The Journal of Supercomputing (2018) 74:6135-6155
https://doi.org/10.1007/s11227-018-2525-0

@ CrossMark

An adaptive breadth-first search algorithm on integrated
architectures

Feng Zhang'2@® - Heng Lin3 . Jidong Zhai3 . Jie Cheng* - Dingyi Xiang* -
Jizhong Li* - Yunpeng Chai'2 . Xiaoyong Du'2

Published online: 11 August 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract

In the big data era, graph applications are becoming increasingly important for data
analysis. Breadth-first search (BFS) is one of the most representative algorithms;
therefore, accelerating BFS using graphics processing units (GPUs) is a hot research
topic. However, due to their random data access pattern, it is difficult to take full
advantage of the power of GPUs. Recently, hardware designers have integrated CPUs
and GPUs on the same chip, allowing both devices to share physical memory, which
provides the convenience of switching between CPUs and GPUs with little cost. BFS
processing can be divided into several levels, and various traversal orders can be
used at each level. Using different traversal orders on different devices (CPUs or
GPUs) results in diverse performances. Thus, the challenge in using BFS on integrated
architectures is how to select the traversal order and the device for each level. Previous
works have failed to address this problem effectively. In this study, we propose an
adaptive performance model that automatically finds a suitable traversal order and
device for each level. We evaluated our method on Graph500, where it not only shows
the best energy efficiency but also achieves a giga-traversed edges per second (GTEPS)
performance of approximately 2.1 GTEPS, which is a 2.3 x speed improvement over
the state-of-the-art BFS on integrated architectures.

Keywords Breadth-first search - Integrated architectures - Performance - Energy
efficiency - Modeling

B Jidong Zhai
zhaijidong @tsinghua.edu.cn

Key Laboratory of Data Engineering and Knowledge Engineering (MOE), Renmin University of
China, Beijing, China

School of Information, Renmin University of China, Beijing, China

Department of Computer Science and Technology, Tsinghua University, Beijing, China

Huawei Technologies Co., Ltd., Shenzhen, China

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-018-2525-0&domain=pdf
http://orcid.org/0000-0003-1983-7321

6136 F.Zhang et al.

1 Introduction

Researchers have found that many practical problems can be represented by graphs;
consequently, graph applications have become increasingly important in various types
of data analysis. Among graph analysis algorithms, breadth-first search (BFS) [11] is
one of the most representative algorithms and functions as an important building block
for other graph algorithms such as single-source shortest path (SSSP) [6], weakly
connected components (WCC) [8], and page rank [39]. Moreover, BFS is currently
the ranking benchmark of Graph500 [34], an alternative to Top500 [13], which is a
big data analysis benchmark.

Researchers use GPUs to accelerate various applications, including BFS, because
GPUs have massive numbers of lightweight computation cores, resulting in much
higher computational power. Many linear algebra problems, such as matrix multipli-
cation, benefit from GPU’s computing capacity. The applications that benefit the most
from GPUs are computation-intensive applications that typically have regular memory
access patterns. However, BES is memory bound and has an irregular memory access
pattern, which makes it difficult to fully capitalize on the power of GPUs. The vertices
allocated from a graph to GPU threads possess different numbers of edges; hence,
the workload for each thread varies. The threads in GPUs process data in a lock-step
manner, which means that a group of threads must execute the same instruction simul-
taneously. Consequently, the BFS algorithm has serious load imbalance problems
when executed on GPUs. Even worse, GPUs have an independent on-chip memory:
the data they process must be copied through the PCle bus from main memory. This
memory copying overhead becomes computationally expensive when the processed
graph is large and cannot fit into the available GPU memory.

Since 2011, hardware vendors have released an increasing number of integrated
architectures, such as AMD’s A-series integrated architecture APU [7], Intel’s Ivy
Bridge and Haswell [17], and Nvidia’s Tegra K1 [36]. Integrating GPUs and CPUs on
the same chip presents a new opportunity for accelerating the BFS algorithm. Using
this integrated architecture makes it possible to switch between CPUs and GPUs with
little cost. BFS processing can be divided into many levels. At each level, we can
use a top-down or bottom-up traversal order. Different traversal orders with different
devices (CPUs or GPUs) present different performances. Thus, for an input graph, the
BFS challenge on integrated architectures involves selecting a suitable traversal order
and device for each level.

Several prior studies concerning BFS execution on heterogeneous platforms have
been conducted. Beamer et al. [4] first proposed BFS in the bottom-up direction
instead of the conventional top-down direction. This approach can significantly reduce
the memory requirements for accessing edges in large frontiers. They also provided
a simple method for switching an algorithm between the top-down and bottom-up
processing. Daga et al. [12] were the first to implement hybrid top-down and bottom-
up algorithms on integrated architectures. This approach is the state of the art for BFS
processing on integrated architectures. In these approaches, CPUs are used for top-
down traversal, while GPUs are used for bottom-up traversal. However, the previous
methods do not select the proper traversal orders and devices effectively. In contrast
to the previous studies, we provide a modeling method to estimate the performance of

@ Springer

An adaptive breadth-first search algorithm on integrated. . . 6137

top-down and bottom-up algorithms on both CPUs and GPUs that can select the most
appropriate strategy. Moreover, experiments show that due to OpenCL space allocation
limitations by vendors, we cannot allocate a large graph directly into memory. The
previous BFS implementations on integrated architectures [12,50,51] do not consider
this factor either. We provide a specific design that enables our BFS implementation
to process large graphs.

In this paper, we analyze the factors that influence the performance of BFS on
integrated architectures and develop an adaptive performance model that considers
these factors. The influencing factors include search direction, device selection, data
layout, large graph allocation, and vendor-specific optimizations, making it difficult to
select the optimal combination for traversal orders and executing devices. Our adap-
tive performance model estimates the performance for both top-down and bottom-up
algorithms on GPUs and CPUs with different optimizations and automatically selects
the suitable parameters. We evaluated our BFS method on a Graph500 benchmark.
Experiments show that our BFS not only exhibits the best energy efficiency but also
achieves 2.1 GTEPS—a 2.3 x speed improvement compared to the state-of-the-art
BFS algorithm on integrated architectures.

In summary, this paper makes the following contributions.

1. We provide a comprehensive performance model that can adaptively choose the
optimal algorithms and devices with proper optimizations.

2. We enable our BFS implementation to process large graphs that previous imple-
mentations cannot handle.

3. The experiments evaluating our BFS implementation from a power aspect exhibit
energy-efficient results.

The remainder of this paper is organized as follows: In Sect. 2, we review integrated
architectures and general BFS algorithms. Section 3 provides detailed descriptions of
our BFS algorithms. Section 4 shows the optimizations applied to our BFS imple-
mentation. Section 5 presents evaluation results and a comparison between our
implementation and previous BFS implementations for integrated architectures. Sec-
tion 6 discusses related works, and Sect. 7 concludes the paper.

2 Background

In this section, we present background information concerning integrated architectures
and the BFS algorithm.

2.1 Integrated architectures

We implement the BFS algorithm on integrated architectures, which integrate het-
erogeneous accelerators and CPUs on the same chip. In our experiments, we use the
AMD integrated architecture APU [34] as an experimental platform to exhibit our BFS
algorithm for integrated architectures. Figure 1 shows a general view of CPU-GPU
integrated architectures, in which both the CPU and GPU are able to access the same
physical memory. In contrast to CPUs, GPUs have physical local memory (OpenCL

@ Springer

6138 F.Zhang et al.

CPU
CPU | cPU crU [
core | core || core Unified <:> S
ystem
Northbridge
peve g DRAM
GPU | GPU GPU | e e e e e e e an
CcuU CcuU CcU <1 ——————————————— v

Fig.1 A general view of integrated architectures

terminology [43]), which has a faster access speed than does global memory and is
more controllable. An integrated design has two benefits: (1) the CPU does not need
to transfer data to the GPU via the PCle bus; hence, the CPU and GPU can have
more cooperation; (2) the GPU can process a larger dataset without the GPU memory
size limitations found in discrete CPU-GPU designs. Therefore, on integrated archi-
tectures, we have the opportunity to closely combine the use of both GPU and CPU
devices to accelerate BFS.

2.2 BFS algorithm

BFS is an algorithm for graph traversal from the root vertex, v,, to other vertices,
as shown in Algorithm 1. It traverses vertices based on their distances from the root
vertex. Hence, according to the nature of breadth-first, BFS computing is synchronous
by levels, and BFS traversal is divided into computation at different levels. Each
level has a frontier, which is the Curr in Algorithm 1. The frontier includes the active
vertices at the current level. During computation at different levels, the current frontier
generates the next frontier, which is the Next in Algorithm 1. BFS begins with a root
vertex, v,, and terminates when the frontier is empty. In the parallel version of BES,
the parallel region is the computation that occurs at each level. This parallelism is
based on the active vertices or edges: after the computation for each level completes,
a synchronization process is required.

BFS shares characteristics with many other graph algorithms, such as graph col-
oring [18] and connected component [14]. We summarize these characteristics as
follows.

Frequent data access BFS is a memory-bound algorithm involving few compute
operations. Instead, most operations in BFS read and update data structures with
position information.

Random data access Each vertex may be connected to any other vertices of the
graph; thus, BFS traversal may access locations in any part of the graph. Hence,
the data access pattern is random, which results in high memory access pressure.
Data dependence In BFS, the memory access pattern depends on the shape of the
input graph, which is unpredictable. The vertex access order cannot be obtained
until the graph is loaded into memory. Hence, conventional memory optimization
techniques, such as prefetching, are invalid for BFS.

@ Springer

An adaptive breadth-first search algorithm on integrated. . . 6139

Algorithm 1: Basic BFS algorithm

Input:
G = (V, E): graph representation
Vi TOOt vertex
Output:
Prt: parent map
Data:
Curr: vertices in the current level
Next: vertices in the next level
Vst: ever visited vertices
1 Pri(c) < —1, Prt(vy) < vy
2 Curr <
3 Next < {v}
4 Vst < {v,}
5 while Next # ¢ do
6 Curr < Next
7 Next < ()
8 for u € {v e Curr, (v,u) € E,u ¢ Vst} do

9 Next < Next U {u}
10 Vst < Vst U {u}

1 Prt(u) < v

12 end

13 end

Nonuniform data distribution The vertices of the input graph may follow a
power law distribution; hence, the number of edges for each vertex is not well
balanced. The unequal edge degree, which may cause load imbalance problems,
is a critical issue for BFS parallelism.

All these characteristics distinguish BFS from other algorithms with regular mem-
ory access patterns. Therefore, we shall fully utilize the integrated architecture features
to address these challenging characteristics in both the design and implementation of
our BFS algorithm.

3 Algorithm

Previous BFS studies [4,12] use two algorithm directional strategies: top-down and
bottom-up; however, these have different features and target different situations. Based
on the characterizations of BFS in Sect. 2.2, we provide hybrid top-down and bottom-
up algorithms in our BFS implementation and switch between these two algorithms
based on performance modeling of the CPUs and GPUs in integrated architectures.

3.1 Overview

The most challenging part of Algorithm 1 involves deciding how to traverse the vertices
and edges (line 8 in Algorithm 1). There are three considerations: (1) the vertices in
the frontier, u € Curr, (2) the edges whose starting vertices belong to the frontier,
(u, v) € E, and (3) the vertices not visited, u ¢ Vst.

@ Springer

6140 F.Zhang et al.

We can choose top-down traversal or bottom-up traversal for each level during
BFS processing. We show our hybrid BFS algorithm in Algorithm 2. Note that pre-
vious studies for other problems, such as DFS [20], also use similar techniques. The
function usingTopDown() in Algorithm 2 uses the proposed adaptive model (detailed
in Sect. 3.2) to choose among different strategies. The top-down traversal is shown
in lines 15-24, and the bottom-up traversal is shown in lines 25-35. The top-down
traversal first scans all the vertices in the frontier, iterates through their edges, and
then visits the connected vertices: this sequence processes the three considerations in
the sequence (1), (2), and (3). It iterates every neighbor of the vertices in the frontier
and then updates the related data structures if that neighbor has not previously been
visited. In contrast to top-down traversal, bottom-up traversal first scans the vertices
not yet visited and then verifies whether they connect to the vertices in the frontier.
Consequently, bottom-up processing for the three conditions occurs in the sequence
(3), (2), and (1).

We provide a performance model (detailed in Sect. 3.2) to choose between these
two strategies. Top-down traversal is the most common BFS algorithm, but it is not
suitable for all situations. As stated in Sect. 2.2, the vertices of the input graph may
follow a power-law distribution, which implies that the frontier size of the middle levels
during the BFS traversal can be very large. At these levels, the top-down method must
scan all the edges whose source vertices are in the frontier but the destination vertices
of these edges can be any vertices of the graph. Because of the large frontier size,
some vertices may be visited multiple times, which is unnecessary. In this situation,
bottom-up traversal is a better choice because it first checks whether the unvisited
vertices have a neighbor in the frontier. Because we do not need to check the other
neighbors of a given vertex if a neighbor is found in the frontier, this bottom-up method
substantially reduces the number of memory accesses. However, note that bottom-up
is also not suitable for all situations. When the number of unvisited vertices is large,
and the frontier size is small, the top-down method is more efficient than the bottom-
up method. Our performance model combines the bottom-up and top-down methods
and estimates the potential number of memory accesses for each method. Then, we
consider switching between the different methods and between the CPU and GPU
devices at runtime. Moreover, because BFS has low computational intensity, we find
that running CPUs and GPUs simultaneously does not result in further performance
improvements. Hence, we do not provide a strategy for running CPUs and GPUs
simultaneously.

3.2 Adaptive model

As stated in Sect. 3.1, we need to build an adaptive performance model to choose
between the different algorithms (top-down and bottom-up) and between the different
devices (CPUs and GPUs) during BFS traversal. We denote all vertices as V,;; and use
Vg to represent the number of vertices, | V,y;|. Similarly, we use Vj.f; to denote the
vertices that remain to be processed and use vj.r; to represent their number. We use
V trontier to denote the vertices in the frontier and v fropsier to represent their number.
Table 1 shows an analysis of the following factors.

@ Springer

An adaptive breadth-first search algorithm on integrated. . . 6141

Algorithm 2: Hybrid BFS algorithm

Input:
G = (V, E): graph representation
Vi TOOt vertex
Output:
Prt: parent map
Data:
Curr: vertices in the current level
Next: vertices in the next level
Vst: ever visited vertices
1 Pri(c) < —1, Prt(vy) < vy
2 Curr <
3 Next < {v}
4 Vst < {v,}
5 while Next # ¢ do

6 Curr < Next

7 Next < ()

8 if usingTop Down(Curr, Next, Vst) then
9 ‘ TopDown()

10 end

11 else

12 ‘ BottomUp()

13 end

14 end

15 Function TopDown ()
16 for u € Curr do
17 forv: (u,v) € E do

18 if v ¢ Vst then

19 Next < Next U {v}
20 Vst < Vst U {v}

21 Pri(v) < u

22 end

23 end

24 end

25 Function BottomUp ()
26 for v e Vandv ¢ Vst do

27 for u : (u,v) € E do

28 if u € Curr then

29 Next <— Next U {v}
30 Vst < Vst U {v}
31 Prt(v) < u

32 break

33 end

34 end

35 end

When we estimate the performance of the top-down method, we first need to mea-
sure the data to be processed at each level. From line 17 of Algorithm 2, the top-down
method must traverse the edges of all the vertices in the frontier. Hence, we define the
number of edges as e fronsier-

@ Springer

6142 F.Zhang et al.

Table 1 Performance factors

Factor Description
Vall The total number of vertices
Vieft The number of vertices left to process
Vfrontier The number of vertices in the frontier
e; The number of edges in vertex i
€ frontier = } €j (D
i€Virontier

We denote the speed with which edges can be traversed in the top-down method
as speed (T opDown). Thus, for a given level, the processing time of the top-down
method is 1T opDown -

€ frontier)
speed(T op Down)

ITopDown =

To estimate the performance of the bottom-up method, we need to calculate the
number of unvisited vertices and left edges because, in the worst case, all the left
edges must be visited. We refer to the number of left edges as ej. ;.

Clefi = Y e (€)

ievleft

For a given level of computation in the bottom-up method, not all vertex edges in
the frontier require processing. As shown in line 28 of Algorithm 2, the algorithm stops
traversing the edges of a vertex when it finds a neighbor in the frontier. In the optimal
case, the number of visited edges equals the frontier size (i.e., one edge is processed for
each vertex). Therefore, we add the parameter @ (0 < o < 1) to estimate the average
bottom-up traversal time. We denote the speed with which edges can be traversed in
the bottom-up method as speed (BottomU p). The processing time of the bottom-up
method iS fBorromup-

o X eef;

speed(BottomU p)

“

IBottomUp =

During processing, we compare 7op pown and gotromu p to choose between the top-
down and bottom-up methods. In Eqgs. 2 and 4, these speeds are related to the graph
distribution. To achieve the best performance, we implemented five versions that cover
different situations, as shown in Table 2—CPU and GPU versions for both the top-
down and bottom-up methods. In addition, for the bottom-up GPU implementation,
we provide two versions: BG, which does not use local memory, and B FC, which
uses local memory to cache frequent data.

To estimate speed(BottomUp) and speed(T op Down) for different implemen-
tations, we use a training set containing a variety of patterns to measure different
implementations. To form the training set, we used the generator from Graph500 [34]
to generate several graphs. The generator provides five parameters: S, A, B, C, and
D, where S controls the generated graph size. The generated graphs should have 25

@ Springer

An adaptive breadth-first search algorithm on integrated. . . 6143

Table 2 BFS implementations on integrated architectures

Strategy Description

TC Top-down direction + CPU

TG Top-down direction + GPU

BC Bottom-up direction + CPU

BG Bottom-up direction + GPU

BGC Bottom-up direction + GPU with local memory

vertices and 254 edges. The parameters A, B, C, and D control the edge distribution
among the graph’s vertices. The graph is recursively generated with four equal-sized
submatrices. A, B, C, and D represent the unequal probabilities of an edge falling in
the four partitions of a matrix. The sum of A, B, C, and D is equal to one. We refer
readers to [9] for a more detailed description of graph generation. We set S to {16, 17,
18, 19}; then, for each S value, we randomly generated 20 graphs by setting A, B, C,
and D to different values. To measure the speed of the top-down method for CPUs and
GPUs, we calculated the frontier size, € fonsier, and time, ¢, at each level, and used
the result of e fronrier divided by ¢ as the speed. Finally, we used the average speed
from all levels as the estimated performance. We used similar methods to estimate the
speed for the bottom-up method.

4 Optimization

In this section, we provide three optimizations to improve the performance of our BFS
on integrated architectures.

4.1 Data structure optimization

To implement the BFS in Algorithm 2, the first consideration involves which data
structures to use. We consider optimizing three data structures in our BFS implemen-
tation: (1) the input graph, G = (V, E), which is read only; (2) the assistant data
structures, Curr, Next, and Vst; and (3) the result, Prt, which shows the parent of each
vertex.

Graph data are similar to a sparse matrix; thus, we consider using the format of a
compressed sparse row (CSR) [38] to store the input graph. Our graph data consist of
two arrays. The first array, e, represents the edges and is an integer array, containing
the destination vertices of the edges. The length of array e is the total number of edges
in the graph. The second array, v, represents vertices and is also an integer array,
containing pointers to the starting locations of the edges for each vertex in array e.
The length of array v is the total number of vertices plus one. Using array v, we can
infer the degree of edges for each vertex. Because vertices with large degrees are more
likely to be edge destinations, we sort the destinations in the edge array, e, for each
vertex. For the bottom-up BFS, this storage format has a large probability of finding

@ Springer

6144 F.Zhang et al.

the neighbor in the frontier and thus achieving early termination during edge traversal.
This storage format also performs better because it requires less memory accesses for
the array e. We provide an example in Sect. 4.2.

After considering input graph storage, we design the assistant data structures,
including the current frontier Curr, the next frontier Next, and the set of visited ver-
tices Vst. These three assistant data structures are subsets of the vertices of the input
graph. Before we choose a concrete implementation for them, we analyze the most
common operations for each data structure. For the current frontier, Curr, our BFS
implementation iterates every vertex in Curr; consequently, the performance depends
primarily on the size of Curr. When Curr is small, a queue data structure is efficient;
when it is large, a bitmap is a better choice. As stated in Sect. 3.1, the top-down method
is the most efficient in situations where the frontier size is small. In such situations,
the queue data structure is a good choice. For the bottom-up method, which is the
most efficient when the frontier size is large, a bitmap is a better choice. The data
structure of the next frontier, Next, involves frequent insert operations and its perfor-
mance considerations are similar to those of Curr. For top-down traversal, we choose
a queue data structure. For bottom-up traversal, a new issue for the bitmap structure is
that multiple threads may change the bits in the same byte-offset range, which incurs
atomic operations. To solve this problem, we use a char-map data structure instead
of a bitmap structure for bottom-up traversal. For the set of visited vertices Vst, the
BFS algorithm most frequently checks whether a vertex is visited by Vst. Therefore,
a bitmap data structure is suitable for Vst.

The last data structure is the result, Prt, which involves frequent write operations
for which direct memory access is the best choice. Therefore, we use an integer array
to store the parent for each vertex. Note that more than two threads may write to the
same location of Prt; however, this does not influence the correctness of our BFS
implementation because all the written values are equally correct.

4.2 Graph layout remapping

We analyze the bottom-up process in Algorithm 2 and find that the vertex traversal in
line 26 accesses some unnecessary vertices; therefore, it can be optimized. In graphs,
not all vertices have edges, i.e., some vertices have a degree of zero. Nevertheless, these
vertices still belong to the unvisited vertex set and need to be counted in the bottom-up
sequence (line 26 in Algorithm 2). When the number of zero-degree vertices is large,
the performance cost can be large because these vertices need to be traversed once at
every level. To reduce this cost, we remap the vertices with a degree greater than one to
anew consecutive range, leaving the zero-degree vertices in another range because we
do not need to traverse the zero-degree vertices. Figure 2 shows an example of vertex
remapping in which Fig. 2a shows the original input graph and Fig. 2b shows the
index remapping result, which gives each vertex a new number. During the remapping
process, we reduce the size of the vertices that must be traversed from 9 to 7. The
remapped graph is shown in Fig. 2c. The new vertices (8 and 9) have zero degrees;
thus, we do not schedule these vertices in the range of vertices that have more than one
edge. Because the size is reduced to 7, line 26 in Algorithm 2 can avoid re-accessing

@ Springer

An adaptive breadth-first search algorithm on integrated. . . 6145

° ° Original ID Remapped ID ° °

(a) (b) (©)

Fig.2 An example of index remapping for the input graph. a Original graph, b index mapping, ¢ mapped
graph

O N[V |W|N|FL
N|[ojun | |O|[|[W|N |~

the zero-degree vertices. After the BFS traversal, we replace the ID for each vertex
based on the index mapping in Fig. 2b. The BFS on NUMA architecture [49] uses
similar techniques.

As described in Sect. 4.1, we reschedule the order of edge storage for each vertex to
reduce the number of edges to traverse in the bottom-up traversal. For the data structure
of each vertex, we sort the storage order of adjacent vertices by their degrees. For
example, in Fig. 2a, vertex3 has four adjacent vertices (vertexl, vertex2, vertex6,
and vertex7). The degree of vertexl and vertex?2 is 1, that of vertex6 is 2, and
that of vertex7 is 3. Therefore, vertex3 should store its neighbors in the following
sequence (vertex7,3), (vertex6,2), (vertex1,1),and (vertex2,1). This storage format
increases the probability of finding the parent vertices and can reduce the number of
edges that must be traversed. Moreover, we consider storing vertices with large degrees
in local memory because the frontier will be checked many times during bottom-up
BFS traversal (line 28 in Algorithm 2).

4.3 Enabling large dataset processing

An integrated architecture provides the opportunity to process large datasets, but due to
OpenCL memory-object size limitations, we cannot directly allocate sufficient space
to store all the edges in a single buffer when the input graph is too large. Therefore, we
separate the edges into several parts, each of which is smaller than the memory size
limitation. We also provide a decision module to verify whether the edge size exceeds
the memory limitation. If so, we store these edges in separate parts with additional
assistant data structures as shown in Fig. 3, including (1) the ID for each edge part, (2)
the number of edges in each part, and (3) the starting offset of the edges for each part.
With the information, each part contains only a subset of edges of the original graph,
and our BFS implementation can select the correct part to process during traversal.

@ Springer

6146 F.Zhang et al.

I e P
(1) Part ID
I (2) Number of edges ﬂ Partitioning
l (3) Edge offset
Part 0 | 0 |m0|n0| | | | | | | | |
Part 1 |1|m1|n1| | | | | | | | |
patp | mofe| | [| [| | | |

Fig.3 Partitioning edges for large graphs

5 Evaluation

We evaluate our BFS algorithm on integrated architectures with the Graph500 bench-
mark. We start by describing our platforms and input graphs.

5.1 Experiment setup

Platform We use the AMD A-Series APU A10-7850K [5] and Ryzen 5 2400G [3],
shown in Table 3, as the experimental platform to measure the performance of our
BFS algorithm. The A10-7850K CPU has four cores with four threads, and its GPU
has eight compute units. We use GCC (version 4.8.2) with the O3 optimization level
for compilation and the OpenCL library version 2.0. The Ryzen 5 2400G CPU has
four cores with eight threads, and its GPU has eleven compute units. Currently, this is
the latest integrated architecture. AMD provides only Windows drivers for the Ryzen
5 2400G; therefore, we conduct our experiments for this platform using Microsoft
Visual Studio.

Input Graphs Graph500 [34] is a well-known large-scale benchmark based on the

BFS for a large undirected graph. We use the Graph500 generator to verify the effi-
ciency of our BFS implementation. The generated graphs are based on a Kronecker

Table 3 The experimental platform configuration

Platform AMD A10-7850K AMD Ryzen 5 2400G
Operating system Ubuntu 14.04.1 Windows 10

Number of CPU cores 4 4

CPU frequency (GHz) 3.7 3.6

Number of GPU compute units 8 11

GPU max frequency (GHz) 0.72 1.25

Memory size (GB) 32 32

Memory frequency (MHz) 1600 2400

@ Springer

An adaptive breadth-first search algorithm on integrated. . . 6147

Table 4 Input graphs used in our experiments

Scale 22 23 24 25 26
Vertex 4.19M 8.39M 16.78M 33.55M 67.11M
Edge 67.11M 134.22M 268.44M 536.87TM 1073.74M

graph model [19] with an average degree of 16. We evaluate the BFS using the five
graphs listed in Table 4. On average, each vertex has 16 edges.

Comparison We use three BFS versions in this paper.

1. The Daga version [12], which is the fastest BFS version targeting CPU-GPU
integrated architectures of which we are aware. We add the extension described in
Sect. 4.3 to enable it to process large graphs.

2. The Yasui version [49], which is ported from a BFS implementation for NUMA
architectures. We do not use its NUMA-related optimizations; however, we use this
version for comparison because it achieves high performance on our platforms.

3. Our hybrid version, which uses both the CPU and GPU to process graphs with all
optimizations.

The first and second algorithms are proposed in previous works, and the third is
our implementation. In our implementation, for the top-down method, we parallelize
the computation process by distributing different rows to different threads. For the
bottom-up method, we parallelize it by making different threads process different
edges. We choose OpenMP for the CPU device and OpenCL for the GPU device.

5.2 Performance

For comparison purposes, Fig. 4 shows the performance results of different BFS imple-
mentations on the five datasets. Figure 4a represents the results with the A10-7850K,
and Fig. 4b represents the results with the Ryzen 5 2400G. We follow the rules of
Graph500 and use giga-traversed edges per second (GTEPS) as the performance met-
ric. In the evaluation, let m be the number of edges in a traversed component of the
graph and ¢ be the BFS execution time. The normalized performance rate (GTEPS)
is defined as m/t. In general, our BFS achieves the best performance on all the input
graphs for the integrated architectures—considerably better than that achieved by the
other versions. Our BFS achieves averages of 2.1 GTEPS on the A10-7850K and 1.4
GTEPS on the Ryzen 5 2400G. The Daga version achieves averages of 0.9 GTEPS on
the A10-7850K and 0.6 GTEPS on the Ryzen 5 2400G. The Yasui version’s perfor-
mance is closer to ours; it achieves averages of 1.9 GTEPS on the A10-7850K and 1.3
GTEPS on the Ryzen 5 2400G. Overall, our proposed BFS implementation is 2.3 x
faster than the Daga version and 1.1 x faster than the Yasui version.

From Fig. 4, we can see that the Yasui version performs much faster than the Daga
version, which indicates that the graph layout remapping is an effective optimization
technique in BFS. Our BFS has higher performance than the Yasui version does,
because we use the GPU to accelerate some levels of computation; however, the

@ Springer

6148 F.Zhang et al.

25 [Daga T Yasui XXJ Qurs .

X

%

<>

%

<>

X

<>

GTEPS
&
T
X

<>

X

%

2% %%%

x>

K>

input graphs
(@

25 L [Daga T Yasui X3

15

GTEPS

0.5

——
e
e
e

input graphs
(b)

Fig.4 Performance results of different BFS implementations. a A10-7850K, b Ryzen 5 2400G

speedup of ours over the Yasui version is not large, because BFS is a data-access-
intensive application in which both the CPU and the GPU access the same memory.
Figure 4 also shows that our BFS implementation is efficient, especially when the
data size is large. The performance differs between the A10-7850K and the Ryzen
5 2400G, which may be related to the driver and operating system differences. The
Daga version [12] is the work most similar to ours. Compared to ours, the advantage
of the Daga version is that it can run directly on an integrated architecture without first
having to build a performance model. However, its parameters of strategy switching are
fixed. Moreover, our version has extra optimizations. The Yasui implementation [49]
is efficient, but it does not take advantage of GPUs.

5.3 Energy efficiency

Energy efficiency is an important indicator for integrated architectures; therefore,
we also evaluate our method from an energy perspective. We use an external power

@ Springer

An adaptive breadth-first search algorithm on integrated. . . 6149

meter (WT210) [35] to measure the real-time system power to calculate the energy
efficiency. The WT210 monitors the input power and records the real-time power at
intervals of one second. A similar method is used in [52]. Because GTEPS reflects
the computing performance, we use GTEPS divided by power to represent energy
efficiency. We use the Daga version as the baseline and define “speedup” as the base-
line’s energy efficiency (performance per watt) divided by the corresponding method’s
energy efficiency. Figure 5 shows the energy efficiency results for the different BFS
implementations. Figure 5a shows the results on the A10-7850K, and Fig. 5b shows
the results on the Ryzen 5 2400G. Our BFS is highly energy efficient and consistently
achieves improvements in energy efficiency compared to the other BFS implemen-
tations, especially on large graphs. The average energy efficiency of our BFS shows
a speedup of approximately 2.3 x over the Daga version on the A10-7850K and a
speedup of approximately 2.5 x on the Ryzen 5 2400G. Moreover, our BFS achieves

3.5

l Daga 1 Yasui XXJ Ours -]

speedup
o - N
o wun - U N U; w
T l T T T T
[R B !

% % % %
y) % R >
input graphs
(a)

[Daga 1 Yasui KXX Ours mmm |

speedup
o [N w H
T T T T
1 | | |

input graphs
(b)

Fig. 5 Energy efficiency results of different BFS implementations. The baseline is the Daga version. a
A10-7850K, b Ryzen 5 2400G

@ Springer

6150 F.Zhang et al.

approximately a 1.6 x speedup over the Yasui version on the A10-7850K and 1.3 x
on the Ryzen 5 2400G.

Our BFS implementation shows larger speedup from an energy efficiency perspec-
tive than from a performance perspective. Energy efficiency is an important aspect
of parallel computing. AMD argues that integrated architectures form an important
balance between performance and power [5]. From Fig. 5, we can see that using only
the CPU does not achieve optimal energy efficiency. Energy efficiency stems from
two factors: runtime power and execution time. The GPU has lower power to pro-
cess workloads than the CPU does on integrated architectures. Because our method
uses GPUs in some iterations and executes in less time, the energy efficiency of our
implementation is much better than that of the previous methods.

5.4 Analysis

We analyze the different implementations from Table 2 of our hybrid BES in this
section. In Table 5, we use the scale26 as an instance to show the execution times of
TC, TG, BC, BG, and BGC at each level. There are eight levels during the BFS
traversal, and the fifth level has the largest frontier size. As Table 5 shows, no strategy
is the most suitable for all levels. Different traversal orders with different devices
result in diverse performances. When the frontier size is small, the top-down method
performs better than the bottom-up method does; however, when the frontier size is
large, the bottom-up method performs better. In our implementation, we provide a
parameter to determine the interval at which the algorithm decides whether it should
switch the current strategy. By default, this parameter value is set to one, which means
that the strategy selection module is called after each iteration. Although Table 5
indicates that 7C, BG, and BGC are necessary on the current platform, we do not
guarantee that these three strategies are the best on other platforms. Hence, we still
need to consider all strategies in other situations. Moreover, Table 5 indicates that
frontier size plays an important role in strategy switching, and our model considers
it an important factor. Based on the frontier size and the predicted performance for
each method, our model can estimate the execution time for each version, allowing it
to choose a suitable strategy.

Table 5 Details for each level of different BES strategies on the scale26 example

Level Frontier size TC (s) TG (s) BC (s) BG (s) BGC (s)
1 1 0.02 0.03 4.37 9.42 9.44
2 1 0.02 0.05 4.34 8.53 8.47
3 5198 1.81 3.44 3.16 0.29 0.27
4 55,391,290 9.76 17.35 2.66 0.08 0.07
5 126,205,388 0.30 0.97 2.84 0.06 0.06
6 414,288 0.03 0.08 2.82 0.05 0.05
7 1132 0.02 0.02 2.83 0.05 0.05
8 4 0.02 0.02 0.03 0.05 0.05

@ Springer

An adaptive breadth-first search algorithm on integrated. . . 6151

Table 6 Number of vertices
before and after graph layout

remapping Original 419M 839M 16.78M 33.55M 67.11M
Optimized ~ 240M 4.6IM 8.87M 17.06M 32.80M
Saved (%) 42.87 45.03 47.12 49.15 51.12

Scale 22 23 24 25 26

Section 5.2 indicates that graph layout remapping is an effective optimization
technique; therefore, we analyze the graph remapping technique in this section. As
explained in Sect. 4.2, this technique removes the zero-degree vertices. We show the
number of vertices before and after this optimization in Table 6. As Table 6 shows,
approximately 48% of the vertices are saved by graph layout remapping, which avoids
a large number of unnecessary memory accesses in our BFS. The graph layout remap-
ping process occurs during the preprocessing stage. On average, the graph layout
remapping process takes approximately 41.5% of the preprocessing time. The other
optimizations concern data structure selection and techniques to process large datasets.
These optimizations have been integrated into all versions; related explanations appear
in Sect. 4.

5.5 Discussion

Limitation Our BFS algorithm needs to run a benchmark first to build the adaptive
model for a given architecture. When switching to another platform, the effectiveness
of the model and the accuracy of the speed estimation depend on the architectural
differences between the original platform and the new platform. One solution is to
perform cross-platform prediction, which we may work on in the future. Another sim-
ple but effective solution would be rerunning the benchmark on the new platform, but
this does not apply to scenarios where the platforms change frequently. Regarding the
optimizations, our graph layout remapping technique does not contribute that much
when a graph is already sorted.

Insights Although the proposed adaptive method in this paper is applied to BFS,
the idea of using the most suitable device for different iterations could also apply
to other situations. For example, iterations with high parallelism should use GPUs;
otherwise, they should use CPUs. As stated in Sect. 2.2, other graph algorithms also
have similar characteristics as BFS. For example, in parallel implementations of graph
coloring and connected component algorithms, the frontier sizes of active vertices can
be large at the beginning and small at the end. Accordingly, they should use GPUs
first, and use CPUs when the frontier size is small. The equations would need to be
adjusted slightly because the evaluation indicator for the processing speed of these
two applications involves vertices rather than edges.

6 Related work

In recent years, graph computing has been a hot research topic, and BFS, as a repre-
sentative algorithm, has attracted attention from many researchers [12,42,48,49,54].

@ Springer

6152 F.Zhang et al.

Among these studies, the BFS implementation from Daga et al. [12] is the closest
to ours. They are the first to implement a hybrid BFS algorithm on integrated archi-
tectures. Our BFS and their work differ in both applicability and main methodology.
First, limited by the maximum size of the OpenCL object, their work cannot handle
large graphs, while we include a special design for partitioning and processing large
graphs. Second, their work uses a simple strategy to select a top-down or bottom-up
algorithm, while ours uses a runtime model that provides a more complete analy-
sis. Moreover, our algorithm includes additional optimizations and achieves better
performance.

The most challenging problem in BFS on heterogeneous architectures is the load
imbalance problem. On GPUs, one simple approach is to map vertices in the fron-
tier to discrete threads [32], but that approach suffers from serious load imbalance
problems. Hong et al. [15] proposed a method to balance the process by assigning a
warp with a set of vertices. Merrill et al. [33] carefully designed and optimized the
neighbor-gathering and status-lookup stage within a cooperative thread array (CTA).
Other accomplishments, such as those in [24,46], use threads, warps, CTAs or the
full processor to address vertices of different degrees. Moreover, Scarpazza et al. [40]
implemented BES in Cell/BE by splitting the data into chunks that can fit into local
storage with synergistic processing elements. Liu et al. [26] implemented iBFS, which
can perform multiple BES traversals on the same graph. In contrast to these BFS
implementations, our adaptive BFS algorithm has a special design intended to target
integrated architectures.

Some researchers have attempted to maximize the performance of the BFS algo-
rithm on a single machine. Thus, many BFS optimization techniques have been
developed, such as using bitmaps or a hierarchical structure for frontiers to restrict
random access in a fast cache [1,10,27,28,53], lock-free array updates [10], and seri-
alizing random access and refining data structures in NUMA architectures [1,49].
However, as the size of the input graph increases, the memory of a single GPU
becomes insufficient. Several studies have investigated how to process such large
graphs, including using multi-GPUs [33,46], collaborative CPU-GPU designs [16],
I/0 optimizations [22,25], and using external storage [21,37] to extend the ability of
their BFS implementations.

BFS is a typical irregular application. Graphs can be represented in sparse matrix
format. Several new storage formats have been proposed to optimize applications based
on sparse matrices [2,23,30,41,44,47,51]. For example, Liu and Vinter [30] proposed
the CSRS format for sparsity-insensitive sparse applications. Sedaghati et al. [41] sum-
marized the features of sparse matrices and built a model to select the most suitable
format automatically. Ashari et al. [2] used sparse matrices to calculate graph appli-
cations and performed row reordering in sparse matrices for GPU threads. Integrated
architectures have also been used to accelerate some other parallel algorithms, such
as sparse matrix—vector multiplication [31], sparse matrix—matrix multiplication [29],
and sparse triangular solve [45].

@ Springer

An adaptive breadth-first search algorithm on integrated. . . 6153

7 Conclusion

In this study, we have developed an adaptive hybrid BFS algorithm for integrated
CPU-GPU architectures. Our BFS integrates the top-down and bottom-up BFS algo-
rithms and utilizes both the CPU and GPU devices. Along with optimizations, we
provide a performance model that can select a suitable algorithm and device for each
level during BFS traversal. Our BFS implementation can process graphs with more
than 67 million vertices and one billion edges, and it executes at approximately 2.1
GTEPS on a single integrated architecture. We also demonstrate our BFS algorithm’s
energy efficiency, which is approximately 2.3 x better than the state-of-the-art BFS
on integrated architectures.

Acknowledgements The authors sincerely thank the anonymous reviewers for their valuable comments
and suggestions. This work is partially supported by the National Key R&D Program of China (Grant
No. 2016 YFB0200100), National Natural Science Foundation of China (Grant Nos. 61732014, 61722208,
61472201, and 61472427). This work is also supported by Huawei Technologies Co. Ltd, Beijing Natu-
ral Science Foundation (No. 4172031), China Postdoctoral Science Foundation (2017M620992), and the
Fundamental Research Funds for the Central Universities and the Research Funds of Renmin University of
China (Nos. 16XNLQO2, 18XNLGO7). Jidong Zhai is the corresponding author of this paper.

References

1. Agarwal V, Petrini F, Pasetto D, Bader DA (2010) Scalable graph exploration on multicore processors.
In: Proceedings of the 2010 ACM/IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE Computer Society, pp 1-11

2. Ashari A, Sedaghati N, Eisenlohr J, Parthasarath S, Sadayappan P (2014) Fast sparse matrix—vector
multiplication on GPUs for graph applications. In: International Conference for High Performance
Computing, Networking, Storage and Analysis, SC14. IEEE, pp 781-792

3. AMD (2018) AMD Ryzen 5 2400G with Radeon RX Vega 11 Graphics. https://www.amd.com/en/
products/apu/amd-ryzen-5-2400g

4. Beamer S, Asanovi¢ K, Patterson D (2013) Direction-optimizing breadth-first search. Sci Program
21(3-4):137-148

5. Bouvier D, Sander B (2014) Applying AMDs Kaveri APU for heterogeneous computing. In: Hot
Chips: A Symposium on High Performance Chips (HC26)

6. Brandes U (2001) A faster algorithm for betweenness centrality.] Math Sociol 25(2):163-177

7. Branover A, Foley D, Steinman M (2012) AMD fusion APU: Llano. IEEE Micro 32(2):28-37

8. Broder A, Kumar R, Maghoul F, Raghavan P, Rajagopalan S, Stata R, Tomkins A, Wiener J (2000)
Graph structure in the web. Comput Netw 33(1):309-320

9. Chakrabarti D, Zhan Y, Faloutsos C (2004) R-MAT: a recursive model for graph mining. In: SDM, vol
4. SIAM, pp 442-446

10. Chhugani J, Satish N, Kim C, Sewall J, Dubey P (2012) Fast and efficient graph traversal algorithm for
CPUs: maximizing single-node efficiency. In: 2012 IEEE 26th International Parallel and Distributed
Processing Symposium (IPDPS). IEEE, pp 378-389

11. Cormen TH (2009) Introduction to algorithms. MIT Press, Cambridge

12. Daga M, Nutter M, Meswani M (2014) Efficient breadth-first search on a heterogeneous processor. In:
2014 IEEE International Conference on Big Data (Big Data). IEEE, pp 373-382

13. Dongarra JJ, Meuer HW, Strohmaier E et al (1997) Top500 supercomputer sites. Supercomputer
13:89-111

14. Erdos Rényi (1959) On random graphs 1. Publ Math Debr 6:290-297

15. Hong S, Kim SK, Oguntebi T, Olukotun K (2011) Accelerating CUDA graph algorithms at maximum
warp. In: ACM SIGPLAN Notices, vol 46. ACM, pp 267-276

@ Springer

https://www.amd.com/en/products/apu/amd-ryzen-5-2400g
https://www.amd.com/en/products/apu/amd-ryzen-5-2400g

6154

F.Zhang et al.

16.

17.
18.
19.
20.
21.

22.

23.

24.

25.

26.

27.

28.

29.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Hong S, Oguntebi T, Olukotun K (2011) Efficient parallel graph exploration on multi-core CPU and
GPU.In: 2011 International Conference on Parallel Architectures and Compilation Techniques (PACT).
IEEE, pp 78-88

Intel Corporation (2014) The compute architecture of Intel processor graphics Gen7.5. https://software.
intel.com/

Jensen TR, Toft B (2011) Graph coloring problems, vol 39. Wiley, London

Kepner J, Gilbert J (2011) Graph algorithms in the language of linear algebra. STAM, Philadelphia
Korf RE (1985) Depth-firstiterative-deepening: an optimal admissible tree search. Artif Intell 27(1):97—
109

Korf RE, Schultze P (2005) Large-scale parallel breadth-first search. In: Association for the Advance-
ment of Artificial Intelligence (AAAI), vol 5, pp 1380-1385

Kumar P, Huang HH (2016) G-store: high-performance graph store for trillion-edge processing. In:
International Conference for High Performance Computing, Networking, Storage and Analysis, SC16.
IEEE, pp 830-841

Li J, Tan G, Chen M, Sun N (2013) SMAT: an input adaptive auto-tuner for sparse matrix—vector
multiplication. In: ACM SIGPLAN Notices, vol 48. ACM, pp 117-126

Liu H, Huang HH (2015) Enterprise: breadth-first graph traversal on GPUs. In: Proceedings of the
International Conference for High Performance Computing, Networking, Storage and Analysis. ACM,
p 68

Liu H, Huang HH (2017) Graphene: fine-grained IO management for graph computing. In: USENIX
Conference on File and Storage Technologies (FAST), pp 285-300

Liu H, Huang HH, Hu Y (2016) iBFS: concurrent breadth-first search on GPUs. In: Proceedings of
the 2016 International Conference on Management of Data. ACM, pp 403416

Liu T, Chen CC, Kim W, Milor L (2015) Comprehensive reliability and aging analysis on SRAMs
within microprocessor systems. Microelectron Reliab 55(9):1290-1296

Liu T, Chen CC, Wu J, Milor L (2016) Sram stability analysis for different cache configurations due
to bias temperature instability and hot carrier injection. In: 2016 IEEE 34th International Conference
on Computer Design (ICCD). IEEE, pp 225-232

Liu W, Vinter B (2015) A framework for general sparse matrix—matrix multiplication on GPUs and
heterogeneous processors. J Parallel Distrib Comput 85:47-61

. Liu W, Vinter B (2015) CSRS: an efficient storage format for cross-platform sparse matrix—vector

multiplication. In: Proceedings of the 29th ACM on International Conference on Supercomputing.
ACM, pp 339-350

Liu W, Vinter B (2015) Speculative segmented sum for sparse matrix—vector multiplication on hetero-
geneous processors. Parallel Comput 49:179-193

Luo L, Wong M, Hwu W (2010) An effective GPU implementation of breadth-first search. In: Pro-
ceedings of the 47th Design Automation Conference. ACM, pp 52-55

Merrill D, Garland M, Grimshaw A (2012) Scalable GPU graph traversal. In: ACM SIGPLAN Notices,
vol 47. ACM, pp 117-128

Murphy RC, Wheeler KB, Barrett BW, Ang JA (2010) Introducing the Graph 500. In: Cray Users
Group (CUG) Proceedings

YOKOGAWA (2017) WT210/WT230 digital power meters. http://tmi.yokogawa.com/products/
digital-power-analyzers/

Nikolskiy VP, Stegailov VV, Vecher VS (2016) Efficiency of the Tegra K1 and X1 systems-on-chip
for classical molecular dynamics. In: 2016 International Conference on High Performance Computing
and Simulation (HPCS). IEEE, pp 682-689

Pearce R, Gokhale M, Amato NM (2013) Scaling techniques for massive scale-free graphs in distributed
(external) memory. In: 2013 IEEE 27th International Symposium on Parallel and Distributed Processing
(IPDPS). IEEE, pp 825-836

Saad Y (1990) SPARSKIT: a basic tool kit for sparse matrix computations. NASA technical report,
NASA, pp 1-30

Satish N, Sundaram N, Patwary MMA, Seo J, Park J, Hassaan MA, Sengupta S, Yin Z, Dubey P (2014)
Navigating the maze of graph analytics frameworks using massive graph datasets. In: Proceedings of
the 2014 ACM SIGMOD International Conference on Management of Data. ACM, pp 979-990
Scarpazza DP, Villa O, Petrini F (2008) Efficient breadth-first search on the Cell/BE processor. IEEE
Trans Parallel Distrib Syst 19(10):1381-1395

@ Springer

https://software.intel.com/
https://software.intel.com/
http://tmi.yokogawa.com/products/digital-power-analyzers/
http://tmi.yokogawa.com/products/digital-power-analyzers/

An adaptive breadth-first search algorithm on integrated. . . 6155

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

S1.

52.

53.

54.

Sedaghati N, Mu T, Pouchet LN, Parthasarathy S, Sadayappan P (2015) Automatic selection of sparse
matrix representation on GPUs. In: Proceedings of the 29th ACM on International Conference on
Supercomputing, ICS 15, pp 99-108

Shi X, Zheng Z, Zhou Y, Jin H, He L, Liu B, Hua QS (2018) Graph processing on GPUs: a survey.
ACM Comput Surv 50(6):81

Stone JE, Gohara D, Shi G (2010) OpenCL: a parallel programming standard for heterogeneous
computing systems. Comput Sci Eng 12(3):66-73

Su BY, Keutzer K (2012) cISpMV: a cross-platform OpenCL SpMV framework on GPUs. In: Pro-
ceedings of the 26th ACM International Conference on Supercomputing. ACM, pp 353-364

Wang X, Liu W, Xue W, Wu L (2018) swSpTRSV: a fast sparse triangular solve with sparse level tile
layout on sunway architectures. In: Proceedings of the 23rd ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming. ACM, pp 338-353

Wang Y, Davidson A, Pan Y, Wu Y, Riffel A, Owens JD (2016) Gunrock: a high-performance graph
processing library on the GPU. In: Proceedings of the 21st ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming. ACM, p 11

Yan S, Li C, Zhang Y, Zhou H (2014) yaSpMV: yet another SpMV framework on GPUs. In: ACM
SIGPLAN Notices, vol 49. ACM, pp 107-118

Yang C, Buluc A, Owens JD (2018) Implementing push—pull efficiently in GraphBLAS. In: Interna-
tional Conference on Parallel Processing (ICPP)

Yasui Y, Fujisawa K (2015) Fast and scalable NUMA-based thread parallel breadth-first search. In:
2015 International Conference on High Performance Computing and Simulation (HPCS). IEEE, pp
377-385

Zhang F, Zhai J, Chen W, He B, Zhang S (2015) To co-run, or not to co-run: a performance study
on integrated architectures. In: 2015 IEEE 23rd International Symposium on Modeling, Analysis and
Simulation of Computer and Telecommunication Systems (MASCOTS). IEEE, pp 89-92

Zhang F, Wu B, Zhai J, He B, Chen W (2017) FinePar: irregularity-aware fine-grained workload parti-
tioning on integrated architectures. In: International Symposium on Code Generation and Optimization
(CGO). IEEE Press, pp 27-38

Zhang F, Zhai J, He B, Zhang S, Chen W (2017) Understanding co-running behaviors on integrated
CPU/GPU architectures. IEEE Trans Parallel Distrib Syst 28(3):905-918

Zhang R, Liu T, Yang K, Milor L (2017) Analysis of time-dependent dielectric breakdown induced
aging of SRAM cache with different configurations. Microelectron Reliab 76:87-91

Zhong J, He B (2014) Medusa: simplified graph processing on GPUs. IEEE Trans Parallel Distrib Syst
25(6):1543-1552

@ Springer

Journal of Supercomputing is acopyright of Springer, 2018. All Rights Reserved.

	An adaptive breadth-first search algorithm on integrated architectures
	Abstract
	1 Introduction
	2 Background
	2.1 Integrated architectures
	2.2 BFS algorithm

	3 Algorithm
	3.1 Overview
	3.2 Adaptive model

	4 Optimization
	4.1 Data structure optimization
	4.2 Graph layout remapping
	4.3 Enabling large dataset processing

	5 Evaluation
	5.1 Experiment setup
	5.2 Performance
	5.3 Energy efficiency
	5.4 Analysis
	5.5 Discussion

	6 Related work
	7 Conclusion
	Acknowledgements
	References

