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A B S T R A C T

A multilevel moving particles method is developed for the estimation of failure probabilities that are computed from numerical approximations of the performance
function. The algorithm balances the statistical error of the estimate and the approximation error. This is achieved by computing a telescoping sum of estimates
for the difference in the number of moves at subsequent levels of the approximation error. The sample variance of these estimates decreases with decreasing
approximation error. Thus, the number of samples that has to be evaluated with high accuracy is reduced compared to a single level computation. Therefore, the
proposed algorithm is very efficient for structural reliability analysis problems, in which highly accurate evaluations of the performance function are necessary
and require a huge computational effort.

1. Introduction

Markov Chain Monte Carlo simulation methods allow estimating
small failure probabilities efficiently, even for problems that involve
a high-dimensional vector of input random variables [1]. Subset simu-
lation can be considered as the most prominent method in this class. In
subset simulation, the failure probability is computed as the telescoping
product of larger probabilities that require sampling from conditional
distributions. Recently, a generalization of subset simulation in the
sense of particle methods has been proposed [2], where the value of
the performance function is associated to each sample, samples are
moved to new positions in the design space and the number of moves
for the initial samples to reach the failure domain are counted and
yield an estimator for the failure probability, which is of comparable
accuracy and efficiency as the subset simulation estimator [3]. The
algorithm allows for an easy parallel implementation. Just as for subset
simulation, sampling from conditional distributions is required when
moving a particle.

In most practical applications, the performance function is approx-
imated numerically to a certain level ℎ. In order to obtain an efficient
simulation algorithm, it is necessary to balance the statistical error and
the approximation error. Here, a multilevel moving particles simulation
method is proposed that balances both errors by computing a telescop-
ing sum of estimates for the number of moves. For each term in the
telescoping sum, it is necessary to compute as corrector the difference
of the number of moves for each initial sample with two consecutive
accuracy levels using the same random numbers in the Markov Chain
Monte Carlo simulation.

For the multilevel moving particles method, the sample variance
decreases with decreasing approximation error. Thus, the number of
samples that has to be evaluated with high accuracy is reduced com-
pared to a single level computation. Therefore, the proposed algorithm
is very efficient for problems where highly accurate evaluations of
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the performance function are necessary and require a tremendous
computational effort.

The paper is organized as follows: in the next section, the moving
particles algorithm is introduced and briefly compared with subset
simulation. Following this, the idea of multilevel simulation is ex-
plained and applied to the moving particles algorithm. The multilevel
moving particles algorithm is then tested on examples comprising a
simple cumulative distribution function, a stochastic ordinary differ-
ential equation and a stochastic partial differential equation. Finally,
conclusions are drawn.

2. Moving particles algorithm

Denote the failure domain by 𝐹 = {𝜽 ∈ R𝑛|𝑔(𝜽) < 0}, where 𝑔(𝜽)
is the performance function and 𝜽 is a vector of random variables. The
probability of failure is given by the integral

𝑃𝐹 = ∫𝐹
𝑝(𝒙)d𝒙, (1)

where 𝑝(𝒙) denotes the joint probability density function of the random
vector 𝜽.

The moving particles algorithm yields an estimate of 𝑃𝐹 . It starts
with an initial Monte Carlo simulation (MCS) with 𝑁𝑚 samples. These
initial samples are then moved to the failure domain by the following
procedure: The values 𝑔(𝜽𝑗 ), 𝑗 = 1,… , 𝑁 , of the 𝑁 samples are ranked.
The sample with the maximum value of the performance function is
moved: a Markov chain Monte Carlo simulation (MCMC) is carried out
starting from one of the remaining samples and the final state of the
Markov chain is accepted, if the value of the performance function
could be reduced. Otherwise, the sample is simply replaced by the
initial value of the Markov chain. The Markov chain can be generated
either by application of the classical Metropolis–Hastings algorithm or
by direct sampling from a normal transition kernel.
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For each initial sample, the number 𝑀 of moves until it reaches
the failure domain is count. As has been shown in [2], the number
of moves to get an initial sample into the failure domain follows a
Poisson distribution with parameter 𝜆 = − log𝑃𝐹 . The estimator for the
parameter of the Poisson distribution is obtained from 𝜆 = 𝐸[𝑀] as

𝜆̂ =

∑𝑁
𝑗=1𝑀𝑗

𝑁
, (2)

where 𝑀𝑗 , 𝑗 = 1..., 𝑁 denotes the number of moves until the initial
sample 𝑗 reaches the failure domain.

In order to obtain an unbiased estimate, it is mandatory that the
trajectories of the Poisson process generated from the initial samples
remain independent until the samples finally reach the failure domain.
In [4], two means are proposed to maintain the independence:

• Burn-in: The Markov chain simulation is carried out with a burn-
in period. The burn-in should ensure the independence of the
initial and the final state of the Markov chain.

• Seed avoidance: Repeated use of the same initial state for the
Markov chain should be avoided. Once a sample has been used
as initial state, the sample and its offsprings should not be used
as initial state again.

The coefficient of variation for the failure probability estimated with
the moving particles algorithm is given by

𝛿𝑚𝑝 =

√

− log𝑃𝐹
𝑁

, (3)

cf. [2], and the average number of function evaluations is

𝑁𝑚𝑝 = 𝑁(1 − 𝑇 log𝑃𝐹 ), (4)

where the first term accounts for the initial Monte Carlo simulation and
the second term for the Markov chain samples (with burn-in period 𝑇 ).

A parallel version of the algorithm is easily obtained, if the 𝑘
samples with highest values of the performance function are moved in
parallel.

The moving particles algorithm can be considered as subset simu-
lation with a maximum number of subsets. Thus, for each subset, only
one sample is discarded and resampled by a Markov chain that takes
as initial value one of the retained samples. However, there are several
differences with respect to the original subset simulation algorithm:

• In subset simulation, the number of steps is rather small; however,
the number of steps in the moving particles algorithm is maximal.

• In subset simulation, only 𝑝0 (usually 10%) of the samples are
retained in each step and serve as seed for the Markov chains. In
contrast, only one sample is resampled in each step of the moving
particles algorithm, and the seed can be selected among the other
samples.

• The moving particles algorithm requires that all initial samples
finally reach the failure domain.

• The moving particles algorithm has a mathematical foundation in
Poisson process theory.

By equating (4) and the corresponding equation for subset simula-
tion with fixed conditional probability 𝑝0 of the subsets,

𝑁𝑠𝑢𝑏 = 𝑁𝑠

(

1 + (1 − 𝑝0)
log𝑃𝐹
log 𝑝0

)

, (5)

both algorithms can be compared. For a common choice of 𝑝0 = 0.1,
the coefficient of variation of both algorithms is nearly the same for
𝑁 = 0.1𝑁𝑠 [3]. From Eqs. (4) and (5), one obtains the relationship
𝑁𝑠𝑢𝑏
𝑁𝑚𝑝

=
10(1 − 0.39 log𝑃𝐹 )

1 − 𝑇 log𝑃𝐹
(6)

By setting this expression to one, a burn-in period 𝑇 can be obtained
as a function of the failure probability for which both algorithms
would require approximately the same amount of function evaluations.

Fig. 1. Comparison of subset simulation algorithm and moving particles algorithm.
Burn-in period, such that the number of performance function evaluations of subset
simulation and the moving particles algorithm is approximately the same.

This relationship is depicted in Fig. 1 a). It can be shown that the
obtained burn-in period (4 to 5 steps of the Markov chain) is in the
range of values that is sufficient to obtain independence in practical
applications [3] and thus the number of function evaluations for both
algorithms is of the same order of magnitude. For small failure prob-
abilities, subset simulation becomes slightly more efficient than the
moving particles algorithm, while for larger probabilities of failure, the
opposite is the case.

3. Multilevel simulation

In general, the performance function 𝑔(𝜽) is not known exactly,
but is computed by numerical approximations. The approximations
rely on a discretization and can be characterized by a discretization
parameter ℎ; the numerically computed performance function being
denoted by 𝑔ℎ(𝜽). In what follows, it is assumed that it is possible to
compute a finite series of approximations obtained from a series of
decreasing values ℎ𝑙, 𝑙 = 0,… , 𝐿, for the discretization parameter ℎ.
The index 𝑙 is called level of the approximation. A typical example for
these approximations would be solutions with different time stepsizes,
computational grids or meshes. Often, the discretization parameters can
be related by ℎ𝑙 = 2−𝑙ℎ0 for a given initial discretization parameter ℎ0.

Denote by 𝑄ℎ a quantity of interest that depends on 𝑔ℎ(𝜽). A
multilevel estimator for such a quantity of interest is obtained from
the telescoping sum [5,6]

𝐸[𝑄ℎ𝐿 ] = 𝐸[𝑄ℎ0 ] +
𝐿
∑

𝑙=1
𝐸[𝑄ℎ𝑙 −𝑄ℎ𝑙−1 ]. (7)

The aim is to compute each of the estimates on the right-hand side
of this equation individually. A reduction of the overall computational
effort can be expected from the fact that the variance of the differ-
ences decreases to zero with increasing level 𝑙 and thus, estimates of
the contributions from highly accurate performance function require
less samples. Moreover, the fact that there is a nested sequence of
approximations might be beneficial similar as for multigrid methods.

It is important to note that in the estimation of 𝐸[𝑄ℎ𝑙 −𝑄ℎ𝑙−1 ] both
𝑄ℎ𝑙 and 𝑄ℎ𝑙−1 are evaluated for the same samples. If the dimension
of the random vector depends on the discretization parameter ℎ, it is
necessary to generate the samples for the finer scale and to obtain the
corresponding samples on the coarser scale by coarse-graining.

For reliability estimation, an extension of multilevel Monte Carlo
simulation has been proposed in [7], where a selective refinement
strategy has been applied, such that realizations far away from the
critical value 𝑔(𝜽) = 0 are solved to a lower accuracy than those close
to the critical value, which further reduces the computational effort.

In [8], a multilevel estimator is combined with subset simulation.
However, when passing to a new subset while changing the accuracy
of the approximation for the performance function, the subsets might
not be nested anymore. This then leads to the necessity of a burn-in
period for the Markov chain and an additional Markov chain simulation
is needed for each subset.
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4. Multilevel moving particles algorithm

For the moving particles algorithm, the quantity of interest is the
number of moves to reach the failure domain. Denote by 𝑀ℎ the num-
ber of moves when the numerically computed performance function
𝑔ℎ(𝜽) is applied. The multilevel estimator for the Poisson distribution
parameter at level L and thus for − log𝑃𝐹ℎ𝐿 , where 𝑃𝐹ℎ𝐿 denotes
the failure probability computed with the approximated performance
function 𝑔ℎ𝐿 (𝜽) at approximation level 𝐿 is obtained from

𝐸[𝑀ℎ𝐿 ] = 𝐸[𝑀ℎ0 ] +
𝐿
∑

𝑙=1
𝐸[𝑀ℎ𝑙 −𝑀ℎ𝑙−1 ] (8)

and reads

𝑀̂𝑀𝐿
ℎ𝐿

= 1
𝑁0

𝑁0
∑

𝑖=1
𝑀 (𝑖)

ℎ0
+

𝐿
∑

𝑙=1

1
𝑁𝑙

𝑁𝑙
∑

𝑖=1
(𝑀 (𝑖)

ℎ𝑙
−𝑀 (𝑖)

ℎ𝑙−1
). (9)

The corresponding single level estimator is

𝑀̂𝑆𝐿
ℎ𝐿

= 1
𝑁𝑆𝐿

𝑁𝑆𝐿
∑

𝑖=1
𝑀 (𝑖)

ℎ𝐿
. (10)

The mean square error for the single level estimator is

𝑒(𝑀𝑆𝐿
ℎ𝐿

)2 = 𝑉 (𝑀𝑆𝐿
ℎ𝐿

) +
(

𝐸[𝑀𝑆𝐿
ℎ𝐿

] − 𝐸[𝑀]
)2

= 𝑁−1
𝑆𝐿𝑉 (𝑀ℎ𝐿 ) +

(

𝐸[𝑀ℎ𝐿 ] − 𝐸[𝑀]
)2 (11)

where 𝑉 (.) denotes the variance operator. The corresponding error for
the multilevel estimator is

𝑒(𝑀𝑀𝐿
ℎ𝐿

)2 =
𝐿
∑

𝑙=0
𝑁−1
𝑙 𝑉 (𝑌𝑙) +

(

𝐸[𝑀ℎ𝐿 ] − 𝐸[𝑀]
)2
, (12)

where 𝑌0 = 𝑀ℎ0 and 𝑌𝑙 = 𝑀ℎ𝑙 − 𝑀ℎ𝑙−1 , 𝑙 > 0. In both expressions,
the last term is the numerical approximation error, while the first term
is the statistical error. For a given overall precision 𝜖 > 0 such that
𝑒(.)2 < 𝜖2, we wish to achieve a statistical as well as an approximation
error less than 𝜖2∕2. For the approximation error, we have
(

𝐸[𝑀ℎ𝐿 ] − 𝐸[𝑀]
)2

< 𝜖2

2
. (13)

If
|

|

|

log𝑃𝐹 − log𝑃𝐹ℎ𝑙
|

|

|

= O(ℎ𝑙), (14)

we obtain the condition ℎ𝑙 = O(𝜖) for the approximation error. For the
statistical error of the single level estimator, we impose

𝑁−1
𝑆𝐿𝑉 (𝑀ℎ𝐿 ) = O(𝜖2), (15)

which leads, if 𝑉 (𝑀ℎ𝐿 ) is approximately constant, to 𝑁𝑆𝐿 = O(𝜖−2) for
the number of samples, the total number of function estimations being
thus 𝑁𝑆𝐿(1 − 𝑇 log𝑃𝐹ℎ𝐿 ), cf. Eq. (4). Suppose that the computational
cost 𝐶(𝑀 (𝑖)

ℎ𝑙
) = (1 − 𝑇 log𝑃𝐹ℎ𝑙 ) to compute a single sample is of order

O(ℎ−𝑟𝑙 ) for some 𝑟 > 0. Then the computational cost for the single level
estimator is of order

𝐶(𝑀𝑆𝐿
𝐿 ) = O(𝑁𝑆𝐿ℎ

−𝑟
𝐿 ) = O(𝜖−2−𝑟). (16)

For the multilevel estimator, the total computational cost is

𝐶(𝑀𝑀𝐿
𝐿 ) =

𝐿
∑

𝑙=0
𝑁𝑙𝐶(𝑌

(𝑖)
𝑙 ). (17)

Fixing the total computational cost, the statistical error becomes mini-
mal, if 𝑁𝑙 = 𝜆

√

𝑉 (𝑌𝑙)∕𝐶(𝑌
(𝑖)
𝑙 ), with

𝜆 = 𝜖−2
𝐿
∑

𝑙=0

√

𝑉 (𝑌𝑙)𝐶(𝑌
(𝑖)
𝑙 ) (18)

if the statistical error should be equal to 𝜖2. In this case, the total
computational cost of the multilevel algorithm is

𝐶(𝑀𝑀𝐿
𝐿 ) = 𝜖−2

( 𝐿
∑

𝑙=0

√

𝑉 (𝑌𝑙)𝐶(𝑌
(𝑖)
𝑙 )

)2

. (19)

If Eq. (14) holds and

|

|

|

|

log𝑃 2
𝐹 − log𝑃 2

𝐹ℎ𝑙

|

|

|

|

= O(ℎ𝑙), (20)

then from the fact that 𝑀ℎ𝑙 follows a Poisson distribution, the variance
of 𝑌𝑙 is of O(ℎ𝑙). Depending on the increase of the costs 𝐶(𝑀 (𝑖)

ℎ𝑙
) with

ℎ𝑙, which is described by the exponent 𝑟, the first or the last term
in the sum in (19) will dominate. In fact, if 0 < 𝑟 < 1, the costs
increase less than he variance will decrease and thus the sum in (19)
is dominated by

√

𝑉 (𝑌0)𝐶(𝑌
(𝑖)
0 ), so that 𝐶(𝑀𝑀𝐿

𝐿 ) = O(𝜖−2). On the

other hand, if 𝑟 > 1, then the sum is dominated by
√

𝑉 (𝑌𝐿)𝐶(𝑌
(𝑖)
𝐿 ) and

𝐶(𝑀𝑀𝐿
𝐿 ) = O(𝜖−2ℎ𝐿ℎ−𝑟𝐿 ) = O(𝜖−1−𝑟).

Thus, compared with the computational cost of order O(𝜖−2−𝑟) for
the single level estimator, considerable savings are obtained with the
multilevel estimator. This can be attributed to the fact that the order of
magnitude for the cost of the single level estimator involves the product
of the variance 𝑉 (𝑌0) and the cost 𝐶(𝑌 (𝑖)

𝐿 ).

Conditions (14) and (20) depend directly on the approximation of
the performance function. This is shown by the following lemma.

Proposition 1. If |
|

𝑔ℎ(𝑥) − 𝑔(𝑥)|| < |

|

𝑔ℎ(𝑥)|| or |

|

𝑔ℎ(𝑥) − 𝑔(𝑥)|| ≤ ℎ, then
|

|

|

𝑃𝐹 − 𝑃𝐹ℎ
|

|

|

< ℎ.

Proof. [7], Lemma 3.4. □

Lemma 1. If ||
|

𝑃𝐹 − 𝑃𝐹ℎ
|

|

|

< ℎ, then

1. ||
|

log𝑃𝐹 − log𝑃𝐹ℎ
|

|

|

< 𝐶1ℎ

2. ||
|

log𝑃𝐹 2 − log𝑃𝐹ℎ
2|
|

|

< 𝐶2ℎ

for ℎ → 0.

Proof.

1. If 𝑃𝐹 < 𝑃𝐹ℎ , then

log𝑃𝐹ℎ − log𝑃𝐹 = log
𝑃𝐹ℎ
𝑃𝐹

<
𝑃𝐹ℎ
𝑃𝐹

− 1 =
𝑃𝐹ℎ − 𝑃𝐹

𝑃𝐹
< ℎ
𝑃𝐹

(21)

On the other hand, if 𝑃𝐹 > 𝑃𝐹ℎ > 0, one has

log𝑃𝐹−log𝑃𝐹ℎ = log
𝑃𝐹
𝑃𝐹ℎ

<
𝑃𝐹
𝑃𝐹ℎ

−1 =
𝑃𝐹 − 𝑃𝐹ℎ
𝑃𝐹ℎ

< ℎ
𝑃𝐹

𝑃𝐹
𝑃𝐹ℎ

< ℎ
𝑃𝐹

1
1 − ℎ

𝑃𝐹

(22)

and thus for ℎ < 𝑃𝐹
2

log𝑃𝐹 − log𝑃𝐹ℎ <
2ℎ
𝑃𝐹

(23)

Therefore |

|

|

log𝑃𝐹 − log𝑃𝐹ℎ
|

|

|

< 𝐶1ℎ with 𝐶1 =
2
𝑃𝐹

.

2. If 𝑃𝐹 < 𝑃𝐹ℎ , then

log𝑃𝐹 2 − log𝑃𝐹ℎ
2 = log

𝑃𝐹ℎ
𝑃𝐹

(−(log𝑃𝐹 + log𝑃𝐹ℎ )) <
ℎ
𝑃𝐹

(−(2 log𝑃𝐹 )).

(24)
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and if 𝑃𝐹 > 𝑃𝐹ℎ , then for ℎ < 𝑃𝐹
2 :

log𝑃𝐹ℎ
2 − log𝑃𝐹 2 = log

𝑃𝐹
𝑃𝐹ℎ

(−(log𝑃𝐹 + log𝑃𝐹ℎ ))

< 2ℎ
𝑃𝐹

(−(2 log𝑃𝐹 ) + log𝑃𝐹 − log𝑃𝐹ℎ )

< 2ℎ
𝑃𝐹

(−(2 log𝑃𝐹 ) +
2ℎ
𝑃𝐹

).

(25)

So |

|

|

log𝑃𝐹 2 − log𝑃𝐹ℎ
2|
|

|

< 𝐶2ℎ with 𝐶2 = 2(−(2 log𝑃𝐹 ) +
2ℎ
𝑃𝐹

)∕
𝑃𝐹 . □

Remark. Both 𝐶1 and 𝐶2 are rather large.

The result for the computational cost of the multilevel moving
particles estimator can thus be summarized as follows:

Theorem 1. If {ℎ𝑙}, 𝑙 = 0...𝐿, is a finite decreasing series such that
|

|

|

𝑔ℎ𝑙 (𝑥) − 𝑔(𝑥)
|

|

|

< |

|

|

𝑔ℎ𝑙 (𝑥)
|

|

|

or |

|

|

𝑔ℎ𝑙 (𝑥) − 𝑔(𝑥)
|

|

|

≤ ℎ𝑙 and 𝐶[𝑀ℎ𝑙 ] = O(ℎ−𝑟𝑙 ),
then for a given error bound 𝜖 > 0, there are values 𝑁𝑙, 𝑙 = 1,… , 𝐿, for
which the root mean-square error of the multilevel estimator obtained from
(8) is less than 𝜖 and the computational cost is of order

𝐶(𝑀𝑀𝐿
𝐿 ) =

⎧

⎪

⎨

⎪

⎩

O(𝜖−2), 𝑟 < 1
O(𝜖−2(log 𝜖)2), 𝑟 = 1
O(𝜖−1−𝑟), 𝑟 > 1

(26)

Proof. [6], Theorem 3.1. □

5. Examples

5.1. Standard normal distribution

The first example deals with a standard normally distributed ran-
dom variable 𝑋 and the performance function 𝑔(𝑋) = 𝑋 − 𝑦, such
that the probability of failure is 𝑃𝐹 = 1 − 𝛷(𝑦), where 𝛷(𝑦) denotes
the cumulative distribution function of 𝑋. The performance function
is perturbed by noise and the amplitude of the noise away from the
threshold 𝑦 is increased so that the condition in Proposition 1 is
satisfied.

For this simple example, the convergence of the mean and the
variance of 𝑀ℎ𝑙 and the difference 𝑀ℎ𝑙 − 𝑀ℎ𝑙−1 will be studied. The
result for the variance is shown in Fig. 2 (a). It can be seen that the
convergence follows indeed a power law for the multilevel estimator,
while it is independent of the levels for the single level estimator. The
same holds for the mean, cf. Fig. 2 (b).

5.2. Stochastic heat equation with random heat source

Consider the linear stochastic partial differential equation

d𝑢 = 𝜕2𝑢
𝜕𝑥2

d𝑡 + 𝜃𝑢d𝑡 + 𝜎d𝑊𝑡 (27)

with parameters 𝜃 and 𝜎, where d𝑊 are the increments of a standard
cylindrical Wiener process

𝑊𝑡 =
∞
∑

𝑘=1
𝑊 𝑘
𝑡 sin(𝑘𝜋𝑥), (28)

and 𝑊 𝑘
𝑡 are standard independent Brownian motions.

The boundary conditions are 𝑢(𝑥 = 0, 𝑡) = 𝑢(𝑥 = 1, 𝑡) = 0 and the
initial condition reads

𝑢(𝑥, 0) =
√

2
∞
∑

𝑘=1
sin(𝑘𝜋𝑥), (29)

so that the solution of the stochastic partial differential equation de-
couples and can be written as

𝑢(𝑥, 𝑡) =
∞
∑

𝑘=1
𝑢𝑘(𝑡) sin(𝑘𝜋𝑥), (30)

where the coefficients 𝑢𝑘(𝑡) are described by the linear stochastic ordi-
nary differential equations

d𝑢𝑘 = (−𝜋2𝑘2 + 𝜃)𝑢𝑘d𝑡 + 𝜎d𝑊 𝑘
𝑡 . (31)

Their solutions at time 𝑡 are

𝑢𝑘(𝑡) = exp((−𝜋2𝑘2 + 𝜃)𝑡) + 𝜉𝑘𝑡 , (32)

where 𝜉𝑘𝑡 is a normal random variable with mean zero and variance

𝜎2(1 − exp(2(−𝜋2𝑘2 + 𝜃)𝑡))
2(𝜋2𝑘2 − 𝜃)

. (33)

Failure is assumed to occur if 𝑢(𝑥 = 0.5, 𝑡 = 𝑇 ) is larger than a given
threshold.

The solution of the stochastic partial differential equation (27) is
approximated by truncating the solution at 𝑘 = 𝑘𝑚𝑎𝑥 and the approx-
imate solution is simulated. The approximation levels are defined by
different values for the parameter 𝑘𝑚𝑎𝑥. The value of the approximation
parameter ℎ is computed by comparing the exact and the approximate
failure probability.

Fig. 3 shows the result for 𝜃 = 1, 𝜎 = 1, 𝑇 = 1∕50 and a
threshold value of 1.5. It can be seen that both the mean value and the
variance decrease with decreasing discretization parameter. However,
for smaller values of the approximation parameters, the reduction of
the mean value and particularly of the variance is less pronounced.

5.3. Stochastic heat equation with random thermal conductivity

Consider the diffusion equation

𝜕𝑢
𝜕𝑡

= 𝛼(𝑥, 𝜃) 𝜕
2𝑢
𝜕𝑥2

, (34)

where 𝛼(𝑥, 𝜃) is a normal random field described by the following
truncated Karhunen–Loève expansion

𝛼(𝑥, 𝜃) = 1 +
𝑀
∑

𝑖=1

√

𝜆𝑖𝑓𝑖(𝑥)𝜉𝑖(𝜃), (35)

where 𝜉(𝜃) = [𝜉1(𝜃), 𝜉2(𝜃),… , 𝜉𝑀 (𝜃)] are independent standard normal
random variables and 𝜆𝑖, 𝑓𝑖(𝑥), 𝑖 = 1,… ,𝑀 are the eigenvalues and
eigenvectors of a Fredholm integral equation of 2nd kind for the
exponential covariance kernel

𝐶𝑜𝑣(𝑥1, 𝑥2) = 𝜎2 exp(−‖𝑥1 − 𝑥2‖). (36)

The boundary conditions are given by 𝑢(𝑥 = 0, 𝑡) = 0 and 𝑢(𝑥 = 𝓁, 𝑡) = 0,
the initial condition is 𝑢(𝑥, 𝑡 = 0) = sin( 𝜋𝑥

𝓁
).

For the polynomial chaos expansion

𝑢(𝑥, 𝑡, 𝜉) =
𝑃
∑

𝑖=0
𝑢𝑖(𝑥, 𝑡)𝜓𝑖(𝜉) (37)

of the solution, cf. [9], the following partial differential equation
governs the expansion coefficients:
𝑃
∑

𝑖=0

𝜕𝑢𝑖
𝜕𝑡
𝜓𝑖(𝜉) = (1 +

𝑀
∑

𝑖=1

√

𝜆𝑖𝑓𝑖(𝑥)𝜉𝑖(𝜃))(
𝑃
∑

𝑖=0

𝜕2𝑢𝑖
𝜕𝑥2

𝜓𝑖(𝜉)). (38)

Application of a Galerkin scheme with respect to the polynomial chaos
and a finite difference approximation leads to the equation

1
𝛥𝑡

𝑃
∑

𝑖=0

𝑃
∑

𝑗=0
𝑏𝑖𝑗 (𝑢

(𝑚,𝑛+1)
𝑗 − 𝑢(𝑚,𝑛)𝑗 ) = 1

(𝛥𝑥)2

𝑃
∑

𝑖=0

𝑃
∑

𝑗=0
𝑏𝑖𝑗

× (𝑢(𝑚+1,𝑛)𝑗 − 2𝑢(𝑚,𝑛)𝑗 + 𝑢(𝑚−1,𝑛)𝑗 )

+ 1
(𝛥𝑥)2

𝑃
∑

𝑖=0

𝑃
∑

𝑗=0

𝑀
∑

𝑘=1
𝑑𝑖𝑗𝑘

√

𝜆𝑘𝑓𝑘(𝑥)

× (𝑢(𝑚+1,𝑛)𝑗 − 2𝑢(𝑚,𝑛)𝑗 + 𝑢(𝑚−1,𝑛)𝑗 )

(39)
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Fig. 2. Variance and mean of 𝑀ℎ𝑙 and 𝑀ℎ𝑙 −𝑀ℎ𝑙−1 .

Fig. 3. Variance and mean of 𝑀ℎ𝑙 and 𝑀ℎ𝑙 −𝑀ℎ𝑙−1 .

for the discretized expansion coefficients 𝑢(𝑚,𝑛+1)𝑖 , cf. [10], where

𝑏𝑖𝑗 = ∫ 𝜓𝑖(𝑥)𝜓𝑗 (𝑥)d𝑃𝐺(𝑥),

𝑑𝑖𝑗𝑘 = ∫ 𝑥𝑘𝜓𝑖(𝑥)𝜓𝑗 (𝑥)d𝑃𝐺(𝑥)
(40)

and d𝑃𝐺(𝑥) denotes the 𝑀-dimensional standard normal measure.
Failure is assumed to occur if 𝑢(𝑥 = 𝓁∕2, 𝑡 = 𝑇 ) is larger than a given

threshold.
Fig. 4 shows the result for 𝜎 = 1., 𝛾 = 0.025, 𝓁 = 1, 𝑇 = 1., a 4 term

Karhunen–Loève expansion, a 4th order polynomial chaos expansion
and a threshold value of 1. The results confirm the previous findings,
i.e. the mean value and the variance of the multilevel estimator de-
crease with decreasing discretization parameter. The reduction for the
mean value is less pronounced for smaller values of the discretization
parameter.

5.4. Burgers’ equation

In order to consider a nonlinear problem, the proposed approach is
applied to Burgers’ equation

𝜕𝑢
𝜕𝑡

+ 𝑢 𝜕𝑢
𝜕𝑥

= 𝛼(𝑥, 𝜃) 𝜕
2𝑢
𝜕𝑥2

, (41)

where the stochastic viscosity 𝛼(𝑥, 𝜃) is given by the truncated
Karhunen–Loève expansion (35). The boundary conditions are given
by 𝑢(𝑥 = 0, 𝑡) = 0 and 𝑢(𝑥 = 𝓁, 𝑡) = 0, the initial condition is
𝑢(𝑥, 𝑡 = 0) = sin( 𝜋𝑥

𝓁
).

The following partial differential equation governs the expansion
coefficients of the polynomial chaos expansion (37)

𝑃
∑

𝑖=0

𝜕𝑢𝑖
𝜕𝑡
𝜓𝑖(𝜉)+

𝑃
∑

𝑖=0
𝑢𝑖𝜓𝑖(𝜉)

𝑃
∑

𝑗=0

𝜕𝑢𝑗
𝜕𝑥

𝜓𝑗 = (1+
𝑀
∑

𝑖=1

√

𝜆𝑖𝑓𝑖(𝑥)𝜉𝑖(𝜃))(
𝑃
∑

𝑖=0

𝜕2𝑢𝑖
𝜕𝑥2

𝜓𝑖(𝜉)).

(42)

Application of a Galerkin scheme with respect to the polynomial chaos
and a finite difference approximation leads to the equation

1
𝛥𝑡

𝑃
∑

𝑖=0

𝑃
∑

𝑗=0
𝑏𝑖𝑗 (𝑢

(𝑚,𝑛+1)
𝑗 − 𝑢(𝑚,𝑛)𝑗 )

+ 1
2(𝛥𝑥)

𝑃
∑

𝑖=0

𝑃
∑

𝑗=0

𝑃
∑

𝑘=0
𝑐𝑖𝑗𝑘𝑢

(𝑚,𝑛)
𝑗 (𝑢(𝑚+1,𝑛)𝑘 − 𝑢(𝑚−1,𝑛)𝑘 )

= 1
(𝛥𝑥)2

𝑃
∑

𝑖=0

𝑃
∑

𝑗=0

𝑀
∑

𝑘=1
𝑑𝑖𝑗𝑘

√

𝜆𝑘𝑓𝑘(𝑥)

× (𝑢(𝑚+1,𝑛)𝑗 − 2𝑢(𝑚,𝑛)𝑗 + 𝑢(𝑚−1,𝑛)𝑗 )

+ 1
(𝛥𝑥)2

𝑃
∑

𝑖=0

𝑃
∑

𝑗=0
𝑏𝑖𝑗 (𝑢

(𝑚+1,𝑛)
𝑗 − 2𝑢(𝑚,𝑛)𝑗 + 𝑢(𝑚−1,𝑛)𝑗 )

(43)

for the discretized expansion coefficients 𝑢(𝑚,𝑛+1)𝑖 , cf. [10], where 𝑐𝑖𝑗𝑘 =
∫ 𝑥𝑘𝜓𝑖(𝑥)𝜓𝑗 (𝑥)𝜓𝑘(𝑥)d𝑃𝐺(𝑥) and 𝑏𝑖𝑗 and 𝑑𝑖𝑗𝑘 are given by (40).
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Fig. 4. Variance and mean of 𝑀ℎ𝑙 and 𝑀ℎ𝑙 −𝑀ℎ𝑙−1 .

Fig. 5. Mean values and variances for the single levels and the level differences.

Failure is assumed to occur if 𝑢(𝑥 = 𝓁∕2, 𝑡 = 𝑇 ) is larger than a given
threshold.

Fig. 5 compares the means and variances for the single levels and
for the level differences. The parameters of the model were set to
𝜎 = 0.5, 𝛾 = 0.001, 𝓁 = 1, 𝑇 = 1. As in the previous examples, a
4 term Karhunen–Loève expansion and a 4th order polynomial chaos
expansion were applied. The threshold value was 0.1.

The single level results show that both mean and variance of the
number of moves increase with decreasing discretization parameter.
Thus, the computed probability of failure decreases with decreasing
discretization parameter. In contrast to this, the mean and variance of
the differences, which are much smaller than the single level results,
decrease with decreasing discretization parameter.

6. Conclusions

In this paper, a multilevel moving particle method for reliability
estimation is presented. The method balances the approximation error
and the statistical error by computing a telescoping sum of estimates
for the number of moves of the particles. It is demonstrated that this
approach leads to a considerable reduction of the total computational
cost. The approach can be extended by taking the data and model error
in a Bayesian setting into account.
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