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Abstract: The concept of the local climate zone (LCZ) has been recently proposed as a generic
land-cover/land-use classification scheme. It divides urban regions into 17 categories based on
compositions of man-made structures and natural landscapes. Although it was originally designed
for temperature study, the morphological structure concealed in LCZs also reflects economic status
and population distribution. To this end, global LCZ classification is of great value for worldwide
studies on economy and population. Conventional classification approaches are usually successful
for an individual city using optical remote sensing data. This paper, however, attempts for the first
time to produce global LCZ classification maps using polarimetric synthetic aperture radar (PolSAR)
data. Specifically, we first produce polarimetric features, local statistical features, texture features,
and morphological features and compare them, with respect to their classification performance.
Here, an ensemble classifier is investigated, which is trained and tested on already separated
transcontinental cities. Considering the challenging global scope this work handles, we conclude the
classification accuracy is not yet satisfactory. However, Sentinel-1 dual-Pol SAR data could contribute
the classification for several LCZ classes. According to our feature studies, the combination of local
statistical features and morphological features yields the best classification results with 61.8% overall
accuracy (OA), which is 3% higher than the OA produced by the second best features combination.
The 3% is considerably large for a global scale. Based on our feature importance analysis, features
related to VH polarized data contributed the most to the eventual classification result.

Keywords: Sentinel-1 dual-Pol data; local climate zone; global scale; feature extraction; GLCM;
morphological profile; canonical correlation forest

1. Introduction

The local climate zone (LCZ) classification system is designed as a categorical scheme with 17
classes that describe urban landscapes [1,2]. These classes are defined based on surface structures
and surface covers, which are specifically (1) the height of the surface structure, (2) spatial density of
the surface structure, and (3) covering material of the surface (i.e., as shown in Figure 1). Eventually,
the scheme yields thematic maps of a 100-m ground sampling distance (GSD), with each pixel labeled as
one of the 17 classes. The LCZ was designed for the study of urban temperature behavior. It provides
a research framework for urban heat island studies and standardizes the worldwide exchange of
urban temperature observations [1]. As also shown in Figure 1, the scheme essentially demonstrates
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morphological structures of urban local neighborhood. The urban morphological structure is an
influential factor on thermal behaviour. It may also reveal the economic status and the population
distribution of a particular city. For example, slum districts, which are less economically developed
regions with massive population concentration, normally appear as the seventh class in Figure 1.
Therefore, thanks to the described morphological structure, the LCZ map acts as a valuable source for
a wide variety of studies in urban areas.

1. Compact high-
rise 

Dense mix of tall buildings to 
tens of stories. Few or no 
trees.Land cover mostly paved. 
Concrete, steel, stone, and 
glass construction materials. 

2. Compact 
midrise 

Dense mix of midrise buildings 
(3-9 stories). Few or no 
trees.Land cover mostly paved. 
Stone, brick, tile, and concrete 
construction materials. 

3. Compact low-rise Dense mix of low-rise building (1-3 stories). 
Few or no trees. Land cover mostly paved. 
Stone, brick, tile, and concrete 
construction materials. 

4. Open high-rise Open arrangement of tall 
buildings to tens of stories. 
Abundance of pervious land 
cover (low plants, scatered 
trees). Concrete, steel, stone, 
and glass construction 
materials. 

5. Open midrise Open arrangement of midrise 
buildings (3-9 stories). 
Abundance of pervious land 
cover (low plants, scattered 
trees). Concrete, steel, stone, 
and glass construction 
materials. 

6. Open low-rise Open arrangement of low-rise buildings (1-
3 stories). Abundance of pervious land 
cover (low plants, scattered trees). Wood, 
brick, stone, tile, and concrete construction 
materials. 

7. Lightweight low-
rise 

Dense mix of single-story buildings. Few or no trees. Land cover 
mostly hard-packed. Lightweight construction materials (e.g. 
wood, thatch, corrugated metal). 

9. Sparsely built Sparse arrangement of small or medium-sized buildings in a 
natural setting. Abundance of pervious land cover (low plants, 
scattered trees). 

8. Large low-rise Open arrangement of large low-rise buildings (1-3 stories). Few 
or no trees. Land cover mostly paved. Steel, concrete, metal, and 
stone construction materials. 

10. Heavy industry Low-rise and midrise industrial structures (towers, tanks, stacks). 
Few or no trees. Land cover mostly paved or hard-packed. Metal, 
steel, and concrete construction materials. 

A. Dense trees Heavily wooded landscape of deciduous and/or evergreen trees. 
Land cover mostly pervious (low plants). Zone function is natural 
forest, tree cultivation, or urban park. 

B. Scattered trees Lightly wooded landscape of deciduous and/or evergreen trees. 
Land cover mostly pervious (low plants). Zone function is natural 
forest, tree cultivation, or urban park. 

C. Bush, scrub Open arrangement of bushes, shrubs, and short, woody trees. 
Land cover mostly pervious (bare soil and sand). Zone function is 
natural scrubland or agriculture. 

D. Low plants Featureless landscape of grass or herbaceous plants/crops. Few 
or no trees. Zone function is natural grassland, agriculture, or 
urban park. 

E. Bare rock or 
paved 

Featureless landscape of rock or paved cover. Few or no trees or 
plants. Zone function is natural desert (rock) or urban 
transportation. 

F. Bare soil or sand Featureless landscape of soil or sand cover. Few or no trees or 
plants. Zone function is natural desert or agriculture. 

G. Water Large, open water bodies such as seas and lakes, or small bodies 
such as rivers, reservoirs, and lagoons. 

Figure 1. Description of LCZ classes. (adapted from [1]).

Following the introduction of LCZs, the World Urban Database and Portal (WUDAPT,
http://www.wudapt.org) was initiated [3,4]. WUDAPT has been mainly developed by researchers
to obtain high-quality land-cover/land-use information globally, usually via crowdsourcing [5,6],
games [7], or other challenges [8]. The WUDAPT project presents a suggested workflow to produce the
LCZ map by taking advantage of remote sensing techniques. The production process briefly functions
as follows [3]: First, the region of interest (ROI) for a particular city is defined and labels of all classes
are manually selected. Second, multispectral images captured by LandSat-8 are prepared for the ROI of
the target city. Finally, a supervised classification (i.e., random forest [9]) is applied to the multispectral
data to produce the final classification map. Besides the standard production of the WUDAPT project,
studies of LCZ classification mainly focus on using optical remote sensing data [10–12].

One of the key factors to define LCZ classes is height. A few studies on LCZ classification
were introduced to fuse the digital surface model (DSM) with the optical data in order to use both
height and spectral information [13,14]. The Thematic Mapper (TM) data captured by LandSat-5
and Enhanced Thematic Mapper Plus (ETM+) data of LandSat-7 were fused with the normalized
digital surface model (NDSM) and airborne Interferometric Synthetic Aperture Radar (InSAR) using
feature concatenation and then applied to multiple classifiers for LCZ-related classification in [13].
In [14], LandSat-8 data and the digital surface model (DSM) were also concatenated at the feature
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level and then classified by a random forest and support vector machine [15]. It was concluded that
spectral features can significantly contribute to the classification task. Geographical information system
(GIS)-based approach is also developed to produce the LCZ map in [16–18]. Although Open Street Map
(OSM) provides a free-accessible GIS dataset, the completeness of the GIS data needs to be improved,
especially for the developing countries. Besides the aforementioned data sources, the Sentinel-1
mission provides a dual-polarimetric synthetic aperture radar (dual-Pol SAR) with free access and
global coverage. It has also been studied for LCZ classification in [19]. Researchers have proven
that the combination of Sentinel-1 dual-Pol data and LandSat-8 data can improve the performance
of LCZ classification. However, they only take used of amplitudes of VV and VH channels and their
corresponding texture features derived by gray-level co-occurrence matrix (GLCM). Amplitudes of the
two channels only constitute one part of the polarimetric information provided by the dual-Pol data.
One important feature, the coherence of the two channels, is missing. Therefore, the first goal of this
work is to comprehensively investigate the polarimetric information of Sentinel-1 dual-Pol data for the
LCZ classification task.

Global LCZ mapping offers substantial help in exploring local climates on regional and worldwide
scales. Several studies have successfully produced LCZ classification maps corresponding to one city
by only labeling samples of that city. In this manner, the produced classification maps have achieved
high classification accuracy (e.g., overall accuracies (OAs) are beyond 80%) since both training and
test samples are located in the same city. However, the collection of accurate training samples are
either expensive or time-demanding. Therefore, in the remote sensing community, there is great
interest in training models based on the samples available for some cities and applying the trained
models to other cities. However, this is a challenging task. For example, one study [20] attempted to
select training samples from one city for the classification of another city using RF. The classification
accuracies dropped to 18.2%, which indicates that the knowledge transferability between different
cities should be carefully considered. In this regard, our second goal is to develop a classifier with
adequate generalization capability to be applied to any other cities. The difficulty in this task lies in that
the classifier needs to be trained using a limited number of training samples while remaining applicable
to handling transcultural, transnational, and cross-environmental data in a worldwide context.

To cope with the aforementioned challenge of generalization, the 2017 Geoscience and Remote
Sensing Society (GRSS) data fusion contest of the year 2017 proposed training the classifier on five
cities (Berlin, Hong Kong, Paris, Rome, and Sao Paulo) and testing the results on four other cities
(Amsterdam, Chicago, Madrid, and Xi’an). Although deep learning-based classification methods have
proven to be strong in terms of classification accuracy a generalization capability in the remote sensing
community [21–24], the ensemble-based canonical correlation forest (CCF) classification strategy
achieved the best performance in the contest, among more than 800 submissions [8,25]. Therefore,
this work uses the CCF classifier to pursue a solution for our task. The CCF classifier is an advanced
version of a random forest, which is a shallow classifier.

In contrast with the automatic feature selection and extraction of deep learning methods, the
feature design is of key importance to shallow classifiers. From the perspective of feature space,
especially for dual-Pol SAR data, a limited number of features is not adequate for a complicated
classification like the LCZ task. An informative and appropriate number of features should be derived
for the subsequent classification task. References [13,25] indicates that local statistical features are
informative features regarding LCZ classifications. Texture features derived from GLCM have been
proven to be informative for applications of SAR data [26–30]. Mathematical morphological features
obtained from a morphological profile have been highly effective in multi/hyperspectral image
classification [31–33]. Consequently, besides polarimetric features, we investigate the performances
of local statistical features, GLCM features, and morphological profiles for LCZ classification on a
global scale.
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To sum up, the aims of the study are threefold for local climate zone classification. (1) Comprehensive
polarimetric information of the Sentinel-1 dual-Pol data is investigated, which includes intensities of
VV and VH channels as well as the coherence and relative phase of the two channels. (2) Classification
on a global scale is studied by training and testing the CCF on the separated data of transcontinental
cities, which involves terabytes of data volume. (3) Four features (polarimetric feature, local statistical
feature, texture feature, and mathematical morphological feature) that were proven to be successful in
related tasks are evaluated in our scenario of global-scale LCZ classification.

The rest of the paper is organized as follows. Section 2 demonstrates the principle of selecting a
study area and describes the Sentinel-1 dual-Pol data and its data preparation. Section 3 introduces our
methodology of global-scale LCZ classification. Section 4 discusses the experiment results regarding
feature extraction and selection. Lastly, Section 5 concludes this work.

2. Study Area and Data Set

2.1. Study Areas

Our study aims to produce LCZ maps on a global scale and also focuses on cities of high
population density. In total, 29 cities were selected and listed in Table 1. They are located on all
continents except Antarctica, shown in Figure 2. This geographical distribution ensures that cities of
interest include transcultural, transnational, and cross-environmental regions. While selecting these
cities, population was another criteria under consideration. Among all cities, the population of each
city was at least one million in 2016 and is expected to grow in the future according to UN statistics [34].
To enable our framework to solve the global challenge, cities of different regions were selected for both
training and testing. The selection is shown in Figure 2 and Table 1.

Beijing

Shanghai

Hong Kong

Wuhan
Nanjing

Nairobi

Cairo
Tehran

Moscow

Rio de Janeiro
Sao Paulo

Santiago de Chile

Washington DC

Vancouver

Los Angeles
San Francisco

Sydney

Melbourne

Istanbul

BerlinLondon
Paris

Amsterdam

Lisbon
Rome

Milan

Cologne
Munich

Zurich

European Region

Figure 2. World-wide distribution of selected 29 cities of interest. Red: cities for testing. Green: cities
for training.
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Table 1. List of cities of interest, with information on the regions and populations [34]. List of chosen
combinations of cities for training and testing.

Region City Training City Testing City Polulation at Year
2000 2016 2030

Australia Melbourne Y - 3,461,000 4,258,000 5,071,000
Sydney - Y 4,052,000 4,540,000 5,301,000

Eastern Asia

Beijing Y - 10,162,000 21,240,000 27,706,000
Nanjing Y - 6,160,000 8,270,000 9,750,000
Wuhan Y - 6,638,000 7,979,000 9,442,000

Hong Kong Y - 6,835,000 7,365,000 7,885,000
Shanghai - Y 13,959,000 24,484,000 30,751,000

Western Asia Tehran Y - 7,128,000 8,516,000 9,990,000
Istanbul - Y 8,744,000 14,365,000 16,694,000

Africa Cairo Y - 13,626,000 19,128,000 24,502,000
Nairobi - Y 2,214,000 4,070,000 7,140,000

Europe

Amsterdam Y - 1,005,000 1,099,000 1,213,000
Berlin Y - 3,384,000 3,578,000 3,658,000

London Y - 8,613,000 10,434,000 11,467,000
Paris Y - 9,737,000 10,925,000 11,803,000

Zurich Y - 1,078,000 1,259,000 1,494,000
Milan Y - 2,985,000 3,104,000 3,162,000
Rome Y - 3,385,000 3,738,000 3,842,000
Lisbon Y - 2,672,000 2,902,000 3,192,000

Moscow Y - 10,005,000 12,260,000 12,200,000
Cologne - Y 963,000 1,042,000 1,095,000
Munich - Y 1,202,000 1,454,000 1,548,000

North America

Washington DC Y - 3,949,000 5,013,000 5,690,000
Los Angeles Y - 11,798,000 12,317,000 13,257,000

San Francisco - Y 3,230,000 3,299,000 3,615,000
Vancouver - Y 1,959,000 2,523,000 2,930,000

South America
Rio de Janeiro Y - 11,307,000 12,981,000 14,174,000

Santiago de Chile Y - 5,658,000 6,544,000 7,122,000
Sao Paulo - Y 17,014,000 21,297,000 23,444,000

2.2. Ground Truth

To produce LCZ classification maps in a supervised manner, we manually created the ground
truth for the selected 29 cities. Generally, the labeling procedure followed the WUDAPT project
standard procedure [4]. First, the region of interest (ROI) was decided for each selected city as a
50-by-50-kilometers rectangle centered at the city center. Within the rectangle, the ground truth,
polygons of LCZ classes, were manually delineated by observing satellite images on Google Earth
(https://www.google.com/earth/). Then, LandSat-8 images were prepared for the ROIs of each
city. Afterwards, the software SAGA GIS (www.saga-gis.org/en/index.html), taking the delineated
ground truth and LandSat-8 data as inputs, produced an LCZ classification map using the random
forest classifier. The produced classification map is aim to be used as an additional validation source
for checking the correctness and completeness of the ground truth data. By manually cross checking
the classification map, images on Google Earth, and the delineated ground truth, the ground truth
is modified if necessary, in the regard of correctness and completeness. Eventually, the delineated
polygons of LCZ classes are created as the ground truth data, which are used for training and testing in
this work. The delineated ground truth data are shown in Figure 3 with Sentinel-1 data as background.

https://www.google.com/earth/
www.saga-gis.org/en/index.html
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Amsterdam Beijing Berlin Cairo Cologne

Hong Kong Istanbul Lisbon London Los Angeles

Melbourne Milan Moscow Munich Nairobi

Nanjing Paris Rio de Janeiro Rome San Francisco

Santiago de Chile Sao Paulo Shanghai Sydney Tehran

Vancouver Washington DC Wuhan Zurich

Figure 3. Processed Sentinel-1 Dual-Pol (VV and VH) data of 29 cities are shown in Pauli basis,
overlapped with the labeled ground truth.
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2.3. Sentinel-1 Dual-Pol Data

The Sentinel-1 mission, as the SAR component of the European Copernicus program, has a
constellation of two satellites each mounted with a C-band Synthetic Aperture Radar sensor. It has
global coverage with a temporal resolution of six days. Additionally, the data is freely accessible.

The sensor collects data in four modes: (1) Stripmap (SM), (2) Interferometric Wide swath (IW),
(3) Extra Wide swath (EW), and (4) Wave (WV). We used a level-1 product, which is focused single look
complex data collected from the Interferometric Wide swath mode, because of its large coverage and
availability. The level-1 Interferometric Wide swath SLC product consists of one image per sub-swath
(three-sub-swaths, IW1, IW2, and IW3), per polarization channel (two polarization channels: VH and
VV), resulting in six images in total. The properties of different swaths are shown in Table 2 while
Table 3 shows the common properties of all sub-swaths.

Table 2. Properties of different sub-swath of Level-1 Interferometric Wide SLC product.

Beam ID IW 1 IW 2 IW 2

Spatial resolution rg × az m 2.7 × 22.5 3.1 × 22.7 3.5 × 22.6
Pixel spacing rg × az m 2.3 × 14.1 2.3 × 14.1 2.3 × 14.1

Incidence angle 32.9 38.3 43.1

Table 3. General properties that apply to all sub-swaths.

Product ID IW SLC

Pixel value Complex
Coordinate system Slant range

Bits per pixel 16 I and 16 Q
Polarization VV and VH

Ground range coverage km 251.8
Equivalent number of looks (ENL) 1

Radiometric resolution 3
Number of looks (range × azimuth) 1 × 1

2.4. Data Preparation

Figure 4 presents the flowchart of data preparation for this work. It generally consists of two
main parts—data downloading and data preprocessing—which are indicated as orange and blue
blocks, respectively.

Regarding data downloading, the Sentinel-1 data set is accessible to any users via the Copernicus
Open Access Hub (https://scihub.copernicus.eu/) (also known as the Sentinels Scientific Data Hub).
An open-source toolbox, named SentinelSat (https://github.com/sentinelsat/sentinelsat), provides
the utilities of searching, downloading, and retrieving the metadata of Sentinel satellite images. An
automatic data downloading tool was developed using SentinelSat, which functions based on an ROI
file and a given time period of data collection.

For data processing, an ESA toolbox, the Sentinel Application Platform (SNAP,
https://step.esa.int/main/toolboxes/snap/), was designed to work with data provided by
Sentinel missions. The Sentinel-1 tool box [35] was integrated as a module to deal with all Sentinel-1
data products. The toolbox provides a powerful kit, named the graph processing tool (GPT), which is
able to handle large data processing. Based on the GPT, an automatic Sentinel-1 data preprocessing
chain was developed in our work so that data could be prepared for the classification task.

https://scihub.copernicus.eu/
https://github.com/sentinelsat/sentinelsat
https://step.esa.int/main/toolboxes/snap/


ISPRS Int. J. Geo-Inf. 2018, 7, 379 8 of 20

Data 
Downloading

ROITime Period

Apply Orbit 
Profile

Latest Orbit 
File

Radiometric 
Calibration

TOPSAR 
Deburst

Polarimetric 
Speckle 

Reduction 
Refined Lee 

Filter

Terrain 
Correction

ROI Extraction

Mosaicing

ROI Covered?

SRTM

Start

End

Prepared 
Data

Yes

No

https://scihub.copernicus.eu/       
Sentinels Scientific Data Hub

Sentinel-1 
Level-1 
Dual-Pol 

Data 
Products

Figure 4. Flowchart of Sentinel-1 data preparation. Module with orange background indicates data
downloading part. Module with blue background indicates data preprocessing part.

As shown in the flowchart, a series of data preprocessing modules are applied to Level-1 Sentinel-1
dual-Pol data products by GPT. The functionalities and configurations of these modules are explained
in detail as follows:

• Apply Orbit Profile: This module of preprocessing downloads the latest released orbit profile so
that a precisely geocoded product can be achieved.

• Radiometric Calibration: Radiometric calibration aims to convert the digital number of the pixel
to a radiometrically calibrated backscatter, which is directly related to the radar backscatter of
the scene. To extract the relative phase and the correlation between VV and VH, the product of
calibration was chosen as a complex valued image.

• TOPSAR Deburst: For each polarization channel, the Sentinel-1 IW product has three swaths.
Each swath image consists of a series of bursts. TOPSAR Deburst merges all these bursts and
swaths into a single SLC image.

• Polarimetric Speckle Reduction: Speckle reduction was conducted by using the SNAP-integrated
refined Lee filter, with a window size of seven by seven [36,37].

• Terrain Correction: Terrain correction eliminates the distortion introduced by the topographical
variations. To accomplish the correction, the SRTM was used as the DEM to provide height
information. The data was re-sampled to a 10-m GSD by the nearest-neighbor interpolation.
The data was geocoded into the WGS84/UTM coordinate system, in which the manually labeled
ground truth data was coordinated, so that the ground truth data and Sentinel-1 data could be
matched in terms of geo-location.

After the data preprocessing, the analysis-ready dual-Pol data is organized in the common PolSAR
covariance matrix. The processed Sentinel-1 dual-Pol data of 29 cities are shown in Figure 3.
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3. Methodology

The main building blocks of the proposed global-scale classification approach are feature
extraction and classification, which will be detailed in the following subsections.

3.1. Feature Extraction

Following the data preparation described in Section 2, the Sentinel-1 dual-Pol data was processed
to the commonly used PolSAR covariance matrix, with a size of two by two. Based on the above
mentioned preprocessed dual-Pol data, four different types of features were derived. They were,
namely, polarimetric, local statistical, texture, and mathematical morphological feature, which will be
described in the following subsections:

3.1.1. Polarimetric

SAR polarimetry allows for the retrieve of shape, orientation, and dielectric property information
of scatterers [38,39]. Since there are multiple polarimetric channels, it provides more information
than single-pol SAR data. However, the richness of polarimetry is achieved by sacrificing the spatial
resolution. To balance the trade-off, instead of a fully polarized SAR, Sentinel-1 mission provides
partially polarized SAR data, known as dual-Pol data, with the VV and VH channels. To use the
polarimetric information of Sentinel-1 data, we used the intensity of the VH channel (|SVH |2), intensity

of VV channel (|SVV |2), normalized coherence of VH and VV 〈SVHS∗VV〉√
〈|SVH |2〉〈|SVV |2〉

, and relative phase of

VH and VV (actan2(〈SVHS∗VV〉)), where SVV and SVH are the complex signals of VV and VH channels,
and ∗ denotes complex conjugate. These four features contain essential polarimetric information
provided by the dual-Pol data. This polarimetry combination is able to distinguish specular scattering
from diffuse scattering [40]. For the purpose of LCZ classification, these features are highly beneficial
to differ classes with different surface roughnesses, such as water, plant, building, and soil. We named
them as Pol-Baseline in our experiments.

3.1.2. Local Statistical

Since the morphological structure of an urban neighborhood is one of the essential factors that local
climate zone classes try to describe, it is natural to derive features describing the local neighborhood.
It has been shown that simple statistical parameters of a local neighborhood the mean and standard
deviation are suitable features for the classification in [13,25]. In our global-scale task, we extracted five
statistical parameters: maximum, minimum, mean, standard deviation, and median of local patches.
Since the ground sampling distance (GSD) of the LCZ map was suggested to be 100 ms [3,25], the local
patch in this work was defined as a size of 10 by 10 pixels, corresponding to the suggested 100 meters
GSD. Those parameters were derived from all four polarimetric features (Pol-Baseline), resulting in 20
features. We named the local statistical feature the Stat-Feature.

3.1.3. Texture

In general, SAR data is well known for containing texture information [27,29,41]. Dual-Pol
SAR data is even richer in this regard, simply because it has one more channel. The GLCM is used
here to extract texture features. The GLCM describes the distribution of co-occurring values of an
image in a given area. It provides a statistical view of texture based on the image histogram [42].
This work extracts the GLCM-based texture information from Sentinel-1 dual-Pol data for LCZ
classification. The GLCM statistical features used for describing the distributions include contrast,
dissimilarity, homogeneity, angular second moment, maximum probability, entropy, mean, variance,
and correlation. For more details of those features, please refer to [42]. Those features can characterize
specific characteristics of images, such as homogeneity, contrast, and organized structures presented in
an image. For the purpose of LCZ classification, the compactness relates to the spatial distribution
of deterministic scatterers in a SAR image, which can be represented by GLCM features. Thus,
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the GLCM-based texture features are expected to be beneficial to classify LCZ classes with respect
to compactness. To compute the GLCM, it was applied to intensity images of VV and VH channels.
For the computational efficiency, the intensity value was quantized into 32 bins. The orientations 0◦,
45◦, 90◦ and 135◦ were chosen. A window size of 11 pixels was chosen. Since the ground sampling
distance of the data was 10 ms, the window size suits the 100-m resolution definition of the local
climate zone product. The ESA SNAP toolbox was used for GLCM extraction because of its fast
implementation. The feature was named the GLCM-Feature.

3.1.4. Mathematical Morphological

Spatial-contextual information also plays an important role in LCZ classification. Morphological
profiles are regarded as one of the most effective techniques for the extraction of spatial-contextual
features and have been intensively used in the remote sensing community for information extraction
and scene classification using optical data [33,43–45] and SAR data [27]. Very recently, the advantage
of using morphological profiles has become apparent in the application of LCZ classification [8].

The main building blocks of morphological profiles are opening and closing operation [46]. These
morphological operators simplify the input gray scale image by removing structures with respect to a
predefined structuring element. Structuring elements have a unique structure with a known shape and
size (e.g., a disk with a radius of 5 pixels). Therefore, morphological profiles can be produced using a
sequence of opening and closing operations, where a structuring element of increasing size applied to a
gray scale image to accurately extract spatial features [44]. In [47], an advanced version of opening and
closing (opening and closing by reconstruction) was introduced to further improve the ability of the
conventional opening and closing operators in terms of information extraction and shape preservation.
Opening and closing by reconstructions satisfy the following criterion: If the structuring element
cannot fit the structure of the image (objects), then it will be totally removed, otherwise, it will be totally
preserved. Reconstruction operators remove objects smaller than structuring element without altering
the shape of those objects and reconstruct connected components from the preserved objects. Figure 5
shows an image captured over the city of Zurich along with its corresponding opening, opening by
reconstruction, closing and closing by reconstruction.

Figure 5. Morphological opening and closing operations on intensity of VH channel with a radius of 5,
for the data of city Zurich. From left to right, top to bottom: VH channel in dB, opening, opening by
reconstruction, closing, and closing by reconstruction.



ISPRS Int. J. Geo-Inf. 2018, 7, 379 11 of 20

The structuring element has two important parameters: shape and size. Different objects with
various surroundings have different degrees of response when considering morphological profiles
under different structuring element sizes and shapes. Therefore, morphological profiles can extract the
spatial features under different scales and geometric properties. In this paper, the profile was produced
by considering the intensity images of VV and VH as inputs. The investigated structuring element
in this paper is circular with the diameters set to 1, 3, and 5. We named the morphological feature
the "MP-Feature".

3.2. Classifiers

A CCF [48] was chosen to pursue a solution to the task of global local climate zone classification
in this work. There are two reasons for this selection: (1) CCF, as a member of random forest methods,
is a non-parametric algorithm with a low computation cost, which also provides the function of
feature importance analysis; (2) CCF was proven to not only outperform other classifiers in computer
vision [48] but also as highly effective in local climate zone classification [25].

To recall a CCF, necessary notations are introduced as follows. Let X = [x1, x2, ..., xN ]
T ∈ RN×P

denote the training data, with N instances and P features. Let Y = [y1, y2, ..., yN ]
T ∈ ZN×C be

the label of training data, where C is the number of classes. If yi, a C × 1-sized vector, indicates
that data instance xi belongs to class two, the second element of vector yi equals one, and other
elements are zero. Accordingly, the training data set is represented as D = {X, Y}. Similarly, let
X̂ = [x̂1, x̂2, ..., x̂N ]

T ∈ RN×P denote the data for the prediction and Ŷ = [ŷ1, ŷ2, ..., ŷN ]
T ∈ RN×C

denote the predicted label. Differing from the label in the training data, all elements in predicted label,
vector ŷi, ranges in [0, 1], represent the probabilities of every class that x̂i falls under.

3.2.1. Canonical Correlation Analysis (CCA)

Canonical correlation analysis was designed to analyze the linear relation between sets of
variables [49]. Let two data sets be represented as W ∈ Rk×a and V ∈ Rk×b, with k instances and the
numbers of features as a and b, respectively. CCA pursues canonical coefficients P = [p1, p2, ..., pv] ∈
Ra×v and Q = [q1, q2, ..., qv] ∈ Rb×v so that data sets W and V are linearly mapped into a latent space
(WP ∈ Rk×v and VQ ∈ Rk×v) where they have maximum correlation. Canonical coefficients are
coupled in a pair-wise fashion {pi, qi} and given by (1).

argmax
pi∈Ra ,qi∈Rb

corr(W pi, Vqi)

subject to ||pi||2 = 1, ||qi||2 = 1
(W pi)

T(W pj) = 0 i 6= j
(Vqi)

T(Vqj) = 0 i 6= j
where i = [1, 2, ..., v] v = min(rank(W), rank(V))

(1)

These projected data sets WP and VQ are situated in a v dimensional space. The largest v
correlation coefficients associate with the 1st to vth dimension of the space. The solution of the
optimization problem (1) is boiled down to a generalized eigenvalue problem [50].

3.2.2. CCFs

As a CCF is an advanced version of random forests, it is introduced by first presenting the random
forest and then explaining the improvements made by CCF.

Let RF = {ti}i=1,...,L denote random forests, where a random forest RF consists of L decision
trees ti. An individual decision tree recursively divides a feature space by axis-aligned split until the
pure node or stop criteria is achieved. Since a decision tree is a deterministic classifier, training on
the same data results in identical trees. To introduce randomness, there are two general strategies
among random forest methods. The first one is bagging, where subsets of the whole training data
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(Xsub ∈ RNs×P, Ns < N) are randomly sampled with replacements for training decision trees [51].
The second strategy is to use random subspaces of original data (Xsub ∈ RN×Ps , Ps < P) to train
decision trees [52]. Both strategies decorrelate decision trees and create diversity in predictions.
Statistically, diversity encourages a random forest to follow the Law of Large Numbers so that it does
not suffer from overfitting as individual decision tree [48,53,54]. Most importantly, the diversity is
essential to the power of random forest. At the final prediction phase, an averaging of outputs of all
trees is applied for the regression task (2).

RF(x̂) =
1
L

L

∑
i=1

ti(x̂) (2)

For the classification task, besides the majority voting of a unique label, a random forest can also
provide probabilities of each class that data instance x̂ falls under (3).

RF(x̂) = ŷ = [pb1, pb2, ..., pbC]

where: pbj =
1
L ∑L

i=1 ti = j, j ∈ [1, 2, ..., C]
(3)

Regarding the CCF, there are two key improvements [48]. First, instead of splitting the feature
space in axis-aligned manner, it finds the hyperplane in the projected space, where input features
X ∈ RN×P and training label Y ∈ ZN×C have maximum correlation. This enables CCF to find natural
class boundaries in the feature space instead of restricting it to the axis. The second improvement
is called projection bootstrapping. Instead of bagging the training data, it takes in all training data.
However, it selects training samples exactly as bagging does to find the CCA projections. Then, all
training data are mapped into the canonical correlation space to find hyperplanes. In this fashion,
diversity is introduced by bagging-learned CCA projections.

3.2.3. Feature Importance Analysis

To better understand how different features work for our global-scale LCZ classification task,
the function of feature importance analysis in a CCF is applied to gain a quantitative insight. Before
the analysis, the principle of feature analysis is recalled in this section.

Once a CCF is trained, it predicts the out-of-bag sample or the validation sample. With the ground
truth label, one could estimate a prediction error Epred. To achieve the importance analysis of feature Pi,
only values of feature Pi are randomly permuted in samples. Therefore, the trained CCF predicts the
label of samples with permuted Pi and achieves another prediction error Eperm. Hypothetically, Epred

should be smaller than Eperm. The feature importance indication of Pi is given by
Eperm−Epred

Epred
, where the

higher the value of this indication, the more important is feature Pi is [53].

4. Experiments and Discussion

In this section, the performance of different feature types were analyzed. In this context, firstly, the
polarimetric feature and local statistical feature were quantitatively compared, and the one with better
performance was later treated as a benchmark feature. Secondly, the chosen benchmark feature was
combined with the texture feature and morphological feature, respectively, allowing the performance
of the latter two types of features to be compared and analyzed. Afterward the feature importance
was analyzed using the CCF. Lastly, the performance of the Sentinel-1 dual-Pol data was discussed
regarding the application of local climate zone classification. For all following experiments, the training
was based on 20 cities and the testing was conducted on 9 cities, as listed in Table 1. The performance
of the classification approach is evaluated based on three quantitative indicators, overall accuracy
(OA), kappa coefficient, and average accuracy (AA). OA is simply achieved by dividing the total
number of correctly classified samples by the number of overall classified samples, and reported in



ISPRS Int. J. Geo-Inf. 2018, 7, 379 13 of 20

percentage. Kappa coefficient is a statistical measurement, which estimates inter-rater agreement and
is of no unit. AA is the average of all class-specific accuracies.

4.1. Benchmark Feature Selection

The Pol-Feature is the identical preprocessed dual-Pol data organized at the pixel level with
a ground sampling distance of 10 by 10 ms. The Stat-Feature derives straightforward statistical
parameters out of a neighborhood of 100 by 100 ms. The extent is identical to the resolution of the
targeted local climate zone classification map. Although the Stat-Feature involves spatial information,
it essentially describes the polarimetric feature as well. Therefore, our first experiment was to analyze
performances of both features. The better one, in terms of OA and kappa, was selected as the benchmark
feature, which is later combined with the GLCM-Feature and the MP-Feature for further analysis.

According to Figure 6, the Stat-Feature outperformed the Pol-Feature by 5.68% and 0.088, in terms of
OA and the kappa coefficient, respectively. It also performed better generally on producer accuracies.
Considering the challenge of global scale in our work, the difference is quite dramatic, but not
surprising. It has been proven in remote sensing that involving spatial information can significantly
improve the classification performance [55–57]. Consequently, the Stat-Feature was selected as the
benchmark feature to work with the other two features.
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Figure 6. Left figure presents the (OA) and kappa coefficient. Right figure illustrates producer
accuracies of all 17 classes. These classes are: 1: Compact high-rise, 2: Compact mid-rise, 3: Compact
low-rise, 4: Open high-rise, 5: Open mid-rise, 6: Open low-rise, 7: Light weight low-rise, 8: Large
low-rise, 9: Sparsely built, 10: Heavy industry, 11: Dense trees, 12: Scattered trees, 13: Bush, scrub, 14:
Low plants, 15: Bare rock or paved, 16: Bare soil or sand, 17: Water.

4.2. Texture Feature

The speckle is omnipresent in SAR images as an intrinsic characteristic [58], which is normally
regarded as noise during SAR data interpretation. However, when extracting texture information,
the speckle becomes a valuable source containing rich texture information. To quantitatively test to
what extent speckle filtering impacts texture, the GLCM-Feature was extracted from data sets with
(GLCM-Feature-F) and without (GLCM-Feature-UF) speckle filtering.

To summarize results in Figure 7, firstly, by comparing classification performances
of GLCM-Feature-F and GLCM-Feature-UF, speckle filtering led to a massive loss of texture information.
Secondly, the GLCM-Feature downgraded the classification performance of the Stat-Feature. The reason
could be as follows. (1) Originating from the GLCM design, the radiometric resolution is decreased
to 32 statistically equalized bins for computational efficiency, thus causing information loss. (2) The
equalized bin is statistically decided in the individual data set. For a global scale task, data sets
collected from different locations, at different times, with different incident angles would have very
diverse intensity responses in imageries. Therefore, the method of GLCM texture extraction is unable
to ensure that data sets with the same textures appear the same in the feature space.
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Figure 7. Classification evaluation using OA and kappa coefficient as the evaluation metrics.

4.3. Morphological Feature

To set up comprehensive experiments, like GLCM-Feature extraction, the MP-Feature was applied
to data sets with MP-Feature-F and without MP-Feature-UF speckle filtering. Therefore, the performance
of the MP-Feature could be tested regarding speckle SAR data.

According to results shown in Figure 8, MP-Feature improved the classification by 3% in
OA. Furthermore there was almost no difference in the performance between MP-Feature-UF
and MP-Feature-F.
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Figure 8. Classification evaluation using OA and Kappa coefficient as the evaluation metrics.

4.4. Analysis of Feature Importance

Figure 9 shows the feature importance achieved by canonical correlation forests using all test
samples. The empirical importance indication reveals several interesting phenomenons. Firstly, the
most important three features are components of the MP-Feature. The morphological spatial feature
plays a very important role in our global LCZ classification task since LCZ classes describe the
morphological property of an urban local neighborhood. Secondly, the VH polarized data contributes
the most to the classification because eight out of top ten important features (all top six), are related to
VH data. Thirdly, the coherence of VH and VV data also contribute the classification; however, it has
often been ignored when using PolSAR data. Lastly, features on the relative phase between VV and
VH barely provide any information because they are all among the least important features.
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Figure 9. Feature importance obtained by CCF.

4.5. Class-Wise Analysis

Table 4 shows class-specific accuracies of different feature combinations. Table 5 gives detailed
information about the combinations. In the comparison of feature combinations, class-specific
accuracies, OA, and kappa suggest that classification using the Stat-Feature and MP-Feature derived
from filtered data provided the best classification accuracy. By comparing feature combinations A and
B, the Stat-Feature improved classification accuracies significantly. Morphological description was also
very important for our classification task because adding the MP-Feature to the Stat-Feature further
improved classification accuracies, by comparing combinations B and E.

Table 4. The producer accuracies, OA, and kappa coefficient of the CCF classification approach on
different feature combinations (as detailed in Table 5). The number of training and test samples are
listed for different classes. The best accuracy for each class is shown in a bold typeface. The metric OA
and class-specific accuracy are reported in percentages, and the Kappa coefficient is unitless.

Class Train Test A B C D E F

Compact high-rise 4402 2050 2.54 5.9 14.29 4.93 6.49 6
Compact mid-rise 21,708 8426 21.84 34.75 46.24 31.34 36.11 35.06
Compact low-rise 19,502 21,004 5.5 14.66 12.06 13.97 14.84 14.38

Open high-rise 11,683 3185 1.44 3.77 8.7 2.35 3.05 2.95
Open mid-rise 17,085 5618 4.34 8.26 18.08 10.89 9.08 7.17
Open low-rise 26,126 17,951 5.83 26.27 18.37 19.93 28.32 26.64

Light weight low-rise 722 1115 0 0 0 0 0 0
Large low-rise 34,792 17,874 17.33 51.27 49 47.76 55.68 54.64
Sparsely built 14,640 6924 0.81 6.69 6.04 2.47 8.17 7.32

Heavy industry 9129 5801 3.45 8.08 4.67 4.4 8.17 7.74
Dense trees 69,731 43,652 47.64 65.26 53.36 51.39 67.48 67.51

Scattered trees 21,926 8938 1.83 8.97 5 5.65 9.07 7.56
Bush, scrub 19,396 14,864 1.53 1.08 3.61 0.45 1 0.91
Low plants 97,243 35,064 49.31 65.56 56.8 64.29 69.31 68.34

Bare rock or paved 6119 3989 0.15 0.45 0.28 1 0.45 0.3
Bare soil or sand 78,543 3284 6.76 27.13 35.99 5.85 29.75 27.92

Water 309,387 137,753 96.42 89.72 68.56 81.7 94.28 93.11

OA 53.12 58.8 47.58 52.51 61.8 60.9
KAPPA 0.3968 0.4847 0.3746 0.4152 0.5182 0.5077
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Table 5. Experiments settings regarding feature combinations.

Feature Name Feature Combination Code
A B C D E F

Pol-Feature Y - - - - -
Stat-Feature - Y Y Y Y Y
GLCM-Feature-F - - Y - - -
GLCM-Feature-UF - - - Y - -
MP-Feature-F - - - - Y -
MP-Feature-UF - - - - - Y

Since the task is very challenging in aspects of global scale and complicated LCZ classes, with the
CCF strategy, Sentinel-1 dual-Pol data were not able to provide satisfactory classification accuracies.

However, there was valuable information on how Sentinel-1 dual-Pol data could contribute to this
task. Despite GLCM is not suitable on extracting textures from multiple cities, the texture features of
Sentinel-1 dual-Pol data did excel in distinguishing compactness and height, because the combination
C provided better accuracies for the first six classes compared to other combinations. By comparing
the accuracies of bare soil or sand in combinations B and C, one can determine that a SAR speckle
texture is a good option for classifying this specific class.

4.6. Sentinel-1 Data for LCZ Classification

According to Table 4 and Figure 10, it is obvious that the classification accuracy is not satisfactory.
With reference to the proposed working flow shown in Figure 10, the first ten urban classes are very
hard to be classified with the individual use of Sentinel-1 dual-Pol data. The two classes, compact
high-rise and the compact mid-rise, are confused with each other. In addition, most urban classes
are confused into the class of large low-rise. Eventually only accuracies for the water, low plants,
and dense trees are acceptable. However, as it is the first study of LCZ classification using Sentinel-1
dual-Pol data, the present outcome leaves rooms for improvement.
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Figure 10. Confusion matrix of the classification framework on feature combination E, which is the
best feature combination in terms of OA. Numbers are reported in percentages.
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5. Conclusions

This paper describes the first attempt to produce local climate zone classification maps on a global
scale using freely accessible Sentinel-1 dual-Pol data sets. The set of features, which were reported as
being informative in the literature were assessed for our specific goal. We discovered that the local
statistical feature excelled in optical classification and also well with dual-Pol SAR data. However, the
GLCM feature, which has often been reported as highly informative in SAR classification, was not
suitable for our global scale task due to the lack of a generalization capability since its dependency
on a statistical distribution of an individual data set limits its transferability to other data sets. The
morphological profile functioned quite well in our task, improving local statistical features, texture
features by 3% and 9.29% in terms of OA. Morphological profiles extracted the spatial morphological
structure of the data, which suited the essential content of local climate zone classes. According to the
feature importance analysis of the CCF classifier, the VH polarized data had the biggest contribution
to our classification task. The often-ignored feature, the coherence of VV and VH, contributed more to
the classification compared to contributions of the VV polarised data. Moreover, the relative phase
of VV and VH polarized data barely provided informative content for classifications, even dragging
down the performance.

By far, classification accuracies of the Sentinel-1 data are not very appealing. However, considering
the challenges of a global scale and transferability in our task, Sentinel-1 data still contributes in
different manners for certain classes. The ensemble CCF strategy in this paper was chosen for
the classification step due to its high generalization ability and superior performance over deep
learning-based classifiers [8]. One potential reason for why CCF outperformed a deep learning-based
classification method in [8] may have been due to the limited number of training samples. However,
one deficiency of the CCF is that it demands hand-designed extracted features to further boost its
classification performance. While endless combinations of features that can be fed to a CCF exist, this
paper took the very first steps to evaluate the most informative sets of features and critically compare
their performance for a global LCZ classification.

In the future, we intend to further examine this challenging task by investigating a deep learning
strategy in order to take advantage of its capability of automatic feature extraction and selection. No
matter which strategy is under consideration, one more critical detail should also be studied is that,
how large is the neighborhood in remote sensing data is optimal for classifying LCZ classes. Regarding
the data source, we also intend to investigate using both radar and optical remote sensing data, so that
data fusion might contribute to this task. Last but not the least, we are interested to develop a solution
to our global scale task, which has a strong capability on transferring generalization.
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