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Biochar influences on agricultural soils, crop production, and
the environment: A review
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Abstract: Given its high pore volume and adsorption capacity, and when applied as an agricultural soil amendment, its ability
to enhance the soil’s nutrient- and water- holding capacities, biochar has become a focus of research interest. In most applica-
tions, crop productivity is significantly increased after agricultural soils are amended with biochar. In addition to increasing soil
quality, the biochar amendments sequester carbon within the soil. However, the long-term effects of amending agricultural soils
with biochar are difficult to predict, because the mechanisms behind the increase in productivity of biochar amended soils are
not yet fully understood. Long-term detrimental effects on soil and the environment can occur if biochar is applied haphazardly.
Current knowledge and the additional experimental work required to thoroughly understand the influence of biochar amend-
ment on the behavior of agricultural soils processes are reviewed. Further, studies on the post production processing of biochar
are discussed in the context of the possible engineering of biochar for particular states of soil degradation.
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Résumé : Étant donné son volume de pores élevé et sa capacité d’adsorption, et lorsqu’appliqué comme un amendement de sol
agricole, sa capacité à améliorer la substance nutritive du sol et sa capacité de rétention d’eau, le biocharbon fait l’objet d’intérêt
en recherche. Dans la plupart des applications, la productivité des cultures agricoles a augmenté de façon significative après que
les sols agricoles soient amendés au moyen du biocharbon. En plus d’augmenter la qualité du sol, les amendements au
biocharbon séquestrent le carbone dans le sol. Cependant, les effets à long terme de l’amendement des sols agricoles au moyen
du biocharbon sont difficiles à prévoir, car les mécanismes sous-jacents à l’augmentation de la productivité des sols amendés par
le biocharbon ne sont pas encore entièrement compris. Les effets néfastes à long terme sur le sol et l’environnement peuvent se
produire si le biocharbon est appliqué de façon fortuite. On fait le point sur les connaissances actuelles ainsi que le travail
expérimental supplémentaire requis afin de bien comprendre les effets de l’amendement au biocharbon sur le comportement
des processus des sols agricoles. De plus, on analyse les études sur le traitement post-fabrication du biocharbon dans le cadre de
l’ingénierie du biocharbon aux fins d’états particuliers de dégradation du sol. [Traduit par la Rédaction]

Mots-clés : fabrication de biocharbon, post-fabrication, propriétés physiques du sol, fertilité, cultures agricoles, séquestration de
carbone.

Introduction
“Terra Preta” refers to a particularly fertile anthropogenic soil

discovered near the ruins of a pre-Columbian civilization located
in the Amazon basin. This soil contrasts sharply with typical
Amazonian jungle soils, which are often nutrient deficient. The
nutrient poor soils are the result of excessive rain dissolving nu-
trients from the topsoil and precipitating them into deeper soil
strata, subsurface environments which are inaccessible to rooting
crops. Some two thousand years ago the current Terra Preta soils
were generated by enrichment of the native jungle soils with a
carbonaceous material (Glaser and Birk 2012). Terra Preta soils
have remained highly fertile and crops used to grow vigorously in
them because they harbor large microbial communities (Kim
et al. 2007). The indigenous Terra Preta people produced these
carbonaceous materials by burying biomass in pits, where they
smoldered and decomposed for days (Johannes et al. 2015) although
this is still conjecture.

Nowadays, researchers are trying to mimic “Terra Preta” by
applying biochar (charcoal-like material) to agricultural soils.
Amendment of soils with biochar is considered both as a way of
building the soil’s organic fraction and as a means to sequester

carbon (C). There are more than 2500 articles on the effect of
biochar on agricultural soil processes and crop production pub-
lished between 2009 and the present; the number of studies be-
fore 2009 is very small. This growing interest indicates that
amending the soil with biochar is likely to become a common-
place practice. However, accurately predicting the total behavior
of biochar-amended agricultural soils remains problematic. It is
virtually impossible to remove the biochar once it has been ap-
plied to a soil, because it is chemically very inert (Johannes et al.
2015). Given the irreversibility of biochar applications, and their
undocumented but potential detrimental effects on crops and on
human health, their impacts on soil processes should be carefully
assessed.

Biochar amendment of soils also raises interest with respect to
climate change mitigation. As biochar locks up carbon during its
production process, the carbon release to the atmosphere might
be reduced by sequestering the biochar in soils and thus reducing
our current release of greenhouse gases (GHGs) (Hansen et al.
2015). The objectives of this literature review are to highlight the
current knowledge of biochar’s characteristics and their influ-
ences on the amended soils’ physicochemical properties and their
longer term effects on soil processes and the environment.
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Biochar production
Biochar can be produced by the pyrolysis of biomass material in

the absence of oxygen at temperatures in the range of 250 °C to
700 °C (Yuan et al. 2014). The raw material or the feedstock for
biochar production can originate from a variety of biomass types
including wood, woodchips, crop residues, manure, and other
animal wastes. The efficacy of biochar for soil amendment de-
pends on the type of feedstock used and the pyrolysis conditions
used (Table 1). Both the feedstock properties and the pyrolysis
conditions contribute to the biochar’s characteristics including
the chemical composition, surface chemistry, nutrient composi-
tion, adsorption capacity, cation exchange capacity (CEC), pH, and
the physical structure (Cimò et al. 2014). The physical characteris-
tics of biochar including the pore number and size are also influ-
enced by the biochar processing conditions (Ronsse et al. 2013).
For example, the biochar produced at temperatures exceeding
450 °C and then added to soil may improve the internal drainage
of the soil and render the water available to plants, whereas a soil

amended with a biochar produced at lower temperature (<450 °C)
sometimes repels water (Page-Dumroese et al. 2015).

Biochar created at temperatures less than 300 °C contain cellu-
lose compounds, because higher temperatures break down the
structure and chemistry of such cellulose compounds (Antal and
Gronli 2003). Therefore, the soil amendments using biochar pro-
duced at lower temperatures retains more soil nutrients because
they contain more surface area for nutrient to be adsorbed (nutri-
ent retention sites) (Glaser et al. 2002). On the other hand, the
porosity of biochar increases with the temperature of pyrolysis
due to the volatilization of tars present within the pores and the
escape of gases at the higher pyrolysis temperatures (Cantrell
et al. 2007).

Processing of biochar

Biologically-activated biochar
For biochar to become biologically active and enrich the soil, it

needs to be activated, such that the particle surface area is in-

Table 1. Influence of biomass feedstock and pyrolysis temperature on biochar surface area and pore
volume

Feedstock
Pyrolysis
temperature (°C)

Pore
volume (cm3/g)

Surface
area (m2/g) References

Malt spent Rootlets 400 3.4 0.016 Manariotis et al. (2015)
800 340 0.21

Hardwood 300 0.06 N/A Xiao and Pignatello (2015)
500 0.21 N/A

Wheat 400 0.016 10.15 Manna and Singh (2015)
600 0.034 20.38

Biosolids 650 N/A 395 Kaudal et al. (2015)
Wood 350 N/A 1 Brewer et al. (2014)

800 N/A 317
Rice husk 350 N/A 32.7 Claoston et al. (2014)

650 N/A 261.72
Empty fruit bunch 350 N/A 11.76

650 N/A 28.2
Rubber wood 300 0.0034 1.399 Shaaban et al. (2014)

700 0.0097 5.49
Medicinal herbs 300 4.45 0.0075 Yuan et al. 2014

700 11 0.0178
Coal tailings 400 N/A 2.7 Tremain et al. (2014)

800 N/A 75.3
Pine needle 100 N/A 0.65 Tang et al. (2013)

700 N/A 490.8
Cotton seed hulls 350 N/A 4.7

800 N/A 322
Oakwood 350 N/A 450

600 N/A 642
Corn Stover 350 N/A 293

600 N/A 527
Broiler litter manure 350 N/A 59.5

700 N/A 94.2
Soybean stalk 300 N/A 144.17

700 N/A 250.23
Pine needles 300 N/A 4.09 Ahmad et al. (2013)

700 N/A 390.52
Sewage sludge 400 N/A 33.44 Méndez et al. (2013)

600 N/A 37.18
Switchgrass 450 N/A 5.89 Kim et al. (2013)

800 N/A 52.27
Bagasse 400 0.03 14.4 Kameyama et al. (2012)

800 0.16 219
Switchgrass 250 N/A 0.4 Ippolito et al. (2012)

500 N/A 62.2
Maize 300 N/A 1 Wang et al. (2015)

600 N/A 70

Note: N/A, data not available.
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creased and the pores are opened, and become a medium for
beneficial soil microorganisms. Activation of biochar in soils oc-
curs naturally and it can take from months to years to complete.
During this time, biochar may increase the soil’s ability to adsorb
and retain nutrients and water, thereby making these resources
more available to the plants (Cross and Sohi 2013). The natural
process of biochar activation in soils can be sped up by mixing
biochar with compost or manure (Dias et al. 2010; Jindo et al.
2012). It has been found that the biochar generated at lower tem-
peratures and which has not received further activation or pro-
cessing will have lesser adsorption capacity and surface area than
biologically activated biochar (Plaza et al. 2014). The surface area
of non-activated biochar is approximately 10 m2 kg−1 compared to
200–1000 m2 kg−1 for activated biochar (Dehkhoda et al. 2016).

Chemically activated biochar
Numerous methods are available for activating the freshly pro-

duced biochar. Activating biochar to generate greater absorption
capacity requires specific catalytic chemicals, such as potassium
hydroxide (KOH), to be loaded onto the carbon surfaces of biochar.
The residual carbon in activated biochar is porous but has a low
surface area. To generate a large surface area, a second thermal
treatment in the presence of chemicals is applied to biochar after
pyrolysis. This is often followed by a washing step using water to
remove the activating chemicals or the unwanted ash from the
activated biochar (Kirk et al. 2012). Another way of activating
biochar is to use sewage sludge or zinc chloride to enhance the
surface area (Chen et al. 2002). Comparatively, the biochar acti-
vated using undigested sludge has greater carbon content, lesser
ash content, greater surface area, and better phenol adsorption
characteristics than the biochar activated using inorganic chemi-
cals (Tay et al. 2001).

Alternatively, the room temperature treatment of biochar us-
ing organic acids has been shown to be an effective way to rapidly
oxidize its surface, thereby significantly increasing the number of
acidic oxygenated groups (e.g., carboxylic acid groups) on the sur-
face. Carboxylic acid groups are essential in improving a biochar’s
nutrient holding capacity (Park et al. 2013). Polarizing the acidic
nature of oxidized biochar will be suited for the retention of basic
ions such as ammonium (NH4

+) and other cations. A strong corre-
lation exists between the quantity of NH4

+ adsorbed by the oxi-
dized biochar and the concentration of acid groups on biochar
(Kastner et al. 2012). Due to the extra step required to biologically-
activate the biochar, in some cases, it would not be economical to
use biochar for soil amendment (Kuppens et al. 2014).

Fortifying biochar with nutrients
Hydrogen sulfide (H2S) is a toxic gas present in biogas, which

increases the rate of corrosion in engines using biogas. This cor-
rosion may be prevented by separating and removing H2S from
the biogas (Powell et al. 2012). In turn, H2S can biologically activate
biochar, wherein the surface of the activated biochar serves as a
site where the H2S is completely converted into elemental sulfur
and sulfate compounds. Such a system provides an environmen-
tally sustainable method for disposing of H2S from agricultural
soils (RiceCenter 2012). Camphor-derived biochar resulting from
pyrolysis under temperatures varying between 100 and 500 °C
have been shown to be effective in H2S sorption. Pyrolysis temper-
ature and surface pH were the production variables showing sig-
nificant influence on H2S sorption capacity of biochar (Shang et al.
2012). Given their greater surface area, activated carbon shows
greater adsorption and retention of sulfur, and additional heat
treatment further enhanced their capacity for the adsorption and
retention of sulfur (Wenguo et al. 2005). These observations are
helpful for designing biochar as an engineered sorbent for the
removal of H2S from biogas production units.

Biochar pelletizing
Pelletizing biochar might lead to specifically engineering biochar

for a particularly degraded soil and in reducing its dustiness
(Andrenelli et al. 2016 and Karl and Alzena 1990). Handling and
applying biochar to soils poses a health risk associated with inhal-
ing small airborne particles of biochar. Pellets not only reduce
dust but also gives the product a uniform shape and size thus
allowing the biochar to be more uniformly distributed in the soil
(Reza et al. 2011).

Earlier attempts to pelletize biochar using binders without
wood flour failed to yield a cohesive pellet (Dumroese et al. 2011).
The addition of binders like starch and polylactic acid (PLA) to
achieve biochar pellet integrity could provide more resistance to
stresses developed during the water sorption and swelling of
biochar in the soil (Dumroese et al. 2011). Similarly, adding canola
oil at a rate of 3% by mass improved the rheology of the blend,
pellet output rate, and integrity (Dumroese et al. 2011). Most re-
search in pelletizing biochar has focused on densifying pellets to
obtain higher packing efficiencies. However, the less dense the
pellet, the greater will be the swelling coefficient of biochar pellet.
During pellet formation, use of a large die diameter and shorter
die length could reduce pellet density, but maintaining biochar
porosity (Reza et al. 2014). The biochar pellets can be amended
with nutrients to further enhance the pellet’s performance as a
soil amender. Biochar pellets have been produced by blending
and pelletizing switchgrass (Panicum virgatum L.) biochar, lignin,
and potassium (K) and phosphorus (P) fertilizers (Kim et al. 2014).

Future studies on the use of additives to biochar to increase the
coherence and resistance of the pellets for better transportation
and application to soils are required. The best pretreatment con-
ditions for making coherent biochar pellets should be assessed by
measuring (1) the pellets’ resistance to abrasion and immersion,
(2) their modulus of elasticity, and (3) the uniformity in pellet’s
moisture content. Calculations of the modulus of elasticity and
compressibility of biochar pellets are needed to develop analytical
standards. Similar to manure, minerals, and compost, the effi-
ciency of soil amendment material varies according to how they
are applied and incorporated into the soil (e.g., surface applied,
banded, or broadcasted). Biochar application techniques, espe-
cially with pelletized biochar, should be investigated to achieve
the highest possible application efficiency.

Influence of biochar addition to agricultural soils
Biochar amendments alter the physicochemical properties of

soils, including bulk density, porosity, CEC, and pH (Atkinson
et al. 2010). It also influences soil processes, such as water- and
nutrient- holding capacities and consequently influences the crop
production.

Soil–biochar mix and its physical characteristics
The average density of biochar particles measures less than that

of the soil particles (Sharma et al. 2014). Consequently, adding
biochar decreases the bulk density of the soil. The soils with lower
bulk density reduce the energy requirement of mechanical tillage
(Carter 1990). However, when fine particles of biochar are applied,
or when the larger biochar particles disintegrate in arable soils
under the influence of tillage and cultivation operations (Wang
et al. 2013), the disintegrated fine particles can fill up small pores
in the soil leading to increased bulk density in the biochar–soil
mix. Biochar particle size is likely to be reduced by mechanical
disturbances such as plowing in agricultural areas or by freeze–
thaw cycles (Saran et al. 2009). Little has been published about the
agricultural practices that could affect the biochar particle’s deg-
radation, where small biochar fractions also might lead to the
closing of the soil pores and lead to the formation of a subsurface
hardpan (Verheijen et al. 2010). Roots elongation and proliferation
are affected by mechanical impedance within the soils. Denser
soil will increase the mechanical impedance, decrease root growth,
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and reduce crop productivity (Otto et al. 2011). An obvious risk of soil
compaction occurs through the very application of biochar itself. If
biochar is applied using heavy machinery while the water-filled soil
pores are near saturation, the risk of compaction increases (Carlos
et al. 2012).

In soils vulnerable to compaction, positive and (or) negative
consequences in adding biochar may occur, both in the topsoil
and subsoil. Biochar has a diminished elasticity, as measured by
the relaxation ratio which is the ratio of the bulk density of the
test material under a specified stress to the bulk density after the
stress has been removed. Comparatively, straw has a greater elas-
ticity ratio, and when the straw is charred and applied as biochar,
the resilience of the soil to compaction loads decreases.

Biochar amendments alter soil porosity and increase the soil
surface area. A soil–biochar mix tends to improve the soil’s water-
holding capacity (WHC) (Basso et al. 2013). A comparison of soil
water retention curves has shown an increase in the soil WHC
with the application of biochar (Abel et al. 2013). Nevertheless,
this additional water held by the soil may not be readily available
to the plants, because the water in the very small saturated pores
is too tightly held against the plant’s uptake forces (Sohi et al.
2010). As the percentage of biochar increases, so does the total
volumetric water content, largely due to the alteration of micro-
pores in the soil (Ngelique 2011). In a study by Ventura et al. (2013),
biochar produced from vegetable bio-products and applied to soil
at a rate of 60 Mg ha−1 showed inconsistencies in the soil’s water
retention capability. These inconsistencies were attributed to the
soil non-homogeneity in porosity and to the method by which soil
samples were prepared. In the laboratory, large soil samples in the
pressure plate apparatus reduced this uncertainty. Also, the hy-
drophobicity of biochar might also have had an influence on the
results. Biochar produced at temperatures higher than 400 °C
have greater infiltration and water retention at their saturation
point than the biochar produced at lower temperatures. This
might be attributable to high biochar production temperatures
influencing biochar pore volume and pore tortuosity (Kameyama
et al. 2014). Soil hydrology is affected by the reductions in organic
matter resulting from intensive agricultural practices (Laird et al.
2010). Studies have shown that, applying biochar to the sandy soil
at a rate of 60 Mg ha−1 resulted in a significant increase in soil
water retention capacity, which was attributed to the biochar’s
porous structure (Ulyett et al. 2014). In a study by Kameyama et al.
(2014), a biochar amendment at a rate of 5 t ha−1 increased the
water retention in sandy loam soil, resulted in a 12% reduction
in the cumulative evaporation (kgwater/m2

soil) from the soil. Fur-
ther, the sandy loam soil’s water holding capacities at saturation
and the field capacity relatively increased by 30% and 16%, respec-
tively.

Soil water content increased with an increase in the quantity of
biochar added to the soil (Ibrahim et al. 2013). The soil amended
with woodchip biochar had greater water content than the soil
amended with dairy manure biochar (Lei and Zhang 2013). The
biochar produced from dairy manure or woodchips and mixed at
5% dry weight basis (d.w.b) with soil, led to an increase in hydrau-
lic conductivity (ksat) of the amended soils. The ksat of the soil
amended with woodchip biochar was greater than the soil
amended with dairy manure biochar. This was attributed to the
high ash content of woodchip biochar (Lei and Zhang 2013). Gen-
erally, the changes in electrical charge on the clay particles cause
rearrangement of the structure, increase in secondary macro-
porosity, and an increase in ksat of the soils.

Biochar produced at pyrolytic temperatures less than 450 °C
contain more water repelling organic compounds (Kinney et al.
2012; Yi et al. 2015), which may lead to reduced plant growth in the
soils (Fang et al. 2014). This hydrophobicity of biochar may also
leadtosoilerosiondueto increasedwateroverflow.Thehydrophobicity
of biochar can be controlled by appropriate selection of feedstock

and pyrolytic conditions. If necessary, post-pyrolysis treatments
can be used to decrease biochar hydrophobicity (Yi et al. 2015).

Systems and methods, such as using artificially aged soil–
biochar mix, are required to be developed that mimic the long-
term behavior of the soil amended with biochar (Song et al. 2013),
to understand how the physical nature of the biochar influences
the soil processes over time; and also to investigate the effect of
different biochar feedstocks, pyrolysis conditions, biochar applica-
tion rates, different soil types, environmental and agricultural
conditions on the responses of biochar addition to the soil. How-
ever, at present, controlled long-term studies are not available in
the literature. Moreover, conservation methods, such as no-till,
cover crops, complex crop rotations, mixed farming systems, and
agroforestry, are needed to be considered with the biochar amend-
ment to the soil. The effects of biochar amendment to the soils
that are prone to compaction and its consequent influence on the
soil processes and root systems have not been investigated. Simi-
larly, the effects of biochar on friction and cohesion between the
soil particles and the biochar have not been fully quantified. Very
little information is available on how the large-scale addition of
biochar to the soil impacts the frequency and the intensity of
irrigation. Soil hydrology may also be affected by the partial or the
total blockage of soil pores by the smallest particle size fraction of
biochar that decreases the water infiltration into the soil. Thus,
the biochar application can be beneficial or detrimental depend-
ing on the particle size of the biochar and on the texture of the
soil.

Soil–biochar mix fertility
The difference in chemical composition of biochar and the soil

(Yuan et al. 2016) has an impact on plant growth due to the alter-
ation in soil chemistry and changes in the availability of nutrients
to the roots. Biochar derived from animal wastes had significantly
increased the soil’s pH and CEC from acid-free drained soils
(Uzoma et al. 2011; Wang et al. 2014).

Biochar adsorbs soil nutrients, decreases their leaching into
groundwater (Kameyama et al. 2012), and makes them readily
available to plants (Rogovska et al. 2014). On the other hand, if
biochar is incorporated without activation into the soil, its high
adsorption capacity will result in the adsorption and fixing of
available nutrients from the soil, thereby barring the crops from
soil nutrients. Thus, an initial inhibition of crop growth might
occur immediately after the amendment of agricultural soils with
inactivated biochar (Lehmann et al. 2011).

Microorganisms have higher reproductive and retention rates
in biochar amended (versus non-amended) soils (Lehmann et al.
2011). Microorganisms housed in biochar’s micropores multiply
more rapidly as they are sheltered from their predators. Appar-
ently, the soil organic matter and microbial activity were en-
hanced due to the high pore structure of biochar and the presence
of degradable components in the biochar. Thus, biochar is a bind-
ing agent that improves the soil macro-aggregates (Lu et al. 2014).

To conclude, the general relationship between the soil organic
content, the type of biochar amendment required and the result-
ing crop yield is poorly understood. The investigation to compre-
hend the correlation between the effects of changes in soil
physical properties on the change in soil chemistry, such as oxi-
dation of nutrients due to increased porosity of soil–biochar mix,
should receive more attention to quantify the physicochemical
behavior of the soil–biochar mix.

Crop production in soil–biochar mix
A number of studies have reported positive effects of biochar

amendment on crop productivity (Wang et al. 2012; Baronti et al.
2014; Revell et al. 2012; Uzoma et al. 2011; Jeffery et al. 2011;
Galinato et al. 2011; Blackwell et al. 2010; Graber et al. 2010; Asai
et al. 2009; Hossain et al. 2010). Statistical meta-analysis showed
that the biochar amendment resulted in an increase in crop pro-
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ductivity, as high as 13%, in acidic and neutral pH soils where the
biochar amendment increased the pH value of the soil (liming
effect) and led to a greater crop productivity (Hass et al. 2012).
Application of biochar produced from flax straw fines to loamy
soils at a rate of 1 t ha−1 had shown significant effects on wheat
growth (Ahmed and Schoenau 2015).

Crop production increase in soils with a coarse or medium tex-
ture and amended with biochar was due to the improved WHC
and nutrient availability of the soil (Jeffery et al. 2011). Plants
exhibit thinner and more extensively branched roots in the soils
with increased biochar amendment, due to the soil’s increased
WHC and the reduced leaching of nitrogen (N) and phosphorus (P)
from the soil (Bruun et al. 2014; Ventura et al. 2013).

Given the great variety of biochar feedstocks available, along
with the changes in inherent biophysical characteristics and ag-
ronomic practices of different study sites, it is difficult to gener-
alize the benefits from biochar amendment. In experimental field
trials, it is often difficult, or impossible, to control all the environ-
mental variables, especially the variability in meteorological fac-
tors. This can lead to weakness in the data obtained from such
experiments, and reduce accuracy when extrapolating the results
to other environmental conditions. Therefore, more scientific ev-
idences regarding effects of biochar on soil processes are highly
needed before a developed policy of large-scale implementation
can be proposed.

Environmental implications of biochar production
and application to agricultural soils

Decomposition of biochar in soil
Interest has grown in biochar application to soils not only for its

benefits as an organic fertilizer but also for the need to address the
climate change (Woolf et al. 2010). If organic wastes (OW) are left
to decompose naturally, they release carbon into the atmosphere
in the form of CO2, which is one of the GHGs (Thomazini et al.
2015). Due to the lack of oxygen in the pyrolysis process, the
carbon from the OW is locked away into the biochar. Thus, apply-
ing the biochar to the soil sequesters carbon and thus decreases
the emission of GHGs into the atmosphere (Zhang et al. 2016).

Biochar amended soils contain as much as 35% d.w.b soil or-
ganic carbon (SOC) in the form of biochar (McHenry 2011). Inor-
ganic nitrogen in the biochar amended soils comes from minerals
and is added to soil through precipitation, or as fertilizers.

Biochar is considered highly resistant to biological degradation,
because of the presence of aromatic carbon in its composition.
The reported residence time for wood-derived biochar in the soil
before complete degradation is in the range of 1000–12 000 years
(Woolf et al. 2010). Biochar produced at low temperatures is less
stable and could return significant amounts of carbon to the at-
mosphere within a few hundred years after it is added to the soil
(Kinney et al. 2012). More research is needed to optimize the tem-
perature and residence time during the pyrolysis process to pro-
duce biochar not only with a high aromatic carbon content but
also make them stable in soils.

Biochar applied to the surface soil relocates to subsoil through
tillage, as well as due to shrinkage-swelling of the soil (Eckmeier
et al. 2007). Laboratory-based studies using freshly-made biochar
tend to show some mass loss — sometimes quite large — over a
period of days to years. Estimation of the long-term stability of
biochar in soils based on the measurable short-term decomposi-
tion suggests that the biochar comprises both stable and degrad-
able components (Kimetu and Lehmann 2010).

Combustion conditions during pyrolysis as well as the type of
feedstock are influential in determining the proportion of labile
and stable components in the biochar products (Singh et al. 2012).
Measuring the influence of biochar production process on the
properties of biochar is essential for the optimization of pyrolysis
conditions for maximum net carbon sequestration (Alvarez et al.

2014). The chemical composition of biochar confers its high level
of stability and is reflected in its elemental composition: highly
aromatic and with a very high carbon content (Quilliam et al.
2013). It is likely that biochar stability is associated with its phys-
ical properties and structure. If the biotic and abiotic processes
determining the fate of biochar are the same as those for other
soil organic matter, higher soil temperature, moisture availabil-
ity, lower clay content, and intensive tillage will accelerate its
decomposition rate (Mašek et al. 2013).

Estimation of soil production of carbon dioxide is essential in
assessing the quantity of carbon losses to the atmosphere from
the soil (Saran et al. 2009). Since the measurement of the total
quantity of soil carbon in an area is difficult and expensive due to
its variability and complexity, the practical way to study the effect
of various agronomic treatments on soil carbon content is through
computer modeling. Assessing the potential impact of amending
agricultural soils with biochar on environmental risk and sustain-
ability of agricultural soils amended with biochar, with simula-
tion models is lacking in the literature. If the dynamics of biochar
are quantified then the rate and mode of application of biochar to
soil can be optimized.

To conclude, biochar loss and mobility through the soil profile
and into the water resources have not been researched adequately
and transport mechanisms are very unclear. More research should
be done to enable the prediction of likely rates of breakdown of
biochar in soil. At the moment, there is insufficient data in the liter-
ature to compare the responses between short- and long-term stabil-
ity under different climates and in different soil types. Therefore, the
possible effects of biochar addition to soil on the environmental and
human health are not fully understood.

Suppression of greenhouse gas release from the soil
Biochar application reduces the emission of nitrous oxide (N2O)

and CO2 from soils and thus reduces the overall emission of green-
house gases (GHG) into the atmosphere (Woolf et al. 2010). Shrub
willow biochar decreased N2O and CH4 fluxes from loamy soils
(Hangs et al. 2016). Moreover, the soil aeration which increases
following the biochar amendment to soil contributes in suppress-
ing the soil N2O from releasing into the atmosphere (Case et al.
2012; Suddick and Six 2013). Cumulative N2O production was con-
sistently suppressed by at least 50% when a soil was amended with
hardwood biochar at a rate of 22 Mg ha−1 (Case et al. 2012). The
microbial or physical immobilization of nitrate (NO3

−) in soil fol-
lowing the biochar addition may significantly contribute to the
suppression of soil N2O emissions. However, the enhancement of
soil aeration by biochar incorporation made only a minimal con-
tribution to the suppression of N2O emissions from a sandy loam
soil. The suppression of N2O emissions from soil might be due to
the biochar increasing soil aeration at relatively high moisture
contents by increasing the soil’s WHC (Van et al. 2009). However,
when biochar is applied to soil it initially leads to the decomposi-
tion of soil organic matter and hence increases the CO2 release to
the atmosphere (Augustenborg et al. 2012). The net suppression
and release of GHGs from soil have not fully been quantified.
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