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Abstract
We present a spectral crystal plasticity (CP) solver for graphics processing unit (GPU) architectures that achieves a tenfold
increase in efficiency over prior GPU solvers. The approach makes use of a database containing a spectral decomposition
of CP simulations performed using a conventional iterative solver over a parameter space of crystal orientations and applied
velocity gradients. The key improvements in efficiency come from reducing global memory transactions, exposing more
instruction-level parallelism, reducing integer instructions and performing fast range reductions on trigonometric arguments.
The scheme also makes more efficient use of memory than prior work, allowing for larger problems to be solved on a single
GPU. We illustrate these improvements with a simulation of 390 million crystal grains on a consumer-grade GPU, which
executes at a rate of 2.72 s per strain step.
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1 Introduction

Predicting the macroscopic behavior of metals under defor-
mation is important for the development of new designs
and manufacturing processes [16]. Accurate modeling of
this behaviour depends on being able to capture the evo-
lution of the microstructure of the metal to correctly capture
anisotropies in its plastic properties. In polycrystalline met-
als, crystal plasticity (CP) formulations have been successful
in predicting the evolution of the microstructure [3], and
have been integrated into finite element models (CPFE) [13],
but are relatively computationally expensive when compared
with phenomenological models due to the need to iteratively
solve very stiff algebraic systems to determine the micro-
scopic single crystal responses [8].

These microscopic responses can be homogenized into a
macroscopic response using a number ofmethods, with vary-
ing degrees of computational complexity, such as the Taylor
model [24], self-consistent models [14,18] and the LAMEL
model [27]. The Taylormodel is one of the simplest, in which
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it is assumed that all grains in the aggregate undergo the same
deformation, and is significantly less computationally expen-
sive than the higher-order models. Due to this, it has found
widespread use in crystal plasticity frameworks. However, it
has some limitations, such producing sharper textures than
those predicted by a more accurate homogenization-based
finite element method [23]. Despite the Taylor model’s effi-
ciency, it still relies on being able to determine a large number
of crystal responses, on the order of hundreds per representa-
tive volume element (RVE) [23], which remains a challenge
for large-scale simulations.

One approach to improving the computational feasibility
of the crystal plasticity model is to use pre-computed crystal
response databases that use an iterative solver to capture the
mapping from an imposed strain and current crystal orien-
tation to the resulting lattice spin, stress and total slip rate
for a single crystal. For a large input parameter space, these
databases may become too large to be practical, and work
has been done to compress them using first a generalized
spherical harmonic (GSH) basis [9,15] and then a more effi-
cient Fourier basis using the discrete Fourier transform (DFT)
[12]. This approach is referred to as spectral crystal plastic-
ity (SCP), and it was found that retaining only very few of
the largest Fourier coefficients, on the order of a thousand,
was sufficient for successfully reproducing the behaviour of
interest [10]. This lead to an order of magnitude increase

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00466-018-1565-x&domain=pdf
http://orcid.org/0000-0002-5709-8227


1312 Computational Mechanics (2018) 62:1311–1326

in efficiency over a standard iterative CP solver [17], lead-
ing to SCP solvers being integrated into finite element solvers
[11,28,29] and a viscoplastic fast Fourier transform (VPFFT)
full-field solver [6].

Further developments in this direction recognized the
inherent parallelizability of the SCP approach, and a shared
memory implementation achieved an additional order of
magnitude improvement in speed, followed by a graphics
processing unit (GPU) implementation that produced a third
order of magnitude speedup [17,22]. The primary workload
in these cases is in evaluating the inverse DFT, and the good
performance of the GPU implementation was attributed to
casting the inverse DFT as a matrix–matrix multiplication
and using a divide-and-conquer style algorithm to reduce the
computational complexity [17,22].

The current work takes these developments a step further,
by introducing a number of improvements in computational
efficiency and reductions in the memory requirements for
the GPU implementation. We find that the most significant
improvement in arithmetic efficiency comes fromperforming
fast range reductions on trigonometric arguments in evalu-
ating the inverse DFT. The most significant improvement in
terms of both memory transaction efficiency and in reduc-
ing memory requirements comes in evaluating terms in the
inverse DFT directly, rather than as the matrix–matrix multi-
plication proposed in prior work. We find that the combined
improvements lead to a tenfold increase in computational
efficiency, and a reduction in memory requirements by a fac-
tor of roughly one thousand. This allows for the largest SCP
simulations presented to date to be efficiently handled on a
single consumer-grade GPU.

In Sect. 2 we present the formulation of both the base
crystal plasticity model and the spectral database approach.
In Sect. 3 we present the important details of our implemen-
tation. In Sect. 4 we present and discuss results confirming
agreement with the base iterative solver and highlighting the
effects of the various optimizations. Finally, in Sect. 5 we
present a summary of our findings, and suggest directions
for future work.

2 Formulation

2.1 Crystal plasticity model

We use a version of the crystal plasticity model developed
by Peirce, Asaro and Needleman [3,20] in the context of
face-centered cubic (FCC) polycrystals. Consider a closed
reference domain Ω ⊂ R

3 under a motion x = χ(X, t),
where X is a material point of Ω , mapped by χ to a spatial
point x. The deformation gradient at a time t is then given by
the material gradient of the deformation χ(·, t) at time t :

F = ∇χ . (1)

The domain is comprised of disjoint microscopic crystal
grains Ωi , such that

Ω =
⋃

i

Ωi , (2)

where it is assumed that all of the grains have equal vol-
ume. Each macroscopic continuum point X is associated
with the grains in some finite region containing X, such that
X ∈ ΩX ⊂ Ω . It is assumed that the deformation gradient
experienced by the microscopic grains in ΩX is identical to
themacroscopic deformation gradient atX.We now consider
the response of each grain withinΩX to this deformation gra-
dient F(X).

The deformation gradient is multiplicatively decomposed
into an elastic part F∗, and a plastic part Fp, through

F∗ ≡ FFp−1
. (3)

The second Piola–Kirchhoff stress σ ∗ in each grain is related
to the elastic strain E∗ in each grain by

σ ∗ = L[E∗], (4)

whereL is a fourth order elasticity tensor. The Cauchy stress
σ is implicitly given by

σ ∗ = F∗−1
(det(F∗)σ )F∗−T

. (5)

The elastic strain is assumed to be very small, given by

E∗ = 1

2

(
F∗T F∗ − 1

)
, (6)

where 1 is the second-rank identity tensor. The elasticity
tensor accounts for the cubic symmetry of the FCC single
crystal, and is given by [5]

Li jkl ≡ C12δi jδkl + C44
(
δikδ jl + δilδ jk

)

+C̄
3∑

r=1

δirδ jrδkrδlr , (7)

C̄ = C11 − C12 − 2C44, (8)

whereC11,C12, andC44 are constants. The velocity gradient
is given by

L = Ḟ · (F)−1, (9)

which can be expanded as

L = L∗ + F∗ · Lp · (F∗)−1, (10)
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where the elastic and plastic components respectively have
been defined by

L∗ := Ḟ∗ · (F∗)−1, (11)

Lp := Ḟp · (Fp)−1. (12)

The plastic velocity is expressed as a linear combination of
Schmid tensors given by [21]

Lp =
12∑

α=1

ναSα
0 , (13)

Sα
0 := mα

0 ⊗ nα
0 , (14)

where α labels a particular slip system, in which Sα
0 is the

Schmid tensor for that system defined bymα
0 and nα

0 , which
are the time-independent slip direction and slip plane normal
respectively in the intermediate lattice space, and να is the
slip rate on the system. The slip rate is modeled with a rate-
dependent power law relation [3]:

να = ν0

∣∣∣∣
τα

sα

∣∣∣∣
1/m

sgn(τα), (15)

where ν0 is a reference slip rate, m is the rate sensitivity of
slip, τα is a resolved shear stress, and sα is the slip system
deformation resistance. The resolved shear stress is approx-
imated by [8]

τα ≈ σ ∗ : Sα
0 , (16)

and the slip system deformation resistance is taken to evolve
by a Voce-type saturation hardening law [25]:

ṡα = h0

(
1 − sα

ss

)a

G, (17)

G :=
12∑

β=1

|νβ |, (18)

where h0, a and ss are slip hardening parameters that are
taken to be identical for all of the slip systems. In the case
where all slip systems start with the same initial deforma-
tion resistance, we simply denote this common deformation
resistance by s. The texture evolution is dictated by the lattice
rotation tensor R∗, which evolves as

Ṙ∗ = W∗R∗, (19)

where W∗ is the lattice spin tensor given by

W∗ = W − Wp, (20)

where W is the applied spin tensor given by

W = 1

2

(
L − LT

)
, (21)

and Wp is the plastic spin tensor given by

Wp = 1

2

12∑

α=1

να
(
mα ⊗ nα − nα ⊗ mα

)
. (22)

The spatial slip directions and normals at a given time are
given by

mα = F∗mα
0 , (23)

nα = F∗−T
nα
0 . (24)

2.2 Homogenization

Homogenization within the polycrystal is done using a
Taylor-typemodel [3]. In eachmacroscopic volume element,
there are N crystals, with a Cauchy stress of σ [k] in the kth
crystal. The macroscopic stress response is taken as the vol-
ume average of the crystal responses, which simply becomes
the average since we have assumed the grains have equal
volume:

σ̄ = 1

N

N∑

k=1

σ [k]. (25)

2.3 Spectral database formulation

Following the approach ofKnezevic et al. [10], we proceed to
generate a database of single crystal responses. Each entry in
the database corresponds to a simulation involving a single
crystal with an orientation g = (φ1, Φ, φ2), where φ1, Φ,
φ2 are the Bunge-Euler angles, each in the range [0, 2π).
The crystal is simulated under a constant applied stretching
tensor D = 1

2

(
L + LT

)
until it has reached a true strain

equal to some pre-chosen fixed true strain increment Δε.
The database entry then associates each input, a combination
of crystal orientation and applied stretching tensor, with an
output, the state of the crystal after stepping to the given strain
increment.

Assuming that elastic strains are negligible, the applied

stretching tensor reduces to D ≈ Dp = 1
2

(
Lp + LpT

)
.

Making the standard assumption for metals that the plastic
deformation is isochoric, we also have that D is traceless.

The outputs representing the final state of the crystal are
chosen as the minimal set required to update the slip sys-
tem deformation resistance, stress and texture for any given
increment, which amounts to 9 total scalars. The sum of
effective shearing rate magnitudes, G, is required to evaluate
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the deformation resistance using Eq. 17. The 5 indepen-
dent components of the deviatoric and symmetric Cauchy
stress following a single strain step, σ ′, are combined with
the deformation resistance to evaluate the Cauchy stress at a
given time. Finally, the 3 independent components of the anti-
symmetric plastic spin, Wp, are required to evaluate Eq. 19
to update the texture.

The inputs are parametrized by four scalars. The crystal
orientations are parametrized directly by the three Bunge-
Euler angles. We parametrize the strain rate tensor D by first
scaling it and rotating it into its principal frame:

ε̇ = ‖D‖F , (26)

D0 = D/ε̇, (27)

�D = QTD0Q. (28)

The diagonal matrix �D containing the eigenvalues of D0

now has unit norm and zero trace, and can therefore have its
entries parametrized by a single angular variable θ ∈ [0, 2π)

as [26]

λ1 =
√
2

3
cos(θ − π/3),

λ2 =
√
2

3
cos(θ + π/3),

λ3 = −
√
2

3
cos(θ). (29)

With these four input scalars, each in the range [0, 2π),
we construct a uniform 4-dimensional grid of evenly-spaced
inputs with Ng grid points per dimension. For each of the
inputs, the crystal plasticitymodel is integrated over the fixed
strain increment and the values σ ′/(s|ε̇|m), Wp/ε̇ and G/ε̇

are stored in the database. This large raw database is then
compressed by taking the 4-D DFT of each of the output
variables and retaining only the largest few Fourier coeffi-
cients:

σ ′
j/(s|ε̇|m) = 1

N 4
g

∑

k

σ̂ ′
ke

2π ij·k/Ng , (30)

Wp
j /ε̇ = 1

N 4
g

∑

k

Ŵp
ke

2π ij·k/Ng , (31)

Gj/ε̇ = 1

N 4
g

∑

k

Ĝke
2π ij·k/Ng , (32)

where j is the spatial index on the raw grid, k is the spectral
index, and hats denote Fourier coefficients. Note that the raw
grid is not uniform over orientation space, and therefore is
not the most efficient possible sampling of the orientation
space. The uniformity over the Bunge-Euler angles is chosen
to allow for an efficient DFT and inverse DFT.

For the purposes of ordering the Fourier coefficients only,
the 9 output scalars in the database are scaled to have mean
0 and variance 1, in order to have them vary on comparable
scales and be dimensionless. For a given Fourier index, the
Fourier coefficients for these scaled values are then combined
into a vector of length 9, and the magnitudes of these vectors
for each index are used to set a descending order for the
Fourier coefficients. This order is used for storing the Fourier
coefficients corresponding to the unscaled data, and those
corresponding to the scaled data are not stored.

The spectral database is constructed from two sweeps of
the raw database. In the first sweep, the full grid is read in for
each component in turn, and used to determine the coefficient
magnitudes and subsequently the ordering indices for the
coefficients. In the second sweep, the grid is read in the same
way, but this time the largest Fourier coefficients are written
to disk for each component in turn. These sweeps done to
keep the memory footprint minimal.

In this work, min(N 4
g , 216) coefficients are retained in this

spectral database, chosen as an upper bound on the number
of coefficients we expect to use in a practical computation.
Typically the number of Fourier terms used in a computation,
Nt , is of order one thousand.

It is now possible to fetch a single crystal response from
this spectral database. Given the imposed strain rate tensor
D we determine ε̇ and θ from Eqs. 26–29. Given the current
crystal orientation in the principal frame of D, we determine
φ1, Φ and φ2 directly. We then determine the nearest point
on the raw grid by

j = nint

(
Ng

2π
(φ1, Φ, φ2, θ)

)
, (33)

where nint returns the vector of nearest integers. We then
retrieve G using Eq. 32, and use it to update s using Eq. 17.
Finally, we update the remaining quantities using Eqs. 30 and
31.

We also use the spectral interpolation scheme suggested in
[10], in which the spectral database is effectively replaced by
the best approximation of a spectral database with a greater
number of grid points than were originally computed. This
scales Ng up to NgNr , where we refer to Nr as the refinement
multiplier.

3 Methods

3.1 Evaluation of CPmodel

Time integration of the base CP model for the purposes of
constructing the database is done using the implicit time-
stepping scheme and iterative solver described by Kalidindi
et al. [8]. We also use some of the properties of annealed
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oxygen-free high thermal conductivity (OFHC) copper pre-
sented in that work for our material parameters: h0 =
180 MPa, ν0 = 0.001s−1, ss = 148 MPa, a = 2.25,
and m = 0.012. For the elastic anisotropy, we use the
values determined by Alers et al. [1]: C11 = 168.7 GPa,
C12 = 121.7 GPa, and C44 = 75.0 GPa. We use an initial
timestep of Δt = 0.001 s, a strain rate of ε̇ = 0.001 s−1

and a target strain increment of Δε = 0.02, leading to a
final time of tfinal = Δε/ε̇ = 20 s. The initial conditions are
σ 0 = 0 MPa, s0 = 16 MPa and Fp

0 = 1. The initial ori-
entation is an “unrotated” one with all of the crystal plane
normals aligned with the corresponding lab axes.

3.2 Spectral symmetries

We use the symmetry in the DFT of real data to avoid com-
puting slightly fewer than half of the terms in the series, as
suggested in [10]. The inverse DFT of a quantity Y on a
domain with sides composed of an equal number of discrete
points L is given by

Yj =
∑

k

Ŷke
2π ij·k/L . (34)

For real data, the coefficients Ŷk have the symmetry Ŷk =
ŶL−k. Hence we can account for two terms at once by rec-
ognizing that

Ŷke
2π ij·k/L + ŶL−ke

2π ij·(L−k)/L

= Ŷke
2π ij·k/L + Ŷke

−2π ij·k/L

= Ŷke
2π ij·k/L + Ŷke2π ij·k/L

= 2Re
(
Ŷke

2π ij·k/L
)

.

3.3 Memory optimizations

In this and the following sections we make reference to a
number of specific GPU hardware concepts to motivate and
demonstrate certain optimizations. For an introduction to
these concepts, we refer the reader to [4] for an overview. On
the software side, we specifically target Nvidia’s Compute
Unified Device Architecture (CUDA) application program-
ming interface (API), which is covered in [19].

In prior work, the inverse Fourier transform is imple-
mented as a matrix–matrix multiplication to allow for the
use of divide-and-conquer algorithms, such as the Strassen
algorithm, in order to reduce the total number of arithmetic
operations [13,17,22]. The approach is given by

⎛

⎝
σ ′
j/(s|ε̇|m)

Wp
j /ε̇

Gj/ε̇

⎞

⎠ =
⎛

⎝
σ̂

′
k

Ŵ
p
k

Ĝk

⎞

⎠

9×Nt

·

⎛

⎜⎜⎝

e
2π i(j1 ·k1)

L · · · e
2π i(jNc ·k1)

L

...
. . .

...

e
2π i(j1·kNt )

L · · · e
2π i(jNc ·kNt )

L

⎞

⎟⎟⎠

Nt×Nc

, (35)

where Nt is the number of Fourier terms used, and Nc is the
number of crystals. In both storing and loading the interme-
diate matrix of complex exponentials however, significant
pressure is placed on the global memory system, causing the
solver to be bound by memory transactions. This is a much
greater cost than any arithmetic savings from the use of effi-
cientmatrix–matrixmultiplication schemes, and additionally
places a severe limit on the maximum problem size that can
be handled by the solver due to there being an additional Nt

complex numbers worth of memory required for each addi-
tional crystal. We avoid this with a matrix-free approach in
which we simply evaluate the Fourier series directly on a
per-crystal basis.

In order to further reduce global memory transactions, we
read as many Fourier terms into shared memory as possible.
For a general D-dimensional database, each Fourier term
is represented in memory as a structure containing D inte-
gers for the coordinate k and 9 floating point values for the
coefficients Ŵ

p
k , σ̂

′
k, and Ĝk. In our single-precision imple-

mentation, a shared memory array of these terms is then read
in froma globalmemory array as if it were an array consisting
only of elements of some 32-bit type. In our implementation
we chose integers for this type, but any 32-bit type would
have the same effect. Each thread j then reads the integers
at the array locations i that satisfy i mod B = j , where B
is the block size, which ensures global memory coalescing
and avoids shared memory bank conflicts. This can also be
achievedwith a 64-bit type, for example in a double-precision
implementation, provided the device supports 8-byte bank
mode and has it activated.

While this makes the scheme significantly faster than one
in which each thread reads each term from global memory, it
puts a large load on the shared memory system. Depending
on the device, it’s possible for the solver still to be bound by
memory transactions, evenwith this scheme.We found this to
be the case for theGeForceGTX980Ti used in thiswork, and
circumvented it by using two crystal grains per thread. The
effect for each thread is that the amount of shared memory
loading per crystal is halved. In our case this was sufficient to
prevent the shared memory system from being saturated, and
led to the solver being arithmetic-bound. On other hardware
this may not be necessary at all, or more crystals per thread
may be required. The drawback of having multiple crystal
grains per thread is that the number of registers per thread
increases, which reduces the maximum number of resident
warps permultiprocessor (i.e. occupancy), potentially expos-
ing instruction latency.However, since the arithmetic for each
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Table 1 Demonstration of fastmodulo using bitwiseAND for j·k = 107
and L = 32

Quantity Value Binary representation

j · k 107 0 1 1 0 1 0 1 1

L − 1 31 0 0 0 1 1 1 1 1

(j · k)&(L − 1) 11 0 0 0 0 1 0 1 1

crystal is independent, the device is still able to achieve very
high instruction-level parallelism (ILP), which sufficiently
hides the instruction latency even though the occupancy is
low. The effectiveness of using instruction-level parallelism
to reduce latency is borne out for example in [7].

3.4 Arithmetic optimizations

With the solver now being arithmetic-bound, we seek out
additional arithmetic optimizations. The most significant tar-
get is the trigonometric functions involved in calculating
each e2π i(j·k)/L term. There is the potential for the argument
2π j · k/L to be very large, at most 2πDL , requiring either
hardware or software to performa range reductionwhen eval-
uating the trigonometric functions. We circumvent this by
performing the range reduction explicitly before passing the
argument into the trigonometric function. Since both j ·k and
L are integers, using the periodicity of the exponential with
a pure imaginary argument, we note that

e2π i(j·k/L) = e2π i(((j·k mod L)+nL)/L) (36)

= e2π i((j·k mod L)/L)e2π in (37)

= e2π i((j·k mod L)/L), (38)

where n is an integer, and therefore can replace j · k/L with
the potentially smaller (j · k mod L)/L .

While this speeds up the computation significantly for
large arguments, the integer division required in the modulo
operation may still be a sizable expense depending on the
architecture. For the compute capability 5.2 hardware used
in this work, this was the case, so we used the fact that if L
is a power of two, then

(j · k) mod L = (j · k)&(L − 1), (39)

where & is a bitwise AND operation. Table 1 demonstrates
the logic for this optimization for j · k = 107 and L = 32.
This allows for higher throughput bitwise operations rather
than a relatively expensive integer division.

3.5 Overview

Wenowprovide an overviewof the two phases of themethod,
the offline phase in which the spectral database is created,

and the online phase in which it is used, along with their
respective parameters.

For the offline phase, all of the material parameters are
required, and any database created will only be usable for
a material described by the same parameters. The method
parameters required at this stage pertain to how the iterative
CP model is evaluated (Sect. 3.1), and how the database is
constructed (Sect. 2.3). For the CP model evaluation, there
is the initial slip resistance s0 = 16 MPa, an initial timestep
Δt = 0.001 s, a strain rate ε̇ = 0.001 s−1, and a target total
strain increment Δε = 0.02. These final two parameters
dictate the final time for each single crystal simulation going
into the database, which is tfinal = Δε/ε̇ = 20 s.

For the construction the raw database, we must choose the
number of grid points in each direction Ng , after which we
perform an iterative CP computation for each point on the
grid, and for each point we store the values of σ ′/(s|ε̇|m),
Wp/ε̇ and G/ε̇ at the final time to disk.

For the construction of the spectral database from the raw
database, the only method parameter is the limit on the num-
ber of Fourier terms to store for each component,which in our
case we set to be min(N 4

g , 216). After the spectral database
is constructed it is stored to disk.

Now for the online phase, the only material parameters
required are those for updating the slip resistance using
Eq. 17: h0, a and ss . The problem parameters provided are
the imposed velocity gradient L(t), the number of crystals
Nc, their initial orientation distribution, and an initial slip
resistance s0. The method parameters provided are the strain
increment per step Δε, the number of Fourier terms Nt , and
the refinement multiplier Nr . We additionally choose a spec-
tral database to use,which is implicitly a choice of the number
of grid points in the raw database it was generated from, Ng .

We first generate the crystals with a given orientation
distribution and set their initial slip resistances to s = s0.
At each timestep, we then determine ε̇ and θ from D =
1
2

(
L(t) + L(t)T

)
using Eqs. 26–29, and additionally deter-

mine W = 1
2

(
L(t) − L(t)T

)
. Then from our desired strain

increment Δε, we determine the corresponding timestep
Δt = Δε/ε̇. Now for each crystal, we determine its current
orientation in the principal frame of D to retrieve φ1, Φ and
φ2 for the database lookup. We then determine the nearest
point j on the raw grid using Eq. 33. This is used to retrieve
G using Eq. 32, which is used to update the slip resistance
s using Eq. 17. The slip resistance is required to correctly
scale σ andWp when they are fetched using Eqs. 30 and 31
respectively. These quantities are in the principal frame of D
after being fetched, so are transformed out of that frame into
the lab frame. Finally for the texture, the lattice spin tensor
W∗ is updated using Eq. 20, which is then used to update the
lattice rotation tensor R∗ using Eq. 19. The rotation tensor
is decomposed into its Bunge–Euler angle representation,
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which is then stored for the next timestep along with s as
the only two per-crystal quantities that are stored between
timesteps.

4 Results

4.1 Simple shear and plane strain compression

We examine two test cases, and compare them with the liter-
ature as verification of the scheme. The first is a simple shear
test, given by

L =
⎛

⎝
0 ε̇ 0
0 0 0
0 0 0

⎞

⎠ , (40)

with ε̇ = 1.0, and the second is a plane strain compression
test, given by

L =
⎛

⎝
ε̇ 0 0
0 0 0
0 0 −ε̇

⎞

⎠ , (41)

with ε̇ = 1.0 s−1. In both cases the configuration is com-
posed of 65,536 randomly-oriented crystal grains forming a
single Taylor polycrystal. The random orientations are drawn
in such away that their corresponding rotations are uniformly
distributed within SO(3), using the method in [2]. The sim-
ulation is run from t = 0 to t = 1000 s. For the iterative
solver, we use an initial timestep of Δt = 0.001 s. For the
spectral solver,we use a strain increment of 0.02, correspond-
ing with a timestep of Δt = 0.02 s. The spectral database
is constructed from an Ng = 128 raw database, and is fur-
ther refined by a factor of Nr = 128. The number of Fourier
terms used is either Nt = 1024 or Nt = 8192, chosen to
correspond directly with the results in the literature.

We compare stress-strain curves for the two solvers for
the simple shear case in Fig. 1, and we compare textures at
the final timestep in Fig. 2. The same comparisons are made
for the plane strain compression case in Figs. 3 and 4. The
stress-strain curves are also compared with those from the
same tests conducted in the work byMihaila et al. [17]. Their
case differs from our case slightly, by using an isotropic elas-
ticity tensor, a rate sensitivity of slip of m = 0.01 instead of
m = 0.012, and a database dimension of Ng = 120 instead
of dimension Ng = 128. Additionally they use the spectral
refinement method, but the refinement multiplier value they
use is not reported. The curves show good agreement gen-
erally, although the spectral solver with 8192 Fourier terms
produces a more accurate result for the simple shear case in
the Mihaila et al. work, and produces a more accurate result
for the plane strain compression case in our work.

Fig. 1 Comparison of true stress strain curves for the iterative and
spectral schemes for the simple shear case with the results in [17]. a
Cases with 1024 Fourier terms. b Cases with 8192 Fourier terms

4.2 Accuracy scaling

In this section we measure the scaling of the solver accu-
racy with the number of Fourier terms, database grid length
and refinement multiplier. We take as a reference simula-
tion the simple shear case with Nt = 65,536 Fourier terms,
Nc = 65,536 crystals, a database grid length of Ng = 128
and a refinement multiplier of Nr = 128. For subsequent
simulations, the error is defined as the L2 norm of the differ-
ence between the full history of the Cauchy stress and that
in the reference simulation, normalized to the norm of the
reference simulation. We then vary each of the three param-
eters separately, fixing the other two to be the same as in
the reference simulation, to determine the influence of that
parameter on the overall error. The exception is the database
grid length test, which was was done with Nt = 2048 terms,
the total number of terms in the smallest database.
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Fig. 2 Comparison of final textures by equal-area projection of crys-
tal orientations for the spectral and iterative schemes for the simple
shear case. The density is expressed as multiples of random distribution
(MRD), with MRD=1 corresponding to a “random” distribution that

is uniform over SO(3). The first three rows are from the spectral scheme
for a varying number of Fourier terms as indicated, and the final row is
from the iterative scheme
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Fig. 3 Comparison of true stress strain curves for the iterative and
spectral schemes for the plane strain compression case with the results
in [17]. a Cases with 1024 Fourier terms. b Cases with 8192 Fourier
terms

Figure 5 shows the dependence of the error on the database
grid length, and Fig. 6 shows the dependence of the error
on the refinement multiplier. The effect of the refinement
multiplier on the stress strain curves and final textures is
illustrated for the plane strain compression case in Figs. 7 and
8. Finally, Fig. 9 shows the dependence of the error on the
number of Fourier terms used. The error decreases linearly
with the database grid length and refinement multiplier, and
decreases roughly as 1√

Nt
with the number of Fourier terms.

4.3 Efficiency

We define the efficiency of the scheme as relative to an ideal-
ized implementation in which memory transactions have no
cost and there is zero latency. Specifically, we do a summa-
tionof the reciprocal throughput of the arithmetic instructions
required in the scheme to determine the idealized reciprocal

throughput. This assumes that each warp scheduler is issu-
ing one instruction per cycle, so the dual-issuing available
on some architectures may allow for exceeding this idealized
throughput. Dual-issuing is possible when two independent
instructions that utilize different execution units are avail-
able from the same warp. This effect is heavily dependent on
architecture and exact compiler output, and is hard to con-
trol at the source code level, so we choose not to attempt to
model it in our “ideal” throughput target. This also allows for
a cleaner comparison with prior implementations, as fewer
assumptions about their code and computational environ-
ment need to be made.

The primary workload is the computation of the Fourier
terms, so the throughput is measured as the number of
Fourier terms per second. We define Ns to be the number of
scalars associatedwith eachFourier coordinate in the spectral
database. For this work, Ns = 9 accounts for the 5 neces-
sary components of the symmetric and deviatoric σ ′, the 3
components of the anti-symmetricWp, and the scalar G.

Algorithm 1 AddFourierTerm
Require: j, u, k
Ensure: v
I = j · k � (D×IFMA)
J = I mod L � (1×AND)
x = 2π J/L � (1×I2F+1×FMUL)
z = exp(i x) � (1×SINCOS)
for is = 1, . . . , Ns do

v[is ] = v[is ] + Re(u[is ] × z) � (2×FFMA)
end for

In Algorithm 1, we give pseudocode for adding a single
Fourier term, with Fourier coefficients for each scalar stored
in a length-Ns complex vector u, and the corresponding real-
valued sum of Fourier terms accumulated in the vector v. We
annotate each expression with the corresponding machine
instruction(s) in our implementation. The instructions used
are (I/F/D)FMA (integer/float/double fused multiply add),
AND (bitwise and), I2(F/D) (conversion from integer to
float/double), (F/D)MUL (float/double multiplication), and
SINCOS (combined sine and cosine).

Wepresent the cost of each instruction in terms of its recip-
rocal throughput (number of clock cycles per operation) for
various compute capabilities along with the total cost per
Fourier term in Table 2. For a given GPU, the ideal through-
put is then given by 1.982×F×NSM/T , where F is the clock
frequency, NSM is the number of streaming multiprocessors
(SMs) and T is the ideal reciprocal throughput per Fourier
term. The factor of 1.982 takes into account the savings from
using the symmetries in the discrete Fourier transform. This
factor varies slightly depending on the total number of coeffi-
cients and the order of the coefficients, so here we’ve chosen
the value measured for our most efficient simulation.

For example, the ideal throughput for the GTX 980 Ti
used in this work, which has compute capability 5.2, has
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Fig. 4 Comparison of final textures by equal-area projection of crystal
orientations for the spectral and iterative schemes for the plane strain
compression case. The density is expressed as multiples of random
distribution (MRD), with MRD=1 corresponding to a “random” dis-

tribution that is uniform over SO(3). The first three rows are from the
spectral scheme for a varying number of Fourier terms as indicated, and
the final row is from the iterative scheme
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Fig. 5 L2 error as a function of database dimension. The slope of the
fit is reported with respect to the log–log scale. The error decreases
linearly with the database dimension

Fig. 6 L2 error as a function of refinement multiplier. The slope of
the fit is reported with respect to the log–log scale. The error decreases
linearly with the refinement multiplier

a clock frequency of F = 1.2025 GHz and NSM = 22
is 1.982 × 1.2025 × 109 × 22/0.03472 = 1.510 × 1012

terms/s. The efficiency is then defined as the ratio of the
achieved throughput to this ideal throughput. The efficiency
of this implementation is compared with that of prior imple-
mentations in Table 3. The ideal throughput is exceeded in
this work due to exposing enough instruction-level paral-
lelism that dual-issuing of instructions from warps is in fact
occurring. For example, a SINCOSmay be dispatched to the
special function unit (SFU) at the same time as an FFMA is
dispatched to the floating point unit (FPU). In terms of actual
utilization, the profiling shows that 95% of the device’s com-
pute resources are utilized, comprised of 85% arithmetic, 9%
memory operations and 1% control flow.

Fig. 7 Comparison of true stress strain curves for the spectral scheme
for the plain strain compression case for a range of refinement multi-
pliers

Since one of the implementations we compare withmakes
use of double precision floating point numbers, while ours
makes use of single precision, we should note at this point
that the floating point precision used in the computations has
an effect on both accuracy and throughput. CUDA conforms
to the IEEE-754-2008 standard in its representation of float-
ing point numbers, in which there are 24 significant bits for
single precision numbers and 53 significant bits for double
precision numbers [19]. This affects different mathematical
functions differently, but typically the errors are measured in
single-digit multiples of the unit in the last place (ulp) of the
argument, which is the gap between the two floating point
numbers nearest the argument. For example, for the sincos
operations used in this work, the maximum absolute error is
2 ulp for single precision and 1 ulp for double precision,
which for arguments in the range [−π, π ] leads to a maxi-
mum absolute error of 4.17 ×10−7 for single precision and
4.44 ×10−16 for double precision [19]. Broadly speaking,
all of the single precision operations will have errors on the
order of 10−7, while double precision operations will have
errors on the order of 10−16, which will affect any accumu-
lated errors in the computation accordingly.

In terms of throughput, each CUDA architecture has dif-
ferent performance characteristics for each floating point
precision type. Typically each architecture is tailored to
perform well for a particular floating point precision. For
example, the compute capability 5.2 architecture used in this
work has 32 times faster single precision mutiply-add per-
formance compared with its double precision performance,
since it is designed for single precision performance. This is
different from the 3.5 architecture used in the double pre-
cision implementation in [22], which has 16 times faster
double precision multiply-add performance compared with
the 5.2 architecture. These differences have been recorded
and accounted for in Tables 2 and 3.
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Fig. 8 Comparison of final textures by equal-area projection of crystal
orientations for the spectral scheme over a range of refinement multi-
pliers for the plane strain compression case. The density is expressed as

multiples of random distribution (MRD), with MRD=1 corresponding
to a “random” distribution that is uniform over SO(3)
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Fig. 9 L2 error as a function of number of Fourier terms. The slope of
the fit is reported with respect to the log–log scale. The error decreases
roughly as the reciprocal square root of the number of terms

4.4 Efficiency scaling

The peak efficiency presented in Table 3 is achieved with
a large number of Fourier terms and a large number of
crystals. We examine the effect of varying these factors
independently on the efficiency of the scheme. In the first
study, we fix the number of terms in the Fourier series to
216 = 65,536, and vary the number of crystals from 33 to

33 × 221 = 69,206,016. This set of values is chosen so that
the precise number of crystals required to saturate the GPU
is within the set. For the GTX 980 Ti used in this work, this
value is determined by there being 22 SMs with one block
per SM, 768 threads per block and 2 crystals per thread for a
total of 33,792 crystals. The throughput for this set of values
is shown in Fig. 10. We see that indeed the peak throughput
is nearly reached at 33,792 crystals, and is achieved slightly
thereafter.

In the second study, we fix the number of crystals to
540,672, and vary the number of terms in the Fourier series.
This is intended to determine for which regimes our approx-
imation that the workload of the solver is dominated by
Fourier series computations holds. The throughput as a func-
tion of the number of terms in the Fourier series is shown in
Fig. 11.We see that the Fourier terms account for a little over
half the workloadwith 256 terms, account formore than 90%
of theworkloadwith 4096 terms, and are effectively the entire
workload with 8192 or more terms.

We now examine the relative contributions of our opti-
mizations to the overall increase in efficiency over priorwork.
We take a simulation of 540,672 crystals with 65,536 Fourier
terms, and turn off each of the two arithmetic optimizations
individually to determine their effect on the efficiency. With
both of them turned off, the remaining efficiency gains are
due to the combined memory optimizations.

Table 2 Ideal reciprocal
throughput of a single Fourier
term on a single streaming
multiprocessor for the CUDA
compute capabilities and
floating point precision (single
or double) used in this and prior
work

Instruction Count Reciprocal throughput by compute capability and floating point precision

2.0 (single) 3.5 (double) 5.2 (single)

IFMA D/Ns 1/16 1/32 3/128*

AND 1/Ns 1/32 1/160 1/128

I2(F/D) 1/Ns 1/16 1/32 1/32

(F/D)MUL 1/Ns 1/32 1/64 1/128

SINCOS 1/Ns 1/4 5/64* 1/32

(F/D)FMA 2 1/32 1/64 1/128

Total (12+2D)/Ns+2
32

(42+10D)/Ns+5
320

(10+3D)/Ns+2
128

Total (D = 4, Ns = 9) 0.1319 0.04410 0.03472

Throughput values annotated with “*” correspond to operations that map to multiple native instructions
on the given architecture. These values are therefore compiler-dependent, and are determined by inspecting
disassembly for nvcc version 8.0.61. Other throughput values are taken directly from [19]. Both sets of values
for the 5.2 architecture are confirmed by inspecting the full program disassembly of this implementation

Table 3 Comparison of
computational throughput as
measured by number of Fourier
terms per second

Work Hardware (precision) Throughput (terms/s) Efficiency (%)

Achieved Ideal

[17] 2×Tesla C2050 (single) 4.96×1010 4.838×1011 10.3

[22] Tesla K20 (double) 1.678×1010 3.807×1011 4.41

This work GTX 980 Ti (single) 1.535×1012 1.510×1012 101.7

The efficiency is defined as relative to an ideal implementation in which there are no memory transactions,
there is no instruction latency, and a single instruction is issued per cycle
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Fig. 10 Throughput as a function of number of crystals, with 65,536
terms used in the Fourier series

Fig. 11 Throughput as a function of number of terms in the Fourier
series, with 540,672 crystals

With all the optimizations on, the throughput is 1.535 ×
1012 terms per second. With only the fast modulo turned off,
it’s 1.123× 1012 terms per second. With the range reduction
left to the CUDA implementation, the effect on the through-
put depends heavily on the refinement multiplier, as that will
determine the size of the arguments to the trigonometric
functions. This effect on the throughput is summarized in
Fig. 12. With the refinement multiplier in the range 1–32,
the throughput drops to around 7.9× 1011 terms per second.
This represents all arithmetic optimizations being turned off,
so we can therefore partition the roughly tenfold increase in
efficiency over prior implementations into a twofold increase
from arithmetic optimizations and a fivefold increase from
memory optimizations.

We note that at a refinement multiplier of Nr = 64 and
greater, the throughput drops even further, as additional range
reduction is required, dropping as low as 3.0331 × 1011

terms per second for a refinement multiplier of 128. This

Fig. 12 Throughput as a function of the refinement multiplier for the
case of no explicit range reduction of trigonometric arguments

can be explained by the CUDA range-reduction implemen-
tation needing to use the “slow path” to maintain accuracy,
which activates for arguments larger than 48,039.0 for single
precision [19]. The largest possible argument is 2πDL =
8πNgNr = 1024πNr , so solving for Nr we get that the ear-
liest possible refinement multiplier at which the slow path is
activated is around Nr = 15. In Fig. 12 we observe a very
minor slowdown at Nr = 16, but the significant slowdown
occurs at greater refinement multipliers as more than just the
largest terms fall into the slow path.

4.5 Memory constraints

The theoretical memory requirement for each crystal is 4
floating point numbers: the three Euler angles defining the
crystal orientation and the single slip system deformation
resistance. For single precision this amounts to 16 bytes. We
find that on a simulationwith 390million crystals, the amount
of memory consumed is 6.36 GiB, which is 16.3 bytes per
crystal, in line with the theoretical bound when accounting
for overheads. With 1024 Fourier terms, the simulation exe-
cutes at a rate of 2.72 s per strain step. The memory required
per crystal places a hard limit on the possible number of
crystals in a single simulation. In future implementations we
may avoid this by splitting the memory in half and buffering
transactions with RAM, which can be executed concurrently
with the computation.

4.6 More complexmaterial models

A natural extension for this approach would be to use a
more complex hardening law. For example, one that takes
into account differences between the self-hardening rates and
latent hardening rates of slip systems, such as the model pre-
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sented in [8]. In this case, the hardening of each of the 4 sets
of 3 coplanar slip systems must be tracked independently.
Replacing the single slip deformation resistance s with 4 dif-
ferent resistances, one for each set of coplanar slip systems,
would increase the dimension of the state space from 9 (5
components of σ ′, 3 components of Wp and a single slip
deformation resistance s) to 12. A general increase in the
dimension of the state space would impact the efficiency,
memory and storage requirements of the solver based on the
ratio of the new state space dimension to the old state space
dimension. In this case, it would first increase the amount of
arithmetic required by a factor of approximately 4/3, as 4/3
times more inverse DFTs would need to be computed. Sec-
ond, it would increase the size of the crystal database by a
factor of 4/3. Third, the number of database terms that could
be loaded into shared memory at once would be reduced by
4/3. Finally, the global memory required per crystal would
increase from 4 floating point numbers (the three orientation
angles and the slip resistance) to 7 floating point numbers.

In terms of homogenization, it is known that the Tay-
lor model used here produces sharper textures than those
from a more accurate homogenization-based finite element
method [23]. This can be improved upon by integrat-
ing the SCP solver into a more advanced homogenization
scheme. For example, this integration is done for viscoplastic
self-consistent homogenization in the SCP-VPFFT scheme
presented in [6].

5 Conclusions

In this work we presented an improved GPU implementation
of a spectral crystal plasticity solver. The key improve-
ments came in speeding up the inverse DFT implementation,
primarily by avoiding the matrix–matrix multiplications
of prior implementations, and by performing explicit fast
range-reduction on arguments before they were passed to
trigonometric functions. The improvements combined for a
factor of 10 increase in computational efficiency, of which
a factor of 5 was attributable to improvements in memory
transactions, and a factor of 2 was attributable to improve-
ments in arithmetic efficiency.

The new implementation was found to also be more effi-
cient in its memory footprint, leading to simulations of
hundreds of millions of crystal grains being feasible on a sin-
gle consumer-gradeGPU. This development allows formuch
larger-scale microstructure-sensitive simulations to be prac-
tically computed, and futureworkwill explore the integration
of this improved implementation into large-scale crystal plas-
ticity finite element simulations.
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