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Abstract This work proposes several approaches to accelerate the solid–fluid interac-
tion through the use of the Immersed Boundary method on multicore and GPU archi-
tectures. Different optimizations on both architectures have been proposed, focusing
on memory management and workload mapping. We have chosen two different test
scenarios which consist of single-solid and multiple-solid simulations. The perfor-
mance analysis has been carried out on an intensive set of test cases to analyze the
proposed optimizations using multiple CPUs (2) and GPUs (4). An effective perfor-
mance is obtained for single-solid executions using one CPU (Intel Xeon E5520)
achieving a speedup peak equal to 5.5. It is reached a higher benefit on multiple solids
obtaining a top speedup of approximately 5.9 and 9 using one CPU (8 cores) and
two CPUs (16 cores), respectively. On GPU (Kepler K20c) architecture, two different
approaches are presented as the best alternative: one for single-solid executions and
one for multiple-solid executions. The best approach obtained for one solid executions
achieves a speedup of approximately 17 with respect the sequential counterpart. In
contrast, for multiple-solid executions the benefit is much higher, being this type of
problems much more suitable for GPU and reaching a peak speedup of 68, 115 and
162 using 1, 2 and 4 GPUs, respectively.
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1 Introduction

The solid–fluid interaction is of vital importance for multiple computational fluid
dynamics (CFD) applications with a high industrial and research interest. However,
the inclusion of bodies within the fluid supposes a considerable overhead minimiz-
ing the performance of pure fluid solvers. This work focuses on the use of current
parallel architectures to mitigate the cost that solid–fluid interaction supposes. The
dynamics of a solid or a set of solids into a flow field is a research topic currently
enjoying growing interest in many scientific communities. It is intrinsically interdis-
ciplinary (structural mechanic, fluid mechanic, applied mathematics, etc) and covers
a broad range of applications (aeronautics, civil engineering, biological flows, etc).
The number of works about this topic reflects the growing importance of the study
of the dynamics solid/s [1–7]. The use of current GPU architectures to compute the
fluid field is widely extended into CFD due to the significant performance results
achieved [8–13]. In contrast, the solid–fluid interaction has only recently gained wider
topic.

Similar to the original work about the mathematical formulation of the immersed
boundary (IB) algorithm presented by Peskin [14], we use an IB method based on
the work of Uhlmann [15] to enforce the presence of a solid on the fluid field. Unlike
other methods, this method is well established and has been used in numerous complex
configurations, such as complex geometries, moving and deformable solids, etc, with
satisfactory results [15–18]. We have focused on the optimization of this method due
to the particular properties which IB presents, and the large range applications where it
can be used. Furthermore, this is presented as an efficient, accurate and computationally
cheap choice for this type of configurations.

Other authors address topics which are somehow related to the present contri-
bution. López-Portugués et al. [19,20] propose the use of heterogeneous systems
to compute the pressure distribution over the surface of one body basically solv-
ing Matrix–Vector product. Zhou et al. [13] show a solid–fluid solver based on
curved boundary, where a flow around a circular cylinder is tested as a typical case.
However, curved boundary is kept into account via a non-equilibrium extrapolation
scheme. On the other hand, Laytona et al. [21] propose a GPU implementation based
on the IB projection method [22] which computes the influence of one rigid solid
into Navier–Stokes solver through the use of sparse linear algebra routines using
the open-source Cusp library to carry out these routines. Both previous works do
not deal with multiple solids. Here, we will focus on a different approach based on
different forcing approach [15] able to deal with complex, moving or deformable
bodies, which has been used on Lattice Boltzmann [23] and Navier–Stokes [18]
solvers.

This paper is structured as follows. Section 2 describes the general numerical frame-
work of the IB method, based on the use of a set of singular forces distributed along
the solid surfaces, and compares the experimental results obtained over other similar
studies; Sect. 3 proposes a set of approaches to compute our problem on multicore and
GPU architectures; Sect. 4 contains a performance analysis of the proposed approaches
for single- and multiple-solid simulations; and finally, Sect. 5 outlines some final
conclusions.
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Accelerating solid–fluid interaction 801

2 Mathematical formulation of the immersed boundary method

This section presents the mathematical formulation of the IB method. The basic idea
consists of splitting the time advancement of the fluid momentum equation into two
stage: the first without any body forces (no solid) and the second one adding to the
right-hand side a body force restoring the zero velocity boundary condition on the
solid surfaces. The core of IB consists of computing these body forces. The fluid is
discretized on the regular Cartesian mesh, while the shape of the solids is discretized
in a Lagrangian fashion by a set of points which obviously do not necessarily coincide
with mesh points. This is sufficient information to impose the body forces on the solid
surface.

It is necessary to compute these forces on a support, a set of Cartesian points around
each Lagrangian (solid surface) point. The supports of continuous Lagrangian points
of the same solid share several Cartesian points (Fig. 1). The key aspects of the algo-
rithm are the interpolation I and the S operators (termed as spread from now on). Here,
we perform both operations (interpolation and spread) through a convolution with a
compact support mollifier meant to mimic the action of a Dirac’s delta. Combining
the two operators we can write in a compact form:

f(ib)(x, t) = 1

�t

∫

�

⎛
⎝Ud(s, t + �t) −

∫

�

û(y)δ̃(y − s) dy

⎞
⎠ δ̃(x − s) ds (1)

where δ̃ is the mollifier to be defined later, � is the set of Lagrangian points (immersed
boundary), � is the computational domain, and Ud is the desired value on the boundary
at the next time step. The discrete equivalent of Eq. 1 is simply obtained by any

Fig. 1 An immersed curve discretized with Lagrangian points •. Three consecutive points are considered
with the respective supports
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standard composite quadrature rule applied on the union of the supports associated
to each Lagrangian point. As an example, the quadrature needed to obtain the force
distribution (spreading) on the Cartesian nodes is given by:

f ib(xi , y j ) =
Ne∑

n=1

Fib(Xn)δ̃(xi − Xn, y j − Yn)εn (2)

(xi , y j ) are the Cartesian nodes falling within the union of all the supports, Ne is the
number of Lagrangian points and εn is a value to be determined to enforce consistency
between interpolation and the spreading (Eq. 2). More details about the method and
in particular about the determination of the εn values can be found in [18]. In what
follows we will give more details on the construction of the support cages surrounding
each Lagrangian point since it plays a key role in the parallel implementation of the
IB method. As already mentioned, the solids surface are discretized into a number of
Lagrangian points XI , I = 1..Ne. Around each point XI , we define a rectangular
cage �I with the following properties: (i) it must contain at least three nodes of the
underlying Eulerian mesh for each direction; (ii) the number of nodes contained in the
cage must be minimized. The modified kernel obtained as a Cartesian product of the
one-dimensional function [24]:

δ̃(r) =

⎧⎪⎪⎨
⎪⎪⎩

1
6

(
5 − 3|r | − √−3(1 − |r |)2 + 1

)
0.5 ≤ |r | ≤ 1.5

1
3

(
1 + √−3r2 + 1

)
0.5|r | ≤ 0.5

0 otherwise

(3)

will be identically zero outside the square �I . We take the edges of the square to
measure slightly more than three spacings �. With such choice, at least three nodes of
the mesh in each direction fall within the cage. The interpolation stage is performed
locally on each point support: the values of velocity at the nodes within the support cage
centered about each Lagrangian point deliver approximate values (i.e., second order)
of velocity at the point location. The force spreading step requires information from
all the points. The collected values are then distributed on the union of the supports
meaning that each support may receive information from supports centered about
neighboring points, as in Eq. 2. Finally, the complete set of steps for the IB method
is briefly described. Let the superscript * refers to the predicted variables without
solids influence, V _(C_)Lgi

x(y) and C_Sp j
x(y) the horizontal (x) and the vertical (y)

velocities (V ), the coordinates (C) for the i th Lagrangian (Lg) point and the j th
support (Sp) point:

1. Compute the U∗
x and U∗

y fields without solid force. These fields can be computed
according to several algorithms as the solvers based on Navier–Stokes or Lattice
Boltzmann.
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2. Velocities Interpolation (fluid → solid).

V _Lgi
x+ = I(U∗

x [C_Sp j
x ])

V _Lgi
y+ = I(U∗

y [C_Sp j
y ]) (4)

∀i ∈ Ne,∀ j ∈ �i

3. Compute the force on the solid surface (Lagrangian points).

Fib
x (Xi) = Ud

x − V _Lgi
x

Fib
y (Xi) = Ud

y − V _Lgi
y (5)

∀i ∈ Ne

4. Spread the force (solid → fluid).

f ib
x (C_Sp j

x , C_Sp j
y)+ = S(Fib

x (Xi))

f ib
y (C_Sp j

x , C_Sp j
y)+ = S(Fib

y (Xi)) (6)

∀i ∈ Ne,∀ j ∈ �i

5. Adding the body forces to the U∗ fields. Depending of the method used to
compute U∗, the fib is added.

Ux (C_Sp j
x , C_Sp j

y)+ = f ib
x (C_Sp j

x , C_Sp j
y)

Uy(C_Sp j
x , C_Sp j

y)+ = f ib
y (C_Sp j

x , C_Sp j
y) (7)

∀i ∈ Ne,∀ j ∈ �i

Although the main contribution of this paper is the parallelization of the IB method,
next we present several test cases to validate our implementation by comparing the
numerical results obtained with other studies. One of the classical problems in CFD is
the determination of the two-dimensional incompressible flow field around a circular
cylinder, which is a fundamental problem in engineering applications. This problem
has been studied in numerous works [1–4,13]. Several Reynolds numbers (20, 40 and
100) have been tested with the same configuration. The cylinder diameter D is equal
to 40. The flow space is composed by a mesh equal to 40D (1600) × 15D (600). The
boundary conditions are set as: Inlet: u = U, v = 0, Outlet: ∂u/∂x = ∂v/∂x = 0,
Upper and lower boundaries: ∂u/∂y = 0, v = 0, Cylinder surface: u = 0, v = 0.

The numerical behavior became converged. When Reynolds number is 20 and 40,
there is no vortex structure formed during the evolution. The flow field is laminar
and steady. In contrast, for the Reynolds number of 100, the symmetrical rectangular
zones disappear and an asymmetric pattern is formed. The vorticity is shed behind the
circular cylinder, and vortex structures are formed downstream. This phenomenon is
graphically illustrated in Fig. 2. Two important dimensionless numbers are studied, the
drag (C D = FD/0.5ρU 2 D) and lift (C L = FL/0.5ρU 2 D) coefficients. Where FD is
the resistance and FL is the lifting force of the circular cylinder, ρ is the density of the
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Fig. 2 Vorticity reached with Re = 100

Table 1 Experimental results
References Re = 20 Re = 40 Re = 100

CD CD CD CL

Calhoun [2] 2.19 1.62 1.33 0.298

Russell and Wang [3] 2.22 1.63 1.34 –

Silva et al. [4] 2.04 1.54 1.39 –

Xu and Wang [1] 2.23 1.66 1.423 0.34

Zhou et al. [13] 2.3 1.7 1.428 0.315

This work 2.3 1.7 1.39 0.318

fluid, and U is the velocity of inflow. To verify the numerical results, the coefficients
were calculated and compared with the results of previous studies (Table 1). The drag
coefficient for Reynolds number of 20 and 40 is equal to the results presented by Zhou
et al. [13]. The drag coefficient obtained for Reynolds number of 100 is identical to
the results obtained by Silva et al. [4], and the lift coefficient is close to that presented
by Zhou et al. [13].

3 Parallel immersed boundary method for single and multiple solids

This section presents the strategy adopted to improve the solid–fluid interaction per-
formance based on IB method using either multicore or GPU architectures.

It is well known that the memory management plays a crucial role in the per-
formance of parallel computing. To compute the IB method, it is necessary to store
the information about the coordinates, velocities and forces of all Lagrangian points
and their supports. A set of memory management optimizations, which depends on
the access pattern, has been carried out for the IB method implementation on both
platforms, multicore and GPU, to achieve an effective memory usage. To facilitate
memory bandwidth exploitation and the parallel distribution of the workload, mem-
ory structures based on the style of C programming language have been used. Two
different memory management approaches are proposed depending on multicore or
GPU, since both architectures show different memory features and hierarchy.
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Fig. 3 Memory mapping on
multicore and GPU architectures
for two consecutive Lagrangian
points
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The multicore approach stores the information of a particular Lagrangian point
and its support in nearby memory locations, which benefits the exploitation of coarse-
grain parallelisms. In contrast, to achieve a coalescing access to global memory, the
GPU approach distributes the information of all Lagrangian points in a set of one-
dimensional arrays. In this way, continuous threads access to continuous memory
locations. For clarity, Fig. 3 shows the memory mapping performed on both platforms
in a simplified example for two consecutive Lagrangian points.

Next, several approaches to implement the IB method are proposed. The degree of
parallelism of the IB method is given by the number of Lagrangian points and the
size of theirs supports. The multicore approach carries out a coarse-grain parallelism
by mapping a set of continuous Lagrangian points on each core which are solved
sequentially. This distribution is well balanced and the use of the memory is optimized
using the memory structures previously described (Fig. 3). The set of Lagrangian
points can be easily parallelized with this approach, annotating some of its loops with
Open-MP pragmas.

Concerning GPU, several approaches have been tested. The first approach (A)
consists of exploiting the parallelism between Lagrangian points. All the steps are
computed in only one kernel:

1. Velocities interpolation. The input parameters of this step are loaded from global
memory using coalesced memory accesses. Its results are stored on local registers.

2. Force computation. The parameters are located in both, local and global memory
(coalesced accesses). The results are located in local registers.
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3. Spread the forces. The parameters are used from local and global memory and the
results are stored in global memory using atomic operations.

Algorithm 1 A approach.
1: A_approach(solid s,Ux ,Uy )
2: velx ,vely , f orcex , f orcey
3: for i = 1 → numSupport do
4: velx + = inter pol(Ux [s.Xsupp[i]], s)
5: vely+ = inter pol(Uy [s.Y supp[i]], s)
6: end for
7: f orcex = computeForce(velx , s)
8: f orcey = computeForce(vely , s)
9: for i = 1 → numSupport do
10: Add Atom(s.X ForceSupp, spread( f orcex , s))
11: Add Atom(s.Y ForceSupp, spread( f orcey , s))
12: end for

After the spreading step the forces are stored in the global memory using
atomic functions. These atomic functions are performed to prevent race condi-
tions. Particularly, we used these operations to avoid incoherent executions, since
the supports of different Lagrangian points can share the same Eulerian points,
as graphically shown in Fig. 1. Let us define a solid composed of “num Points”
Lagrangian points and “numSupport” support points per Lagrangian point. In this
approach BL OC K SU SE D = num Points/BL OC KSI Z E CUDA blocks are used,
being BL OC KSI Z E the number of threads per CUDA blocks. BL OC K SU SE D ×
numSupport atomic operations are performed per CUDA block. Each thread loads
and computes the information from numSupport points. The pseudocode and the
CUDA block-threads distribution are graphically illustrated in Algorithm 1 and Fig. 4,
respectively.

On the other hand, our second GPU approach (B) consists of increasing the degree
of parallelism by exploiting the independence between the support points, which is the
maximum parallelism degree possible for our problem. In this case, a different strategy
is proposed where the number of threads is equal to the number of all support points. To

Fig. 4 CUDA block-threads
distribution for the A approach

Solid

Cuda Block 

Lagranges Points

Cuda Block 

Cuda Threads
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exploit the local memory in an efficient way, one CUDA block per Lagrangian point
is used. However, to carry out the velocities interpolation on the support points and
compute the force on the Lagrangian point, additional synchronizations points (barri-
ers and atomic operations) and new reduction processes are necessary with respect to
previous approach. In contrast, there is a lower computational cost per thread, where
each thread computes and takes the parameters concerning only to one point of the
support from global memory rather than taking the information of all support points.
This approach is composed of the following steps:

1. Velocities interpolation. Each thread computes this step on a single support point.
Both, parameters and results, are stored and accessed (coalescing accesses) on
global memory. The results (velocities) are stored on global memory using atomic
operations.

2. Synchronize threads.
3. Force computation. The first thread of each CUDA block carries out this step. The

parameters are located in global memory and the results (forces) in local memory
(shared memory).

4. Synchronize threads.
5. Spread the forces. The parameters are loaded from global (coalescing accesses)

and local memory (forces). The results (forces on support points) are stored using
atomic operations.

Algorithm 2 B approach.
1: B_approach(solid s,Ux ,Uy )
2: is (T hreadandsupportpointid),il (Lagrangianpointid)
3: Shared f orcex
4: Shared f orcey
5: Add Atom(s.X V elSupp[il], inter pol(Ux [s.Xsupp[is]], s)
6: Add Atom(s.Y V elSupp[il], inter pol(Uy [s.Y supp[is]], s)
7: SynchT hreads
8: if isupp == 0 then
9: f orcex = computeForce(s.X V elSupp, s)
10: f orcey = computeForce(s.Y V elSupp, s)
11: end if
12: SynchT hreads
13: Add Atomic(s.X ForceSupp, spread( f orcex , s))
14: Add Atomic(s.Y ForceSupp, spread( f orcey , s))

This approach shows several disadvantages. The interpol step is computed on
global memory using atomic operations instead of local memory to avoid incoherent
executions, which difficulties the memory management over the previous approach.
Therefore, for the same case as the previous approach num Points × numSupport
CUDA blocks are used, each thread has a lower computational cost and num Points ×
numSupport additional atomic operations and global memory accesses are carried
out. Algorithm 2 shows the differences with the previous approach and Fig. 5 illustrates
graphically the CUDA blocks mapping.

Other GPU approach (C) is proposed to mitigate the disadvantages suffered by
the previous approach. Instead of using atomic operations in the “interpol” step, a
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Fig. 5 CUDA threads
distribution for the B and C
approaches

Lagranges Points

Supports

Cuda Block Cuda Block 

Solid

Cuda Threads

reduction strategy is adopted where the first thread of each CUDA block takes the
velocities of all support points (shared memory), which are previously computed by
all threads of the CUDA block, and computes the final velocity on Lagrangian point.
The same strategy is followed in the “compute the force” step. In this way, only one
atomic operation per support point is used, as in the case of A approach. The steps
carried out in this approach are:

1. Velocities interpolation. The result is stored in shared memory and the parameter
is taken from global memory (coalescing accesses).

2. Synchronize threads.
3. Gather the local velocities. The first thread of each CUDA block adds all local

velocities. Both, parameters and results, are located in local memory.
4. Force computation. The first thread of each CUDA block carries out this step.

The parameters are located in global and local memory (velocities) and the results
(forces) in local memory (shared memory).

5. Synchronize threads.
6. Spread the forces. The results are stored on global memory using atomic operation,

and the parameters are taken from local and global memory.

It is important to note that the reduction strategy adopted by the B and C during
the step “compute the forces” increases the synchronization points and suffers from
divergence in the execution path. Although, there are parallel techniques which allow
to carry out reduction processes, these do not obtain better performance than the
proposed strategy. This is due to the small size of the supports. Both approaches share
the same number of CUDA blocks (num Points×numSupport) and the same CUDA
blocks mapping (Fig. 5). In contrast, the C approach does not present an additional
overhead caused by the atomic operation and accesses to global memory with respect
to the A approach. The main features about this approach are detailed in Algorithm 3.

A final approach (D) is proposed for the particular case of multiple-solid execu-
tions. This approach is similar to A approach, however, instead of using a set of CUDA
blocks to carry out the IB on one solid, one CUDA block per solid is used. In addition,
the memory hierarchy can be efficiently exploited using this approach, since this con-
figuration (multiple solids) is much more profitable for GPU computing. Concerning
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Algorithm 3 SUPPORT-RED approach.
1: SUPPORT-RED_approach(solid s,Ux ,Uy )
2: is (T hreadandsupportpointid)
3: Sharedvelx [numSupp], vely [numSupp], velxtotal , velytotal , f orcex , f orcey
4: velx [is] = inter pol(V elx [solid.Xsupp[is]], s)
5: vely [is] = inter pol(V ely [solid.Xsupp[is]], s)
6: SynchT hreads
7: if isupp == 0 then
8: for i = 1 → numSupport do
9: velxtotal+ = velx [i]
10: velytotal+ = vely [i]
11: end for
12: f orcex = computeForce(velxtotal , s)
13: f orcey = computeForce(velytotal , s)
14: end if
15: SynchT hreads
16: Add Atomic(s.X ForceSupp, spread( f orcex , s))
17: Add Atomic(s.Y ForceSupp, spread( f orcey , s))

to multicore, a different approach is proposed to compute multiple solids as well. Sim-
ilar to the previous approach, the only difference is identified in the workload mapping
a set of solids per core instead of a set of Lagrangian points per core.

4 Performance analysis

This section provides a performance analysis considering all the IB approaches,
sequential (single core), multicore, and GPU. All computations are carried out using
double precision. GCC optimization flags (-O3, -funroll-loops) are used for sequential
and multicore approaches. The results achieved in this section are shown in terms of
execution time and speedup. Speedup is the ratio between the execution time obtained
by the sequential over the parallel counterpart. The results in term of execution time
(the average per interaction) are shown in tables, whereas the results in terms of
speedup are shown in figures.

We have used a heterogeneous CPU–GPU platform, composed of the computational
resources shown in Table 2. The overhead caused by the memory transfer between

Table 2 Platform

Platform Xeon E5520 (2.26 GHz) Kepler K20c

Cores 8 2,496

On-chip memory L1 32KB (per core) SM 16/48KB (per MP)

L2 512KB (unified) L1 48/16KB (per MP)

L3 20MB (unified) L2 768KB (unified)

Memory 64 GB DDR3 5 GB GDDR5

Bandwidth (GB/s) 51.2 208

Compiler gcc 4.6.2 nvcc 5.5
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memories is included on the results obtained by the GPU approaches. The analysis
consists of two subsection: one for single solid and one for multiple solids. The set
of tests consisted in obtaining the dynamics of a cylinder/s immersed into the fluid.
The size of the cylinder/s (radius) is increased to evaluate the trend in performance
for higher computational requirements. Given the radius of the cylinder, the number
of Lagrangian points is calculated using floor(2 × radius × π).

4.1 Single solid

As shown (Table 3; Fig. 6), the multicore approach achieves an efficient and constant
performance of around 5.5 in terms of speedup using 8 cores. The A approach presents
better results with respect to the multicore counterpart from a radius equal to 128,
although this benefit is not higher than the rest of the GPU approaches. The B approach

Table 3 Execution time (ms)
consumed by the set of IB
approaches for single-solid
executions

Radius IB approaches

1 Th 8 Th A B C

8 0.218 0.0419 0.233 0.069 0.062

16 0.254 0.0492 0.235 0.072 0.068

32 0.527 0.0958 0.295 0.076 0.071

64 1.05 0.19 0.301 0.09 0.082

128 2.14 0.389 0.322 0.147 0.127

256 3.97 0.721 0.405 0.276 0.235

512 8.06 1.468 0.526 0.567 0.476

1,024 15.73 2.84 0.972 1.11 0.924

2,048 28.95 5.18 1.782 2.06 1.71
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Fig. 6 Trend of the speedup reached by the set of IBM approaches increasing the size (radius) of the solid
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shows a different behavior and offers better results. However, the performance reached
by the C approach is even better, since this approach does not present the disadvantages
shown by the B approach caused by a higher number of atomic operations and global
memory accesses. This overhead became higher as the size of the cylinder increases.
A peak of performance of approximately 14 and 17, in terms of speedup, is obtained
by the B and C approaches, respectively. In contrast, the A approach does not saturate
the GPU performance up to a radius equal to 512 reaching a top speedup around 16.
It is necessary to increase the size of the solid up to a minimum radius equal to 32
to achieve the sufficient workload and parallel features to obtain better performance
over the multicore counterpart on both approaches, B and C .

4.2 Multiple solids

This problem shows higher computational requirements and parallel potential so that
we have taken into account the use of multiple CPUs (2) and GPUs (4). Four different
approaches have been tested: the sequential, the multicore applied to multiple solids,
the C and D approaches on GPUs. For single-solid simulations, the A approach does
not provide satisfactory results compared with the other GPU approaches and the C
approach is able to achieve the best performance. We want to know if this is still valid
for multiple-solid simulations (Table 4).

In the previous subsection the only parameter evaluated was the size of the cylinder
(radius). However, in this case, the parallelism degree is given by the number of
cylinders as well. Several tests were carried out by increasing the radius and number
of solids to determine the influence on performance of both parameters.

The trend in performance on multicore architecture (Fig. 7) is very similar to that
of the previous subsection. However, the different mapping of the workload obtains a
higher benefit achieving a speedup of nearly 5.9 using 1 CPU (8 cores). Furthermore,
an efficient and constant speedup is obtained using 2 CPUs (16 cores) with a speedup
nearly 9.

The results obtained by both GPU approaches show much better performances.
As shown in Fig. 8, the C approach achieves a performance peak of approximately
35 even in the first tests cases (low number of cylinders). This demonstrates that this
approach does not scale for multiple-solid simulations. In contrast, the D approach
offers better performances, achieving a peak of performance of approximately 68.
The gain improves as the number of cylinder and radius increases until the maximum
benefit is reached. However, for small solids and few number of solids the C approach
continues being the best choice.

There is no additional overhead to compute the IB on multiple GPUs, since the
solving of each solid is totally independent. On both multiGPU approaches (2 and 4
GPUs) the trend reached (Fig. 9) is very similar to that of the use of 1 GPU. The use
of multiple GPUs reaches a higher speedup over the use of one GPU from 6.89 and
7.38 in the first test case (8 solids/radius) to 118 and 164 in the last test case (256
solids/radius) using 2 and 4 GPUs, respectively.
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Table 4 Execution time (ms) achieved by the set of IB approaches for multiple-solid executions

#Sol. IB approaches

1 Th 8 Ths 16 Ths C App. D App. 2 GPUs 4 GPUs

Radius = 8

8 1.64 0.282 0.188 0.095 0.244 0.238 0.222

16 2.61 0.453 0.296 0.141 0.272 0.253 0.24

32 5.43 0.932 0.617 0.26 0.289 0.277 0.262

64 11.9 2.04 1.37 0.341 0.313 0.292 0.281

128 19.2 3.29 2.16 0.492 0.389 0.319 0.295

256 38.9 6.84 4.23 0.992 0.787 0.625 0.457

Radius = 16

8 2.43 0.422 0.279 0.141 0.267 0.252 0.232

16 5.84 1 0.675 0.259 0.307 0.27 0.262

32 10.1 1.72 1.14 0.442 0.33 0.313 0.273

64 15.4 2.64 1.74 0.505 0.374 0.339 0.321

128 21.7 3.71 2.44 0.903 0.437 0.385 0.342

256 41.3 7.01 4.49 1.7 0.801 0.705 0.583

Radius = 32

8 5.41 0.929 0.629 0.263 0.315 0.297 0.242

16 11 1.89 1.27 0.344 0.348 0.322 0.308

32 13.6 2.33 1.56 0.503 0.384 0.356 0.331

64 23.7 4.03 2.66 0.931 0.505 0.485 0.371

128 49.3 8.39 5.58 1.66 0.826 0.771 0.585

256 87.4 14.94 9.87 3.02 1.41 1.16 0.647

Radius = 64

8 8.66 1.48 0.974 0.344 0.352 0.343 0.297

16 11.9 2.05 1.34 0.496 0.395 0.365 0.355

32 24.3 4.16 2.72 0.928 0.74 0.401 0.370

64 49.8 8.78 5.61 1.65 1.02 0.83 0.423

128 99.4 17.3 11.1 3.11 1.6 1.28 0.89

256 159.9 28.01 17.84 5.01 3.1 1.81 1.08

Radius = 128

8 11.8 2.03 1.32 0.496 0.403 0.392 0.356

16 23.9 4.09 2.68 0.932 0.751 0.412 0.403

32 50.5 8.67 5.66 1.66 1.05 0.807 0.432

64 98.7 16.8 11 3.13 1.63 1.19 0.815

128 200 34 22.49 6.45 2.94 1.73 1.23

256 389.3 65.82 42.79 12.36 5.82 3.32 2.387
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Table 4 continued

IB approaches

#Sol. 1Th 8Ths 16Ths C App. D App. 2GPUs 4GPUs

Radius = 256

8 24.4 4.21 2.71 0.911 0.769 0.428 0.389

16 53.21 9.08 5.78 1.69 1.06 0.887 0.442

32 99.01 17.23 10.84 3.22 1.68 1.23 0.819

64 197.97 34.07 22.47 6.41 2.96 1.78 1.35

128 371.56 65.31 41.02 12.03 5.46 3.2 2.28

256 610.77 107.3 68 19.58 9.02 5.25 3.71
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Fig. 7 Trend of the speedup obtained by the multicore approach using 2 CPUs-16 cores (top) and 1 CPU-8
cores (bottom) increasing the radius and the number of solids
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Fig. 8 Speedup for the C (left) and D (right) approaches increasing the radius and the number of solids
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Fig. 9 Speedup for the multiple-GPU approaches using two (left) and four GPUs (right)

123



814 P. Valero-Lara

5 Conclusions

The immersed boundary method has been used to simulate the solid–fluid interaction
on multicore and GPU architectures. A classical test which consists of computing the
flow around single or multiple cylinders has been used with satisfactory results in
terms of accuracy and efficiency. Several approaches for the implementation of the
IB method have been proposed. The memory management has been optimized for
both architectures, adapting the use of memory to the particularities of each memory
hierarchy.

Efficient speedups for single- and multiple-solid executions have been achieved
by exploiting the multicore architecture, demonstrating the efficiency of the mem-
ory management and the implementation. The different CUDA blocks mappings, one
CUDA block per support point (B and C approach), one CUDA block per Lagrangian
point (A approach) and one CUDA block per solid (D approach), have a direct conse-
quence on performance. The highest performance in terms of speedup and execution
time for single-solid executions has proven to be the C approach, which combines
the level of parallelism presented by the B approach with the low number of global
memory accesses and atomic operations of the A approach. However, it is required a
minimum radius equal to 32 for one solid simulations to reach sufficient workload and
parallel features to achieve better results with respect to the multicore counterpart. On
the other hand, the D approach offers the best performance for multiple-solid simula-
tions achieving better results in all test cases compared with the multicore approach.
Concerning to the use of multiple GPUs, a high computational load (number of solids
and radius) is required to achieve a significant benefit over the use of one GPU.
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