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Abstract

China is considered to be the main carbon producer in the world. The per-capita carbon emissions indicator is an important
measure of the regional carbon emissions situation. This study used the LMDI factor decomposition model–panel co-
integration test two-step method to analyze the factors that affect per-capita carbon emissions. The main results are as
follows. (1) During 1997, Eastern China, Central China, and Western China ranked first, second, and third in the per-capita
carbon emissions, while in 2009 the pecking order changed to Eastern China, Western China, and Central China. (2)
According to the LMDI decomposition results, the key driver boosting the per-capita carbon emissions in the three
economic regions of China between 1997 and 2009 was economic development, and the energy efficiency was much
greater than the energy structure after considering their effect on restraining increased per-capita carbon emissions. (3)
Based on the decomposition, the factors that affected per-capita carbon emissions in the panel co-integration test showed
that Central China had the best energy structure elasticity in its regional per-capita carbon emissions. Thus, Central China
was ranked first for energy efficiency elasticity, while Western China was ranked first for economic development elasticity.
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Introduction

In the 15th Conference of the Contracting Parties under the

‘‘United Nations Framework Convention on Climate Change’’

and the 5th Conference for the Parties under the ‘‘Kyoto

Protocol’’ held during December 2009 in Copenhagen, Denmark,

the Chinese government solemnly promised that the carbon

emissions per unit GDP would be decreased by 40–45% by 2020

from the 2005 levels. According to the ‘‘Kyoto Protocol’’ agreed at

the climate conference held in Copenhagen, there was a consensus

about how to reduce greenhouse gas emissions and to keep the

atmospheric temperature at a reasonable level. China is believed

to be the highest carbon producer in the world, so it feels that it is

imperative to transform its current status by implementing

technological and systematic innovation, fundamentally abandon-

ing its old-fashioned economic development pattern, and adopting

an energy saving and low-carbon economic development path to

improve its energy efficiency, thereby rationalizing people’s

lifestyles and consumption patterns.

The ‘‘Tokyo Protocol’’ and ‘‘Copenhagen Annual Conference’’

declared clear and concrete constraints on all nations regarding

their carbon emission reduction obligations, but these issues are

still under discussion as to how to evaluate a nation or district’s

carbon emissions, and which indicator should be utilized for

scientific measurements. Many scholars and professionals have

explored this issue in effective ways. Mielnik et al. proposed that

the carbon dioxide emissions per energy unit could be used as the

main evaluation criteria to address climate change and the

economic development models of developing countries [1]. Ang

suggests that the change in the energy consumption per unit GDP

could represent the regional carbon dioxide emission situation [2].

Zhang et al. thought that up-to-date evaluation indexes such as

the per-capita industrialized cumulative carbon emissions and

carbon emissions per unit GDP would be more likely to adhere to

scientific, fair, and reasonable principles [3]. Sun expressed the

opinion that the carbon dioxide emissions per unit GDP would be

a good index for comparing decarbonization among countries [4].

In addition to the above indicators, the per-capita carbon

emissions indicator is an important measure of regional carbon

emissions level and strength. The per-capita carbon emissions

indicator appears in many study domains because many scholars

believe it is a better option that reflects regional fairness rules,

thereby protecting the interests of developing countries. For

example, Lin and Li estimated the actual mitigation effects of the

five north European countries using the difference-in-difference

(DID) method [5]. Andrew et al. examined the regional and

temporal differences in the statistical relationship between carbon

dioxide emissions and population size [6]. Lanne et al. considered

the per-capita carbon emissions trends in 16 early-developed

countries for the period 1870–2028 using a multiple-break time

series method [7]. Wang et al. calculated China’s per-capita

carbon emissions in terms of its gravity center, as well as its

variation trends, features, and explanations during 1995–2005 [8].

Tian and Zhang calculated China’s per-capita factor analysis
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model for carbon emissions decomposition based on the Gener-

alized Fisher Price Index method (GFI) [9]. Rajaratnam and

Kanthi developed a conditional equilibrium correction model

(ECM) for quantifying the relationship between Australia’s per-

capita GDP and per-capita carbon emissions [10]. Lee and Chang

used Panel Seemingly Unrelated Regressions Augmented Dickey–

Fuller (SURADF) unit-root tests to determine whether the

stochastic convergence and b-convergence of the per-capita

carbon emissions were supported in OECD countries [11]. By

following the principle of regional fairness, the authors also

employed per-capita carbon emissions as an indicator when

measuring the carbon emissions situation of all provinces in China,

which differ greatly in their economic and environmental status. In

addition, Data Envelopment Analysis (DEA) has often been used

to study the environmental or energy efficiency in recent years.

For example, Zaim, Zofı́o, and Zhou evaluated the carbon dioxide

emission performance of OECD countries and others regions at

the macro-level using different DEA models [12–14]. Sebastian

and Gutiérrez proposed a non-parametric frontier approach for

modeling the relationships among populations, GDP, energy

consumption, and carbon dioxide emissions [15]. Zhou et al. built

MCPI model based on the Malmqusit index and used it to

measure the carbon emission efficiency of 18 countries with the

highest global carbon emissions [16]. Wang et al. set up the

Malmquist index using a DEA model containing undesired

outputs, which was used to study dynamic changes in the carbon

emission performance in China [17].

Decomposition analysis is often used in studies related to carbon

emissions. For example, Fan et al. used the Adaptive Divisia

Decomposition method (AWD) to divide the factors affecting

China’s carbon intensity during 1980–2003 and showed out that

the primary energy intensity had a significant effect on the carbon

intensity [18]. Zhang et al. analyzed the factors related to China’s

total carbon emissions and carbon intensity using data from 1991

to 2006 with the complete decomposition method developed by

Sun [19], which demonstrated that the energy intensity contrib-

uted most to the decline in the carbon emissions and carbon

intensity [20]. The crux of decomposition analysis is the

elimination of decomposed residuals. In 2008, Ang et al.

introduced a Logarithmic Mean Divisia Index method (LMDI)

to solve this problem. Ang compared this new method with three

existing methods and summarized the respective decomposition

formulae for various applications [21]. Ang later proposed the

improved LMDI decomposition method, which has been used

widely to analyze factors in the field that affect carbon emissions.

Chunbo, Tunc, and Claudia analyzed the main factors affecting

carbon emission changes in China, Turkey, and Mexico by

decomposing the carbon emissions and/or the carbon emission

intensity using the LMDI approach [22–24]. Ang discussed which

was the ‘‘best’’ decomposition method and analyzed the consis-

tency on the choice of decomposition methods in empirical studies

about decomposition analysis for policymaking in energy [25].

The LMDI approach has also been adopted for monitoring

economy-wide energy efficiency trends. For example, Ang et al.

proposed accounting frameworks for tracking energy efficiency

trends based on the LMDI decomposition technique, which has a

number of desirable properties [26]. Dong and Wu established

accounting frameworks for the energy performance index (EPI)

based on the LMDI approach to analyze the energy consumption

of Beijing [27]. Using the LMDI approach, Baležentis et al.

analyzed the energy intensity trends in the Lithuanian economy as

a whole as well as in separate economic sectors [28].

The LMDI approach is a type of index decomposition analysis

(IDA), while another popular decomposition technique for energy

and emissions is structural decomposition analysis (SDA). Three

aggregation issues are inherent in SDA studies, namely sector

aggregation, spatial aggregation and temporal aggregation [29].

Su and Ang examined new methodological developments in SDA

and compared four SDA methods analytically and empirically by

decomposing changes in China’s CO2 emissions [30]. Su et al.

investigated analytically the possible effects of sector aggregation,

spatial aggregation and temporal aggregation on SDA and

conducted empirical studies using the data of CO2 emissions

[31,32,29]. In recent years, many scholars have used the SDA

approach for studying carbon emissions and reported many

interesting findings and recommendations [33–36].

The decomposition method is a relatively common method for

the analysis of regional carbon emissions change. However, many

studies merely decompose the carbon emissions into a number of

factors without further exploration of the influential mechanisms

and dynamic changes in these factors. Based on the results of

factor decomposition for per-capita carbon emissions, we selected

the Panel Co-integration Analysis method and conducted an in-

depth exploration of the long-term and short-term dynamic

changes, and the factors with strong effects on the per-capita

carbon emissions.

As mentioned above, the main indexes available for evaluating

the regional carbon emissions situation include the total carbon

emissions, per-capita carbon emissions, carbon emissions per unit

GDP, and the carbon emissions performance based on the DEA

model, while the per-capita carbon emissions indicator is very

important for demonstrating the regional carbon emissions level.

In summary, the LMDI decomposition approach proposed by

Ang et al. is used more frequently for carbon emissions

decomposition, besides the LMDI method has recently become

popular in SDA studies related to energy and emissions. China’s

regional carbon emissions vary greatly, i.e., there was an eightfold

difference in the per-capita carbon emissions of the highest and the

lowest provinces in 2009, so we used the LMDI factor

decomposition model–panel co-integration test two-step method

to study the main factors affecting the per-capita carbon emissions

in Chinese provinces, and explore the influential mechanisms and

dynamic changes in the per-capita carbon emissions, thereby

facilitating a quantitative analysis of the emissions reduction

strategy.

This paper is organized as follows. Section 2 presents the results

of the regional per-capita carbon emissions in Chinese provinces.

Section 3 describes the LMDI approach used to decompose the

per-capita carbon emissions and the decomposition results in

China. Based on the factors decomposed in Section 3, the panel

co-integration analysis of the factors that affect the regional per-

capita carbon emissions is presented in Section 4. Finally, we

conclude this study.

Calculation of Regional Per-capita Carbon
Emissions

This study analyzed the energy consumption of total coal, total

oil, and natural gas, which were obtained from the China Energy

Statistical Yearbook published by China’s National Bureau of

Statistics (CNBSa) [37], to calculate carbon emissions for each

area. In this study, total coal included various types of coal

resources, such as raw coal, cleaned coal, and coke. Oil included

crude oil, gasoline, kerosene, diesel oil, and other petroleum

products. The formula used was as follows:

C~
X

i
aiEi ð1Þ

Influencing Factors of Per-Capita Carbon Emissions
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Where, ai is the i type carbon emission coefficient and Ei is the i-th

energy consumption (standard coal). The carbon emission

coefficients of the three types of energy are referred to in the

research results presented by Xu, Hu et al., and an IPCC report

[38–40]. In addition, we calculated the per-capita carbon

emissions from 1997 to 2009 by dividing the total population by

the total carbon emissions. Eastern China has 11 provinces, i.e.,

Beijing, Tianjin, Hebei, Liaoning, Shanghai, Jiangsu, Zhejiang,

Fujian, Shandong, Guangdong, and Hainan. Central China has

eight regions, i.e., Shanxi, Jilin, Heilongjiang, Anhui, Jiangxi,

Henan, Hubei, Hunan. Western China contains Inner Mongolia,

Guangxi, Chongqing, Sichuan, Guizhou, Yunnan, Shaanxi,

Gansu, Ningxia, Qinghai, and Xinjiang, i.e., 11 provinces in total

(there are no energy consumption data for Tibet and Taiwan). For

the regions mentioned above, their regional per-capita carbon

emissions are shown in Table 1.

Table 1 shows that in 1997, Eastern China, Central China, and

Western China ranked first, second, and third in the per-capita

carbon emissions, whereas in 2009, the ranking changed to

Eastern China, Western China, and Central China. In addition,

the per-capita carbon emissions in Western China exceeded those

of Central China in 2009. In the ranking of the 13-year average

per-capita carbon emissions, the top five provinces were Shanxi,

Inner Mongolia, Ningxia, Shanghai, and Tianjin. Shanxi and two

other provinces that ranked in the top three were affected by their

large coal reserves, which led to greater energy consumption.

However, this was not the case for Shanghai and Tianjin where

the higher level of per-capita carbon emissions were closely related

to their higher level of economic development. Finally, Guangxi,

Hainan, Jiangxi, Sichuan, Hunan had comparatively low levels,

which reflected their economic growth.

Figure 1 shows that from 1997 to 2002, the three main

economic regions grew slowly in terms of their per-capita carbon

emissions, whereas they developed rapidly after 2002. In other

words, 2002 was the turning point that corresponded to an

anomalous increase in China’s energy consumption per unit GDP

(2002–2005). Between 1997 and 2009, the average growth rates of

the per-capita carbon emissions in Eastern China, Central China,

and Western China were 6.67%, 6.42%, and 8.43%, respectively,

where Western China was highest.

LMDI Factor Decomposition of the Regional Per-
capita Carbon Emissions

1. LMDI factor decomposition model
According to the Kaya Identity, the regional carbon emissions

can be decomposed as follows:

C~
X

i

Ci~
X

i

Ei=E.Ci=Ei.E=Y.Y=P.P ð2Þ

Where, C is the regional total carbon emissions, Ci is the carbon

emissions for the i-th energy, E is the primary energy consump-

tion, Ei is the i-th energy consumption of standard coal, Y is the

Table 1. The regional per-capita carbon emissions (unit: tons per-capita) in China.

Region 1997 2009 The mean Region 1997 2009 The mean

Beijing 5.6802 6.0726 5.9115 Hunan 1.5627 3.7365 2.2603

Tianjin 6.2658 8.9827 7.8615 Guangdong 2.3462 4.5819 3.2994

Hebei 3.6549 7.7655 5.1951 Guangxi 0.9932 2.5300 1.5772

Shanxi 9.1547 16.3462 12.4616 Hainan 0.9161 3.0314 1.8501

Inner Mongolia 5.0146 20.7720 9.9975 Chongqing 1.9780 4.6769 2.7046

Liaoning 4.9356 9.1021 6.5527 Sichuan 1.5908 3.6425 2.1210

Jilin 4.1991 7.0579 4.9820 Guizhou 2.8699 5.8755 3.9644

Heilongjiang 4.3831 7.0566 5.0307 Yunnan 1.6772 4.2044 2.5374

Shanghai 7.5084 10.2739 8.8732 Shaanxi 2.1953 5.8814 3.3198

Jiangsu 2.7551 6.4008 4.1941 Gansu 2.2219 4.0027 2.9960

Zhejiang 2.5917 6.3191 4.1964 Qinghai 2.5514 6.1666 3.7683

Anhui 1.7384 4.2912 2.6286 Ningxia 4.3157 15.9706 9.4979

Fujian 1.3519 4.7129 2.7021 Xinjiang 4.0555 8.3971 5.2403

Jiangxi 1.3141 2.6950 1.8814 Eastern China 3.1543 6.8472 4.6294

Shandong 2.6473 8.4324 4.8081 Central China 2.7278 5.7547 3.8522

Henan 1.8228 5.3546 3.2417 Western China 2.1983 5.8068 3.3659

Hubei 2.3130 4.7763 3.1608 China 2.7361 6.2079 4.0169

Note: In this study Eastern China comprises 10 provinces, Central China, eight provinces, and Western China, 11 provinces, China, 30 provinces.
doi:10.1371/journal.pone.0080888.t001

Figure 1. Changes in the per-capita carbon emissions in the
three major economic regions of China.
doi:10.1371/journal.pone.0080888.g001

Influencing Factors of Per-Capita Carbon Emissions
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regional GDP, and P is the total regional population. Further-

more, the carbon emissions are divided by the population to

obtain the per-capita carbon emissions:

c~C=P~
X

i

Ci

,
P~

X
i

Ei=E.Ci=Ei.E=Y.Y=P ð3Þ

Eq. (3) shows that the regional per-capita carbon emissions are

affected by four factors:

(i) Energy structure (si~Ei=E ), the share of the i-th primary

energy relative to the total energy consumption;

(ii) Carbon emission coefficient (ai~Ci=Ei ), the carbon

emissions of the i-th primary energy consumption;

(iii) Energy efficiency (e~E=Y ), the energy consumption

required to generate the GDP per unit, which was

measured based on the energy intensity;

(iv) Economic development (y~Y=P ), measured based on the

regional per-capita GDP.

Therefore, the per-capita carbon emissions can be expressed as

follows.

c~
X

i

siaiey ð4Þ

The change in the regional per-capita carbon emissions from

year h to year t can be expressed as follows.

Dcr~Dc{(DcszDcazDcezDcy) ð5Þ

According to Eq. (5), the change in the regional per-capita

carbon emissions can be decomposed into four factors:

(i) Energy structure factor: Dcs;

(ii) Carbon emission coefficient factor: Dca;

(iii) Energy efficiency factor: Dce;

(iv) Economic development factor: Dcy.

Dcs, Dca, Dce, and Dcy express the contributions of the changes

in each factor as changes in the per-capita carbon emissions, while

Dcr denotes the decomposition residual.

In this study, we used the LMDI decomposition method

introduced by Ang et al. The decomposition factors are expressed

as follows.

Dcs~
X

i
Li(c

t
i ,c

h
i ) ln

st
i

sh
i

; Dca~
X

i
Li(c

t
i ,c

h
i ) ln

at
i

ah
i

;

Dce~
X

i
Li(c

t
i ,c

h
i ) ln

et
i

eh
i

; Dcy~
X

i
Li(c

t
i ,c

h
i ) ln

yt
i

yh
i

ð6Þ

Where, Li(c
t
i ,c

h
i )~(ct

i{ch
i )= ln (ct

i=ch
i )

2. The LMDI-based decomposition result of regional per-
capita carbon emissions

In Eq. (2), i represents the type of energy consumption,

including total coal, total oil, and natural gas, which are all

converted into standard coal. The data of the total coal, total oil,

and natural gas for each region were taken from China Energy

Statistical Yearbook [37]. In CESY the original data are given for

42 sectors. According to Eq. (6) the change in the per-capita

carbon emissions in the provincial area from 1997 to 2009 can be

decomposed into the energy structure factor, carbon emissions

coefficient factor, energy efficiency factor, and economic develop-

ment factor. The carbon emissions coefficients based on the IPCC

statistics will remain the same during a certain period so the

decomposition result for the carbon emissions coefficient is zero.

In addition, the decomposition value of each factor is divided by

the total variation from 1997 to 2009, so the share of each

decomposition factor can be obtained. The results are shown in

Table 2. The detailed decomposition results for each region and

year can be seen in (Tables S1, S2, S3, S4, S5, S6, S7, S8, S9, S10,

S11, S12 in Appendix S1).

The decomposition results show that the most powerful driver of

the per-capita carbon emissions in Eastern China, Central China,

Western China, and China between 1997 and 2009 was economic

development. Undoubtedly, China’s economy grew rapidly

between 1997 and 2009, and the per-capita carbon emissions

were closely associated with economic development. Thus, the

rapid development of the economy led to vigorous growth in the

per-capita carbon emissions, which was exemplified by the high

average annual growth in China’s per-capita carbon emissions

(7.1%) between 1997 and 2009. The main effect of economic

growth on the per-capita carbon emissions in Eastern China was

similar in Central China, but greater than that in Western China.

The inhibitory effect of energy efficiency on the increase in the

per-capita carbon emissions was much greater than that of the

energy structure. The inhibitory effect of energy efficiency

improvement on the per-capita carbon emissions in Eastern

China was similar to that in Central China, but larger than that in

Western China. Furthermore, the inhibitory effect of the energy

structure change on the increased per-capita carbon emissions was

very weak and the shares of the energy structure factor in Eastern

China, Central China, and Western China were all less than 1%.

Indeed, the coal-oriented energy structure in the three economic

regions remained unchanged. The proportion of coal was .70%

and the only difference was a slight increase in the proportion of

natural gas. The micro-adjustment of the energy structure had a

limited effect on the change in the per-capita carbon emissions.

For these provinces, the effect of economic growth on the per-

capita carbon emissions was high in the top five provinces, i.e.,

Beijing, Tianjin, Shanghai, Jinlin, and Shanxi, which comprised

three in Eastern China, one in Western China, and one in Central

China. By contrast, the inhibitory effects of energy efficiency were

highest in five other provinces: Beijing, Tianjin, Shanghai, Jinlin,

and Shanxi, which comprised three in Eastern China, one in

Central China, and one in Western China.

Panel Co-integration Analysis of the Factors that
Affected the Regional Per-capita Carbon
Emissions

1. Panel co-integration analysis method
The LMDI decomposition method was used to decompose the

change in the per-capita carbon emissions between 1997 and 2009

into the energy structure factor, the energy efficiency factor, and

the economic development factor. We also studied how these three

factors affected the per-capita carbon emissions in Eastern China,

Central China, and Western China using the panel co-integration

test method. The basic idea of co-integration is to verify whether

there is a long-term stable combined relationship between unstable

Influencing Factors of Per-Capita Carbon Emissions
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variables. If this combination is also a stationary sequence, we can

conclude that these variables have achieved co-integration

relationship.

1.1. Panel data unit-root test. The difficulty of the unit-root

test for Panel data is that we consider the heterogeneity of the

cross-section, but we also construct a higher potential statistic. The

Panel data unit root test method is not unified and the more

commonly used methods are the LLC test, Breitung test, IPS test,

Fisher ADF, Fisher PP test, and Hadri test. Of these, the LLC test,

Breitung test, and Hadri test are the same-root test methods,

whereas the IPS test, Fisher ADF, and Fisher PP test are different-

root test methods. Moreover, the LLC test, Breitung test, IPS test,

Fisher ADF, and Fisher PP test assume that the unit root exists,

whereas the Hadri test assumes no unit root.

1.2. Panel data co-integration test. There are two ways of

performing the co-integration test with Panel data: one based on

the maximum likelihood ratio, and another based on the residual.

It is well known that the Johansen Fisher test focuses on the

maximum likelihood ratio, whereas the Pedroni test and Kao test

prefer to use the residual of the E–G two-step method. We used

the Pedroni test.

The Pedroni test is applied mainly to heterogeneous panels and

it has seven co-integration statistics: four are interclass statistics

(Panel V, Panel Rho, Panel PP, and Panel ADF) and three are

group statistics (Group Rho, Group PP, and Group ADF). Panel

V, Panel Rho, Panel PP, Group Rho, Group PP Phillips, and

Perron statistics use nonparametric tests, whereas Panel ADF and

Group ADF use the ADF test. The null hypothesis of the seven

statistical tests is no co-integration relationship whereas the

alternative hypothesis of the interclass statistic requires a uniform

co-integration coefficient for every cross-section unit and the group

statistic allows variation.

2. Indicators and Data
In this study, the energy structure factor (ES) is denoted by the

coal share of the total energy consumption, energy efficiency

factors (energy intensity, IEC) are expressed as the energy

consumption per unit GDP, and the economic development

factors (RY) are represented by per-capita GDP. The data were

derived from: (1) China Energy Statistical Yearbook published by

China’s National Bureau of Statistics (CNBSa) [37]; and (2) China

Statistical Yearbook published by China’s National Bureau of

Statistics (CNBSb) [41], which covered 1997 to 2009. The annual

data were all converted into 2000 constant prices using the deflator

index. Finally, to ensure the stability of the variables, we took the

natural logarithm of each variable, which were denoted as LRC,

LES, LIEC, and LRY.

3. Co-integration Test Results
3.1. Panel data unit-root test result. Using the six methods

mentioned above for the panel data unit-root test, unit-root tests of

the four variables (LRC, LES, LIEC, and LRY) are carried out for

Eastern China, Central China, and Western China. Due to the

article length limit, we do not list the unit-root test results for the

three economic regions. The Hadri test results were not obvious

and in many cases the level value, the first-order difference value,

and the second-order difference value were all significant.

Therefore, the Hadri test results were excluded. As stated

previously by Harris and Tzavalis [42], the LLC test is unreliable

for a short time span, so we only determined the variables based

on the Breitung test, IPS test, Fisher ADF test, and Fisher PP test.

The test results for the four variables, i.e., LRC, LES, LIEC, and

LRY, were all unstable. This comprehensive analysis showed that

the four variables had unit-roots in the three economic regions.

3.2. Panel data co-integration test results. The unit-root

test results showed that the four variables, i.e., the regional per-

capita carbon emissions, energy structure, energy efficiency, and

economic development, were not stable. Therefore, we tested

whether the four variables had a co-integration relationship prior

to the panel data regression, which would have caused spurious

regressions. In this study, we tested whether there was a co-

integration relationship between the four variables using the seven

statistics included in the Pedroni test methods. The test results are

shown in Table 3.

Like test results mentioned by Pedroni [43], the Panel ADF and

Group ADF test results were the best, Panel V and Group Rho are

the worst, while the rest are intermediate. When the test

conclusions were inconsistent, we followed this order to determine

the co-integration relationship. According to this criterion, the

Panel ADF, Group ADF, Panel PP, and Group PP tests rejected

the original assumptions that there was no co-integration

relationship at the 1% significance level for Eastern China. The

Panel ADF, Panel PP, and Group PP tests were significant at 1%

significance level and the Group ADF test at the 5% significance

level, so we rejected the original assumption that there was no co-

integration relationship for Central China. The Panel ADF, Panel

PP, and Group PP tests are significant at the 1% significance level

and the Group ADF test at the 5% significance level, so we

rejected the original hypothesis that there was no co-integration in

Western China. This proved that the four variables, i.e., LIEC,

LPTI, LSS, and LFTD, had co-integration relationships in the

three regions.

3.3. Estimation model. The co-integration test showed that

there were co-integration relationships between the per-capita

carbon emissions and the energy structure, energy efficiency, and

economic development in each economic region. The long-term

equilibrium model of the regional per-capita carbon emissions and

Table 3. Pedroni co-integration test results for LRC, LES, LIEC, and LRY.

Statistics Panel V Panel Rho Panel PP Panel ADF Group Rho Group PP Group ADF

Eastern China 21.436201 (0.9245) 0.448341 (0.6730) 212.32185a

(0.0000)
25.958716a (0.0000) 2.321724 (0.9899) 27.967557a

(0.0000)
23.468141a

(0.0003)

Central China 23.290785 (0.9995) 2.185328 (0.9856) 210.42988a

(0.0000)
22.585709a (0.0049) 2.965013 (0.9985) 213.74530a

(0.0000)
22.191878b

(0.0142)

Western China 21.671686 (0.9527) 0.589782 (0.7223) 29.058999a

(0.0000)
22.495073a (0.0063) 1.874075 (0.9695) 216.11765a

(0.0000)
22.276763b

(0.0114)

aDenotes significance at the 1% level.
bDenotes significance at the 5% level.
doi:10.1371/journal.pone.0080888.t003
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its factors is as follows.

Ln(RCj,it)~aj0zaj1Ln(ESj,it)zaj2Ln(IECj,it)

zaj3Ln(RYj,it)zej,it

ð7Þ

where, j = 1, 2, 3, respectively, represent Eastern China, Central

China, and Western China; i represents the cross-section of

individuals; and t represents time. Thus, the regional estimation

results were as follows.

Eastern China:

Ln(RCit)~Cz0:614978Ln(ESit)z0:866913Ln(IECit)z

0:974369Ln(RYit)zeit

(17:20193)� (29:74998)� (84:00231)�

Adj{R2~0:980573 F~2390:200 DW~0:955507

ð8Þ

Central China:

Ln(RCit)~Cz0:767375Ln(ESit)z0:983452Ln(IECit)z

0:998437Ln(RYit)zeit

(30:61350)� (53:88676)� (138:5197)�

Adj{R2~0:994842 F~6623:376 DW~1:094641

ð9Þ

Western China:

Ln(RCit)~Cz0:764908Ln(ESit)z0:970804Ln(IECit)z

1:016691Ln(RYit)zeit

(34:59411)� (43:79333)� (148:1993)�

Adj{R2~0:993695 F~7460:906 DW~1:281898

ð10Þ

Initially, for the energy structure elasticity involved with

regional per-capita carbon emissions: Eastern China = 0.615,

Central China = 0.767, and Western China = 0.765. Thus, Cen-

tral China ranked first, Western China second, and Eastern China

third. After considering the energy efficiency elasticity, the results

for Eastern China, Central China, and Western China were 0.867,

0.983, and 0.971 respectively, with the highest in Central China,

the second in Western China, and the lowest in Eastern China.

Finally, after considering the economic development elasticity, the

results were 0.974 in Eastern China, 0.998 in Central China, and

1.017 in Western China, i.e., Western China, Central China, and

Eastern China in descending order.

The energy structure is characterized as the coal proportion in

the overall energy consumption and coal is the highest of all the

carbon emission coefficients of primary energy, so the energy

structure elasticities of the per-capita carbon emissions were

positive in Eastern China, Central China, and Western China. As

a result, the energy structures in Eastern China, Central China,

and Western China were 68.0%, 89.5%, and 76.4%, respectively,

in 1997, but 59.6%, 83.8%, and 76.5%, in 2009. The energy

structure and energy structure elasticity of the per-capita carbon

emissions shared identical sequences in Eastern China, Central

China, and Western China so the higher coal reserves and

production in Central China and Western China led to a higher

coal proportion of the energy consumption and a rapid increase in

carbon emissions and per-capita carbon emissions.

In conclusion, a higher energy intensity (energy consumption

per unit GDP) was linked to higher per-capita carbon emissions,

which agreed with our theoretical expectations. The energy

intensity was 1.475, 2.044, and 2.439 in Eastern China, Central

China, and Western China, respectively, as tons of standard coal

per million yuan in 1997, which changed to be 1.149, 1.543, and

1.855 in 2009, i.e., decreases of 22.1%, 24.5%, 23.9%, respec-

tively. The extent of the reduction kept pace with the energy

efficiency elasticity of the per-capita carbon emissions in the three

regions.

The per-capita GDPs in Eastern China, Central China, and

Western China were 9,284 yuan, 4,957 yuan, and 3,883 yuan,

respectively, in 1997, which soared to 28,678 yuan, 14,639 yuan,

and 13,038 yuan in 2009, with an annual growth rate of the per-

capita GDP from 1997 to 2009 of 9.9%, 9.4%, and 10.6%. In

general, a higher economic development level led to higher

individual consumption levels and more carbon emissions were

generated. Western China’s per-capita GDP grew at the highest

rate from 1997 to 2009. Due to the low level of economic

development in Western China, its per-capita carbon emissions

level ranked last among the three regions in 1997, whereas they

exceeded those of Central China in 2009. Therefore, from 1997 to

2009, the economic development elasticity of the regional per-

capita carbon emissions was highest in Western China but lowest

in Eastern China, which experienced excessive per-capita carbon

emissions accompanied by rapid economic development.

3.4. The Short-term Factors that Affected the Regional

Per-capita Carbon Emissions (Error Correction

Model). Traditionally, an econometric model is specified based

on a particular economic theory or the recognition of economic

behaviors, which help to clarify the theoretical relationship between

the model variables. However, the co-integration and error

correction model determined the variables and the relationships

between them by referring to specific relationships derived from the

data with respect to economic variables. We used the Engle-

Granger two-step approach to establish the panel error correction

model and to examine the short-term dynamics of changes in

China’s per-capita carbon emissions. The model was as follows.

DLn(RCj,it)~bj0zbj1DLn(ESj,it)zbj2DLn(IECj,it)

zbj3DLn(RYj,it)zbjECMj,it{1zej,it

ð11Þ

Table 4. Results of the regional error correction model.

Variable Eastern China Central China Western China

DLn(ES) 0.730269a (0.0000) 0.788592a (0.0000) 0.849344a (0.0000)

DLn(IEC) 0.830839a (0.0000) 0.902072a (0.0000) 0.903627a (0.0000)

DLn(RY) 0.762260a (0.0000) 0.943951a (0.0000) 0.955296a (0.0000)

ECM(21) 20.032685 (0.2261) 20.088058b (0.0237) 20.170012a

(0.0002)

Adj-R2 0.750556 0.924535 0.919809

F 99.54208 291.9669 376.6519

DW 2.708426 2.601132 2.387377

aDenotes significance at the 1% level.
bDenotes significance at the 5% level.
doi:10.1371/journal.pone.0080888.t004
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Variations in the regional per-capita carbon emissions can be

divided into long-term equilibrium and short-term fluctuations.

The error correction term in the model reflects the intensity of

adjusting the per-capita carbon emissions that deviate from the

long-terms equilibrium. Eq. (11) was used to estimate the regional

error correction models, as shown in Table 4.

The error correction model demonstrates that in the short-term

the effects of the regional energy structure, energy efficiency

(energy intensity), and economic development on the per-capita

carbon emissions Western China, Central China, and Eastern

China ranked first, second, and third, respectively. In addition,

each region’s error correction model (ECM) terms showed that the

theoretical assumptions matched the reality. The ECM coefficients

for Eastern China, Central China, and Western China were –

0.0327, –0.0881, and –0.1700, respectively. Of these, Western

China adjusted to the balanced state at the fastest rate, followed by

Central China and Eastern China.

Conclusion and Suggestions

The average annual growth of China’s per-capita carbon

emissions was 7.1% between 1997 and 2009. In 1997, Eastern

China, Central China, and Western China ranked first, second,

and third in the per-capita carbon emissions, while in 2009 the

ranking changed to Eastern China, Western China, and Central

China, where Western China exceeded Central China. The

LMDI decomposition results showed that economic growth

stimulated the increase of per-capita carbon emissions in Eastern

China, Central China, and Western China between 1997 and

2009. It is notable that the effects of economic growth on the per-

capita carbon emissions in Eastern China were similar in Central

China, but greater in Western China. In addition, the inhibitory

effects of energy efficiency on the increased per-capita carbon

emissions were much higher than those of the energy structure.

Furthermore, the inhibitory effect of improved energy efficiency

on the per-capita carbon emissions in Eastern China were similar

to that in Central China, but larger than that in Western China.

The inhibitory effect of the energy structure’s change on the

increased per-capita carbon emissions was very weak, i.e., ,1% in

Eastern China, Central China, and Western China. The analysis

of the factors that affected the regional per-capita carbon emissions

using a co-integration test indicated that for the energy structure

elasticity involved with the regional per-capita carbon emissions,

Central China ranked first, followed by Western China and

Eastern China. After considering the energy efficiency elasticity,

Central China was highest, followed by Western China and

Eastern China. Finally, when the economic development elasticity

was considered, Western China was highest, followed by Central

China and Eastern China.

The LMDI decomposition results showed that the continued

growth of GDP per capita was the dominant factor that led to the

growth of per-capita carbon emissions, while the stimulating effect

of economic development on the carbon emissions per-capita in

Central China was greater than that in Eastern China, and that in

Eastern China was also greater than that in Western China. As a

developing country, the growth of the economic development and

GDP per-capita is necessary to meet the national needs and

development requirements, and energy consumption is the basic

input that maintains the normal operation of the economic system.

Thus, an increased pressure on the environment is inevitable.

China’s current stage of development means that the continued

growth of China’s carbon emissions and per-capita carbon

emissions are unavoidable in the future for a long period of time.

Furthermore, according to the current international division of

labor, China produces many high energy-consuming products for

developed countries, which makes it more difficult for China to

access the peak phase of carbon emissions than developed

countries. The results of the LMDI decomposition and co-

integration analysis showed that economic development was the

most important factor that affects the growth of per- capita carbon

emissions. However, economic growth will not lead to a reduction

in carbon emissions immediately, and it need not lead to the

growth of total carbon emissions. Thus, it is possible to slow the

growth in the per- capita carbon emissions through government-

led emission reduction measures, which can control the carbon

emissions growth during the economic development process.

First, it is necessary to strengthen efforts to optimize the

industrial structure and promote the development of low-carbon

industries. Based on administrative and economic measures,

governments can facilitate resource integration in the high

energy-consuming heavy industry to limit the development of

high-carbon industry. There should be an aim to develop tertiary

industry because the energy intensity per GDP in the tertiary

industry is less than one-quarter of that in the secondary industry.

In 2012, China’s tertiary industry accounted for 44.6% of the

total, whereas it comprised two-thirds of the total in developed

countries, so the development of China’s tertiary industry still has

great potential. There should be a focus on actively developing a

modern service industry and high-tech industries, and using

financial measures to support the development of the information

industry, eco-industries, new energy development, and other green

industries.

Second, there is a need to fundamentally change the high input,

high energy consumption, high pollution, and low efficiency

growth pattern, and adopt an intensive growth mode instead of an

extensive one. The LMDI decomposition results showed that one-

quarter of the per-capita carbon emissions growth caused by

economic development was offset by an increase in the energy

efficiency, so energy savings and energy efficiency improvement

are the most effective ways to reduce emissions. According to a

study of China’s Energy Development Strategy and Policy

Research Group, the energy consumption per unit product in

energy-intensive industries was 21% higher than that of the

world’s advanced level, which shows that there is still great

potential for China to slow the growth of per-capita carbon

emissions by continuing to improve the energy efficiency and

reducing the carbon emissions per unit of GDP in the future.

China should actively encourage the development and application

of low carbon technologies, transform the steel, cement, and other

high-carbon industries using high-tech approaches, promote

industrial innovation and upgrading within the industry, and

focus on the promotion and application of advanced emission

reduction technologies. China can also strengthen international

cooperation, introduce advanced energy-saving technologies such

as clean coal technology from developed countries and promote

them, as well as encouraging the use of the Clean Development

Mechanism (CDM), carbon capture, and storage technology (CSS)

in related units. Moreover, China can strengthen energy

management to improve energy efficiency in many ways. For

example, relevant laws and regulations could be established and

improved to promote the development of a low-carbon economy,

by setting enforced carbon intensity standards for various

industries and by encouraging families to adopt low-carbon

lifestyles by economic incentives.

Third, there is a need to optimize the energy consumption

structure. The decomposition results showed that the energy

structure could limitedly slow the growth of per-capita carbon

emissions, but this is because the coal-dominated energy

Influencing Factors of Per-Capita Carbon Emissions
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consumption structure has not changed significantly in the last

decade. China’s coal-based energy consumption structure means

that it is difficult to change rapidly. However, it is China’s long-

term aim to improve the energy structure by actively increasing oil

and gas imports, developing new energy and renewable energy,

and gradually reducing the weighting of coal in the overall energy

consumption. China has abundant hydropower, wind, and solar

energy, but the main factors that restrict renewable energy

development at present are the cost and technology. Therefore,

governments need to respond by supporting new energy through

loans, taxes, and other measures. The growth of per-capita carbon

emissions can be slowed by the establishment of a new ‘‘low

carbon’’ or even ‘‘zero carbon’’ energy system by developing and

utilizing new energy and renewable energy sources.

Finally, our results show that the current status and the trends in

the per-capita carbon emissions in each region varied dramatical-

ly. Thus, efforts to narrow the gap in regional per-capita carbon

emissions will help to lower their growth rate. To achieve the

energy-saving objectives of China the circulation barriers should

be eliminated, and low-carbon technologies could be shared within

regions and resources to flow freely, thereby ensuring their optimal

allocation.

Supporting Information

Appendix S1 Supporting tables. Table S1, The LMDI-based

decomposition results (1997–1998). Table S2, The LMDI-based

decomposition results (1998–1999). Table S3, The LMDI-based

decomposition results (1999–2000). Table S4, The LMDI-based

decomposition results (2000–2001). Table S5, The LMDI-based

decomposition results (2001–2002). Table S6, The LMDI-based

decomposition results (2002–2003). Table S7, The LMDI-based

decomposition results (2003–2004). Table S8, The LMDI-based

decomposition results (2004–2005). Table S9, The LMDI-based

decomposition results (2005–2006). Table S10, The LMDI-based

decomposition results (2006–2007). Table S11, The LMDI-based

decomposition results (2007–2008). Table S12, The LMDI-based

decomposition results (2008–2009).

(DOC)

Acknowledgments

The authors also would like to thank the anonymous reviewers for their

helpful suggestions and corrections on the earlier draft of this paper, and

upon which the content has been improved.

Author Contributions

Analyzed the data: FD RL HC XL QY. Wrote the paper: FD. Contributed

analysis tools: FD.

References

1. Mielnik O, Goldemberg J (1999) The evolution of the ‘‘carbonization index’’ in

developing countries. Energy Policy 27: 307–308.

2. Ang BW (1999) Is the Energy intensity a less useful indicator than the carbon

factor in the study of climate change. Energy Policy 27: 943–946.

3. Zhang ZQ, Qu JS, Zeng JJ (2008) A quantitative comparison and analysis on the

assessment indicators of greenhouse gases emission. Journal of Geographical

Sciences 18: 397–399.

4. Sun JW (2005) The decrease of CO2 emission intensity is decarbonization at

national and global levels. Energy Policy 33: 975–978.

5. Lin BQ, Li XH (2011) The effect of carbon tax on per capita CO2 emissions.

Energy Policy 39: 5137–5146.

6. Jorgenson AK, Clark B (2013) The relationship between national-level carbon

dioxide emissions and population size: an assessment of regional and temporal

variation, 1960–2005. PloS one 8: e57107.

7. Lanne M, Liski M (2004) Trends and breaks in per-capita carbon dioxide

emissions, 1870–2028. Energy Journal 25: 41–65.

8. Wang QQ, Huang XJ, Chen ZG, Tan D, Chuai XW (2009) Movement of the

gravity of carbon emissions per capita and analysis of causes. Journal of Natural

Resources 24: 833–841 (In Chinese with English abstract.).

9. Tian LX, Zhang BB (2011) Factor decomposition analysis of carbon emissions

change in China. China Population, Resources and Environment 21: 1–7 (In

Chinese with English abstract.).

10. Rajaratnam S, Kanthi P (2010) Is there a cointegrating relationship between

Australia’s fossil-fuel based carbon dioxide emissions per capita and her GDP

per capita?. Journal International Journal of Oil, Gas and Coal Technology 3:

1753–3309.

11. Lee CC, Chang CP (2008) New evidence on the convergence of per capita

carbon dioxide emissions from panel seemingly unrelated regressions augmented

Dickey–Fuller tests. Energy 33: 1468–1475.

12. Zaim O, Taskin F (2000) Environmental efficiency in carbon dioxide emissions

in the OECD: a non-parametric approach. Journal of Environmental

Management 58: 95–107.

13. Zofı́o JL, Prieto AM (2001) Environmental efficiency and regulatory standards:

the case of CO2 emissions from OECD industries. Resource and Energy

Economics 23: 63–83.

14. Zhou P, Ang BW, Poh KL (2006) Slacks-based efficiency measures for modeling

environmental performance. Ecological Economics 60: 111–118.

15. Lozano S, Gutiérrez E (2008) Non-parametric frontier approach to modelling

the relationships among population, GDP, energy consumption and CO2

emissions. Ecological Economics 66: 687–699.

16. Zhou P, Ang BW, Han JY (2010) Total factor carbon emission performance: a

Malmquist index analysis. Energy Economics 32: 194–291.

17. Wang QW, Zhou P, Zhou DQ (2012) Efficiency measurement with carbon

dioxide emissions: the case of China. Applied Energy 90: 161–166.

18. Fan Y, Liu LC, Wu G, Tsai HT, Wei YM (2007) Changes in carbon intensity in

China: Empirical findings from 1980–2003. Ecological Economics 62: 683–691.

19. Sun JW (1998) Accounting for energy use in China, 1980–94. Energy 23: 835–

849.

20. Zhang M, Mu HL, Ning YD (2009) Accounting for energy-related CO2

emission In China, 1991–2006. Energy Policy 37: 767–773.

21. Ang BW, Zhang FQ, Choi KH (1998) Factorizing changes in energy and

environmental indicators through decomposition. Energy 23: 489–495.

22. Chunbo M, David IS (2008) China’s changing energy intensity trend: A

decomposition analysis. Energy Economics 30: 1037–1053.
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