
Softw Syst Model (2014) 13:1417–1445
DOI 10.1007/s10270-012-0307-3

THEME SECTION PAPER

An architecture framework for enterprise IT service availability
analysis

Ulrik Franke · Pontus Johnson · Johan König

Received: 31 January 2012 / Revised: 16 October 2012 / Accepted: 5 December 2012 / Published online: 18 January 2013
© Springer-Verlag Berlin Heidelberg 2013

Abstract This paper presents an integrated enterprise
architecture framework for qualitative and quantitative mod-
eling and assessment of enterprise IT service availability.
While most previous work has either focused on formal avail-
ability methods such as fault trees or qualitative methods such
as maturity models, this framework offers a combination.
First, a modeling and assessment framework is described. In
addition to metamodel classes, relationships and attributes
suitable for availability modeling, the framework also fea-
tures a formal computational model written in a probabilis-
tic version of the object constraint language. The model is
based on 14 systemic factors impacting service availability
and also accounts for the structural features of the service
architecture. Second, the framework is empirically tested in
nine enterprise information system case studies. Based on an
initial availability baseline and the annual evolution of the
14 factors of the model, annual availability predictions are
made and compared with the actual outcomes as reported
in SLA reports and system logs. The practical usefulness of
the method is discussed based on the outcomes of a work-
shop conducted with the participating enterprises, and some
directions for future research are offered.

Communicated by Prof. Dr. Dorina Petriu and Dr. Jens Happe.

U. Franke (B) · P. Johnson · J. König
Industrial Information and Control Systems,
Royal Institute of Technology, Stockholm, Sweden
e-mail: ulrikf@ics.kth.se

P. Johnson
e-mail: pj101@ics.kth.se

J. König
e-mail: johank@ics.kth.se

Keywords Systems availability · Service availability ·
Downtime · Noisy-OR · System quality analysis · Enterprise
Architecture · ArchiMate · Metamodel · OCL

1 Introduction

Today, high availability is a sine qua non for IT service
providers. For mission-critical applications, the demanded
IT service availability levels continue to increase [50]—an
indication that both businesses and customers increasingly
expect availability all the time. However, this is easier said
than done in the enterprise IT context. Enterprise systems—
while critical to business operations—are typically part of
complex integrated enterprise architectures tying together
hundreds of systems and processes. This makes them dif-
ficult to maintain and the consequences of changes—e.g. in
terms of availability—are hard to predict.

At the same time, many enterprises show little understand-
ing of how much downtime is acceptable—or of the costs for
such downtime [14]. An IBM study from the nineties con-
cludes that unavailable systems cost American businesses
$4.54 billion in 1996, due to lost productivity and revenues
[23]. The report lists average costs per hour of downtime
ranging from airline reservations at $89.5 thousand to bro-
kerage operations at $6.5 million. It is probably safe to say
that downtime costs have not decreased since.

A recent vivid reminder of the importance of high avail-
ability is the failing data centers of the leading European
IT service provider Tieto in late November 2011. Sundkvist
explains how a failed upgrade of storage equipment from
EMC Corporation caused IT services of a great many seem-
ingly unrelated Swedish enterprises to go down, including
the national IT infrastructure enabling pharmacies to verify
prescriptions, the SBAB bank, the Motor Vehicle Inspec-
tion Company and several municipalities [52]. Other recent

123

1418 U. Franke et al.

examples of high impact IT service outages include the online
banking operations of Bank of America in January 2011 as
described by Charette [9] and the Nasdaq OMX trading sys-
tem for the Nordic and Baltic stock markets in June 2008
described by Askåker and Kulle [3].

The systems underpinning enterprise operations often live
for many years [2], which has led to an increased interest
in information system lifecycles [25]. One lesson to learn
from incidents like the ones described above is that enterprise
information systems need to be monitored and improved not
only in the development phase, but throughout the entire soft-
ware lifecycle. Recent research supports the importance of
proper monitoring and good processes for change manage-
ment [17]. A key aim of this paper is to offer a high-level,
portfolio-view modeling framework that could support deci-
sion makers not only in the design phase, but also in the
operations phase of complex IT services.

1.1 Scope of the paper

High availability is important to IT managers in a particu-
lar sense. A manager faced with poor availability has two
intertwined needs: (1) prediction with adequate precision of
future availability and (2) action guidance. She wants to be
able to predict the future availability of her services, so that
the enterprise can make proper decisions about business strat-
egy, risk management, insurance, etc. But she also wants the
prediction to be action guiding, in the sense that it helps her
to systematically improve the future availability, beginning
with the actions that give the best return on investment.

These IT manager needs are the point of departure for the
present paper. However, as we shall see in Sect. 3, they also
highlight an existing blind spot in the literature. There are
a number of studies addressing the reliability and availabil-
ity of individual software and hardware components and a
wealth of papers on architectures composed of such com-
ponents. But this does not help a manager trying to prevent
any future overnight “routine systems change” mishaps. The
IT manager needs a method that considers the enterprise
architecture, including change management and maintenance
processes, not just the systems architecture. The fact that
these processes are included is a key element in the abil-
ity of the framework to lend decision-support not only in the
design phase, but also in the operations phase of complex IT
services.

By adopting the enterprise perspective, the proposed
framework aims for an “all-in-one” modeling approach to
availability, spanning several levels of abstraction. The ratio-
nale is that there are many non-trivial dependencies between
all the systems and processes in an enterprise architecture.
While more detailed models are clearly desirable on each and
every level of abstraction, such models need to be somehow
interconnected with each other to keep track of the bigger

picture. It is this interconnected level that is the proper
domain of the framework proposed in this article. Indeed, it
has been argued that enterprise IT differs from IT in general
precisely by considering systems that are sometimes stud-
ied in their own right to be mere components of a larger
architecture [26]. Some further pros and cons of the chosen
abstraction level will be discussed in Sect. 8.

The genesis of the present paper is the Marcus and Stern
“availability index” [37]. This index presents a qualitative
cost-benefit analysis of various availability-increasing mea-
sures. A quantitative, expert-elicitation based elaboration of
the index was presented by Franke et al. [17]. This paper
extends the work in [17] by presenting a framework for
modeling and assessment of IT service availability on the
enterprise level that integrates the availability index with
architectural aspects that are also important for availability.
The framework is action guiding, in the sense that the user can
tell what needs to be done to improve availability (cf. the dis-
cussion in Sect. 8.1). The paper also contains a description of
nine case studies, where the modeling principles of the frame-
work have been applied to various enterprise IT services.

1.2 Outline

The remainder of the paper is structured as follows: Sect. 2
defines the subject of the paper, viz. Enterprise IT service
availability. Section 3 contrasts the present contribution with
some related work. Section 4 introduces the framework used
in the metamodeling part of the paper. Section 5 is the locus
of the main contribution, presenting the framework for enter-
prise IT service availability analysis. Section 6 presents nine
cases studies on the usage of the framework. Some further
examples of the possibilities of the framework are given in
Sect. 7. Section 8 offers a discussion of the strengths and
weaknesses of the contribution, its practitioner relevance,
and its software implementation in the EA2T tool. Section 9
concludes this paper.

2 Enterprise IT service availability

We adopt the ITIL definition of IT service given by Taylor
et al. [53]:

“A Service provided to one or more Customers by an IT
Service Provider. An IT Service is based on the use of
Information Technology and supports the Customer’s
Business Processes. An IT Service is made up from a
combination of people, Processes, and technology and
should be defined in a Service Level Agreement.”

Following ITIL, an IT service (Application) has a lifecy-
cle that includes “Requirements, Design, Build, Deploy,
Operate, Optimize” [53].

123

An architecture framework for enterprise IT service availability analysis 1419

To understand the difference between IT in general and
enterprise IT, it is useful to consider the definition made by
Johnson [26]:

“An enterprise software system is the interconnected
set of systems that is owned and managed by orga-
nizations whose primary interest is to use rather than
develop the systems. Typical components in enterprise
software systems are thus considered as proper systems
in most other cases. They bear names such as process
control systems, billing systems, customer informa-
tion systems, and geographical information systems.”
(Emphasis in original.)

As for availability, the literature offers several definitions.
In this paper, we adopt the ITIL definition given by Taylor
et al. [53]:

“Ability of a Configuration Item or IT Service to per-
form its agreed Function when required.”

Mathematically, availability is typically rendered in the fol-
lowing fashion (cf. e.g. [40]):

A = MTTF

MTTF + MTTR
(1)

where MTTF denotes “Mean Time To Failure” and MTTR
“Mean Time To Repair” or “Mean Time To Restore”, respec-
tively. The quotient is easy to interpret as the time that a
system is available as a fraction of all time [47]. Some-
times, the term “Mean Time Between Failures“—MTBF—
is used to emphasize that systems are repairable and thus
capable of failing several times. A more cautious availabil-
ity estimate is found by instead using the “Maximum Time
To Repair/Restore”, corresponding to a worst-case scenario
[37]. Since mean times are used, Eq. 1 is actually a mea-
sure of long-term performance of a system, i.e. a steady state
system availability. Milanovic distinguishes the steady state
availability from instantaneous availability, defined as “the
probability that the system is operational (delivers the satis-
factory service) at a given time instant” [40]. In this paper,
the notion of availability always refers to steady state avail-
ability, unless explicitly stated otherwise.

It is instructive to contrast availability with the related, but
different, notion of reliability, defined in ISO 8402 as follows
(quoted by Rausand and Høyland [47]):

“The ability of an item to perform a required function,
under given environmental and operational conditions
and for a stated period of time.”

As noted by Milanovic, the main difference between reli-
ability and availability is that reliability refers to failure-free
operation up until a failure occurs [40]. Availability, on the
other hand, focuses on the failure-free operation over a longer

period of time, allowing for system failures and repairs dur-
ing the interval considered [40].

A related but wider concept is that of dependability.
Avizienis et al. offer two definitions [4]:

“The original definition of dependability is the ability to
deliver service that can justifiably be trusted. This def-
inition stresses the need for justification of trust. The
alternate definition that provides the criterion for decid-
ing if the service is dependable is the dependability of
a system is the ability to avoid service failures that
are more frequent and more severe than is acceptable.”
(Emphasis in original.)

The framework described in this article addresses the steady-
state availability of enterprise IT services.

3 Related work

There are many frameworks, methods, and tools for modeling
IT (service) availability. In the following review, the most
relevant to our work are described and contrasted with our
approach.

A Bayesian reliability prediction algorithm integrated
with UML, made to analyze reliability before system imple-
mentation, is proposed in a series of papers by Singh et al.
[10,11,51]. The algorithm can be used throughout the sys-
tem life-cycle in the sense that the reliability predictions
generated in the design phase are re-used as prior proba-
bilities in the test phase. A model-driven method for avail-
ability assessment of web services is offered by Bocciarelli
and D’Ambrogio [6]. The availability assessment is part of
a quality of service prediction method based on the busi-
ness process execution language (BPEL) [30]. The paper by
Bocciarelli and D’Ambrogio is similar to our contribution
in the sense that it defines a metamodel that enables avail-
ability calculations in an automated fashion and that it uses
AND and OR gates to model architectural component rela-
tionships. However, both Singh et al. and Bocciarelli and
D’Ambrogio differ from our approach in that they do not
address any governance aspects of availability, such as IT
service management (ITSM) process maturities.

Zambon et al. [63] address availability risk management
by describing how the effects of incidents propagate through-
out an IT infrastructure. The model is tested in a real-
world case study. The paper is similar to ours in the sense
that it models how incidents affecting availability spread
throughout the architecture, but different in its focus on risk
analysis.

Leangsuksun et al. [33] present a unified modeling lan-
guage (UML) tool for software reliability aiming to bridge
the gap between the design process and reliability model-
ing. This is accomplished by a tool that fits UML system

123

1420 U. Franke et al.

models with failure/repair rate-attributes and does reliability
computations with the SHARPE tool [49]. The main contri-
bution of Leangsuksun et al. is to integrate these tools with
each other. However, only hardware failures are taken into
account, whereas in our framework, both hardware and soft-
ware failures can be modeled.

In her PhD thesis, Rodrigues [48] addresses software reli-
ability prediction in the context of model driven architecture
(MDA). The thesis offers a UML reliability profile model
which is used for scenario-based reliability prediction. The
calculations are based on (1) the probabilities of component
failures and (2) transition probabilities between scenario.

Bernardi and Merseguer [5] propose a UML profile for
dependability analysis of real-time and embedded systems,
as a part of the “Modeling and Analysis of Real-Time and
Embedded Systems” (MARTE) project of the Object Man-
agement Group (OMG). Bernardi and Merseguer apply their
profile in a case study.

Majzik et al. [35] delineate a dependability modeling
approach based on UML. It aims to offer guidance in the early
phases of system design. Majzik et al. show how structural
UML diagrams can be processed to create a system-wide
dependability model based on Timed Petri Nets (cf. e.g. [62]
for more on this formalism).

Our work is different from that of Rodrigues, Bernardi and
Merseguer and Majzik et al. in the sense that our framework
also addresses IT service management process maturities.

Immonen [24] offers a method for availability and relia-
bility prediction of software architectures. Its scope is similar
to our approach, but it has only been validated using simu-
lations, and unlike our approach it does not account for IT
service management process maturities affecting availability.

Zhang and Pham [64] present an effort to identify factors
affecting software reliability. Although the identified factors
and their ranking are useful for guidance, Zhang and Pham
offer no method to predict the outcomes of actions taken to
improve system availability.

One important trend found in the literature is that failures
are increasingly due to software failures and human error
[18,36,43,45], rather than hardware failures. This means that
to meet the needs of IT managers, both systems architec-
ture and governance (e.g. IT service management process
maturities) must be studied more closely in concert. Meth-
ods that consider only a static environment where humans
do not intervene and do not change the software will be
unable to capture a lot of important causes of unavailability.
Another important trend is the increasing service-orientation.
With a shift of focus from technical platforms to business
services, governance aspects and process maturities become
more important.

To summarize, the main differences between our con-
tribution and the related work is that (1) we consider not
only the software architecture, but also a wider enterprise

architectural description that includes processes and their
maturities and (2) we have tested the framework in nine case
studies.

4 The P2AMF framework

This section introduces the architecture modeling formalisms
needed for Sect. 5. The predictive, probabilistic architecture
modeling framework (P2AMF for short) is a framework for
generic software system analysis [29]. P2AMF is based on
the object constraint language (OCL), a formal language used
to describe expressions on models expressed in the unified
modeling language (UML) [1]. These expressions typically
specify invariant conditions that must hold for the system
being modeled, pre- and post-conditions on operations and
methods, or queries over objects described in a model. One
important difference between P2AMF and OCL is the prob-
abilistic nature of P2AMF, allowing uncertainties in both
attribute values and model structure. P2AMF is fully imple-
mented in the enterprise architecture analysis tool (EA2T)
[7,27].1

A typical usage of P2AMF is to create a model for pre-
dicting, e.g., the availability of a certain type of application.
Assume the simple case where the availability of the applica-
tion is solely dependent on the availability of the redundant
servers executing the application. The appropriate P2AMF
expression then looks like this:

context Application:
def: available : Boolean =
self.server->
exists(s:Server|s.available)

This example demonstrates the similarity between P2AMF
and OCL, since the expression is not only a valid P2AMF
expression, but also a valid OCL expression. The first line
defines the context of the expression, namely the application.
In the second line, the attribute available is defined as
a function of the availability of the servers that execute it.
In the example, it is sufficient that there exists one available
server for the application to be available.

However, not all valid P2AMF statements are valid OCL
statements. P2AMF introduces two kinds of uncertainty that
are not present in OCL:

First, attributes may be stochastic. When attributes are
instantiated, their values are thus expressed as probability
distributions. For instance, the probability distribution of the
instance myServer.available might be

P(myServer.available)=0.99

The probability that amyServer instance is available is thus
99 %. For a normally distributed attributeoperatingCost

1 http://www.ics.kth.se/eaat.

123

http://www.ics.kth.se/eaat

An architecture framework for enterprise IT service availability analysis 1421

of the type Realwith a mean value of $3,500 and a standard
deviation of $200, the declaration would look like this,

P(myServer.operatingCost)
=Normal(3500,200)

Second, the existence of objects and relationships may be
uncertain. It may, for instance, be the case that we no longer
know whether a specific server is still in service or whether it
has been retired. This is a case of object existence uncertainty.
Such uncertainty is specified using an existence attribute E
that is mandatory for all classes,

context Server:
def: E : Boolean

where the probability distribution of the instance
myServer .E might be

P(myServer.E)=0.8

This attribute requires a subtle change in modeling prac-
tice: the modeler must sometimes allow objects such as the
server above into the model, even though it is not certain that
they exist. In some scenarios the server is still there, in others
it has been retired—as reflected in the value of the attributeE.
Clearly, if potentially non-existing objects were not allowed
into the model, such scenario diversity could not be appropri-
ately modeled. The metamodel, and ultimately the objective
of the modeling as such, determines which potentially non-
existing objects that ought to be modeled.

We may also be uncertain of whether myServer is actu-
ally still in the cluster that provides service to a specific appli-
cation, i.e. whether there is a connection between the server
and the application. Similarly, this relationship uncertainty
is specified with an existence attribute E on the relationships.
Thus, attributes on relationships are employed in P2AMF:

context uses:
def: E : Boolean

TheUses relation is an association class (in the OCL sense),
as are all the relations in P2AMF. This is required for use of
the E attribute.

A full exposition of the P2AMF language is beyond the
scope of this paper, but some more details can be found in
the work of Ullberg et al. [59]. The probabilistic aspects
are implemented in a Monte Carlo fashion [20]: In every
iteration, the stochastic P2AMF variables are instantiated
with instance values according to their respective distribu-
tion. This includes the existence of classes and relationships,
meaning that they are sometimes instantiated, sometimes not,
depending on the distribution. Then, each P2AMF statement
is transformed into a proper OCL statement and evaluated
using the EMF-OCL interpreter. The final value returned
by the model when queried is a weighted mean of all the
iterations.

5 An integrated framework for availability analysis

This section presents a framework for enterprise IT ser-
vice availability analysis. The first subsections introduce two
complementary approaches to availability modeling. Subse-
quently, it is shown how these approaches can be integrated
into a single framework, and a metamodel with classes and
attributes appropriate for availability analysis is presented.

5.1 Modeling availability from components

One classical way of calculating the availability of a complex
system is to follow a bottom-up approach from the availabil-
ity of its components. Using the logic gates AND and OR, the
average availability of the system as a whole can be inferred
in a fault tree-like fashion (a more extensive treatment of fault
tree analysis (FTA) can be found in [16]). Such calculations
assume independent average component availabilities. This
formalism is illustrated in Fig. 1.

The AND case models non-redundant systems where the
failure of a single component is enough to bring the system
down.

The OR case models redundant systems where one or more
component can fail without bringing the system down.

A simple example of how the building blocks and their
mathematical equivalents are put together recursively is illus-
trated in Fig. 2.

In the realm of enterprise IT services, Närman et al. [41]
have created a logic gate framework for availability analysis.
The framework uses ArchiMate [58] as a graphical nota-
tion and has been tested for modeling precision in five case
studies. A main result was that architectural models created
using the proposed metamodel give availability figures that
differ from availability measured log values only in the first or

Fig. 1 The basic cases for parallel and serial systems, respectively

123

1422 U. Franke et al.

Fig. 2 A simple example of system availability calculations

second decimal when expressed as percentages (e.g. an ATM
system was estimated to have an availability of 99.92 %,
whereas logs for a 12 month period revealed an average of
99.86 %).

ArchiMate was selected because it is a framework that
keeps the number of entities down, yet captures a substantial
amount of the concepts that need to be modeled. As described
by Lankhorst et al. [32], the language was created following
an extensive collection of requirements both from practition-
ers and from the literature. Furthermore, care has been taken
to construct the language in such a way that relations between
concepts are transitive [32,60], which is very useful in the
context of FTA.

5.2 Modeling availability at the system-level

While the component model is conceptually simple and
mathematically precise, it also transfers the problem of avail-
ability estimation one level down: from system to compo-
nents. Component availabilities are taken as given—if they
are not, then there is nothing to aggregate.

An alternative line of reasoning, therefore, is to inquire
about the causes of IT service unavailability. This is a diffi-
cult question. As described in Sect. 3, the existing literature
mostly addresses availability (and reliability) in idealized
cases, where IT systems and services are considered in vitro,
i.e. in laboratory settings where software components are
put together into architectures, the properties of which can be
inferred by various models. However, in vivo, things are more
complicated, as the building blocks of the idealized architec-
tures are subject to a constant stream of functional upgrades,
external service-provider downtime, inadequate monitoring,
poor change management, etc. Furthermore, many of these
failure factors are difficult to locate, architecturally.

Franke et al. [17] address this problem using a holistic
approach. Rather than detailing the architectural components
of a service or system, 16 factors determining availabil-
ity are evaluated at the level of the IT service as a whole.
To quantify the factors, Franke et al. did a survey among
50 experts on IT systems availability, and thus created a

Bayesian decision support model, designed to help enter-
prise IT system decision-makers evaluate the consequences
of various courses of action ex ante. Cf. [17] for more details.

The mathematical model employed is a leaky Noisy-OR
model, typically used to describe the interaction of n causes
X1, . . . , Xn to an effect Y (cf. [19,42] for more details). In
this context, the effect Y is the un-availability of enterprise IT
systems. Two assumptions are made, viz. (1) that each of the
causes has a probability pi of being sufficient for producing
Y and (2) that the ability of each cause Xi , to bring about Y
is independent. Mathematically, the following holds:

pi = P(y|x̄1, x̄2, . . . , xi , . . . , x̄n) (2)

where xi designates that causal factor Xi is present and x̄i

that it is absent. In other words, pi is the probability that the
effect Y will occur when causal factor pi is present, and all
other causal factors modeled are absent.

It follows that the probability of y given that a subset
Xp ⊆ {X1, . . . , Xn} of antecedent causes are present can be
expressed as

P(y|Xp) = 1 − (1 − p0)
∏

i :Xi ∈Xp

(1 − pi)

(1 − p0)
(3)

The probability p0 is called the leak probability, and reflects
the probability that Y will occur spontaneously, thus reflect-
ing imperfections in the explicit model.

The probabilities pi obtained from the expert elicitation
[17] are listed in Table 1. The one difference between Table
1 and [17] is that two pairs of causal factors have been
merged together (1 + 9, 7 + 8), as indicated. The motivation
is detailed in Appendix 10, as are more precise definitions of
each factor.

Table 1 Systemic causal factors with probabilities for refined Noisy-
OR model

Causal factor Xi pi (%)

Lack of best practice . . .

1 + 9 . . . physical environment and infrastructure redundancy 10.0

2 . . . requirements and procurement 25.2

3 . . . operations 23.0

4 . . . change control 28.1

5 . . . technical solution of backup 7.0

6 . . . process solution of backup 3.6

7 + 8 . . . data and storage architecture redundancy 9.6

10 . . . avoidance of internal application failures 16.9

11 . . . avoidance of external services that fail 8.7

12 . . . network redundancy 7.6

13 . . . avoidance of network failures 18.3

14 . . . physical location 3.3

15 . . . resilient client/server solutions 3.6

16 . . . monitoring of the relevant components 26.1

123

An architecture framework for enterprise IT service availability analysis 1423

This model thus offers a way to explain the un-availability
of enterprise IT systems in terms of lack of best practice in
14 (originally 16) different areas. However, a more practical
typical concern is the availability of an entire park of sys-
tems, with a known prior availability baseline, e.g. 99.5 %.
The Bayesian model therefore needs to be rescaled to reflect
this prior availability. Such a rescaled model can be used
for reasoning about which best practice solutions to apply to
further increase availability.

Franke et al. rescale the model with a rescaling factor α

applied to all pi , including p0. It follows from Eq. (3) that

A(Xp)=1−P(y|Xp)=(1−αp0)
∏

i :Xi ∈Xp

(1− αpi)

(1−αp0)
(4)

where A(Xp) is the availability of a given system lacking the
best practice factors listed in the vector Xp.

5.3 An integrated approach

Comparing component and system-level availability mod-
eling, we see that these approaches are complementary. The
strength of the component-based approach lies in its focus on
the interrelations between elements and services, thus cap-
turing redundancy and other important notions of availability
theory. This is an area where the system-level approach has a
blind spot. Conversely, the system-level approach can incor-
porate important governance aspects such as architectural
change control, requirements and procurement, and com-
ponent monitoring—all factors impacting enterprise service
availability, but non-localizable to any single component in
an architecture and thus absent in a purely component-based
framework.

Sections 5.4 and 5.5 introduce an integrated framework,
where the two complementary approaches are reconciled and
implemented together. This continues and extends previous
work by Franke et al. [17] and Närman et al. [41], who
have elaborated each approach separately in the enterprise
IT context. The exposition revolves around the metamodel
illustrated in Fig. 3, giving an overview of the proposed
framework. However, the framework is more than just the set
of classes and attributes visible in the figure. As explained
in Sect. 4, the derived attributes for the availability analy-
sis are formally defined using OCL code. Following P2AMF
practice, these OCL expressions are not primarily used to
impose model constraints, but rather as the combined query
language and mathematics engine that implements the logic
of the component-level and system-level availability models
employed.

The classes and attributes are detailed in the next few sub-
sections. Reading these descriptions, it is recommended to
continuously refer back to Fig. 3. Such a parallel reading
should aid in not losing sight of the bigger picture. The OCL

code corresponding to derived metamodel attributes as well
as some metamodel operations and invariants used in the
implementation are provided in Appendices B, C, and D,
respectively.

5.4 Metamodel classes

On the class level, the metamodel is quite similar to the
metamodel presented by Närman et al. [41]. It is based on
the ArchiMate metamodel, and contains active structure ele-
ments, behavioral elements, business processes, and the logic
gates necessary for the component-level availability model-
ing approach.

However, Närman et al. employ the component-based
approach only, employing the fault tree formalism. As
described in Sects. 5.2 and 5.3, this ought to be comple-
mented by the system-level approach capable of taking gov-
ernance aspects into account as well. Therefore, the coherent
combination of the two existing techniques for service avail-
ability modeling and analysis is the novel contribution of this
new metamodel. The details are found in the OCL code of
Appendices B, C, and D, all of which was written for this
metamodel.

More precisely,BehaviorElement is an abstract super-
class (as signified by the abstract stereotype) with three
subclasses: ApplicationService, Application
Function, and InfrastructureService. Follow-
ing UML, the � arrow signifies inheritance. Similarly,
ActiveStructureElement is an abstract superclass
with three subclasses: Node, ApplicationComponent,
and CommunicationPath. These class concepts are
shared with [41]. A BehaviorElement is realized by an
ActiveStructureElement to which it is assigned.
Whenever the metamodel is instantiated, every Active
StructureElement generates at least one Behavior
Element. This is important, because it allows active struc-
ture elements of different types to realize a behavior of the
same class but with different availabilities or other charac-
teristics.

The Gate class has a Boolean attribute determining
whether it acts as an AND (encoded as false) or OR (encoded
as true) gate. In the EA2T tool, the class icons () are
changed accordingly, as seen in Fig. 4.

Furthermore, a BusinessProcess class has been
introduced, not present in [41]. The BusinessProcess
class has four subclasses, each corresponding to a process
relevant for IT service availability:

ProcessSolutionOfBackup The process solution
of backup regulates the use of the technical solution. This
includes routines such as whether backups are them-
selves backed up, whether the technical equipment is
used in accordance with its specifications, what security

123

1424 U. Franke et al.

Fig. 3 The integrated metamodel for availability analysis

measures (logical and physical) are used to guard back-
ups, etc.
ChangeControlChange control is the process of con-
trolling system changes. This applies to both hardware
and software and includes documentation of the actions
taken.
Operations Operations is everyday system admin-
istration. This includes removing single points of fail-
ure, maintaining separate environments for development,
testing and production, consolidating servers, etc.
RequirementsAndProcurement Requirements
and procurement reflect the early phases of system
development and administration. This includes return
on investment analyses, re-use of existing concepts,

procuring software designed for the task at hand, negoti-
ating service level agreements, etc.

5.5 Metamodel attributes

All metamodel attributes will be given in the form name:
type, referring to the standard OCL types defined in the
OCL specification [1].

5.5.1 BehaviorElement

AsBehaviorElements are the components connected by
logic gates, their attributes form the backbone of the analy-
sis. To reflect the system-level approach, some attributes are

123

An architecture framework for enterprise IT service availability analysis 1425

F
ig

.
4

A
T

M
m

od
el

fr
om

B
an

ki
ng

1,
im

pl
em

en
te

d
in

th
e

E
A

2
T

to
ol

,u
si

ng
th

e
m

et
am

od
el

de
sc

ri
be

d
in

Se
ct

.5

123

1426 U. Franke et al.

visible only at the top of the architecture, i.e. when they are
attributes of instantiated class elements that do not contribute
to the availability of other elements. This reflects the proper-
ties that are only considered at the system-level.

ArchitecturalAvailability:Real This attri-
bute corresponds to standard notion of availability of the
component-based model described in Sect. 5.1. Its value
will be calculated differently depending on the architec-
ture:

1. If the BehaviorElement is connected to a gate
through the gateToService relation, the
ArchitecturalAvailability will take the
Availability value of the gate.

2. If the BehaviorElement is assigned to a single
ActiveStructureElement, theArchitect-
uralAvailability will take the Availabi-
lity value of the structure element.

3. If the BehaviorElement is neither connected to
a gate, nor to a structure element, its Architectu-
ral Availability is taken from its ownEvid-
ential Availability attribute.

EvidentialAvailability:RealThis attribute is
used to allow the user to set a “black box” architectural
availability figure of a behavior element that is not mod-
eled in detail.
AvoidedUnavailability:Real This attribute
value is calculated based on the Noisy-OR model from
[17]. It denotes the fraction (0−100 %) of architectural
un-availability that has been avoided by the best prac-
tice factors of Table 1. This is calculated by a call to the
avoidedUnavailability() operation described
in Appendix 12.
In the EA2T tool, this attribute is only visible when the
isTopService operation (described in Appendix 12)
is true.
AvoidedUnavailabilityBaseline:Real This
attribute is the baseline for avoided unavailability. This
brings about path-dependence, in the sense that the model
keeps track of a baseline starting point. The user supplies
the baseline. The recommended way to do so is by mod-
eling an architecture as faithfully as possible both when
it comes to architectural availability and with respect to
the best practice factors of Table 1. Calculating the model
will then yield an initial AvoidedUnavailability
that can be entered as baseline.
In the EA2T tool, this attribute is only visible when the
isTopService operation is true.
HolisticAvailability:Real This attribute cor-
responds to the richer—holistic—availability notion that

results from the combination of the component-level
and system-level approaches to availability. As this
notion of availability is only applicable on the archi-
tecture as a whole, this attribute belongs only to the
“top” BehaviorElement, typically corresponding
to an aggregate of several other services. Formally,
this “top” property is defined by the OCL opera-
tion isTopService described in Appendix 12. It
combines component-level availability with the system-
level model by starting out with the Architectural
Availability, and then adding or subtracting from it,
depending on the level ofAvoidedUnavailability
relative to theAvoidedUnavailabilityBaseline.
In the case of an improvement over the baseline, the
HolisticAvailability is given by Eq. 5. In the
case of a deterioration, theHolisticAvailability
is given by Eq. 6.

AvoidedUnavailability
≥ AvoidedUnavailabilityBaseline :

HolisticAvailability
= ArchitecturalAvailability+
(1 − ArchitecturalAvailability)·
(AvoidedUnavailability−
AvoidedUnavailabilityBaseline)/

(1− AvoidedUnavailabilityBaseline)

(5)

AvoidedUnavailability
< AvoidedUnavailabilityBaseline :

HolisticAvailability
= ArchitecturalAvailability+
ArchitecturalAvailability·
(AvoidedUnavailability−
AvoidedUnavailabilityBaseline)/

AvoidedUnavailabilityBaseline

(6)

In words, the holistic availability starts from the architec-
tural availability found by aggregating the components of
the architecture in a fault tree-like manner. In the case of
an improvement it then adds a fraction of the comple-
mentary unavailability, this fraction being determined by
the avoided unavailability, relative to its baseline and the
baseline distance to full (100 %) availability. Symmet-
rically, in the case of a deterioration it subtracts a frac-
tion of the architectural availability, this fraction being
determined by the avoided unavailability, relative to its
baseline and the baseline distance to no (0 %) availability.
In the EA2T tool, this attribute is only visible when the
isTopService operation is true.

123

An architecture framework for enterprise IT service availability analysis 1427

Table 2 Systemic causal factors
in the metamodel

Factor Attribute name Class(es)

1 + 9 bestPracticePhysicalEnvironmentAndInfrastructure-
Redundancy

Node

2 bestPractice RequirementsAndProcurement

3 bestPractice Operations

4 bestPractice ChangeControl

5 bestPracticeTechnicalSolutionOfBackup Node

6 bestPractice ProcessSolutionOfBackup

7 + 8 bestPracticeDataAndStorageArchitecture-
Redundancy

InfrastructureService

10 bestPracticeAvoidanceOfInternalApplicationFailures ApplicationComponent

11 bestPracticeAvoidanceOfExternalServicesFailures ApplicationService

12 bestPracticeNetworkRedundancy CommunicationPath

13 bestPracticeAvoidanceOfNetworkFailures CommunicationPath

14 bestPracticePhysicalLocation Node, CommunicationPath

15 bestPracticeResilientClientServerSolutions ApplicationService, InfrastructureService

16 bestPracticeComponentMonitoring ActiveStructureElement

5.5.2 Systemic causal factors

The systemic causal factors from [17] are all modeled as
attributes of type Real, as detailed in Table 2. Here, they are
listed in the same order as in Table 1. In Fig. 3, they can be
found located in the appropriate class.

One particular difficulty arises with the application of the
14 attributes in an architectural context: in the Noisy-OR
model, each factor is a singleton. However, in any suffi-
ciently complex enterprise architecture there will be features
such as several ChangeControl processes governing sev-
eral services, several CommunicationPaths with sev-
eral routines for failure management, several Nodes being
monitored in several ways, etc. These several values need
to be aggregated before they are fed to the Noisy-OR calcu-
lation of the AvoidedUnavailability attribute. In the
current implementation, this is accomplished by returning the
arithmetic mean of the best practice values found throughout
the architecture.

The aggregation is non-trivial and could be computed in
several ways. Varian [61] distinguishes three prototypical
cases in the context of system reliability:

Total effort. Corresponds to a sum, or in our case an
arithmetic mean (normalized sum) of maturities. on the
sum of the efforts.
Weakest link. Corresponds to the minimum maturity.
Best shot. Corresponds to the maximum maturity.

There are reasonable cases of applicability for each of the
alternatives. As Varian notes, many systems exhibit a mixture
of the cases [61].

Having thus outlined the metamodel, we now turn to its
application. Sect. 6 details case studies where real enterprise

IT services from five companies have been modeled using
the framework described.

6 Case studies

This section describes the case studies carried out to test
the modeling capabilities of the framework proposed in the
previous section.

6.1 Case study process

To test the predictions of the model, case studies were car-
ried out at five enterprises from a number of different busi-
ness areas. The case studies were executed according to the
following process:

6.1.1 Start-up meeting

Each case study was initiated with a start-up meeting, where
the researchers explained the scope of the case study to the
industry counterpart. The typical counterpart representative
was a middle manager with a responsibility for a portfolio of
IT systems supporting the business.

6.1.2 Service identification

After the start-up meeting, the next step was to find a suitable
service—supported by the IT systems within the manager’s
portfolio—for the study. There where several requirements:

1. The service should have high availability requirements,
and thus in this sense be important to the participant enter-
prise.

123

1428 U. Franke et al.

2. There should be historical availability data available for
analysis.

3. There should be service experts available for interviews.
4. The service should have a history of less than perfect

availability, so as to make for more relevant analysis.

The data required were aggregated SLA reports, or other
similar documentation, on availability over time. No details
on individual outages were required. The interviewees were
required to be able to assess the evolution of the maturity
level of each of the factors in Table 1.

6.1.3 Quantitative data collection

Following the identification of appropriate services, avail-
ability data on the selected services was collected. Depending
on the routines of the enterprise, these data were sometimes
readily available in aggregated form as SLA reports and
sometimes had to be composed through architectural con-
siderations and incident log analysis.

6.1.4 Interviews

Following service identification and collection of availabil-
ity data, appropriate respondents were selected to be inter-
viewed on the evolution of the 14 factors of Table 1 over time.
Most interviews were conducted with several respondents
who were all involved in the management of the service.
In some cases interviewees had to find additional informa-
tion which they supplied after the interview session. For
each year of historical data, an assessment of each factor
was documented. Thus a typical interview dataset consists of
14 · n factor maturity assessments, for n years studied. The
methodology for factor assessment is further elaborated in
Appendix 10.

6.2 Quantitative framework evaluation

The modeling framework described in the previous section
was evaluated for quantitative precision. Using the first year
of each time series as a base-line, an availability estimate
was calculated for the following years using the model. This
model was compared with the actual availability figures as
reported in the data made available.

An overview of the participating companies is offered in
Table 3. Five enterprises participated, contributing a total
of nine services. Since availability is a competitive edge to
these companies, the companies have been anonymized to
the level required by them to consent to publication. Figure 4
illustrates one of the service architectures, modeled in the
EA2T tool.

As is evident from Table 3, most of the companies are from
mature high availability businesses (banking), where the cost

Table 3 Overview of the participating companies

Company Service Data set

Banking 1 ATM Availability data, 60 months

Banking 2 Banking operations,
branch IT services

Availability data, 57 months

Internet bank Availability data, 57 months

Banking 3 Internet bank, other
service

Availability data, 36 months

Internet bank, log in
service 1

Availability data, 36 months

Internet bank, log in
service 2

Availability data, 36 months

Company 1 Service 1 Availability data, 36 months

Service 2 Availability data, 36 months

Travel 1 Internet timetable
service

Availability data, 37 months

of downtime is often a top-management issue. Travel 1 is the
exception. It can also be observed that a lot of the services
analyzed are similar—Internet banks and Internet timetable
services are relatively similar services, all offered through a
web front-end, but typically being dependent upon middle-
ware and mainframes behind the scene. The ATM service
and banking branch IT service also share a lot of character-
istics, being distributed systems, where terminals are geo-
graphically spread (to street corners and banking branches).
However, they are still fully within the enterprises’ domain of
management, as opposed to the Internet-distributed services
where the user typically uses a computer of her own.

Even though most of the enterprises belong to high-
availability businesses, their availability figures are markedly
different. This should, however, not be interpreted as a sign
of radically different service quality, but is mostly an effect of
different ways of measuring and defining availability. In par-
ticular, Banking 2 had a very conservative approach to assign-
ing availability figures, oftentimes considering services fully
down even though only a fraction of their total functional-
ity was really unavailable. This scheme is intended to keep
(mostly company in-house) service-providers on their toes.
However, it also has the unfortunate side-effect of giving
an overly pessimistic appraisal of availability levels as com-
pared with other companies.

6.3 Numerical results

Figures 5, 6, 7 contrast the modeling figures with the actual
availability data collected from the SLA reports and logs.
The monthly availability data are shown along with annual
(i.e. 12 months) availability averages and the correspond-
ing annual predictions from the models. It is evident that
there is a lot of variability in the availability levels on
a monthly basis. The model predictions have only been

123

An architecture framework for enterprise IT service availability analysis 1429

2006 2007 2008 2009 2010 2011

0.98

0.982

0.984

0.986

0.988

0.99

0.992

0.994

0.996

0.998

1

Year

A
va

ila
bi

lit
y

Banking 1: ATM

Annual average
Model
Monthly availability

2006 2007 2008 2009 2010 2011
0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Year

A
va

ila
bi

lit
y

Banking 2: Banking operations

Annual average
Model
Monthly availability

2006 2007 2008 2009 2010 2011

0.75

0.8

0.85

0.9

0.95

1

Year

A
va

ila
bi

lit
y

Banking 2: Internet bank

Annual average
Model
Monthly availability

Fig. 5 Comparison of (1) annual average availability data, (2) the cor-
responding model as offered by the framework, and (3) the underlying
monthly availability figures

created on an annual basis. The reasons for this are twofold:
(1) only annual data on the 14 factors were collected through
the interviews. One reason for this is the risk of interviewee

2008 2009 2010 2011

0.99

0.992

0.994

0.996

0.998

1

Year

A
va

ila
bi

lit
y

Banking 3: Other service

Annual average
Model
Monthly availability

2008 2009 2010 2011

0.98

0.985

0.99

0.995

1

Year

A
va

ila
bi

lit
y

Banking 3: Log in 1

Annual average
Model
Monthly availability

2008 2009 2010 2011

0.975

0.98

0.985

0.99

0.995

1

Year

A
va

ila
bi

lit
y

Banking 3: Log in 2

Annual average
Model
Monthly availability

Fig. 6 Comparison of (1) annual average availability data, (2) the cor-
responding model as offered by the framework, and (3) the underlying
monthly availability figures

fatigue, but it also reflects the fact that many of the factors
are process-oriented and change gradually over time. It is
more reasonable to expect annual trends than monthly abrupt

123

1430 U. Franke et al.

2008 2009 2010 2011 2012

0.98

0.982

0.984

0.986

0.988

0.99

0.992

0.994

0.996

0.998

1

Year

A
va

ila
bi

lit
y

Company 1: Service 1

Annual average
Model
Monthly availability

2008 2009 2010 2011 2012

0.98

0.985

0.99

0.995

1

Year

A
va

ila
bi

lit
y

Company 1: Service 2

Annual average
Model
Monthly availability

2008 2009 2010 2011 2012

0.75

0.8

0.85

0.9

0.95

1

Year

A
va

ila
bi

lit
y

Travel 1: Internet timetable service

Annual average
Model
Monthly availability

Fig. 7 Comparison of (1) annual average availability data, (2) the cor-
responding model as offered by the framework, and (3) the underlying
monthly availability figures

changes in e.g. the change control. (2) Many of the monthly
availability time series exhibit seasonality, often with an
availability peak during summer vacations. The seasonality,

however, is not what the Bayesian decision support model
aims to describe. Rather, the long-term trend is the object
of prediction, and this trend is better described by annual
averaging.

It should be pointed out that the predictions of Figs. 5,
6, 7 are cumulative, i.e. the models evolve over time after
calibration at the start of the time series. For example, the
prediction for the ATM system of Banking 1 is based only
on the initial availability in 2006 and the evolution of the 14
factors from there on. No re-calibration has been carried out
over the following years.

As seen in Figs. 5, 6, 7, the predictions sometimes miss
the mark by being too low, sometimes by being too high.
At other times, as in the prediction for the ATM system of
Banking 1, the prediction mimics the changes of direction of
the actual availability data, but is consistently too low. This
will be thoroughly discussed in Sect. 8.

It should be noted that the 2011 annual average figures for
Company 1, Service 2 are based on January and February
only.

7 Further usage examples

The previous section does not make full use of the framework
expressiveness, but rather focuses on the quantitative aspects
of availability assessment in the spirit of the system-level
approach. However, expressiveness and conceptual model-
ing capability is equally important. We now use the enter-
prise architecture illustrated in Fig. 4 as a baseline for a few
illustrations of the possibilities of the integrated framework.

These examples can be studied in greater detail in a screen-
cast on the web page of the EA2T tool.2

Combined effects The most straight-forward application
of the holistic framework is to assess the effect of changes
affecting both the component make-up of an architecture
and its maturity in terms of the systemic causal factors.
What would happen to the service availability of cash
withdrawal if both (1) a redundant communication ser-
vice could be installed, and (2) the change management
process could be improved? These assessments can eas-
ily be made using the framework implementation in the
EA2T tool.
Architectural modeling of processes Another advan-
tage is the possibility to model how behavior elements can
be governed by multiple processes, and how this impacts
availability. What if there is not just a single overarching
change management process for everything, but rather a
multitude of such processes, each governing a different
part of the architecture?

2 http://www.ics.kth.se/eaat.

123

http://www.ics.kth.se/eaat

An architecture framework for enterprise IT service availability analysis 1431

Table 4 Mean RMSE
(percentage points) for the
models compared with a
no-changes baseline

Enterprise IT service Model RMSE Baseline RMSE
(percentage points) (percentage points)

Banking 1, ATM 0.208 0.254

Banking 2, Banking operations, branch
IT services

1.674 2.903

Banking 2, Internet bank 1.997 3.339

Banking 3, Internet bank, other service 0.180 0.173

Banking 3, Internet bank, log in service 1 0.012 0.258

Banking 3, Internet bank, log in service 2 0.786 0.714

Company 1, Service 1 0.125 0.192

Company 1, Service 2 0.090 0.086

Travel 1, Internet timetable service 2.744 2.467

Average 0.868 1.154

Error size compared to baseline (%) 75 % 100 %

Improvement over baseline (%) 25 %

Uncertain architectures Sometimes, the enterprise
modeler will be uncertain about the state of architecture
with regard to availability. In some cases, this is due to
ignorance on the part of the modeler: it can be difficult to
know whether a particular process governs a particular
service, or not. The people involved in managing that par-
ticular service know the answer. In other cases, the ques-
tion is more fundamentally uncertain. If two servers are
used for load-balancing, one of them might be capable of
keeping the service running under low load conditions.
If so, the pair ought to be modeled using an OR gate.
However, under conditions of high load, a single server
might not be able to cope, in which case the pair ought
to be modeled using an AND gate. In this case there is
no simple right or wrong answer, but a good architec-
ture model ought to reflect this behavioral uncertainty. A
more thorough description of the role of uncertainty in
enterprise architecture can be found in the work of John-
son et al. [28]. Some empirical reasons for uncertainty
in enterprise architectures can be found in the work of
Aier et al. [2].

8 Discussion

8.1 Quantitative evaluation

As seen in Sect. 3, the literature offers few comparable alter-
natives with the same scope as the framework proposed in
Sect. 5. In this sense, it is difficult to appraise the numerical
results presented in Figs. 5, 6, 7. Nevertheless, the frame-
work model can be compared with a reference prediction
where the availability is assumed to remain constant, equal
to the first year in the time series. For lack of a better

predictor, this is a relevant baseline. Indeed, in the concluding
workshop with the participating companies, the practitioners
stated that re-using last year’s figure, sometimes with a tiny
inflation factor, is common practice in the industry.

A measure of the difference between the model and the
baseline can be found by comparing the root-mean-square
errors (RMSE), in percentage points, compared with the
actual annual availability averages obtained from the com-
panies, as illustrated in Table 4.

Table 4 reveals that the integrated framework model of
Sect. 5 is superior to the constant baseline in five out of nine
cases. In three of the remaining cases (Banking 3, Internet
bank, other service, Banking 3, Internet bank, login service
2 and Company 1, Service 2) the differences are very small.
In the last case (Travel 1, Internet timetable service) both
predictions are much off the mark, though the framework
model is a bit worse.

However, the monthly availability figures of Fig. 7 tell a
slightly different story. As can be seen in the plot, the main
reason for the declining average availability in 2010 of the
Internet timetable service is the exceptionally low values in
April and May. Knowing that this is an Internet timetable ser-
vice at a travel company, and knowing that the 2010 volcanic
eruptions of Eyjafjallajökull on Iceland wreaked havoc with
air travel across western and northern Europe, it is not hard
to infer that the timetable service was put to severe stress in
these months—and did not fully cope.

It is instructive to consider the implications of this
carefully. An architecture-based model—using whatever
mathematical formalism or guiding principle—can only be
expected to predict changes to availability that are in some
sense internal. It is not reasonable to expect a prediction of
external factors such as the ash cloud disruptions based on
a description of one’s own enterprise architecture. What the

123

1432 U. Franke et al.

architecture-based framework can be expected to predict is
the impact of long term internal changes, whether they are for
the better (such as process improvements) or for the worse
(such as an increasingly complex web of software that can be
maintained and modified only at an ever larger cost). Looking
at the plots of Figs. 5, 6, 7, other similar cases can be observed.
Large, unpredictable disruptions often make annual averages
go awry—but equally often the model offered by the frame-
work points in the general direction of what to expect for any
given month, including the back-to-normal month after the
large outage.

A more profound problem has to do with whether valid
predictions for different kinds of systems can be made based
on a single general model. However, while every software
system is unique, every software system cannot have a unique
model of its own. Constructing such models is far too costly.
Indeed, the very idea of statistics is to look at sets exhibit-
ing variation, inferring general information from the partic-
ular samples. For some applications, the precision of a given
model will not be sufficient. For others, it will. As discussed
below, practitioners in the industry do find the results of our
framework useful in several contexts.

Sudden outages can sometimes be better predicted by
more elaborate techniques such as the time series analy-
sis approach proposed by Liang [34]. However, there is an
important caveat: such models typically offer no guidance at
all on cause and effect. A time-series model can accurately
model, for instance, seasonality. However, an IT manager is
not helped much by knowing, e.g. that service availability is
at its best in July (as many practitioners maintain), because
this knowledge in no way contributes to improving avail-
ability in, say, November. It is far better to know, e.g. that
the process of requirements and procurement needs to be
improved. This is the kind of action guidance that is offered
by the integrated architecture framework of Sect. 5.

To summarize, it is reasonable to expect a model to reflect
long-term availability changes, but unreasonable to expect it
to predict sudden outages.

8.2 Practitioner relevance

The considerations in the previous section naturally lead to
the issue of practitioner relevance. If quantitative evalua-
tion is difficult, it is even more important to secure qual-
itative evaluation by involving practitioner stakeholders in
the development of new theories and methods. Only through
careful stakeholder interaction can enterprise IT service mod-
eling properly support software systems throughout the entire
life cycle.

In May 2011, a workshop was conducted with representa-
tives from the the participating companies. Five represen-
tatives attended. The typical representative was a middle
manager, responsible for a portfolio of IT systems that

support the business. All of the representatives had partici-
pated as respondents and data providers throughout the study.
The workshop lasted for 2 hours, and was hosted by the
researchers. The workshop started with a presentation of the
participants, followed by an introduction by the researchers
and a presentation of the results from the studies (i.e. the
results found in Sect. 6; Table. 4). Following a short break,
the second half of the workshop was dedicated to a group dis-
cussion, where the practitioners made a number of important
remarks:

First of all, there is a gap between the desire to model and
predict availability and the actual state of the practice. Most
of the companies do not use any sophisticated means to pre-
dict future availability levels. Rather, it is common practice
to re-use last year’s figure, sometimes with a tiny inflation
factor. However, this is not to say that there is no interest
in or demand for more advanced modeling techniques. On
the contrary, the participants identified a number of impor-
tant areas where the ability to model and predict availability
would be highly useful:

– When large changes are made in an architecture, it is most
often known—or assumed—that availability will suffer.
The ability to quantify this gut feeling would improve
risk management in projects.

– A prognosis, based on a credible method, of future ser-
vice availability carries weight in communications with
senior management. One of the workshop participants
gave an example of when such a prognosis convinced
the business that the availability predicted was too poor,
leading to allocation of a budget for improving availabil-
ity levels.

– Whenever check lists with bullet points for improving
availability are proposed, it would be useful to be able
the predict the estimated result of each action, so as to
prioritize among them.

– The use of external services is on the rise, making service
provision much less transparent. In particular, this is the
case when services are delivered by sub-contractors to
sub-contractors, i.e. when a kind of layering of services
occurs. Many companies are immature when it comes to
writing service level agreements (SLAs), and this is made
even worse by opaque service layering. This is an area
where architectural modeling and availability prediction
can shed light on complicated phenomena.

– Compared with mechanical systems, the use of safety
margins is very immature in IT service architecture. One
workshop participant, with degrees in both construc-
tion and computer engineering, pointed out that whereas
bridges are often built with four- or eightfold safety fac-
tors, IT systems are often just built to cope precisely with
the foreseen load. Better techniques for modeling and
prediction of availability can help to make the IT service

123

An architecture framework for enterprise IT service availability analysis 1433

provision area more mature in this respect. However, it
should be noted that the behavior of mechanical systems
is often more linear (or in some other sense regular) than
that of IT systems, making the latter more difficult to
analyze.

Furthermore, the importance of qualitative modeling
should not be underestimated. Qualitative models are use-
ful to create a shared understanding of a problem, as well as
for reasoning about system behavior and component inter-
actions and dependencies. As a result, qualitative modeling
often leads to insights about system behavior that leads to
better decision making [12].

To summarize, the practitioner community can use the
proposed integrated framework for rule-of-thumb decision
making when planning, budgeting, and prioritizing future
investments to improve availability. This is illustrated by the
Combined effects case in Sect. 7. Such decision-making does
not only enable prognoses, but also trade-offs based on the
cost/benefit ratio of different actions to improve IT service
availability. The workshop participants were not aware of any
existing method with similar characteristics.

8.3 Tool support

One important aspect of framework usability is tool support.
A tool can implement complicated theories and models in
a faithful way, yet not require the user to fully grasp their
minute detail. This enables the end user to focus on his or her
core competencies, while still making use of, for example,
the advanced availability modeling and prediction offered by
the framework described in this paper.

The implementation of the metamodel in the EA2T tool
shown in the previous section has great potential in terms of
adoption and usability. The tool is being used in a number
of research projects on software quality attributes, including
interoperability [59], maintainability [15], and security [7].
It has also been used to model large enterprise systems in a
number of master theses, e.g. [44].

Furthermore, to alleviate the workload when creating
enterprise architecture models, data to populate models with
entities and relations can be collected automatically [8].
This is a promising road ahead, in particular as one of the
practitioner concerns listed above is the increasing complex-
ity and decreasing understandability of enterprise architec-
tures. Automatic data collection is one way to keep up the
pace.

8.4 Pros and cons of the integrated approach

The metamodel presented offers a high-level description lan-
guage that includes many aspects relevant to the availability

of the services in an enterprise architecture. The idea is to cap-
ture dependencies between different domains, even though
these are often modeled by themselves in greater detail.
Lankhorst describes the division of labor between enterprise
architecture modeling and other kinds of related modeling
[31]:

“A main objective of enterprise architecture is to reveal
the relations between the different domains, and to
provide a high-level overview. As such, you should
always check the validity of any existing models, and
incorporate their information on an appropriate level
of abstraction; domain-specific models provide more
details about parts of the enterprise than an enterprise
architecture model. As such, an enterprise architecture
model should, for example, not be considered a replace-
ment for the existing information models or business
process models.”

In the context of availability modeling, Lankhorst’s divi-
sion of labor means that our metamodel is not intended
to replace but rather complement the existing modeling
practices or tools. There are a lot of competent vendors
offering advanced tools for tasks relevant to availability:
picking the top three factors from Table 1 we find change
control addressed by products from, e.g. ERP vendor, HP,
Aldon, Quest Software, IntelliCorp, Revelation Software,
Phire, component monitoring addressed by products from,
e.g. BMC Software, HP, Quest Software, and IBM, and
requirements and procurement addressed by products from,
e.g. IBM-Telelogic, iRise, all according to the Gartner con-
sultancy [46]. Milanovic offers a good academic review of
tools for availability assessment [40].

To understand the intended division of labor, it is use-
ful to consider an analogy to computer-aided design (CAD)
and engineering (CAE). It is certainly true that buckling of
columns and lighting of a room are quite different, but it is
also true that there is a need for software tools that visual-
ize their interdependencies to architects, since columns both
carry loads and block windows. At some point, these con-
cerns need to be de-conflicted and resolved. However, such
a resolution does not necessarily need to be based on the
most profound theories available—if simplifications need to
be introduced to get diverse phenomena into the same model,
so be it.

Our metamodel is not intended to be the basis of com-
plete and very detailed architectural models of enterprises.
Instead, it is meant to offer a way to capture and make explicit
relations between processes and services that are often lost
when more detailed models are built. Such a bird’s-eye view
is necessary to avoid metaphorical stove-pipes and visual-
ize the effects of changes throughout the entire architec-
ture. In this respect, the fault-tree modeling formalism is
very suitable. It allows some complex systems-of-systems

123

1434 U. Franke et al.

to be represented as a single component, exhibiting only an
average availability, while others can be modeled in greater
detail. This offers the flexibility necessary to tailor models
to practical needs, without being hampered by arduous data
collection costs. Similarly, the Noisy-OR model is flexible
in the sense that factors can be left unspecified in architec-
tural descriptions, in which case the model simply assumes
a default value.

If the metamodel is used in this way, to build relatively
light-weight models of enterprise architectures, its use is
relatively simple and not very time consuming. When models
similar in scope and granularity were built using the meta-
model prescribed by Närman et al., no model required more
than 20 man-hours of work, including both modeling and
data collection [41].

9 Summary and conclusions

This paper has demonstrated an integrated enterprise archi-
tecture framework for quantitative availability modeling
and assessment of enterprise services. Specifically, one
component-based and one system-level method have been
integrated into a single metamodel. In addition to enti-
ties, relationships and attributes, the framework features a
formal computational model, implemented in P2AMF, that
enables quantitative availability assessment and prediction.
The framework has been fully implemented in the EA2T tool
and demonstrated using nine case studies.

To summarize, there are three strong arguments that speak
in favor of the assessment and prediction framework pre-
sented in this paper:

Precision The method delivers fair predictions, validated
by nine case studies. Compared with the no-changes
baseline, the root mean squared error (in percentage
points) is on average 25 % smaller.
Uniqueness No comparable method capable of predict-
ing availability on the level of enterprise services and
with proper empirical validation has been found in the
literature. Most other methods deal only with the techni-
cal architecture, abstracting away important issues such
as change management processes and governance. These
are precisely the kind of instruments that are available to
most IT managers.
Action guidance As opposed to most other meth-
ods, our integrated framework offers concrete advise
to a decision-maker aiming to improve—not merely
predict—availability of IT services. The combination of
the component-based and system-level approaches offers
a powerful tool to reason about improvements and their
effects.

9.1 Implications and future work

For the research community, this contribution offers an
empirical benchmark that can be used to assess the strengths
and weaknesses of other methods for availability assessment
and prediction.

For the practitioner community, this contribution can be
used for rule-of-thumb decision making when planning, bud-
geting and prioritizing future investments in availability.

Another natural direction for future work is further
improvement of the prediction method. Such improvement
could take several forms such as (1) further case studies for
calibration, (2) further refinements of the factor operational-
izations, or (3) experiments to complement the case study
method used here.

Another, related direction for future work is to assess the
modeling effort using the framework. One dimension is the
cost (time required) of data collection, and others include
ease-of-use and usefulness [13].

Finally, automated data collection, in the spirit of [8], is
an interesting future direction. The difficulty of obtaining
and maintaining data is often highlighted as a key difficulty
with the enterprise architecture discipline. Automatic tool-
based data collection and subsequent analysis could make
the framework described in this article considerably more
prone to be adopted by practitioners.

Acknowledgments The authors wish to thank Per Närman for valu-
able input on metamodels for availability analysis, Johan Ullberg for
help on the P2AMF language and for reviewing the whole manuscript,
Nicholas Honeth for reviewing the whole manuscript, Khurram Shahzad
whose conscientious and timely programming of the EA2T tool was a
prerequisite for this paper, Michael Mirbaha and Jakob Raderius for
their valuable input on the ITIL operationalizations and the five enter-
prises that kindly allowed us to conduct the case studies. In addition,
the comments of the three anonymous referees improved the paper.

Appendix A: ITIL operationalization of the Bayesian
expert model

A major challenge in the use of the system-level model [17] is
the operationalization of the 16 factors. In the expert survey,
the factor descriptions were—deliberately—kept short and
general. As the survey respondents were all selected based
on academic publications, detailed specifications in terms
of enterprise operating procedures, processes, and activities
were not deemed appropriate. However, as we now turn to
practical use, there is a need to offer unambiguous opera-
tionalizations of the factors. This is a prerequisite for being
able to assess whether a company meets the “best practice”
level or not.

Making “best practice” an unambiguous notion might
seem futile. However, in the area of IT service management
(ITSM), the IT infrastructure library (ITIL) [53–57] has

123

An architecture framework for enterprise IT service availability analysis 1435

become the de facto ITSM framework [21,38,39]. ITIL adop-
tion is also a prescription offered to enterprises by influential
consultancies such as Gartner [22].

To make the factors understandable and applicable to
practitioners, they were translated into the ITIL language.
This appendix explains the meaning of the causal factors,
using ITIL as a frame of reference. During the case studies,
the texts offered in this appendix were used to explain to
practitioners how to think about the factors, to be able to
assess their level of best practice.

To cast the factors into the ITIL language, the five
ITIL volumes were studied, and the ITIL recommenda-
tions, processes, activities, and examples were mapped to the
factors in Table 1. In so doing, care was taken to retain the
original meaning of the factors, as first articulated in
the expert survey. In order to make sure that the interpre-
tation of ITIL was correct, two certified ITIL experts were—
independently—asked to offer input and feedback. As a
result, a number of changes were made so as to better express
the factors in ITIL terminology. The biggest change made
during this feedback phase was the merging of factors phys-
ical environment with infrastructure redundancy into one
single factor, and data redundancy with storage architec-
ture redundancy into another single factor. Each pair of fac-
tors was deemed close to indistinguishable in ITIL wording.
Thus, following the expert validation of the ITIL operational-
ization, the 16 survey factors were converted into 14, as illus-
trated in Table 1.

If two causal factors i and j in the leaky Noisy-OR model
described by Eq. (3) are to be merged into a single factor k, it
is reasonable to require that the original model and the new,
merged model are unanimous in their availability predictions
when they are semantically equivalent, i.e.,

P(y|x̄1, x̄2, . . . , xi , . . . , x j , . . . x̄n)

= P(y|x̄1, x̄2, . . . , xk, . . . x̄n) (7)

P(y|x̄1, x̄2, . . . , x̄i , . . . , x̄ j , . . . x̄n)

= P(y|x̄1, x̄2, . . . , x̄k, . . . x̄n) (8)

It follows from Eq. (3) that such a model preserving merger
requires the following equality to hold:

pk = pi + p j − pi p j − p0

1 − p0
(9)

This relation has been used when performing the mergers
recommended by the ITIL experts. In all reasonable models,
of course, p0 �= 1, so the divisor is non-zero.

A.1 Descriptions of the 14 ITIL factors

In the following section, each of the 14 factors are described
in more detail. The introductory italic text of each factor
presents the description used in the expert survey, when the

probability of the factor to cause system unavailability was
estimated. Then follows a description where each factor is
presented in further detail with reference to the appropriate
ITIL documentation [53–57]. Wordings are re-used from the
ITIL volumes and the certified ITIL experts to the largest
extent possible.

Physical environment and Infrastructure redundancy

The physical environment, including such things as electric-
ity supply, cooling and cables handling, can affect the avail-
ability of a system. Infrastructure redundancy goes further
than data and storage redundancy. Separate racks and cab-
inets may not help if all electricity cables follow the same
path liable to be severed or if separate cables end at the
same power source.

Factors to be considered include the following:

– Building/site
– Major equipment room
– Major data centres
– Regional data centres and major equipment centres
– Server or network equipment rooms
– Office environments

For a more detailed description of each factor, cf. ITIL Ser-
vice Design [57] Appendix E, Table E.1-6.

Remark Physical security/access control is part of this cat-
egory as well.

Requirements and procurement

Requirements and procurement reflect the early phases of
system development and administration. This includes return
on investment analyses, re-use of existing concepts, procur-
ing software designed for the task at hand, negotiating service
level agreements, etc.

This factor is about development of new systems and ser-
vices, not about those already taken into operation. Business
requirements for IT availability should at least contain (ITIL
Service Design [57], p. 112):

– “A definition of the vital business functions (VBFs) sup-
ported by the IT service

– A definition of IT service downtime, i.e. the conditions
under which the business considers the IT service to be
unavailable

– The business impact caused by loss of service, together
with the associated risk

– Quantitative availability requirements, i.e. the extent to
which the business tolerates IT service downtime or
degraded service

– The required service hours, i.e. when the service is to be
provided

– An assessment of the relative importance of different
working periods

123

1436 U. Franke et al.

– Specific security requirements
– The service backup and recovery capability.”

There should also be service level requirements (SLR).
Note that poor requirements management is often a root

cause behind other faults, covered by the other factors.

Operations

Operations is everyday system administration. This
includes removing single points of failure, maintaining sep-
arate environments for development, testing and production,
consolidating servers, etc.

“All IT components should be subject to a planned main-
tenance strategy.” (ITIL service design [57], p. 120).

“Once the requirements for managing scheduled mainte-
nance have been defined and agreed, these should be docu-
mented as a minimum in

– Service level agreements (SLAs)
– Operational level agreements (OLAs)
– Underpinning contracts
– Change management schedules
– Release and deployment management schedules” (ITIL

service design [57], p. 120.)

“Availability Management should produce and maintain
the projected service outage (PSO) document. This document
consists of any variations from the service availability agreed
within SLAs.” (ITIL service design [57], p. 121.)

Incident management aims to “restore normal service as
quickly as possible and minimize the adverse impact on busi-
ness operations” (ITIL service operation [53], p. 46.). Inci-
dents are managed using an incident model which should
include

– “The steps that should be taken to handle the incident
– The chronological order these steps should be taken in,

with any dependences or co-processing defined
– Responsibilities—who should do what
– Timescales and thresholds for completion of the actions
– Escalation procedures; who should be contacted and

when
– Any necessary evidence-preservation activities” (ITIL

service operation [53], p. 47).

“Service operation functions must be involved in the fol-
lowing areas:

– Risk assessment, using its knowledge of the infrastruc-
ture and techniques such as component failure impact
analysis (CFIA) and access to information in the con-

figuration management system (CMS) to identify single
points of failure or other high-risk situations

– Execution of any risk management measures that are
agreed, e.g. implementation of countermeasures, or
increased resilience to components of the infrastructures,
etc.

– Assistance in writing the actual recovery plans for sys-
tems and services under its control

– Participation in testing of the plans (such as involvement
in off-site testing, simulations, etc) on an ongoing basis
under the direction of the IT service continuity manager
(ITSCM)

– Ongoing maintenance of the plans under the control of
IT service continuity manager ITSCM and change man-
agement

– Participation in training and awareness campaigns to
ensure that they are able to execute the plans and under-
stand their roles in a disaster

– The service desk will play a key role in communicat-
ing with the staff, customers and users during an actual
disaster” (ITIL service operation [53], p. 77).

The problem management process should contain the fol-
lowing steps (ITIL service operation [53], p. 60):

– Problem detection
– Problem logging
– Categorization
– Prioritization
– Investigation and diagnosis
– Create known error record
– Resolution
– Closure

Change control

Change control is the process of controlling system changes.
This applies to both hardware and software and includes
documentation of the actions taken.

This factor is about systems and services already taken
into operation, not about those under development. This is
just a subset of the full ITIL Change Management process.

The seven Rs of change management: “The following
questions must be answered for all changes:

– Who RAISED the change?
– What is the REASON for the change?
– What is the RETURN required from the change?
– What are the RISKS involved in the change?
– What RESOURCES are required to deliver the change?
– Who is RESPONSIBLE for the build, test and implemen-

tation of the change?

123

An architecture framework for enterprise IT service availability analysis 1437

– What is the RELATIONSHIP between this change and
other changes?” (ITIL service transition [56], p. 53).

The following is a list of activities from an example process
for a normal change (ITIL service transition [56], p. 49):

– Record the request for change (RFC)
– Review request for change (RFC)
– Assess and evaluate change
– Authorize change
– Plan updates
– Co-ordinate change implementation
– Review and close change record

Questions to be addressed include the following: Is there
unavailability caused by standard changes that are pre-
approved and do not go through the cycle above? Is there
unavailability caused by unauthorized changes? Is there
access control, or can unauthorized people make changes? Is
there a service asset and configuration management (SACM,
described in ITIL service transition [56], p. 65 ff.) process?

Technical solution of backup

The technical solution of backup includes the choice of back-
up media, whether commercial or a proprietary software is
used, whether old media can still be read, whether full, cumu-
lative or differential backup is chosen, etc.

The technical aspects of a backup strategy should cover
the following:

– “How many generations of data have to be retained—thus
may vary by the type of data being backed up, or what
type of file (e.g. data file or application executable)

– The type of backup (full partial, incremental) and check-
points to be used

– The locations to be used for storage (likely to include
disaster recovery sites) and rotation schedules

– Transportation methods (e.g. file transfer via the network,
physical transportation in magnetic media)

– Testing/checks to be performed, such as test-reads, test
restores, check-sums etc.” (ITIL service operation [53],
p. 93).

Process solution of backup

The process solution of backup regulates the use of the techni-
cal solution. This includes routines such as whether backups
are themselves backed up, whether the technical equipment
is used in accordance with its specifications, what security
measures (logical and physical) are used to guard backups,
etc.

The business requirements for IT service continuity must
be properly determined to define the strategy. The require-
ments elicitation has two steps: 1. business impact analysis
and 2. risk analysis (ITIL service design [57], p. 128 ff).

The process aspects of a backup strategy should cover the
following:

– “What data have to be backed up and the frequency and
intervals to be used

[. . .]

– Recovery point objective This describes the point to
which data will be restored after recovery of an IT service.
This may involve loss of data. For example, a recovery
point objective of one day may be supported by daily
backups and up to 24 h of data may be lost. Recovery
point objectives for each IT service should be negotiated,
agreed, and documented in operational level agreements
(OLAs), Service Level Agreements (SLAs) and under-
pinning contracts (UCs).

– Recovery time objective This describes the maximum
time allowed for recovery of an IT service following an
interruption. The service level to be provided may be less
than normal service level targets. Recovery time objec-
tives for each IT service should be negotiated, agreed,
and documented in OLAs, SLAs and UCs” (ITIL service
operation [53], p. 93–94, emphasis in original.)

The restore process must include these steps:

– “Location of the appropriate data/media
– Transportation or transfer back to the physical recovery

location
– Agreement on the checkpoint recovery point and the

specific location for the recovered data (disk, directory,
folder etc)

– Actual restoration of the file/data (copy-back and any
roll-back/roll-forward needed to arrive at the agreed
checkpoint)

– Checking to ensure successful completion of the restore—
with further recovery action if needed until success has
been achieved

– User/customer sign-off” (ITIL service operation [53],
p. 94).

Data and storage architecture redundancy

Data redundancy means that data stored on a disk remain
available even if a particular disk crashes. Such data redun-
dancy is often achieved through RAID. Storage architecture
redundancy refers to redundancy at the level above disks:
RAID may not help if all raided disks are placed in a single
cabinet or rack, or if disks are connected through the same
data paths and controller.

Is there a separate team or department to manage the
organization’s data storage technology such as (ITIL service
operation [53], p. 97):

123

1438 U. Franke et al.

– Storage devices (disks, controllers, tapes etc.)
– Network attached storage (NAS), storage attached net-

work (SAN), direct attached storage (DAS) and content
addressable storage (CAS).

Is there someone responsible for

– “Definition of data storage policies and procedures
– File storage naming conventions, hierarchy, and place-

ment decisions
– Design, sizing, selection, procurement, configuration,

and operation of all data storage infrastructure
– Maintenance and support for all utility and middleware

data-storage software
– Liaison with information lifecycle management team(s)

or governance teams to ensure compliance with freedom
of information, data protection, and IT governance regu-
lations

– Involvement with definition and agreement of archiving
policy

– Housekeeping of all data storage facilities
– Archiving data according to rules and schedules defined

during service design. The storage teams or departments
will also provide input into the definition of these rules
and will provide reports on their effectiveness as input
into future design

– Retrieval of archived data as needed (e.g. for audit pur-
poses, for forensic evidence, or to meet any other business
requirements)

– Third-line support for storage- and archive-related inci-
dents” (ITIL service operation [53], p. 97).

All redundancy decisions should have been through an
appropriate requirements engineering process (the require-
ments engineering process is defined on ITIL service design,
pp. 167 ff.).

Avoidance of internal application failures

Systems can become unavailable because of internal appli-
cation failures, e.g. because of improper memory access or
hanging processes.

When new software is released and deployed, the plans
should define

– “Scope and content of the release
– Risk assessment and risk profile for the release
– Organizations and stakeholders affected by the release
– Stakeholders that approved the change request for the

release and/or deployment
– Team responsible for the release
– Approach to working with stakeholders and deployment

groups to determine the:

– Delivery and deployment strategy
– Resources for the release and deployment
– Amount of change that can be absorbed” (ITIL ser-

vice transition [56], p. 91).

For software in operation, the following must be in place
or considered (ITIL service operations [53], p. 133–134):

– Modeling, workload forecasting and workload testing
– Testing by an independent tester
– Up to date design, management and user manuals
– Process of application bug tracking and patch manage-

ment
– Error code design and error messaging
– Process for application sizing and performance
– Process for enhancement to existing software (function-

ality and manageability)
– Documentation of type of brand of technology used.

Avoidance of external services that fail

Systems can become unavailable because they depend on
external services that fail.

Service level management includes (ITIL continual ser-
vice improvement [54]):

– “Identifying existing contractual relationships with exter-
nal vendors. Verifying that these underpinning contracts
(UCs) meet the revised business requirements. Renego-
tiating them, if necessary.” (pp. 28–29)

– “Create a service improvement plan (SIP) to continually
monitor and improve the levels of services” (p. 29)

– An implemented monitor and data collection procedure
(service monitoring should also address both internal and
external suppliers since their performance must be eval-
uated and managed as well (p. 46)).

– Service level management (SLM)

– “Analyze the service level achievements compared to
SLAs and service level targets that may be associated
with the service catalogue

– Document and review trends over a period of time to
identify any consistent patterns

– Identify the need for service improvement plans
– Identify the need to modify existing operational

level agreements (OLAs) or underpinning contracts
(UCs)” (ITIL continual service improvement [54]
p. 59).

Key elements of successful supplier management:

– “Clearly written, well-defined and well-managed con-
tract

123

An architecture framework for enterprise IT service availability analysis 1439

[. . .]

– Clearly defined (and communicated) roles and responsi-
bilities on both sides

– Good interfaces and communications between the parties
– Well-defined service management processes on both

sides
– Selecting suppliers who have achieved certification

against internationally recognized certifications, such as
ISO 9001, ISO/IEC 20000, etc.” (ITIL service design
[57], p. 164).

Network redundancy

Network redundancy, e.g. by multiple connections, multiple
live networks or multiple networks in an asymmetric config-
uration, is often used to increase availability.

Important configurations for redundancy include

– Diversity of channels: “provide multiple types of access
channels so that demand goes though different channels
and is safe form a single cause of failure.” (ITIL Service
Strategy [55], p. 177).

– Density of network: “add additional service access
points, nodes, or terminals of the same type to increase
the capacity of the network with density of coverage.”
(ITIL Service Strategy [55], p. 177)

– Loose coupling: “design interfaces based on public
infrastructure, open source technologies and ubiquitous
access points such as mobile phones and browsers so that
the marginal cost of adding a user is low.” (ITIL service
strategy [55], p. 177).

Avoidance of network failures

Network failures include the simplest networking failure
modes, e.g. physical device failures, IP level failures, and
congestion failures.

Important factors include

– “Third-level support for all network related activities,
including investigation of network issues (e.g. pinging
or trace route and/or use of network management soft-
ware tools—although it should be noted that pinging a
server does not necessarily mean that the service is avail-
able!) and liaison with third-parties as necessary. This
also includes the installation and use of ’sniffer’ tools,
which analyze network traffic, to assist in incident and
problem resolution.

– Maintenance and support of network operating system
and middleware software including patch management,
upgrades, etc.

– Monitoring of network traffic to identify failures or to
spot potential performance or bottleneck issues.

– Reconfiguring or rerouting of traffic to achieve improved
throughput or batter balance—definition of rules for
dynamic balancing/routing” (ITIL service operation [53],
p. 96).

Physical location

The physical location of hardware components can affect the
recovery time of a malfunctioning system. This is the case,
for instance, when a system crashes and requires technicians
to travel to a remote data center to get it up again.

Has physical location been taken into account when fix-
ing the recovery time objective (RTO)? The overall backup
strategy must include

– Recovery time objective This describes the maximum
time allowed for recovery of an IT service following an
interruption. The service level to be provided may be less
than normal service level targets. Recovery time objec-
tives for each IT service should be negotiated, agreed,
and documented in OLAs, SLAs and UCs” (ITIL service
operation [53], p. 93–94, emphasis in original.)

Physical location is partly addressed in the detailed
description of facility management (ITIL service operation
[53], Appendix E: E2, E3, E4 and E6).

Resilient client/server solutions

In some client/server solutions, a server failover results in
the client crashing. In more resilient client/server solutions,
clients do not necessarily fail when the server fails.

Typically, the following activities should be undertaken:

– “Third-level support for any mainframe-related inci-
dents/problems”

[. . .]

– Interfacing to hardware (H/W) support; arranging main-
tenance, agreeing slots, identifying H/W failure, liaison
with H/W engineering.

– Provision of information and assistance to capacity man-
agement to help achieve optimum throughput, utiliza-
tion and performance from the mainframe.” (ITIL service
operation [53], p. 95).

Other activities include:

– “Providing transfer mechanisms for data from various
applications or data sources

– Sending work to another application or procedure for
processing

123

1440 U. Franke et al.

– Transmitting data or information to other systems, such
as sourcing data from publication on websites

– Releasing updated software modules across distributed
environments

– Collation and distribution of system messages and
instructions, for example events or operational scripts that
need to be run on remote devices

– Multicast setup with networks. Multicast is the delivery
of information to a group of destination simultaneously
using the most efficient delivery route

– Managing queue sizes.
– Working as part of service design and transition to ensure

that the appropriate middleware solutions are chosen and
that they can perform optimally when they are deployed

– Ensuring the correct operation of middleware through
monitoring and control

– Detecting and resolving incidents related to middleware
– Maintaining and updating middleware, including licens-

ing, and installing new versions
– Defining and maintaining information about how appli-

cations are linked through middleware. This should be
part of the configuration management system (CMS)”
(ITIL service operation [53], p. 99).

There should exist a transition strategy for how to release
client/server systems from testing into production (ITIL ser-
vice transition [56], p. 38 ff.). Do not forget that requirements
engineering and change control might be the root cause of
failures in this domain!

Monitoring of the relevant components

Failover is the capability to switch from a primary system to
a secondary in case of failure, thus limiting the interruption
of service to only the takeover time. A prerequisite for quick
failover is monitoring of the relevant components.

Instrumentation is about “defining and designing exactly
how to monitor and control the IT infrastructure and IT ser-
vices” (ITIL service operation [53], p. 45). The following
needs to be answered:

– “What needs to be monitored?
– What type of monitoring is required (e.g. active or pas-

sive; performance or output)?
– When do we need to generate an event?
– What type of information needs to be communicated in

the event?
– Who are the messages intended for?” (ITIL service oper-

ation [53], p. 45)

Examples of important monitoring needs include:

– “CPU utilization (overall and broken down by sys-
tem/service usage)

– Memory utilization
– IO rates (physical and buffer) and device utilization
– Queue length (maximum and average)
– File storage utilization (disks, partition, segments)
– Applications (throughput rates, failure rates)
– Databases (utilization, record locks, indexing, contention)
– Network transaction rates, error and retry rates
– Transaction response time
– Batch duration profiles
– Internet response times (external and internal to firewalls)
– Number of system/application log-ons and concurrent

users
– Number of network nodes in use, and utilization levels.”

(ITIL service operation [53], p. 74).

For each incident: Was it/could it reasonably have been
foreseen, or does lack of foresight indicate poor monitoring?
Is there end-to-end monitoring?

Appendix B: OCL code for derived metamodel
attributes

B.1 BehaviorElement

B.1.1 ArchitecturalAvailability:Real

if gateToServiceInv->notEmpty()
then
gateToServiceInv.Availability

else
if assigned->notEmpty()
then
assigned.Availability->sum()

else
EvidentialAvailability

endif
endif

B.1.2 AvoidedUnavailability:Real

if isTopService()=false
then
null

else
avoidedUnavailability()

endif

B.1.3 HolisticAvailability:Real

if isTopService()=false
then
null

else

123

An architecture framework for enterprise IT service availability analysis 1441

if (AvoidedUnavailability-Avoided
UnavailabilityBaseline) >= 0

then
ArchitecturalAvailability+
(1-ArchitecturalAvailability)*
(AvoidedUnavailability-Avoided
UnavailabilityBaseline)/

(1-AvoidedUnavailabilityBaseline)
else
ArchitecturalAvailability+
ArchitecturalAvailability*
(AvoidedUnavailability-Avoided
UnavailabilityBaseline)/
AvoidedUnavailabilityBaseline

endif
endif

It should be noted that the final divisor is zero (i.e. the
expression is undefined) if AvoidedUnavailability
Baseline = 1. However, as the leakage of the Noisy-OR
model prevents AvoidedUnavailability from ever
reaching 1, a baseline value of 1 is also impermissible. This
is enforced using the baselineCheck invariant.

Appendix C: OCL code for metamodel operations

C.1 BehaviorElement

C.1.1 isTopService():Boolean

This operation checks whether the current Behavior
Element is the top service, i.e. whether it has no causal
successors. The reason for doing this is that the holistic
availability ought only be evaluated at a single point in the
architecture, viz. at its “top”. This follows from the fact that
holistic availability accounts for non-localizable properties.

if
serviceToGate->isEmpty()

then
true

else
false

endif

C.1.2 getBehaviorElements(BehaviorElement):
BehaviorElement[*]

This operation returns the set of all BehaviorElements
causally prior to the one given as argument, including itself.
This is implemented in a recursive fashion.

getGates(curr.gateToServiceInv)->
asSet()->

excluding(null).serviceToGateInv->
asSet()->
collect(be:BehaviorElement |
getBehaviorElements(be)->
asSet()->excluding(null))->asSet()->
union(getGates(curr.gateToServiceInv)->
asSet()->
excluding(null).serviceToGateInv->
asSet())->
asSet()->union(curr->asSet())

curr is the BehaviorElement given as argument.

C.1.3 getGates(Gate):Gate[*]

This operation returns the set of all gates connected to the
one given as argument through other gates (not through
BehaviorElements).

curr->excluding(null).gateToGateInv->
collect(g:Gate | getGates(g))->asSet()->
union(curr->excluding(null).
gateToGateInv->asSet())
->union(curr->asSet())

curr is the Gate given as argument.

C.1.4 getBestPracticeCausalFactor(BehaviorElement):
Real

This set includes 14 operations, one for each of the best
practice attribute factors of Table 2. While similar, the
14 P2AMF implementations differ a bit from each other.
Each operation traverses the architectural model, using the
getBehaviorElements and getGates operations, to
find all attributes of the relevant kind. The arithmetic mean
of the attribute values is returned. If no attributes of the
relevant kind are found, the default value 0.5 is returned.
getBestPracticeAvoidanceOfExternalServi-
ceFailures represents the basic case:

let current : Set(ApplicationService) =
getBehaviorElements(top)->
select(oclIsTypeOf(ApplicationService))
->asSet()->
excluding(null).oclAsType
(ApplicationService)->asSet() in

if current->size()=0 then
--If no elements exist, we assume
50% best practice
0.5

else
current.bestPracticeAvoidanceOf
ExternalServiceFailures->
sum()/current->size()

endif

123

1442 U. Franke et al.

top is the BehaviorElement given as argument.
If the attributes sought belong to more than one class, these

several class types must be found, as in getBestPract-
ice ResilientClientServerSolutions:

let current1: Set(InfrastructureService)=
getBehaviorElements(top)->
select(oclIsTypeOf(Infrastructure
Service))->asSet()->
excluding(null).oclAsType
(InfrastructureService)->asSet() in

let current2: Set(ApplicationService)=
getBehaviorElements(top)->
select(oclIsTypeOf
(ApplicationService))->asSet()->
excluding(null).oclAsType
(ApplicationService)->asSet() in

if current1->size()+current2->size()=0
then
--If no elements exist, we assume
50% best practice

0.5
else

(current1.bestPracticeResilient
ClientServerSolutions->sum()+
current2.bestPracticeResilient
ClientServerSolutions->sum())
/(current1->size()+current2->size())

endif

Sometimes the attributes belong to a class that has to be
accessed through a relationship, e.g. isGovernedBy in
getBestPracticeChangeControl:

let current : Set(ChangeControl) =
getBehaviorElements(top).isGovernedBy
->select(oclIsTypeOf(ChangeControl))
->asSet()->
excluding(null).oclAsType(ChangeControl)
->asSet() in

if current->size()=0 then
--If no elements exist, we assume 50%

best practice
0.5

else
current.bestPractice->sum()/current
->size()

endif

C.1.5 avoidedUnavailability():Real

This operation calculates the avoided unavailability based on
the Noisy-OR model from [17]. The model originally gives
the avoided unavailability as

A(Xp) = 1 − P(y|Xp) = (1 − p0)
∏

i :Xi ∈Xp

(1 − pi)

(1 − p0)
(10)

where A(Xp) is the avoided unavailability of an architecture
lacking the best practice factors listed in the vector Xp. The
pi variables are the ones given in Table 1. In this implementa-
tion, each factor to the right of the product sign is calculated
using the operation noisyOrFactor.

--Leakage 1%
let p0 : Real = 0.01 in
--Grand unified Noisy-OR product
(1-p0)*
noisyOrFactor(0.0997315262,
getBestPractice-
PhysicalEnvironmentAndInfrastructure
Redundancy(self),p0)*

noisyOrFactor(0.2524557957,
getBestPractice-
RequirementsAndProcurement
(self),p0)*

noisyOrFactor(0.2299924070,
getBestPractice-
Operations(self),p0)*

noisyOrFactor(0.2807783956,
getBestPractice-
ChangeControl(self),p0)*

noisyOrFactor(0.0695945946,
getBestPractice-
TechnicalSolutionOfBackup(self),p0)*

noisyOrFactor(0.0357142857,
getBestPractice-
ProcessSolutionOfBackup(self),p0)*

noisyOrFactor(0.0955186161,
getBestPractice-
DataAndStorageArchitecture
Redundancy(self),p0)*

noisyOrFactor(0.1685845800,
getBestPractice-
AvoidanceOfInternalApplication
Failures(self),p0)*

noisyOrFactor(0.0865984930,
getBestPractice-
AvoidanceOfExternalService
Failures(self),p0)*

noisyOrFactor(0.0760578279,
getBestPractice-
NetworkRedundancy(self),p0)*

noisyOrFactor(0.1828929068,
getBestPractice-
AvoidanceOfNetworkFailures(self),p0)*

noisyOrFactor(0.0334905660,
getBestPractice-

123

An architecture framework for enterprise IT service availability analysis 1443

PhysicalLocation(self),p0)*
noisyOrFactor(0.0364864865,
getBestPractice-

ResilientClientServerSolutions
(self),p0)*

noisyOrFactor(0.2614035088,
getBestPractice-

ComponentMonitoring(self),p0)

C.1.6 noisyOrFactor(Real,Real,Real):Real

This operation calculates factors for the avoided
Unavailability operation. In the formulation given in
Eq. 10, each best practice factor is either present or not (i.e.
listed in the vector Xp, or not). However, noisyOrFactor
allows factors to be present probabilistically, i.e. be present
with a probability q and absent with a probability 1 − q.
A causal factor being present means that it is not listed in
the index set Xp, which is equivalent to noisyOrFactor
returning 1, i.e. the multiplicative identity. This consideration
gives noisyOrFactor the following form:

q*1+(1-q)*(1-p)/(1-p0)

noisyOrFactor takes three arguments; p, q, and p0.
p0 = 1 % [17], p is the appropriate pi from Table 1,
and q is the value returned from the appropriate getBest
PracticeCausalFactor.

It is a feature of Noisy-OR models as such that the impact
of the systemic causal factors is multiplicatively separable.
This allows the probabilistic presence of each factor to be
treated independently from the rest, as innoisyOrFactor.

Appendix D: OCL code for metamodel invariants

A number of OCL invariants are included in the metamodel,
in order to express constraints that cannot be expressed in a
regular entity-relationship diagram.

D.1 BehaviorElement

D.1.1 baselineCheck

This invariant requires that theAvoidedUnavailability
Baseline ∈ [0, 1). It cannot be unity, since the Noisy-
OR model behind AvoidedUnavailabili t y has leakage and
cannot be unity.

if
(AvoidedUnavailabilityBaseline >= 1
or AvoidedUnavailabilityBaseline < 0)

then false
else true
endif

D.1.2 mostOneType

This invariant requires that aBehaviorElement is at most
connected to one gate through the gateToService rela-
tion or to one ActiveStructureElement through the
assigned relation, but not to both. Being connected to both
would lead to a conflict in the calculation of architectural
availability.

(gateToServiceInv->notEmpty() implies
assigned->isEmpty())
and (assigned->notEmpty() implies
gateToServiceInv->isEmpty())

D.2 Node

D.2.1 onlyInfrastructureService

This invariant requires that only an Infrastructure
Service, and no other type of BehaviorElement can be
assigned to a Node.

assignedInv->forAll(s: BehaviorElement |
s.oclIsTypeOf(InfrastructureService))

D.3 ApplicationComponent

D.3.1 onlyFunction

This invariant requires that only an Application
Function, and no other type of BehaviorElement can
be assigned to an ApplicationComponent.

assignedInv->forAll(s: BehaviorElement |
s.oclIsTypeOf(ApplicationFunction))

D.4 CommunicationPath

D.4.1 onlyInfrastructureService

This invariant requires that only an Infrastructure
Service, and no other type of BehaviorElement can be
assigned to a CommunicationPath.

assignedInv->forAll(s: BehaviorElement |
s.oclIsTypeOf(InfrastructureService))

References

1. Object constraint language, version 2.2. Technical report, Object
Management Group, OMG, February 2010. http://www.omg.org/
spec/OCL/2.2. OMG Document Number: formal/2010-02-01

2. Aier, S., Buckl, S., Franke, U., Gleichauf, B., Johnson, P., Närman,
P., Schweda, C.M., Ullberg, J.: A survival analysis of application

123

http://www.omg.org/spec/OCL/2.2
http://www.omg.org/spec/OCL/2.2

1444 U. Franke et al.

life spans based on enterprise architecture models. In: 3rd Interna-
tional Workshop on Enterprise Modelling and Information Systems
Architectures, pp. 141–154 (2009)

3. Askåker, J., Kulle, M.: Miljardaffärer gick förlorade. Dagens Indus-
tri, 4 June 2008, pp. 6–7 (in Swedish)

4. Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic con-
cepts and taxonomy of dependable and secure computing. IEEE
Trans. Dependable Secure Comput. 1(1), 11–33 (2004)

5. Bernardi, S., Merseguer, J.: A UML profile for dependability analy-
sis of real-time embedded systems. In: Proceedings of the 6th Inter-
national Workshop on Software and performance, pp. 115–124.
ACM, New York (2007)

6. Bocciarelli, P., D’Ambrogio, A.: A model-driven method for
describing and predicting the reliability of composite services.
Softw. Syst. Model. 10:265–280 (2011). ISSN: 1619–1366. doi:10.
1007/s10270-010-0150-3

7. Buschle, M., Ullberg, J., Franke, U., Lagerström, R., Sommestad,
T.: A tool for enterprise architecture analysis using the PRM for-
malism. In: CAiSE2010 Forum PostProceedings, Oct 2010

8. Buschle, M., Holm, H., Sommestad, T., Ekstedt, M., Shahzad, K.:
A tool for automatic enterprise architecture modeling. In: Proceed-
ings of the CAiSE Forum 2011, 25–32 (2011)

9. Charette, R.: Bank of America Suffered Yet Another Online Bank-
ing Outage. http://spectrum.ieee.org/riskfactor/telecom/internet/
bank-of-america-suffered-yet-another-online-banking-outage.
Accessed Jan 2011. IEEE Spectrum “Risk factor” blog

10. Cortellessa, V., Pompei, A.: Towards a UML profile for qos: a
contribution in the reliability domain. In: ACM SIGSOFT Soft-
ware Engineering Notes, vol. 29, pp. 197–206. ACM, New York
(2004)

11. Cortellessa, V., Singh, H., Cukic, B.: Early reliability assessment
of UML based software models. In: Proceedings of the 3rd Inter-
national Workshop on Software and Performance, WOSP ’02, pp.
302–309. ACM, New York (2002). ISBN: 1-58113-563-7. http://
doi.acm.org/10.1145/584369.584415

12. Forbus, K.D.: Chapter 9 qualitative modeling. In: van Harmelen,
V.L.F., Bruce P. (eds.) Handbook of Knowledge Representation.
Foundations of Artificial Intelligence, vol. 3, pp. 361–393. Elsevier,
Amsterdam (2008). doi:10.1016/S1574-6526(07)03009-X. http://
www.sciencedirect.com/science/article/pii/S157465260703009X

13. Davis, F.D.: Perceived usefulness, perceived ease of use, and user
acceptance of information technology. MIS quarterly, pp. 319–340
(1989)

14. Durkee, D.: Why cloud computing will never be free. Queue 8(4),
20 (2010)

15. Ekstedt, M., Franke, U., Johnson, P., Lagerström, R., Sommes-
tad, T., Ullberg, J., Buschle, M.: A tool for enterprise archi-
tecture analysis of maintainability. In: Proceedings of the 13th
European Conference on Software Maintenance and Reengineer-
ing (2009)

16. Ericson, C.: Fault tree analysis—a history. In: 17th International
System Safety Conference (1999)

17. Franke, U., Johnson, P., König, J., von Würtemberg, L.V.: Availabil-
ity of enterprise IT systems: an expert-based Bayesian framework.
Softw. Qual. J. 20, 369–394 (2011). ISSN: 0963–9314. doi:10.
1007/s11219-011-9141-z

18. Gray, J.: Why Do Computers Stop and What Can Be Done
About It? Technical report. Tandem Computers Inc., Cupertino
(1985)

19. Henrion, M.: Some practical issues in constructing belief networks.
In: Kanal, L.N., Levitt, T.S., Lemmer, J.F. (eds.) Uncertainty in
Artificial Intelligence 3, pp. 161–173. Elsevier Science Publishers
B.V, North Holland (1989)

20. Hillier, F.S., Lieberman, G.J.: Introduction to Operations Resea-
rch, 8th edn. McGraw-Hill, New York (2005)

21. Hochstein, A., Tamm, G., Brenner, W.: Service-oriented it manage-
ment: benefit, cost and success factors. In: Proceedings of the 13th
European Conference on Information Systems (ECIS), Regensburg
(2005)

22. Holub, E.: Embracing ITSM to Build a Customer Service Provider
Culture in IT I&O. Inc, Technical Report, Gartner (2009)

23. IBM Global Services: Improving systems availability. Technical
Report, IBM Global Services (1998)

24. Immonen, A.: A method for predicting reliability and availability at
the architecture level. In: Käköla, T., Duenas, J.C. (eds.) Software
Product Lines, pp. 373–422. Springer, Berlin (2006). ISBN: 978-
3-540-33253-4. doi:10.1007/978-3-540-33253-4_10

25. Irani, Z., Marinos T., Love, P.E.D.: The impact of enterprise
application integration on information system lifecycles. Inf.
Manag. 41(2), 177–187 (2003). ISSN: 0378–7206. doi:10.1016/
S0378-7206(03)00046-6. http://www.sciencedirect.com/science/
article/pii/S0378720603000466

26. Johnson, P.: Enterprise Software System Integration: An Architec-
tural Perspective. PhD thesis, Royal Institute of Technology (KTH)
(2002)

27. Johnson, P., Johansson, E., Sommestad, T., Ullberg, J.: A tool for
enterprise architecture analysis. In: Proceedings of the 11th IEEE
International Enterprise Computing Conference (EDOC 2007)
(2007)

28. Johnson, P., Lagerström, R., Närman, P., Simonsson, M.: Enterprise
architecture analysis with extended influence diagrams. Inf. Syst.
Frontiers 9(2), (2007)

29. Johnson, P., Ullberg, J., Buschle, M., Shahzad, K., Franke, U.:
P2AMF: Predictive, Probabilistic Architecture Modeling Frame-
work (2012, Submitted manuscript)

30. Jordan, D., Evdemon, J., Alves, A., Arkin, A., Askary, S., Barreto,
C., Bloch, B., Curbera, F., Ford, M., Goland, Y. et al.: Web services
business process execution language version 2.0. Technical Report,
OASIS

31. Lankhorst, M.: Enterprise Architecture at Work: Modelling, Com-
munication and Analysis. Springer, New York (2009)

32. Lankhorst, M.M., Proper, H.A., Jonkers, H.: The architecture of
the archimate language, pp. 367–380. Enterprise, Business-Process
and Information Systems Modeling (2009)

33. Leangsuksun, C., Song, H., Shen, L.: Reliability modeling using
UML. In: Proceeding of the 2003 International Conference on Soft-
ware Engineering Research and, Practice (2003)

34. Liang, Y.H.: Analyzing and forecasting the reliability for repairable
systems using the time series decomposition method. Int. J. Qual.
Reliabil. Manag. 28(3), 317–327 (2011). ISSN: 0265–671X

35. Majzik, I., Pataricza, A., Bondavalli, A.: Stochastic dependabil-
ity analysis of system architecture based on UML models. In:
de Lemos, R., Gacek, C., Romanovsky, A. (eds.) Architect-
ing Dependable Systems. Lecture Notes in Computer Science,
vol. 2677, pp. 219–244. Springer, Berlin (2003). doi:10.1007/
3-540-45177-3_10

36. Malik, B., Scott, D.: How to Calculate the Cost of Contin-
uously Available IT Services. Inc. Technical Report, Gartner
(2010)

37. Marcus, E., Stern, H.: Blueprints for High Availability, 2nd edn.
Wiley, Indianapolis (2003)

38. Marrone, M., Kiessling, M., Kolbe, L.M.: Are we really innovat-
ing? An exploratory study on innovation management and service
management. In: IEEE International Conference on Management
of Innovation and Technology (ICMIT), 2010, pp. 378–383 (2010).
doi:10.1109/ICMIT.2010.5492719

39. Marrone, M., Kolbe, L.: Uncovering ITIL claims: IT executives
perception on benefits and business-IT alignment. In: Informa-
tion Systems and E-Business Management, pp. 1–18 (2010). ISSN:
1617-9846. doi:10.1007/s10257-010-0131-7

123

http://dx.doi.org/10.1007/s10270-010-0150-3
http://dx.doi.org/10.1007/s10270-010-0150-3
http://spectrum.ieee.org/riskfactor/telecom/internet/bank-of-america-suffered-yet-another-online-banking-outage
http://spectrum.ieee.org/riskfactor/telecom/internet/bank-of-america-suffered-yet-another-online-banking-outage
http://doi.acm.org/10.1145/584369.584415
http://doi.acm.org/10.1145/584369.584415
http://dx.doi.org/10.1016/S1574-6526(07)03009-X
http://www.sciencedirect.com/science/article/pii/S157465260703009X
http://www.sciencedirect.com/science/article/pii/S157465260703009X
http://dx.doi.org/10.1007/s11219-011-9141-z
http://dx.doi.org/10.1007/s11219-011-9141-z
http://dx.doi.org/10.1007/978-3-540-33253-4_10
http://dx.doi.org/10.1016/S0378-7206(03)00046-6
http://dx.doi.org/10.1016/S0378-7206(03)00046-6
http://www.sciencedirect.com/science/article/pii/S0378720603000466
http://www.sciencedirect.com/science/article/pii/S0378720603000466
http://dx.doi.org/10.1007/3-540-45177-3_10
http://dx.doi.org/10.1007/3-540-45177-3_10
http://dx.doi.org/10.1109/ICMIT.2010.5492719
http://dx.doi.org/10.1007/s10257-010-0131-7

An architecture framework for enterprise IT service availability analysis 1445

40. Milanovic, N.: Models, Methods and Tools for Availability Assess-
ment of IT-Services and Business Processes. Universitätsbiblio-
thek, Habilitationsschrift (2010)

41. Närman, P., Franke, U., König, J., Buschle, M., Ekstedt, M.: Enter-
prise architecture availability analysis using fault trees and stake-
holder interviews. Enterp. Inf. Syst. (2011, to appear)

42. Onisko, A., Druzdzel, M.J., Wasyluk, H.: Learning bayesian net-
work parameters from small data sets: application of noisy-or gates.
Int. J. Approx. Reason. 27(2), 165–182 (2001). ISSN: 0888–613X.
doi:10.1016/S0888-613X(01)00039-1

43. Oppenheimer, D.: Why do internet services fail, and what can be
done about it? In: Proceedings of USITS 03: 4th USENIX Sympo-
sium on Internet Technologies and Systems (2003)

44. Österlind, M.: Validering av verktyget “Enterprise Architecture
Analysis Tool”. Master’s thesis, Royal Institute of Technology
(KTH) (2011)

45. Pertet, S., Narasimhan, P.: Causes of failure in web applications.
Technical Report, Parallel Data Laboratory, Carnegie Mellon Uni-
versity, CMU-PDL-05-109 (2005)

46. Phelan, P., Prior, D.: Additional Tools for a World-Class ERP
Infrastructure. Technical Report, Gartner, Inc. (2011)

47. Rausand, M., Høyland, A.: System Reliability Theory: Models,
Statistical Methods, and Applications, 2nd edn. Wiley, Hoboken
(2004). http://www.ntnu.no/ross/srt

48. Rodrigues, G.N.: A Model Driven Approach for Software Relia-
bility Prediction. PhD thesis, University College London (2008)

49. Sahner, R.A., Trivedi, K.S.: Reliability modeling using sharpe.
IEEE Trans. Reliabil. 36(2), 186–193 (1987)

50. Scott, D.: Benchmarking Your IT Service Availability Levels. Tech-
nical Report, Gartner, Inc. (2011)

51. Singh, H., Cortellessa, V., Cukic, B., Gunel, E., Bharadwaj, V.: A
bayesian approach to reliability prediction and assessment of com-
ponent based systems. In: Software Reliability Engineering, 2001.
ISSRE 2001. In: Proceedings of the 12th International Symposium,
pp. 12–21 (2001). doi:10.1109/ISSRE.2001.989454

52. Sundkvist, F.: Efter haveriet: Tieto granskas. Computer Sweden
(2012, in Swedish)

53. Taylor, S., Cannon, D., Wheeldon, D.: Service Operation (ITIL).
The Stationery Office, TSO (2007a). ISBN: 9780113310463

54. Taylor, S., Case, G., Spalding, G.: Continual Service Improve-
ment (ITIL). The Stationery Office, TSO (2007b). ISBN:
9780113310494

55. Taylor, S., Iqbal, M., Nieves, M.: Service Strategy (ITIL). The
Stationery Office, TSO (2007c). ISBN: 9780113310456

56. Taylor, S., Lacy, S., Macfarlane, I.: Service Transition (ITIL). The
Stationery Office, TSO (2007d). ISBN: 9780113310487

57. Taylor, S., Lloyd, V., Rudd, C.: Service Design (ITIL). The Sta-
tionery Office, TSO (2007e). ISBN: 978011310470

58. The Open Group: Archimate 1.0 specification. http://www.
opengroup.org/archimate/doc/ts_archimate/ (2009)

59. Ullberg, J., Franke, U., Buschle, M., Johnson, P.: A tool for interop-
erability analysis of enterprise architecture models using pi-OCL.
In: Proceedings of the International Conference on Interoperability
for Enterprise Software and Applications (I-ESA) (2010)

60. Van Buuren, R., Jonkers, H., Iacob, M.E., Strating, P.: Composition
of relations in enterprise architecture models. Graph Transforma-
tions, pp. 183–186 (2004)

61. Varian, H.: System reliability and free riding. In: Camp, L., Lewis,
S. (eds.) Economics of Information Security. Advances in Infor-
mation Security, vol. 12, pp. 1–15. Springer US, New York (2004).
ISBN: 978-1-4020-8090-6. doi:10.1007/1-4020-8090-5_1

62. Wang, J.: Timed Petri nets: theory and application, vol. 39. Kluwer
Academic Publishers, Norwell (1998)

63. Zambon, E., Etalle, S., Wieringa, R., Hartel, P.: Model-based qual-
itative risk assessment for availability of it infrastructures. Softw.

Syst. Model., pp. 1–28 (2010). ISSN: 1619-1366. doi:10.1007/
s10270-010-0166-8

64. Zhang, X., Pham, H.: An analysis of factors affecting software
reliability. J. Syst. Softw. 50(1), 43–56 (2000). ISSN: 0164-1212.
doi:10.1016/S0164-1212(99)00075-8

Author Biographies

Ulrik Franke received his MSc
in Engineering Physics in 2007
and his PhD in Industrial Infor-
mation and Control Systems in
2012 from the Royal Institute
of Technology (KTH) in Stock-
holm. His primary research inter-
est is Enterprise Architecture
(EA), a method for rational deci-
sion making in the realm of
enterprise information systems,
focusing on modeling for deci-
sion support and the incorpora-
tion of formal methods into the
EA paradigm. His doctoral the-

sis addressed the availability of enterprise information systems—how
to predict it and improve it.

Pontus Johnson is Professor and
Head of the Department of Indus-
trial Information and Control
Systems at the Royal Institute
of Technology (KTH) in Stock-
holm, Sweden. At the depart-
ment, research focuses on the
analysis of architectural mod-
els of information systems in
their context. He is secretary of
the IFIP Working Group 5.8 on
Enterprise Interoperability, tech-
nical coordinator of the FP7
Viking project, organizer, pro-
gram committee member and

associate editor of several international conferences, workshops and
journals. He received his MSc from the Lund Institute of Technology
in 1997 and his PhD and Docent titles from the Royal Institute of Tech-
nology in 2002 and 2007. He was appointed professor in 2009.

Johan König received his MSc
in Electrical Engineering from
the Royal Institute of Technology
(KTH) in Stockholm in 2008. He
is currently a PhD student at the
Department of Industrial Infor-
mation and Control systems at
KTH. His research interests are
quality analysis of active distrib-
ution grids from an ICT perspec-
tive.

123

http://dx.doi.org/10.1016/S0888-613X(01)00039-1
http://www.ntnu.no/ross/srt
http://dx.doi.org/10.1109/ISSRE.2001.989454
http://www.opengroup.org/archimate/doc/ts_archimate/
http://www.opengroup.org/archimate/doc/ts_archimate/
http://dx.doi.org/10.1007/1-4020-8090-5_1
http://dx.doi.org/10.1007/s10270-010-0166-8
http://dx.doi.org/10.1007/s10270-010-0166-8
http://dx.doi.org/10.1016/S0164-1212(99)00075-8

Copyright of Software & Systems Modeling is the property of Springer Science & Business
Media B.V. and its content may not be copied or emailed to multiple sites or posted to a
listserv without the copyright holder's express written permission. However, users may print,
download, or email articles for individual use.

	An architecture framework for enterprise IT service availability analysis
	Abstract
	1 Introduction
	1.1 Scope of the paper
	1.2 Outline

	2 Enterprise IT service availability
	3 Related work
	4 The P2AMF framework
	5 An integrated framework for availability analysis
	5.1 Modeling availability from components
	5.2 Modeling availability at the system-level
	5.3 An integrated approach
	5.4 Metamodel classes
	5.5 Metamodel attributes
	5.5.1 BehaviorElement
	5.5.2 Systemic causal factors

	6 Case studies
	6.1 Case study process
	6.1.1 Start-up meeting
	6.1.2 Service identification
	6.1.3 Quantitative data collection
	6.1.4 Interviews

	6.2 Quantitative framework evaluation
	6.3 Numerical results

	7 Further usage examples
	8 Discussion
	8.1 Quantitative evaluation
	8.2 Practitioner relevance
	8.3 Tool support
	8.4 Pros and cons of the integrated approach

	9 Summary and conclusions
	9.1 Implications and future work

	Acknowledgments
	Appendix A: ITIL operationalization of the Bayesian expert model
	Appendix A: ITIL operationalization of the Bayesian expert model
	A.1 Descriptions of the 14 ITIL factors

	Appendix B: OCL code for derived metamodel attributes
	B.1 BehaviorElement
	B.1.1 ArchitecturalAvailability:Real
	B.1.2 AvoidedUnavailability:Real
	B.1.3 HolisticAvailability:Real

	Appendix C: OCL code for metamodel operations
	C.1 BehaviorElement
	C.1.1 isTopService():Boolean
	C.1.2 getBehaviorElements(BehaviorElement): BehaviorElement[*]
	C.1.3 getGates(Gate):Gate[*]
	C.1.4 getBestPracticeCausalFactor(BehaviorElement): Real
	C.1.5 avoidedUnavailability():Real
	C.1.6 noisyOrFactor(Real,Real,Real):Real

	Appendix D: OCL code for metamodel invariants
	D.1 BehaviorElement
	D.1.1 baselineCheck
	D.1.2 mostOneType

	D.2Node
	D.2.1 onlyInfrastructureService

	D.3 ApplicationComponent
	D.3.1 onlyFunction

	D.4 CommunicationPath
	D.4.1 onlyInfrastructureService

	References
	Author Biographies

