates and extends the results of 

Lien et al. who used a similar, but less accurate, site of PVM attachment on the pubic bone and 

who did not consider the downward rotation of the PVM in their analysis [1].  
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Maternal Percentile PRM loop PVM without 
wrapping 

PVM with wrapping 

2.3 292 259 185 

5 313 279 216 

10 336 300 248 

15 351 314 269 

25 374 334 298 

50 416 372 349 

75 458 409 397 

90 497 443 438 

95 521 464 462 

97.7 543 483 484 

Table 2.5 - Distribution of maternal geometric capacities (in mm) calculated with and without 
PVM wrapping about the inferior pubic rami. 

 

2.4.2 Part II: Quantification of Factors Affecting Fetal Head Demand  

Calculation of fetal head demand (SC) for population values of OC and MI revealed a SC value of 

300 mm for a male head with 50th percentile molding and 50th percentile OC. Male fetuses 

having the same percentile value for both head size and molding (small head with very little 

molding, medium head with medium molding, large head with maximum molding) (green 

diagonal) ranged in SC value from 297 to 302 mm. A male head of minimum OC and maximum 

MI had a SC value of 257 mm, while a male head of minimum MI and maximum OC had a SC 

value of 351 mm. Values were slightly lower for female heads. (Appendix) 
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Figure 2.6 - Vertex Presentation.  Male fetal head circumference (in mm) presenting to the 
birth canal in a vertex presentation. Green indicates region of equal population distribution 
values for molding and head size.  The intensity of the blue shading indicates the degree of 
maximal molding of small fetal heads, while the intensity of the red shading indicates the 
degree of lack of molding of large fetal heads. 

 
Figure 2.7 - Face Presentation.  Male fetal head circumference (in mm) presenting to the birth 
canal during face presentation. Green indicates region of equal population distribution values 
for molding and head size. The intensity of the blue shading indicates the degree of maximal 
molding of small fetal heads, while the intensity of red shading indicates the degree of lack of 
molding of large fetal heads. 

 

The 7 mm diameter increase that has been reported to occur with face presentation increased 

the predicted effective circumference by 11 mm (Figure 2.7). 
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2.4.3 Part III:  Capacity-Demand calculations using the value of g 

Here we consider the fetal head demand results from Part II within the context of the maternal 

capacity results from Part I by tabulating the population values of g.  For the PVM loop, fetal 

head demand (SC) was predicted to exceed maternal capacity for every maternal capacity 

smaller than the 10th percentile. The 25th percentile maternal capacity met the demands 

represented by the 25th percentile fetal head, and was approximately equal to the demand 

imposed by the 50th percentile fetal head. The 50th percentile maternal capacity was predicted 

to be able to deliver all fetal head sizes examined without injury (Figure 2.8). 

 
Figure 2.8 - Predicted maternal capacity – to – fetal head demand ratio, g, for the PVM loop 
with wrapping.  The intensity of the red shading indicates the degree of cephalolevator 
disproportion for the PVM. 
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Figure 2.9 - Predicted maternal capacity – to – fetal head demand ratio, g, for the PVM loop 
without wrapping.  The intensity of the red shading indicates the degree of cephalolevator 
disproportion for the PVM in this special case. 

 
Figure 2.10 - Predicted maternal capacity – to – fetal head demand ratio, g, for the PRM loop.  
The intensity of red shading indicates the degree of cephalolevator disproportion for the PRM. 

 

For the PRM loop, fetal head demand was predicted to be satisfied by all maternal capacities 

greater than the 5th percentile. The 5th percentile maternal capacity was predicted to satisfy up 

to the 75th percentile fetal head demand. Maternal capacities of 10th percentile and above were 

predicted to suffice for any fetal head size (Figure 2.10). 

Similar results were obtained for the other two women whose models were derived from the 

MR scans.  
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2.5 Discussion 

2.5.1 Part I: Quantification of factors contributing to the maternal capacity for the 

50th percentile woman.  

The sensitivity analysis showed that initial soft tissue loop length had the largest impact on 

circumference.  In particular, the increase in soft tissue loop length allows the head-pelvis 

contact points to move farther posteriorly and laterally along the pelvis, increasing the pelvis-

head arch length in addition to the portion of the circumference comprised by the soft tissue 

loop length. In the case of the PVM, the 10% change in soft tissue loop length that results in a 

15% change in maternal capacity is a result of the non-contact PVM length remaining constant, 

allowing all of the gained length to contribute directly to encompassing the fetal head. Soft 

tissue loop length had the greatest impact on maternal capacity, followed by SPAA, which was 

closely followed by origin separation. In the PVM model, non-contact length had less of an 

effect than initial soft tissue loop length itself, but a greater effect than any other factor 

considered here. 

2.5.2 Part II: Quantification of Factors Affecting Fetal Head Demand  

Population values of SC varied from 253 mm for a female head of minimum OC and maximum 

MI to 351 mm for a male head of maximum OC and minimum MI. However, male fetuses 

having the same percentile value for OC and MI (green diagonal, Figure 2.6) ranged in SC value 

from 297 to 302 mm, varying by a maximum of 5 mm.  As molding is the consequence of 

compressive forces, and the compressive forces experienced would be expected to increase 

with head size, it is feasible that the greatest extent of molding would occur in the largest 
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heads. However, it is also possible that the smallest heads would be the least developed 

structurally and therefore the most susceptible to deformation for a given compressive force. 

The 0.7 cm diameter increase reported to occur with face presentation increased the effective 

circumference by 11 mm. For a mother delivering a baby close to her capacity, this could make 

the difference between safe delivery and a life time of complications following levator injury. It 

has also previously been proposed that the increase in injuries associated with occiput 

posterior presentation is the result of increased soft tissue resistance and poor use of the bony 

birth canal space during this type of delivery [30]. 

2.5.3 Part III:  Capacity-Demand calculations using the value of g 

The approach in this paper provides a new framework for considering the biomechanical 

reasons for maternal levator injury during vaginal delivery by relating fetal demand to maternal 

capacity via a simple ratio, g.  The Part III values of g reveal that a 50th percentile maternal 

capacity can accommodate fetal heads of all sizes, a 25th percentile maternal capacity will 

accommodate half of all fetal head sizes, and a 15th percentile maternal capacity is insufficient 

to accommodate any fetal head sizes without any creep-relaxation behavior.  These tissue 

properties are indeed known to be time dependent, with increases in compliance observed 

during late pregnancy [31] [32], which may provide the additional soft tissue lengthening of 8% 

necessary for the 15th percentile female to be able to deliver a head of average size.  

Alternatively, we may have underestimated the amount of molding that occurs acutely, since 

most measurements of molding are made post-hoc at time intervals of 1 hour or more after the 

baby is delivered.  They do not capture the situation while the head is in the pelvic cavity. The 
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fetal skull is viscoelastic [33] [34] [26], so a certain degree of spring-back may have already 

occurred before the first measurement of fetal skull size is made in the delivery room [26].  If 

the amount of molding has been underestimated by 50% then the average fetal head 

circumference presented to the pelvic floor would be 279 mm, with minimum and maximum 

values of 241 mm and 323 mm respectively, or a reduction in fetal head circumference by 

approximately 7%.  

Our geometric model provides the first biomechanical explanation for why the PVM is more 

likely to be injured during childbirth than the PRM (see Introduction).  A 10th percentile 

woman’s PRM can accommodate any fetal head demand, while a 25th percentile woman’s PVM 

can only accommodate the demand represented by half of all fetal heads. It has not been 

immediately intuitive why the PVM should be more constrained than the PRM. The answer is 

found in the location of their origins on the pelvis. We found that the PRM origin on the PM 

was so low that PRM-pelvis wrapping could not occur in the downward rotation observed 

during birth. In contrast, the PVM origin is approximately 2 cm below the pubic tubercle, 

necessitating up to 4 cm in PVM-pelvis wrapping per side (8 cm total) [19]. Since this distance is 

required for wrapping around the pubic bone, it reduces the PVM muscle length available for 

accommodating the fetal head.  Clearly, the greater the perineal descent which, for a given 

head size, would be expected to be exacerbated by less elastic soft tissues and less stress 

relaxation, the higher the probability of PVM wrapping.  

Might Ultrasound be used to Assess PVM Injury Risk?  
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If acquired prior to labor, as demonstrated in the case of BD and head circumference by Ergaz 

et al. [35]., measurement of the fetal head diameters (MD, SD, and BD) would allow for 

calculation of the fetal head size relative to the population and relative to the mother’s injury 

threshold. So: 

(6.1) 𝐹𝑒𝑡𝑎𝑙 𝐻𝑒𝑎𝑑 𝑉𝑜𝑙𝑢𝑚𝑒 =
1

6
𝜋𝑀𝐷0 ∗ 𝐵𝐷0 ∗ 𝑆𝐷0 =

1

6
𝜋𝑀𝐷𝑓 ∗ 𝐵𝐷𝑓 ∗ 𝑆𝐷𝑓 =

1

6
𝜋𝑀𝐷𝑓 ∗ 𝐵𝐷𝑓

2 

The fetal head volume and MI can be simplified using the assumption BD=SD. 

(6.2) 𝑀𝐼 =
𝑀𝐷𝑓

2

𝐵𝐷𝑓
2  

(6.3) 𝑀𝐷𝑓 = √𝑀𝐼 ∗ 𝐵𝐷𝑓 

This allows us to express MDf and as a result fetal head volume as a function of BDf. 

(6.4) 𝑀𝐷0 ∗ 𝐵𝐷0 ∗ 𝑆𝐷0 = 𝑀𝐷𝑓 ∗ 𝐵𝐷𝑓
2 = √𝑀𝐼 ∗ 𝐵𝐷𝑓

3 

(6.5) 𝐵𝐷𝑓 =
(𝑀𝐷0∗𝐵𝐷0∗𝑆𝐷0)1/3

𝑀𝐼1/6  

As a result, we can solve for BDf and SC in terms of pre-labor fetal head measurements. 

(6.6) 𝑆𝐶 = 𝜋 ∗ 𝐵𝐷𝑓 = 𝜋
(𝑀𝐷0∗𝐵𝐷0∗𝑆𝐷0)1/3

𝑀𝐼1/6  

From Figure 2.8, we see that it is more important to measure maternal capacity than the fetal 

head demand.  It is only in the region between the 15th and 25th percentile that additional 

insight may be gained by measuring the fetal head. It may not yet be feasible to acquire origin 

locations and specific PVM and PRM geometries via ultrasound. However, subpubic arch angle 
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and hiatus width are regularly quantified via ultrasound and can be used to identify a mother’s 

status within the population [36] [20]. Even without fetal head measurements, these data could 

then be used to identify mothers who are on the border between predicted labor success and 

predicted cephalolevator muscle disproportion. This would equate to the situation of 

encountering a value of g slightly less than 1.0. In this situation, interventions such as antenatal 

perineal massage might be employed to try to prevent trauma at the time of labor [37].  In 

terms of clinical applicability, the capacity-demand ratio, g, that we have calculated could be 

used by clinicians to assess injury risk in the same way calculators are currently used to assess 

likely success with vaginal birth after cesarean delivery (VBAC) [38].  Ultimately, the goal here is 

to provide mothers and practitioners with information of levels of risk so that they can make 

better informed decisions during their labor preparation process.   A woman with a very low g 

ratio and anticipating only one child might, for example, choose cesarean delivery before labor.  

At present cesarean section on maternal request is often selected because of concerns for 

pelvic floor injury without knowing how likely that injury is to occur.   

This analysis has a series of limitations, some of which are the result of current knowledge gaps 

and some of which are due to simplifying assumptions. First, in the Part I maternal capacity 

calculations, the lack of in vivo viscoelastic data for the human levator ani muscle during vaginal 

delivery currently limits any accurate prediction of time-dependent PVM and PRM muscle loop 

behavior.  This means the present maternal capacity calculations are conservative because 

time-dependent stress relaxation behavior would lead to larger maternal capacity values than 

presently calculated.  The viscoelastic behavior has been measured in vitro in rat and human 

vaginal tissue by Jing [31] and by Lowder et al. in rat vaginal tissue [32].  Jing found a relaxation 
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behavior with time constants on the order of 31 and 40 minutes in pregnant and non-pregnant 

rats, respectively.  If these apply to the PVM loop, and there is no evidence yet that they do, 

then in a 1-2 hour time window, representing the average length of the second stage of labor, 

one would expect to see noticeable creep lengthening of the PVM.  In practice, a final stretch 

ratio of 1.73 after creep would be required for the 15th percentile female to be able to deliver 

50% of all fetal heads, resulting in the observed injury occurrence of approximately 13% [4] .  

Might it be possible that assumptions made in this analysis biased the results? The assumption 

for which we do not have direct experimental evidence is the wrapping of the PVM around the 

inferior margin of the pubic ramus as the PVM loop rotates downwards during the second stage 

of labor (Figure 2.2).  This assumption causes the effective length of the PVM to be shortened, 

thereby increasing the amount of PVM stretch required. If this wrapping does not occur, then 

we will have overestimated the stretch of the PVM, but not the PRM (Figure 2.9).  That 

overestimation for PVM stretch is tabulated in Table 2.2, Table 2.3, Table 2.5, and Table 2.6S).  

Additionally, we have made the assumption that muscle fiber elongation (growth) observed in 

rats during pregnancy also occurs in humans. As human studies on this question have not been 

conducted, and as there is not a perfect analog between rat and human pelvic floor anatomy, 

we have made the assumption that the rat coccygeus muscle is the closest analog to human 

levator ani muscles. 

A limitation in the Part II fetal head demand analysis is the lack of measurements of the spring-

back of the fetal head skull in the minutes after delivery and before the fetal head is measured.  

This means we may have underestimated the effect of molding in our calculations.  Greater 
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molding would lead to a diminished fetal head demand and therefore a larger g value than 

presently predicted, so again our analysis is conservative.  Variations in fetal head shape, such 

as the non-circular cross section observed in occiput posterior presentation, and subsequent 

shape changes in passage along the Curve of Carus are also expected to have an impact and 

should be considered in future models. 

There is already evidence that pelvic floor measurements can help predict delivery outcome.  In 

a study of 231 nulliparous women, Siafarikas et al. found that a smaller levator hiatus 

dimensions measured by ultrasound in late pregnancy had a significant association with a 

longer active second stage of labor and increased likelihood of the need for instrumental 

delivery to complete delivery [39].   It seems logical that these weak correlations (all < 0.3) can 

be strengthened once the other measureable parameters such as head size and subpubic arch 

angle are added.  The theoretical framework provided in this article to organize the key 

geometrical factors influencing maternal capacity and fetal demand should help in the process 

of identifying elements that can be used for more accurate predictions and should help guide 

future work in this direction. 

2.6 Conclusions 

1) Initial soft tissue loop length had the greatest impact on maternal capacity, followed by non-

contact length, then SPAA, and finally levator origin separation.  

2) We conclude that the PVM and PRM loops have the capacity to accommodate 75% of births 

vertex presentation without injury.  But for injury to occur in only 15% of births, as observed 
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clinically, there must be either more fetal head molding than was allowed for, or stress 

relaxation behavior of the PVM loop under strain, both of which are entirely possible.  

3) We conclude that the more caudal origin of the PRM portion of the levator muscle reduces 

its stretch ratio at ultimate crowning, thereby helping to protect it from the stretch injuries 

commonly observed in the PVM portion. 

4) Use of ultrasound to measure fetal head diameter prior to birth could provide information on 

the fetal head demand that will be made of the maternal levator ani muscles, and hence g, 

during birth.  Ultrasound estimates of levator hiatus size prior to birth would provide a first 

estimate of maternal capacity via initial soft tissue loop length.   

5)  The numeric value of the capacity – demand ratio, g, indicates the level of risk for levator 

injury during the late stage of vaginal delivery. A g value of 1.0 or more rules out cephalolevator 

muscle disproportion and hence risk of levator injury due to the conservative assumptions 

employed in the current analysis.  

6)  In practice it may be most logical to first measure maternal capacity in order to establish 

whether it lies above the 25th percentile.  If it lies below the 25th percentile then the fetal head 

should be measured to gain the additional insight provided by the value of g.   
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2.7 Nomenclature: 

AS = anal sphincter 

BD = biparietal diameter 

BD0 = BD prior to molding 

BDf = BD following molding 

BDL = BD at time of labor 

C0 = original circumference 

Cf = face presentation circumference 

CM, lower = maternal circumference in the ultimate crowning state 

Dhead = fetal head diameter 

FD = frontooccipital diameter 

FE = fiber elongation 

LA = levator ani 

MD = mentovertical diameter 

MD0 = MD prior to molding 

MDf = MD following molding 

MI = molding index 
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OC = occipitofrontal circumference 

PB = perineal body 

PM = perineal membrane 

PRM = puborectal muscle 

PVM = pubovisceral muscle 

RPM = perineal membrane stretch ratio 

RSM = striated muscle stretch ratio 

SC = suboccipitobregmatic circumference 

SD = suboccipitobregmatic diameter 

SD0 = SD prior to molding 

SDf = SD following molding 

SL = soft tissue loop length 

SLPRM = soft tissue loop length for PRM 

SLPVM = soft tissue loop length for PVM  

SPAA = subpubic arch angle 
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2.9  Appendix: 

 Subject 1 (50th 
percentile) 

Subject 2 Subject 3 

PRM 425 335 356 

PVM without wrapping 347 324 399 

PVM  with wrapping 313 268 325 

Table 2.6S - Comparison of the effect of PVM wrapping on maternal capacity (in mm) at 
ultimate crowning for each woman. 

 

Due to the small sample size and the nature of the parent study, both subjects 2 and 3 were 

below the 50th percentile in size. Results reported in Table 2.6S assume no soft tissue stretch or 

shape deformation of the anal sphincter. 

 2.3% 5% 10% 15% 25% 50% 75% 90% 95% 97.7% 

SPAA (o) 69.7 72.2 74.7 76.5 79 83.7 88.4 92.7 95.3 97.7 

Retropubic arch 
angle (o) 

91.4 94.6 97.9 100.
0 

103.3 109.
3 

115.
3 

120.
8 

124.
1 

127.2 

Levator Hiatus 
(mm) 

30 32 35 37 39 44 49 53 56 58 

Table 2.7S - Finding the maternal capacity – Population distribution of SPAA and hiatus. 

 

 SPAA: as measured at the ischium of the pelvis 

Retropubic arch angle: as measured in the axial plane found once the full length of the pubic 

rami is visible after drawing a perpendicular plane through the pubic symphysis [21] 

Levator Hiatus: measured as the H-line, or the distance from the inferior posterior aspect of the 

symphysis to the posterior rectal wall [20] 
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Figure 2.11S - Female Vertex Presentation.  Female fetal head circumference (in mm) as 
presented to the pelvic floor during vertex presentation.  Green indicates region of equal 
population distribution values for molding and head size. The intensity of the blue shading 
indicates the degree of maximal molding of small fetal heads.  The intensity of the red shading 
indicates the degree of the lack of molding of large fetal heads. 
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2.10 Calculations 

[1] Calculating soft tissue loop length (SL) 

(1.1.1) 𝑆𝐿𝑃𝑅𝑀 = 𝐹𝐸 ∗ 𝑅𝑆𝑀 ∗ 𝐿𝑃𝑅𝑀 + 𝑅𝑃𝑀 ∗ 𝐿𝑃𝑀 

𝑆𝐿𝑃𝑅𝑀 = 𝑠𝑜𝑓𝑡 𝑡𝑖𝑠𝑠𝑢𝑒 𝑙𝑜𝑜𝑝 𝑙𝑒𝑛𝑔𝑡ℎ 𝑓𝑜𝑟 𝑃𝑅𝑀 

𝐿𝑃𝑅𝑀 = 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑃𝑅𝑀, 𝑤𝑟𝑎𝑝𝑝𝑒𝑑 𝑎𝑟𝑜𝑢𝑛𝑑 𝑟𝑒𝑐𝑡𝑢𝑚 

𝐿𝑃𝑀 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑝𝑒𝑙𝑣𝑖𝑠 𝑎𝑛𝑑 𝑃𝑅𝑀 𝑜𝑟𝑖𝑔𝑖𝑛 𝑜𝑛 𝑃𝑀 

 
Figure 2.12S - Caudal view of a tracing of the 50 percentile female pelvic rami and soft tissue 
loops before and after three stages of simulated maximum non-injurious stretch.  (Left) Pelvis 
and unstretched levator loop showing pubic rami (Dark grey), PVM (mid grey), AS (light grey 
ellipsoid shape), PB (intermediate grey adjacent to and above AS), and rectum (dark line around 
outside of AS) geometry. (Second left)  Mathematically, the PVM was initially stretched by 1.6x.  
(Second right) PB/AS was then deformed for maximal elliptical length, conserving cross-
sectional area. (Far right)  The smooth muscle of the deformed PB/AS was also stretched by 
1.6x. 

 

(1.2.1) 𝑆𝐿𝑃𝑉𝑀 = 𝐹𝐸 ∗ 𝑅𝑆𝑀 ∗ 𝐿𝑃𝑉𝑀 − 𝐿𝐴𝑆,𝑃𝑉𝑀 + 𝐿𝐴𝑆,𝑚𝑎𝑥 

𝑆𝐿𝑃𝑉𝑀 = 𝑠𝑜𝑓𝑡 𝑡𝑖𝑠𝑠𝑢𝑒 𝑙𝑜𝑜𝑝  𝑙𝑒𝑛𝑔𝑡ℎ 𝑓𝑜𝑟 𝑃𝑉𝑀 

𝐿𝑃𝑉𝑀 = 𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑃𝑉𝑀 𝑓𝑖𝑏𝑒𝑟𝑠, 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑡𝑖𝑛𝑔 𝑓𝑟𝑜𝑚 𝑝𝑒𝑙𝑣𝑖𝑠 𝑎𝑛𝑑 𝑖𝑛𝑠𝑒𝑟𝑡𝑖𝑛𝑔 𝑜𝑛 𝑃𝐵

/𝐴𝑆 
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𝐿𝐴𝑆,𝑃𝐶𝑀 = 𝑐𝑜𝑛𝑡𝑎𝑐𝑡 𝑙𝑒𝑛𝑔𝑡ℎ 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑃𝑉𝑀 𝑎𝑛𝑑 𝑃𝐵/𝐴𝑆 𝑎𝑡 𝑖𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛 

𝐿𝐴𝑆,𝑚𝑎𝑥 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑙𝑒𝑛𝑔𝑡ℎ 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝑃𝐵/𝐴𝑆 

The area of the internal anal sphincter was calculated by subtracting the rectal space from the 

circular cross-section defined by the circumference of the PB/AS. 

(1.2.2) 𝐴
𝐴𝑆

= 𝜋

𝑑
𝐴𝑆

2

4

−

𝜋

4

(𝑑
𝐴𝑆

− 2 ∗ 𝑡
𝐴𝑆

)
2

 

𝑑𝐴𝑆 =  𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝐴𝑆 

𝑡𝐴𝑆 = 𝐴𝑆 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 

(1.2.3) 𝑑𝐴𝑆,𝑚𝑖𝑛 = 2 ∗ 𝑡𝐴𝑆 

After evacuation of the rectum, the PB/AS can be reconfigured as an ellipse with conserved 

cross-sectional area and ring thickness (Figure 2.11S). 

(1.2.4) 𝐴𝐴𝑆 =
𝜋

4
𝑑𝐴𝑆,𝑚𝑎𝑥 ∗ 𝑑𝐴𝑆,𝑚𝑖𝑛 

The maximum diameter of the PB/AS can be solved for in terms of original diameter and ring 

thickness. 

(1.2.5) 𝑑𝐴𝑆,𝑚𝑎𝑥 =
2∗𝐴𝐴𝑆

𝜋∗𝑡𝐴𝑆
=

(𝑑𝐴𝑆
2−(𝑑𝐴𝑆−2∗𝑡𝐴𝑆)2) 

2∗𝑡𝐴𝑆
 

After elliptical distortion, PB/AS muscle fibers run approximately linearly along the long 

diameter, allowing for a 1.6x stretch without injury (Figure 2.12S). 
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(1.2.6) 𝐿𝐴𝑆,𝑚𝑎𝑥 = 𝑅𝑆𝑀 ∗ 𝑑𝐴𝑆,𝑚𝑎𝑥 

 

[2] Maternal circumference in a single plane (Figure 2.13S) 

(2.1) 𝐶𝑀 = 𝑆𝐿 + 𝐴𝐿ℎ𝑒𝑎𝑑,𝑝𝑒𝑙𝑣𝑖𝑠 − 𝐿𝑁𝐶  

𝐶𝑀 = 𝑚𝑎𝑡𝑒𝑟𝑛𝑎𝑙 𝑐𝑖𝑟𝑐𝑢𝑚𝑓𝑒𝑟𝑒𝑛𝑐𝑒 

𝐴𝐿ℎ𝑒𝑎𝑑,𝑝𝑒𝑙𝑣𝑖𝑠 = 𝑎𝑟𝑐ℎ 𝑙𝑒𝑛𝑔𝑡ℎ 𝑎𝑙𝑜𝑛𝑔 ℎ𝑒𝑎𝑑, 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑐𝑜𝑛𝑡𝑎𝑐𝑡 𝑝𝑜𝑖𝑛𝑡𝑠 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑝𝑒𝑙𝑣𝑖𝑠 

𝐿𝑁𝐶 = 𝑠𝑜𝑓𝑡 𝑡𝑖𝑠𝑠𝑢𝑒 𝑙𝑜𝑜𝑝 𝑙𝑒𝑛𝑔𝑡ℎ 𝑛𝑜𝑡 𝑖𝑛 𝑐𝑜𝑛𝑡𝑎𝑐𝑡 𝑤𝑖𝑡ℎ 𝑓𝑒𝑡𝑎𝑙 ℎ𝑒𝑎𝑑  

     

 

 (2.2) 𝐿𝑁𝐶 = 2 ∗ 𝐿ℎ𝑒𝑎𝑑,𝑝𝑒𝑙𝑣𝑖𝑠 − 𝛿𝑜𝑟𝑖𝑔𝑖𝑛𝑠,𝑝𝑒𝑙𝑣𝑖𝑠 

𝛿𝑜𝑟𝑖𝑔𝑖𝑛𝑠,𝑝𝑒𝑙𝑣𝑖𝑠 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑜𝑟𝑖𝑔𝑖𝑛𝑠 𝑎𝑙𝑜𝑛𝑔 𝑝𝑒𝑙𝑣𝑖𝑠 

𝐿ℎ𝑒𝑎𝑑,𝑝𝑒𝑙𝑣𝑖𝑠 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑜𝑟𝑖𝑔𝑖𝑛 𝑜𝑓 𝑝𝑒𝑙𝑣𝑖𝑠 𝑎𝑛𝑔𝑙𝑒 𝑡𝑜 ℎ𝑒𝑎𝑑 − 𝑝𝑒𝑙𝑣𝑖𝑠 𝑐𝑜𝑛𝑡𝑎𝑐𝑡 𝑝𝑜𝑖𝑛𝑡 

 

 

(2.3) 𝐿
ℎ𝑒𝑎𝑑,𝑝𝑒𝑙𝑣𝑖𝑠=

𝐷ℎ𝑒𝑎𝑑

2∗tan (
𝜃
2

)

  

𝐷ℎ𝑒𝑎𝑑 = 𝐵𝐷 = 𝑆𝐷 = 𝑓𝑒𝑡𝑎𝑙 ℎ𝑒𝑎𝑑 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 

½ LNC 
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𝜃 = 𝑠𝑢𝑏 𝑝𝑢𝑏𝑖𝑐 𝑎𝑟𝑐ℎ 𝑎𝑛𝑔𝑙𝑒, 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 

(2.4) 𝐴𝐿ℎ𝑒𝑎𝑑,𝑝𝑒𝑙𝑣𝑖𝑠 = 𝜋 ∗ 𝐷ℎ𝑒𝑎𝑑 ∗ (
180−𝜃

360
) 

(2.5) 𝐶𝑀 = 𝜋 ∗ 𝐷ℎ𝑒𝑎𝑑 = 𝑆𝐿 + 𝜋 ∗ 𝐷ℎ𝑒𝑎𝑑 ∗ (
180−𝜃

360
) + 𝛿𝑜𝑟𝑖𝑔𝑖𝑛𝑠,𝑝𝑒𝑙𝑣𝑖𝑠 −

𝐷ℎ𝑒𝑎𝑑

tan (
𝜃

2
)
 

(2.6) 𝐶𝑀 = 𝜋 ∗ 𝐷ℎ𝑒𝑎𝑑 =
𝑆𝐿+𝛿𝑜𝑟𝑖𝑔𝑖𝑛𝑠,𝑝𝑒𝑙𝑣𝑖𝑠

1+
𝜃−180

360
+

1

𝜋tan (
𝜃
2

)
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Figure 2.13S - Caudal view of anterior pelvis following the graphical convention in Figure 2.4 
illustrating variables used in Part II maternal capacity calculations.  Grey circular shape = fetal 
head. Θ = subpubic arch angle; all angles are in degrees. Arrow head = soft tissue origin. Arch = 
pelvis/ subpubic arch. Top row: Length of soft tissue loop in contact with the fetal head is 
represented by the black band. The length of soft tissue loop not in contact with the fetal head 
is represented by the dashed line. Second row: Calculations for the archlength of the portion of 
the head not in contact with the soft tissue loop. Dot-dash line: tangent to pelvis at point of 
contact with the fetal head. Bottom row: Calculations for the distance from the subpubic arch 
to the head-pelvis contact points.  
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 [3] Maternal circumference in the lower plane 

(3.1) 𝐶𝑀.𝑙𝑜𝑤𝑒𝑟 = 𝑆𝐿 +  𝜋 ∗ 𝐷ℎ𝑒𝑎𝑑 ∗ (
180−𝜃

360
) − 𝐿𝑤𝑟𝑎𝑝,𝑙𝑒𝑓𝑡 − 𝐿𝑤𝑟𝑎𝑝,𝑟𝑖𝑔ℎ𝑡 

𝐿𝑤𝑟𝑎𝑝 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑜𝑟𝑖𝑔𝑖𝑛 𝑜𝑛 𝑝𝑒𝑙𝑣𝑖𝑠 𝑎𝑛𝑑 𝑛𝑒𝑎𝑟𝑒𝑠𝑡 𝑃𝐶𝑀 − ℎ𝑒𝑎𝑑 𝑐𝑜𝑛𝑡𝑎𝑐𝑡 𝑝𝑜𝑖𝑛𝑡 

It was necessary to assume a value for fetal head diameter in order to solve for Lwrap. 

 

Fetal Head Calculations 

[4] Approximating the Suboccipitobregmatic Circumference from the Occipitofrontal 

Circumference 

The suboccipitobregmatic circumference (SC) results from an ellipse with the biparietal (BD) 

and suboccipitobregmatic (SD) diameters as its axes (Figure 2.5).  This was simplified by 

approximating SD to be equal to BD. 

(4.1) 𝑆𝐶 ≈ 𝜋√𝑆𝐷2+𝐵𝐷𝐿
2

2
= 𝜋 ∗ 𝐵𝐷𝐿 

𝐵𝐷𝐿 = 𝐵𝑖𝑝𝑎𝑟𝑖𝑒𝑡𝑎𝑙 𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑑𝑢𝑟𝑖𝑛𝑔 𝑙𝑎𝑏𝑜𝑟 

  

Kriewall’s molding index was modified by approximating SD to be equal to BD, and by 

approximating the mentovertical diameter (MD) to be equal to 1.2 * the frontooccipital (FD), 

based on values reported by Sobre et al. [27, 25]. 
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(4.2)  𝑀𝐼 =
𝑀𝐷2

𝐵𝐷𝐵∗𝑆𝐷
=

1.22𝐹𝐷2

𝐵𝐷𝐵
2 = 2.0 ± 0.22 

𝐵𝐷𝐵 = 𝐵𝑖𝑝𝑎𝑟𝑖𝑒𝑡𝑎𝑙 𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑝𝑜𝑠𝑡 − 𝑏𝑖𝑟𝑡ℎ 

(4.3) 𝐹𝐷2 =
𝑀𝐼∗𝐵𝐷𝐵

2

1.22
 

The occipitofrontal circumference (OC, conventional measurement taken at time of birth) is a 

function of FD and BD. Equation 4.2 was solved for FD (4.3), which was used to solve for OC in 

terms of MI and BD (4.4). 

(4.4) 𝑂𝐶 ≈ 𝜋√𝐹𝐷2+𝐵𝐷𝐵
2

2
= 𝜋 ∗ 𝐵𝐷𝐵

√(1+
𝑀𝐼

1.22)

2
 

Equation 4.4 leads to the ability to write BD as a function of OC and MI, which are both 

commonly reported. 

(4.5) 𝐵𝐷𝐵 =
𝑂𝐶√2

𝜋√1+
𝑀𝐼

1.22

 

It has been observed that BD increases by at least 0.5 cm between labor and measurements 

taken immediately after birth [26]. 

(4.6)𝐵𝐷𝐿 = 𝐵𝐷𝐵 − 0.5𝑐𝑚 

Equations 4.5 and 4.6 allow us to solve for BDL, and consequently SC as a function of commonly 

reported variables. 

(4.7) 𝜋 ∗ 𝐵𝐷𝐿 =
𝑂𝐶√2

√1+
𝑀𝐼

1.22

−
𝜋

2
𝑐𝑚 = 𝑺𝑪 
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 [5] Face Presentation 

The face presentation circumference (Cf) was calculated as the circumference of an ellipse with 

one axis as the unaltered circumference (d0) and one axis as the modified diameter (df), 

observed to gain up to 7 mm at delivery. Both diameters were expressed in terms of the 

original circumference (C0), allowing us to calculate Cf as a function of C0 only (Figure 2.7). 

(5.1) 𝐶𝑓 = 𝜋√
𝑑0

2+𝑑𝑓
2

2
 

(5.2) 𝑑0 =
𝐶0

𝜋
 

(5.3) 𝑑𝑓 = 𝑑0 + 7𝑚𝑚 

(5.4) 𝐶𝑓 = 𝜋√
𝐶0

2

𝜋2+(
𝐶0
𝜋

+7𝑚𝑚)
2

2
 

(5.5) 𝐶𝑓 = √𝐶0
2+(𝐶0+𝜋∗7𝑚𝑚)2

2
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3.1 Abstract 

Remarkable changes must occur in the pelvic floor muscles and tissue comprising the birth 

canal in order to allow vaginal delivery.  Despite these preparatory adaptations, approximately 

13% of first time mothers sustain tears near the origin(s) of the pubovisceral muscle (PVM). In 

order to investigate why these tears occur, it is necessary to first quantify the viscoelastic 

behavior of the term pregnant human birth canal. The goal of this study was to quantify the 

material properties of the human birth canal, in situ, at the time of delivery and compare them  

to existing animal models.  The results show that human, ovine and squirrel monkey birth canal 

tissue can be characterized by the same set of constitutive relations, with the differences 

between species primarily explained by the long time constant, τ2, which has values of 555 

seconds, 1110 seconds, and 2777 seconds, respectively. The quantification of these viscous 

properties should allow for improved accuracy of computer models aimed at understanding 

vaginal birth-related injuries. 
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Keywords:  Levator Ani; Quasilinear Viscoelasticity; Birth; Constitutive Model 

3.2 Introduction 

Of the 3 million of women who give birth each year, approximately 15% experience tears to the 

pubovisceral (PVM) portion of the levator ani muscles [1]. These tears are linked to the later 

development of disorders such as pelvic organ prolapse and incontinence [2] [3]; problems that 

lead to approximately 10% of all US women eventually requiring corrective surgery [2].  

Concerned about these types of complications, some women choose elective Cesarean Section; 

however, such a procedure carries its own immediate and delayed risks [4] [5]. In addition, 

because there is no current method to accurately predict the risk of a PVM tear prior to birth, 

the 85% of women who would not experience tears during vaginal delivery may be undergoing 

unnecessary procedures. 

The ability to reliably predict PVM tear outcomes prior to delivery, as outlined theoretically by 

Tracy et al. 2016 [6], would represent a major advance if it could be validated using clinical 

data. Proof of concept results in women using antenatal hiatal diameters and postpartum fetal 

head data to predict injury are promising [7]. However, we believe the accuracy of such 

predictions is currently limited by the complete lack of viscoelastic property data of the term-

pregnant human birth canal in situ. During labor, the human birth canal undergoes a 

remarkable degree of deformation in less than two hours that is unprecedented elsewhere in 

the body: for example, the PVM undergoes an estimated three-fold increase in length [8] [9] 

[10] in less than two hours.  
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As a result, it is not reasonable to assume the term pregnant material properties of the pelvic 

floor striated muscles to be similar to those of striated muscles found elsewhere. Additionally, 

it has been shown in ovine [11] and rat [12] models that there are remarkable pelvic floor 

material property changes in preparation for, and during, labor.  As a result, it is important to 

identify the mechanical behavior of the human birth canal as proximate to the time of delivery 

as possible. 

The goal of this study was to derive a constitutive model of the term-pregnant birth canal, 

based in part on pre-existing animal model data [11] [13].  We then sought to validate this 

model using in situ force-displacement data from the human birth canal at the time of labor.  

3.3 Constitutive Model 

We begin with a constitutive model that takes the form of Fung Quasilinear Viscoelastic Theory 

for soft tissues [14]. The development of this constitutive model relied on pregnant squirrel 

monkey and ovine birth canal data, as well as human birth canal distention data [13]. Pregnant 

squirrel monkey pelvic floor muscle ramp-and-hold relaxation tests were first used to 

determine the form of the relaxation function, including parameter C and short and long time 

constants τ1 and τ2. Pregnant ovine vaginal wall uniaxial cyclic loading data available in 

literature [11] were used to determine the elastic function form, including parameters A and B, 

as well as to characterize cyclic stress-strain hysteresis behavior, resulting in modifications to 

relaxation parameters C and τ2. This elastic function form was also compared to a similar form 

originally fit to the squirrel monkey data (Figure 3.2). When validating with term pregnant 

human birth canal distension data, the estimate of parameter τ2 was refined.  
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All of the following calculations and simulations were performed on a Lenovo T430 computer 

using MATLAB v.R2015a.  Run times ranged from 1 to 120 minutes.   

3.3.1  Characterization of Relaxation Form 

A uniaxial relaxation function of the form previously suggested for soft tissue applications [14] 

was fit to previously collected squirrel monkey pelvic floor muscle tensile ramp-and-hold data 

[13] . 

Relaxation Function Form: 

(2.1.1)    𝐺(𝑡) =  
1+𝐶∗[𝐸1(𝑡

𝜏2⁄ )−𝐸1(𝑡
𝜏1⁄ )]

1+𝐶∗𝑙𝑛(
𝜏2

𝜏1
⁄ )

 

(2.1.2)  𝐸1(𝑥) = ∫
𝑒−𝑦

𝑦
𝑑𝑦

∞

𝑥
 

The elastic function form is also given here for reference: 

(2.1.3)    𝜎 = 𝐴(𝑒𝐵𝜀3
− 1)   

From this relaxation function, a creep function can be derived using methods established by 

Fung [14] (Figure 3.6S). 

Creep Function form:  

(2.1.4)     𝐽(𝑡) = 𝐽(∞) {1 +
(1+𝑠0𝜏2)(1+𝑠0𝜏1)

𝐶∗𝑠0∗(𝜏2−𝜏1)
𝑒𝑠0𝑡 + 𝐶 ∫

𝑒−𝑥𝑡

𝑥∗{(𝐶𝜋)2+[1+𝐶∗ln(
𝑥𝜏2−1

1−𝑥𝜏1
)]

2
}
𝑑𝑥

1
𝜏2

⁄

1
𝜏1

⁄
} 

𝑠0 = −
𝑒1/𝐶 − 1

𝜏2𝑒1/𝐶 − 𝜏1
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𝐽(∞) = 1 + 𝐶 ∗ ln(
𝜏2

𝜏1
⁄ ) 

3.3.2  Characterization of Hysteresis:  

Using the creep function form (2.1.3), and the following creep form of the constitutive function, 

and using ramped stress as an input, Ulrich’s ovine experiments were then simulated [11] . 

Creep Form: 𝜀(𝑡) = 𝐽(0)𝜎(𝑡) + ∫ 𝜎(𝑡 − 𝑠)𝐽(̇𝑠)
𝑡

0
𝑑𝑠     (2.2.1) 

This revealed an elastic function of the form 𝜎 = 𝐴(𝑒𝐵𝜀3
− 1)   (2.1.3) 

Following parameter validation through simulation of in vivo human birth canal creep (constant 

uniaxial force distension) testing (Section 2.3), uniaxial cyclic loading was simulated in order to 

verify a reasonable description of the cyclic stress-strian hysteresis loops demonstrated in the 

pregnant ovine data. 

3.3.3 Parameter Optimization: 

To verify this constitutive model’s ability to predict human maternal birth canal distension 

behavior at the time of first stage of labor, the results of simulations described below have 

been compared to what we believe to be the first experimental creep testing data for the term-

pregnant human birth canal. The model parameters C and τ2 were optimized by trial and error 

methodology in order to obtain a best-fit against the experimental data. 

Human data were available from ongoing tests of a device which generates an outward radial 

force with the purpose of dilating the lower birth canal in the first stage of labor developed by 

Materna Medical, Inc. Force and displacement data collected as part of a clinical trial at Baylor 

College of Medicine were provided to us by Materna Medical and were analyzed as part of this 
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research. The analysis of these data in this way was not envisioned in the design of the trial. 

These data were collected continuously while the device was powered on, corresponding to the 

entire duration of birth canal distension by the device, as well as time required for device 

calibration, insertion, and removal. The force data were used as the input to the simulation 

once converted to tensile stress values in the direction of the line-of-action of the muscle fibers 

based on an assumed average anatomic cross sectional area of the healthy female PVM equal 

to 1.2 cm2 [15].  Considering that the vaginal wall has one sixth the cross sectional area of the 

PVM [16] and one tenth the elastic modulus of striated muscle [17] [18], vaginal wall tissues 

were assumed to provide negligible resistance to stretch.  

Simulations were run for a time step size of 0.1 seconds, with assumed soft tissue 

incompressibility. The geometric relationship between soft tissue length and maternal capacity 

(circumference of birth canal) was quantified using a previously derived mathematical 

relationship [6]. 

3.3.4 Sensitivity Analysis 

Sensitivity analysis was performed by individually varying elastic function parameters A and B, 

relaxation coefficient C, and the short and long time constants, τ1 and τ2 respectively. Each 

variable was increased and decreased by 1 decade (factor of 10). 

3.4 Results 

3.4.1  Constitutive Relationships 

The overall constitutive relationship is of the form: 
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 𝜀(𝑡) = 𝐽(0)𝜎(𝑡) + ∫ 𝜎(𝑡 − 𝑠)
𝑑𝐽

𝑑𝑠
(𝑠)

𝑡

0
𝑑𝑠  (2.2.1) 

Where, the final creep function is: 

𝐽(𝑡) = 𝐽(∞) {1 +
(1+𝑠0𝜏2)(1+𝑠0𝜏1)

𝐶∗𝑠0∗(𝜏2−𝜏1)
𝑒𝑠0𝑡 + 𝐶 ∫

𝑒−𝑥𝑡

𝑥∗{(𝐶𝜋)2+[1+𝐶∗ln(
𝑥𝜏2−1

1−𝑥𝜏1
)]

2
}
𝑑𝑥

1
𝜏2⁄

1
𝜏1

⁄
} (2.1.4) 

and where 

 𝑠0 = −
𝑒1/𝐶−1

𝜏2𝑒1/𝐶−𝜏1
  

𝐽(∞) = 1 + 𝐶 ∗ ln(
𝜏2

𝜏1
⁄ ) . 

𝐶 = 13.08                                   𝜏1 = 0.973 𝑠𝑒𝑐𝑜𝑛𝑑𝑠                        𝜏2 = 555 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 

The final elastic function form is: 

𝐴(𝑒𝐵𝜀3
− 1)   (2.1.3) 

Where 𝐴 =  16.1 𝑀𝑃𝑎 and 𝐵 =  0.081. 

The results of this constitutive model were compared to experimental distension data collected 

for the term pregnant human birth canal (Figure 3.1). 
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Figure 3.1 - Experimental human distension data (gray solid) and simulated maternal capacity 
distension/diameter (blue dashed). The initial spike in distension data represents device 
calibration deployment prior to insertion into the birth canal and the terminal drop is attributed 
to device removal. 

3.4.2 Species Model Variations 

The previously published pregnant squirrel monkey elastic function took on the form: 

𝐴(𝑒𝐵𝜀 
− 1)   (3.2.1) [13] 

In optimizing the constitutive model for the term pregnant human case, it was found that the 

following elastic function form provided the best fit. 

𝐴(𝑒𝐵𝜀3
− 1)   (2.1.3)  

This change in elastic function form resulted in an increased simulated elastic response for a 

given value of parameter B and a decreased elastic response for a given value of parameter A. 

As a result, it is not surprising that in the final constitutive form, the human value for parameter 

A is larger than its squirrel monkey counterpart while the human value for parameter B is 

reduced when compared to the corresponding squirrel monkey value (Table 3.1). 
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 Squirrel Monkey Ovine Human 

A (MPa) 0.161* 16.1 16.1 

B (unitless) 2.98* 0.081 0.081 

C (unitless) 0.327 13.1 13.1 

τ1 (seconds) 0.973 0.973 0.973 

τ2 (seconds) 2777 1110 555 

Table 3.1 - Parameter values for the squirrel monkey, ovine and human models. *The elastic 
function previously fit to squirrel monkey data takes on a different form than that fit here to 
ovine and human data.  [13] 

 

 
Figure 3.2 - The term pregnant human birth canal elastic function (yellow) is compared to 
previously published ex vivo mechanical data for pregnant squirrel monkey pelvic floor muscle 
in the circumferential fiber direction (FD, blue) and cross fiber direction (CFD, red) [13].  

 

The relaxation function for the human birth canal constitutive model retained the same form as 

that fit to previously published squirrel monkey pelvic floor muscle data [13].  However, the 

values of the coefficient, C, and the long time constant, τ2, varied between the two species with 

C increasing from 0.327 for the squirrel monkey case to 16.1 for the human case and τ2 

decreasing from 2777 seconds for the squirrel monkey case to 555 seconds for the human case 
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(Table 3.1, Figure 3.3). Decreasing τ2 had the impact of decreasing the time required to reach 

the final relaxation state, while increasing C had the impact of decreasing the steady state 

stress at the final relaxation state. 

 
Figure 3.3 - The term pregnant human birth canal relaxation function (grey) is compared to 
previously published ex vivo mechanical data for pregnant squirrel monkey pelvic floor muscle 
in the circumferential fiber direction (FD, black)  [13] These relaxation functions plateau at 
0.278 and 0.0119 for pregnant squirrel monkey and human respectively. 

 

τ2 was also found to vary between human and ovine models, with the optimized fit to ovine 

hysteresis data occurring at a τ2 value of 1110 seconds (Figure 3.4, Table 3.1).  Considering this 

result, the human and ovine models did agree quite well on coefficient C, or the steady state 

stress at the final relaxation state.  
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Figure 3.4 - Hysteresis stress-strain ramping simulations (blue) for the term pregnant human 
birth canal constitutive relationships (left) and ovine vaginal wall tissue model optimized 
constitutive relationships (right) are compared to previously published ex vivo mechanical data 
for pregnant ovine vaginal wall tissue (red) [11]. 

 

3.4.3 Sensitivity Analysis 

Results for the sensitivity analysis (Figure 3.5) showed that a 1 decade variation in elastic 

function parameter B had the greatest impact on the magnitude of the distension response. 

However, a 1 decade variation in elastic function parameter A resulted in a response of a similar 

magnitude. Of the viscous (creep and relaxation) parameters, the long time constant, τ2, had 

the greatest effect on magnitude of response. Variations in the short time constant, τ1, and 

coefficient C had smaller effects on the magnitude of response, with the smallest effect being 

observed for a 1 decade increase in parameter C.  
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3.5  Discussion 

To our knowledge this is the first in vivo and in situ quantification of the material properties of 

the human birth canal at the end of pregnancy.  Knowledge of these properties allows the 

previously unexplored time-dependent relaxation behavior of the human birth canal to be 

characterized. This quantification may help facilitate a research-based re-evaluation of current 

Figure 3.5 - Sensitivity analysis showing the 
effect on human dilation curves of a 1 
decade decrease (green) and 1 decade 
increase (purple) for each constitutive model 
parameter (A - upper left, B – upper right, C 
– middle left, τ1 – middle right, τ2 – lower 
left). The best fit model is plotted in blue 
over experimental human distension data 
(gray). 
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clinical practices concerning how the rate of birth-canal dilation can affect birth outcomes. It 

also permits investigation into more subtle factors that contribute to a mother’s risk for PVM 

tear, such as asking what would happen if these material properties were not reached due to 

inadequate hormonal tissue “ripening” [19].  

In this study, we have considered three separate species models: squirrel monkey pelvic floor 

muscle ovine vaginal wall, and human birth canal tissues. Though not identical, these models 

are similar in the form of their constitutive relationships, and vary primarily in one parameter: 

the long time constant, τ2. Here, humans have the shortest of these time constants, with a 

value of 555 seconds, followed by ovine at 1110 seconds, and squirrel monkeys at 2777 

seconds. It would be interesting to explore how this interspecies difference in time constants 

would affect the duration of second stage of labor for different maternal capacity – to – fetal 

head demand ratios [6]. 

The sensitivity analyses revealed that the elastic parameters, A and B, had their greatest effect 

on the amplitude of the strain response. However, the long time constant, τ2, is the parameter 

which had the greatest influence over the temporal response. 

The present approach has certain strengths and limitations.  A strength is that we were able to 

study in vivo, in situ human tissue during labor and also to demonstrate consistency of the 

constitutive response across three different species, with differences between species primarily 

being explained by a single parameter, the long time constant, τ2.  Additionally, the creep and 

relaxation behavior for these three species is consistent with a relaxation function previously 

derived for soft tissues [14].  
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A limitation of the model is that it depends on data from studies of small numbers, generally 

two, of each species due to the scarcity of tissue, the nature of the methods and resources 

required. As a result, variations within each species could not be investigated. Additionally, the 

squirrel monkey and ovine data considered were both excised. However, the pregnant human 

birth canal distension data was both in vivo and in situ. Taken as a whole, we believe the model 

represents a reasonable order of magnitude estimate of human birth canal temporal behavior 

under distension.  

An additional limitation is that the present model describes the temporal behavior of the distal 

human birth canal.  The canal is comprised of the vagina along with the underlying soft tissues, 

principally the PVM, as presented to the distension device.  Our model, therefore, does not 

reflect only striated muscle or only vaginal wall behavior, but rather the overall response of the 

combined individual anatomical components that comprise the most distal portion of the canal. 

This, after all, is the composite structure that is presented to the fetal head, so the properties of 

this construct are more meaningful than those of any individual component tissue.  The stress 

we calculated by only using the anatomic cross-sectional area of the PVM does not account for 

the tensile stress of the vaginal wall and adjacent connective tissue. However, considering that 

the vaginal wall has one sixth the cross sectional area of the PVM [16] and one tenth the elastic 

modulus of striated muscle [17] [18], the contribution of the vaginal wall tissues to this 

resistance to stretch are expected to be negligible.  When we factored in vaginal properties, 

there was a 1.6% decrease in stress values.  
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It is true that the distension we modeled is somewhat different than that which would occur 

during passage of the fetal head, where downward descent of the pelvic floor during delivery is 

added to the circumferential deformation induced by this device. This fact limits our ability to 

conclusively separate out the individual role of each subcomponent, but it does allow us to 

characterize the overall stress response of the structure, whose individual components lie 

roughly parallel to the distal circumferential boundary of the birth canal during birth. As a 

result, if the PVM comprised approximately 80% of the birth canal at the level at which the 

device is inserted, it could be estimated that 80% of the total force as measured by the 

distension device is experienced by the PVM as a tensile load. This can be viewed as an 

extension of laws invoked for elements occurring in parallel in common spring-and-dashpot 

models. 
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3.7 Appendix 

 

 
Figure 3.6S - The final human birth canal creep function for the parameter values C = 13.08, τ1 = 
0.973 seconds, τ2 = 2776.6 seconds. 
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4.1 Abstract 

Exactly why the remarkable elongation of the pubovisceral muscle (PVM) causes the muscle to 

tear in 13% of vaginal deliveries remains unknown. In this paper we first quantify the variation 

in in vivo in situ data of maternal birth canal viscoelastic properties in healthy women using 

Fung’s Quasilinear Viscoelastic Theory. We tested the hypothesis that no significant inter-

individual variation in the long time constant, τ2, existed. We rejected that hypothesis, finding 

that τ2 values ranged 20-fold below and above the median during the first stage of labor. We 

then used these data in the Tracy et al. (2016) biomechanical model modified to predict how 

such variations affect both the predicted length of the active second stage of labor and the risk 

for PVM tears.  The results show there was a 100-fold change in the predicted length of active 

second stage from the shortest to the longest value of τ2, with a noticeable increase occurring 

for τ2 values exceeding 1,000 seconds.  However, only 5% of the population’s PVM tear risk was 
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predicted to change due to differences in τ2.  We conclude that τ2 is a strong theoretical 

predictor of the time a mother has to push in order to deliver a fetal head whose diameter 

exceeds that of the maternal birth canal.  

Key words: Levator Ani, Birth, Viscoelastic, Constitutive Model, Injury 

4.2 Introduction 

During labor, the birth canal undergoes remarkable deformation, typically increasing its 

circumferential length up to three-fold [1] [2] [3]. The most distal part of the birth canal is 

formed by the pubovisceral muscle (PVM), a subdivision of the levator ani muscles. This region 

undergoes the most stretch during the second stage of labor, which occurs after the cervix is 

open and before the baby is born [4] [5]. This portion of the muscle is attached high on the 

posterior aspect of the pubic symphysis, and forms a U-shaped loop that is dilated and pushed 

downward by the fetal head during birth (Figure 4.1).  It has been predicted to be partially 

wrapped around the bony pelvis in the parasagittal plane, thereby reducing its capacity to 

accommodate a fetal head [6]. Due to the large degree of stretch required towards the end of 

the second stage of labor [4], the PVM tears in approximately 13% of vaginal deliveries [7].  

These tears have been linked to the development of pelvic organ prolapse later in life in some 

individuals [8] [9] [10], a disorder for which 10% of all US women eventually require corrective 

surgery [8] [11].   
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Figure 4.1 - Pubovisceral muscle (orange) anchored onto the anterior pelvis (green) (A) at rest 
and (B) stretching to accommodate a fetal head. 

 

Some women choose elective Cesarean Section because they are concerned about such 

complications; however, this operation carries its own immediate and delayed risks [12] [13]. In 

addition, because there is no current method to predict the risk of a PVM tear prior to birth, the 

women who would not experience tears during vaginal delivery may be undergoing 

unnecessary operations, while many women who are at risk fail to avoid PVM tears. 

The overall goal of our research has been to develop a framework for predicting levator tear 

risk as well as the length of the active second stage of labor so that the women at highest risk 

can be identified for preventative strategies benefitting them without imposing unintended 

harm on those who are not destined to be injured.  In this chapter we will build on the 

geometric analysis of the fit between the fetal head and maternal birth canal described in Tracy 

et al. 2016 [6].  Specifically, we will now incorporate the recently characterized viscoelastic 

A 

B 
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behavior of the term pregnant human birth canal (Chapter 3) into that model in order to 

simulate the biomechanical interaction between the fetal head and viscoelastic maternal birth 

canal during the active second stage of labor.  Here, the predicted PVM tear outcome will 

reported in the context of a levator state parameter, based on the product of stress times 

strain, where a value greater than 1 indicates that a PVM tear is predicted.  Since the Tracy et 

al. (Chapter 3) study characterizing the maternal viscoelastic behavior using a five parameter 

Quasilinear Viscoelastic Theory (QLV) constitutive model [14] did not consider inter-individual 

variations, we will first test the null hypothesis that there is no significant variation between 

term pregnant mothers in their long time constant, τ2.  Then we will test the null hypothesis 

that the variation in τ2 will not affect (1) the predicted length of the active second stage of 

labor, or (2) the risk of a PVM tear. 

4.3 Methods 

The maternal birth canal force-dilation data for 30 subjects was fit to a previously published five 

parameter constitutive model based on QLV theory for soft tissues (Chapter 3). These force-

distension data were obtained from a device developed by Materna Medical, Inc. to generate a 

constant outward radial force with the purpose of dilating the lower birth canal prior to 

delivery.  Dilation was limited to a maximum diameter of 8 cm. The force and displacement 

data were collected as part of a clinical trial and were provided to us by Materna Medical and 

Baylor College of Medicine.  They were analyzed as part of this research.  All simulations were 

run in MATLAB R2015a with a time step size of 0.1 seconds. 
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4.3.1 Birth Simulations 

Stress–strain relationships were assumed to be governed by the QLV constitutive model 

(Chapter 3).  

Maternal capacity and the PVM U-shaped sling length were then calculated from the 2.3rd to 

the 97.7th female based on the Tracy et al. (2016) geometric model that considered the 

maternal birth canal capacity to be determined by the subpubic arch angle, PVM origin location, 

PVM length, while fetal demand was represented by the 2.3rd to the 97.7th fetal head with 

average molding [6]. Birth simulations were run for each maternal capacity – to – fetal head 

demand pairing. 

PVM strain, εPVM, was assumed to be related to general birth canal strain, εBC, based on the 

ratio between their initial circumferential lengths, lPVM and lBC respectively [6]. 

𝜀𝑃𝑉𝑀 =
𝑙𝐵𝐶

𝑙𝑃𝑉𝑀

(𝜀𝐵𝐶 + 1) − 1 

It was also estimated, based on anatomical analysis (Chapter 3) of the height of the 

pubovisceral muscle relative to the distension device, that 83% of the total force as measured 

by the Materna birth canal distension device was resisted as a tensile load in the PVM. 

In the modified Tracy et al. (2016) model, simulations of vaginal birth during the second stage 

were driven by intrauterine pressure as an input, as measured in previous experiments: this 

included a 2.6 kPa basal intrauterine pressure, an 8.5 kPa rise during contractions, and an 

additional 10.5 kPa rise during each volitional push [15]. Contractions and pushes were each 

modeled as the first half of one period of a cosine wave. Specifically, contractions were 
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assumed to last for 90 seconds, followed by 90 second rest; three 10 second pushes were 

assumed per contraction with each followed by 10 seconds of rest [16] [17] [15]. 

Intrauterine pressure was assumed to be related to circumferential stress in the PVM U-shaped 

sling, based on the following calculations (Figure 4.2): 

𝑇 = 𝑡𝑒𝑛𝑠𝑖𝑜𝑛 𝑖𝑛 𝑃𝑉𝑀 

�̃� =
𝑇

2𝜋𝑟
= 𝑇𝑒𝑛𝑠𝑖𝑜𝑛/𝑙𝑒𝑛𝑔𝑡ℎ 

Balancing “Vertical” Forces:      �̃�2𝜋𝑟 ∗

𝑠𝑖𝑛(𝛼) = 𝑃𝑎𝑏𝜋 ∗ 𝑟ℎ
2 

�̃� =
𝑃𝑎𝑏 ∗ 𝑟ℎ

2

2𝑟 ∗ 𝑠𝑖𝑛(𝛼)
 

Balancing “Horizontal” Forces:     𝜎𝑃𝑉𝑀2 ∗

𝐴𝑃𝑉𝑀 = �̃�2𝑟 ∗ cos(𝛼) 

𝜎𝑃𝑉𝑀 =
�̃� ∗ 2𝑟 ∗ cos(𝛼)

2𝐴𝑃𝑉𝑀
=

𝑃𝑎𝑏𝑟ℎ
2

2𝐴𝑃𝑉𝑀 tan(𝛼)
 

Figure 4.2 - Intrauterine pressure (blue arrow) creates a force distributed over the fetal head 
(grey circle). The tension (T) in the PVM (dark blue band low on head) was related to 
intrauterine pressure using the radius of the fetal head (light blue lines) and the angle between 
the midline of the fetal head and the contact point of the PVM on the fetal head (alpha). 

 

Based on image analysis of deviations of the newborn fetal head from perfectly spherical 

anatomy, a maximum alpha value of 0.68 radians was assumed. 

Piu 

α 

T 



109 
 

Simulations of births were run for 2.5th to the 97.5th percentile maternal birth capacity and 2.5th 

to 97.5th fetal head circumferences for three values of τ2: the median (555 seconds), the short 

extreme at 1/20th the median, and the long extreme at 20 times the median.  Trials that had a 

second stage predicted to exceed 24 hours in length were terminated because this would not 

be allowed clinically and the baby would instead be delivered by cesarean section. 

 

4.3.2 Post analysis in Microsoft Excel 2010 

Length of Active Second Stage tables were shaded when a threshold of 3 hours was exceeded 

because obstetrical guidelines recommend intervening at this point [18]. 

Likewise, the ‘levator state parameter’ tables were shaded using 2.7 MPa (levator state 

parameter equal to 1) as the minimum for shading indicating the threshold for injury, discussed 

below.  

The stress-strain relationship describing the soft tissue injury criterion that was assumed was 

based on literature available for ligament [19] [20] [21], while the exact value of 2.7 MPa was 

based on the measured conditions for the ultimate failure of pregnant ovine tissue estimated 

graphically from [22]. 

A smoothing function with a width of τ2 values spanning 100 seconds was used in Figure 4.6.  

This was done to account for heightened sensitivity to the timing of fetal head delivery during 

the final contraction for deliveries that require very few contractions, as addressed in the 

discussion. 
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4.4 Results 

4.4.1 Measured Variations in the Long Time Constant, τ2 

Of the 30 subjects analyzed, variation in viscoelastic responses between 26 of them could be 

explained by changes in the long time constant, τ2, alone (Figure 4.3).  Therefore, we rejected 

the null hypothesis that there is no significant variation between term pregnant mothers in the 

long time constant, τ2. 

 
Figure 4.3 - Histogram of long time constant, τ2 values, represented in logarithmic form. 

 

4.4.2 Predicted Length of Active Second Stage 

We also rejected the null hypothesis that the variation in τ2 would not affect the length of the 

active second stage of labor, showing that values of τ2 over 1,000 seconds result in predicted 

active second stages of greater than 1 hour for the 50th percentile maternal capacity and 50th 

percentile fetal demand (Figure 4.4).  
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Figure 4.4 - Predicted length of the active second stage for the range of τ2 values observed. 
Results are for simulations for a single 50th percentile maternal capacity and 50th percentile 
fetal demand pairing. 

 

Expanding upon this further, we considered a wide range of pairings between maternal capacity 

and fetal head demand (Figure 4.5).  The simulations show that for the lower bound of 

observed τ2 values (τ2= 27 seconds, or 1/20th of the median) only 2% of births exceeded 1 hour 

of active second stage. Additionally, simulations run for the median observed τ2 value (550 

seconds) resulted in 26% of births exceeding 1 hour of active second stage, with none 

exceeding 5 hours. However, simulations run for the upper bound (20 times median) of 

observed τ2 values (τ2= 11,000 seconds) resulted in 89% of births being predicted to exceed 1 

hour in active second stage.  
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.05 τ2 Length of Active Second Stage Table: 

 
Median τ2Table: 

 
20 τ2Table:

 
Figure 4.5 - Predicted length of active second stage (in minutes) across the range of pairings of 
maternal capacity-to-fetal head demand are shown for τ2 values of 1/20th of the median (27 
seconds, Top), median (550 seconds, Middle), and 20X the median (11,000 seconds, bottom).  
The intensity of the (blue) shading indicates the extent by which each active second stage 
exceeds 3 hours. The 1 hour (dot-dot-dash line), 2 hour (dot-dash line), 3 hour (dashed line) and 
4 hour (solid line) cutoffs are marked in each table. 

2.3rd 5th 10th 20th 25th 30th 40th 50th 60th 70th 75th 80th 90th 95th 97.7th

2.3rd 19 19 22 25 28 31 34 40 46 58 70 85 *** *** ***

5th 10 12 13 13 16 16 16 19 19 22 22 25 28 34 43

10th 7 7 7 10 10 10 10 12 12 13 13 13 16 16 19

15th 6 7 7 7 7 7 7 7 9 10 10 10 10 13 13

20th 4 4 6 6 7 7 7 7 7 7 7 7 9 10 10

25th 4 4 4 4 4 6 6 6 7 7 7 7 7 7 9

30th 4 4 4 4 4 4 4 4 6 6 6 6 7 7 7

40th 3 3 4 4 4 4 4 4 4 4 4 4 4 6 6

50th 1 3 3 3 3 3 3 4 4 4 4 4 4 4 4

60th 1 1 1 1 1 3 3 3 3 3 3 3 4 4 4

70th 1 1 1 1 1 1 1 1 1 1 3 3 3 3 3

75th 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3

80th 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

85th 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

90th 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

95th 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

97.7th 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
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DEMAND (Fetal Head Circumference, in Percentile)

2.3rd 5th 10th 20th 25th 30th 40th 50th 60th 70th 75th 80th 90th 95th 97.7th

2.3rd 118 124 133 148 151 157 166 175 184 196 205 211 235 262 289

5th 82 88 94 103 106 109 115 121 124 133 136 142 154 166 181

10th 61 64 67 73 76 76 82 85 88 91 94 97 106 112 121

15th 49 52 55 58 61 61 64 67 70 73 76 79 82 88 94

20th 40 43 46 49 52 52 55 58 61 61 64 67 70 76 79

25th 37 37 40 43 46 46 49 49 52 55 55 58 61 67 70

30th 31 34 34 37 40 40 43 43 46 49 49 49 55 58 61

40th 25 25 28 31 31 31 34 34 37 37 40 40 43 46 49

50th 19 22 22 25 25 25 28 28 31 31 31 34 37 37 40

60th 16 16 19 19 19 22 22 22 25 25 25 28 28 31 34

70th 13 13 13 16 16 16 19 19 19 19 22 22 22 25 28

75th 10 10 13 13 13 13 16 16 16 19 19 19 19 22 22

80th 7 10 10 10 13 13 13 13 16 16 16 16 19 19 22

85th 7 7 7 10 10 10 10 10 13 13 13 13 16 16 16

90th 4 4 7 7 7 7 7 10 10 10 10 10 13 13 13

95th 1 4 4 4 4 4 4 7 7 7 7 7 7 10 10

97.7th 1 1 1 1 3 4 4 4 4 4 4 4 4 7 7

DEMAND (Fetal Head Circumference, in Percentile)
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m
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tile)

2.3rd 5th 10th 20th 25th 30th 40th 50th 60th 70th 75th 80th 90th 95th 97.7th

2.3rd 1342 1423 1525 1651 *** *** *** *** *** *** *** *** *** *** ***

5th 970 1027 1096 1183 1216 1252 1312 1375 1429 1498 1543 1588 *** *** ***

10th 697 739 787 850 871 898 937 982 1018 1066 1096 1126 1210 1291 1378

15th 559 592 634 682 703 721 757 790 820 856 880 904 970 1033 1099

20th 472 502 538 580 595 613 643 673 697 727 748 769 826 877 931

25th 409 436 466 505 520 535 559 586 607 637 655 670 721 766 814

30th 352 376 406 439 451 466 487 511 532 556 571 586 631 670 712

40th 274 292 316 346 355 367 385 406 421 442 454 466 502 535 568

50th 211 229 250 274 283 292 307 325 340 355 367 376 406 433 463

60th 160 175 193 214 223 229 244 259 271 286 295 304 328 352 376

70th 118 130 145 160 169 175 187 199 208 220 229 235 259 277 298

75th 94 106 118 133 142 148 157 169 178 190 196 202 223 241 259

80th 76 85 97 112 118 121 133 142 151 160 166 172 190 205 223

85th 55 64 73 85 91 97 106 115 121 130 136 142 157 172 187

90th 34 40 49 61 64 67 76 82 88 97 100 106 118 133 145

95th 13 19 22 31 34 37 40 46 52 58 61 64 76 85 94

97.7th 4 4 7 13 13 16 19 22 28 31 34 37 43 52 61

DEMAND (Fetal Head Circumference, in Percentile)
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4.4.3 Predicted Levator Tears 

A gradual increase was found in the levator state parameter, used in determining predicted 

tears, for increasing values of τ2. This was enough to change whether the 2.7 MPa predicted 

tear threshold was met for some patients, such as the 20th percentile maternal capacity-to-50th 

percentile fetal head demand case (Figure 4.6).  Therefore, we also rejected the null hypothesis 

that variation in τ2 does not affect levator ani tear risk.  

Across all maternal capacity and fetal head demand pairings, we demonstrated that for 27 

seconds, 550 seconds, and 11,000 seconds τ2 values, predicted PVM tear rates were 27%, 30%, 

and 32%, respectively.  This relatively narrow variation, represented by dashed lines added to 

the median table of Figure 4.7, serves as a confidence interval guide when using this table to 

evaluate the PVM tear risk of a mother for whom viscoelastic properties are unknown. 

 
Figure 4.6 - The predicted values of the levator state parameter for the range of τ2 values 
observed.  Results are for simulations for a single 20th percentile maternal capacity and 50th 
percentile fetal demand pairing. The threshold for predicted injury (2.7 MPa) is shown as the 
red line. 
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.05 τ2Table: 

 
Median τ2Table: 

 
20 τ2Table: 

 
Figure 4.7 - Predicted levator state parameter across the full range of pairings of maternal 
capacity-to-fetal head demand are shown for τ2 values of 27 seconds (Top), 550 seconds 
(Middle), and 11,000 seconds (bottom).  The intensity of the (red) shading indicates the extent 
by which the predicted injury threshold of 2.7 MPa (levator state parameter of 1) is exceeded. 
In the median table, the predicted tear cutoffs for each of the other two tables are marked by 
dashed lines. 

2.3rd 5th 10th 20th 25th 30th 40th 50th 60th 70th 75th 80th 90th 95th 97.7th

2.3rd 0.8 1.1 0.9 1.5 1.1 1.9 1.7 1.7 2.0 1.7 2.3 2.7 *** *** ***

5th 0.8 0.9 1.2 1.2 1.1 1.5 1.4 1.6 1.4 1.9 1.6 1.9 1.8 2.4 2.8

10th 0.8 0.6 0.8 0.8 1.0 1.2 1.3 1.2 1.3 1.4 1.6 1.6 1.3 1.2 2.1

15th 0.6 0.5 0.7 0.9 1.0 0.6 0.9 1.0 1.1 1.0 1.3 1.4 1.3 1.1 1.9

20th 0.5 0.6 0.6 0.7 0.6 0.7 0.9 1.0 1.1 0.7 1.0 1.1 1.2 1.4 1.7

25th 0.6 0.6 0.5 0.7 0.7 0.6 0.8 0.6 0.7 0.9 1.1 1.2 1.2 1.2 1.4

30th 0.4 0.5 0.6 0.7 0.4 0.5 0.7 0.8 0.6 0.8 0.9 0.7 1.0 1.3 1.4

40th 0.4 0.4 0.3 0.5 0.5 0.6 0.7 0.8 0.8 0.8 0.5 0.6 0.9 0.8 1.1

50th 0.3 0.2 0.4 0.5 0.5 0.5 0.4 0.4 0.5 0.6 0.7 0.7 0.9 1.0 0.7

60th 0.2 0.3 0.4 0.4 0.4 0.3 0.4 0.5 0.5 0.6 0.6 0.6 0.5 0.7 0.9

70th 0.3 0.3 0.2 0.3 0.3 0.4 0.4 0.4 0.5 0.5 0.3 0.4 0.6 0.6 0.7

75th 0.3 0.3 0.3 0.3 0.2 0.2 0.3 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.6

80th 0.2 0.3 0.3 0.3 0.4 0.4 0.4 0.3 0.3 0.3 0.4 0.4 0.5 0.6 0.5

85th 0.2 0.2 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.4 0.3 0.4 0.5 0.5

90th 0.1 0.2 0.2 0.2 0.3 0.3 -0.1 0.3 0.4 0.4 0.4 0.4 0.5 0.5 0.3

95th 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.4 0.4 0.5

97.7th 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.3 0.3 0.3

DEMAND (Fetal Head Circumference, in Percentile)
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2.3rd 5th 10th 20th 25th 30th 40th 50th 60th 70th 75th 80th 90th 95th 97.7th

2.3rd 1.2 1.4 1.6 1.6 1.9 1.9 2.1 2.2 2.4 2.5 2.5 2.8 3.1 3.2 3.7

5th 1.1 1.1 1.3 1.3 1.4 1.5 1.5 1.6 1.9 1.8 2.0 1.9 2.3 2.6 2.7

10th 0.7 0.8 1.0 1.1 1.0 1.2 1.1 1.3 1.4 1.6 1.6 1.7 1.7 2.1 2.2

15th 0.7 0.7 0.8 1.0 0.9 1.0 1.1 1.2 1.3 1.4 1.3 1.3 1.6 1.8 2.0

20th 0.7 0.7 0.8 0.9 0.8 0.9 1.0 1.0 1.0 1.2 1.2 1.2 1.5 1.5 1.7

25th 0.5 0.6 0.7 0.8 0.7 0.8 0.8 1.0 1.0 1.1 1.2 1.1 1.3 1.3 1.5

30th 0.5 0.5 0.6 0.7 0.7 0.8 0.8 0.9 0.9 0.9 1.0 1.1 1.1 1.3 1.4

40th 0.4 0.5 0.5 0.6 0.6 0.7 0.7 0.8 0.8 0.8 0.9 0.9 1.0 1.1 1.2

50th 0.4 0.4 0.5 0.5 0.6 0.6 0.6 0.7 0.6 0.8 0.8 0.8 0.8 1.0 1.1

60th 0.3 0.4 0.4 0.5 0.5 0.5 0.5 0.6 0.6 0.7 0.7 0.7 0.8 0.8 0.9

70th 0.3 0.3 0.4 0.4 0.4 0.4 0.4 0.5 0.5 0.6 0.5 0.6 0.7 0.7 0.7

75th 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.6 0.6 0.7 0.8

80th 0.3 0.2 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.6 0.6

85th 0.2 0.2 0.3 0.3 0.3 0.3 0.4 0.3 0.4 0.4 0.5 0.5 0.5 0.6 0.6

90th 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.5 0.6

95th 0.1 0.1 0.2 0.2 0.2 0.2 0.3 0.2 0.3 0.3 0.3 0.4 0.4 0.4 0.5

97.7th 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.4

DEMAND (Fetal Head Circumference, in Percentile)
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2.3rd 5th 10th 20th 25th 30th 40th 50th 60th 70th 75th 80th 90th 95th 97.7th

2.3rd 1.3 1.5 1.6 1.8 *** *** *** *** *** *** *** *** *** *** ***

5th 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.1 *** *** ***

10th 0.9 0.9 1.0 1.1 1.2 1.2 1.3 1.4 1.5 1.6 1.7 1.7 1.9 2.1 2.3

15th 0.7 0.8 0.9 1.0 1.0 1.1 1.1 1.2 1.3 1.4 1.4 1.5 1.6 1.8 2.0

20th 0.7 0.7 0.8 0.9 0.9 1.0 1.0 1.1 1.2 1.2 1.3 1.3 1.5 1.6 1.8

25th 0.6 0.7 0.7 0.8 0.8 0.9 0.9 1.0 1.0 1.1 1.2 1.2 1.4 1.5 1.6

30th 0.5 0.6 0.7 0.7 0.8 0.8 0.9 0.9 1.0 1.0 1.1 1.1 1.2 1.4 1.5

40th 0.5 0.5 0.6 0.6 0.7 0.7 0.7 0.8 0.8 0.9 0.9 0.9 1.1 1.2 1.3

50th 0.4 0.4 0.5 0.6 0.6 0.6 0.6 0.7 0.7 0.8 0.8 0.8 0.9 1.0 1.1

60th 0.4 0.4 0.4 0.5 0.5 0.5 0.1 0.6 0.6 0.7 0.7 0.7 0.8 0.9 1.0

70th 0.3 0.3 0.4 0.4 0.4 0.5 0.5 0.5 0.6 0.6 0.6 0.6 0.7 0.8 0.9

75th 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.5 0.5 0.5 0.6 0.6 0.7 0.7 0.8

80th 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.6 0.7 0.7

85th 0.2 0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.5 0.5 0.5 0.6 0.6 0.7

90th 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.4 0.5 0.5 0.6

95th 0.2 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.5

97.7th 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.4 0.4

DEMAND (Fetal Head Circumference, in Percentile)
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4.5 Discussion: 

The most surprising new finding was the range in maternal τ2 values that spanned from 20-fold 

above to 20-fold below the median value, a 400-fold difference.  This is remarkable considering 

that other conventional biometric measurements of human adults, such as height or blood 

pressure, vary by a maximum of only two-fold across the population.  

A second new finding, related to the first, is that the predicted length of the active second stage 

ranged from a few minutes to tens of hours depending on the τ2 value. This high end of this 

wide range in values is clinically important because long labors are linked to birth complications 

such as low Apgar scores, low umbilical artery pH, higher rates of resuscitation and ICU 

admission, higher rates of hypoxic-ischemia encephalopathy, cesarean procedures for non-

reassuring fetal heart tones, as well as maternal risk for chorioamnionitis and post-partum 

hemorrhage [23] [24] [25] [26] [27]. These predicted data may be compared to the results of 

large clinical studies on the length of the second stage. It is a strength that our results compare 

favorably with clinical results in that 61% of all active second stage simulations were predicted 

to take less than 1 hour: for example, a study of 21,991 nulliparous subjects, found that 62% of 

second stages lasted less than 1 hour [24].  However, for the median τ2 case, this predicted 

value was 74%. It should be noted that our simulations did not take into account complicating 

factors, such as poor maternal effort during the pushing phase, or occiput-posterior fetal head 

orientation, which can increase the length of the second stage by an average of 45 minutes in 

nulliparous women with epidurals [23]. 
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It is of clinical interest that women who will experience an active second stage of more than 3 

hours can be identified, at least theoretically. For example, using the Materna distension device 

to dilate the birth canal prior to delivery, it is possible to make two measurements: one at five 

minutes and one at 20 minutes into device use.  Then one can use the increase in distension 

between these two time points to estimate τ2 values (Figure 4.8).  Using this method, it can be 

seen that individuals with τ2 values exceeding 1000 seconds, when the length of active second 

stage begins to rapidly increase (Figure 4.4), correlate to distension increases of less than 10 

mm during this time range. 

 
Figure 4.8 - Increases in distension between 5 and 20 minute time points during the Materna 
distension device use are plotted against τ2 values on a logarithmic scale. Data are correlated 
with an R2 value of 0.59. 

 

Clinically, if one had knowledge of an impending lengthy active second stage, one could 

intervene to help alleviate fetal distress. However, when considering Figure 4.5 and Figure 4.7, 

there are certain scenarios when a woman may experience a very long second stage of labor 
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while not being at risk for a levator tear, such as a pairing at the 20th percentile for both 

maternal capacity and fetal head demand, for example.  In cases such as these, interventions 

such as forceps instrumentation, chosen due to the anticipated long length of labor, could 

result in a levator tear in a mother that was not previously at risk. 

Examples of tools that could be developed to guide clinical decisions when the maternal 

capacity and fetal head demand are made available from ultrasound measurements are shown 

in Figure 4.5 and Figure 4.7.  While the tables in Figure 4.5 do require knowledge of a particular 

women’s τ2 range, which here was not quantified until the first stage of labor, the narrow 

variation in PVM tear risk with τ2 suggests that Figure 4.7, once validated with more clinical 

information, could actually be employed with reasonable confidence regardless of knowledge 

of a mother’s τ2 range.  Specifically, one can evaluate the effect of this variation in τ2 values on 

predicted levator tears from the “confidence intervals” added to the median table in Figure 4.7; 

so this figure could now be used to evaluate the PVM tear risk in a mother for whom 

viscoelastic properties are unknown.  However, it is noteworthy that effect of τ2 on predicted 

PVM tear risk was considerably smaller than the predicted effects on the length of active 

second stage that we shall discuss next. 

A third new finding is that the broad range in maternal τ2 values found in the first part of this 

paper did not directly affect the risk of a PVM tear as much as one might have thought.  Instead 

it is the geometric lack of a fit between fetal head and maternal capacity that is the important 

factor [6], and τ2 is able to change this risk in only 5% of maternal capacity – to – fetal head 

demand pairings.  
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A limitation of our birth simulations is that the birth canal stress values peak depending on 

when, during the contraction, the birth occurred. For instance, if a mother is near to delivery at 

the end of a contraction and succeeds in pushing the head out, the stress in the birth canal at 

birth will be higher than if her tissue can relax until the beginning of the next contraction. The 

effects of this can be seen in the top table of Figure 4.7, where births are very short and the 

role of this phenomenon is non-negligible.  As the length of active second stage increases, the 

total amount of time available for tissue relaxation increases, and the effect of adding an 

additional contraction for relaxation becomes marginal. 

A second limitation is that we assumed, for simplicity, that the fetal head had already molded 

fully; the reason for this was that, to our knowledge, there are no data on the time-dependent 

molding behavior of the fetal head. In effect, therefore, any viscoelastic behavior of the head 

during the second stage beyond the 10% molding we had assumed would tend to shorten the 

delivery times predicted in this paper; likewise, it would also decrease the value of the levator 

state parameter for the tissue comprising the birth canal, thereby reducing the risk for a tear. 

Since we did not include fetal head viscoelastic behavior, our current predictions are therefore 

conservative in terms of the predicted length of second stage and tear risk for fetal heads 

exceeding maternal capacity [6]. For the cases when the fetal head is smaller than the maternal 

birth canal then the risk for a tear from delivering the head is, of course, negligible.  

A third limitation is that we have considered the PVM as the structure that defines the smallest 

circumference of the birth canal, namely the urogenital hiatus in this model. While it is possible 

that the iliococcygeal muscle and the puborectal muscle could tear, our previous studies 
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suggest that this is unlikely because the stretch in those structures is considerably less than the 

PVM towards the end of the second stage [5] [4] [6]. 

In this study, we chose to use the product of stress times strain as the criterion for injury. Some 

previous models of soft tissue injury have selected purely strain-based criteria [28]. However, 

we note that literature values for soft tissue failure do show a dependence on both stress and 

strain [19] [20] [21] [22], hence our choice of failure criterion seems reasonable.  

Lastly, the viscoelastic properties of the birth canal were measured on fewer than 30 women.  It 

is possible that an even wider range of maternal tissue behaviors might be found in a larger 

sample size.  So, in that respect, our predictions are conservative for the cases in which the 

fetal head size exceeds the maternal capacity. Additionally, the Materna data were only 

recorded during the first stage of labor. We cannot rule out possible hormonal effects 

continuing to ripen tissue properties in the second stage, when the tissues are placed under 

stretch. As there is, to our knowledge, no data available on this topic we simply are not able to 

account for or assess the likelihood of such effects. If further hormonal ripening does occur 

during the second stage, tissue stresses may reduce even further than those predicted. It is 

therefore possible that we are overestimating the risk for a tear if such late changes do in fact 

occur.  That brings up the question: how accurate are our predictions of PVM tears?  

To address the accuracy of our predicted tear rates, let us compare our models to the 

approximately 15% PVM tear rates observed clinically. In the present paper we demonstrate 

that, for a 50th percentile fetal head and the median τ2 value, mothers larger than the 20th 

percentile are predicted to deliver without PVM tear. Taking into account the variation in τ2 
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values, this cutoff ranges from the 15th to 25th percentile mother which is close to that observed 

clinically.  However, the clinical data do not include women who are unable to deliver without 

cesarean section, who represent the upper right portion of the tables in Figure 4.7, and who are 

predicted to experience tears if they were able to deliver vaginally.  So, the present predictions 

appear to be reasonable and not overly conservative.   
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5.1 Abstract 

The goal of this study was to test the hypothesis that the biomechanical model developed in 

Chapters 3 and 4 can be used to predict (a) the duration of the second stage of labor and (b) the 

risk of PVM tear. We conducted a secondary analysis of antenatal ultrasound measurements 

and post-delivery PVM tear scores from a cohort of 21 nullipara who underwent a Phase I 

clinical trial of the Materna lower birth canal distension device during the first stage of labor. 

The results show that the biomechanical model was able to predict up to 55% of the variation in 

the duration of the second stage of labor for the median age group (29 – 31 years-old), which 

contained 11 of the 21 women, and 23% of the variation in the second stage for all age groups. 

The model was also able to predict one of the two major PVM tears, but not the minor PVM 

tear. The two false negatives were significantly older than the rest of the cohort (p < 0.001) and 

were not at risk anatomically, suggesting that older maternal age may have lowered the 
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threshold for tissue failure. There were also six false positives, which had significantly longer 

second stages than the rest of the cohort (p = 0.02). This suggests that this biomechanical 

analysis was able to predict the difficulty of labor, but that this difficulty did not directly 

correspond to PVM injury.   

5.2 Introduction 

During labor, the birth canal undergoes remarkable deformation, typically increasing its 

circumferential length up to three-fold [1] [2] [3].  Due to this distension, the pubovisceral 

muscle (PVM) tears in approximately 13% of vaginal deliveries [4]. These tears have been linked 

to the development of pelvic organ prolapse later in life in some individuals [5] [6] [7], a 

disorder for which 10% of all US women eventually require corrective surgery [5] [8].  

Due to a fear of such complications, some women choose to undergo elective cesarean section, 

which carries its own immediate and delayed risks [9] [10]. Our goal is to help provide the 

framework necessary to evaluate an individual’s risk of experiencing a PVM tear, so that the 

prevalence of these unnecessary C-sections can be reduced and so that the mothers who are at 

risk can have the opportunity to evaluate the delivery options. 

Toward this goal, we first developed a biomechanical model addressing the fit between the 

fetal head diameter and the geometric capacity of the lower maternal birth canal (Chapter 2).  

While it provided the useful insight that 75% of women are not at risk for pubovisceral muscle 

injury, the model was limited by being simplified to the point that it assumed purely elastic 

maternal tissue behavior.  However, for decades clinicians have intuitively recognized 

viscoelastic behavior in the tissue comprising the lower birth canal, even if they have not 
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quantified it.  We became aware of the opportunity to quantify it using data from a Phase 1 

clinical trial at the Baylor College of Medicine.  In this trial we learned that the mechanical 

distention of the lower birth canal had been accomplished in nullipara during the first stage of 

their labor using a constant distention force applied by the Materna device (Materna Medical, 

LLC, San Francisco, CA), while the increase in lower birth canal diameter had been recorded 

over time.  Knowing the relationship between the applied force and the tissue distention 

provided the unique opportunity to use mathematical modeling to quantify the viscoelastic 

behavior of the lower birth canal during labor. Then, using that mathematical representation, 

we could improve the biofidelity of the Chapter 2 model by incorporating viscoelastic behavior 

(Chapter 3).  The result was the set of predictions in Chapter 4 concerning the duration of the 

second stage of labor and PVM tear risk based on subpubic arch angle, PVM sling length, and 

fetal head circumference [11].  Moreover, that same clinical trial at Baylor also offered the 

opportunity to check the sensitivity and specificity of the Chapter 4 predictions of both second 

stage labor duration and PVM injury risk in a small cohort of about 20 women.  This opportunity 

arose because ultrasound images had been taken of the pre- and post-delivery pelvic floor, and 

MRI had also been taken of the post-delivery pelvic floor to check for PVM injury.  In this 

Chapter, we use the clinical data kindly provided to us by colleagues at Baylor College of 

Medicine on second stage of labor duration, subpubic arch angle, fetal head circumference at 

birth, pre-delivery levator hiatus circumference (as a proxy for the urogenital hiatus), and post-

delivery PVM tear status to test the hypothesis that a biomechanical model can be used to 

predict (a) the duration of the second stage of labor, and (b) the risk of PVM tear.  If such a 
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biomechanical model has veracity it might have considerable utility in the clinical setting when 

discussing with pregnant women in their third trimester about their delivery options. 

5.3 Methods 

Maternal capacity was calculated based on the Tracy et al. (2016) geometric model [11]. Stress–

strain relationships in the lower birth canal were assumed to be governed by the quasi-linear 

visco-elastic (QLV) constitutive model (Chapter 3). Birth simulations were run for all subject 

pairings of fetal head circumference, subpubic arch angle, and PVM sling length. PVM sling 

length was estimated as 70% of the levator hiatus perimeter, based on optimization such that 

the shortest simulation required at least two contractions, at which point the longest 

simulations were exceeding 100 minutes for the duration of the active second stage.  

PVM strain, εPVM, was assumed to be related to general birth canal strain, εBC, based on the 

ratio between their initial circumferential lengths, lPVM and lBC respectively [11]. 

𝜀𝑃𝑉𝑀 =
𝑙𝐵𝐶

𝑙𝑃𝑉𝑀

(𝜀𝐵𝐶 + 1) − 1 

It was also estimated based on image analysis (Chapter 3) that 83% of the total force as applied 

by the Materna birth canal distension device was resisted as a tensile load in the PVM. 

In the modified Tracy et al. (2016) model, simulations of vaginal birth during the second stage 

were driven by intrauterine pressure as an input, as measured in previous experiments: this 

included a 2.6 kPa basal intrauterine pressure, an 8.5 kPa rise during contractions, and an 

additional 10.5 kPa rise during each volitional push [12]. Contractions and pushes were each 

modeled as the first half of one period of a cosine wave. Specifically, uterine contractions were 
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assumed to last for 90 seconds, followed by 90 second rest; three volitional 10 second maternal 

“pushes” to drive the fetal head through the lower birth canal were assumed per uterine 

contraction, each being followed by 10 seconds of rest [13] [14] [12]. 

Intrauterine pressure was assumed to be related to circumferential stress in the PVM U-shaped 

sling, based on the following calculations (Figure 5.1): 

𝑇 = 𝑡𝑒𝑛𝑠𝑖𝑜𝑛 𝑖𝑛 𝑃𝑉𝑀 

�̃� =
𝑇

2𝜋𝑟
= 𝑇𝑒𝑛𝑠𝑖𝑜𝑛/𝑙𝑒𝑛𝑔𝑡ℎ 

Balancing “Vertical” Forces:      �̃�2𝜋𝑟 ∗

𝑠𝑖𝑛(𝛼) = 𝑃𝑎𝑏𝜋 ∗ 𝑟ℎ
2 

�̃� =
𝑃𝑎𝑏 ∗ 𝑟ℎ

2

2𝑟 ∗ 𝑠𝑖𝑛(𝛼)
 

Balancing “Horizontal” Forces:     𝜎𝑃𝑉𝑀2 ∗

𝐴𝑃𝑉𝑀 = �̃�2𝑟 ∗ cos(𝛼) 

𝜎𝑃𝑉𝑀 =
�̃� ∗ 2𝑟 ∗ cos(𝛼)

2𝐴𝑃𝑉𝑀
=

𝑃𝑎𝑏𝑟ℎ
2

2𝐴𝑃𝑉𝑀 tan(𝛼)
 

Figure 5.1 - Intrauterine pressure (Piu, blue arrow) creates a force distributed over the area 
(blue line – normal to uterine pressure) presented by fetal head (grey circle). The tension (T) in 
the PVM (dark blue band low on head) was related to intrauterine pressure using the radius of 
the fetal head (light blue lines) and the angle between the midline of the fetal head and the 
contact point of the PVM on the fetal head (alpha). 

 

Piu 

α 
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Based on image analysis of the non-uniformity of the newborn fetal head, a maximum alpha 

value of 0.68 radians was assumed. 

Based on assumptions in Chapter 4, PVM injury was assumed to occur if the product of PVM 

stress and strain exceeded the value of 3.2 MPa. This soft tissue injury criterion was based on 

the literature available for ligament [15] [16] [17], however the exact value of 3.2 MPa was 

increased from the original value of 2.7 MPa observed for the ultimate failure of pregnant ovine 

tissue estimated graphically from [18] because the original value resulted in half of the cohort 

being predicted for injury, and a distinct drop off in predicted tears was observed between 2.7 

MPa and 3.2 MPa. 

Blinded model predictions of the second stage of labor and PVM injury were sent to a 

statistician to calculate the sensitivity and specificity of PVM injury predictions. 

Duration of second stage analysis was done in Microsoft Excel, using linear regression to 

calculate R2 values. 

5.4 Results 

The duration of second stage was inversely correlated with our capacity-demand based 

predictions (Figure 5.2). In this cohort, the mean duration of labor was 60 (± 34) minutes. The 

false positives, or mothers who were predicted to experience a PVM tear, but who did not 

reveal a tear upon ultrasound examination, had significantly longer second stages than the rest 

of the cohort (p = 0.02) (88 ± 36 vs. 48 ±27 minutes). The geometric capacity – demand ratio, g, 

predict 55% of the variation in the duration of the second stage for the median maternal age 

group (Figure 5.2), based on linear regression with a slope of -290 minutes/unit of capacity 
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demand ratio and a y-intercept of 390 minutes. Therefore, it was possible to predict a 

significant portion of variation in the duration of the second stage of labor. 

 

 
Figure 5.2 – Duration of the second stage plotted against the Capacity-Demand Ratio, g, and 
partitioned by maternal age group. Note that in this and the next figure these model 
predictions were based on maternal capacity being derived on the levator hiatus 
measurements. The R2 values are 0.22 (y = -140x + 220) and 0.55 (y = -290x + 390) for the entire 
cohort and the median age group (blue diamonds) respectively. 
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Figure 5.3 – Biomechanical model-predicted duration of active second stage plotted against 
actual duration of the second stage partitioned by maternal age group. The R2 values are 0.23 (y 
= 0.48x + 15) and 0.44 (y = 0.64x + 12) for the entire cohort and for the median age group 
respectively.   

There were three PVM tears observed, two of which were major, and one of which was “very 

minor” (Table 5.1 and Table 5.2).  

  

Observed   

Yes  No Total 

P
re

d
ic

te
d

 

Yes 1 6 7 

No  2 12 14 

Total 3 18 21 

Table 5.1 –Predicted and observed PVM injuries, including minor tears, based on levator hiatus 
measurements.  Note that in this and the following Tables 5.2-3 the biomechanical model 
predictions are based on MR measurements of the levator hiatus. . 

  

Observed   

Yes  No Total 

P
re

d
ic

te
d

 

Yes 1 6 7 

No  1 13 14 

Total 2 19 21 

Table 5.2 –Predicted and observed PVM injuries, only including major tears, based on maternal 
levator hiatus measurements. 
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  All Major 

Sensitivity 33% 50% 

Specificity 67% 68% 

Table 5.3 – Sensitivity (true positive) and specificity (true negative) values for the 
biomechanical model ability to predict all tears (left) and major tears (right) of the PVM using 
the model based on maternal levator hiatus measurements. 

 

5.5 Discussion 

Prediction of Duration of the Second Stage of Labor 

A novel finding was that the biomechanical model was able to predict more than half of the 

variance in the duration of the second stage of labor in the median maternal age group. For the 

median maternal age range of 29 – 31 years-old, which included 10 out of 21 subjects, the 

duration of the second stage correlated with our predicted second stage duration with R2 = .44, 

and with our capacity-demand ratio with R2 = .55 (Figure 5.3 and Figure 5.2). This is a 

remarkable finding given the biological complexity of the second stage of labor and it confirms 

that mechanical principles and lower birth canal viscoelastic behavior play an important, and 

previously unquantified, role in this process. The model was successfully able to predict that an 

increase in the duration of the second stage was associated with more difficult deliveries 

associated with greater-than-normal loading of lower birth canal tissues.  The question is, why 

did this increase in loading not result in the PVM tears that would be anticipated for such 

conditions? 
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Biomechanical Model Prediction of PVM Tear  

The biomechanical model did predict one of the three tears, namely one of the two major 

tears.  For comparison, when considering the ratio of fetal head circumference to levator hiatus 

circumference, which has recently been reported to correlate to PVM tears [19], all three of 

these tears would have been missed, as the three subjects had lower values of this ratio 

(unlikely to experience injury) than over half of the cohort.  The two false-negative tear 

predictions occurred in women who were significantly older than the others (p<0.001) and had 

no geometrical indications for risk (both had larger-than-average levator hiatus, smaller-than-

average fetal head circumference, and average or wider subpubic arch angles).  The woman 

with the minor tear had a second stage duration of 33 minutes, the woman with the major tear 

who was not detected had a second stage of 66 minutes; neither of these lay markedly outside 

the normal range.  Therefore, it appears that these mothers were not subjected to greater 

loading of the lower birth canal, but rather, their proximal PVM tissue tore at a lower injury 

threshold than expected.  This suggests that these older mothers appear to have had a lower 

PVM tear threshold than the others in the cohort.  This is consistent with studies showing a 48% 

decrease in the product of stress*strain at failure for aortic tissue between the ages of 20 and 

35 years (Table 5.4), which has similar composition to the PVM [20, 21].  The effect of older 

maternal age on increasing PVM injury risk is well known clinically.  For example, odds ratios for 

PVM injuries of 1.08/year of maternal age have been reported [22, 23, 24, 25, 26, 27]. Our 

results, while based on a small sample, do suggest that increasing maternal age does decrease 

the threshold for PVM injury. 
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 Failure Stress Failure Strain Failure Stress*Strain 

Decrease from 20 to 35 years 30% 26% 48% 

Decrease from 20 to 45 years 49% 43% 71% 

Table 5.4 – Decrease in stress, strain, and the product of stress*strain at failure in human aortic 
tissue between the ages of 20, 35, and 45 years [20]. 

 

Most of our predicted tears were false positives. Using our initial injury threshold of 2.7 MPa, 

there were ten false positives, of which, four were close to a levator state parameter of 1. 

There was a distinct jump between these four, and the other six (levator state parameters of 

1.5 – 2.2). With an adjusted injury threshold of 3.2 MPa, there were six false positives. The true 

positive lay in the middle of these in levator state parameter value, and they were all grouped 

fairly closely with values from 1.3 to 1.8 in levator state parameter value (adjusted for 3.2 MPa 

injury criteria).  These false positives had significantly longer second stages than the rest of the 

cohort (p = 0.02; 88 ± 36 vs 48 ±27 minutes). When all 10 false original false positives were 

included, this difference was still significant at p = 0.03 (75 ± 40 vs 46 ± 22 minutes). This 

suggests that though PVM tears were not observed, deliveries with a low capacity-demand 

ratio were still difficult, resulting in high loading of the PVM and lower birth canal tissues. 

That we are able to predict difficulty of labor (as estimated by the duration of the second 

stage), but not reliably predict PVM tear outcome, suggests that further research is needed on 

the injury criteria. That the two false negatives were low in both simulated stress and simulated 

strain, relative to the cohort, suggests that the distinction is not in the nature of the injury 

criteria (stress vs strain vs stress*strain), but rather that the actual threshold for injury may vary 

between individuals.  We surmise that older nullipara may have lower PVM tear thresholds and 

this would be a worthwhile hypothesis to test in the future.  If proven true, this should 
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positively affect how deliveries are handled in older nullipara.  Therefore, a next step should be 

the study of factors affecting variations in injury threshold among mothers. 

In designing a study of the effect of maternal age and other factors on the threshold for injury, 

there are both ethical and sample size limitations to be considered. Though the data provided 

by the pre-distension device has allowed for the first in vivo quantification of the force-

distension response of the lower birth canal, it was of course not ethically possible to test the 

lower birth canal to failure in living women. Therefore it is a limitation that we did not have any 

data on tissue failure thresholds during the distention conducted in the first stage of labor.  

Additionally, excising small PVM tissue samples presents concerns about introducing 

weaknesses to the structure for future deliveries. However, this would not be a concern in 

women not intending to deliver, such as multiparas who have completed their families, or 

nulliparas choosing not to have children. However, the ovine data suggest that both non-

pregnant parous and virgin tissues exhibit much higher tissue resistance than pregnant tissue. 

As a result, it appears that any experiments designed to quantify injury criteria in human tissue 

would need to be limited to pregnant women not planning to deliver vaginally, such as those 

undergoing elective cesarean sections. 

One limitation of the model predictions is that they rely on the Chapter 2 use of the levator 

hiatus perimeter as the basis for PVM sling length measurements to estimate maternal 

capacity. This was because the literature contains many reliable data sets on levator hiatus 

circumference and diameters and it was convenient to use those data.  However, a key Chapter 

2 finding was that it is the PVM and perineal body that form the main geometric constraint on 
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maternal capacity, not the levator hiatus.  This suggests that the better measurement for the 

predictive biomechanical model is the urogenital hiatus perimeter, rather than the levator 

hiatus, because this lies in the plane of the PVM and defines the outlet of the lower birth canal.  

However, the urogenital hiatus circumference or diameters have not traditionally been 

measured in a clinical study.  So, there is a need to develop a standardized reproducible 

measurement protocol to quantify the urogenital hiatus on MR images, as well as particularly 

on ultrasound images.  The latter is important because of its widespread availability in maternal 

fetal medicine and proven safety record with mother and baby.  

Other limitations of these biomechanical model predictions include the fact that the birth canal 

stress values peak depending on when, during the contraction, the birth occurred. For instance, 

if a mother is near to delivery at the end of a contraction and succeeds in pushing the head out, 

the stress in the birth canal at birth will be higher than if her tissue is allowed to relax until the 

beginning of the next contraction. As the length of active second stage increases, the total 

amount of time available for tissue relaxation increases, and the effect of adding an additional 

contraction for relaxation becomes marginal. Therefore, for shorter labors, maximum simulated 

stresses should be adjusted downwards if crowning occurs shortly before the end of a 

contraction. 

A further limitation is that we assumed, for simplicity, that the fetal head had already molded 

fully. Since we did not include fetal head viscoelastic behavior, our current predictions are 

conservative in terms of the predicted length of second stage and tear risk for fetal heads 
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exceeding maternal capacity, as additional dynamic molding would decrease both of these 

variables [11]. Therefore, we believe these duration and injury predictions are conservative. 

5.6 Conclusions 

- A) Results support the hypothesis that a viscoelastic biomechanical model can be used 

to predict the duration of the second stage of labor; this biomechanical model was able 

to predict a significant and preponderant percentage, 55%, of the variance in the 

duration of the second stage of labor in healthy median aged (29 – 31 years-old) 

nullipara.   

- B) The results do not yet support the hypothesis that PVM injuries can be reliably 

predicted, as current predictive methods were only able to predict one of three PVM 

tears in this cohort.  We expect the success rate would be higher had we had time to 

develop and use repeatable measures of urogenital hiatus size, rather than levator 

hiatus size.   

- C) The results suggest older maternal age in these nullipara decreased the threshold for 

PVM injury.  This effect needs to be explored in more depth in the future.  If true, this 

could be incorporated in future models to improve prediction accuracy.  

- D) False positives (predicted injury without actual injury) still had difficult deliveries 

(long second stages), suggesting that their lack of injuries may be due increased tissue 

strength, or an increased injury threshold. 

- E)  This was too small a clinical cohort to reliably test biomechanical model injury 

prediction accuracy because only 10% of these women were injured.  One would ideally 

need an order of magnitude larger cohort for the clinical trial.   
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6.1 Abstract 

Objective: Pubovisceral muscle (PVM) tears increase the life-long risk of pelvic organ prolapse. 

It remains unknown why PVM tear rates are four-times higher in forceps-assisted compared to 

spontaneous vaginal deliveries, or vacuum assisted deliveries.  We hypothesized that, among 

several possible factors, it is the traction force applied to forceps that results in increased PVM 

tears.  

Study design: Using simulations based on constitutive equations previously fit to the term 

pregnant human birth canal, we simulated birth and predicted PVM injury risk by varying, 

traction force applied by forceps or vacuum, space occupied by forceps, timing of forceps 

application, and length of episiotomy in the context of variable maternal capacity, fetal head 

size with molding.  Force estimates used in the simulation were based on traction force 

measurements previously reported for vacuum and forceps instrumentation. 
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Results: Our model predicts a 19% increase in PVM tears for forceps assisted deliveries, when 

compared to spontaneous and vacuum-assisted deliveries; this was due to an increase in 

applied traction force.  Previous analysis suggested that the space occupying nature of forceps 

is responsible for no more than a 2% increase in PVM tears. Additionally, the risk of tear is 

reduced by delaying forceps introduction and by applying partial traction force between 

contractions.  Episiotomy, to a length of at least 1.5 cm reduced the risk of PVM tear. A 50% 

reduction in maternal effort due to epidural usage resulted in an average increase of 12 

minutes in the duration of the active second stage of labor, as well as a 40% reduction in PVM 

tear rates. 

Conclusion: The increase in traction force that can be applied using forceps has a more 

prominent effect of PVM tears than their space occupying nature. Episiotomy may mitigate that 

risk. A reduction in maternal pushing effort estimated for epidural usage increases the duration 

of the second stage of labor, but also decreases predicted PVM tear rates due to increased time 

available for tissue relaxation. 

6.2 Introduction 

During labor, the birth canal undergoes remarkable distension [1, 2, 3]. A tissue of interest 

during this process is the pubovisceral muscle (PVM), a subset of the levator ani muscles that is 

vulnerable to injury during birth. This muscle is attached high on the anterior pelvis, forming 

and U-shaped sling, partially wrapping itself around the bony pelvis.  This partial wrapping of 

the PVM around the bony pelvis reduces its capacity to accommodate a fetal head [4]. As a 

result, the PVM tears in approximately 13% of vaginal deliveries, leading to the later 
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development of pelvic organ prolapse and incontinence, disorders for which 10% of all US 

women eventually require corrective surgery [5, 6, 7, 8, 9]. 

PVM tears occur in over 50% of forceps-assisted deliveries [10, 11, 12, 13, 14, 15]. However, a 

similar trend has not been observed for vacuum assisted deliveries [16, 17, 5]. There are two 

competing hypotheses that might explain why injury rates with forceps-assisted deliveries are 

so high: that tears are due to space around the fetal head that forceps occupy that vacuum 

does not, or that tears are due to the increased traction force applied to forceps above that of a 

vacuum device.  A previous study demonstrated that the space occupied by Simpson forceps 

was found to change the PVM tear injuries by no more than 2% in the population (Figure 6.2) 

[18]. 

 
Figure 6.1 - Fetal head crowning during the second stage of labor.  The pubovisceral muscle 
(red) is attached to the anterior pelvis and must wrap around the fetal head. The current 
perimeter at this level is referred to as the current maternal capacity. Note that the ischium has 
been removed to show the muscles. 
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We hypothesize that it is the traction force applied via forceps that increases PVM tears 

compared to vacuum-assisted deliveries. We are able to test this hypothesis by simulating birth 

using a viscoelastic model of the term pregnant human birth canal (Chapter 3). Using this 

model, we ran simulations for a full spectrum of maternal capacity – to –fetal head demand 

pairings. This allows us to consider the effects of each of these parameters, so that a 

personalized evaluation of a specific patient’s risk for a PVM tear may be evaluated.  Varying 

the traction force applied to the head within values reported in the literature for vacuum and 

forceps use allowed us to examine the role of this applied traction force on predicted PVM tear 

risk and duration of the active second stage of labor.  We additionally sought to assess the role 

of episiotomy in reducing PVM tear risk.   

6.3 Materials and Methods 

Birth Simulations 

Our simulations were based upon the quantification of the relationship between the amount of 

force experienced by the tissue normalized over the tissue cross sectional area (stress) and the 

current length of the tissue relative to its resting length (strain). This stress–strain relationship 

was derived from the clinical trial data for the Materna device, which was designed for the 

purpose of distending the lower birth canal prior to the second stage of labor. Full details on 

how we quantified this relationship using distension and force data acquired with the device 

have already been covered in this thesis (Chapter 3). All simulations were run in MATLAB 
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R2015a with a time step size of 0.1 seconds. This theoretical study was deemed “exempt” by 

the institutional review board. 

Maternal capacity and the U-shaped PVM sling length were calculated from the 2.3rd to the 

97.7th percentile female based on the Tracy et al. (2016) geometric model that considered the 

maternal birth canal capacity to be determined by the subpubic arch angle, PVM origin location, 

and PVM length. Fetal demand was represented by the 2.3rd to the 97.7th percentile fetal head 

with average molding [4]. Birth simulations were run for each maternal capacity – to – fetal 

head demand pairing. 

Simulations of vaginal birth during the second stage were driven by intrauterine pressure as an 

input, as measured in previous experiments: this included a 2.6 kPa basal intrauterine pressure, 

an 8.5 kPa rise during contractions, and an additional 10.5 kPa rise during each volitional push 

[19]. Contractions and pushes were each modeled as the first half of one period of a cosine 

wave. Specifically, contractions were assumed to last for 90 seconds, followed by 90 second 

rest; three 10 second pushes were assumed per contraction with each followed by 10 seconds 

of rest [19, 20, 21]. Forceps traction forces were added to the product of fetal head cross 

sectional area and intrauterine pressure to calculate the net expulsion force on the fetal head.  

Simulations of births were run for maternal birth capacities and fetal head circumferences both 

varying from the 2.3rd to the 97.7th percentile for four values of forceps traction force: 75.6 N – 

representing average vacuum extraction-induced force, 121 N – representing average forceps 

extractions force, 226 N – a previous recommendation for maximum forceps traction, and 240 

N – average senior clinician forceps traction [22, 23, 24]. Each of these forceps traction forces 
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was applied for different degrees of fetal head descent through the birth canal. These 

simulations were performed starting at four levels: the diameter of the birth canal at the level 

of the PVM (Figure 6.1) being 6 cm, 7 cm, 8 cm, and 9 cm.  The nature of our modeling required 

the use of PVM diameter, rather than fetal head descent, or the amount of fetal head visible 

during contractions that are more familiar clinical criteria. Because the PVM diameter is above 

the introitus, these diameters are larger than the diameter of the visible scalp area, as can be 

seen in Figure 6.1.  Additionally, for the application at 6 cm PVM diameter, 240 N traction force 

case, simulations were run for while maintaining partial traction force between contractions of 

0%, 10%, and 50% partial traction force applied between contractions. 

Episiotomy was simulated following the 10th contraction. Episiotomy length, as defined by 

radial length of the incision into the surrounding tissue, was simulated as a 0.5 cm, 1 cm, 1.5 

cm, and 2 cm length. 

Deliveries with epidural use was simulated as a 50% reduction in intrauterine pressure 

produced by maternal effort.  Intrauterine pressure due to uterine contractions, as well as basal 

abdominal pressure remained unchanged.  

Following Tracy et al. (2016) model-predicted Duration of Active Second Stage tables were 

shaded, using a threshold of 3 hours as the minimum for shading.  Three hours was chosen as 

arrest of descent could reasonably be diagnosed at that time [25].   

Likewise, we assessed the likelihood that a PVM tear occurred using the ‘levator state 

parameter’, where a value greater than 1 indicates that the threshold for injury has been 

exceeded.  This parameter is based on the product of stress multiplied by strain as the best 
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criterion for injury.  This criterion is based on data concerning vaginal tissue and ligamentous 

injury, while the exact value of 2.7 MPa, as the threshold for injury, was based on the measured 

conditions for the ultimate failure of pregnant ovine tissue estimated graphically [26, 27, 28, 29, 

30, 31, 32]. Red shading in the figures indicates the extent by which this injury threshold has 

been exceeded. This analysis was performed using Microsoft Excel. 

6.4 Results 

6.4.1 Forceps 

The space occupied by forceps, when assuming the forceps do not compress the fetal head, 

results in a 1.7% increase in predicted PVM tear rates (Figure 6.2) [18]. 

In simulations, higher forceps traction force produces a higher likelihood of PVM tear, as 

indicated by higher levator state parameter values in Figure 6.3 (lower left).  Here, and 

throughout this work, the levator state parameter indicates the extent by which the threshold 

for injury is predicted to be exceeded, with values greater than 1 corresponding to predicted 

tear occurrence. For example, when no instrumentation is used in a birth involving a 50th 

percentile fetal head (Figure 6.4, upper panel, center column), a 50th percentile mother, with a 

levator state parameter of 0.7 (below 1) is unlikely to experience a PVM tear, while a 5th 

percentile mother, with a levator state parameter of 1.6 (above 1) is particularly likely to 

experience a PVM tear.  For the case of the 20th percentile mother, where the levator state 

parameter is equal to 1, the mother is on the border-line for injury occurrence. 
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Original (No Forceps) 

 
Forceps (no indentation of the fetal head) 

 
Figure 6.2 - Inserted forceps shown in lateral (upper left) and in cross section indicated by a line 
in the left figure (upper right, forceps blades represented as black hemi-spheres) views.  
Geometric Maternal Capacity – to – Fetal Head Demand ratio is shown for no forceps (middle) 
and forceps with rigid fetal head case (lower). Because maternal capacity must exceed fetal 
demand for a safe delivery to be predicted, a value of this ratio below 1 indicates a predicted 
PVM tear. The intensity of the (red) shading indicates the extent by which the predicted injury 
threshold is exceeded. These figures have been presented previously [18]. The upper left figure 
is reproduced with permission from Elsevier [33]. 

10 20 30 40 50 60 70 80 90

10 0.87 0.86 0.85 0.84 0.83 0.82 0.81 0.80 0.79

20 1.00 0.98 0.97 0.96 0.95 0.94 0.93 0.92 0.90

30 1.09 1.07 1.06 1.04 1.03 1.02 1.01 1.00 0.99

40 1.16 1.14 1.13 1.11 1.10 1.09 1.08 1.07 1.05

50 1.23 1.21 1.19 1.18 1.17 1.15 1.14 1.13 1.11

60 1.29 1.27 1.25 1.24 1.23 1.22 1.20 1.19 1.17

70 1.36 1.33 1.32 1.30 1.29 1.28 1.27 1.25 1.23

80 1.44 1.41 1.39 1.38 1.37 1.35 1.34 1.32 1.30

90 1.54 1.51 1.49 1.48 1.46 1.45 1.43 1.42 1.39
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DEMAND (Fetal Head Circumference, in Percentile)

10 20 30 40 50 60 70 80 90

10 0.86 0.84 0.83 0.82 0.82 0.81 0.80 0.79 0.78

20 0.98 0.97 0.95 0.94 0.93 0.93 0.92 0.90 0.89

30 1.07 1.05 1.04 1.03 1.02 1.01 1.00 0.99 0.97

40 1.14 1.12 1.11 1.10 1.09 1.08 1.06 1.05 1.03

50 1.21 1.19 1.17 1.16 1.15 1.14 1.12 1.11 1.09

60 1.27 1.25 1.23 1.22 1.21 1.20 1.18 1.17 1.15

70 1.34 1.31 1.30 1.28 1.27 1.26 1.25 1.23 1.21

80 1.41 1.39 1.37 1.36 1.34 1.33 1.32 1.30 1.28

90 1.51 1.49 1.47 1.45 1.44 1.43 1.41 1.39 1.37

DEMAND (Fetal Head Circumference, in Percentile)

C
A

P
A

C
IT

Y 
(M

at
er

n
al

 

C
ir

cu
m

fe
re

n
ce

, i
n

 

P
er

ce
n

ti
le

)



149 
 

The effect of varying the traction force introduced through use of forceps or vacuum was 

evaluated by comparing the levator state parameter for the same individual over different 

traction forces. For example, a 40th percentile mother carrying a 50th percentile fetus had a 

levator state parameter of 0.8 for spontaneous vaginal birth, predicting a low likelihood of PVM 

tear occurrence (Figure 6.4, upper panel).  When the force used during vacuum delivery is 

applied in a simulation, this levator state parameter increases to 1.0, placing the mother on the 

border-line for tear occurrence (Figure 6.4, middle panel).  If forceps are simulated with the 

average traction force measured for a senior obstetrician, this levator state parameter 

increases to 1.4, indicating a high probability of tear occurrence (Figure 6.4, lower panel).  This 

example illustrates how a mother, who would not naturally be at risk for a PVM tear based on 

maternal and fetal geometry alone, may experience a PVM tear due to the increase in traction 

force introduced through forceps instrumentation. This effect can also be visualized by 

comparing the proportion of red shading in each of the panels in Figure 6.4. 

 

 



150 
 

 

 
Figure 6.3 - Duration of active second stage (upper) and levator state parameter values (lower) 
for the range of maternal capacity (in percentile).  The left column represents the effect of 
varying forceps traction force over four different forces, with 75.6 N and 121 N representing 
vacuum and forceps traction measurements from a single study, 226 N representing a 
previously proposed forceps limit, and 240 N representing the average forceps traction force 
measured for senior clinicians [22, 23, 24]. The right column represents the effect of varying 
forceps application timing over four different birth canal diameters at the level of the PVM. The 
threshold for injury is a levator state parameter value of 1. A levator state parameter below 1 
involves little to no risk whereas a levator state parameter above 1 involves possibility of risk. 
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Original (no forceps): 

 
Vacuum Application at 6 cm PVM Diameter, with a 75.6 N Traction Force: 

 
Forceps Application at 6 cm PVM Diameter, with a 240 N Traction Force:  

 
Figure 6.4 - Predicted levator state parameter values across pairings of maternal capacity-to-
fetal head demand are shown for traction force values of 0 N (Top), 75.6 N (Middle - Vacuum), 
and 240 N (bottom – Senior Clinician) over a constant 6 cm PVM diameter forceps application.  
The intensity of the (red) shading indicates the extent by which the predicted injury threshold is 
exceeded. The dashed line indicates the injury cutoff for the no forceps case. 

2.3rd 5th 10th 20th 25th 30th 40th 50th 60th 70th 75th 80th 90th 95th 97.7th

2.3rd 1.2 1.4 1.6 1.6 1.9 1.9 2.1 2.2 2.4 2.5 2.5 2.8 3.1 3.2 3.7

5th 1.1 1.1 1.3 1.3 1.4 1.5 1.5 1.6 1.9 1.8 2.0 1.9 2.3 2.6 2.7

10th 0.7 0.8 1.0 1.1 1.0 1.2 1.1 1.3 1.4 1.6 1.6 1.7 1.7 2.1 2.2

15th 0.7 0.7 0.8 1.0 0.9 1.0 1.1 1.2 1.3 1.4 1.3 1.3 1.6 1.8 2.0

20th 0.7 0.7 0.8 0.9 0.8 0.9 1.0 1.0 1.0 1.2 1.2 1.2 1.5 1.5 1.7

25th 0.5 0.6 0.7 0.8 0.7 0.8 0.8 1.0 1.0 1.1 1.2 1.1 1.3 1.3 1.5

30th 0.5 0.5 0.6 0.7 0.7 0.8 0.8 0.9 0.9 0.9 1.0 1.1 1.1 1.3 1.4

40th 0.4 0.5 0.5 0.6 0.6 0.7 0.7 0.8 0.8 0.8 0.9 0.9 1.0 1.1 1.2

50th 0.4 0.4 0.5 0.5 0.6 0.6 0.6 0.7 0.6 0.8 0.8 0.8 0.8 1.0 1.1

60th 0.3 0.4 0.4 0.5 0.5 0.5 0.5 0.6 0.6 0.7 0.7 0.7 0.8 0.8 0.9

70th 0.3 0.3 0.4 0.4 0.4 0.4 0.4 0.5 0.5 0.6 0.5 0.6 0.7 0.7 0.7

75th 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.6 0.6 0.7 0.8

80th 0.3 0.2 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.6 0.6

85th 0.2 0.2 0.3 0.3 0.3 0.3 0.4 0.3 0.4 0.4 0.5 0.5 0.5 0.6 0.6

90th 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.5 0.6

95th 0.1 0.1 0.2 0.2 0.2 0.2 0.3 0.2 0.3 0.3 0.3 0.4 0.4 0.4 0.5

97.7th 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.4

DEMAND (Fetal Head Circumference, in Percentile)
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2.3rd 5th 10th 20th 25th 30th 40th 50th 60th 70th 75th 80th 90th 95th 97.7th

2.3rd 1.8 1.8 2.1 2.1 2.2 2.2 2.7 2.7 3.1 3.2 3.2 3.5 3.9 3.8 4.6

5th 1.4 1.5 1.4 1.7 1.9 2.0 2.1 2.3 2.4 2.4 2.4 2.7 2.8 3.3 3.5

10th 1.1 1.2 1.3 1.5 1.4 1.6 1.6 1.7 1.9 2.0 1.9 2.2 2.3 2.6 2.9

15th 1.0 1.0 1.2 1.3 1.2 1.3 1.3 1.6 1.6 1.6 1.8 1.6 2.0 2.2 2.4

20th 0.8 0.9 1.0 1.0 1.2 1.2 1.2 1.3 1.4 1.4 1.4 1.6 1.8 2.0 2.2

25th 0.7 0.8 0.9 0.9 0.9 1.0 1.2 1.2 1.3 1.3 1.5 1.5 1.7 1.8 2.0

30th 0.7 0.8 0.7 0.9 1.0 0.9 1.1 1.0 1.2 1.3 1.2 1.4 1.5 1.5 1.6

40th 0.5 0.6 0.7 0.8 0.8 0.9 0.8 1.0 1.0 1.0 1.1 1.2 1.2 1.4 1.5

50th 0.5 0.6 0.6 0.6 0.7 0.7 0.8 0.9 0.8 0.9 1.0 1.0 1.1 1.2 1.3

60th 0.4 0.5 0.5 0.6 0.6 0.6 0.7 0.8 0.7 0.8 0.9 0.9 0.9 1.1 1.0

70th 0.4 0.4 0.5 0.5 0.5 0.6 0.6 0.7 0.6 0.7 0.7 0.8 0.7 0.9 1.0

75th 0.3 0.4 0.4 0.5 0.4 0.4 0.5 0.6 0.6 0.7 0.7 0.6 0.8 0.9 0.9

80th 0.3 0.3 0.4 0.4 0.5 0.5 0.5 0.5 0.5 0.6 0.6 0.7 0.7 0.7 0.9

85th 0.2 0.3 0.3 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.6 0.7 0.6

90th 0.2 0.2 0.2 0.3 0.3 0.3 0.4 0.4 0.4 0.5 0.5 0.5 0.6 0.6 0.7

95th 0.1 0.2 0.2 0.2 0.2 0.3 0.2 0.3 0.3 0.3 0.4 0.4 0.5 0.5 0.6

97.7th 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.4 0.4

DEMAND (Fetal Head Circumference, in Percentile)
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2.3rd 5th 10th 20th 25th 30th 40th 50th 60th 70th 75th 80th 90th 95th 97.7th

2.3rd 2.3 2.8 2.6 3.1 3.5 3.2 3.2 3.7 3.6 3.9 4.7 4.7 5.2 5.6 6.4

5th 2.0 1.8 2.4 2.6 2.3 2.7 3.0 3.1 2.9 3.6 3.4 3.8 4.0 4.4 4.4

10th 1.4 1.7 1.7 2.1 1.8 2.0 2.4 2.2 2.6 2.8 2.9 3.0 3.4 3.6 3.9

15th 1.4 1.2 1.6 1.5 1.6 1.8 2.0 1.9 2.1 2.4 2.5 2.3 2.9 3.0 3.2

20th 1.2 1.3 1.2 1.5 1.6 1.7 1.8 1.7 1.9 2.2 2.1 2.3 2.2 2.8 2.8

25th 1.0 1.1 1.3 1.4 1.4 1.5 1.6 1.7 1.6 1.9 2.0 2.1 2.2 2.5 2.6

30th 0.9 1.0 1.2 1.3 1.4 1.2 1.3 1.5 1.7 1.8 1.5 1.7 2.1 1.9 2.4

40th 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.4 1.3 1.4 1.5 1.8 1.8 2.1

50th 0.6 0.6 0.7 0.8 0.9 0.9 1.1 1.2 1.3 1.3 1.4 1.2 1.4 1.7 1.9

60th 0.5 0.5 0.6 0.7 0.7 0.8 0.9 0.9 1.0 1.1 1.2 1.2 1.4 1.2 1.4

70th 0.4 0.5 0.5 0.6 0.6 0.6 0.7 0.7 0.8 0.9 0.9 1.0 1.1 1.3 1.4

75th 0.4 0.4 0.5 0.5 0.5 0.6 0.6 0.7 0.7 0.8 0.8 0.8 1.0 1.1 1.2

80th 0.3 0.4 0.4 0.5 0.5 0.5 0.5 0.6 0.6 0.7 0.7 0.7 0.8 0.9 1.1

85th 0.3 0.3 0.4 0.4 0.4 0.5 0.5 0.5 0.6 0.6 0.6 0.6 0.7 0.8 0.9

90th 0.2 0.2 0.3 0.3 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.6 0.6 0.7 0.8

95th 0.1 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.5 0.6 0.6

97.7th 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.5

DEMAND (Fetal Head Circumference, in Percentile)
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When varying when forceps are applied (Figure 6.1), we see that earlier application of forceps 

produces a higher probability of a PVM injury (Figure 6.3 lower right & Figure 6.12S).  For 

instance, the percentage of cells exceeding the injury threshold drops from 56% for forceps 

application at a 6 cm PVM diameter to 25% for application at a 9 cm PVM diameter, for the 240 

N traction force case (Table 6.1).  It should be noted that when the forceps were applied at a 

point where the PVM was at a 9 cm diameter, this forceps application diameter criteria may not 

be met until the mother is already on her final contraction. Therefore, it is relevant to consider 

what would happen when the forceps were applied at an 8 cm PVM diameter, in which 42% of 

cells exceed the predicted injury threshold for the 240 N traction force case. 

In simulations where the applied traction force was varied, the 75.6 N (Vacuum) case resulted 

in fewer predicted PVM tears than any of the forceps cases (Figure 6.3, lower right), with 37% 

of cells exceeding the predicted injury threshold for the case of vacuum application at 6 cm 

PVM diameter [22].  In the 121 N (Mishell Forceps Study) traction force case, 43% of cells were 

predicted to exceed the injury threshold for the application at 6 cm PVM diameter case [22]. 

This is appreciably below the 56% observed for both 226 N (previous recommendation) and 240 

N (senior clinicians), suggesting that the previous guidelines may be too generous and should 

be modified downwards to be closer to the 120 N mark [23, 24]. 
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 PVM Diameter at Forceps Application (cm) 

6 7 8 9 

Traction 
Force (N) 

76 37 39 35 24 

121 43 43 37 25 

226 56 49 42 25 

240 56 49 42 25 

Table 6.1 - This table shows the percentage of individuals with a levator state parameter above 
1 (tear predicted) for each traction force and PVM diameter at the time of forceps application 
pairing.  75.6 N and 121 N represent vacuum and forceps traction measurements from a single 
study, while 226 N represents a previously proposed forceps limit, and 240 N represents the 
average forceps traction force measured for senior clinicians [22, 23, 24]. 

 
When considering the duration of the active second stage, we see that increased forceps 

traction force lowers the overall duration of the active second stage (Figure 6.3 upper left, 

Figure 6.11S, Table 6.2).  We also see that a later forceps application is associated with a 

greater duration of the active second stage (Figure 6.3 upper right & Table 6.2).  This can be 

seen when comparing Figure 6.13S (lower panel) to the lower portion of Figure 6.11S.  

 PVM Diameter at Forceps Application (cm) 

6 7 8 9 

Traction 
Force (N) 

76 21 25 32 38 

121 16 21 31 38 

226 10 17 29 38 

240 10 17 29 38 

Table 6.2 - This table shows the average duration of the active second stage for each traction 
force and PVM diameter at forceps application pairing.  75.6 N and 121 N represent vacuum 
and forceps traction measurements from a single study, while 226 N represents a previously 
proposed forceps limit, and 240 N represents the average forceps traction force measured for 
senior clinicians [22, 23, 24]. 

 

6.4.2 Partial force between contractions  

Simulations suggest that applying a partial traction force between contractions helps to reduce 

the levator state parameter (Figure 6.5), as well as the duration of active second stage (Figure 

6.14S).  This effect is more pronounced for higher partial traction forces. 
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10% traction force between contractions: 

 
50% traction force between contractions 

 
Figure 6.5 - Predicted levator state parameter values across pairings of maternal capacity-to-
fetal head demand are shown for applying a 10% (Top) and 50% (Bottom) traction force 
between contractions with forceps application at 6 cm PVM diameter, and a traction force of 
240 N (senior clinician).  The intensity of the (red) shading indicates the extent by which the 
predicted injury threshold is exceeded. The dashed and solid lines represent the predicted 
injury cutoffs for the no forceps and forceps without partial traction force between 
contractions cases respectively. 

 

6.4.3 Episiotomy 

When different episiotomy lengths were evaluated, a simulated length of 1.5 cm or greater was 

necessary to maintain a levator state parameter below 1; a threshold suggesting a low risk of 

2.3rd 5th 10th 20th 25th 30th 40th 50th 60th 70th 75th 80th 90th 95th 97.7th

2.3rd 2.5 2.5 2.7 3.0 3.4 3.0 3.9 4.1 4.2 4.3 4.0 4.8 5.1 5.0 6.0

5th 1.8 2.1 2.0 2.3 2.6 2.8 2.6 3.2 2.9 3.6 3.3 3.8 3.6 4.1 4.8

10th 1.4 1.7 1.9 2.0 2.1 2.3 2.1 2.5 2.7 2.6 2.9 2.6 3.3 3.6 3.8

15th 1.4 1.5 1.5 1.8 1.9 1.6 1.9 2.1 2.3 2.2 2.4 2.6 2.6 3.1 3.3

20th 1.2 1.3 1.4 1.4 1.5 1.6 1.8 1.9 1.7 2.0 2.2 2.0 2.5 2.4 3.0

25th 1.0 1.1 1.3 1.5 1.3 1.4 1.6 1.7 1.9 1.7 1.8 2.0 2.3 2.3 2.7

30th 0.8 1.0 1.1 1.3 1.4 1.4 1.3 1.4 1.6 1.7 1.8 1.9 1.9 2.3 2.1

40th 0.7 0.8 0.9 1.0 1.1 1.1 1.2 1.4 1.5 1.5 1.3 1.4 1.7 1.6 2.0

50th 0.6 0.6 0.7 0.8 0.9 0.9 1.0 1.1 1.2 1.3 1.4 1.4 1.3 1.6 1.8

60th 0.5 0.6 0.6 0.7 0.7 0.8 0.8 0.9 1.0 1.1 1.1 1.2 1.4 1.5 1.4

70th 0.4 0.5 0.5 0.6 0.6 0.6 0.7 0.7 0.8 0.8 0.9 0.9 1.1 1.2 1.4

75th 0.4 0.4 0.5 0.5 0.6 0.6 0.6 0.6 0.7 0.8 0.8 0.8 0.9 1.0 1.2

80th 0.3 0.4 0.4 0.5 0.5 0.5 0.6 0.6 0.6 0.7 0.7 0.7 0.8 0.9 1.0

85th 0.3 0.3 0.3 0.4 0.4 0.5 0.5 0.5 0.6 0.6 0.6 0.7 0.7 0.8 0.9

90th 0.2 0.2 0.3 0.3 0.3 0.4 0.4 0.4 0.5 0.5 0.5 0.6 0.6 0.7 0.7

95th 0.1 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.5 0.6 0.6

97.7th 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.4 0.4 0.5
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2.3rd 5th 10th 20th 25th 30th 40th 50th 60th 70th 75th 80th 90th 95th 97.7th

2.3rd 2.1 2.6 2.5 3.3 3.0 3.1 3.9 3.8 3.7 4.3 4.0 4.2 4.9 5.6 5.5

5th 1.7 2.0 2.4 2.4 2.7 2.8 2.5 3.0 3.4 3.0 3.4 3.9 4.2 4.2 4.3

10th 1.5 1.5 1.6 1.8 2.1 2.2 2.0 2.1 2.3 2.8 2.5 2.5 3.3 3.0 3.9

15th 1.2 1.3 1.6 1.5 1.6 1.6 1.8 2.1 2.3 2.0 2.1 2.2 2.8 2.7 3.1

20th 1.0 1.1 1.3 1.6 1.7 1.7 1.5 1.6 1.7 1.9 2.2 1.9 2.1 2.6 2.5

25th 1.0 1.0 1.1 1.3 1.5 1.6 1.7 1.4 1.6 1.7 1.8 1.9 2.3 2.2 2.4

30th 0.8 0.9 1.0 1.1 1.2 1.3 1.5 1.6 1.7 1.6 1.6 1.7 1.8 2.2 2.1

40th 0.6 0.7 0.9 1.0 1.0 1.0 1.1 1.2 1.3 1.5 1.5 1.6 1.8 1.7 1.9

50th 0.5 0.5 0.7 0.8 0.8 0.9 0.9 1.0 1.1 1.2 1.2 1.3 1.6 1.7 1.5

60th 0.4 0.5 0.6 0.7 0.7 0.8 0.8 0.9 1.0 0.9 1.0 1.1 1.2 1.4 1.6

70th 0.3 0.3 0.4 0.5 0.5 0.6 0.6 0.7 0.8 0.8 0.9 0.9 1.0 1.1 1.2

75th 0.3 0.3 0.3 0.4 0.4 0.5 0.5 0.6 0.7 0.7 0.8 0.8 0.9 1.0 1.1

80th 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.5 0.6 0.6 0.7 0.7 0.8 0.9 1.0

85th 0.2 0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.5 0.5 0.6 0.7 0.8 0.9

90th 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.5 0.6 0.7

95th 0.1 0.2 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.5

97.7th 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.4

DEMAND (Fetal Head Circumference, in Percentile)
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PVM tear (Figure 6.6).  It was also found that episiotomies beyond this length resulted in active 

second stages below 1 hour in duration. 

 
Figure 6.6 - Duration of active second stage (upper) and levator state parameter values (lower) 
for the range of maternal capacity (in percentile) based on varying episiotomy length.  The 
threshold for injury is a levator state parameter value of 1. A levator state parameter below 1 
involves little to no risk whereas a levator state parameter above 1 involves possibility of risk. 
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6.4.4 Epidural  

A 50% decrease in maternal pushing effort was considered to reflect the case of epidural usage. 

This resulted in an increase in the duration of the active second stage of labor by an average of 

12 minutes (Figure 6.7).  This increase in the duration of the active second stage corresponded 

to a 40% decrease in predicted PVM tear rates (Figure 6.8). 

 
Figure 6.7 - The increase in the duration of the active second stage for epidural usage, relative 
to control, is reported across pairings of maternal capacity-to-fetal head demand.  The intensity 
of the (blue) shading indicates the magnitude of this increase. 

 
Figure 6.8 - Predicted levator state parameter values across pairings of maternal capacity-to-
fetal head demand are shown for the case of epidural usage.  The intensity of the (red) shading 
indicates the extent by which the predicted injury threshold is exceeded. The dashed and solid 
lines represent the predicted injury cutoffs for the epidural and control cases respectively. 

2.3rd 5th 10th 20th 25th 30th 40th 50th 60th 70th 75th 80th 90th 95th 97.7th

2.3rd 30 33 36 39 42 42 48 51 54 60 60 66 78 87 108

5th 24 24 24 27 27 27 30 30 33 33 36 36 42 48 51

10th 15 15 18 18 18 21 18 21 21 24 24 24 27 30 30

15th 12 12 15 15 15 18 18 18 18 18 18 18 24 24 24

20th 12 12 12 15 12 15 15 15 15 18 18 15 18 18 21

25th 9 12 12 12 12 12 12 15 15 15 15 15 18 15 18

30th 9 9 12 12 9 12 12 12 12 12 12 15 12 15 15

40th 6 9 9 9 9 12 9 12 9 12 12 12 12 12 12

50th 6 6 9 9 9 9 9 9 9 9 12 9 9 12 12

60th 6 6 6 9 9 6 9 9 6 9 9 6 9 9 9

70th 3 6 6 6 6 6 6 6 6 9 6 6 9 9 6

75th 6 6 3 6 6 6 6 6 6 6 6 6 9 6 9

80th 6 3 6 6 3 6 6 6 3 6 6 6 6 6 6

85th 3 3 6 3 3 6 6 5 3 6 6 6 6 6 8

90th 3 6 3 3 3 6 6 3 3 6 6 6 3 6 6

95th 3 3 3 3 3 3 6 3 3 3 3 3 6 3 6

97.7th 3 3 3 3 0 3 3 3 3 3 3 3 5 3 3C
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DEMAND (Fetal Head Circumference, in Percentile)

2.3rd 5th 10th 20th 25th 30th 40th 50th 60th 70th 75th 80th 90th 95th 97.7th

2.3rd 1.0 1.2 1.3 1.4 1.5 1.6 1.6 1.9 2.0 2.0 2.2 2.3 2.5 2.8 2.9

5th 0.7 0.8 1.1 1.0 1.2 1.3 1.2 1.5 1.6 1.7 1.7 1.8 1.9 1.9 2.4

10th 0.6 0.8 0.8 0.9 0.9 1.0 1.1 1.1 1.2 1.3 1.4 1.4 1.4 1.6 1.9

15th 0.6 0.7 0.6 0.8 0.8 0.8 0.9 1.0 1.0 1.1 1.2 1.2 1.2 1.4 1.6

20th 0.5 0.6 0.7 0.6 0.8 0.7 0.7 0.9 0.9 1.0 0.9 1.1 1.2 1.3 1.4

25th 0.5 0.5 0.6 0.7 0.6 0.7 0.8 0.8 0.8 0.8 1.0 0.9 1.0 1.2 1.3

30th 0.4 0.5 0.5 0.6 0.6 0.6 0.6 0.8 0.8 0.8 0.9 0.9 1.0 1.0 1.2

40th 0.4 0.4 0.4 0.5 0.5 0.5 0.6 0.6 0.7 0.7 0.6 0.8 0.9 1.0 1.1

50th 0.3 0.4 0.4 0.3 0.4 0.5 0.5 0.6 0.5 0.6 0.6 0.7 0.7 0.8 0.8

60th 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.5 0.5 0.5 0.6 0.6 0.7 0.7 0.7

70th 0.3 0.2 0.3 0.3 0.3 0.4 0.3 0.4 0.5 0.4 0.5 0.5 0.6 0.5 0.7

75th 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.5 0.5 0.6 0.6

80th 0.2 0.2 0.2 0.3 0.3 0.2 0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.6 0.6

85th 0.2 0.2 0.2 0.3 0.3 0.2 0.3 0.3 0.4 0.3 0.4 0.4 0.4 0.5 0.5

90th 0.2 0.1 0.2 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.5

95th 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.4 0.3

97.7th 0.1 0.1 0.1 0.2 0.2 0.1 0.2 0.2 0.2 0.2 0.2 0.3 0.2 0.3 0.3C
A

P
A

C
IT

Y 
(M

at
er

n
al

 C
ir

cu
m

fe
re

n
ce

, i
n

 P
er

ce
n

ti
le

)

DEMAND (Fetal Head Circumference, in Percentile)



157 
 

6.5 Discussion 

In our PVM injury simulations, we found that increasing traction force increases risk of PVM 

tear.  Conversely forceps application that occurs later in the birth process with maintained 

partial traction between contractions is predicted to decrease the risk of tear when other 

maternal and fetal features remain constant. In terms of the duration of active second stage, 

both early forceps application, and high traction forces resulted in reduced durations when 

compared with later forceps application or lower traction force simulations.   

Episiotomy of at least 1.5 cm appears protective in terms of injury to the PVM. This depth of 

incision was enough to reduce the levator state parameter below a value of 1 for all simulated 

births.  This result is interestingly similar to a study in which an obstetric anal sphincter injuries 

group had an average episiotomy length of 1.3 cm, while a non-injury group had an average 

episiotomy length of 1.7 cm [34].  We theorize that cuts beyond this length, which is distinctly 

less than a previously reported average of approximately 4 cm, would cause additional tissue 

trauma, without added benefit in terms of PVM tear risk or duration of the active second stage 

[35] and would need to be balanced against the increased risk of anal sphincter tear that occurs 

in association with midline episiotomies. Some previous studies have suggested that 

episiotomies are correlated with PVM tears, however, this appears to be a symptom of 

selective episiotomies being more likely in difficult births, during which PVM tears are also 

more likely to occur [16, 5, 36, 37]. Additionally, two studies have reported decreases in PVM 

tear rates in episiotomy groups, including one study which reported a 3-fold reduction in 

levator damage when forceps were used slowly in conjunction with early episiotomy [38, 39, 

40]. 
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Epidural usage is predicted to increase the duration of the active second stage by while also 

reducing predicted PVM tear rates. This increase in the predicted duration of the active second 

stage averaged 12 minutes, which is similar to a value of 14 minutes found clinically [41]. This 

increase in the duration of the active second stage benefited the PVM by allowing additional 

time for stress relaxation. This resulted in a 40% decrease in predicted PVM tears, which is 

consistent with a clinically reported odds ratio of 0.42 for PVM tears with the use of epidurals, 

when compared with controls [5]. The effects of epidural usage on maternal effort were 

estimated as a 50% decrease in intrauterine pressure due to maternal pushes, with no effect on 

intrauterine pressure due to uterine contractions. These values were based on observations 

made by a practicing anesthesiologist, though to our knowledge no published studies report on 

intrauterine pressure tracings for both epidural and control cases. However, that this 

assumption results in an increase in the average duration of the active second stage of labor 

similar to that observed clinically suggests that this assumption may be reasonable [41]. 

Many, if not most, of the observations in this research will ring true to experienced clinicians.  

By providing a specific scientific framework based on fundamental biomechanical principles, it 

allows many complex and often competing factors to be evaluated to establish the degree to 

which they affect injury risk and how combinations may change outcomes.    Obstetricians 

understand viscoelastic behavior even if they do not know the language of the engineer when 

they observe that it helps labor to progress if they keep some downward traction on forceps or 

vacuum between pushes.  This allows “stress relaxation” to occur, reducing the resistance of 

the tissues to elongation.  Modeling can say how much and how long this should be done to 

optimally benefit from this unique property.  Of course, the findings of this study need to be 



159 
 

compared with clinical studies.  However, it will never be possible to vary each individual 

parameter in clinical trials in the way that they can be in a model so it will be a combination of 

biomechanical analysis and applied clinical evidence that can, together, provide a framework 

for progress. 

There are several strengths of this methodology. It allows us to consider a wide variety of 

maternal and fetal anatomical pairings, for a variety of different traction force and application 

conditions. This is possible because, by considering the PVM as a single component, rather than 

a series of individual finite elements, we can increase our computational efficiency so that it 

was feasible to run the 1,000+ simulations necessary to allow for the analysis conducted here.   

In this study, we chose to use the product of stress times strain as the criterion for injury. Some 

previous models of soft tissue injury have selected purely strain-based criteria [42]. However, 

we note that literature values for soft tissue failure do show a dependence on both stress and 

strain, hence our choice of failure criterion. [26, 30, 31, 32].  

There are several practical limitations to this model for injury.  Our threshold for forceps 

application is based on the diameter of the birth canal at the level of the pubovisceral portion 

of the levator, which may not be as easily measurable at the time of delivery and is not a 

familiar anatomic landmark to clinicians.  The pubovisceral muscle occupies a location for 

several centimeters, beginning approximately 1 cm above the hymeneal ring.  Therefore, a 

diameter in this area of 6 cm might correspond to an opening of a few centimeters in the visible 

introitus. Additionally, due to uncertainty about the overall descent of the pelvic floor during 

labor, we have been unable to precisely correlate PVM diameter to descent of the fetal head 
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through the birth canal. A limitation of our birth simulations is that the birth canal stress values 

peak depending on when, during the contraction, the birth occurred, which could not be 

predicted prior to delivery for purposes of defining risk of injury.   

We also assumed, for simplicity, that the fetal head had already molded fully; the reason for 

this was that, to our knowledge, there are no data on the time-dependent molding behavior of 

the fetal head while in the birth canal. Since we did not include fetal head viscoelastic behavior, 

our current predictions are therefore conservative in terms of the predicted duration of second 

stage and tear risk for fetal heads exceeding maternal capacity [4].  

We have considered the PVM as the structure that defines the smallest circumference of the 

birth canal, namely the urogenital hiatus in this model. While it is possible that the iliococcygeal 

muscle and the puborectal muscle could tear, our previous studies suggest that this is unlikely 

because the stretch in those structures is considerably less than the PVM towards the end of 

the second stage [4, 43, 44].  Additional clinical factors such as maternal effort and the effect of 

maternal body habitus are not addressed in this model.  It must also be emphasized that these 

simulations, although powerful because they can analyze a broad range of specific situations 

would need to be evaluated in the light of clinical trials.   

Our simulations suggest that there are maternal, fetal, and operator-dependent characteristics 

of operative vaginal delivery that affect the risk of PVM tear.  With improved understanding of 

the mechanism of injury, there is the potential to counsel women based on their risk profile for 

injury as well as other factors that may increase her risk for pelvic organ prolapse later in life.  

There is also the potential to modify physician behavior in order to minimize risk of PVM injury 



161 
 

by maintaining traction force between contractions while reducing maximum traction on the 

forceps.   
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6.7 Appendix  

Calculations 

PVM strain, εPVM, was assumed to be related to general birth canal strain, εBC, based on the 

ratio between their initial circumferential lengths, lPVM and lBC respectively [4]. 

𝜀𝑃𝑉𝑀 =
𝑙𝐵𝐶

𝑙𝑃𝑉𝑀

(𝜀𝐵𝐶 + 1) − 1 

Intrauterine pressure was assumed to be related to circumferential stress in the PVM U-shaped 

sling, based on the following calculations (Figure 6.9S): 

𝑇 = 𝑡𝑒𝑛𝑠𝑖𝑜𝑛 𝑖𝑛 𝑃𝑉𝑀 

�̃� =
𝑇

2𝜋𝑟
= 𝑇𝑒𝑛𝑠𝑖𝑜𝑛/𝑙𝑒𝑛𝑔𝑡ℎ 

Balancing “Vertical” Forces:      

 �̃�2𝜋𝑟 ∗ 𝑠𝑖𝑛(𝛼) = 𝑃𝑎𝑏𝜋 ∗ 𝑟ℎ
2 

�̃� =
𝑃𝑎𝑏 ∗ 𝑟ℎ

2

2𝑟 ∗ 𝑠𝑖𝑛(𝛼)
 

Balancing “Horizontal” Forces:    

  𝜎𝑃𝑉𝑀2 ∗ 𝐴𝑃𝑉𝑀 = �̃�2𝑟 ∗ cos(𝛼) 

𝜎𝑃𝑉𝑀 =
�̃� ∗ 2𝑟 ∗ cos(𝛼)

2𝐴𝑃𝑉𝑀

=
𝑃𝑎𝑏𝑟ℎ

2

2𝐴𝑃𝑉𝑀 tan(𝛼)
 

Piu 

α 

T 

Figure 6.9S - Intrauterine pressure (blue arrow) 
creates a force distributed over the fetal head 
(grey circle).  The tension (T) in the PVM (dark blue 
band low on head) was related to intrauterine 
pressure using the radius of the fetal head (light 
blue lines) and the angle between the midline of 
the fetal head and the contact point of the PVM 
on the fetal head (alpha). 
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Based on image analysis of the non-uniformity of the newborn fetal head, a maximum alpha 

value of 0.68 radians was assumed. 

 

 
Figure 6.10S - Geometric Maternal Capacity – to – Fetal Head Demand ratio for forceps with a 
compressible fetal head.  Because maternal capacity must exceed fetal demand for a safe 
delivery to be predicted, a value of this ratio below 1 indicates a predicted PVM tear. The 
intensity of the (red) shading indicates the extent by which the predicted injury threshold is 
exceeded. These figures have been presented previously [18]. 
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Original: 

 
Vacuum Application at 6 cm PVM Diameter, with a 75.6 N Traction Force: 

 
Forceps Application at 6 cm PVM Diameter, with a 240 N Traction Force: 

 
Figure 6.11S - Predicted duration of active second stage (minutes) across pairings of maternal 
capacity-to-fetal head demand are shown for traction force values of 0N (Top), 75.6 N (Middle - 
Vacuum), and 240 N (bottom – Senior Clinician) over a constant application at 6 cm PVM 
diameter.  The intensity of the (blue) shading indicates the extent by which each active second 
stage exceeds 3 hours. 1 hour (dot-dot-dash), 2 hour (dot-dash), and 3 hour (dash) are marked 
by lines in each panel. 
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30th 31 34 34 37 40 40 43 43 46 49 49 49 55 58 61

40th 25 25 28 31 31 31 34 34 37 37 40 40 43 46 49

50th 19 22 22 25 25 25 28 28 31 31 31 34 37 37 40
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40th 13 13 13 16 16 16 19 19 19 22 22 22 25 25 28
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Original (no forceps): 

 
Forceps Application at 6 cm PVM Diameter, with a 240 N Traction Force:  

 
Forceps Application at 9 cm PVM Diameter, with a 240 N Traction Force: 

 
Figure 6.12S - Predicted levator state parameter values across pairings of maternal capacity-to-
fetal head demand are shown for the no forceps case (upper) as well as forceps application 
criteria of 6 cm (middle) and 9 cm (lower) over a constant traction force value of 240 N (senior 
clinician).  The intensity of the (red) shading indicates the extent by which the predicted injury 
threshold is exceeded. The dashed line indicates the injury cutoff for the no forceps case. 
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2.3rd 5th 10th 20th 25th 30th 40th 50th 60th 70th 75th 80th 90th 95th 97.7th

2.3rd 2.3 2.8 2.6 3.1 3.5 3.2 3.2 3.7 3.6 3.9 4.7 4.7 5.2 5.6 6.4

5th 2.0 1.8 2.4 2.6 2.3 2.7 3.0 3.1 2.9 3.6 3.4 3.8 4.0 4.4 4.4

10th 1.4 1.7 1.7 2.1 1.8 2.0 2.4 2.2 2.6 2.8 2.9 3.0 3.4 3.6 3.9

15th 1.4 1.2 1.6 1.5 1.6 1.8 2.0 1.9 2.1 2.4 2.5 2.3 2.9 3.0 3.2

20th 1.2 1.3 1.2 1.5 1.6 1.7 1.8 1.7 1.9 2.2 2.1 2.3 2.2 2.8 2.8

25th 1.0 1.1 1.3 1.4 1.4 1.5 1.6 1.7 1.6 1.9 2.0 2.1 2.2 2.5 2.6

30th 0.9 1.0 1.2 1.3 1.4 1.2 1.3 1.5 1.7 1.8 1.5 1.7 2.1 1.9 2.4

40th 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.4 1.3 1.4 1.5 1.8 1.8 2.1

50th 0.6 0.6 0.7 0.8 0.9 0.9 1.1 1.2 1.3 1.3 1.4 1.2 1.4 1.7 1.9

60th 0.5 0.5 0.6 0.7 0.7 0.8 0.9 0.9 1.0 1.1 1.2 1.2 1.4 1.2 1.4

70th 0.4 0.5 0.5 0.6 0.6 0.6 0.7 0.7 0.8 0.9 0.9 1.0 1.1 1.3 1.4

75th 0.4 0.4 0.5 0.5 0.5 0.6 0.6 0.7 0.7 0.8 0.8 0.8 1.0 1.1 1.2

80th 0.3 0.4 0.4 0.5 0.5 0.5 0.5 0.6 0.6 0.7 0.7 0.7 0.8 0.9 1.1

85th 0.3 0.3 0.4 0.4 0.4 0.5 0.5 0.5 0.6 0.6 0.6 0.6 0.7 0.8 0.9

90th 0.2 0.2 0.3 0.3 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.6 0.6 0.7 0.8

95th 0.1 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.5 0.6 0.6

97.7th 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.5

DEMAND (Fetal Head Circumference, in Percentile)
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2.3rd 5th 10th 20th 25th 30th 40th 50th 60th 70th 75th 80th 90th 95th 97.7th

2.3rd 1.2 1.4 1.6 1.6 1.9 1.9 2.4 3.0 3.2 3.7 4.1 4.6 5.3 6.0 6.4

5th 1.1 1.1 1.3 1.3 1.4 1.5 1.8 2.1 2.4 2.7 2.8 3.1 4.0 4.0 4.3

10th 0.7 0.8 1.0 1.1 1.0 1.2 1.1 1.3 1.6 2.0 2.1 2.3 2.7 3.2 3.9

15th 0.7 0.7 0.8 1.0 0.9 1.0 1.1 1.2 1.3 1.5 1.7 1.9 2.2 2.5 2.9

20th 0.7 0.7 0.8 0.9 0.8 0.9 1.0 1.0 1.2 1.2 1.4 1.6 2.0 2.1 2.4

25th 0.5 0.6 0.7 0.8 0.7 0.8 0.8 1.0 1.0 1.2 1.2 1.3 1.7 1.9 2.2

30th 0.5 0.5 0.6 0.7 0.7 0.8 0.8 0.9 0.9 1.0 1.0 1.1 1.5 1.8 1.9

40th 0.4 0.5 0.5 0.6 0.6 0.7 0.7 0.8 0.8 0.8 0.9 0.9 1.2 1.4 1.7

50th 0.4 0.4 0.5 0.5 0.6 0.6 0.6 0.7 0.6 0.8 0.8 0.8 0.9 1.2 1.4

60th 0.3 0.4 0.4 0.5 0.5 0.5 0.5 0.6 0.6 0.7 0.7 0.7 0.8 1.0 1.2

70th 0.3 0.3 0.4 0.4 0.4 0.4 0.4 0.5 0.5 0.6 0.5 0.6 0.7 0.7 0.8

75th 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.6 0.6 0.7 0.8

80th 0.3 0.2 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.6 0.7

85th 0.2 0.2 0.3 0.3 0.3 0.3 0.4 0.3 0.4 0.4 0.5 0.5 0.5 0.6 0.6

90th 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.5 0.6

95th 0.1 0.1 0.2 0.2 0.2 0.2 0.3 0.2 0.3 0.3 0.3 0.4 0.4 0.4 0.5

97.7th 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.4

DEMAND (Fetal Head Circumference, in Percentile)

C
A

P
A

C
IT

Y 
(M

at
er

n
al

 C
ir

cu
m

fe
re

n
ce

, i
n

 P
er

ce
n

ti
le

)



170 
 

Original: 

 
Forceps Application at 6 cm PVM Diameter, with a 240 N Traction Force: 

 
Forceps Application at a 9 cm PVM Diameter, with a 240 N Traction Force: 

 
Figure 6.13S - Predicted duration of active second stage (minutes) across pairings of maternal 
capacity-to-fetal head demand are shown for the no forceps case (upper) as well as forceps 
application criteria of 6 cm (middle) and 9 cm (lower) over a constant forceps traction force of 
240 N (senior clinician).  The intensity of the (blue) shading indicates the extent by which each 
active second stage exceeds 3 hours. 1 hour (dot-dot-dash), 2 hour (dot-dash), and 3 hour 
(dash) are marked by lines. 

2.3rd 5th 10th 20th 25th 30th 40th 50th 60th 70th 75th 80th 90th 95th 97.7th

2.3rd 118 124 133 148 151 157 166 175 184 196 205 211 235 262 289

5th 82 88 94 103 106 109 115 121 124 133 136 142 154 166 181

10th 61 64 67 73 76 76 82 85 88 91 94 97 106 112 121

15th 49 52 55 58 61 61 64 67 70 73 76 79 82 88 94

20th 40 43 46 49 52 52 55 58 61 61 64 67 70 76 79

25th 37 37 40 43 46 46 49 49 52 55 55 58 61 67 70

30th 31 34 34 37 40 40 43 43 46 49 49 49 55 58 61

40th 25 25 28 31 31 31 34 34 37 37 40 40 43 46 49

50th 19 22 22 25 25 25 28 28 31 31 31 34 37 37 40

60th 16 16 19 19 19 22 22 22 25 25 25 28 28 31 34

70th 13 13 13 16 16 16 19 19 19 19 22 22 22 25 28

75th 10 10 13 13 13 13 16 16 16 19 19 19 19 22 22

80th 7 10 10 10 13 13 13 13 16 16 16 16 19 19 22

85th 7 7 7 10 10 10 10 10 13 13 13 13 16 16 16

90th 4 4 7 7 7 7 7 10 10 10 10 10 13 13 13

95th 1 4 4 4 4 4 4 7 7 7 7 7 7 10 10

97.7th 1 1 1 1 3 4 4 4 4 4 4 4 4 7 7
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2.3rd 5th 10th 20th 25th 30th 40th 50th 60th 70th 75th 80th 90th 95th 97.7th

2.3rd 40 43 43 46 49 49 52 55 55 58 64 70 73 73 79

5th 25 28 28 28 31 31 31 34 37 37 40 40 43 46 52

10th 19 16 19 19 22 22 22 25 25 25 25 25 28 31 34

15th 13 16 13 16 16 16 16 19 19 19 19 22 22 25 28

20th 10 10 13 13 13 13 13 16 16 16 16 16 19 19 22

25th 10 10 10 10 10 10 10 10 13 13 13 13 16 16 19

30th 10 7 7 7 7 10 10 10 10 10 13 13 13 16 16

40th 7 7 7 7 7 7 7 7 7 10 10 10 10 10 10

50th 6 6 6 7 7 7 4 4 4 4 4 7 7 7 7

60th 3 3 3 4 4 4 4 4 4 4 4 4 4 7 7

70th 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4

75th 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4

80th 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4

85th 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4

90th 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

95th 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3

97.7th 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3
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DEMAND (Fetal Head Circumference, in Percentile)

2.3rd 5th 10th 20th 25th 30th 40th 50th 60th 70th 75th 80th 90th 95th 97.7th

2.3rd 118 124 133 148 151 157 165 168 171 178 178 181 187 193 199

5th 82 88 94 103 106 109 114 117 120 123 123 124 127 130 133

10th 61 64 67 73 76 76 82 85 87 87 90 90 91 91 91

15th 49 52 55 58 61 61 64 67 70 72 72 72 75 76 76

20th 40 43 46 49 52 52 55 58 60 61 63 63 63 66 67

25th 37 37 40 43 46 46 49 49 52 54 55 57 57 57 57

30th 31 34 34 37 40 40 43 43 46 48 49 49 51 51 51

40th 25 25 28 31 31 31 34 34 37 37 40 40 42 42 42

50th 19 22 22 25 25 25 28 28 31 31 31 34 36 36 36

60th 16 16 19 19 19 22 22 22 25 25 25 28 28 30 30

70th 13 13 13 16 16 16 19 19 19 19 22 22 22 25 27

75th 10 10 13 13 13 13 16 16 16 19 19 19 19 22 22

80th 7 10 10 10 13 13 13 13 16 16 16 16 19 19 21

85th 7 7 7 10 10 10 10 10 13 13 13 13 16 16 16

90th 4 4 7 7 7 7 7 10 10 10 10 10 13 13 13

95th 1 4 4 4 4 4 4 7 7 7 7 7 7 10 10

97.7th 1 1 1 1 3 4 4 4 4 4 4 4 4 7 7
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No traction force between contractions: 

 
10% traction force between contractions: 

 
50% traction force between contractions: 

 
Figure 6.14S - Predicted duration of active second stage (minutes) across pairings of maternal 
capacity-to-fetal head demand are shown for applying no (upper), a 10% (middle), and 50% 
(lower) traction force between contractions with forceps application at 6 cm PVM diameter, 
and a 240 N traction force.  1 hour (dot-dot-dash), 2 hour (dot-dash), and 3 hour (dash) are 
marked by lines in each panel. 

 

2.3rd 5th 10th 20th 25th 30th 40th 50th 60th 70th 75th 80th 90th 95th 97.7th

2.3rd 40 43 43 46 49 49 52 55 55 58 64 70 73 73 79

5th 25 28 28 28 31 31 31 34 37 37 40 40 43 46 52

10th 19 16 19 19 22 22 22 25 25 25 25 25 28 31 34

15th 13 16 13 16 16 16 16 19 19 19 19 22 22 25 28

20th 10 10 13 13 13 13 13 16 16 16 16 16 19 19 22

25th 10 10 10 10 10 10 10 10 13 13 13 13 16 16 19

30th 10 7 7 7 7 10 10 10 10 10 13 13 13 16 16

40th 7 7 7 7 7 7 7 7 7 10 10 10 10 10 10

50th 6 6 6 7 7 7 4 4 4 4 4 7 7 7 7

60th 3 3 3 4 4 4 4 4 4 4 4 4 4 7 7

70th 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4

75th 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4

80th 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4

85th 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4

90th 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

95th 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3

97.7th 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3
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2.3rd 5th 10th 20th 25th 30th 40th 50th 60th 70th 75th 80th 90th 95th 97.7th

2.3rd 34 37 37 40 40 43 43 43 46 49 52 52 58 64 67

5th 25 25 28 28 28 28 31 31 34 34 37 37 40 43 46

10th 19 16 16 19 19 19 22 22 22 25 22 25 25 28 31

15th 13 13 13 13 13 16 16 16 16 19 19 19 22 22 25

20th 10 10 10 13 13 13 13 13 16 16 13 16 16 19 19

25th 10 10 10 10 10 10 10 10 10 13 13 13 13 16 16

30th 10 7 7 7 7 7 10 10 10 10 10 10 13 13 16

40th 6 7 7 7 7 7 7 7 7 7 10 10 10 10 10

50th 6 6 6 7 7 7 4 4 4 4 4 4 7 7 7

60th 3 3 3 3 3 4 4 4 4 4 4 4 4 4 7

70th 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4

75th 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4

80th 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4

85th 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4

90th 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

95th 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3

97.7th 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3
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DEMAND (Fetal Head Circumference, in Percentile)

2.3rd 5th 10th 20th 25th 30th 40th 50th 60th 70th 75th 80th 90th 95th 97.7th

2.3rd 30 31 30 31 33 34 34 34 34 37 37 40 43 46 48

5th 21 22 22 22 22 22 24 25 25 28 28 28 28 31 34

10th 16 13 15 16 16 16 16 18 19 19 18 18 19 22 22

15th 13 13 10 12 12 12 13 13 13 15 15 16 16 18 19

20th 9 10 10 10 10 10 12 12 13 13 10 10 13 13 15

25th 9 9 10 10 7 7 7 9 9 10 10 10 10 12 13

30th 9 6 6 7 7 7 7 7 7 7 9 9 10 10 10

40th 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7

50th 6 6 6 6 6 6 3 3 4 4 4 4 4 4 6

60th 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4

70th 2 3 3 3 3 3 3 3 3 3 3 3 3 3 4

75th 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3

80th 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3

85th 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3

90th 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3

95th 1 2 2 2 2 2 2 2 2 2 2 2 3 3 3

97.7th 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2

C
A

P
A

C
IT

Y 
(M

at
er

n
al

 C
ir

cu
m

fe
re

n
ce

, i
n

 P
er

ce
n

ti
le

)

DEMAND (Fetal Head Circumference, in Percentile)



172 
 

Effect of Perineal Fascia Rupture on Duration of the Active Second Stage of 

Labor and Levator Ani Tear Risk 

There is a fascia that lies just superior to the perineal body, which has been observed to have 

ruptured following birth, but which is not commonly studied.  This appendix tests the 

hypothesis that an intact fascia shields the pubovisceral muscle (PVM) from stress, and that a 

rupture in the fascia will correspond to a sudden increase in stress in the PVM, resulting in a 

shorter active second stage and an increased risk of PVM tear. 

Methods 

Simulation methods used here are the same as those used in Chapters 4, 6, and 7, with the 

addition of a fascia that experiences loading by the fetal head in parallel with the PVM. This 

fascia is assumed to have 33% the initial cross sectional area of the PVM, and a failure criteria 

half that of the PVM, or a stress*strain product of 1.35 MPa.  These values were chosen as 

fractions larger then this allow the fascia to shield the PVM enough to prevent progress on 

additional pushes in particularly long second stages, and values lower than this become trivial 

in their effect on forces felt by the PVM. Both the PVM and the fascia were assumed to be 

incompressible. Due to differences in resting anatomy, strains and resulting changes in cross 

sectional area were not identical between the PVM and the fascia. Therefore, the ratio 

between their two cross sectional areas was allowed to change throughout the simulations. 

This fascia was modeled as a quasilinear visco-elastic material with the same form and co-

efficient values as those found in Chapter 3.  Using MRI based anatomical measurements, the 

fascia was assumed to be anchored laterally to the pelvis, near the anterior-posterior midline, 
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with an initial length of 11.7 cm in the average mother. Initial length was assumed to scale 

linearly with maternal capacity.  

Results and Discussion 

We were not able to support our hypothesis that allowing the fascia to rupture would result in 

an increase in PVM tear rates, as similar results were observed for the “rupture” and “no-

rupture” cases (Figure A6.15).  This could be the result of an increased viscous relaxation effect 

following rupture. In the case of rupture, the fascia is no longer able to shield the PVM from 

tension due to the fetal head, as a result, the stress on pushes subsequent to the rupture are 

higher on average than in the non-rupture case. This increase in stress in the pushes prior to 

fetal head crowning increase the magnitude of the viscous relaxation response. For the final 

contraction, during which the maximum stress*strain product in reached, it appears that the 

increase in stress due to a reduction in shielding from the fascia is largely balanced out by an 

increase in viscous relaxation (decreasing stress in the tissue). As a result, we could not support 

our hypothesis that rupture would result in an increase in PVM tear risk.  
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Fascia allowed to rupture at 1.35 MPa 

 
Fascia not allowed to rupture 

 
Figure A6.15 – Predicted levator state parameter across pairings of maternal capacity-to-fetal 
head demand are shown for scenarios where the fascia is allowed to rupture when the product 
of stress*strain reaches 1.35 MPa (upper) and when fascia is not allowed to rupture (lower). 
The intensity of the (red) shading indicates the extent by which the predicted PVM tear 
threshold is exceeded. The dashed line indicates this threshold for PVM tears.  

 

In simulations where the fascia ruptured, the active second stage of labor did not progress 

more rapidly than in no-rupture simulations for the same capacity-demand pairing (Figure 

A6.16).  Therefore, we were not able support our hypothesis that allowing the fascia to rupture 

would result in a decrease in the duration of the active second stage. This could be due to the 

2.3rd 5th 10th 20th 25th 30th 40th 50th 60th 70th 75th 80th 90th 95th 97.7th

2.3rd 1.2 1.4 1.6 1.7 1.6 1.7 2.1 2.1 2.4 2.3 2.4 2.5 3.0 3.4 3.7

5th 1.0 1.0 1.2 1.3 1.4 1.5 1.6 1.8 1.9 1.7 2.1 2.0 2.4 2.6 2.9

10th 0.7 0.8 1.0 1.1 1.1 1.1 1.2 1.4 1.4 1.5 1.5 1.6 1.7 2.1 2.3

15th 0.7 0.7 0.8 0.8 1.0 0.9 1.0 1.1 1.1 1.3 1.2 1.4 1.3 1.8 1.9

20th 0.6 0.6 0.7 0.8 0.8 0.9 0.9 1.0 1.0 1.1 1.2 1.2 1.3 1.5 1.6

25th 0.5 0.6 0.6 0.7 0.8 0.7 0.9 0.9 0.9 1.0 1.1 1.1 1.3 1.2 1.5

30th 0.5 0.5 0.6 0.6 0.7 0.8 0.8 0.8 0.9 1.0 0.9 1.0 1.2 1.3 1.3

40th 0.4 0.5 0.5 0.5 0.6 0.6 0.7 0.7 0.7 0.7 0.8 0.9 1.0 1.1 1.2

50th 0.3 0.4 0.4 0.5 0.5 0.5 0.6 0.6 0.7 0.7 0.7 0.8 0.9 0.9 1.0

60th 0.3 0.4 0.4 0.4 0.4 0.5 0.5 0.5 0.6 0.6 0.6 0.7 0.7 0.7 0.9

70th 0.2 0.3 0.3 0.4 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.6 0.6 0.7 0.7

75th 0.2 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.5 0.7 0.7

80th 0.2 0.2 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.5 0.5 0.5 0.6 0.6

85th 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.4 0.3 0.4 0.4 0.5 0.4 0.5 0.6

90th 0.2 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.5 0.5 0.5

95th 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.4

97.7th 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.2 0.3 0.3 0.4 0.4
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2.3rd 5th 10th 20th 25th 30th 40th 50th 60th 70th 75th 80th 90th 95th 97.7th

2.3rd 1.2 1.3 1.5 1.6 1.7 1.8 2.0 2.1 2.3 2.4 2.4 2.6 3.0 3.2 3.6

5th 1.0 1.0 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.8 2.0 2.0 2.2 2.6 2.6

10th 0.7 0.8 1.0 1.1 1.1 1.1 1.2 1.3 1.2 1.5 1.5 1.6 1.7 2.0 2.2

15th 0.7 0.7 0.8 0.8 1.0 0.9 1.0 1.1 1.1 1.3 1.2 1.4 1.6 1.7 1.7

20th 0.6 0.6 0.7 0.8 0.8 0.9 0.9 1.0 1.0 1.1 1.2 1.2 1.3 1.5 1.6

25th 0.5 0.6 0.6 0.7 0.8 0.7 0.9 0.9 0.9 1.0 1.1 1.1 1.3 1.2 1.5

30th 0.5 0.5 0.6 0.6 0.7 0.8 0.8 0.8 0.9 1.0 0.9 1.0 1.2 1.3 1.3

40th 0.4 0.5 0.5 0.5 0.6 0.6 0.7 0.7 0.7 0.7 0.8 0.9 1.0 1.1 1.2

50th 0.3 0.4 0.4 0.5 0.5 0.5 0.6 0.6 0.7 0.7 0.7 0.8 0.9 0.9 1.0

60th 0.3 0.4 0.4 0.4 0.4 0.5 0.5 0.5 0.6 0.6 0.6 0.7 0.7 0.7 0.9

70th 0.2 0.3 0.3 0.4 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.6 0.6 0.7 0.7

75th 0.2 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.5 0.5 0.4 0.5 0.5 0.7 0.7

80th 0.2 0.2 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.5 0.5 0.5 0.6 0.6

85th 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.4 0.3 0.4 0.4 0.5 0.4 0.5 0.7

90th 0.2 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.5 0.5 0.5

95th 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.4
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fact that the fascia ruptured too late in labor for noticeable duration effects to occur, discussed 

below. 

 

Fascia allowed to rupture at 1.35 MPa 

 
Fascia not allowed to rupture 

 
Figure A6.16 - Predicted duration of the active second stage across pairings of maternal 
capacity-to-fetal head demand are shown for scenarios where the fascia is allowed to rupture 
when the product of stress*strain reaches 1.35 MPa (upper) and when fascia is not allowed to 
rupture (lower). The intensity of the (blue) shading indicates the extent by which the clinical 
threshold for intervention of 180 minutes is exceeded. The dashed, dot-dashed, and dot-dot-
dashed lines indicate 3 hour, 2 hour, and 1 hour cutoffs respectively. 

 

2.3rd 5th 10th 20th 25th 30th 40th 50th 60th 70th 75th 80th 90th 95th 97.7th

2.3rd 142 148 160 175 181 187 196 208 217 232 241 250 277 304 340

5th 100 106 112 121 124 127 133 139 145 154 157 163 175 190 205

10th 73 76 79 85 88 91 94 97 100 106 109 112 121 127 136

15th 58 61 64 70 70 73 76 79 82 85 88 88 88 100 106

20th 49 52 55 58 61 61 64 67 70 73 73 76 82 85 91

25th 43 46 49 52 52 55 55 58 61 64 64 67 70 76 79

30th 37 40 43 46 46 46 49 52 52 55 58 58 61 64 70

40th 31 31 34 37 37 37 40 40 43 46 46 46 49 52 55

50th 25 25 28 28 31 31 31 34 34 37 37 38 40 43 46
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In many simulations where the fascia ruptured, it did so on the very last contraction, as the 

fetal head crowns, when both stress and strain were at their highest.  However, in simulations 

with especially small starting maternal anatomy (low maternal capacities) and large fetal head 

demands, the stress and strain required for progress to occur early on during labor were large 

enough that the fascia sometimes ruptured one or two contractions (3 or 6 minutes) before the 

end of the active second stage (Figure A6.17).  Additionally, it will be noted that there are some 

gaps in Figure A6.17 between predicted fascia ruptures.  These gaps corresponded to pairings in 

which the fetal head just barely failed to deliver by the end of a contraction, allowing for 

further stress relaxation prior to the final contraction that was sufficient to prevent a fascia 

rupture. 

 
Figure A6.17 – The time point when the fascia ruptured, as a fraction of the total duration of 
the active second stage is shown across pairings of maternal capacity-to-fetal head demand.  

 

Conclusions 

 Allowing the fascia to rupture does not appear to increase the risk of a PVM tear. 

2.3rd 5th 10th 20th 25th 30th 40th 50th 60th 70th 75th 80th 90th 95th 97.7th
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5th 100% 100% 100% 100% 100% 100% 100% 100% 100% 98% 100% 100% 100% 100% 100%

10th 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

15th 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
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 Fascia ruptured late in the active second stage, at a maximum of six minutes prior to 

fetal head crowning. 

 Due to the late occurrence of fascia rupturing, there was no observable effect on the 

duration of the active second stage. 
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Chapter 7: A Biomechanical Simulation of the Effect of Pre-
Labor Distension of the Lower Birth Canal on the Predicted 

Duration of the Active Second Stage and the Risk for Levator 
Muscle Tear  

 
 

Paige V Tracy1, John O L DeLancey2, James A Ashton-Miller3 
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3 Department of Mechanical Engineering, University of Michigan 

 
 

7.1 Abstract 

The goal of this paper was to explore the effect of distension of the lower birth canal to 8 cm 

diameter during the first stage of labor on both the predicted duration of labor and the risk for 

levator muscle tear.  We used a previously developed viscoelastic model of the lower birth 

canal to simulate the effects of varying the magnitude and time course of the distension force, 

final canal diameter, and time between full distension and the beginning of the active second 

stage (delay duration). The results showed that increasing the distension force decreases the 

time to reach the target distention by up to 43%, but increased the risk of levator tear by up to 

12%, relative to distension with a lower force. Intermittent force application increased the time 

to target distension. Increasing the target distension diameter decreased both the duration of 

the active second stage; however, it markedly increased the time needed for distention. We 
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conclude the primary expected benefit of pre-distending the lower birth canal would be a 

reduction in the predicted duration of the active second stage of labor.  

 

7.2 Introduction 

There have been several attempts to dilate the lower birth canal prior to the second stage of 

labor in the hopes of easing vaginal birth.  For example, gourds of increasing size have 

traditionally been used in East Africa to gradually distend the perineum [1, 2, 3]. Based on this 

observation, a product, the Epi-No was developed to pre-dilate the birth canal via a silicon 

balloon in the weeks leading up to labor [2, 3]. Finally, a recent device has been developed that 

extends four panels radially outward to expand the lower birth canal using a constant force 

spring [1]. The ability of the latter device to apply a known distention force opens the way for 

biomechanical simulations to study the effect of variations in distension force and final 

distension diameter on the resulting length of the second stage. These simulations can be 

performed using methods that have previously been used to study biomechanical factors 

affecting the risk of predicted pubovisceral muscle (PVM) tears as well as labor duration.  The 

PVM forms a U-shaped sling around the lower birth canal which the fetal head must distend 

and pass through in order to be delivered [4, 5, 6]. 

The ability to study PVM tears as an outcome is relevant because these tears are linked to the 

later development of pelvic organ prolapse [7, 8, 9], for which approximately 10% of women 

eventually require surgery [10, 11, 12, 13, 14]. To simplify predicted PVM tears, we will report 

results using a score termed the “levator state parameter”. This parameter accounts for the 
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roles of both stress and strain in predicting when a tear will occur, and is discussed in greater 

detail in the Methods section. Using this parameter, a value greater than one indicates a 

predicted PVM tear. 

The duration of the active second stage is a clinically important outcome variable because long 

labors are linked to birth complications such as low Apgar scores, low umbilical artery pH, 

higher rates of resuscitation and ICU admission, higher rates of hypoxic-ischemia 

encephalopathy, cesarean procedures for non-reassuring fetal heart tones, as well as maternal 

risk for chorioamnionitis and post-partum hemorrhage [15, 16, 17, 18, 19]. So if distention of 

the distal birth canal can shorten the active second stage or result in a higher rate of vaginal 

birth without operative intervention, this would be a positive outcome, particularly if the risk 

for levator tears is also reduced.  This paper uses biomechanical model simulations to address a 

knowledge gap:  whether lower birth canal distention prior to the active second stage of labor 

could have beneficial effects, and if so, under what conditions. These models allow specific 

situations to be manipulated in ways that clinical testing cannot control.  Given the viscoelastic 

nature of the lower birth canal (Chapter 3), we tested the primary hypothesis that increasing 

the final distension diameter of the lower birth canal reduces the duration of the active second 

stage. We also tested the secondary hypotheses that increasing the magnitude of the 

distension force decreases the time to target birth canal diameter, and that the intermittent 

application of the distension force would reduce the risk of levator tear. 
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7.3 Methods 

Birth Simulations 

We have previously quantified the relationship between the amount of force experienced by 

the birth canal tissue normalized over the wall tissue cross sectional area (stress) and the 

current length of the canal tissue relative to its resting length (strain). This stress–strain 

relationship was identified from data resulting from the clinical trial of a device designed for the 

purpose of distending the lower birth canal prior to the second stage of labor [1].  Full details 

on how this viscoelastic relationship was quantified using the force -distension data acquired 

using the device have been published previously (Chapter 3). In brief, we employed a five-

parameter Fung model designed for use in characterizing soft tissue response to stretch [20]. 

The main results showed that most of the variation in canal material properties among mothers 

was found to be in the long time constant (Chapter 4).  In the present simulations, we therefore 

used the median value of this long time constant for all simulations. All simulations were run in 

MATLAB R2015a using a time step size of 0.1 seconds. This theoretical study was exempt from 

institutional review board review. 

Birth simulations were run by studying lower birth canal diameter in three phases:  the first was 

a period of birth canal distention using a constant distension force to achieve the target canal 

diameter (during the first stage of labor), the second was a delay interval characterized by 

setting the magnitude of the distention force to zero, and the third was simulated active second 

stage of labor during which the fetal head is actively pushed through the lower birth canal.  The 

duration of time after target distension was achieved and before the beginning of the active 
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second stage of labor (delay duration) was varied between 0 minutes, 10 minutes, 1 hour, 3 

hours, 5 hours and 10 hours, and was controlled at 60 minutes in simulations where delay 

duration was not the independent variable of study. The magnitude of the distention force was 

varied between three nominal values corresponding to the settings available on the Materna 

Dilator Device: 28 N (low force), 35 N (medium force) and 42 N (high force), and was controlled 

at 28 N in simulations when distention force was not the focus of the simulations.  Likewise, the 

effect of target lower birth canal distension diameter was simulated by varying it from 5 to 10 

cm in 0.5 cm increments, but was controlled at 8 cm in simulations in which the target canal 

distension diameter was not the parameter of interest, as this corresponds to original device 

parameters. In simulations when an intermittent distention force was employed, intervals of 

constant force lasting 1, 5, 10, and 20 minutes were employed with correspondingly long 

intervals of zero force application interposed.  

With the exception of the intermittent loading scenario, simulations of birth canal distention 

were driven by a constant force acting radially outward on the PVM and sub-pubic arch. Due to 

the configuration of the opposing panels, the force settings described above were divided by 

two in order to account for the force applied by each panel. This constant force was applied 

continuously until the target distension threshold was reached whereupon the force was 

removed. After removal and before the second stage of labor, it was assumed that no 

distention forces acted on the PVM during the delay interval. For intermittent loading 

simulations, for each loading cycle, a constant distention force was applied, followed by an 

interval of the same duration with zero force applied. This loading cycle was repeated until the 

target birth canal diameter had been achieved. 



183 
 

The initial diameter of the maternal lower birth canal was estimated for the 15th, 20th, and 50th 

percentile female based on the Tracy et al. (2016) geometric model. The 15th and 20th 

percentile mothers were chosen as they are close to the threshold for clinically observed PVM 

tear rates. This model considered the maternal birth canal capacity to be determined by the 

subpubic arch angle, PVM origin location, and PVM length, with a portion of the PVM wrapping 

around the pelvis due to descent of tissues during birth [21]. Fetal demand was represented as 

the 50th percentile fetal head with average molding [21]. The cross sectional area of the molded 

fetal head in the plane in which it presents to the urogenital hiatus was assumed to be circular. 

The PVM was modeled as a single incompressible element using a five parameter Fung 

Quasilinear Viscoelastic model [20]; it was represented with an initial cross-sectional area of 1.2 

cm2 on each side [22], with strain only in the circumferential direction. As a result, uniform 

stress and strain distributions were assumed. 

Simulations of vaginal birth during the second stage were driven by intrauterine pressure as an 

input, as measured in previous experiments: this included a 2.6 kPa basal intrauterine pressure, 

an 8.5 kPa rise during contractions, and an additional 10.5 kPa rise during each volitional push 

[23]. Contractions and pushes were each modeled as the first half of one period of a cosine 

wave. Specifically, contractions were assumed to last for 90 seconds, followed by 90 second 

rest; three 10 second pushes were assumed per contraction, each modeled as the first half of a 

20 second sinusoidal wave, with each followed by 10 seconds of rest [23, 24, 25].  Tension in 

the PVM was assumed to be the result of abdominal pressure acting on the cross-sectional area 

of the fetal head, resulting in a contact force between the fetus and the PVM (Figure 7.6S).  

Zero friction between the fetal head and the PVM was assumed. 
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We quantified the likelihood of a PVM tear using a ‘levator state parameter’, whereby a value 

greater than 1 indicates that the threshold for injury has been exceeded.  This parameter was 

based on the product of stress multiplied by strain as a reasonable criterion for injury in vaginal 

tissue and ligamentous injury; an exact value of 2.7 MPa for the threshold for injury was chosen 

based on the measured conditions for the ultimate failure of pregnant ovine tissue estimated 

graphically [26, 27, 28, 29, 30, 31, 32].  

In the following results section, the outcomes are presented in order that they occur during a 

birth: the time to reach the target distension diameter, the duration of the active second stage, 

and the levator tear outcome. 

7.4 Results 

The time to reach target canal distension was influenced by both the magnitude of the 

distension force and duty cycle (Figure 7.1).  These results support our secondary hypothesis 

that increasing the distension force decreased the time to target distension, effectively 

increasing the rate of distension.  For example, increasing the distension force from 28 N to 42 

N resulted in a 43% decrease in the time to reach target distension, while increasing from 28 N 

to 35 N resulted in a 27% decrease in this variable.  

For the case of intermittent force application, increasing the duration of force application in 

each loading cycle resulted in a decrease in the time needed to reach the target distension by 

up to 22%.  However, all intermittent loading cases lasted considerably longer than the 

constant distension simulations, with the duration increasing up to 270% relative to a constant 

distension control. 
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The time to reach the target distension increased markedly with target distention diameters 

greater than approximately 8 cm. The effects observed for varying distension force and 

intermittent loading scenarios were also most distinct at these larger target distension 

diameters. 

 
Figure 7.1 - Time to target distension with increasing distension force (upper row – A, B) and 
intermittent loading cycle duration (lower row – C, D).  The plots on the left (A,C) vary the 
target distension, while in the plots on the right (B,D), target distension was held constant at 8 
cm (green bar on left plots – A,C).  All results are for the 50th percentile fetal demand. The 15th 
percentile maternal capacity is reported on the left, while the 15th, 20th, and 50th percentile 
maternal capacity cases are reported on the right. 

 

The duration of the active second stage decreased proportionately with increasing target 

distension diameter for the 10 min delay duration case (Figure 7.2), supporting our main 

hypothesis that increasing the final distension diameter of the lower birth canal reduces the 

A 
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duration of the active second stage.  This effect became less pronounced as the duration of 

time between device removal and the beginning of the active second stage (delay time) was 

increased, with almost no benefits on active second stage duration being observed for the 10 

hour delay duration case. A reduction in the duration of time between device removal and the 

beginning of the active second stage resulted in up to a 76% decrease in the duration of the 

active second stage. This decrease in the duration of active second stage for shorter delay 

durations resulted in a consistent trend for the 15th, 20th, and 50th maternal capacity cases, 

when each case was normalized by a no-pre-distension control for each maternal capacity 

(Figure 7.2, lower left).  

Intermittent loading cycle duration also had a small effect on the duration of the active second 

stage (Figure 7.5S).  This effect was primarily apparent only for the 1 minute intermittent 

loading case, for which there was an approximately 10% decrease in the duration of the active 

second stage when compared to both constant dilation and longer intermittent loading cycle 

duration cases. 
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Figure 7.2 - Duration of active second stage with increasing delay interval length.  Plot A varies 
the target distension, while in the remaining plots, target distension was held constant at 8 cm 
(green bar in A). All results are for the 50th percentile fetal demand. The 15th percentile 
maternal capacity is reported in plot A, while the 15th, 20th, and 50th percentile maternal 
capacity cases are reported in the remaining plots. In plot C, duration values are normalized by 
a no-pre-distension control for each maternal capacity. 

 

The levator state parameter, an indicator for predicted PVM tear risk, showed only a slight 

dependence on delay duration, distension force as well as intermittent loading cycle duration 

(Figure 7.3).  The most consistent of these was the magnitude of the distension force, with up 

to a 12% increase in levator state parameter observed when distension force was increased 

from 28 N to 42 N.  Intermittent loading cycles 1 minute in duration increased the levator state 

parameter by approximately 10%. Loading cycles of longer duration had no distinct effect on 

the levator state parameter.  As a result, we were unable to strongly support our secondary 

hypothesis that the intermittent application of the distension force would reduce the risk of 

A B 
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levator tear. However, this was primarily a case of the 1 minute intermittent loading case 

having increased levator state parameter values relative to no-pre-distension controls and 

longer intermittent loading cycle duration cases. A delay duration of approximately 1 hour led 

to a decrease in levator state parameter values of approximately 15%. 

 
Figure 7.3 - The value for the levator state parameter for increasing delay durations (upper row 
– A,B), distension force (middle row – C,D), and intermittent loading cycle duration (lower row – 
E,F).  The plots on the left (A,C,E) vary the target distension, while in the plots on the right 
(B,D,F), target distension was held constant at 8 cm (green bar on left plots).  All results are for 
the 50th percentile fetal demand case. The 15th percentile maternal capacity is reported on the 
left, while the 15th, 20th, and 50th percentile maternal capacity cases are reported on the 
right. 
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7.5 Discussion 

To our knowledge, this is the first biomechanical study to consider the effect of the theoretical 

pre-distension of the birth canal during the first stage of labor and its effects on labor 

outcomes. A large prospective study varying all of the parameters studied here would not be 

feasible due to cost and undue subject burden. However, biomechanical modeling lends itself 

to exploring which parameters might be important without creating risk of physical or 

psychological harm to the patient. 

Our primary hypothesis that increasing the final distension diameter of the lower birth canal 

reduces the duration of the active second stage was supported when the duration of delay 

prior to the beginning of the active second stage was around an hour, but this reduction in the 

duration of the active second stage became less pronounced as the delay phase increased in 

duration and the tissues had time to recoil towards their original state. Our secondary 

hypothesis that increasing the magnitude of the distension force decreases the time to target 

birth canal diameter was also supported. However, the hypothesis that the intermittent 

application of the distension force would reduce the risk of levator tear was rejected, as this 

scenario resulted in up to a 270% increase in the time to reach the target distension with no 

observable benefits to the duration of the active second stage or to levator tear risk. 

The maximum achievable target distension varied depending on distension force and loading 

pattern.  For constant force application scenarios, the maximum achievable target distension 

was 9, 9.5, and 10 cm for the 28, 35, and 42 N distension forces respectfully. Similarly, 

introducing intermittent loading resulted in the maximum achievable target distension being 
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reduced to 8 cm for scenarios with a 28 N distension force. Both of these phenomena result 

from a plateau or halting of progress after a few hours of distension loading. This illustrates that 

strategic choice of distension force magnitude and loading timing can influence the likelihood 

of achieving desired distension results. 

The case of over-distending the birth canal, so that the target distension went ~ 0.5 cm beyond 

the diameter of the fetal head, was also simulated. Results showed that this resulted in an 

average decrease of 2% in the stress*strain metric when compared to control (no-pre-

distension) for cases of 3 – 10 hours delay before the beginning of the active second stage. For 

the case of 60 minutes delay, this average decrease was 50% when compared to control. The 

reason for this decrease under short delay periods is that the tissue has experienced less recoil, 

or shortening, prior to the onset of the second stage and, as a result, has very little elongation 

necessary at the time of birth. It should be noted that the maximum instantaneous 

stress*strain value is not exceeded during the distension phase because the distension force 

(28 N, 35 N, or 42 N) is appreciably lower than the approximate force of the intrauterine 

pressure acting on the fetal head (approximately 150 N, based on 20 kPa intrauterine pressure 

at peak of contraction and 5 cm fetal head radius). However, if the assumption that the product 

of stress*strain determines injury is incorrect, and injury is instead purely strain determined, 

the 10 cm target distension would, in that case, be increasing risk for a levator tear. 

A limitation of this study was that the levator state parameter fluctuated depending on the 

timing of fetal head crowning during a contraction. For example, if a mother is just barely able 

to deliver late in a contraction, the stress felt in the PVM, which contributes to the levator state 
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parameter, will be appreciably higher than if the mother waits till the subsequent contraction, 

allowing for more viscous relaxation of the PVM to occur. For target distension diameters less 

than 9 cm, levator state parameter dependences on target distension were outweighed by the 

normal variation observed due to differences in the timing of crowning during a contraction. 

When the target distension diameter was greater than or equal to 9 cm, a distinct decrease in 

levator state parameter values was observed for delay times of approximately 1 hour or less, 

but not for longer delay periods. 

A second limitation is that delay duration cannot be controlled. However, its influence on the 

ability to achieve desired outcomes should be taken into account in planning this intervention.  

Having the dilation as close to the time a woman starts to push will be important and clinical 

steps to optimize this timing is important. It also suggests that if labor is slower than 

anticipated, a second application of the device might be warranted.  The decrease in the 

duration of the active second stage, following pre-distension, which is distinct for 10 minute 

and 1 hour delay durations, is still noticeable for births after a 3 hour delay period. However, 

this effect is diminished in the 5 hour delay duration case, and completely absent for the 10 

hour delay period case. Similarly, levator state parameter results suggest that a delay duration 

of approximately 1 hour is optimal; however, it is the effect on the duration of the active 

second stage of labor that is dominant.  In general it would be ideal to wait until a few hours 

before the onset of the second stage of labor before pre-distension; however, such a timeline 

cannot be exactly predicted, and final priority should go to ensuring that the device has been 

safely removed before the second stage begins. 
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For these simulations, we assumed an inexhaustible mother.  Because we did not assess the 

energy expenditure to deliver the baby, we cannot determine whether the shortened second 

state would allow more women to deliver vaginally by allowing delivery before maternal 

exhaustion reduces pushing efforts.  It is reasonable to assume that a shorter second stage will 

allow more women to deliver without the need to resort to forceps or vacuum or to cesarean 

section. All of these interventions increase risks for mother and infant.  Further simulations 

should allow these important factors to be assessed. 

7.6 Conclusions 

1) Increasing the target distension diameter of the birth canal was predicted to shorten the 

active second stage of labor, an effect that could be of particular benefit in reducing 

complications associated with long labors. 

2) Increasing birth canal distension force results in a tradeoff between decreased time to target 

distension, corresponding to lower patient burden, but a slight increase in predicted PVM tear 

risk. 

3) Intermittent loading increased the time to reach the target distension, with no observable 

benefit to the duration of the active second stage or levator tear risk. 
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7.8 Appendix: 

 
Figure 7.4S - Time to target distension with increasing delay duration.  Plot A varies the target 
distension, while in plot B, target distension is held constant at 8 cm (green bar on left plot). All 
results are for the 50th percentile fetal demand. The 15th percentile maternal capacity is 
reported in plot A, while the 15th, 20th, and 50th percentile maternal capacity cases are 
reported in plot B. 

 

 
Figure 7.5S - Duration of active second stage with increasing distension force/rate (upper row – 
A,B) and intermittent loading cycle duration (lower row – C,D).  The plots on the left (A,C) vary 
the target distension, while in the plots on the right (B,D), target distension was held constant 
at 8 cm (green bar in left plots).  All results are for the 50th percentile fetal demand. The 15th 
percentile maternal capacity is reported on the left, while the 15th, 20th, and 50th percentile 
maternal capacity cases are reported on the right.  
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7.9 Calculations 

PVM strain, εPVM, was assumed to be related to general birth canal strain, εBC, based on the 

ratio between their initial circumferential lengths, lPVM and lBC respectively [21]. 

𝜀𝑃𝑉𝑀 =
𝑙𝐵𝐶

𝑙𝑃𝑉𝑀

(𝜀𝐵𝐶 + 1) − 1 

Intrauterine pressure was assumed to be related to circumferential stress in the PVM U-shaped 

sling, based on the following calculations (Figure 7.4S): 

𝑇 = 𝑡𝑒𝑛𝑠𝑖𝑜𝑛 𝑖𝑛 𝑃𝑉𝑀 

�̃� =
𝑇

2𝜋𝑟
= 𝑇𝑒𝑛𝑠𝑖𝑜𝑛/𝑙𝑒𝑛𝑔𝑡ℎ 

Balancing “Vertical” Forces:      �̃�2𝜋𝑟 ∗

𝑠𝑖𝑛(𝛼) = 𝑃𝑎𝑏𝜋 ∗ 𝑟ℎ
2 

�̃� =
𝑃𝑎𝑏 ∗ 𝑟ℎ

2

2𝑟 ∗ 𝑠𝑖𝑛(𝛼)
 

Balancing “Horizontal” Forces:     

𝜎𝑃𝑉𝑀2 ∗ 𝐴𝑃𝑉𝑀 = �̃�2𝑟 ∗ cos(𝛼) 

𝜎𝑃𝑉𝑀 =
�̃� ∗ 2𝑟 ∗ cos(𝛼)

2𝐴𝑃𝑉𝑀

=
𝑃𝑎𝑏𝑟ℎ

2

2𝐴𝑃𝑉𝑀 tan(𝛼)
 

Based on image analysis of the non-uniformity of the newborn fetal head, a maximum alpha 

value of 0.68 radians was assumed. 

Piu 

α 

T 

Figure 7.6S - Intrauterine pressure (blue arrow) 
creates a force distributed over the fetal head 
(grey circle).  The tension (T) in the PVM (dark 
blue band low on head) was related to 
intrauterine pressure using the radius of the fetal 
head (light blue lines) and the angle between the 
midline of the fetal head and the contact point of 
the PVM on the fetal head (alpha). 
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Chapter 8: General Discussion  

 

Levator ani muscle tears continue to affect approximately 15% of women delivering vaginally, 

and have been linked to the later development of pelvic organ prolapse [1, 2, 3], for which 

approximately 10% of women later need surgery (See Chapter 1 for review) [4, 5, 6, 7, 8].  Apart 

from older maternal age [9], clinicians have not had any reliable predictors, prior to the onset of 

labor, with which to predict who is at highest risk for levator tears during the second stage of 

labor.  The use of computer simulation to predict, a priori, several outcomes of the second 

stage of labor is a novel aspect of this dissertation.  These include both the duration of the 

second stage of labor and the risk for a levator tear.  Due to the quasi-unidimensional nature of 

our modeling approach, we have been able to greatly reduce simulation generation and 

computational time, making it possible to assess outcomes for a large variety of maternal and 

fetal geometric pairings.  Additionally, the tabular form of the simulation results harnesses the 

predictive capabilities of the simulations without maternal fetal medicine personnel, or 

midwives needing to invest in the training necessary to run such simulations or wait for the 

computations to run.  Essentially, a clinician needs an ultrasound machine, with which they are 

already familiar, and the ability to make three key measurements: subpubic arch angle, 

urogenital hiatus sagittal diameter, and fetal head circumference. Armed with these three 

numbers, they can then locate the cell in our results “look up” table that best represents the 
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maternal and fetal geometric pairing before them.  Admittedly, since these measurements are 

presently new for this purpose, some training will be necessary to help these clinicians identify 

the correct planes in which to measure the subpubic arch angle and the urogenital hiatus, 

which presently are confused in the literature with the more common measurements of the 

retropubic arch angle and the levator hiatus, respectively.  But once trained, these 

measurements could become as routine as the measurement of fetal head circumference is 

currently.  

In Chapter 2, a novel framework was introduced for guiding a conversation about how we may 

better evaluate personalized maternal levator tear risk.  In a capacity-demand analysis, we 

started with population data for the range in fetal head diameters and then considered the 

main factors that affect maternal birth canal diameter calculating how well a fetal head of any 

given size will fit through the range of available birth canal diameters.  The resulting predictions 

revealed that maternal capacity plays a larger role than fetal head demand in determining 

levator tear risk.  Therefore, any ultrasound measurements should focus first on maternal 

measurements, as fetal head measurements may only provide added insight if the mother is 

near the 20th percentile. Additionally, a novel insight concerned the reason that levator tears 

are primarily observed in the pubovisceral muscle (PVM) portion and not in the puborectal 

(PRM) portion of the muscle.  This difference is the result of the PVM having to wrap about the 

lower pelvic rami during the second stage of labor, because the PVM origins are higher on the 

pelvis.  Our anthropometric analysis reveals that this wrapping shortens the length of the PVM 

available to pass around the fetal head as it descends along the Curve of Carus. The PRM, 

having a different line-of-action because it originates lower down from the perineal membrane, 
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is able to swing down in a manner similar to a bucket handle without needing to wrap around 

any bone that would cause a loss in the length of the loop of muscle available for the fetal head 

to pass through. Additionally, it is possible that friction involved in the PVM wrapping around 

the pelvis could affect injury risk, though we have not been able to assess this using our current 

modeling approach, which neglect friction.  A limitation of Chapter 2 was the slight over-

prediction of PVM tear prevalence in smaller women.  This limitation was directly addressed in 

the next Chapter. 

In Chapter 3, we hypothesized that the inclusion of viscoelastic effects in our Chapter 2 analysis 

would lead to a reduction in tear rates due to the tissue relaxation that occurs over the multiple 

pushes and resting periods of the second stage of labor. In order to accurately account for 

viscoelastic effects, it was necessary to develop a way to validate a viscoelastic constitutive 

model for the term pregnant human birth canal. As discussed in Chapter 3, previously data on 

this topic were limited to ex vivo data for pregnant rats, squirrel monkeys, and sheep, but as of 

yet no human data were available. Fortuitously, the very force-displacement data necessary to 

quantify the material properties of the term pregnant human birth canal had recently been 

collected as part of a clinical trial for a device designed to pre-distend the birth canal to 8 cm 

prior to the second stage of labor.  The temporal relationship between the force and the 

displacement data was not part of the trial outcome, which instead focused on standard clinical 

factors such as levator tear but also the temporal rate at which the canal distended.  Our 

realization that a constant force had been used to cause the canal distention meant that these 

were unique and scientifically very valuable data describing the force-displacement-time 

behavior of the lower birth canal in healthy human nulliparas.  We therefore asked the 
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company and clinical team whether they would share the data for a secondary data analysis on 

viscoelasticity under a data use agreement, to which they graciously agreed.  Using birth 

simulations based on this constitutive model, we were able to refine the geometric predictions 

in Chapter 2 to not only consider risk of PVM tear; we now also could estimate the duration of 

the active second stage of labor.  This latter variable is clinically relevant as an indicator for 

interventions such as forceps or vacuum instrumentation, as well as cesarean section. A 

primary limitation to Chapter 3 was that our results were only based upon data from only one 

subject.  That limitation is removed in the next Chapter, where we consider a cohort of 26 

participants.  

In Chapter 4, we used the force-length-time data to conduct the first analysis of the viscoelastic 

response of the lower birth canal to distention in 26 nulliparous women during the first stage of 

labor.  We found marked variation across these women, especially in the long time constant, τ2, 

of our Chapter 3 constitutive model. This variation among the 26 woman cohort took the form 

of a lognormal distribution.  We then simulated births for the median, as well as the lower and 

upper extrema, corresponding to 1/20th and 20X the median long time constant value. From 

these simulations, we were able to identify a narrow uncertainty region for the cutoff for 

levator tear predictions depending upon a specific mother’s long time constant value (τ2). 

However, the more distinct effect was on the duration of the active second stage, with a larger 

value of the long time constant corresponding to longer labors. Using the original in vivo 

distension data, we found that measuring the net increase in distension from the 5 minute time 

point to a point approximately 10 minutes later provided a reasonable correlation with this long 

time constant, τ2. This information has practical importance because it could be used to 
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estimate an individual’s long time constant, τ2, value during the first stage of labor, allowing for 

a more informed delivery plan. A primary limitation is that it may not be meaningful to measure 

this prior to the onset of labor, because the measurement requires distension of the birth 

canal, and it has been hypothesized that the material properties of the birth canal may only 

change shortly before the onset of labor [10]. In the following chapter, we consider how our 

simulation-based PVM tear predictions compare to clinical occurrence. 

In Chapter 5, we employed antenatal ultrasounds, paired with postnatal PVM tear diagnoses, to 

evaluate our model’s ability to predict the duration of the second stage of labor as well as PVM 

tears. Our results showed that we were able to predict up to 55% of the variation in the 

duration of the second stage of labor for the median age group, and 22% of this variation when 

considering outlying age groups. This is remarkable considering that there are many factors 

such as fetal head presentation, maternal discomfort, and clinician instruction which affect the 

duration of the second stage and which are not able to be predicted prior to labor. When 

considering PVM tears, we were only to predict one of two major tears, and failed to predict 

the only minor tear observed. The two false negatives, or tears which we failed to predict, were 

both above the mean for maternal capacity, and below the mean for fetal head demand, 

indicating no anatomical risk for injury.  However, these subjects had significantly older 

maternal age than the rest of the cohort.  Additionally, the false positives, or subjects who were 

predicted to experience injuries, but who did not display an injury upon ultrasound 

examination, had significantly longer durations of the second stage than the rest of the cohort. 

This suggests that we are able to predict the difficulty of labor, assuming that a long labor is 

indicative of resistance to the passage of the fetal head.  When considering the ratio of fetal 
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head circumference to levator hiatus circumference, which has recently been shown to 

correlate to PVM tears [11], none of the three subjects who experience a PVM tear were 

predicted to be at risk.  This suggests that, with a larger cohort, our prediction methods would 

be expected to perform at least to the level of this previously reported correlation.  That the 

difficult labors in the present study did not correspond to PVM tears, and that PVM tears 

occurred in older mothers with no anatomical risk factors, suggests that the threshold for injury 

may not be constant across subjects.  Investigation into factors affecting injury threshold is 

therefore a fruitful area for future research.  In the following chapter, we return to 

biomechanical simulations to consider the cause of high PVM tear rates when forceps 

instrumentation is employed. 

In Chapter 6, we investigated why PVM tear rates of up to 60% are observed in forceps-assisted 

deliveries, but not in vacuum-assisted deliveries. Using the Chapter 2 geometric analysis 

techniques, we were able to reject the hypothesis that the additional space occupied by the 

forceps “blades” are responsible for this increase, because they had less than a 2% effect on 

predicted levator tear rates. We then showed that the traction force applied by forceps had a 

more distinct effect, with up to 54% tear prevalence when simulating with traction forces 

exerted by senior clinicians.  It is therefore suggested that future forceps designs include an 

alert to the clinician when a traction force of 76 N, the average measured for vacuum 

instrumentation, is exceeded [12].  Birth simulations were also used to evaluate the effect of 

the length of episiotomy of levator tear rates. It was concluded that 1.5 cm is the minimum cut 

depth sufficient to keep the levator state parameter below 1 (no tears predicted) for all 

mothers.  
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In Chapter 7, we evaluated the effect of pre-distension of the birth canal during the first stage 

of labor on the duration of the active second stage as well as levator tear outcomes. We found 

that effects on levator tear outcomes were only observed for distensions of ~9 cm or greater, 

with an approximately 10% effect dependent upon the distension force chosen. The more 

distinct effect of the pre-distension was on the duration of the active second stage of labor, 

which was reduced by as much as an hour for the 15th percentile mother in the case of 

distension finishing less than 1 hour before the onset of the active second stage of labor. 

However, a primary limitation here was that the onset of the active second stage is difficult to 

predict clinically. The achievement of a reduction in the second stage of labor, which is 

predicted to occur if the second stage of labor begins within ~1 hour of distension completion, 

may be less apparent for distensions that are completed a longer duration before the beginning 

of the active second stage, which is difficult to predict. Additionally, waiting too long to begin 

pre-distension would also be a valid concern because the distension device should be removed 

prior to the descent of the fetal head into the lower birth canal. 

PVM tears may not be the only factor at play in determining the development of pelvic organ 

prolapse. For this reason, in Appendix 1, we have considered a second observed injury, 

involving fascia rupture, that has not been commonly studied. 

The streamlined nature of these simulations has allowed us to efficiently investigate many 

scenarios that are clinically relevant, circumventing the many financial and ethical barriers 

posed by using clinical studies to investigate such matters. It is true, however, that in 

streamlining our simulation framework, we have had to make simplifying assumptions. One 
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such assumption is that the cross section of the fetal head, in the plane that it is presented to 

the birth canal, is circular. This assumption is reasonable for occiput anterior deliveries, which 

are the most common and least associated with complications. However, a more complex finite 

element-based modeling framework might better allow for the investigation of the geometric 

complexities associated with other presentations, such as occiput posterior and breach 

positions. 

Additionally, though these simulation models are the first to be validated using in vivo data 

from a small cohort of term pregnant nulliparous women, model predictions would clearly 

benefit from validation through a large scale prospective randomized clinical trial because of 

the variability in tissue behavior we have identified. The larger prospective clinical trial is 

needed to determine the selectivity and specificity of the computer simulation predictions of 

levator tear risk and length of second stage.  An additional challenge anticipated is the 

acceptance of such framework by the broader clinical culture and the integration of such 

framework into regular labor planning and assessment. Such paradigm transitions can take a 

decade or more because Phase II and Phase III clinical trials are required to prove the clinical 

effectiveness and reliability of the method. But it is heartening that we do see an increase in 

interest when our results are presented at clinical meetings.   

Overall, this dissertation provides the first biomechanical framework for assessing PVM tear risk 

prior to delivery. Additionally, our results help to evaluate debates in clinical culture regarding 

the usage of episiotomies and forceps instrumentation. Specifically, we were able to show that 

an episiotomy cut to at least 1.5 cm can have a protective effect on the PVM, which will seem 



207 
 

counterintuitive to many clinicians who have seen studies that report a correlation between 

episiotomies and PVM tear risk, but which fail to control variables that would increase both the 

risk of PVM injury and the need to an intervention such as episiotomy. Additionally, the result 

that it is the traction force applied by forceps, and not the space that they occupy, that is 

responsible for PVM injuries, will surprise some clinicians. However, knowledge of the role of 

traction force, which can be controlled through intentional use, suggests that with education 

and awareness of this variable, PVM tear rates may be reduced for this type of instrumentation. 
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Chapter 9: Conclusions 

 

Chapter 2 

A. In our geometric capacity-demand analysis, initial pubovisceral muscle (PVM) loop 

length had the greatest impact on maternal capacity, followed by non-contact length, 

then subpubic arch angel (SPAA), and finally levator origin separation (Chapter 2). 

B. The PVM and puborectal muscle (PRM) loops had the capacity to accommodate 75% of 

vertex presentation births without injury.  But for injury to occur in only 15% of births, 

as observed clinically, there must be either more fetal head molding than was allowed 

for, or creep relaxation behavior of the PVM loop under strain, both of which are 

possible (Chapter 2). 

C. Relative to that of the PVM, it is the more caudal origin of the PRM portion of the 

levator muscle that reduces its stretch ratio at crowning, thereby helping to protect it 

from the stretch injuries commonly observed in the PVM portion (Chapter 2). 

D. The numeric value of the capacity – demand ratio, g, indicates the level of risk for PVM 

injury during the late stage of vaginal delivery. A g value of 1.0 or more suggests a low 

probability of cephalolevator muscle disproportion and hence risk of PVM injury due to 

the conservative assumptions employed in Chapter 2. 



210 
 

Chapter 3 

E. In this first in vivo and in situ quantification of the material properties of the lower 

human birth canal at the end of pregnancy, the results conclusively demonstrate and 

quantify the time-dependent relaxation (viscoelastic) behavior of the lower birth canal 

in nullipara(Chapter 3). 

F. The elastic parameters, A and B, had their greatest effect on the amplitude of the lower 

birth canal strain response. However, the longer of the two time constants, τ2, was the 

parameter which had the greatest influence over the temporal response of the lower 

birth canal to distention (Chapter 3). 

Chapter 4 

G. For a practical two-step antenatal procedure in the clinic, it is most logical to first 

measure maternal capacity in order to establish whether it near the 20th percentile, in 

which case, the fetal head should be measured to gain the additional insight (Chapter 4). 

In maternal capacity measurements, it is the urogenital hiatus, and not the levator 

hiatus that should be used (Chapter 2). 

H. In certain circumstances, a woman may experience an extended second stage of labor 

while not being at risk for a levator tear. These include a pairing at the 20th percentile 

for both maternal capacity and fetal head demand. However, in this case the use of 

forceps, chosen due to the anticipated long length of labor, could result in a PVM tear in 

a mother not previously at risk (Chapters 4 and 6). 
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I. The large range in maternal τ2 values found in Chapter 4 only had a 5% effect on the risk 

of a PVM tear.  Instead it was the geometric lack of fit between fetal head and maternal 

capacity that was the more important factor (Chapter 4). 

Chapter 5 

J. Our model was able to predict up to 55% of the variation in the duration of the second 

stage for the median maternal age group, and 23% of the variation in this duration when 

considering outlying maternal age groups.  

K. We accurately predicted one major PVM tear, and failed to predict a second major tear, 

as well as the only minor tear observed. 

L. The false negatives, or mothers diagnosed with PVM tears but who were not predicted 

to experience them, were not anatomically at risk for injury, and were significantly older 

than the rest of the cohort. This suggests that their tissue tore more readily than others 

in the cohort. 

M. The false positives, or those predicted to experience a PVM tear but who did not display 

a tear upon ultrasound examination, had significantly longer duration of the second 

stage of labor than the rest of the cohort.  This suggests that we were able to accurately 

predict the difficulty of labor; however, these mothers did not display an injury, despite 

experiencing a difficult labor, suggesting that the injury criteria may not be constant 

between subjects. 
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Chapter 6 

N. In simulations of forceps traction force application, risk of a PVM tear increased with the 

magnitude of traction force (Chapter 6). 

O. The application of forceps later in the second stage as well as maintaining partial 

traction between contractions was predicted to decrease the risk of PVM tear when 

other maternal and fetal factors remained constant (Chapter 6). 

P. In terms of the duration of active second stage, both early forceps application and large 

traction forces were predicted to result in reduced durations when compared with later 

forceps application or lower traction forces (Chapter 6). 

Q. The addition of a traction-force limiting handle to forceps is predicted to reduce PVM 

injury risk. 

Chapter 7 

R. In the pre-distension of the lower birth canal simulations, increasing the target 

distension diameter of the birth canal was predicted to shorten the active second stage 

of labor.  This effect could be of particular benefit in reducing complications associated 

with long labors (Chapter 7). 

S. Increasing lower birth canal distension force resulted in a tradeoff between the large 

decrease in time to target lower birth canal distension, corresponding to lower patient 

burden, but a slight increase in predicted PVM tear risk (Chapter 7). 
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T. Intermittent distention loading increased the time to reach the target lower birth canal 

distension value, with no observable benefit to the duration of the active second stage 

or PVM tear risk (Chapter 7). 
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Chapter 10: Suggestions for Future Research 

 

1) The primary suggestion for future work is a large scale prospective randomized clinical 

trial with the goal of validating these model predictions. Outcomes of this trial would be 

the specificity and selectivity of the pubovisceral muscle (PVM) tear predictions. 

Predictions for the duration of the active second stage could also be scored. However, 

due to the variability in tissue behavior identified in Chapter 4, it would be difficult to 

make these predictions without quantification of the long time constant, τ2, in each 

individual. The goal of these clinical trials would be to prove the clinical effectiveness 

and reliability of this method for predicting levator ani muscle tears. 

2) It is also recommended that the quantification of viscoelastic properties be conducted 

for subject populations not represented by the Chapter 4 subject pool.  Such 

quantification could be done using the Chapter 4 methods, but would require new 

clinical trials designed to target more diverse subject populations. Of particular interest 

are multiparas. All of the subjects represented in Chapter 4 were nullipara. As it is 

anecdotally noted that an obstetrician can tell immediately if a woman has given birth, 

it is clear that the tissues do not completely recover back to the same resting status that 

they held prior to the first delivery. Observations also show that multiparas, on average, 

have shorter labors than nulliparas [1, 2]. It would be interesting to quantify which 
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components of the viscoelastic relationship reflect these changes. For example, one 

could test the null hypothesis that all reduction in the duration of labor is due to the 

enlarged resting anatomy, and not due to changes in the viscoelastic constitutive 

relationship.   

3) An additional subject pool deserving of special attention are the older nullipara because 

older maternal age at first delivery is linked with increased risk for PVM tears [3, 4].  The 

reason is presently unknown. It would therefore be interesting to use the Chapter 4 

methodology to quantify the viscoelastic material properties of the lower birth canal in 

older nullipara. This would permit the hypothesis to be tested as to whether the effects 

of “hormonal ripening” on tissue properties are less pronounced in older mothers 

because of longer birth canal tissue relaxation time constants, less elastic tissue 

behavior, or both.   

4) A related analysis that would not require a new clinical trial would be the secondary 

analysis of data collected for increases in levator hiatus during pregnancy [5, 6]. If the 

extant data were re-segmented by maternal age, it would be possible to test if there are 

any differences between younger and older mothers in the amount of change in the 

levator hiatus during pregnancy, or in the final levator hiatus achieved at the 37 week 

gestation measurement.  

5) Given the results suggesting that increased tension force is responsible for the increase 

in levator tear rates observed in forceps, but not in vacuum assisted deliveries (Chapter 

6), the development of force-limiting forceps may be warranted.  
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6) Future research could also involve improvements in our current modeling technique. 

For example, maternal fatigue could be incorporated into our current model as a 

gradual reduction in intrauterine pressure. Our group has attempted to quantify the 

specific time course of this fatigue in the past by asking non-pregnant volunteers to 

push with the same strength observed for laboring mothers. However, in that study, 

pushing alone was not enough to fatigue the volunteers. The high oxygen demand by 

the uterus during labor may account for the distinct increase in fatigue observed in 

laboring mothers. In order to properly represent these effects in simulations, it would 

be best to acquire intrauterine pressure readings over a long enough duration to 

capture the threshold for fatigue as well as the nature of the decline (i.e., rapid or 

gradual, and the magnitude of change).  The inclusion of maternal fatigue in the analysis 

would allow one to account for the added benefits of being able to deliver before the 

onset of fatigue limits further progress. In studies where the duration of the active 

second stage is an outcome of interest, knowledge of a fatigue point would allow us to 

directly compare if variations in an intervention reduce the duration of labor enough to 

avoid distinct maternal fatigue. Incorporation of maternal fatigue would also itself affect 

the predicted duration of the active second stage, because a reduction in maternal 

effort (pushing force) later in labor would be anticipated to increase the duration of 

labor. 

7) Our modeling technique could also be improved once results are available for a current 

study of the histologic and material property changes observed in the perineal body 

during late pregnancy. It has previously been hypothesized that the perineal body forms 
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a “fusible link” in the birth canal, and that it may be able to reduce the strains in 

surrounding tissues through an increase in its own extensibility [7]. The data currently 

being collected could be used to validate and help to quantify the nature of this 

phenomenon, so that it may be incorporated into future birth simulations. 

8) The levator hiatus is often used as the traditional measure of the soft tissue aperture in 

the female pelvic floor, and has been the focus of studies tracking anatomical changes 

during pregnancy [8, 9, 10, 11, 5, 6].  But insights from Chapter 2 made us realize that it 

is the urogenital hiatus that is the true outlet aperture in the second stage of labor.  So, 

future studies should focus on the change in the urogenital hiatus diameter in 

preparation for birth as well as during birth.  

9) Given the results of our clinical validation attempts in Chapter 5, a study into the factors 

affecting injury threshold, such as older maternal age, may be merited. Due to ethical 

concerns, it is difficult to test tissue from pregnant humans to failure. However, in the 

case of mothers delivering by planned Cesarean, with no plans for future vaginal 

deliveries, the acquisition of tissue samples at the time of Cesarean delivery may be 

possible. In such an experiment, it is recommended that, prior to testing to failure, the 

tissue be cyclically loaded to mimic the strain environment experienced during labor. 

Additionally, it is recommended that multiple samples be collected from the same 

subject, if possible, so that micro-failure, or failure on the single muscle fiber level can 

be quantified in tissue that has not reached ultimate failure.  As this damage may 

accumulate over loading cycles, it is recommended that an analysis be conducted in 

which the number of loading cycles is considered as the independent variable.  We 
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expect an experiment on failure criteria to reveal an accumulation of damage prior to 

ultimate failure, which may be responsible for some cases of pelvic organ prolapse for 

which PVM tears are not observed. 
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