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Abstract. The Welch algorithm furnishes a good estimate of the spectral power at the expense of high computational complexity.
The primary intension is to compute the FFT of the individual non-overlapped parts (i.e., half of the original segments) and
acquire the FFT of the overlapped segments by merging those of the non-overlapped segments. In this paper, initially the input
discrete signal is subjected to an L/2-point FFT and then the two successive segments are merged to L-point segment using a
modified architecture utilizing an improved Fractional Delay Filter(FDF) design by adapting a Multiplier less implementation
for efficient contribution. The merged segments are then subjected to a window filter, designed using delay lines and shifters
replacing the multiplier blocks. Finally the power spectral density (PSD) is computed by computing the periodogram and then
averaging the periodogram for the windowed segments. Complete module is realized using Xilinx_ISE software with the target
device as xc4vfx100-12-ff1152. The design is coded in verilog HDL. The functional verification of the proposed design reported
a PSD with an error of 5.87% when compared with the similar Matlab PSD computation. The synthesis results confirm the
efficiency and computational complexity reduction of the proposed architecture when comparing with similar existing researches.
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1. Introduction

Power spectral estimation of periodic and random
signals may be considered as one among the most sig-
nificant application domains in digital signal process-
ing (DSP). Spectrum analysis serves as the primary
step in speech recognition problems for achieving re-
duction in the speech bandwidth and to process the
acoustic data. More complicated spectrum analyses are
carried out in SONAR systems for finding out the sub-
marines as well as the surface vessels. The spectral
measurements made in radar are helpful in locating
the target and to acquire the information regarding ve-
locity, though the measurements involved in spectrum
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analysis are boundless. In signal processing, spectral
analysis is extensively employed to differentiate and
to track the required signals [1,2] For instance, the
analysis of radar and sonar signals [3], spectrum sens-
ing [4,5] and information retrieval as in biomedical sig-
nal analysis [6].

Power spectral density estimation involves two im-
portant methods, namely, the non-parametric methods
and the parametric methods [8]. Non-parametric meth-
ods are utilized, if the knowledge about the signal be-
fore a particular instant of time is less. While com-
paring with the parametric methods, the computational
complexity associated with the non-parametric meth-
ods is found to be very small. The non-parametric
methods can be again classified into periodograms and
correlograms. Periodograms are occasionally called as
direct methods because they produce direct data trans-
formation. The sample spectrum, Bartlett’s method,
Welch’s method and the Daniell Periodogram come
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under the category of periodogram methods. Correl-
ograms, on the other hand, make use of Wiener-
Khinchin theorem [7] and hence, termed as indirect
methods. In all correlogram based methods, Fourier
transform is applied on the estimate of the autocorrela-
tion sequence. Utilization of fewer data samples in cor-
relation has resulted in large variance that is related to
higher order lags and as a result, windowing becomes
necessary.

Usually, the parametric approaches suffer from high
computational complexity. The signals are applied
with Fourier transform in the periodogram based ap-
proaches. Several investigations on Fourier transform
can be found in the literature. The presence of comput-
ationally-efficient Fourier transforms has caused the
periodograms to be more used than the other paramet-
ric methods. A familiar non-parametric, periodogram-
based method that is helpful in estimating the power
spectral density is the Welch PSD method [9]. A num-
ber of researches have been made for designing short-
time Fourier transform, rather than designing architec-
tures for PSD computation [10,11]. A systolic architec-
ture, which relies on the ARMA model, has been pre-
sented in [3]. Here, the design of the architectures was
direct and novelty in optimizations was not found. The
Welch method is a modified periodogram approach
that is extensively used for computing the PSD [9]. The
key component in Welch method is the FFT. In a usual
sense, for dividing the input signal into numerous seg-
ments, an overlap of 50% is utilized. This means, for
two successive FFT operations, half the samples re-
main unaltered.

The aim of this work is to propose new changes in
the Welch PSD method, so that a low-complexity ar-
chitecture that is appropriate for low-power embedded
systems can be obtained. One such application is the
analysis of biomedical signal, in which a devoted hard-
ware can be utilized in systems with reduced cost and
power. Several parameters like area, performance and
the amount of power consumed has to be considered, if
PSD computation has to be included into the biomedi-
cal monitoring systems because these type of systems
demand severe power consumption constraints. The
main contribution of our work includes (a) A modified
merging process with a multiplier less computation for
converting two L/2-point FFTs into a single L-point
FFT (b) A multiplier less Hanning window architecture
and (c) a modified periodogram computation process.

The rest of the sections in this paper are organized as
follows: Section 2 discusses about the recent research
works that are related to the proposed work. The in-

spiration as well as the methods involved in the pro-
posed work is suggested in Section 3. Various figures
and equations that are related to the proposed work are
dealt in Section 4. Finally, Section 5 provides the re-
sults of experimentation, their explanation and com-
parative analysis with the other existing techniques.

2. Related works

The FFTs consume very large power that major part
of the energy can be saved, if the FFT blocks are left
unused. Depending on various radix algorithms, sev-
eral FFT architectures have been presented in the lit-
erature. The radix-2 algorithm only decides the en-
ergy consumed by the FFT. Modifications in these es-
timates occur with the radix of the algorithm and the
architecture that lie beneath. Optimizations in FFT ar-
chitecture can be accomplished to handle real signals
and currently, several FFT architectures that handle
real-valued signals have been proposed. In [12], the
first pipelined architecture that performs RFFT compu-
tation depending on the Cooley-Tukey algorithm has
been introduced. With this pipelined architecture, less
number of operations can be achieved by solving the
irregularities in RFFT. This method can be used in both
the decimation in time (DIT) as well as the decimation
in frequency (DIF) decompositions and has the abil-
ity to be generalized for any number of points N with
power of 2. In addition, this pipelined circuit was ca-
pable of performing reordering and hence, the prob-
lems associated with the output order of the samples
can be rectified. In [13], a generalized approach for de-
signing efficient architectures for the computation of
RFFT has been suggested. This approach can be ex-
tended to radix-2 5 and higher radix algorithms. Es-
pecially, novel 2-parallel and 4-parallel pipelined ar-
chitectures have been created depending on the modi-
fied flow graph and hybrid datapath design with radix-
2 3 and radix-2 4 algorithms. The optimization in the
data paths were achieved with the folding methodol-
ogy. While comparing this architecture with the other
existing architectures, various advantages that include
low hardware complexity, less number of adders and
delays can be achieved because real butterflies insist
the usage of half the number of adders and real data
paths necessitate half the number of storage elements.

Practically, the adjustable FDF is required to be
effectively realized. Nearly all the papers have dealt
with the problem of designing the Farrow structure for
accomplishing reduction in the number of structural
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multiplications, adders and delay elements. In [14], a
novel scheme for FDF has been proposed to imple-
ment the sub-filters in the Farrow structure in an ef-
ficient way. When comparing with other prior tech-
niques in literature, reduction in arithmetic complex-
ity can be achieved. But, this becomes impossible with
long word length of filter coefficient. Considerable reg-
ister savings can be produced with this new architec-
ture, so that the rise in rare arithmetic can be over-
come. In [15], a system of steerable parametric loud-
speaker was designed and a complete solution has been
proposed, encompassing all steps from signal acqui-
sition to primary wave emissions. FD filter was used
here for removing the limitation of delay interval. The
utilization of Farrow structure FIR filter has produced
fractional delay for the design of steerable paramet-
ric loudspeaker. With the Fractional Delay filter, some
sort of arbitrary delays can be produced for control-
ling the steering angle of the beam in a precise manner.
Field Programmable Gate Array (FPGA) serves better
for the system of steerable parametric loudspeaker be-
cause it offers improved parallel and real-time process-
ing. The FD filter with Farrow structure was used in
FPGA for implementing variable steering angles in a
continuous manner.

In [16], DA-based formulation of BLMS algorithm
was proposed. In this algorithm, both the convolution
operation for computing the filter output and the cor-
relation operation for computing the weight-increment
term could be carried out through the same LUT. The
presented DA-based design makes use of a new look-
up table (LUT)-sharing technique, to compute the fil-
ter outputs and weight-increment terms of BLMS algo-
rithm. Reduction in the number of LUT words to be up-
dated per output reduces external logic and the amount
of power consumed. The work presented in [17] in-
clude a parallel FIR architecture that take advantage of
the inherent nature of symmetric coefficients for de-
creasing half the number of multipliers in the sub filter
section by increasing the adders in preprocessing and
post processing blocks. Use of adders instead of mul-
tipliers is beneficial because adders consume reduced
silicon area. In addition, the use of adders in prepro-
cessing and post processing blocks does not increase
with increase in the length of the FIR filter. On the
other hand, the number of multipliers multiplies with
the length of the FIR filter.

In [18], a low-complexity scheme for obtaining the
power spectral density through Welch method has been
proposed. The computational complexity gets less-
ened, but degradation in performance has occurred

with this scheme. The developed approach computes
the even samples accurately and a fractional-delay fil-
ter helps in estimating the odd samples that cause a
minute error. The difference in the spectral power ob-
tained through the proposed and original methods is
around 8% with a 4-tap bidirectional FDfilter. A new
architecture has been proposed depending on the modi-
fied method. With the proposed architecture that uses a
4-tap bidirectional FD filter, 33% less energy has been
consumed than the original method.

3. Research methodology

It can be noted from the existing works that the core
components include FFT, FFT Estimator, Window fil-
ter and absolute-square multiple accumulator (AMAC)
circuits. The FFT estimator block contains a butterfly
structure and a FD FIR filter. The window filter is a
3-tap symmetric FIR filter. The AMAC circuit is used
for computing the periodograms and to average them
over M segments. It is evident from the analysis that
the overhead in the computational complexity, power
consumption and area depends on the FFT estimator
and the windowing filter block. Hence, the aim of this
work is to design and implement the hardware archi-
tecture for power spectral density, by making changes
in FDF and the Window Filter architecture. Multipliers
were not employed in the implementation of the two
sub modules, so that the complexity in the computation
with increased area and power consumption can be al-
leviated. Implementation of the proposed PSD compu-
tation along with the entire changes is performed with
verilog language in Xilinx-ISE. The synthesis and im-
plementation tool in Xilinx-ISE helps in generating the
logic utilization report and the xpower analyzer tool al-
lows the power analysis report to be generated. These
reports are then compared against those of the earlier
techniques.

4. Proposed method

The proposed VLSI architecture for Power spectral
Density estimation using the well known Welch algo-
rithm with reduction in power consumption and area
is described in this section. The main intension of our
design is to reduce the computation complexity, power
and area of the hardware by modifying the architecture
of original Welch power spectral architecture. Studies
shows that half of the samples are the same over two
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consecutive FFT operations and this property can be
used for the reduction in the number of operations re-
quired to compute the PSD. Basic PSD computation
using Welch method includes the following steps,
Step.1: The input discrete signal ϕ(l) is split up into

M segments of length L, overlapping by ρ
points. In most of the casesρ = L/2, the overlap
is said to be 50%.

ϕm(l) = ϕ(l + (M − 1)ρ) (1)

Where, l = 0, 1,. . . ,L− 1 and m = 1, 2,. . . , M .
Step.2: Once the signal is split up into overlapping

segments, suitable window function is applied in-
dividually for the M -segments.

ϕWm = ϕm(l)×W (2)

Step.3: FFT process is then applied to each of the win-
dowed segments separately.

Φm(k) =

L−1∑
l=0

ϕWm(l).e−j2πlk/L (3)

Step.4: A Modified periodogram process is performed
with each of the segments.

Pm(k) =
1

L
|Φm(k)|2 (4)

Step.5: Finally the PSD is computed by averaging the
periodograms of the M -segments.

PSD =
1

M

M∑
m=0

Pm(k) (5)

In our modified computational process for power
spectral density include the following steps.
Step.1: The input discrete signal x(n) is split up into

M +1- segments with non-overlapping points of
length L/2. In our cases ρ = 0, hence there is no
overlap between two successive segments.

Step.2: L/2-point FFT process is then performed for
each segment separately.

Step.3: The merging of two L/2-point FFTs into a sin-
gle L-point FFT is then carried out by adopting a
modified merging process with a multiplier less
computational unit, which is one of the contribu-
tions in this research.

Step.4: Windowing in frequency domain is then per-
formed for each L-point FFT using Hanning win-
dow coefficients; designed using a 3-tap FIR fil-
ter without the use of multipliers, which is an-
other important contribution in this work.

Fig. 1. Proposed power spectral density estimation process.

Step.5: A Modified periodogram process is performed
for each of the windowed L-point FFT.

Step.6: Finally the PSD is computed by averaging the
periodograms of the M -segments.

The proposed process for power spectral density
computation is shown in Fig. 1.

4.1. PSD computation architecture

The block schematic architecture for our proposed
PSD Computation unit adopting the modified Welch
PSD estimation technique is shown in Fig. 2.

The modified architecture consists of a L/2-point
FFT-processor, which process the input discrete sig-
nals. A buffer with L/2-samples size is connected with
the FFT processor for storing the FFT outputs of pre-
vious segments. For example if the FFT processor is
processing M th segment of the input signal, then the
FFT output of the M + 1th segment is stored in the
buffer for the merging process.L-point modified merg-
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Fig. 2. Proposed Welch PSD estimation architecture.

ing unit in our architecture is used to merge two L/2
samples from M th and M + 1th segment to a single
L-point segment with low complexity computations by
adopting the Discrete Architecture technique for re-
placing the multiplier with just some precomputed val-
ues stored in memory, a shifter and an accumulator.
Once the L/2 samples are merged to L samples, then
the samples are filtered out by a Hanning window, real-
ized in hardware using a 3-tap FIR filter. The FIR filter
is redesigned in such a way that the filtering operation
is carried out without using any multiplier operation by
adopting shifters and adders. The output from the FIR
filter is then fed to a magnitude and Average computa-
tion unit, which functions similar to the latest designs
available in the literatures, adopting fewer resources.
Our contribution for this research can be briefed as be-
low,

4.1.1. L-point modified merging unit.
From [18], the merging of two consecutive segments

with fewer computations can be represented as,
For Even Sample,

SEven = Xα(ρ) +Xβ(ρ) (6)

For Odd Sample,

SOdd = Xα(ρ+ 0.5) +Xβ(ρ+ 0.5) (7)

From the above relation, for computing L-point
merged segment the sample SEven can be computed just
by adding two samples from both the M th andM+1th

segments. This can be realized by adopting an adder,
but in case of computing SOdd a fractional delay of 0.5

Fig. 3. Architecture for modified merging unit.

(half sample delay) is required in addition to a subtrac-
tion. In practical the realization of a fractional delay
of Z

1
2 is non-causal, since it requires the sampling of

a future signal to a half delay. For making it a casual
system we have to design an efficient Fractional De-
lay filter with suitable pipelines. The hardware archi-
tecture for our modified Merging unit is as shown in
Fig. 3. Here two segments are considered for merging.
The addition and subtraction of two samples can be re-
alized using a butterfly unit structure, since both the
operations require the similar samples. The even sam-
ple is then computed with 3 delay lines and the odd
sample is computed using a fractional delay filter.

4.1.2. Fractional Delay Filter design
A Fractional Delay Filter is a device for band limited

interpolation between samples. It has wide range of ap-
plications in fields of signal processing, including com-
munications, speech processing, array processing and
music technology. For these fractional delay filter ap-
plications, the general concern is interpolating an input
signal’s values approximately between two sampling
points by adopting varying mathematical techniques.
The fractional delay D is a fraction of a sample point,
which is a real value between 0 and 1. In terms of ideal
interpolating application, Shannon’s signal reconstruc-
tion formula may be used from the sampling theorem
in order to reconstruct the continuous-time signal from
acquired samples. The reconstruction formula is given
as,

x(t) =

∞∑
n=−∞

x(lT )sinc
[ωs

2
(t− lT )

]
(8)

Where, x(t) is a continuous-time signal, T is the
sampling interval and ωs is 2π multiplied by the sam-
pling frequency. Examining the reconstruction formula
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in Eq. (8), the ideal interpolator has an impulse re-
sponse of,

hc(t) = sinc
(
ωst

2π

)
(9)

The formula given in Eq. (9) helps in the determi-
nation of a reconstructed continuous- time signal from
the discrete- time sampled input signal. In order for the
above conversion formula to be consistant for the frac-
tional delay application, the input sampled signal must
be delayed by the desired delay D, where,

D = Dint + d (10)

Dint refers to an integer delay, and d refers to the
fraction delay somewhere around 0 and 1. Acquire the
delayed interpolated discrete time output, Eqs (9) and
(10) are considered for a reconstructed discrete time
signal that is shifted and re-sampled by the important
delay parameter D in Eq. (11)

y(n) = x(n−D) =

∞∑
k=−∞

x(k)sinc

(11)
(n−D − k)

As to Eqs (9) and (11), the impulse response of this
ideal system is obtained by shifting and sampling the
infinitely long Sinc function, which yields a noncausal
system. In order to obtain the best approximation re-
sult, the desired total fractional delay D of Eq. (11)
should be between the two central taps of an FIR fil-
ter for odd ordered filters or within half a sample from
the central tap for even ordered filters. As a result, the
delay should follow the inequality

L− 1

2
� D � L+ 1

2
(12)

Where L is the order of the filter. The integer portion
of the delay Dint should follow the equation for odd
ordered filters:

Dint =
L− 1

2
(13)

For even ordered filters

Dint =

{
L
2 , 0 � d < 1

2
L−1
2 , 1

2 � d < 1
(14)

Several design methods exist for finite impulse re-
sponse fractional-delay filters. The least-squared inte-
gral error design approach is considered in this work.
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Fig. 4. Impulse response for FDF.

The impulse response of an Lth order least-square FD
FIR filter can be expressed as,

h(l) =

{
sinc(l − 0.5− l

2 + 1), 0 � l � L− 1
0, Otherwise

(15)

From previous studies, a filter of length L = 6 can
adapted for our PSD computation process. The impulse
response is given by h(0) = 0.1273, h(1) = − 0.2122,
h(2) = 0.6366, h(3) = 0.6366, h(4) = − 0.2122
and h(5) = 0.1273. The main source of complexity in
computation, power consumption, and area overhead is
from the multiplication block, which is the most impor-
tant block in designing a FIR filter. In our design DA
based architecture is adopted for replacing the multi-
plier block in FIR filter for filter coefficient multiplica-
tion. The modified architecture for fractional delay us-
ing 6-tapFIR filter is shown in figure. From Eq. (15),
the impulse response for our fractional delay filter ar-
chitecture is as shown in Fig. 4.

For fractional delay computation in our method, past
and future samples are required to compute the output.
In order to make available of the future and past sam-
ples, in our architecture we have added 4 delay lines.
The values b1n, b2n and b3n are the sum of corre-
sponding future sample and the past sample respec-
tively. In conventional FIR filter computation process
after computing the sum each value is subjected to a
coefficient multiplication process followed by a sum-
mation process. In our case we have six coefficient val-
ues hence the computation requires 6 constant multi-
pliers which contribute much in the computation com-
plexity with added raise in power and area of the com-
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plete architecture. Since the coefficients exhibit sym-
metrical property, the adder and constant multiplier can
be reduced to a half. Even though by adapting this
property reduces the number of multiplier count, there
are still 3 multipliers. For effective contribution, all the
three constant multiplier blocks have to removed, since
multipliers add more complexity in computation and
occupies major power and area resources.

In order to remove the usage of multiplier blocks,
the function of the multiplier is carried out by a DA
based computation technique. Area savings from us-
ing DA can be up to 80% in DSP hardware designs.
The advantage of a distributed arithmetic approach is
its efficiency of mechanization. This approach employs
no explicit multipliers in the design, only Look-up ta-
bles (LUTs), shift registers, and a scaling accumulator.
All of these functions efficiently map to FPGAs. Dis-
tributed Arithmetic is introduced into the design of FIR
filters as follows.

y =

k∑
k=1

Ckxk (16)

Where, xk ⇒ {bk0, bk1, . . . , bk(N − 1)} − N bit
scaled two’s complement number; bk0 – sign bit.; Ck

– constant value; xk can be expressed as,

xk = −bk0 +
N−1∑
n=0

bkn2
−n (17)

Substituting Eq. (17) in Eq. (16), we get,

y = −
k∑

k=1

(Ck.bk0)

k∑
k=1

[
N−1∑
n=0

Ck.bkn2
−n

]
(18)

The hardware realization of the above Eq. (18) can
be done as shown in Fig. 5. The LUT stores all pos-
sible partial products over the filter coefficient space.
The LUT contents are tabulated in Table 1. When the
LUT is subjected with any of the possible combination
as shown in the table, the corresponding pre-computed
value stored in the LUT is output to the succeeding
blocks in the architecture shown in Fig. 5.

The inputs to the LUT are fed from a FIFO register
bitwise. Once the input is fed, the corresponding val-
ues stored is output, which in turn is shifted and added
with the previous output value and finally when the odd
sample is output when the bit length reaches the MSB
(Most Significant Bit). Hence the fractional delay filter
incorporated within the modified merging unit can be
designed without utilizing the multiplier block.

Table 1
Possible input combinations and the corresponding stored values

b1n b2n b3n Stored values
0 0 0 0
0 0 1 0.6366
0 1 0 −0.2122
0 1 1 0.4244
1 0 0 0.1273
1 0 1 0.7639
1 1 0 −0.0849
1 1 1 0.5517

Fig. 5. DA based FDF.

4.1.3. Window filter design
Since the windowing operation has to be performed

in the frequency domain the multiplication operation
in the time domain has to be replaced with a convo-
lution operation. Windowing functions are most eas-
ily understood in the time domain; however, they are
often implemented in the frequency domain instead.
Mathematically there is no difference when the win-
dowing is implemented in the frequency or time do-
mains, though the mathematical procedure is some-
what different. The convolution operation is compu-
tationally complex compared to simple multiplication
operation. However, the hamming window function
used in the PSD computation typically represent raised
cosine functions and these can be represented by 3 non-
zero coefficients while the rest of them are close to
zero. Further the filter is symmetric, i.e., two of the fil-
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Fig. 6. Multiplier less window filter architecture.

ter coefficients are equal. Therefore, in general the con-
volution operation can be implemented using 2 multi-
plication and 2 addition operations. But the implemen-
tation of hamming window filter still needs 2 multi-
plication blocks for hardware realization. Comparative
analysis of the coefficients of Hamming window filter
with Hanning window filter reveals that the coefficients
are hHam = { − 0.23, 0.54, − 0.23} and hHan = {−
0.25, 0.5, − 0.25} respectively.

Comparing both the window filter coefficients, in
hardware realization the coefficients of Hanning win-
dow is a better option for implementation, since the co-
efficient 0.5 = 1

2 = 2−1 can be implemented by just
shifting right the input value by 1-bit. The coefficient
0.25 = 1

4 = 2−2 can be implemented by using a 2-
bit right shifter. In hardware realization the convolution
operation can be implemented using a 3-tapFIR filter
in the frequency domain. The 3-tapFIR filter architec-
ture with the above described modifications is shown
in Fig. 6.

The hardware realization of hanning window is
based on the following equations,

Let the inputs be samples s1, s2, s3 . . . , sL−1

Where, L is the window size, here L = 1024.
For each input sample the corresponding windowed

sample is given as,

Wsn = 0.5(sn + sn−2) + 0.25(sn−1) (19)

Where, Wsn – Current windowed output sample; sn
– Current input sample; sn−1,sn−2 – Previous input
samples.

4.1.4. Magnitude and average computation unit
The magnitude of each sample in the M th segment

can be computed by first removing the negative sign
of sample if found and then squaring each values. The
absolute magnitude of each sample thus computed is

Fig. 7. Architecture of magnitude and average computation unit.

then stored inside a register that can store L-samples
and this gives the periodogram for each segment. The
Averaging of periodogram for the M -segments is done
by shifting right the sum of the previous accumulated
value with the present value. This can be represented
as,

P1 + P2 + P3 + . . .+ PM

M
=

P1 + P2

2
+

(P1 + P2) + P3

2
. . .+ (20)

(P1 + P2 + . . .+ PM−1) + PM

2

Where, P1, P2, P3 . . . , PM are the periodogram of
the respective segments.

5. Results and discussion

To evaluate the resource usage, Power consumption
and speed of the proposed VLSI Architecture for Com-
puting Power Spectral Density, several synthesis ex-
periments were performed. The complete module is
coded in Verilog HDL. All synthesis results were ob-
tained for the Xilinx Virtex -4 FPGA (xc4vfx100-12-
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Fig. 8. RTL Schematic of Our PSD computation architecture.

ff1152) after place & route using Xilinx ISE v14.1.
Matlab and Modelsim are used as the simulation plat-
forms. We can analysis the changes between the in-
put signal and the output signal to observe the perma-
nence of the designed PSD architecture through Mat-
lab, while observing the real-time implementation per-
formance of FPGA through Modelsim.

The RTL schematic for our proposed PSD computa-
tion architecture is as shown in Fig. 8.

5.1. Area

The device Utilization report of the complete mod-
ule is tabulated in Fig. 9. Among the available 42176,
4902 slices is utilized. In the target device 84352
counts of Flip flops and 4 Input LUTs are present

(Since each slice includes 2 flipflops and LUTs) and
among this only 5% of the former and 10% of the latter
are utilized.

Figure 10 tabulates the resource utilized by our mod-
ified merging unit. Only 19 out of 10,944 slices, 14 out
of 10944 Flip Flops and 25 out of 10944 4 input LUTs
are the occupied resources by our architecture.

The above Fig. 11 organizes the asset used by our
implemented Hanning Window filter. 79 out of 10,944
Flipflops, 86 out of 10944 LUTs and 76 out of 10944
4 Slices are the possessed assets by our Hanning Win-
dow filter.

5.2. Power

Power consumed by our proposed architecture is an-
alyzed using Xpower analyzer tool in the Xilinx soft-
ware. The input supply voltage is Vccint = 1.2vVc-
caux = 2.500v and Vcco25 = 2.5v.

In Fig. 12 the corresponding current flow increases
as the clock frequency increases towards the maximum
frequency of the system. Figures 13 and 14 represents
the current flow with respect to the voltages Vccaux =
2.500v and Vcco25 = 2.5v.

The power consumption to the system increases with
respect to the increase in frequency. The static power
remains the change and is mainly because of the leak-
age and the dynamic power increases in a very small
measure as the frequency increases towards the max-
imum frequency and the relation is plotted in Fig. 15
below.

5.3. Performance

To observe the performance of the implementation,
a suitable EEG signal (shown in Fig. 16) is precom-
puted using the matlab and then the sampled signal is
fed to the Xilinx tool in the form of text file. The output
from the implemented module is then saved as text file
which is then read in the matlab and the graph is plot-
ted. Meanwhile the same input is fed to a matlab script
that performs similar to the proposed technique and the
graph is plotted. For comparison the PSD computed us-
ing our implemented module and the similar approach
implemented using Matlab is shown in Figs 17 and
18. Since the FDF design approximates the samples,
there exists an error of 5.87% between PSD outputs of
Matlab and Xilinx. The precomputed EEG signal con-
sists of 4608 samples and each segment consists of 512
samples.
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Fig. 9. Device Utilization summary of the complete module.

Fig. 10. Device Utilization summary of our modified merging unit.

Fig. 11. Device Utilization summary of the Hanning Window filter.
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Fig. 12. Current flow with respect to change in frequency.

Fig. 13. Current flow when input Vccaux = 2.500v.

Fig. 14. Current flow when input Vcco = 2.500v.

5.4. Complexity analysis

The complexity in computation is based on the num-
ber of multiplications and number of addition opera-
tions required for the complete computation process.

Fig. 15. Power consumption with respect to frequency.

Fig. 16. Input EEG signal.

In our case since the Magnitude and Average Com-
putation Unit include computations more or less simi-
lar to the existing and the original Welch method, for
the complexity computation it is not considered. The
number of additions and multiplication required for the
conventional Welch method, the work proposed in [18]
and our PSD computation technique is given as,

The FFT process considered here for complexity
analysis is a basic radix-2 algorithm. Since our merg-
ing unit and window filter design does not require
any multiplication operation the complexity is reduced
much comparing to other existing methods. Also the
number of additions given here is exception of the
DA process, since the DA can be implemented using
the latest technique and the adder requirement can be
much reduced. In case, if the addition operation range
a little high due to the DA process this will not affect
the complexity in computation much since the com-
plex multiplication operations in completely removed
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Table 2
Computational complexity comparison

Addition Multiplication

Original L logL L
2

logL+ L

[18] L
2
log(L

2
) + 3L+ L

2
(L′ − 1) L

4
log(L

2
) + 2L+ L

2
L′
2

Our method L
2
log(L

2
) + 3L+ L

2
(L′ − 3) L

4
log(L

2
)

Table 3
Computational complexity comparison with various input signal length L

Multiplications Additions
L Original Keshab K. Parhi and Proposed Original Keshab K. Parhi and Proposed

Manohar Ayinala Method Manohar Ayinala Method
1024 6144 5120 2304 10240 10240 9216

(16.66%) (62.5%/55%) (0%) (10%/10%)
2048 13312 10240 5120 22528 21504 19456

(23.07%) (61.53%/50%) (4.54%) (13.63%/9.52%)
4096 28672 20992 11264 49152 45056 40960

(26.78%) (60.71%/46.34%) (8.33%) (16.66%/8.33%)

Fig. 17. PSD computed using Matlab.

in our technique. The comparison of number of multi-
plication and additions for various length of input sig-
nal L is tabulated in Table 3. In Table 3, L represent the
FFT length and L′ represent the length of the fractional
delay filter. The computations involved in computing
periodogram and averaging remains the same in all the
three approaches and hence they are excluded from the
results. From the comparison it is evident that our ap-
proach requires less number of computations (in terms
of addition and multiplication) than that of conven-
tional Welch approach and the work proposed in [18].

From the comparison it is obvious that, In terms
of multiplication operation our proposed technique
exhibit 61.5% and 50.4% savings comparing with

Fig. 18. PSD computed using Xilinx.

the original Welch technique and the work proposed
in [18] respectively and a savings of 13.4% and 9.28%
in terms of addition operation is also exhibited by our
proposed technique.

6. Conclusion

It is observed that the advantages of the proposed
approach are limited to applications where errors in-
troduced due to short filters are acceptable. Biomedi-
cal signal processing application is one such applica-
tion where a machine learning algorithm is tolerant to
errors (noise) introduced using the proposed approach.
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An efficient modified VLSI architecture for computing
power spectral density based on Welch Method was
proposed in this paper. The complexity in computation,
hardware utilization and power consumption was re-
duced much in this work by modifying the merging and
window filter blocks of PSD architecture with suitable
multiplier less operations. The complete architecture
is realized using verilog HDL in Xilinx ISE and then
synthesized and simulated using the same. The syn-
thesized reports for area and power are tabulated and
verified .The output obtained from simulation using
an EEG signal input is then compared with the output
from a Matlab script with the similar function as that
of our proposed technique and found an error percent-
age of 5.87%. The complexity computation confirmed
that our technique require about 55% reduction in mul-
tiplication and about 11% reduction in addition when
comparing with similar existing works. In future, the
proposed PSD architecture can be incorporated within
a signal processing system like EEG analyzer for de-
termining the depressive disorders in medical field.
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