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ABSTRACT 

 

Sorghum (Sorghum bicolor (L) Moench) exhibits efficient use of water, nitrogen and 

energy resources and is grown throughout the world as a cereal, forage, syrup and more 

recently energy crop. A high-throughput RNA sequencing method (RNA-seq) was used 

to examine transcriptional dynamics during stem development of two genotypes of 

sorghum, i.e., BTx623 and R07020. A comparative transcriptome analysis of immature 

panicles was also conducted between a set of cytoplasmic male sterile (CMS) A1-lines, 

iso-cytoplasmic maintainer B-lines, and F1 sorghum hybrids. 

By comparing stem nodal segments each at unique stages of cell wall deposition, 

more than 500 differentially expressed genes (DEGs) were identified that were 

annotated as being involved in processes related to cell wall biosynthesis. Categories 

of DEGs included genes involved in cellulose, hemicellulose, and lignin 

biosynthesis, transcription factors, glycosyl transferases and cell wall proteins. In 

non-elongating mature nodal segments actively laying down secondary cell walls, 

transcriptome profiles revealed inter-related biosynthetic pathways that were highly 

enriched in DEGs involved in phenylpropanoid metabolism and flavonoid biosynthesis. 

In immature nodal segments in the rapidly elongating region of the stem, a series of 

pathways enriched in DEGs were detected that are critical for the primary growth of stems 

including starch and sucrose metabolism and DNA replication. A co-expression network 

analysis identified a number of transcription factors with connectivity to lignin 

biosynthesis genes, which indicates a possible role for these transcription factors as 
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regulators of lignin biosynthesis in sorghum. A number of DEGs were found by 

comparing nuclear gene expression of CMS A1-lines with associated B-lines and F1 

hybrids. In general, a larger proportion of DEGs were down-regulated in CMS A1-lines 

when compared to pollen-fertile B-lines and F1 hybrids. GO categories whose genes were 

down-regulated in CMS A1-lines included metabolic processes, lipid 

biosynthetic/metabolic process, and oxidation/reduction. Examination of these DEGs (and 

their homologs) within these categories provided evidence that the down-regulation of 

these genes may relate to the production of viable pollen in fertile panicles. In pollen-

sterile panicles of CMS A1-lines, up-regulated genes included several stress-related genes 

such as heat shock and linoleic acid biosynthesis genes. 
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CHAPTER I  

INTRODUCTION 

 

Increasing food and fuel demands, in parallel with increasing world wide population, 

have renewed the urgency for improving crop yield and developing sustainable biofuel 

resources. Sorghum bicolor (L) Moench, a C4 photosynthesis species from the Poaceae 

family, is an important crop species in the United States and around the world (Rooney, 

2014). Sorghum has a number of advantageous characteristics, including high rates of 

carbon fixation, high water and nutrient use efficiency, high biomass productivity, and 

adaptation to diverse environments (Dalal, et al., 2012). Sorghum originated from semi-

arid regions of Africa (Smith and Frederiksen, 2000), but it has been adapted to a wide 

variety of climates, including temperate and humid environments (Saballos, 2008). 

Sorghum is grown throughout the world as a cereal, forage, syrup and more recently 

energy crop (Rooney, 2014). Each of these has resulted in the development of lines with 

characteristics optimized for their end use (Saballos, 2008). Grain sorghum, as a cereal 

crop, has a high ratio of panicle-to-green biomass. The dwarf and low tillering 

characteristics of grain sorghum hybrids make them suitable for combine harvest, whereas 

forage type sorghums can display abundant tillering and produce green biomass as the 

main product and are usually harvested before the grain reaches maturity. Sweet sorghums 

are varieties that have a high concentration of soluble sugars (sucrose and/or glucose) in 

the stalk juice. In this type of sorghum, the fermentation process can proceed without 

pretreatment, but it needs to proceed quickly due to the instability of the sugar in the stalk 
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and/or juice (Saballos, 2008; Rooney, 2014). Biomass sorghum is a specific type of 

photoperiod-sensitive sorghum that, when grown in long day environments, accumulates 

large quantities of biomass. The extended vegetative growth allows the plant to capture a 

higher amount of solar energy and convert it to biomass (Miller, et al., 1968; Rooney, et 

al., 2007; Rooney, 2014). Biomass sorghum hybrids can accumulate more than twice as 

much biomass as grain sorghum (Mullet, et al., 2014). The development of these hybrids 

was facilitated by the identification of complementary alleles at specific maturity loci 

(Rooney and Aydin, 1999).  

Most of the sorghums in the world collection are photoperiod sensitive, meaning that 

reproductive growth is initiated once day length is sufficiently reduced to meet the 

required short day photoperiod (Reddy, et al., 2006). Beginning in the late 1800s, 

photoperiod insensitive sorghum genotypes were developed for their use in the United 

States (Stephens, et al., 1967; Klein, et al., 2015). The Sorghum Conversion program 

provided further new and diverse germplasm by moving recessive dwarfing and maturity 

genes from a four-dwarf temperate zone variety into the genomes of exotic lines 

(Stephens, et al., 1967; Klein, et al., 2008). 

Although sorghum is primarily self-pollinated, its improvement has long relied on 

hybridization within the species (Rooney, 2004; Kuhlman, et al., 2008; Hodnett, et al., 

2010). The possibility of sorghum hybrid seed production began in the early 1950s when 

geneticists introduced a kafir nuclear genome into a milo cytoplasm, and cytoplasmic male 

sterility (CMS) was discovered (Stephens and Holland, 1954). In sorghum, fertility is 

restored in F1 hybrids by pollinating CMS milo lines with sorghum cultivars of milo origin 
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that harbor nuclear-encoded restorer genes. This method was first used for hybrid seed 

production in 1956, and spread fast in the U.S. such that within five years, 90% of the U.S. 

grain sorghum cultivation area was planted in hybrids. The use of F1 hybrids in grain 

sorghum breeding programs has allowed these programs to take advantage of heterosis 

(Rooney, 2014). Over the next 50 years, the development of other types of sorghum hybrids 

followed that of grain sorghum hybrids, including sweet sorghum (Broadhead, 1972; 

Broadhead, 1982; Rooney, 2014), forage sorghum (Pedersen, et al., 1982; Venuto and 

Kindiger, 2008), and biomass sorghum (Rooney and Aydin, 1999; Rooney, et al., 2007). 

With the availability of a whole-genome sequence for sorghum (Paterson, et 

al., 2009), it has become possible to identify target genes in sorghum based on a 

combination of genomics, bioinformatics, and experimental data. The advent of next-

generation high-throughput sequencing has significantly advanced biological studies and 

provided a more comprehensive view of biological development (Lister, et al., 2009; 

Marguerat and Bähler, 2010). High-throughput mRNA sequencing (RNA-seq) is a 

genome-wide profiling method that has been used to discover novel transcripts, splicing 

models, allele-specific expression, and unique transcript splice junctions (Malone and 

Oliver, 2011). Similar to the previous large-scale transcript profiling platforms that 

included microarrays, RNA-seq is progressively being used to examine transcriptional 

dynamics during various phases of plant growth and development (Wang, et al., 2009). 

RNA-seq can advance our understanding of key biological processes that are involved 

in biomass production. Understanding cell wall biosynthesis gene regulatory networks 

may improve the production of biofuel from biomass. The production of bioethanol from 
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lignocellulosic biomass involves the process of saccharification, the conversion of 

cellulose within the cell wall to glucose. However, because cellulose forms a complex 

structure with hemicellulose and lignin, its conversion to sugar is an involved and costly 

process that makes the commercialization of bioethanol production from lignocellulosic 

biomass challenging (Alvira, et al., 2010). In addition, apart from the lack of information 

on cell wall biosynthesis, the mechanism of CMS and fertility restoration has not been 

fully elucidated in sorghum. A better understanding of the genetic control of cytoplasmic 

male sterility and fertility restoration in sorghum may have significant impacts on 

improving hybrid breeding programs. This can increase the genetic gain by improving the 

hybrids.  

Specifically, this research was based on transcriptome analyses using RNA-seq and 

focused on the following objectives: 

1. Characterizing the transcriptome in nodal segments and elucidating changes in 

gene expression profiles that arise in two sorghum genotypes during stem 

maturation. 

2. Comparing the nuclear genome transcriptome of A1 CMS and fertile lines to 

elucidate molecular mechanisms associated with A1 CMS and the action of Rf 

genes in sorghum. 
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CHAPTER II  

GENE EXPRESSION DURING STEM DEVELOPMENT OF TWO SORGHUM 

GENOTYPES 

Introduction 

A promising alternative to first generation biofuel produced from grain is the 

production of biofuel from the fermentation of lignocellulosic feedstocks (Demirbas, 

2009; Kang, et al., 2014). Sorghum is a short-day tropical cereal that requires day lengths 

shorter than 12.5 hr for the induction of a floral meristem. In the long-day temperate 

growing regions, tropical sorghum often remains vegetative until late in the growing 

season, and through the selection of mutations in key flowering time (maturity) genes 

(Quinby and Karper, 1945), sorghum has been adapted for grain production in temperate 

climates. Armed with a detailed understanding of maturity genes and their control of 

floral initiation, sorghum geneticists have bred elite photoperiod-sensitive sorghum 

hybrids that will not flower (or flower very late in the growing season) in temperate 

climates and thus, will continue to accumulate vegetative biomass indeterminately for the 

duration of the growing season (Rooney and Aydin, 1999; Rooney, et al., 2007; Yang, et 

al., 2014b). Sorghum was first considered as a bioenergy crop during the fuel crisis in the 

late 1970s and early 1980s (Monk, et al., 1984). The indeterminate vegetative growth of 

photoperiod-sensitive sorghums in long days has been reported to yield double the 

vegetative production as photoperiod-insensitive grain sorghum (Rooney and Aydin, 

1999; Rooney, et al., 2007; Olson, et al., 2012). By the end of the growing season, nearly 
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83% of the plant dry matter is in the stem of biomass sorghum (Olson, et al., 2012), which 

is desirable for cellulosic ethanol production compared with other cellulose sources such 

as leafy forage grasses (Prakasham, et al., 2014). In addition, sorghum’s drought 

tolerance and relatively low input requirements (e.g., pesticides, supplemental irrigation) 

are important attributes for biomass crops that will likely be grown on low-input marginal 

lands (Mullet, et al., 2014).  

As biomass sorghum is being bred specifically for the bioenergy market, the 

composition of the biomass is of concern (Stefaniak and Rooney, 2013). Plant dry matter 

is composed of a complex variety of components including cellulose, noncellulosic 

polysaccharides, lignin, ash, protein and extractive compounds such as chlorophyll, 

waxes, oils, terpenes and phenolics (Browning, 1963; Carroll and Somerville, 2009). 

Structural carbohydrates, cellulose, hemicelluloses, and lignin are the main source of 

lignocellulosic biomass that are deposited in plant cell walls (Jung and Ni, 1998; 

Stefaniak and Rooney, 2013). Cellulose, the most abundant biopolymer on earth, has a 

linear chain of β-1,4-linked D-glucan units while hemicellulose has a β-(1→4)-linked 

backbone with an equatorial configuration (Scheller and Ulvskov, 2010). Lignin, a 

hydrophobic phenolic polymer, saturates the cellulose and hemicellulose network that 

stabilizes the cell wall and also protects the secondary wall against biotic and abiotic 

injury (Albersheim, et al., 2010). Bioethanol production from lignocellulosic biomass 

involves the process of saccharification, i.e. the conversion of cellulose within the cell 

wall to glucose. However, since cellulose forms a complex structure with hemicellulose 

and lignin, it is not readily fermentable without pretreatment (Alvira, et al., 2010). Lignin, 
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the main obstacle in the conversion process, reduces the efficiency of pretreatment by 

binding enzymes and decreasing their ability to deconstruct cellulose and hemicellulose 

to simple sugars (Saritha and Arora, 2012). Nevertheless, lignin is a critical component 

that confers strength to stems thereby preventing lodging, which can be especially 

prevalent in high biomass sorghums. Therefore, the conversion of cellulose to sugar is a 

costly and complex process that makes the commercialization of bioethanol production 

from lignocellulosic biomass challenging (Limayem and Ricke, 2012; Furtado, et al., 

2014).  

In recent years, a number of studies have examined the genes that control cell wall 

biosynthesis in plants. In dicot species, high-throughput transcriptome profiling 

techniques, such as RNA-seq and microarrays have been used for the identification of 

expressed genes involved in cell wall formation in Arabidopsis (Imoto, et al., 2005; 

Yokoyama and Nishitani, 2006; Minic, et al., 2009; Cassan-Wang, et al., 2013), Populus 

(Andersson‐Gunnerås, et al., 2006), Acacia (Wong, et al., 2011), and alfalfa (Yang, et al., 

2011). Studies have also focused on the synthesis of cell wall components in grasses, such 

as maize (Guillaumie, et al., 2007; Bosch, et al., 2011; Courtial, et al., 2013), 

Brachypodium (Vogel, et al., 2010), barley (Christiansen, et al., 2011), and rice (Hirano, 

et al., 2013). Recently, McKinley, et al. (2016) characterized gene expression in the stems 

of the sweet sorghum cultivar Della starting at the transition from vegetative growth to 

floral initiation, and extended the characterization of stem gene expression through post 

grain maturity. The results clearly identified large gene families involved in stem growth, 

cell wall biosynthesis, and sucrose accumulation that are differentially expressed in stems 
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of sweet sorghums. The work of McKinley, et al. (2016) provides the opportunity to 

contrast the gene expression in stems of photoperiod-sensitive sorghums to that of sweet 

sorghums that have been bred for the dual purpose of stem sugar and grain production. 

In the present study, RNA-seq technology was utilized to examine gene expression in 

nodal segments along the stem of two sorghum genotypes. Transcriptome profiling of 

nodal regions from the base to the apical region of the stem allowed an examination of the 

changes in gene expression that occur as secondary wall formation progresses in a 

developmental manner from the newly developed upper nodal segments to the more 

mature nodal segments at the stem base. 

Materials and Methods 

Sorghum genotypes and growth conditions 

Two elite sorghum lines were examined in the study under a long-day photoperiod 

regime. Sorghum inbred BTx623 is a photoperiod-insensitive 3-dwarf cultivar with 

plant height of ~1.2 meters that flowers after 72 days under normal long-day 

environments (Burow, et al., 2011). The R07020 genotype is a photoperiod-sensitive 

line developed at Texas A&M University that is likely 1-dwarf with plant height of ~4.5 

meters and flowers very late in a long-day environment (~120 days depending on the 

planting date). The two genotypes were grown under controlled greenhouse conditions 

with a temperature range of 24 ± 2°C (night) to 30 ± 2°C (day) with light (14hr/10hr 

light/dark regime) provided using sodium halide lights and natural sunlight. Plants were 

grown in 3-gallon pots containing Sunshine REPS soil mix (Sun Grow Horticulture Inc., 
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Bellevue, WA). Into each 3-gallon pot of Sunshine REPS soil, the following were added 

and mixed in; 18 g of Osmocote (16% N, 3.5% P and 10% K), 15 g gypsum, 15 g dolomite 

and 5 g Micromix (6% Ca, 3% Mg, 12% S, 0.1% B, 1% Cu, 17% Fe, 2.5% Mn, 0.05% 

Mo and 1% Zn). The plants were grown with nine replicates for each genotype. For a 

subset of the plants, plant height, leaf and node number, and stem diameter at select 

internodes along the length of the stem were recorded each week for ~13 weeks to 

monitor plant growth.  

Stem sectioning and RNA isolation 

Sixty days after planting (i.e. during the phase of linear stem elongation), three 

individual plants of each genotype were harvested, leaves and leaf sheaths removed, 

and nodes were counted starting from the base of the plant. Nodes were labeled 

beginning with the node immediately above the brace roots (N1), and sequentially 

labeled to the top of the stem. Nodal segments were excised (node plus 5mm on either 

side) and immediately frozen in liquid nitrogen (LN2) with subsequent storage at  

-80oC. Three different stem nodal segments were excised from each stem as follows; 

nodal segment 6 (N6) representing a mature non-elongating region near the stem base, 

which is actively laying down secondary cell walls; nodal segment 10 (N10) for 

genotype R07020 or nodal segment 11 (N11) for genotype BTx623, each representing 

nodal segments in the middle section of the stem where rapid cell wall biosynthesis is 

occurring; and nodal segment 14 (N14) for genotype R07020 or nodal segment 16 

(N16) for genotype BTx623, representing newly formed nodal segments near the apical 

meristem of the stem. 
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For RNA extraction, frozen nodal segments were ground under LN2 into a fine 

powder using a mortar and pestle. RNA was extracted from 600 mg of frozen ground 

tissue using the Trizol™ reagent as detailed by the manufacturer (Invitrogen, Carlsbad, 

CA, USA) and subsequently treated with TURBO™ DNase (Ambion, Austin, TX, 

USA). RNA quality and quantity were assessed using the ND-1000 NanoDrop 

spectrophotometer (NanoDrop Technologies, Montchanin, DE, USA). Three equimolar 

RNA samples extracted from three technical reps for each biological rep were pooled 

after extraction for RNA-seq template preparation. The quality of each pooled RNA 

sample was assessed with an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa 

Clara, CA, USA) by Texas AgriLife Research Genomic and Bioinformatics Services 

prior to RNA-seq template preparation. 

RNA-seq library preparation, sequencing and quality control 

RNA-seq template preparation and paired-end (PE) sequencing on an Illumina 

HiSeq2500 was completed at Texas AgriLife Research Genomic and Bioinformatics 

Services. Libraries were prepared using the Illumina TruSeq RNA kit (Illumina, San 

Diego, CA, USA) following the manufacturer's protocol. Each library was bar-coded, 

and nine libraries were pooled per lane on the Illumina flow cell. The experimental 

units were prepared individually to serve as a biological replicate for downstream data 

analysis. Three RNA-seq libraries were prepared for each of the nodal segments from 

sorghum genotypes BTx623 and R07020, and each library represented a biological 

replication in the RNA-seq analysis. The paired-end reads in the biological replicates 

ranged from 64 to 71 bp in length as the experiments were conducted over time and the 
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samples were run on different Illumina flow cells. The total read counts from the three 

reps were combined after trimming all reads to 64 bp to obtain higher sequencing depth 

for accurate detection of gene expression changes. The quality of RNA-seq reads was 

assessed using FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/).  

Gene expression analysis 

Sequence reads were imported into the CLC Genomics Workbench version 8.5.1 

(Qiagen, Valencia, CA, USA), trimmed to 64 bp, and mapped to the Sorghum bicolor 

BTx623 reference genome [Sbicolor_255 v.2.1, www.phytozome.jgi.doe.gov, (Paterson, 

et al., 2009)]. Based on total read counts for each annotated gene, differential gene and 

transcript expression analyses were conducted using the Empirical analysis of DGE tool, 

which implements the ‘Exact Test’ for two-group comparisons (Robinson, et al., 2010). 

Differentially expressed genes (DEGs) were defined as having a log2 fold change ≥ 1 or ≤ 

-1 with a false discovery rate (FDR) corrected p-value <0.05. Genes annotated as cell-wall 

related in other species (rice, maize, Arabidopsis) were identified based on various cell 

wall annotation databases and the literature, including MAIZEWALL (Guillaumie, et al., 

2007), Cell Wall Genomics (https://cellwall.genomics.purdue.edu/), Bosch, et al. (2011), 

Hirano, et al. (2013) and Minic, et al. (2009). The orthologs of collected cell wall genes 

were identified in sorghum using the annotation information of the sorghum genome 

[Sbicolor_255 v.2.1, www.phytozome.jgi.doe.gov, (Paterson, et al., 2009)], BLAST 

analysis, and also using the Rice Genome Annotation Project Database 

(http://rice.plantbiology.msu.edu/annotation_pseudo_apk.shtml). The expression of 

orthologous cell-wall related genes was then examined in the nodal stem segments of 

http://www.phytozome.net/
https://cellwall.genomics.purdue.edu/
http://www.phytozome.net/
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sorghum. For functional annotation, gene ontology was performed using AgriGO gene 

ontology analysis tools (Du, et al., 2010), and significantly enriched GO terms (in 

comparison to the genome background) were identified by REVIGO (Supek, et al., 2011). 

Pathway analysis was performed using the Kyoto Encyclopedia of Genes and Genomes 

(KEGG) database (Kanehisa and Goto, 2000) and pathway enrichment analysis completed 

using the KOBAS server (version v.2) (Xie, et al., 2011).  

Co-expression network analysis 

The weighted gene co-expression network analysis (WGCNA) package in R (Jung, 

et al., 2012) was employed to construct the co-expression network and to identify highly 

correlated genes (Langfelder and Horvath, 2008). Network construction is theoretically 

straightforward: nodes represent genes and nodes are connected through edges if the 

corresponding genes are significantly co-expressed across samples (Zhang and Horvath, 

2005). WGCNA was performed on data collected for 6,517 genes selected from those 

DEGs identified in a comparison of different nodal segments in genotype R07020. The 

expression of these genes was also examined in genotype BTx623. Each biological and 

technical replicate was considered as an individual dataset, totaling 18 samples. The 

power=14, merge at height=0.25, weight threshold=0.1 were used as selected parameters 

to construct the network. The network was visualized and analyzed in Cytoscape software 

(Shannon, et al., 2003). The lignin biosynthesis genes were selected as the hub genes. The 

resulting network was filtered by lignin biosynthesis genes, and by TFs to identify those 

TFs that are involved in secondary cell wall biosynthesis. 
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Lignin histochemical staining 

To characterize cell wall deposition and lignin composition, nodal segments were 

cross-sectioned and histochemically analyzed. Nodal segments for histochemical analysis 

were collected in the same manner as those collected for RNA-seq analysis. Sample 

dissection, microwave-assisted fixation, washing, and dehydration were conducted using 

protocols established by the Microscopy and Imaging Center at Texas A&M University. 

Briefly, nodal segments preserved in 70% ethanol were cross-sectioned at 15 µm thickness 

with a sliding-type microtome. Sections were stained with Alcian Blue at pH 2.5 and 0.1% 

Safranin O. and subsequently scanned using the TAMU Veterinary School’s GI lab slide 

scanner.  

Compositional analysis 

Nodal segments for compositional analysis were collected in the same manner as 

those collected for RNA-seq analysis. Samples from 60-day-old seedlings were harvested, 

and dried in an oven at 60◦C for approximately five days. The dried samples were ground 

in a coffee grinder to a size that could pass a 2 mm sieve. Compositional analyses were 

conducted using near-infrared spectroscopy (NIR) with a FOSS XDS NIR-spectrometer 

(Foss North America, Eden Prairie, MN, USA) based on the method of Stefaniak, et al. 

(2012). Samples were collected from two biological replicates. The ground tissue from 10 

technical replicates was pooled together to provide sufficient sample for NIR analysis. 

Each sample were scanned twice to ensure reproducibility of the NIR measurement. Near-

infrared predictions for lignin (%), cellulose (%), xylan (%), glucan (%) and protein (%) 

were based on NIR calibration curves developed by the Texas A&M AgriLife Research 
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Sorghum Breeding Lab as described by Dykes, et al. (2014). Pairwise comparisons were 

made between different nodal segments for each genotype. Means were compared by 

independent student’s T-test calculated with IBM SPSS Statistics (version v.23) (SPSS, 

Chicago, IL, USA). Statistical significance was considered at a p-value < 0. 05.  

Results and Discussion 

Vegetative growth of sorghum genotypes 

R07020 is a photoperiod-sensitive genotype that does not flower under a 14hr/10hr 

light/dark photoperiod but rather requires a day length less than 12 hr 20 min to induce 

floral initiation (Rooney and Aydin, 1999). In contrast, BTx623 is photoperiod insensitive 

and thus will flower under long- or short-day photoperiods. In the present study, a series 

of comparisons were conducted to profile gene expression in stems of sorghum bred as a 

biofuel feedstock or for grain production. The vegetative growth characteristics of the two 

genotypes are shown in Figure 1. R07020 was ~250 cm tall after 90 days of growth and 

produced up to 21 leaves. In BTx623, stem elongation ceased after panicle emergence 

(after ~65 days) with plants growing to ~100 cm and producing up to 15 leaves. The 

growth differences were due to the selection of R07020 for vegetative production 

(dominant alleles at a majority of the Dw loci) and photoperiod-sensitivity (dominant 

alleles at the Ma1 and Ma6 loci) rather than for dwarfism and photoperiod-insensitivity as 

selected for in BTx623 (Rooney and Aydin, 1999; Rooney, 2004). 
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Figure 1: Vegetative growth characteristics of sorghum genotypes R07020 and 

BTx623. Plant height (A), leaf number (B), and diameter at three nodal segments along 

the length of the stem (C, D, E) were measured each week from 20 to 90 days after 

planting to monitor plant growth. Error bars indicate standard deviation.
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Figure 1: Continued
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Histochemical analysis of sorghum stem nodal segments 

To ascertain the level of lignin deposition and thus secondary wall formation, nodal 

sections from along the stem of 60-day-old R07020 and BTx623 plants were 

histochemically stained for lignin (Figure 2). Differences in lignin deposition were based 

on the developmental stage of the nodal segments and between the sorghum genotypes. 

Histochemical staining showed cells in mature basal nodal segments (N6, non-elongating 

region of the stem) contained a greater amount of lignin when compared with the upper 

immature nodal segments (N14 in R07020, N16 in BTx623) and nodal segments in the 

middle section of the stem (N10 in R07020, N11 in BTx623). In the upper immature nodal 

segments, lignin was mostly deposited in xylem in both R07020 and BTx623, while in the 

basal part of the stem, lignified sclerenchyma surrounded the entire vascular bundle. The 

lignified sclerenchyma cells were more pronounced in basal nodal segments of R07020 

compared with BTx623. 
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Figure 2: Cross sections of nodal segments of sorghum genotypes R07020 and 

BTx623. Fifteen µM cross-sections of nodal segments were stained with Alcian Blue and 

Safranin O. Red/pink coloration indicates the presence of lignin. xl, xylem; par, 

parenchyma; phl, phloem; scl, sclerenchyma. 



Compositional analyses of sorghum stem nodal segments 

The structural analysis of nodal segments along the developing stem of genotypes 

R07020 and BTx623 is shown in Table 1. Structural carbohydrates including cellulose, 

xylan, glucan and lignin showed significant differences in comparison of top and basal 

nodal segments. Cellulose content was higher in basal nodal segments in both genotypes  

In R07020, cellulose content ranged from 2.1% in the top nodal segment to 27% in the 

basal nodal segment. In BTx623, cellulose content ranged from 5.1% in the top nodal 

segment to 25.3% in the basal nodal segment. Xylan (one of the major hemicelluloses in 

secondary cell walls) content was also higher in basal nodal segments in both genotypes. 

Lignin content ranged from 6.04% in the top nodal segment to 11.16% in the basal nodal 

segment in R07020. Similarly, in genotype BTx623 lignin content ranged from 7.5% in 

the top nodal segment to 11.6% in the basal nodal segment. Protein content was also 

significantly different between the top and basal nodal segments in both R07020 and 

BTx623. Protein content in the top nodal segments was 16.86 and 16.34% in R07020 and 

BTx623, respectively, compared to 6.4 and 7.37% in the basal nodal segments. None of 

these components showed significant differences when comparing middle versus basal 

stem nodal segments, and this likely reflects that these segments are more similar in their 

developmental stage in comparison to basal versus upper nodal segments. In general, the 

trends for structural carbohydrates between nodal segments was very similar in both 

genotypes.   
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Table 1: Stem compositional analysis of sorghum genotypes R07020 and BTx623. The 

data are percentage means of two biological replicates taken at day 60 of growth. Different 

letters following means ± sd indicate statistically significant differences at p-value <0.05 

in the designated nodal segments (Students t-test). 

Genotype Stem component Nodal segment 
Mean ± sd 

(%) 

R07020 

Cellulose 

N14 2.10 ± 0.55 b 

N10 28.73 ± 1.9 a 

N6 26.95± 0.93 a 

Xylan 

N14 7.20 ± 0.65 b 

N10 16.08 ± 0.48 a 

N6 15.45± 0.28 a 

Glucan 

N14 19.3 ± 0.54 b 

N10 26.86 ± 1.7 a 

N6 28.70± 0.34 a 

Lignin 

N14 6.04 ± 0.22 b 

N10 10.52 ± 0.02 a 

N6 11.16 ± 0.28 a 

Protein 

N14 16.86 ± 0.75 a 

N10 7.39 ± 0.19 a 

N6 6.47 ± 1.27 b 

BTx623 

Cellulose 

N16 5.19 ± 3.1 b 

N11 24.62 ± 0.7 a 

N6 25.32 ± 1.19 a 

Xylan 

N16 8.20 ± 1.72 b 

N11 13.94 ± 0.39 a 

N6 14.38 ± 0.79 a 

Glucan 

N16 20.38 ± 0.59 b 

N11 30.68 ± 0.79 a 

N6 31.17 ± 0.28 a 

Lignin 

N16 7.50 ± 1.2 b 

N11 10.94 ± 0.26 a 

N6 11.60 ± 0.87 a 

Protein 

N16 16.34 ± 0.15 a 

N11 7.70 ± 0.24 a 

N6 7.37 ± 0.4 b 



RNA-seq transcriptome analysis 

For each genotype, R07020 and BTx623, cDNA libraries from three nodal segments 

and three biological replications/nodal segment were prepared for a total of 18 cDNA 

libraries. Following construction of Illumina TruSeq RNA-seq libraries and sequencing 

on an Illumina HiSeq2500 the reads for each sample were mapped to the Sorghum bicolor 

genome (Sbicolor_255 v2.1) within the CLC Genomics Workbench and the details of the 

mapped reads for each stem nodal segment are shown in Table 2. The number of reads per 

library ranged from 53.3 M to 85.7 M in genotype R07020 and from 58.3 M to 116 M in 

genotype BTx623. Mapped reads for each RNA-seq library ranged from 47-106 M with 

an average of 92% of those reads mapping to gene exons. The reproducibility of data 

between biological replications was evaluated by Pearson Correlation Coefficient (PCC). 

The average PCC value for the three biological replicates was 0.92 and 0.90 for genotypes 

R07020 and BTx623, respectively (Table 3). DEGs were identified from the three 

biological replicates from each nodal segment using the Exact Test within the CLC 

Genomics Workbench. This test is similar to Fisher’s Exact Test but accounts for the 

overdispersion caused by biological variability by replacing the Hypergeometirc 

distributions of Fisher’s Exact Test by Negative binomial distributions (Robinson and 

Smyth, 2008).  

The stems of monocots represent a developmental gradient with the more mature 

(non-elongating) regions residing at the base, and progressively younger tissues moving 

up the stem to the shoot apical meristem. This developmental system afforded the 

opportunity to examine differentially expressed genes in mature nodal segments  that  are 

         22 



23 

laying down lignified secondary cell walls and in more immature nodal segments where 

rapid primary cell wall biosynthesis is occurring. In this study, the characterization of 

DEGs in R07020 and BTx623 focused on long-day photoperiod growth conditions; 

conditions in which both genotypes are normally cultivated in temperate zones (Smith and 

Frederiksen, 2000).  

In comparing the expression of genes in the basal nodal segment vs. the top nodal 

segment, a total of 5,886 genes in genotype R07020 were differentially expressed in nodal 

segment N6 vs. N14 (data not shown), and 4,640 genes in genotype BTx623 were 

differentially expressed in nodal segment N6 vs. N16 (data not shown). Of the 

differentially expressed genes in N6 vs. N14 in R07020, 3,281 (55%) were up-regulated 

in basal nodal segment N6 while the remaining 2,605 DEGs were up-regulated in N14. In 

BTx623, of the differentially expressed genes in nodal segment N6 vs. N16, 1,624 (35%) 

were up-regulated in N6 while the remaining 3,016 DEGs were up-regulated in N16. The 

higher number of up-regulated genes in the upper nodal segment of BTx623 may relate to 

the coincidence of panicle development and the transition to the reproductive phase at the 

apex of the stem in this genotype. At the stage of development when the samples were 

collected (i.e. 60 days after planting), rapid stem elongation is reduced and the peduncle 

begins to elongate (Vanderlip and Reeves, 1972). Fewer DEGs were identified when 

comparing the basal nodal segment to the middle nodal segment in both genotypes. Only 

397 and 230 DEGs were identified between N6 and N10 in R07020 or between N6 and 

N11 in BTx623, respectively (data not shown). As basal and mid-stem nodal regions are 

both actively depositing secondary cell walls, fewer DEGs were expected. The DEGs that 

23
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were detected were probably related to the fact that nodal segment N6 is no longer 

elongating while N10 continues to elongate, which indicates that both primary and 

secondary cell wall biosynthesis were still occurring in N10. This is consistent with the 

hierarchical clustering of DEGs between basal and middle nodal segments indicating that 

there is an association of DEGs in N6 and N10 when contrasted to DEGs in N6 vs. N14 

(Figure 3). The same clustering pattern was observed for basal and middle nodal segments 

in BTx623 (data not shown). Based on the results from hierarchical clustering and the fact 

that so few DEGs were detected when comparing basal and middle nodal segments all 

further analysis and comparisons were performed with top and basal nodal segments only. 
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Table 2: Summary of RNA-seq reads from stem nodal segments of sorghum genotypes R07020 and BTx623 mapped to 

the annotated genome of sorghum (Sbicolor_255 v.2.1). Unique RNA-seq reads mapping to exons, introns, and intergenic 

regions are shown as the percentage of total reads distributed to these annotated regions of the sorghum genome.  

 

Genotype 
Nodal 

Segment   

Rep 

number 

Total reads 

(M) 

Mapped reads 

(M) 

Exonic reads 

(%) 

Intronic reads 

(%) 

Intergenic reads 

(%) 

R07020 14 

1 79.4 69.68 92.46 4.94 2.6 

2 53.3 47.22 93.57 4.21 2.22 

3 75.00 68.61 90.38 6.42 3.2 

Mean ± sd     69.27 ± 13.97 61.84 ± 12.66 92.13 ± 1.61 5.19 ± 1.12 2.67 ± 0.49 

R07020 10 

1 83.10 71.13 92.86 4.63 2.51 

2 67.86 60.59 93.56 4.17 2.27 

3 64.03 58.66 91.72 5.44 2.84 

Mean ± sd     71.66 ± 10.08 63.46 ± 6.71 92.71 ± 0.92 4.74 ± 0.64 2.54 ± 0.28 

R07020 6 

1 79.71 71.21 93.90 3.91 2.19 

2 62.12 52.83 93.46 4.20 2.34 

3 85.72 75.22 92.58 4.75 2.67 

Mean ± sd     75.85 ± 12.26 66.42 ± 11.93 93.31 ± 0.67 4.28 ± 0.42 2.4 ± 0.24 

BTx623 16 

1 81.32 71.62 92.20 5.14 2.66 

2 63.42 57.03 92.71 4.95 2.34 

3 61.25 56.48 91.91 5.39 2.71 

Mean ± sd     68.66 ± 11.01 61.71 ± 8.58 92.27 ± 0.40 5.16 ± 0.22 2.57 ± 0.20 
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Table 2: Continued 

Genotype 
Nodal 

Segment 

Rep 

number 

Total reads 

(M) 

Mapped reads 

(M) 

Exonic reads 

(%) 

Intronic reads 

(%) 

Intergenic reads 

(%) 

BTx623 11 

1 82.08 73.62 91.62 5.42 2.96 

2 58.36 52.31 92.8 4.74 2.45 

3 62.83 48.48 90.39 5.68 3.93 

Mean ± sd 67.76 ± 12.60 58.14 ± 13.54 91.6 ± 1.20 5.28 ± 0.48 3.11 ± 0.75 

BTx623 6 

1 80.05 72.07 92.38 4.93 2.69 

2 71.16 68.99 92.79 4.68 2.53 

3 116.08 106.24 91.23 5.73 3.03 

Mean ± sd 90.43 ± 23.78 82.44 ± 20.67 92.13 ± 0.80 5.11 ± 0.54 2.75 ± 0.25 
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Table 3: Pearson’s correlation of RNA-seq reads from stem nodal segments of 

R07020 and BTx623 genotypes from three independent biological experiments. Pair-

wise Pearson’s Correlation Coefficients were calculated from the gene expression values 

of all annotated genes of the sorghum genome (Sbicolor_255 v.2.1). 

Figure 3: Hierarchical clustering of sorghum genotype R07020 nodal segments based 

on differentially expressed genes. The color key represents total counts normalized to 

log2 total counts. The hierarchical clusters were obtained based on Euclidian distance.

Genotype 
Nodal 

segment 
Rep1 vs. Rep2 Rep1 vs. Rep3 Rep2 vs. Rep3 

R07020 

N14 0.92 0.94 0.88 

N10 0.87 0.96 0.88 

N6 0.94 0.95 0.96 

BTx623 

N16 0.93 0.93 0.85 

N11 0.91 0.85 0.93 

N6 0.92 0.88 0.93 
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Gene ontology analysis 

Based on the number of DEGs between the basal nodal segments and nodal segments 

near the apical meristem, gene ontology (GO) analysis was conducted. In R07020 and 

BTx623, a series of GO terms were enriched in basal nodes and nodes near the apical 

meristem, and these GO terms included numerous molecular functions and biological 

processes. The GO term carbohydrate metabolic process represented the highest number 

of enriched biological process GO terms in rapidly developing nodal segments near the 

stem apex in genotypes R07020 (N14) and BTx623 (N16) (Tables 4 and 5). Metabolism 

of carbohydrates includes the process where complex carbohydrates are broken down into 

simple mono- and disaccharides like glucose and sucrose, which are important 

components of metabolic pathways including primary cell wall synthesis that is occurring 

in rapidly elongating nodal regions. Bosch, et al. (2011) reported the preferential 

expression of genes involved in carbohydrate metabolism in the elongating internode of 

maize. In basal nodal segment N6 from both R07020 and BTx623, protein modification 

and post-translational protein modification were two prominent enriched GO terms in the 

biological process category (Tables 6 and 7). These modifications might be involved in 

transcriptional regulation of the monolignol biosynthesis pathway that provides source 

material for the biosynthesis of lignin (Jin, et al., 2000; Adams-Phillips, et al., 2010).  

https://en.wikipedia.org/wiki/Biosynthesis
https://en.wikipedia.org/wiki/Lignin
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Table 4: Enriched GO terms associated with DEGs in nodal segment N14 from sorghum genotype R07020. The significant 

GO terms (FDR corrected p-value <0.05) were determined by contrasting expression of genes in nodal segment N14 to their 

expression in N6. DEGs were then grouped into molecular function and biological process categories. P-values indicate the 

statistical significance of differential expression observed between nodal segments N14 and N6 for genes associated with each 

GO term. Qnum are the number of probe sets that belong to the GO term from the query list (DEGs). B/Rnum values are the 

number of probe sets that belong to the GO term from the background based on a genome-wide set of genes. 

GO term GO type GO name Qnum B/Rnum FDR p-value 

GO:0005975 Biological process carbohydrate metabolic process 113 777 0.00 

GO:0006259 Biological process DNA metabolic process 43 239 0.01 

GO:0007018 Biological process microtubule-based movement 32 51 0.00 

GO:0007017 Biological process microtubule-based process 32 65 0.00 

GO:0006260 Biological process DNA replication 22 61 0.00 

GO:0015979 Biological process photosynthesis 20 81 0.02 

GO:0043086 Biological process negative regulation of catalytic activity 15 55 0.05 

GO:0044092 Biological process negative regulation of molecular function 15 55 0.05 

GO:0015995 Biological process chlorophyll biosynthetic process 9 12 0.00 

GO:0015994 Biological process chlorophyll metabolic process 9 15 0.01 

GO:0016787 Molecular function hydrolase activity 304 2358 0.00 

GO:0030554 Molecular function adenyl nucleotide binding 274 2531 0.03 

GO:0001882 Molecular function nucleoside binding 274 2532 0.03 

GO:0001883 Molecular function purine nucleoside binding 274 2531 0.03 

GO:0032559 Molecular function adenyl ribonucleotide binding 262 2392 0.02 

GO:0005524 Molecular function ATP binding 233 2074 0.02 

GO:0016817 Molecular function hydrolase activity, acting on acid anhydrides 95 627 0.00 

GO:0016818 Molecular function hydrolase activity, acting on acid anhydrides, in phosphorus-

containing anhydrides 
95 620 0.00 

GO:0017111 Molecular function nucleoside-triphosphatase activity 86 591 0.00 



 

30 

 

Table 4: Continued

GO term GO type GO name Qnum B/Rnum FDR p-value 

GO:0016462 Molecular function pyrophosphatase activity 86 607 0.00 

GO:0016798 Molecular function hydrolase activity, acting on glycosyl bonds 75 402 0.00 

GO:0016788 Molecular function hydrolase activity, acting on ester bonds 74 558 0.05 

GO:0004553 Molecular function hydrolase activity, hydrolyzing O-glycosyl compounds 69 374 0.00 

GO:0003774 Molecular function motor activity 33 65 0.00 

GO:0003777 Molecular function microtubule motor activity 32 51 0.00 

GO:0005507 Molecular function copper ion binding 24 121 0.03 

GO:0042802 Molecular function identical protein binding 16 63 0.03 

GO:0051002 Molecular function ligase activity, forming nitrogen-metal bonds 9 12 0.00 

GO:0051003 Molecular function ligase activity, forming nitrogen-metal bonds, forming 

coordination complexes 

9 12 0.00 

GO:0016851 Molecular function magnesium chelatase activity 9 12 0.00 

GO:0005088 Molecular function Ras guanyl-nucleotide exchange factor activity 7 11 0.02 

GO:0005089 Molecular function Rho guanyl-nucleotide exchange factor activity 7 11 0.02 
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Table 5: Enriched GO terms associated with DEGs in nodal segment N16 from sorghum genotype BTx623. The 

significant GO terms (FDR corrected p-value <0.05) were determined by contrasting expression of genes in nodal segment N16 

to their expression in N6. Descriptors and other details are as described for Table 3. 

GO term GO type GO name Qnum B/Rnum FDR p-value 

GO:0005975 Biological process carbohydrate metabolic process 153 777 0.00 

GO:0007017 Biological process microtubule-based process 39 65 0.00 

GO:0007018 Biological process microtubule-based movement 36 51 0.00 

GO:0006073 Biological process cellular glucan metabolic process 24 86 0.01 

GO:0044042 Biological process glucan metabolic process 24 86 0.01 

GO:0030312 Cellular component external encapsulating structure 30 106 0.00 

GO:0005618 Cellular component cell wall 28 83 0.00 

GO:0005576 Cellular component extracellular region 16 58 0.04 

GO:0048046 Cellular component apoplast 12 32 0.03 

GO:0003824 Molecular function catalytic activity 903 7817 0.00 

GO:0016787 Molecular function hydrolase activity 360 2358 0.00 

GO:0016798 Molecular function hydrolase activity, acting on glycosyl bonds 110 402 0.00 

GO:0004553 Molecular function hydrolase activity, hydrolyzing O-glycosyl compounds 103 374 0.00 

GO:0005507 Molecular function copper ion binding 43 121 0.00 

GO:0003774 Molecular function motor activity 37 65 0.00 

GO:0003777 Molecular function microtubule motor activity 36 51 0.00 
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Table 6: Enriched GO terms associated with DEGs in nodal segment N6 from sorghum genotype R07020. The significant 

GO terms (FDR corrected p-value <0.05) were determined by contrasting expression of genes in nodal segment N6 to their 

expression in N14. Descriptors and other details are as described for Table 4. 

GO term GO type GO name Qnum B/Rnum FDR p-value 

GO:0008152 Biological process metabolic process 1160 8076 0.00 

GO:0055114 Biological process oxidation reduction 280 1485 0.00 

GO:0006464 Biological process protein modification process 274 1505 0.00 

GO:0043412 Biological process macromolecule modification 274 1553 0.00 

GO:0043687 Biological process post-translational protein modification 267 1402 0.00 

GO:0006796 Biological process phosphate metabolic process 262 1384 0.00 

GO:0006793 Biological process phosphorus metabolic process 262 1384 0.00 

GO:0016310 Biological process phosphorylation 258 1343 0.00 

GO:0006468 Biological process protein amino acid phosphorylation 253 1265 0.00 

GO:0050794 Biological process regulation of cellular process 221 1402 0.04 

GO:0003824 Molecular function catalytic activity 1145 7817 0.00 

GO:0016740 Molecular function transferase activity 476 2873 0.00 

GO:0001883 Molecular function purine nucleoside binding 390 2531 0.00 

GO:0001882 Molecular function nucleoside binding 390 2532 0.00 

GO:0030554 Molecular function adenyl nucleotide binding 390 2531 0.00 

GO:0032559 Molecular function adenyl ribonucleotide binding 369 2392 0.00 

GO:0016491 Molecular function oxidoreductase activity 312 1669 0.00 

GO:0046872 Molecular function metal ion binding 279 1712 0.00 

GO:0043169 Molecular function cation binding 279 1720 0.00 

GO:0043167 Molecular function ion binding 279 1724 0.00 

GO:0016772 Molecular function 
transferase activity, transferring phosphorus-containing 

groups 
266 1633 0.00 

GO:0016301 Molecular function kinase activity 262 1420 0.00 

http://www.sciencedirect.com/science/article/pii/S0888754311001042#tf0005
http://www.sciencedirect.com/science/article/pii/S0888754311001042#tf0010
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Table 6: Continued

GO term GO type GO name Qnum B/Rnum FDR p-value 

GO:0016773 Molecular function phosphotransferase activity, alcohol group as acceptor 260 1411 0.00 

GO:0004672 Molecular function protein kinase activity 256 1278 0.00 

GO:0046914 Molecular function transition metal ion binding 228 1315 0.00 

GO:0016705 Molecular function 
oxidoreductase activity, acting on paired donors, with 

incorporation or reduction of molecular oxygen 
160 529 0.00 

GO:0005506 Molecular function iron ion binding 159 588 0.00 

GO:0009055 Molecular function electron carrier activity 157 576 0.00 

GO:0020037 Molecular function heme binding 153 534 0.00 

GO:0046906 Molecular function tetrapyrrole binding 153 545 0.00 

GO:0030528 Molecular function transcription regulator activity 121 632 0.00 

GO:0003700 Molecular function transcription factor activity 118 573 0.00 

GO:0016757 Molecular function transferase activity, transferring glycosyl groups 115 529 0.00 

GO:0016758 Molecular function transferase activity, transferring hexosyl groups 98 427 0.00 

GO:0043565 Molecular function sequence-specific DNA binding 76 376 0.01 

GO:0043531 Molecular function ADP binding 66 326 0.02 

GO:0016209 Molecular function antioxidant activity 44 202 0.04 

GO:0016684 Molecular function oxidoreductase activity, acting on peroxide as acceptor 42 177 0.01 

GO:0004601 Molecular function peroxidase activity 42 177 0.01 

GO:0016706 Molecular function 

oxidoreductase activity, acting on paired donors, with 

incorporation or reduction of molecular oxygen, 2-

oxoglutarate as one donor, and incorporation of one 

atom each of oxygen into both donors 

40 122 0.00 

 

http://www.sciencedirect.com/science/article/pii/S0888754311001042#tf0005
http://www.sciencedirect.com/science/article/pii/S0888754311001042#tf0010
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Table 6: Continued 

GO term GO type GO name Qnum B/Rnum FDR p-value 

GO:0031323 Biological process regulation of cellular metabolic process 190 1051 0.00 

GO:0019222 Biological process regulation of metabolic process 190 1066 0.00 

GO:0006350 Biological process transcription 190 1120 0.00 

GO:0006351 Biological process transcription, DNA-dependent 190 1120 0.00 

GO:0032774 Biological process RNA biosynthetic process 190 1122 0.00 

GO:0006355 Biological process regulation of transcription, DNA-dependent 186 994 0.00 

GO:0051252 Biological process regulation of RNA metabolic process 186 994 0.00 

GO:0045449 Biological process regulation of transcription 186 996 0.00 

GO:0019219 Biological process regulation of nucleobase, nucleoside, nucleotide and 

nucleic acid metabolic process 

186 1004 0.00 

GO:0051171 Biological process regulation of nitrogen compound metabolic process 186 1004 0.00 

GO:0009889 Biological process regulation of biosynthetic process 186 1019 0.00 

GO:0010556 Biological process regulation of macromolecule biosynthetic process 186 1019 0.00 

GO:0031326 Biological process regulation of cellular biosynthetic process 186 1019 0.00 

GO:0080090 Biological process regulation of primary metabolic process 186 1023 0.00 

GO:0010468 Biological process regulation of gene expression 186 1028 0.00 

GO:0060255 Biological process regulation of macromolecule metabolic process 186 1035 0.00 

GO:0055085 Biological process transmembrane transport 116 646 0.02 

GO:0050896 Biological process response to stimulus 106 592 0.03 

GO:0042221 Biological process response to chemical stimulus 54 259 0.03 

GO:0009607 Biological process response to biotic stimulus 12 24 0.02 

 

 

http://www.sciencedirect.com/science/article/pii/S0888754311001042#tf0005
http://www.sciencedirect.com/science/article/pii/S0888754311001042#tf0010
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Table 7: Enriched GO terms associated with DEGs in nodal segment N6 from sorghum genotype BTx623. The significant 

GO terms (FDR corrected p-value <0.05) were determined by contrasting expression of genes in nodal segment N6 to their 

expression in N16. Descriptors and other details are as described for Table 4. 

GO term GO type GO name Qnum B/Rnum FDR p-value 

GO:0008152 Biological process metabolic process 622 8076 0.00 

GO:0009987 Biological process cellular process 499 6324 0.00 

GO:0044238 Biological process primary metabolic process 463 5708 0.00 

GO:0044237 Biological process cellular metabolic process 412 4912 0.00 

GO:0043170 Biological process macromolecule metabolic process 401 4419 0.00 

GO:0044260 Biological process cellular macromolecule metabolic process 368 3915 0.00 

GO:0019538 Biological process protein metabolic process 284 2674 0.00 

GO:0044267 Biological process cellular protein metabolic process 257 2214 0.00 

GO:0006464 Biological process protein modification process 248 1505 0.00 

GO:0043412 Biological process macromolecule modification 248 1553 0.00 

GO:0043687 Biological process post-translational protein modification 245 1402 0.00 

GO:0006796 Biological process phosphate metabolic process 241 1384 0.00 

GO:0006793 Biological process phosphorus metabolic process 241 1384 0.00 

GO:0006468 Biological process protein amino acid phosphorylation 237 1265 0.00 

GO:0016310 Biological process phosphorylation 237 1343 0.00 

GO:0019219 Biological process 
regulation of nucleobase, nucleoside, nucleotide and 

nucleic acid metabolic process 
95 1004 0.04 

GO:0051171 Biological process regulation of nitrogen compound metabolic process 95 1004 0.04 
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Pathway enrichment analysis of DEGs  

A survey of metabolic pathways enriched with DEGs was obtained using KOBAS in 

conjunction with the KEGG PATHWAY database (Xie, et al., 2011). In both BTx623 and 

R07020, nearly 120 KEGG pathways were assigned to DEGs that were identified in 

mature nodal segments (N6) versus immature nodal segments near the apical meristem 

(N14, N16). A survey of DEG-enriched pathways in both BTx623 and R07020 revealed 

a series of highly-enriched inter-related biosynthetic pathways including phenylpropanoid 

metabolism and flavonoid biosynthesis, secondary metabolites, phenylalanine 

metabolism, and plant-pathogen interactions (Tables 8 and 9). There are a diverse group 

of compounds produced from the phenylpropanoid pathway that originates from the 

carbon skeleton of phenylalanine that are involved in structural/mechanical support and 

abiotic/biotic stress tolerance (Vogt, 2010). Lignin is one of the major products of the 

phenylpropanoid pathway (Anderson and Chapple, 2014), and enrichment of the 

phenylpropanoid pathway in N6 is consistent with active secondary cell wall synthesis 

and lignification that is occurring in this region of the stem. Other important secondary 

metabolites that are derived from the phenylpropanoid pathway include flavonoids, which 

play a key role in plant responses to both biotic and abiotic stress (Zhang, et al., 2016). 

Since flavonoids are synthesized by the phenylpropanoid pathway (Gray, et al., 2012), it 

is consistent that enrichment of DEGs in both phenylpropanoid metabolism and flavonoid 

biosynthesis was observed concomitantly.  

Similar to the results obtained through the analysis of gene ontology, the pathway 

enrichment analysis of immature nodal segments near the apical meristem in R07020, 
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revealed a series of DEG-enriched pathways involved in the metabolic activities of 

actively elongating regions of the stem. Pathways that were enriched in nodal segment 

N14 of R07020 included starch and sucrose metabolism, DNA replication, 

photosynthesis-antenna proteins, and biosynthetic pathways for cutin, suberin, and wax 

(Table 10). The three major pathways enriched in nodal segment N16 in BTx623 were 

starch and sucrose metabolism, biosynthesis of cutin, suberin and wax, and 

phenylpropanoid biosynthesis (Table 11). In the stems of sweet sorghum cultivar Della 

prior to anthesis, McKinley, et al. (2016) reported elevated expression of sucrose 

metabolism genes that included sucrose synthase 4 (SUS4) and five cytosolic and vacuolar 

invertases from floral initiation until seven days before anthesis. These genes were down-

regulated after anthesis which is consistent with the maturation of stems and the deposition 

of secondary cell walls (McKinley, et al., 2016). In the present study, the upregulation of 

biosynthetic pathway genes in immature nodal segments is consistent with the rapid 

deposition of polyesters and waxes in elongating stem segments that allow for the fast rate 

of stem elongation with a constant load and composition of the protective cuticle (Suh, et 

al., 2005). Cutin is embedded with waxes in the cuticle of plants, which usually functions 

as an amorphous protective layer covering leaves and stems of plants. Suberin also shapes 

essential physical and biological barriers for plants as a complex hydrophobic material, 

and is deposited on the walls around the bundle sheath cells in grasses (Albersheim, et al., 

2010).  
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Table 8: Pathways enriched in DEGs based on the KOBAS web server in nodal 

segment N6 from sorghum genotype R07020. Input number indicates the total number 

of input genes mapped to the particular pathway while background indicates the number 

of baseline expressed genes mapped to the particular pathway based on the KEGG 

pathway database. Significant enriched pathways were selected based on an FDR 

corrected p-value <0.05. 

Pathway Database 
Input 

number 

Background 

number 

FDR 

p-value 

Biosynthesis of secondary metabolites KEGG PATHWAY 147 1015 0.00 

Phenylpropanoid biosynthesis KEGG PATHWAY 58 240 0.00 

Phenylalanine metabolism KEGG PATHWAY 42 184 0.00 

Flavonoid biosynthesis KEGG PATHWAY 16 55 0.00 

Cyanoamino acid metabolism KEGG PATHWAY 15 59 0.01 

Stilbenoid, diarylheptanoid and 

gingerol biosynthesis 
KEGG PATHWAY 9 21 0.01 

 

 

 

 

Table 9: Pathways enriched in DEGs based on KOBAS in nodal segment N6 from 

sorghum genotype BTx623. Descriptors and other details are as described for Table 8. 

Pathway Database 
Input 

number 

Background 

number 

FDR  

p-value 

Biosynthesis of secondary metabolites KEGG PATHWAY 74 1015 0.00 

Plant-pathogen interaction KEGG PATHWAY 24 170 0.00 

Phenylpropanoid biosynthesis KEGG PATHWAY 24 240 0.00 

Phenylalanine metabolism KEGG PATHWAY 21 184 0.00 
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Table 10: Pathways enriched in DEGs based on KOBAS in nodal segment N14 from 

sorghum genotype R07020. Descriptors and other details are as described for Table 8. 

Pathway Database 
Input 

number 

Background 

number 

FDR  

p-value 

Starch and sucrose metabolism KEGG PATHWAY 28 180 0.03 

DNA replication KEGG PATHWAY 16 73 0.02 

Cutin, suberin and wax biosynthesis KEGG PATHWAY 11 34 0.01 

Photosynthesis - antenna proteins KEGG PATHWAY 9 15 0.00 

 

 

 

 

Table 11: Pathways enriched in DEGs based on KOBAS in nodal segment N16 from 

sorghum genotype BTx623. Descriptors and other details are as described for Table 8. 

Pathway Database 
Input 

number 

Background 

number 

FDR  

p-value 

Phenylpropanoid biosynthesis KEGG PATHWAY 42 247 0.01 

Starch and sucrose metabolism KEGG PATHWAY 35 189 0.01 

Cutin, suberin and wax biosynthesis KEGG PATHWAY 13 40 0.01 
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DEGs involved in the phenylpropanoid pathway 

An examination of DEGs in nodal segments N6 vs. N14 of genotype R07020 revealed 

90 gene members of the phenylpropanoid biosynthesis pathway with multiple enzymatic 

steps of this pathway being differentially expressed (Table 12). The majority of these 

genes (66%) were up-regulated in nodal segment N6, which included 14 genes involved 

in both lignin monomers and flavonoid metabolism. Thirty-one genes in the 

phenylpropanoid pathway were also up-regulated in nodal segment N14. Among the 

DEGs in genotype BTx623, 66 genes mapped to the phenylpropanoid biosynthesis 

pathway with a majority (64%) up-regulated in the upper nodal segment N16 vs. nodal 

segment N6, while 24 genes in this pathway were up-regulated in N6 vs. N16 (Table 13). 

The two main enzymatic steps in lignin biosynthesis are the biosynthesis of monolignols 

and polymerization of monolignols (Boerjan, et al., 2003), and various genes involved in 

these processes were differentially expressed in basal nodal segments. Sobic.004G220400, 

encoding a PAL gene, which deaminates phenylalanine to produce cinnamic acid in the 

first step of the phenylpropanoid pathway, showed a 2.6-fold increase in expression in 

nodal segment N6 of genotype R07020, and another PAL gene, Sobic.006G148900, 

showed a 5.1-fold expression increase in the basal nodal segment of genotype BTx623. 

The 4-coumarate-CoA ligase (4CL) enzyme catalyzes the conversion of p-coumaric and 

caffeic acids to their thio ester forms, which are the precursors of monolignol (Saballos, 

et al., 2012). The 4CL gene family members regulate the synthesis of monolignol 

precursors and therefore, control lignin content and composition (Saballos, et al., 2012). 

In R07020, three 4CL gene family members, Sobic.007G145600 (4.3-fold change), 
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Sobic.004G062500 (3.6-fold change), and Sobic.007G089900 (2.3-fold change), were up-

regulated in basal segment N6 vs. N14. Three other 4CL gene family members, including 

Sobic.001G187000 (11.3-fold change), Sobic.004G272700 (3.3-fold change), and 

Sobic.007G145600 (3.6-fold change) were up-regulated in N6 of BTx623 versus N16. 

Two members of the F5H gene family, Sobic.005G088400 and Sobic.001G196300, that 

are involved in S-lignin biosynthesis, showed 26.5- and 2.9-fold increases in gene 

expression, respectively, in basal nodal segment N6 versus apical nodal segment N14 in 

R07020. Lignin that is rich in G units has more carbon-carbon bonds than lignin rich in  

S units, therefore, it is more resistant to chemical degradation (Lapierre, et al., 1999; 

Boerjan, et al., 2003). The down-regulation of F5H results in lignin composed of G units, 

whereas F5H overexpression can result in plants with lignins almost entirely composed of 

S units (Boerjan, et al., 2003). Therefore, the over-expression of F5H has been proposed 

as a strategy to improve the saccharification process of lignocellulosic biofuel production 

(Poovaiah, et al., 2014). The COMT (Sobic.007G059100, 75.1-fold change and 

Sobic.007G058800, 13.2-fold change) and CCOMT (Sobic.002G242300, 15.5-fold 

change and Sobic.010G052200, 2.5-fold change) genes are involved in producing sinapyl 

alcohol (Ralph, et al., 2001), and these genes showed increased expression in nodal 

segment N6 compared to N14 in R07020 (Table 12). In BTx623, CCOMT gene 

Sobic.002G242300 also showed an ~8-fold increase in expression in nodal segment N6 

compared to N16 (Table 13).   

Mutations in the last steps of lignin biosynthesis including COMT and CAD reduce 

the lignin content in various grasses (Jones, et al., 2001; Yoon, et al., 2015). In the present 
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study, CAD gene Sobic.006G014700 in genotype R07020 and CAD gene 

Sobic.002G195600 in BTx623 showed >4-fold increases in expression in basal nodal 

segments, which are actively involved in lignin biosynthesis (Tables 12 and 13). These 

observations are consistent with reports of reduced lignin deposition associated with 

COMT mutants in switchgrass (Fu, et al., 2011) and sugarcane (Jung, et al., 2012). The 

COMT mutant Bd5139 in Brachypodium (Ho-Yue-Kuang, et al., 2015) also altered stem 

and grain lignin and improved saccharification of biomass without a reduction in grain 

quality. In Della sweet sorghum, McKinley, et al. (2016) also found higher expression of 

similar genes including 4CL (Sobic.004G062500), CCOMT (Sobic.010G052200), CCR 

(Sobic.007G141200), CAD (Sobic.006G014700) and F5H (Sobic.001G196300). In Della 

sweet sorghum, the peak expression of these lignin biosynthesis genes was coincident with 

the up-regulation of other secondary cell wall biosynthesis genes that occurred prior to 

anthesis.  

In both genotypes examined here, genes encoding peroxidases and β-glucosidases 

were also differentially expressed, but the majority of peroxidase gene family members 

were up-regulated in the basal nodal segment of  R07020 whereas in BTx623, these genes 

were up-regulated in the apical nodal segment N16 (data not shown). Peroxidases are 

involved in lignin polymerization that results from the oxidative coupling of monolignol 

to the growing polymer. β-glucosidase genes in general showed higher expression in the 

apical nodal segment of BTx623 whereas in R07020 a similar number of β-glucosidase 

genes were up-regulated in the basal and the apical nodal segments (data not shown).  

β-glucosidases play important roles in the formation of intermediates in cell wall 
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lignification and belong to the family 1 glycoside hydrolases that catalyze the hydrolysis 

of the β-glucosidic bond between two carbohydrate moieties or a carbohydrate and a 

glucose moiety (Escamilla-Treviño, et al., 2006). The observed differences in the two 

sorghum genotypes likely reflects the different developmental stages that existed after 60 

days of growth in the two genotypes. In BTx623, floral initiation had already occurred and 

the panicle was in the boot stage. In this stage of reproductive development, rapid stem 

elongation has ceased and peduncle elongation has commenced (Vanderlip and Reeves, 

1972). By comparison, R07020 is photoperiod sensitive and thus, vegetative growth 

(including stem elongation) continued unabated at the time of tissue sampling. Since 

secondary wall thickening coincides with the cessation of cell expansion in secondary 

wall-forming cell types, it is reasonable to assume that the majority of phenylpropanoid 

pathway genes in general showed higher expression in BTx623 in the apical stem section 

that has ceased rapid cell elongation.  
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Table 12: Differentially expressed key phenylpropanoid pathway genes in sorghum genotype R07020. DEGs represent 

expression differences between nodal segments N6 and N14. DEGs were defined as having a log2 fold change ≥ 1 or ≤ -1 with 

an FDR corrected p-value <0.05. 

Gene Description 
Fold 

changea 
FDR p-value 

Gene ortholog 

Arabidopsis Maize 

Sobic.004G062500 4-coumarate--CoA ligase (4CL) 3.60 0.00 AT3G21240 GRMZM2G055320 

Sobic.007G089900 4-coumarate--CoA ligase (4CL) 2.35 0.02 AT3G21240 GRMZM2G055320 

Sobic.007G145600 4-coumarate--CoA ligase (4CL) 4.31 0.00 AT3G21240 GRMZM2G055320 

Sobic.007G059100 caffeic acid 3-O-methyltransferase  (COMT) 75.14 0.00 AT5G54160 AC196475.3_FG004 

Sobic.007G058800 caffeic acid 3-O-methyltransferase (COMT) 13.29 0.00 AT5G54160 AC196475.3_FG004 

Sobic.002G242300 caffeoyl-CoA O-methyltransferase (CCOMT) 15.58 0.00 AT4G34050 GRMZM2G127948 

Sobic.010G052200 caffeoyl-CoA O-methyltransferase (CCOMT) 2.48 0.00 AT4G34050 GRMZM2G127948 

Sobic.002G146000 cinnamoyl-CoA reductase (Shen, et al.) -2.39 0.00 AT1G15950 GRMZM2G131205 

Sobic.007G141200 cinnamoyl-CoA reductase (Shen, et al.) 5.47 0.00 AT1G15950 GRMZM2G131205 

Sobic.006G014700 cinnamyl-alcohol dehydrogenase (CAD) 5.72 0.00 AT4G39330 N/A 

Sobic.010G178300 coniferyl-aldehyde dehydrogenase (CALDH) -2.65 0.00 AT3G24503 GRMZM2G071021 

Sobic.003G327800 coumaroylquinate  -2.12 0.01 AT2G40890 GRMZM2G140817 

Sobic.001G196300 ferulate-5-hydroxylase (F5H) 2.91 0.00 AT4G36220 GRMZM2G100158 

Sobic.005G088400 ferulate-5-hydroxylase (F5H) 26.57 0.00 AT4G36220 GRMZM2G100158 

Sobic.004G220400 phenylalanine ammonia-lyase (PAL) 2.61 0.00 AT2G37040 GRMZM2G029048 

Sobic.004G220300 
phenylalanine/tyrosine ammonia-lyase 

(PAL/TAL) 
2.24 0.00 AT3G53260 GRMZM2G029048 

Sobic.002G126600 trans-cinnamate 4-monooxygenase (C4H) 2.01 0.00 AT2G30490 GRMZM2G010468 

aPositive values indicate greater expression in nodal segment N6 compared to N14. Negative values indicate greater expression 

in nodal segment N14 compared to N6. 

 

http://www.maizesequence.org/Zea_mays/Transcript/Transcript?t=GRMZM2G055320_T01
http://www.maizesequence.org/Zea_mays/Transcript/Transcript?t=GRMZM2G055320_T01
http://www.maizesequence.org/Zea_mays/Transcript/Transcript?t=GRMZM2G055320_T01
http://www.maizesequence.org/Zea_mays/Transcript/Transcript?t=AC196475.3_FGT004
http://www.maizesequence.org/Zea_mays/Transcript/Transcript?t=AC196475.3_FGT004
http://www.maizesequence.org/Zea_mays/Transcript/Transcript?t=GRMZM2G127948_T01
http://www.maizesequence.org/Zea_mays/Transcript/Transcript?t=GRMZM2G127948_T01
http://www.maizesequence.org/Zea_mays/Transcript/Transcript?t=GRMZM2G131205_T01
http://www.maizesequence.org/Zea_mays/Transcript/Transcript?t=GRMZM2G131205_T01
http://www.maizesequence.org/Zea_mays/Transcript/Transcript?t=GRMZM2G071021_T01
http://www.maizesequence.org/Zea_mays/Transcript/Transcript?t=GRMZM2G140817_T01
http://www.maizesequence.org/Zea_mays/Transcript/Transcript?t=GRMZM2G100158_T01
http://www.maizesequence.org/Zea_mays/Transcript/Transcript?t=GRMZM2G100158_T01
http://www.maizesequence.org/Zea_mays/Transcript/Transcript?t=GRMZM2G029048_T01
http://www.maizesequence.org/Zea_mays/Transcript/Transcript?t=GRMZM2G029048_T01
http://www.maizesequence.org/Zea_mays/Transcript/Transcript?t=GRMZM2G010468_T01
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Table 13: Differentially expressed key phenylpropanoid pathway genes in sorghum genotype BTx623. DEGs represent 

expression differences between nodal segments N6 and N16. DEGs were defined as having a log2 fold change ≥ 1 or ≤ -1 

with an FDR corrected p-value <0.05. 

Gene Description and EC number 
Fold  

changea 
FDR p-value 

Gene ortholog 

Arabidopsis Maize 

Sobic.001G187000 4-coumarate--CoA ligase (4CL) 11.3 0.04 AT4G05160 GRMZM2G122787 

Sobic.004G272700 4-coumarate--CoA ligase (4CL) 3.36 0.01 AT1G65060 GRMZM2G054013 

Sobic.007G145600 4-coumarate--CoA ligase (4CL) 3.69 0.02 AT3G21240 GRMZM2G055320 

Sobic.002G242300 caffeoyl-CoA O-methyltransferase (CCOMT) 8.14 0.00 AT4G34050 GRMZM2G127948 

Sobic.002G146000 cinnamoyl-CoA reductase (Shen, et al.) -8.34 0.00 AT1G15950 GRMZM2G131205 

Sobic.002G195600 cinnamyl-alcohol dehydrogenase (CAD) 12.03 0.00 AT4G39330 N/A 

Sobic.003G203600 coniferyl-aldehyde dehydrogenase (CALDH) 7.98 0.02 AT3G24503 GRMZM2G071021 

Sobic.010G178300 coniferyl-aldehyde dehydrogenase (CALDH) -26.91 0.00 AT3G24503 GRMZM2G071021 

Sobic.006G148900 phenylalanine ammonia-lyase (PAL) 5.18 0.02 AT2G37040 GRMZM2G029048 
aPositive values indicate greater expression in nodal segment N6 compared to N16. Negative values indicate greater expression 

in nodal segment N16 compared to N6. 

 

 

  

http://www.maizesequence.org/Zea_mays/Transcript/Transcript?t=GRMZM2G122787_T02
http://www.maizesequence.org/Zea_mays/Transcript/Transcript?t=GRMZM2G054013_T02
http://www.maizesequence.org/Zea_mays/Transcript/Transcript?t=GRMZM2G055320_T01
http://www.maizesequence.org/Zea_mays/Transcript/Transcript?t=GRMZM2G127948_T01
http://www.maizesequence.org/Zea_mays/Transcript/Transcript?t=GRMZM2G131205_T01
http://www.maizesequence.org/Zea_mays/Transcript/Transcript?t=GRMZM2G071021_T01
http://www.maizesequence.org/Zea_mays/Transcript/Transcript?t=GRMZM2G071021_T01
http://www.maizesequence.org/Zea_mays/Transcript/Transcript?t=GRMZM2G029048_T01
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Transcriptional regulation of cell wall biosynthesis  

Previous studies have shown that regulation of cell wall biosynthesis can occur at the 

transcriptional level (Handakumbura and Hazen, 2007). In the present study, 329 and 176 

DEGs were annotated as transcription factors (TFs) in R07020 and BTx623, respectively, 

including gene members of the MYB and NAC families (data not shown). Sorghum TFs of 

the NAC family that were differentially expressed included Sobic.003G334600, which was 

up-regulated 6.4- and 9-fold in basal nodal segments in genotypes R07020 and BTx623, 

respectively, and Sobic.005G064600, which was up-regulated 8.2- and 3-fold in basal 

nodal segments of R07020 and BTx623, respectively (Tables 14 and 15). 

Sobic.003G334600 and Sobic.005G064600 are orthologs of NAC TFs that have been 

reported to be up-regulated in non-elongating internodes of maize (Bosch, et al., 2011). 

Valdivia, et al. (2013) proposed that secondary wall-associated NACs (SWNs) function as 

the "master switches" for secondary cell wall biosynthesis. Christiansen, et al. (2011) also 

reported greater expression of three NAC genes in stem tissues of barley (Hordeum 

vulgare L.) that were actively laying down secondary cell walls. Several MYB 

transcription factors were up-regulated in the basal nodal segments of R07020 and 

BTx623 (Tables 14 and 15). For example, MYB TF (Sobic.002G275500) showed a 2-fold 

increase in the basal nodal segment N6 in R07020. Similarly, the maize ortholog 

(GRMZM2G037650) of this gene was reported to be up-regulated in non-elongating 

internodes of maize (Bosch et al, 2011). Additional TF families that were differentially 

expressed in nodal segments of BTx623 and R07020 included AP2/EREBP, C2H2 zinc 

finger, WRKY, bHLH, and Aux/IAA (Tables 14 and 15). Elevated expression of 

http://www.maizesequence.org/Zea_mays/Transcript/Transcript?t=GRMZM2G037650_T01
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transcription factors including members of the AP2-EREBP, bHLH and WRKY families 

was observed in basal nodal segments in both R07020 and BTx623 genotypes. The 

differential expression of WRKY TFs during the maturation of sorghum stems is consistent 

with their reported role in secondary cell wall formation in Miscanthus (Yu, et al., 2013). 

Among the other differentially expressed TFs were five members of the AUX/IAA family 

(Sobic.001G161500, Sobic.003G291200, Sobic.004G336500, Sobic.007G009300, 

Sobic.010G065500), which were up-regulated in nodal segment N6 of genotype R07020 

(Table 14). In BTx623, three differentially expressed AUX/IAA TFs were observed, of 

which two were up-regulated in N16 as compared to N6 (Table 15). The AUX/IAA TF 

family is comprised of early auxin-response genes that have been reported to have a role 

in auxin-dependent developmental processes (Overvoorde, et al., 2005). The possible 

involvement of AUX/IAA TFs in cell wall biosynthesis has been reported in other species, 

such as maize (Bosch, et al., 2011) and sugarcane (Ferreira, et al., 2016).  
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Table 14: Differentially expressed key transcription factors in sorghum genotype 

R07020. DEGs represent expression differences between nodal segments N6 and N14. 

DEGs were defined as having a log2 fold change ≥ 1 or ≤ -1 with an FDR corrected  

p-value <0.05. 

Feature ID Annotation 
Fold 

changea 

FDR 

 p-value 

Gene ortholog 

Arabidopsis Maize 

Sobic.001G075700 AP2/EREBP -8.91 0 AT4G37750 GRMZM2G028151 

Sobic.001G448000 AP2/EREBP -12.97 0 AT4G37750 GRMZM2G028151 

Sobic.001G481400 AP2/EREBP 6.13 0 AT1G72360 N/A 

Sobic.002G022600 AP2/EREBP -7.34 0 AT4G37750 GRMZM2G028151 

Sobic.003G390600 AP2/EREBP 22.05 0 AT5G17430 GRMZM2G141638 

Sobic.004G214300 AP2/EREBP 92.1 0 AT1G51190 N/A 

Sobic.004G331300 AP2/EREBP 6.37 0 AT5G25190 N/A 

Sobic.006G184700 AP2/EREBP 90.21 0 AT2G36450 N/A 

Sobic.007G077100 AP2/EREBP 21.98 0 AT3G20310 GRMZM2G068967 

Sobic.007G077200 AP2/EREBP 39.38 0 AT5G44210 N/A 

Sobic.007G077300 AP2/EREBP 7.99 0 AT1G12980 GRMZM2G120401 

Sobic.009G024900 AP2/EREBP -4.73 0 AT2G45490 GRMZM2G107645 

Sobic.009G122600 AP2/EREBP 4.96 0 AT5G12330 GRMZM2G077752 

Sobic.009G142200 AP2/EREBP 24.94 0 AT1G01720 GRMZM2G014653 

Sobic.009G155200 AP2/EREBP 14.6 0 AT3G57670 GRMZM2G084014 

Sobic.009G238500 AP2/EREBP 5.31 0 AT1G64380 GRMZM5G846057 

Sobic.009G247300 AP2/EREBP 18.23 0 AT4G18170 N/A 

Sobic.010G052700 AP2/EREBP 5.29 0 AT4G29080 N/A 

Sobic.010G220400 AP2/EREBP -14.99 0 AT1G30950 GRMZM2G109966 

Sobic.001G161500 Aux/IAA 3.95 0 AT1G04240 N/A 

Sobic.003G291200 Aux/IAA 7.27 0 AT3G16500 GRMZM2G057067 

Sobic.004G336500 Aux/IAA 12.97 0 AT1G04550 GRMZM2G142768 

Sobic.005G098400 Aux/IAA -7.16 0 AT1G04550 GRMZM2G142768 

Sobic.007G009300 Aux/IAA 3.33 0 AT1G51950 GRMZM2G057067 

Sobic.010G065500 Aux/IAA 27.31 0 AT2G24260 GRMZM2G316758 

Sobic.001G068300 bHLH 4.2 0 AT3G59060 GRMZM2G016756 

Sobic.001G107400 bHLH 10.64 0 AT4G37850 GRMZM2G019806 

Sobic.001G430000 bHLH -5.16 0 AT1G68810 GRMZM2G043854 



 

49 

 

Table 14: Continued

Feature ID Annotation 
Fold 

changea 

FDR 

 p-value 

Gene ortholog 

Arabidopsis Maize 

Sobic.001G518900 bHLH -21.91 0 AT2G34820 GRMZM2G137374 

Sobic.002G246600 bHLH 9.26 0 AT2G42280 GRMZM2G142932 

Sobic.003G061400 bHLH 4.51 0 AT2G40200 GRMZM2G088443 

Sobic.004G267400 bHLH 4.5 0 AT4G34530 GRMZM2G101350 

Sobic.005G131900 bHLH -6.84 0 AT3G26744 GRMZM2G033356 

Sobic.006G175200 bHLH 21.32 0 AT1G63650 GRMZM2G172795 

Sobic.006G175500 bHLH 181.32 0 AT1G63650 GRMZM2G172795 

Sobic.007G155300 bHLH 57.554 0 AT3G50330 GRMZM2G045431 

Sobic.007G224200 bHLH 5.23 0 AT1G68920 GRMZM2G137541 

Sobic.008G188900 bHLH 2.39 0 AT4G34610 GRMZM2G099319 

Sobic.010G070900 bHLH -5.58 0 AT2G42840 GRMZM2G092968 

Sobic.001G340900 MYB -5.85 0 AT1G22640 GRMZM2G089244 

Sobic.001G358900 MYB -180.15 0 AT1G57560 GRMZM2G017520 

Sobic.001G391500 MYB 11.37 0 AT1G48000 GRMZM2G057027 

Sobic.001G397900 MYB 43.29 0 AT2G47460 GRMZM2G022686 

Sobic.002G196000 MYB -5.68 0 AT5G16600 GRMZM2G106558 

Sobic.002G275500 MYB 2.35 0 AT4G12350 GRMZM2G037650 

Sobic.002G423300 MYB 8.22 0 AT5G49620 GRMZM2G070849 

Sobic.003G008700 MYB -5.8 0 AT4G32730 GRMZM2G470307 

Sobic.003G034500 MYB 34.56 0 AT2G36890 N/A 

Sobic.003G087600 MYB 7.26 0 AT1G68320 GRMZM2G096358 

Sobic.003G373000 MYB 5.13 0 AT4G09460 N/A 

Sobic.006G030200 MYB 102.63 0 AT5G57620 GRMZM2G011422 

Sobic.006G199800 MYB 16.28 0 AT1G79180 GRMZM2G038722 

Sobic.007G177100 MYB 22.17 0 AT4G34990 GRMZM2G000818 

Sobic.008G016800 MYB 8.15 0 AT3G56930 GRMZM2G005834 

Sobic.008G117800 MYB 6.89 0 AT3G62960 N/A 

Sobic.008G133700 MYB 3.2 0 AT5G59780 GRMZM2G047626 

Sobic.009G075500 MYB 14.65 0 AT4G18960 GRMZM2G359952 

Sobic.009G221400 MYB 10.58 0 AT1G13260 GRMZM2G059939 

Sobic.003G334600 NAC 6.41 0 AT5G08790 N/A 
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Table 14: Continued

Feature ID Annotation 
Fold 

changea 

FDR 

 p-value 

Gene ortholog 

Arabidopsis Maize 

Sobic.005G064600 NAC 9.07 0 AT1G77450 N/A 

Sobic.001G084000 WRKY 7.8 0 AT1G69310 GRMZM2G018721 

Sobic.002G008600 WRKY 7.29 0 AT1G69310 GRMZM2G018721 

Sobic.002G242500 WRKY 5.72 0 AT5G56270 GRMZM2G031963 

Sobic.003G000600 WRKY 18.07 0 AT1G62300 GRMZM2G366795 

Sobic.003G037400 WRKY 224.87 0 AT5G64810 GRMZM2G137802 

Sobic.003G138400 WRKY 23.26 0 AT4G04450 GRMZM2G448605 

Sobic.003G227300 WRKY 8.06 0 AT4G18170 N/A 

Sobic.003G248400 WRKY 18.67 0 AT4G18170 N/A 

Sobic.003G341100 WRKY 7.35 0 AT2G38470 GRMZM2G036703 

Sobic.004G065900 WRKY 6.36 0 AT1G80840 GRMZM2G120320 

Sobic.006G201000 WRKY 9.36 0 AT1G30650 GRMZM2G024898 

Sobic.008G029400 WRKY 21.58 0 AT2G46400 GRMZM2G025895 

Sobic.008G037900 WRKY 3.25 0 AT1G08320 GRMZM2G060216 

Sobic.009G072200 WRKY 4.3 0 AT5G56840 GRMZM2G049695 

Sobic.009G111200 WRKY 4.37 0 AT3G16770 N/A 

Sobic.009G260600 WRKY 4.56 0 AT3G44750 N/A 
aPositive values indicate greater expression in nodal segment N6 compared to N14. 

Negative values indicate greater expression in nodal segment N14 compared to N6. 
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Table 15: Differentially expressed key transcription factors in sorghum genotype 

BTx623. DEGs represent expression differences between nodal segments N6 and N16. 

DEGs were defined as having a log2 fold change ≥ 1 or ≤ -1 with an FDR corrected  

p-value <0.05. 

Feature ID Annotation 
Fold 

changea 

FDR 

 p-value 

Gene ortholog 

Arabidopsis Maize 

Sobic.001G448000 AP2/EREBP -8.45 0.00 AT4G37750 GRMZM2G028151 

Sobic.001G481400 AP2/EREBP 13.71 0.00 AT1G72360 N/A 

Sobic.004G214300 AP2/EREBP 274.13 0.00 AT1G51190 N/A 

Sobic.006G184700 AP2/EREBP 52.21 0.00 AT2G36450 N/A 

Sobic.009G024900 AP2/EREBP -5.44 0.05 AT2G45490 GRMZM2G107645 

Sobic.009G155200 AP2/EREBP 14.06 0.00 AT3G57670 GRMZM2G084014 

Sobic.009G247300 AP2/EREBP 24.87 0.00 AT4G18170 N/A 

Sobic.001G161500 Aux/IAA -9.05 0.00 AT1G04240 N/A 

Sobic.005G098400 Aux/IAA -31.10 0.00 AT1G04550 GRMZM2G142768 

Sobic.010G065500 Aux/IAA 7.64 0.01 AT2G24260 GRMZM2G316758 

Sobic.001G068300 bHLH 4.20 0.00 AT3G59060 GRMZM2G016756 

Sobic.001G430000 bHLH -21.84 0.00 AT1G68810 GRMZM2G043854 

Sobic.001G518900 bHLH -74.00 0.00 AT2G34820 GRMZM2G137374 

Sobic.002G246600 bHLH 19.48 0.00 AT2G42280 GRMZM2G142932 

Sobic.004G267400 bHLH 4.61 0.00 AT4G34530 GRMZM2G101350 

Sobic.007G224200 bHLH 2.98 0.03 AT1G68920 GRMZM2G137541 

Sobic.010G070900 bHLH -4.82 0.03 AT2G42840 GRMZM2G092968 

Sobic.001G358900 MYB -330.36 0.00 AT1G57560 GRMZM2G017520 

Sobic.001G391500 MYB 4.44 0.01 AT1G48000 GRMZM2G057027 

Sobic.003G008700 MYB -13.74 0.00 AT4G32730 GRMZM2G470307 

Sobic.003G034500 MYB 22.55 0.00 AT2G36890 N/A 

Sobic.003G087600 MYB 5.71 0.00 AT1G68320 GRMZM2G096358 

Sobic.007G177100 MYB 11.52 0.00 AT4G34990 GRMZM2G000818 

Sobic.009G221400 MYB 19.43 0.00 AT1G13260 GRMZM2G059939 

Sobic.003G334600 NAC 8.28 0.00 AT5G08790 N/A 

Sobic.005G064600 NAC 3.07 0.05 AT1G77450 N/A 

Sobic.001G084000 WRKY 5.22 0.00 AT1G69310 GRMZM2G018721 

Sobic.002G008600 WRKY 3.36 0.02 AT1G69310 GRMZM2G018721 

Sobic.002G242500 WRKY 2.25 0.03 AT5G56270 GRMZM2G031963 
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Table 15: Continued

Feature ID Annotation 
Fold 

changea 

FDR 

 p-value 

Gene ortholog 

Arabidopsis Maize 

Sobic.003G000600 WRKY 69.99 0.00 AT1G62300 GRMZM2G366795 

Sobic.003G037400 WRKY 17.99 0.00 AT5G64810 GRMZM2G137802 

Sobic.003G138400 WRKY 9.28 0.02 AT4G04450 GRMZM2G448605 

Sobic.003G227300 WRKY 6.40 0.02 AT4G18170 N/A 

Sobic.003G248400 WRKY 4.49 0.00 AT4G18170 N/A 

Sobic.003G341100 WRKY 12.85 0.00 AT2G38470 GRMZM2G036703 

Sobic.009G072200 WRKY 11.98 0.00 AT5G56840 GRMZM2G049695 

Sobic.009G260600 WRKY 10.35 0.00 AT3G44750 N/A 
aPositive values indicate higher expression in nodal segment N6 compared to N16. 

Negative values indicate higher expression in nodal segment N16 compared to N6. 
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Cellulose biosynthesis, hemicellulose metabolic process, and cell wall catabolism 

The cellulose synthase A gene family which is found in all seed plant species (Joshi 

and Mansfield, 2007) is involved in cellulose biosynthesis at the plasma membrane 

(Handakumbura, et al., 2013). In rice (Oryza sativa), OsCesA1, OsCesA3 and OsCesA8 

are involved in primary cell wall biosynthesis (Wang, et al., 2010), while OsCesA4, 

OsCesA7 and OsCesA9 are involved in secondary cell wall biosynthesis (Tanaka, et al., 

2003). In R07020, the expression of genes CesA7 (Sobic.002G118700), CesA10 

(Sobic.001G224300), and CesA12 (Sobic.002G205500) was up-regulated 2-fold in basal 

nodal segment N6 in comparison to apical nodal segment N14 (Table 16). The 

involvement of CesA10-12 in secondary cell wall biosynthesis has been reported in maize 

(Appenzeller, et al., 2004), while microRNA knockdown of CesA7 in Brachypodium 

distachyon resulted in a reduction in secondary cell wall thickness (Handakumbura, et al., 

2013).  

The examination of differentially expressed gene families in immature stem nodal 

segments near the shoot apex revealed a series of CesA gene family members that were 

up-regulated. The CesA5 gene (Sobic.001G045700) was up-regulated 2-fold in node N14 

versus N6 of R07020 (Table 16) while in BTx623, genes CesA8 (Sobic.002G094600, 3.6-

fold change), CesA10 (Sobic.001G224300, 2.5-fold change), and CesA11 

(Sobic.003G296400, 2.3-fold change) were up-regulated in node N16 compared to N6 

(Table 17). Similar observations of the elevated expression of CesA8 

(Sobic.002G094600), CesA10 (Sobic.001G224300) and CesA12 (Sobic.002G205500) 
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until seven days before anthesis was reported in internode 10 in the sweet sorghum 

genotype Della (McKinley, et al., 2016).   

Because of the similarity of the β1–4 linkages of cellulose to the linkages of 

hemicellulose backbones, it has been hypothesized that a group of cellulose synthase-like 

(Csl) genes are involved in glycan backbone biosynthesis in the Golgi apparatus 

(Richmond and Somerville, 2000). Among the DEGs related to the hemicellulose 

metabolic process, CslF (Sobic.002G334100) and CslH (Sobic.006G080600) were up-

regulated more than 10-fold in nodal segments N14 and N16 of genotypes R07020 and 

BTx623, respectively (Tables 16 and 17). Within this family of genes, CslF and CslH are 

monocot-specific whereas CslB, and CslG are distinctive to dicots, and the remaining Csl 

genes are present in both monocots and dicots (Vogel, 2008).  
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Table 16: Differentially expressed genes in sorghum genotype R07020 involved in 

cellulose synthesis, hemicellulose metabolic process, and cell wall catabolism. DEGs 

represent expression differences between nodal segments N6 and N14. DEGs were 

defined as having a log2 fold change ≥ 1 or ≤ -1 with an FDR corrected p-value <0.05. 

Feature ID Annotation 
Fold 

changea 

FDR 

 p-value 

Gene ortholog 

Arabidopsis Maize 

Sobic.001G045700 CESA5 -2.12 0.00 AT5G05170 GRMZM2G111642 

Sobic.002G118700 CESA7 2.38 0.00 AT5G64740 GRMZM2G025231 

Sobic.001G224300 CESA10 1.93 0.02 AT5G44030 GRMZM2G445905 

Sobic.002G205500 CESA12 1.95 0.01 AT5G17420 GRMZM2G002523 

Sobic.001G490000 CSLA -2.79 0.00 AT5G03760 GRMZM2G105631 

Sobic.010G197300 CSLA 2.21 0.00 AT5G03760 GRMZM2G105631 

Sobic.001G075600 CSLC -2.27 0.00 AT4G07960 GRMZM2G028286 

Sobic.002G022700 CSLC -3.47 0.00 AT4G07960 GRMZM2G028286 

Sobic.003G308100 CSLC -2.31 0.00 AT4G07960 GRMZM2G028286 

Sobic.007G090600 CSLC 67.51 0.00 AT2G24630 GRMZM2G135286 

Sobic.008G125700 CSLD -5.52 0.00 AT1G02730 GRMZM2G015886 

Sobic.003G442500 CSLE 83.32 0.00 AT4G23990 N/A 

Sobic.004G255200 CSLE 1.93 0.04 AT1G55850 GRMZM2G014558 

Sobic.002G237900 CSLE-1 16.64 0.00 AT1G55850 GRMZM2G014558 

Sobic.002G238300 CSLE-2 4.75 0.00 AT1G55850 GRMZM2G014558 

Sobic.002G334100 CSLF-1 -25.21 0.00 AT1G02730 GRMZM2G015886 

Sobic.002G334200 CSLF-2 42.53 0.00 AT1G02730 GRMZM2G015886 

Sobic.006G080600 CSLH -10.23 0.00 AT2G32540 GRMZM2G074546 

aPositive values indicate greater expression in nodal segment N6 compared to N14. 

Negative values indicate greater expression in nodal segment N14 compared to N6. 

 

 

 

 

 

http://www.maizesequence.org/Zea_mays/Transcript/Transcript?t=GRMZM2G111642_T01
http://www.maizesequence.org/Zea_mays/Transcript/Transcript?t=GRMZM2G025231_T02
http://www.maizesequence.org/Zea_mays/Transcript/Transcript?t=GRMZM2G445905_T03
http://www.maizesequence.org/Zea_mays/Transcript/Transcript?t=GRMZM2G002523_T01
http://www.maizesequence.org/Zea_mays/Transcript/Transcript?t=GRMZM2G105631_T01
http://www.maizesequence.org/Zea_mays/Transcript/Transcript?t=GRMZM2G105631_T01
http://www.maizesequence.org/Zea_mays/Transcript/Transcript?t=GRMZM2G028286_T01
http://www.maizesequence.org/Zea_mays/Transcript/Transcript?t=GRMZM2G028286_T01
http://www.maizesequence.org/Zea_mays/Transcript/Transcript?t=GRMZM2G028286_T01
http://www.maizesequence.org/Zea_mays/Transcript/Transcript?t=GRMZM2G135286_T01
http://www.maizesequence.org/Zea_mays/Transcript/Transcript?t=GRMZM2G015886_T01
http://www.maizesequence.org/Zea_mays/Transcript/Transcript?t=GRMZM2G014558_T01
http://www.maizesequence.org/Zea_mays/Transcript/Transcript?t=GRMZM2G014558_T01
http://www.maizesequence.org/Zea_mays/Transcript/Transcript?t=GRMZM2G014558_T01
http://www.maizesequence.org/Zea_mays/Transcript/Transcript?t=GRMZM2G015886_T01
http://www.maizesequence.org/Zea_mays/Transcript/Transcript?t=GRMZM2G015886_T01
http://www.maizesequence.org/Zea_mays/Transcript/Transcript?t=GRMZM2G074546_T02
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Table 17: Differentially expressed genes in sorghum genotype BTx623 involved in 

cellulose synthesis, hemicellulose metabolic process, and cell wall catabolism. DEGs 

represent expression differences between nodal segments N6 and N16. DEGs were 

defined as having a log2 fold change ≥ 1 or ≤ -1 with an FDR corrected p-value <0.05. 

Feature ID Annotation 
Fold 

changea 

FDR 

 p-value 

Gene ortholog 

Arabidopsis Maize 

Sobic.002G094600 CESA8 -3.62 0.00 AT4G39350 GRMZM2G082580 

Sobic.003G296400 CESA11 -2.30 0.04 AT4G18780 GRMZM2G037413 

Sobic.002G385800 CSLA -2.85 0.02 AT5G03760 GRMZM2G105631 

Sobic.004G075900 CSLA -19.94 0.00 AT5G22740 GRMZM2G105631 

Sobic.004G238700 CSLA -3.02 0.03 AT5G03760 GRMZM2G105631 

Sobic.010G197300 CSLA -16.12 0.00 AT5G03760 GRMZM2G105631 

Sobic.003G308100 CSLC -10.00 0.00 AT4G07960 GRMZM2G028286 

Sobic.008G125700 CSLD -19.43 0.00 AT1G02730 GRMZM2G015886 

Sobic.004G255200 CSLE 3.80 0.00 AT1G55850 GRMZM2G014558 

Sobic.002G334100 CSLF -11.73 0.03 AT1G02730 GRMZM2G015886 

Sobic.006G080600 CSLH -11.06 0.00 AT2G32540 GRMZM2G074546 
aPositive values indicate greater expression in nodal segment N6 compared to N16. 

Negative values indicate greater expression in nodal segment N16 compared to N6. 

 

 

 

 

 

 

 

 

 

http://www.maizesequence.org/Zea_mays/Transcript/Transcript?t=GRMZM2G082580_T01
http://www.maizesequence.org/Zea_mays/Transcript/Transcript?t=GRMZM2G037413_T03
http://www.maizesequence.org/Zea_mays/Transcript/Transcript?t=GRMZM2G105631_T01
http://www.maizesequence.org/Zea_mays/Transcript/Transcript?t=GRMZM2G105631_T01
http://www.maizesequence.org/Zea_mays/Transcript/Transcript?t=GRMZM2G105631_T01
http://www.maizesequence.org/Zea_mays/Transcript/Transcript?t=GRMZM2G105631_T01
http://www.maizesequence.org/Zea_mays/Transcript/Transcript?t=GRMZM2G028286_T01
http://www.maizesequence.org/Zea_mays/Transcript/Transcript?t=GRMZM2G015886_T01
http://www.maizesequence.org/Zea_mays/Transcript/Transcript?t=GRMZM2G014558_T01
http://www.maizesequence.org/Zea_mays/Transcript/Transcript?t=GRMZM2G015886_T01
http://www.maizesequence.org/Zea_mays/Transcript/Transcript?t=GRMZM2G074546_T02
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DEGs encoding glycosyl transferases  

Cell wall polysaccharide synthesis requires refined biosynthetic processes with the 

involvement of glycosyltransferases. Glycosyltransferases (GTs) are enzymes that 

catalyze the transfer of a single sugar from nucleotide sugar donors to acceptors, such as 

glycan chains, peptides, or lipids (Scheible and Pauly, 2004; Breton, et al., 2012). In total, 

42 glycosyltransferase family members have been reported in sorghum in the 

Carbohydrate-Active Enzymes database (CAZy; http://www.cazy.org) (Lombard, et al., 

2014). Seventeen GT families showed more than a 2-fold change in expression between 

nodal segment N6 versus nodal segment N14 in R07020, and 21 GT families showed up-

regulation in N6 versus N16 in BTx623 (Table 18 and Table 19). Differentially expressed 

GTs included those in the GT8, GT43, and GT47 families. Mutations in genes from a 

number of these GT families have resulted in an irregular xylem (IRX) phenotype (Wu, et 

al., 2009; Doering, et al., 2012). The expression of two genes in the GT47 family, 

Sobic.004G159100 and Sobic.009G220200, were up-regulated 4.6- and 2.4-fold, 

respectively, in basal nodal segment N6 versus N14 in R07020 (Table 18), and 

Sobic.003G410800 was up-regulated 2.6-fold in nodal segment N16 in BTx623 (Table 

19). These genes are homologs of IRX10 and IRX10-L, which were shown to be involved 

in xylan biosynthesis in secondary cell walls in Arabidopsis (Wu, et al., 2009; Doering, et 

al., 2012). Bosch, et al. (2011) also reported the up-regulation of one GT47 family member 

in non-elongating internodes in maize, and this maize gene (GRMZM2G100143) is an 

ortholog of Sobic.004G159100, which was up-regulated in N6 in R07020. 

 

http://www.cazy.org/
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Table 18: Differentially expressed glycosyl transferases in sorghum genotype 

R07020. DEGs represent expression differences between nodal segments N6 and N14 of 

sorghum genotype. DEGs were defined as having a log2 fold change ≥ 1 or ≤ -1 with an 

FDR corrected p-value <0.05. 

Feature ID Annotation 
Fold 

changea 

FDR  

p-value 

Gene ortholog 

Arabidopsis Maize 

Sobic.001G030500 GT1 7.13 0.00 AT3G11340 GRMZM2G173926 

Sobic.001G030900 GT1 -86.14 0.00 AT3G55700 GRMZM5G892627 

Sobic.001G044400 GT1 3.70 0.03 AT3G02100 GRMZM2G363545 

Sobic.001G084300 GT1 2.92 0.00 AT3G02100 GRMZM2G363545 

Sobic.001G084400 GT1 8.49 0.00 AT3G02100 GRMZM2G363545 

Sobic.001G084600 GT1 4.17 0.00 AT3G02100 GRMZM2G363545 

Sobic.001G084700 GT1 126.09 0.00 AT3G02100 GRMZM2G363545 

Sobic.001G236400 GT1 32.78 0.00 AT2G36970 GRMZM2G337048 

Sobic.001G325600 GT1 7.09 0.00 AT2G43820 GRMZM2G171548 

Sobic.001G377200 GT1 3.49 0.00 AT3G16520 GRMZM2G449019 

Sobic.002G070800 GT1 -3.61 0.00 AT5G49690 GRMZM2G174192 

Sobic.002G085200 GT1 12.15 0.00 AT3G55700 GRMZM5G892627 

Sobic.002G085300 GT1 -2.57 0.01 AT3G11340 GRMZM2G173926 

Sobic.002G085400 GT1 3.71 0.01 AT5G05860 GRMZM2G117878 

Sobic.002G130200 GT1 15.73 0.00 AT3G16520 GRMZM2G449019 

Sobic.002G173900 GT1 31.55 0.00 AT1G01420 GRMZM2G376272 

Sobic.002G311900 GT1 57.15 0.00 AT3G21750 GRMZM2G113794 

Sobic.002G337400 GT1 -7.97 0.00 AT3G16520 GRMZM2G449019 

Sobic.002G366500 GT1 3.33 0.00 AT2G15480 GRMZM5G888620 

Sobic.003G042900 GT1 12.34 0.01 AT4G15550 GRMZM5G896260 

Sobic.003G232900 GT1 15.10 0.00 AT2G15480 GRMZM5G888620 

Sobic.003G233000 GT1 3.77 0.00 AT2G15480 GRMZM5G888620 

Sobic.003G233100 GT1 6.63 0.00 AT2G15480 GRMZM5G888620 

Sobic.003G287500 GT1 3.81 0.00 AT3G16520 GRMZM2G449019 

Sobic.003G287600 GT1 3.55 0.00 AT3G16520 GRMZM2G449019 

Sobic.003G287700 GT1 53.79 0.00 AT3G16520 GRMZM2G449019 

Sobic.003G288000 GT1 5.31 0.00 AT3G16520 GRMZM2G449019 

Sobic.003G288100 GT1 2.70 0.01 AT3G16520 GRMZM2G449019 

Sobic.003G288200 GT1 17.35 0.00 AT3G16520 GRMZM2G449019 

http://cys.bios.niu.edu/plantcazyme/family.php?family=GT1
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT1
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT1
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT1
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT1
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT1
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT1
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT1
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT1
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT1
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT1
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT1
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT1
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT1
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT1
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT1
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT1
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT1
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT1
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT1
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT1
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT1
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT1
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT1
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT1
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT1
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT1
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT1
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT1
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Table 18: Continued

Feature ID Annotation 
Fold 

changea 

FDR  

p-value 

Gene ortholog 

Arabidopsis Maize 

Sobic.003G328300 GT1 -2.54 0.01 AT2G30140 GRMZM2G440902 

Sobic.004G039500 GT1 2.43 0.01 AT4G01070 GRMZM2G426415 

Sobic.004G071200 GT1 6.62 0.00 AT4G15480 GRMZM5G818068 

Sobic.004G087100 GT1 53.03 0.00 AT2G36780 GRMZM2G161625 

Sobic.004G087200 GT1 110.64 0.00 AT2G36750 GRMZM2G325023 

Sobic.004G087300 GT1 7.55 0.04 AT2G36790 GRMZM2G035755 

Sobic.004G191100 GT1 10.38 0.00 AT1G22400 GRMZM2G476049 

Sobic.004G229800 GT1 58.88 0.00 AT1G22360 GRMZM5G870067 

Sobic.005G032000 GT1 3.72 0.01 AT4G14090 N/A 

Sobic.005G032200 GT1 3.46 0.00 AT1G05560 GRMZM2G475884 

Sobic.006G097800 GT1 -46.62 0.00 AT4G15550 GRMZM5G896260 

Sobic.006G123700 GT1 -4.63 0.01 AT5G12890 GRMZM2G159404 

Sobic.006G124100 GT1 3.82 0.00 AT1G07250 GRMZM2G448483 

Sobic.006G139900 GT1 3.12 0.01 AT5G12890 GRMZM2G159404 

Sobic.006G174400 GT1 41.31 0.00 AT2G15490 GRMZM2G168474 

Sobic.006G174600 GT1 11.60 0.03 AT2G15490 GRMZM2G168474 

Sobic.007G135000 GT1 10.59 0.00 AT1G22360 GRMZM5G870067 

Sobic.009G064300 GT1 2.42 0.05 AT2G36780 GRMZM2G161625 

Sobic.009G187000 GT1 4.21 0.00 AT2G36800 GRMZM2G479038 

Sobic.009G205600 GT1 2.01 0.04 AT3G16520 GRMZM2G449019 

Sobic.009G205700 GT1 23.43 0.00 AT3G16520 GRMZM2G449019 

Sobic.009G224100 GT1 -29.87 0.00 AT4G15480 GRMZM5G818068 

Sobic.009G230400 GT1 -2.43 0.01 AT3G55700 GRMZM5G892627 

Sobic.010G088800 GT1 42.89 0.01 AT1G22340 GRMZM2G148316 

Sobic.010G091100 GT1 3.95 0.03 AT2G36750 GRMZM2G325023 

Sobic.010G116900 GT1 2.31 0.04 AT1G73880 GRMZM2G426242 

Sobic.010G178900 GT1 -11.92 0.00 AT1G05560 GRMZM2G475884 

Sobic.010G179000 GT1 -7.08 0.00 AT4G15550 GRMZM5G896260 

Sobic.010G179100 GT1 -2.64 0.02 AT4G15550 GRMZM5G896260 

Sobic.010G179400 GT1 11.74 0.00 AT1G01420 GRMZM2G376272 

Sobic.010G179500 GT1 4.04 0.00 AT4G15550 GRMZM5G896260 

Sobic.010G210800 GT1 63.88 0.00 AT1G22370 N/A 

Sobic.001G075600 GT2 -2.27 0.00 AT4G07960 GRMZM2G476964 

Sobic.001G490000 GT2 -2.80 0.00 AT5G03760 GRMZM2G443715 

Sobic.002G022700 GT2 -3.47 0.00 AT4G07960 GRMZM2G476964 

http://cys.bios.niu.edu/plantcazyme/family.php?family=GT1
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT1
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT1
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT1
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT1
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT1
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT1
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT1
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT1
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT1
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT1
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT1
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT1
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT1
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT1
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT1
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT1
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT1
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT1
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT1
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT1
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT1
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT1
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT1
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT1
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT1
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT1
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT1
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT1
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT1
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT1
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT1
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT2
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT2
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT2
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Table 18: Continued

Feature ID Annotation 
Fold 

changea 

FDR  

p-value 

Gene ortholog 

Arabidopsis Maize 

Sobic.007G090600 GT2 67.51 0.00 AT4G31590 GRMZM2G365475 

Sobic.010G197300 GT2 2.22 0.01 AT5G03760 GRMZM2G443715 

Sobic.001G378300 GT4 2.63 0.00 AT4G02280 GRMZM5G842830 

Sobic.003G076900 GT4 -2.54 0.01 AT5G01220 GRMZM2G477503 

Sobic.003G240500 GT4 98.98 0.00 AT4G19460 GRMZM2G022311 

Sobic.004G357600 GT4 -9.18 0.00 AT1G73370 GRMZM2G410704 

Sobic.005G089600 GT4 2.58 0.01 AT4G10120 GRMZM2G008507 

Sobic.010G276700 GT4 -8.35 0.00 AT1G73370 GRMZM2G410704 

Sobic.001G131900 GT8 -2.20 0.00 AT3G61130 GRMZM2G565856 

Sobic.001G391300 GT8 10.98 0.00 AT2G47180 GRMZM5G872256 

Sobic.001G479800 GT8 5.10 0.00 AT4G33330 GRMZM2G109431 

Sobic.002G241100 GT8 -2.18 0.00 AT5G47780 GRMZM2G391000 

Sobic.002G398400 GT8 150.42 0.00 AT3G06260 GRMZM5G810254 

Sobic.002G423600 GT8 3.70 0.02 AT1G56600 N/A 

Sobic.004G237800 GT8 7.46 0.00 AT3G02350 N/A 

Sobic.008G022500 GT8 -4.48 0.00 AT2G38650 GRMZM2G065309 

Sobic.009G144200 GT8 -4.08 0.00 AT3G18660 GRMZM2G441987 

Sobic.010G101400 GT8 -2.47 0.03 AT1G70090 GRMZM2G469828 

Sobic.007G111500 GT9 -2.44 0.00 AT1G15980 GRMZM5G838196 

Sobic.002G188500 GT20 2.13 0.00 AT1G23870 GRMZM2G527891 

Sobic.002G116000 GT5 -3.02 0.00 AT1G32900 GRMZM2G444178 

Sobic.010G022600 GT5 60.30 0.00 AT1G32900 GRMZM2G444178 

Sobic.002G194700 GT20 3.01 0.00 AT1G68020 GRMZM5G872163 

Sobic.007G126100 GT20 5.36 0.00 AT1G23870 GRMZM2G527891 

Sobic.003G394100 GT21 -2.62 0.00 AT2G19880 GRMZM2G163464 

Sobic.001G050800 GT31 -3.59 0.00 AT5G62620 GRMZM2G176774 

Sobic.002G068800 GT31 -3.04 0.00 AT5G62620 GRMZM2G176774 

Sobic.002G210300 GT31 31.86 0.00 AT5G57500 GRMZM2G181358 

Sobic.002G210400 GT31 51.82 0.00 AT5G57500 GRMZM2G181358 

Sobic.002G222800 GT31 5.63 0.00 AT1G77810 GRMZM2G431006 

Sobic.004G322000 GT31 288.90 0.00 AT5G57500 GRMZM2G181358 

Sobic.004G322100 GT31 136.28 0.00 AT5G57500 GRMZM2G181358 

Sobic.009G223400 GT31 4.07 0.01 AT5G57500 GRMZM2G181358 

Sobic.010G230300 GT31 -2.10 0.01 AT1G05170 GRMZM2G140278 

http://cys.bios.niu.edu/plantcazyme/family.php?family=GT2
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT2
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT4
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT4
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT4
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT4
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT4
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT4
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT8
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT8
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT8
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT8
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT8
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT8
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT8
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT8
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT8
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT8
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT9
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT20
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT5
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT5
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT20
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT20
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT21
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT31
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT31
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT31
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT31
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT31
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT31
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT31
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT31
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT31
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Table 18: Continued

Feature ID Annotation 
Fold 

changea 

FDR  

p-value 

Gene ortholog 

Arabidopsis Maize 

Sobic.005G144500 GT34 2.57 0.01 AT2G22900 GRMZM2G435120 

Sobic.001G083900 GT35 -3.56 0.00 AT3G29320 GRMZM2G074158 

Sobic.003G358600 GT35 -2.81 0.00 AT3G46970 GRMZM2G085577 

Sobic.004G125100 GT37 33.55 0.00 AT2G03220 GRMZM5G870571 

Sobic.004G308200 GT37 7.13 0.00 AT2G03220 GRMZM5G870571 

Sobic.004G308400 GT37 2.07 0.03 AT2G03220 GRMZM5G870571 

Sobic.004G308500 GT37 5.11 0.01 AT2G03220 GRMZM5G870571 

Sobic.004G308600 GT37 -11.86 0.00 AT2G03220 GRMZM5G870571 

Sobic.006G097900 GT37 29.02 0.01 AT2G03220 GRMZM5G870571 

Sobic.010G082000 GT37 137.60 0.00 AT2G03220 GRMZM5G870571 

Sobic.001G506600 GT47 108.81 0.00 AT2G20370 GRMZM5G865819 

Sobic.004G159100 GT47 4.66 0.00 AT5G61840 GRMZM2G448834 

Sobic.006G186100 GT47 18.18 0.00 AT5G62220 GRMZM2G305146 

Sobic.008G077900 GT47 -7.56 0.00 AT2G29040 GRMZM2G317731 

Sobic.009G220200 GT47 2.39 0.00 AT5G61840 GRMZM2G448834 

Sobic.001G521500 GT48 3.54 0.00 AT5G13000 GRMZM5G840560 

Sobic.003G179600 GT48 -3.33 0.00 AT1G06490 GRMZM2G465764 

Sobic.003G180100 GT48 -4.18 0.00 AT1G06490 GRMZM2G465764 

Sobic.010G275800 GT48 -3.75 0.00 AT5G13000 GRMZM5G840560 

Sobic.002G401600 GT61 4.47 0.00 AT3G57380 N/A 

Sobic.003G087700 GT61 7.71 0.00 AT3G18170 GRMZM6G474234 

Sobic.003G094700 GT61 318.29 0.00 AT3G18170 GRMZM6G474234 

Sobic.003G095200 GT61 -3.12 0.00 AT3G18170 GRMZM6G474234 

Sobic.003G095700 GT61 52.67 0.00 AT3G18170 GRMZM6G474234 

Sobic.003G108500 GT61 31.82 0.00 AT2G41640 GRMZM5G869788 

Sobic.003G431100 GT61 127.66 0.00 AT2G41640 GRMZM5G869788 

Sobic.010G030900 GT61 3.23 0.00 AT3G18170 GRMZM6G474234 

Sobic.010G143900 GT61 8.78 0.00 AT3G18170 GRMZM6G474234 

Sobic.010G144400 GT61 2.74 0.00 AT3G18170 GRMZM6G474234 

Sobic.010G152300 GT61 31.12 0.04 AT3G18170 GRMZM6G474234 

Sobic.010G152500 GT61 35.98 0.02 AT3G18170 GRMZM6G474234 

Sobic.010G256400 GT61 -2.82 0.05 AT3G18170 GRMZM6G474234 

Sobic.001G012700 GT77 7.00 0.00 AT4G19970 GRMZM2G421126 

Sobic.001G012800 GT77 4.82 0.00 AT2G02061 N/A 

http://cys.bios.niu.edu/plantcazyme/family.php?family=GT34
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT35
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT35
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT37
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT37
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT37
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT37
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT37
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT37
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT37
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT47
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT47
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT47
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT47
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT47
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT48
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT48
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT48
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT48
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT61
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT61
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT61
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT61
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT61
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT61
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT61
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT61
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT61
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT61
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT61
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT61
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT61
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT77
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT77


 

62 

 

Table 18: Continued

Feature ID Annotation 
Fold 

changea 

FDR  

p-value 

Gene ortholog 

Arabidopsis Maize 

Sobic.001G519700 GT77 5.14 0.05 AT1G14590 GRMZM2G481052 

Sobic.002G110600 GT77 3.80 0.00 AT1G14590 GRMZM2G481052 

Sobic.002G257100 GT77 11.74 0.00 AT4G19970 GRMZM2G421126 

Sobic.003G404600 GT77 7.16 0.00 AT1G14590 GRMZM2G481052 

Sobic.003G405200 GT77 14.06 0.03 AT1G14590 GRMZM2G481052 

Sobic.007G194600 GT77 -4.33 0.00 AT2G02061 N/A 

Sobic.004G303000 GT90 4.10 0.00 AT5G23850 GRMZM2G505380 

Sobic.006G159800 GT90 26.07 0.00 AT5G23850 GRMZM2G505380 

Sobic.007G001100 GT90 21.96 0.00 AT5G23850 GRMZM2G505380 

aPositive values indicate greater expression in nodal segment N6 compared to N14. 

Negative values indicate greater expression in nodal segment N14 compared to N6. 
 

 

http://cys.bios.niu.edu/plantcazyme/family.php?family=GT77
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT77
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT77
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT77
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT77
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT77
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT90
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT90
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT90
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Table 19: Differentially expressed glycosyl transferases in sorghum genotype 

BTx623. DEGs represent expression differences between nodal segments N6 and N16 of 

sorghum genotype BTx623. DEGs were defined as having a log2 fold change ≥ 1 or ≤ -1 

with an FDR corrected p-value <0.05. 

Feature ID Annotation 
Fold 

changea 

FDR  

p-value 

Gene ortholog 

Arabidopsis Maize 

Sobic.001G030600 GT1 8.14 0.02 AT3G11340 GRMZM2G173926 

Sobic.001G030900 GT1 -1154.92 0.00 AT3G55700 GRMZM5G892627 

Sobic.001G377200 GT1 3.62 0.01 AT3G16520 GRMZM2G449019 

Sobic.002G173900 GT1 55.04 0.00 AT1G01420 GRMZM2G376272 

Sobic.002G305600 GT1 37.50 0.05 AT1G22360 GRMZM5G870067 

Sobic.002G311300 GT1 -23.45 0.00 AT3G16520 GRMZM2G449019 

Sobic.002G311600 GT1 -3.56 0.04 AT1G07250 GRMZM2G448483 

Sobic.002G337400 GT1 -13.08 0.00 AT3G16520 GRMZM2G449019 

Sobic.002G337500 GT1 -2.36 0.04 AT3G16520 GRMZM2G449019 

Sobic.003G287700 GT1 14.63 0.00 AT3G16520 GRMZM2G449019 

Sobic.003G288000 GT1 2.35 0.02 AT3G16520 GRMZM2G449019 

Sobic.003G288100 GT1 3.43 0.01 AT3G16520 GRMZM2G449019 

Sobic.004G071200 GT1 3.68 0.04 AT4G15480 GRMZM5G818068 

Sobic.004G087100 GT1 16.07 0.00 AT2G36780 GRMZM2G161625 

Sobic.004G087200 GT1 134.18 0.00 AT2G36750 GRMZM2G325023 

Sobic.004G191100 GT1 4.25 0.02 AT1G22400 GRMZM2G476049 

Sobic.004G229800 GT1 27.30 0.00 AT1G22360 GRMZM5G870067 

Sobic.006G048000 GT1 -5.53 0.04 AT4G01070 GRMZM2G426415 

Sobic.006G097800 GT1 -9.28 0.03 AT4G15550 GRMZM5G896260 

Sobic.006G123700 GT1 -6.59 0.01 AT5G12890 GRMZM2G159404 

Sobic.006G174600 GT1 22.28 0.00 AT2G15490 GRMZM2G168474 

Sobic.007G027200 GT1 -4.96 0.00 AT1G01420 GRMZM2G376272 

Sobic.007G135000 GT1 12.24 0.00 AT1G22360 GRMZM5G870067 

Sobic.009G176600 GT1 326.53 0.00 AT1G22380 GRMZM2G470524 

Sobic.009G205600 GT1 2.35 0.04 AT3G16520 GRMZM2G449019 

Sobic.009G205700 GT1 5.49 0.02 AT3G16520 GRMZM2G449019 

Sobic.009G211800 GT1 -4.13 0.01 AT5G12890 GRMZM2G159404 

Sobic.010G091100 GT1 5.02 0.02 AT2G36750 GRMZM2G325023 

Sobic.010G179000 GT1 -30.98 0.00 AT4G15550 GRMZM5G896260 

http://cys.bios.niu.edu/plantcazyme/family.php?family=GT1
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT1
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT1
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT1
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT1
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT1
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT1
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT1
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT1
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT1
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT1
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT1
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT1
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT1
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT1
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT1
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT1
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT1
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT1
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT1
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT1
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT1
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT1
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT1
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT1
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT1
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT1
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT1
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT1
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Table 19: Continued

Feature ID Annotation 
Fold 

changea 

FDR  

p-value 

Gene ortholog 

Arabidopsis Maize 

Sobic.010G179100 GT1 -5.82 0.00 AT4G15550 GRMZM5G896260 

Sobic.010G210800 GT1 51.13 0.02 AT1G22370 N/A 

Sobic.001G490000 GT2 -8.57 0.00 AT5G03760 GRMZM2G443715 

Sobic.002G385800 GT2 -2.85 0.03 AT5G03760 GRMZM2G443715 

Sobic.004G075900 GT2 -19.95 0.00 AT5G22740 GRMZM2G105631 

Sobic.004G238700 GT2 -3.03 0.03 AT5G03760 GRMZM2G443715 

Sobic.010G197300 GT2 -16.13 0.00 AT5G03760 GRMZM2G443715 

Sobic.003G076900 GT4 -3.02 0.05 AT5G01220 GRMZM2G477503 

Sobic.003G403300 GT4 -5.90 0.00 AT1G04920 GRMZM5G875238 

Sobic.004G357600 GT4 -101.06 0.00 AT1G73370 GRMZM2G410704 

Sobic.010G276700 GT4 -172.21 0.00 AT1G73370 GRMZM2G410704 

Sobic.001G131900 GT8 -3.56 0.00 AT3G61130 GRMZM2G565856 

Sobic.001G302200 GT8 4.49 0.00 AT2G35710 GRMZM2G462261 

Sobic.001G384200 GT8 -2.11 0.05 AT2G38650 GRMZM2G065309 

Sobic.001G400100 GT8 -3.64 0.00 AT3G62660 GRMZM5G881123 

Sobic.002G420100 GT8 -3.36 0.00 AT2G38650 GRMZM2G065309 

Sobic.004G177000 GT8 -6.35 0.00 AT3G18660 GRMZM2G441987 

Sobic.008G022500 GT8 -7.74 0.00 AT2G38650 GRMZM2G065309 

Sobic.009G144200 GT8 -4.15 0.00 AT3G18660 GRMZM2G441987 

Sobic.010G092400 GT8 -3.90 0.00 AT3G02350 N/A 

Sobic.007G111500 GT9 -3.40 0.01 AT1G15980 GRMZM5G838196 

Sobic.002G188500 GT20 2.64 0.02 AT1G23870 GRMZM2G527891 

Sobic.002G194700 GT20 2.62 0.01 AT1G68020 GRMZM5G872163 

Sobic.007G126100 GT20 6.23 0.00 AT1G23870 GRMZM2G527891 

Sobic.001G130600 GT31 -52.74 0.00 AT1G74800 GRMZM2G399158 

Sobic.001G183600 GT31 -2.36 0.03 AT1G05170 GRMZM2G140278 

Sobic.002G210300 GT31 4.56 0.03 AT5G57500 GRMZM2G181358 

Sobic.002G210400 GT31 17.94 0.00 AT5G57500 GRMZM2G181358 

Sobic.009G223400 GT31 6.67 0.00 AT5G57500 GRMZM2G181358 

Sobic.010G230300 GT31 -5.65 0.00 AT1G05170 GRMZM2G140278 

Sobic.001G401600 GT34 -4.21 0.00 AT4G02500 GRMZM2G477256 

Sobic.004G256400 GT34 -43.50 0.00 AT2G22900 GRMZM2G435120 

Sobic.005G144500 GT34 -40.45 0.00 AT2G22900 GRMZM2G435120 

Sobic.001G083900 GT35 -3.43 0.00 AT3G29320 GRMZM2G074158 

http://cys.bios.niu.edu/plantcazyme/family.php?family=GT1
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT1
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT2
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT2
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT2
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT2
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT2
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT4
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT4
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT4
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT4
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT8
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT8
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT8
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT8
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT8
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT8
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT8
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT8
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT8
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT9
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT20
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT20
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT20
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT31
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT31
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT31
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT31
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT31
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT31
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT34
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT34
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT34
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT35
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Table 19: Continued 

Feature ID Annotation 
Fold 

changea 

FDR  

p-value 

Gene ortholog 

Arabidopsis Maize 

Sobic.004G125100 GT37 15.40 0.03 AT2G03220 GRMZM5G870571 

Sobic.004G308600 GT37 -4.98 0.00 AT2G03220 GRMZM5G870571 

Sobic.001G409100 GT43 -2.77 0.01 AT2G37090 GRMZM2G118959 

Sobic.002G430700 GT43 -5.59 0.00 AT2G37090 GRMZM2G118959 

Sobic.003G129400 GT43 3.72 0.02 AT1G27600 GRMZM2G179504 

Sobic.001G229100 GT47 -9.10 0.01 AT2G20370 GRMZM5G865819 

Sobic.003G410600 GT47 -2.98 0.01 AT5G61840 GRMZM2G448834 

Sobic.003G410800 GT47 -2.60 0.01 AT1G27440 GRMZM5G898668 

Sobic.009G162700 GT47 -3.76 0.00 AT5G61840 GRMZM2G448834 

Sobic.001G521500 GT48 4.31 0.00 AT5G13000 GRMZM5G840560 

Sobic.003G179600 GT48 -3.83 0.04 AT1G06490 GRMZM2G465764 

Sobic.003G180100 GT48 -8.47 0.00 AT1G06490 GRMZM2G465764 

Sobic.010G275800 GT48 -7.75 0.00 AT5G13000 GRMZM5G840560 

Sobic.003G095200 GT61 -9.35 0.00 AT3G18170 GRMZM6G474234 

Sobic.003G095500 GT61 -5.57 0.00 AT3G18170 GRMZM6G474234 

Sobic.003G431100 GT61 27.97 0.00 AT2G41640 GRMZM5G869788 

Sobic.004G134100 GT61 -2.29 0.02 AT3G18170 GRMZM6G474234 

Sobic.009G126100 GT61 -2.41 0.04 AT2G41640 GRMZM5G869788 

Sobic.010G143900 GT61 5.40 0.00 AT3G18170 GRMZM6G474234 

Sobic.010G256400 GT61 -19.21 0.00 AT3G18170 GRMZM6G474234 

Sobic.010G256600 GT61 -2.34 0.01 AT3G18180 GRMZM2G700386 

Sobic.003G293400 GT66 -2.36 0.03 AT5G19690 GRMZM2G154165 

Sobic.002G368600 GT75 -7.02 0.00 AT3G02230 GRMZM2G481027 

Sobic.003G304600 GT75 -23.90 0.00 AT3G02230 GRMZM2G481027 

Sobic.001G012700 GT77 5.78 0.01 AT4G19970 GRMZM2G421126 

Sobic.001G327700 GT77 -2.92 0.02 AT1G19360 GRMZM2G172726 

Sobic.002G257100 GT77 6.96 0.00 AT4G19970 GRMZM2G421126 

Sobic.007G194600 GT77 -120.31 0.00 AT2G02061 N/A 

Sobic.006G159800 GT90 12.25 0.00 AT5G23850 GRMZM2G505380 

Sobic.007G001100 GT90 18.96 0.00 AT5G23850 GRMZM2G505380 

Sobic.010G196400 GT92 -3.58 0.02 AT2G33570 GRMZM5G890953 

aPositive values indicate greater expression in nodal segment N6 compared to N16. 

Negative values indicate greater expression in nodal segment N16 compared to N6.  

 

http://cys.bios.niu.edu/plantcazyme/family.php?family=GT37
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT37
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT43
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT43
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT43
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT47
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT47
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT47
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT47
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT48
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT48
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT48
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT48
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT61
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT61
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT61
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT61
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT61
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT61
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT61
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT61
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT66
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT75
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT75
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT77
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT77
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT77
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT77
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT90
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT90
http://cys.bios.niu.edu/plantcazyme/family.php?family=GT92
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DEGs encoding cell wall proteins  

Plant cell walls contain a vast array of proteins, glycoproteins, and proteoglycans. The 

structural proteins that include arabinogalactan proteins (AGPs), glycine-rich proteins 

(GRPs), proline-rich proteins (PRPs), leucine-rich repeat proteins (LRPs) and 

hydroxyproline-rich glycoproteins (HRGPs), constitute the majority of the cell wall 

proteins (Albersheim, et al., 2010). Differential expression of many LRPs, PRPs, and 

HRGPs along with other protein family genes was observed in basal versus top nodal 

segments in R07020 and BTx623 with a greater number of genes encoding structural 

proteins being up-regulated in apical segments (Tables 20 and 21). In both sorghum 

genotypes R07020 and BTx623, five proline-rich proteins showed higher expression in 

upper stem nodal segments in comparison with basal nodal segments. In addition, a 

majority of leucine-rich repeat (LRR) proteins were up-regulated in the upper nodal 

segments of both R07020 and BTx623. Many LRR proteins have been reported to be 

involved in cell wall related processes (Cassab, 1998; Bosch, et al., 2011). The LRR 

protein Sobic.004G215000 was up-regulated in the upper nodal segments of BTx623 and 

R07020 with 397- and 6.2-fold increases, respectively. The ortholog of this gene 

(GRMZM2G042181) also showed higher expression in the elongating internodes versus 

basal internodes in maize although the increased expression was 5.6-fold greater compared 

to a nearly 400-fold increase observed in BTx623. Fasciclin-like arabinogalactan-protein 

(Sobic.002G351000), a homolog of AtFLA11 in Arabidopsis, showed a greater than 7-fold 

increase in expression in the mature basal nodal segment of both R07020 and BTx623 

(Tables 20 and 21). A correlation between AtFLA11 and/or AtFLA12 transcript abundance 
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in Arabidopsis and the onset of expression of secondary cell wall cellulose synthases in 

Arabidopsis stems has been reported (Brown, et al., 2005; Persson, et al., 2005). Gene-

function analyses revealed that stems of Arabidopsis T-DNA knockout double mutant 

(AtFLA11 and AtFLA12) had altered stem biomechanics with reduced tensile strength as 

well as altered cell-wall architecture (MacMillan, et al., 2010). 

Co-expression network analysis 

Co-expression network mining is a method to elucidate functional relationships 

between genes and gene families, and has been used to predict functional associations of 

TF expression to cell wall biosynthesis genes in rice (Hirano, et al., 2013) and sugarcane 

(Ferreira, et al., 2016). Utilizing lignin annotated genes as hubs and filtering for TFs, co-

expression network mining identified 276 genes (nodes). The resulting network was 

further divided into two sub-networks which included 224 and 51 genes, respectively (data 

not shown). Eight  lignin biosynthesis genes, including 4CL (Sobic.004G062500, 

Sobic.007G089900), CCR (Sobic.007G141200, Sobic.002G146000), COMT 

(Sobic.007G059100, Sobic.007G058800), CAD (Sobic.010G178300) and PAL 

(Sobic.004G220300) were identified in the first sub-network (Figure 4). As the key 

concept of network analysis is node connectivity, Zhang and Horvath (2005) concluded 

that TFs that have more connections with a greater number of hub genes are more likely 

to play important roles in cell wall biosynthesis regulation. In addition to NAC and MYB 

TF family members, a large number of TFs showed high neigborhood connectivity and 

thus, may represent TFs that regulate lignin biosynthesis in sorghum. These TFs included 

members of the WRKY, AP2/EREBP, bHLH, C2H2, HB, bZIP, B3 and Aux/IAA families 
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(Table 22). Using a co-expression network, Ferreira, et al. (2016) identified TFs in 

sugarcane related to cell wall biosynthesis that included members of the AP2/EREBP, 

WRKY, AUX/IAA, bHLH, Homeobox and bZIP families. As transcriptional co-regulation 

is one of the major coordinators in metabolic pathways (Allocco, et al., 2004), the present 

study provides further insight into the relationship between lignin biosynthesis genes and 

transcription factors. 

Conclusion  

This study extends the knowledge of the cascade of gene expression that occurs in 

monocot stems during the complex developmental transition from the shoot apex to the 

stem base. It also provides an examination of gene expression in sorghum genotypes 

whose stems were specifically bred as a biomass feedstock versus stems of a traditional 

grain sorghum inbred in a temperate production environment. This study provides basic 

knowledge of gene expression during plant development, and provides an atlas of genes 

for future studies that focus on specific tissues or cell types that will be required for a more 

comprehensive understanding of genes involved in cell wall biosynthesis.  
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Table 20: Differentially expressed genes in sorghum genotype R07020 involved in the synthesis of cell wall proteins. 

DEGs represent expression differences between nodal segments N6 and N14. DEGs were defined as having a log2 fold change 

≥ 1 or ≤ -1 with an FDR corrected p-value <0.05. 

Feature ID Annotation 
Fold 

changea 

FDR 

p-value 

Gene ortholog 

Arabidopsis Maize 

Sobic.004G114800 similar to Hydroxyproline-rich glycoprotein-like -2.52 0.00 AT4G01050 GRMZM2G095082 

Sobic.004G157700 similar to Hydroxyproline-rich glycoprotein-like 5.02 0.00 AT2G33490 GRMZM2G467640 

Sobic.001G389600 similar to Leucine Rich Repeat family protein, expressed -5.43 0.00 AT5G10020 GRMZM2G081857 

Sobic.001G403200 similar to Leucine Rich Repeat family protein, expressed -6.71 0.00 AT3G51740 GRMZM2G066274 

Sobic.005G005700 similar to Leucine Rich Repeat family protein, expressed -6.26 0.00 AT3G56100  

Sobic.005G199700 similar to Leucine Rich Repeat family protein, expressed -3.20 0.00 AT1G03440 GRMZM2G099981 

Sobic.008G006800 similar to Leucine Rich Repeat family protein, expressed -9.74 0.00 AT3G51740 GRMZM2G066274 

Sobic.008G060000 similar to Leucine Rich Repeat family protein, expressed 2.17 0.03 AT1G34420 GRMZM2G059214 

Sobic.008G074500 similar to Leucine Rich Repeat family protein, expressed 10.16 0.00 AT1G79620 GRMZM2G023715 

Sobic.008G146900 similar to Leucine Rich Repeat family protein, expressed 2.89 0.00 AT4G33300 GRMZM2G044724 

Sobic.008G156600 similar to Leucine Rich Repeat family protein, expressed -3.86 0.00 AT3G54650 GRMZM2G100121 

Sobic.008G186400 similar to Leucine Rich Repeat family protein, expressed 2.27 0.00 AT5G49660 GRMZM2G080503 

Sobic.005G091300 similar to Leucine Rich Repeat, putative, expressed 2.81 0.00 AT1G72180 GRMZM2G167253 

Sobic.008G190000 
similar to Leucine-rich repeat family protein, putative, 

expressed 
-4.27 0.00 AT5G62710 GRMZM2G147857 

Sobic.001G061400 
similar to Leucine-rich repeat transmembrane protein kinase, 

putative, expressed 
-14.61 0.00 AT3G03770 GRMZM2G120657 

Sobic.001G381100 
similar to Leucine-rich repeat transmembrane protein kinase, 

putative, expressed 
-5.74 0.00 AT3G56370 GRMZM2G119850 

Sobic.004G215000 similar to Leucine-rich repeat-like protein -6.23 0.00 AT4G06744 GRMZM2G042181 

Sobic.009G254400 similar to Leucine-rich repeat family protein-like -3.63 0.00 AT3G17640 GRMZM2G099981 
Sobic.006G206700 similar to Leucine-rich repeat protein 1 6.29 0.00 AT2G19330 GRMZM2G072518 
Sobic.007G027900 similar to Proline-rich protein family-like -4.06 0.00 AT3G25690 GRMZM2G062738 
Sobic.005G127800 weakly similar to Leucine Rich Repeat family protein 4.51 0.00 AT2G34930 GRMZM2G372058 
Sobic.010G130700 weakly similar to Predicted leucine rich repeat protein 10.64 0.00 AT2G34930 GRMZM2G372058 

Sobic.001G508100 
similar to Pre-mRNA processing protein PRP39, putative, 

expressed 
2.41 0.00 AT5G43950 GRMZM2G093139 

http://www.maizesequence.org/Zea_mays/Transcript/Transcript?t=GRMZM2G095082_T02
http://www.maizesequence.org/Zea_mays/Transcript/Transcript?t=GRMZM2G467640_T02
http://www.maizesequence.org/Zea_mays/Transcript/Transcript?t=GRMZM2G081857_T01
http://www.maizesequence.org/Zea_mays/Transcript/Transcript?t=GRMZM2G066274_T01
http://www.maizesequence.org/Zea_mays/Transcript/Transcript?t=GRMZM2G099981_T01
http://www.maizesequence.org/Zea_mays/Transcript/Transcript?t=GRMZM2G066274_T01
http://www.maizesequence.org/Zea_mays/Transcript/Transcript?t=GRMZM2G059214_T01
http://www.maizesequence.org/Zea_mays/Transcript/Transcript?t=GRMZM2G023715_T01
http://www.maizesequence.org/Zea_mays/Transcript/Transcript?t=GRMZM2G044724_T01
http://www.maizesequence.org/Zea_mays/Transcript/Transcript?t=GRMZM2G100121_T01
http://www.maizesequence.org/Zea_mays/Transcript/Transcript?t=GRMZM2G080503_T01
http://www.maizesequence.org/Zea_mays/Transcript/Transcript?t=GRMZM2G167253_T01
http://www.maizesequence.org/Zea_mays/Transcript/Transcript?t=GRMZM2G147857_T01
http://www.maizesequence.org/Zea_mays/Transcript/Transcript?t=GRMZM2G120657_T01
http://www.maizesequence.org/Zea_mays/Transcript/Transcript?t=GRMZM2G119850_T01
http://www.maizesequence.org/Zea_mays/Transcript/Transcript?t=GRMZM2G340084_T01
http://www.maizesequence.org/Zea_mays/Transcript/Transcript?t=GRMZM2G099981_T01
http://www.maizesequence.org/Zea_mays/Transcript/Transcript?t=GRMZM2G072518_T01
http://www.maizesequence.org/Zea_mays/Transcript/Transcript?t=GRMZM2G062738_T01
http://www.maizesequence.org/Zea_mays/Transcript/Transcript?t=GRMZM2G372058_T01
http://www.maizesequence.org/Zea_mays/Transcript/Transcript?t=GRMZM2G372058_T01
http://www.maizesequence.org/Zea_mays/Transcript/Transcript?t=GRMZM2G093139_T01
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Table 20: Continued 

Feature ID Annotation 
Fold 

changea 

FDR 

p-value 

Gene ortholog 

Arabidopsis Maize 

Sobic.003G223800 similar to Proline transport protein 2-like 39.25 0.00 AT5G41800 GRMZM2G057733 
Sobic.001G265900 similar to Proline-rich protein precursor -12.29 0.00 AT4G38770 GRMZM2G003909 

Sobic.001G266100 similar to Proline-rich protein precursor -16.33 0.00 AT2G21140 GRMZM2G003909 

Sobic.001G266300 similar to Proline-rich protein, putative, expressed -20.99 0.00 AT2G21140 GRMZM2G003909 

Sobic.001G438500 similar to Proline-rich protein, putative, expressed -8.85 0.00 AT2G21140 GRMZM2G003909 

Sobic.004G286700 similar to Putative anter-specific proline-rich protein APG -4.02 0.00 AT5G55050 GRMZM2G340084 

Sobic.002G351000 similar to Putative fasciclin-like arabinogalactan-protein 7.89 0.03 AT5G03170 GRMZM2G177242 

Sobic.004G034200 
similar to Putative leucine-rich repeat transmembrane protein 

kinase 2 
-4.28 0.00 AT4G03390 GRMZM2G335638 

Sobic.004G073800 
similar to Putative leucine-rich repeat transmembrane protein 

kinase 
-2.35 0.00 AT4G22130 GRMZM2G103070 

Sobic.003G042200 similar to Putative leucine-rich repeat/extensin 1 -3.51 0.00 AT4G13340 GRMZM2G149201 

Sobic.001G135600 similar to Putative proline-rich protein -6.68 0.00 AT5G03820 N/A 
aPositive values indicate greater expression in nodal segment N6 compared to N14. Negative values indicate greater expression 

in nodal segment N14 compared to N6. 

  

http://www.maizesequence.org/Zea_mays/Transcript/Transcript?t=GRMZM2G057733_T01
http://www.maizesequence.org/Zea_mays/Transcript/Transcript?t=GRMZM2G003909_T01
http://www.maizesequence.org/Zea_mays/Transcript/Transcript?t=GRMZM2G003909_T01
http://www.maizesequence.org/Zea_mays/Transcript/Transcript?t=GRMZM2G003909_T01
http://www.maizesequence.org/Zea_mays/Transcript/Transcript?t=GRMZM2G003909_T01
http://www.maizesequence.org/Zea_mays/Transcript/Transcript?t=GRMZM2G340084_T01
http://www.maizesequence.org/Zea_mays/Transcript/Transcript?t=GRMZM2G177242_T01
http://www.maizesequence.org/Zea_mays/Transcript/Transcript?t=GRMZM2G335638_T01
http://www.maizesequence.org/Zea_mays/Transcript/Transcript?t=GRMZM2G103070_T01
http://www.maizesequence.org/Zea_mays/Transcript/Transcript?t=GRMZM2G149201_T01
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Table 21: Differentially expressed genes in sorghum genotype BTx623 involved in the synthesis of cell wall proteins. 

DEGs represent expression differences between nodal segments N6 and N16. DEGs were defined as having a log2 fold change 

≥ 1 or ≤ -1 with an FDR corrected p-value <0.05. 

Feature ID Annotation 
Fold 

changea 

FDR 

p-value 

 Gene ortholog 

 
Arabidopsis Maize 

Sobic.001G061400 
similar to Leucine-rich repeat transmembrane protein kinase, 

putative, expressed 
-11.00 0.00 

 
AT3G03770 GRMZM2G120657 

Sobic.001G265900 similar to Proline-rich protein precursor -125.63 0.00  AT4G38770 GRMZM2G003909 

Sobic.001G266100 similar to Proline-rich protein precursor -213.06 0.00  AT2G21140 GRMZM2G003909 

Sobic.001G266300 similar to Proline-rich protein, putative, expressed -98.97 0.00  AT2G21140 GRMZM2G003909 

Sobic.001G381100 
similar to Leucine-rich repeat transmembrane protein kinase, 

putative, expressed 
-14.82 

0.00  
AT3G56370 GRMZM2G119850 

Sobic.001G389600 similar to Leucine Rich Repeat family protein, expressed -19.45 0.00  AT5G10020 GRMZM2G081857 

Sobic.001G403200 similar to Leucine Rich Repeat family protein, expressed -19.86 0.00  AT3G51740 GRMZM2G066274 

Sobic.001G438500 similar to Proline-rich protein, putative, expressed -103.63 0.00  AT2G21140 GRMZM2G003909 

Sobic.001G508100 
similar to Pre-mRNA processing protein PRP39, putative, 

expressed 
2.19 0.02 

 
AT5G43950 GRMZM2G093139 

Sobic.002G351000 similar to Putative fasciclin-like arabinogalactan-protein 7.71 0.04  AT5G03170 GRMZM2G177242 

Sobic.003G042200 similar to Putative leucine-rich repeat/extensin 1 -12.99 0.00  AT4G13340 GRMZM2G149201 

Sobic.003G223800 similar to Proline transport protein 2-like 3.66 0.02  AT5G41800 GRMZM2G057733 

Sobic.004G034200 
similar to Putative leucine-rich repeat transmembrane 

protein kinase 2 
-25.45 

0.00  
AT4G03390 GRMZM2G335638 

Sobic.004G073800 
similar to Putative leucine-rich repeat transmembrane 

protein kinase 
-9.46 

0.00  
AT4G22130 GRMZM2G103070 

Sobic.004G157700 similar to Hydroxyproline-rich glycoprotein-like 4.50 0.00  AT2G33490 GRMZM2G467640 

Sobic.004G215000 similar to Leucine-rich repeat-like protein -397.29 0.00  AT4G06744 GRMZM2G042181 

Sobic.004G286700 similar to Putative anter-specific proline-rich protein APG -4.71 0.00  AT5G55050 GRMZM2G340084 

Sobic.005G005700 similar to Leucine Rich Repeat family protein, expressed -14.95 0.00  AT3G56100 N/A 

Sobic.005G091300 similar to Leucine Rich Repeat, putative 3.34 0.00  AT1G72180 GRMZM2G167253 
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Table 21: Continued

Feature ID Annotation 
Fold 

changea 

FDR 

p-value 

Gene ortholog 

Arabidopsis Maize 

Sobic.005G127800 weakly similar to Leucine Rich Repeat family protein 50.39 0.00 AT2G34930 GRMZM2G372058 
Sobic.007G027900 similar to Proline-rich protein family-like -5.44 0.01 AT3G25690 GRMZM2G062738 

Sobic.008G006800 similar to Leucine Rich Repeat family protein, expressed -29.59 0.00 AT3G51740 GRMZM2G066274 

Sobic.008G060000 similar to Leucine Rich Repeat family protein, expressed 7.73 0.00 AT1G34420 GRMZM2G059214 

Sobic.008G074500 similar to Leucine Rich Repeat family protein, expressed 5.46 0.00 AT1G79620 GRMZM2G023715 

Sobic.008G156600 similar to Leucine Rich Repeat family protein, expressed -10.85 0.00 AT3G54650 GRMZM2G100121 

Sobic.008G190000 
similar to Leucine-rich repeat family protein, putative, 

expressed 
-8.54 

0.00 
AT5G62710 GRMZM2G147857 

Sobic.009G254400 similar to Leucine-rich repeat family protein-like -51.23 0.00 AT3G17640 GRMZM2G099981 

Sobic.010G130700 weakly similar to Predicted leucine rich repeat protein 27.4 0.00 AT2G34930 GRMZM2G372058 

Sobic.001G125100 similar to Prp18 domain, putative 5.10 0.04 AT1G03140 GRMZM2G034651 

Sobic.001G261400 
similar to Putative leucine-rich repeat transmembrane protein 

kinase 
-7.68 

0.00 
AT1G53730 GRMZM2G153393 

Sobic.001G330500 similar to Leucine rich repeat containing protein -13.03 0.00 AT5G06860 GRMZM2G025105 

Sobic.002G376100 
similar to Leucine-rich repeat transmembrane protein kinase 

1-like protein 
-3.89 

0.00 
AT1G53730 GRMZM2G153393 

Sobic.003G206100 similar to Proline-rich protein-like -43.94 0.02 N/A N/A 

Sobic.003G250700 similar to Arabinogalactan protein-like -5.72 0.00 AT5G03170 GRMZM2G177242 

Sobic.003G420300 similar to Hydroxyproline-rich glycoprotein-like -2.48 0.00 AT3G56590 GRMZM2G136830 

Sobic.004G060900 
similar to Putative leucine-rich repeat transmembrane protein 

kinase 
-2.13 0.03 AT1G11130 N/A 

Sobic.004G101200 similar to Proline-and threonine-rich protein -14.79 0.00 AT2G42840 GRMZM2G092968 

Sobic.005G187700 similar to Leucine Rich Repeat family protein 9.50 0.00 AT3G47570 GRMZM2G048801 

Sobic.008G075700 similar to Leucine Rich Repeat family protein, expressed 3.39 0.05 AT1G45616 GRMZM2G174128 

Sobic.010G199700 
similar to Putative leucine-rich repeat transmembrane protein 

kinase 
-7.95 0.00 AT4G22130 GRMZM2G103070 

aPositive values indicate greater expression in nodal segment N6 compared to N16. Negative values indicate greater expression 

in nodal segment N16 compared to N6.  
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Figure 4: Co-expression network of sorghum using lignin biosynthesis genes as hubs. 

This sub-network comprises 224 genes (nodes); green nodes represent lignin biosynthesis 

genes and yellow nodes represent transcription factors with a high level of connectivity 

with hub genes. All other TFs are depicted as small blue nodes. 
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Table 22: List of TFs with a high level of connectivity with hub genes. The lignin 

biosynthesis genes were selected as the hub genes.  

Feature ID Annotation 
Neighborhood 

connectivitya 

Number 

of 

directed 

edgesb 

Gene ortholog 

Arabidopsis Maize 

Sobic.001G107400 bHLH 110.50 10.00 AT2G22750 GRMZM2G036554 

Sobic.005G131900 bHLH 96.44 72.00 AT3G26744 GRMZM2G173534 

Sobic.003G128900 MYB  95.83 36.00 AT1G69560 GRMZM2G460869 

Sobic.001G518900 bHLH 95.33 72.00 AT2G34820 N/A 

Sobic.010G169200 HB 95.00 74.00 AT4G32980 GRMZM2G333565 

Sobic.003G145100 MYB  94.61 69.00 AT2G47460 GRMZM2G129872 

Sobic.002G022600 AP2/EREBP 92.54 84.00 AT4G37750 GRMZM2G146688 

Sobic.006G241000 HB 92.26 82.00 AT1G46480 N/A 

Sobic.001G075700 AP2/EREBP 91.47 88.00 AT4G37750 GRMZM2G146688 

Sobic.001G379100 bHLH 90.40 91.00 AT2G40435 GRMZM2G043493 

Sobic.001G479600 B3  90.40 91.00 AT3G19184 GRMZM2G111123 

Sobic.009G124200 AP2/EREBP 90.28 90.00 AT2G41710 GRMZM2G013657 

Sobic.001G448000 AP2/EREBP 90.16 94.00 AT4G37750 GRMZM2G146688 

Sobic.009G083800 MYB  90.10 94.00 AT4G32730 GRMZM2G531738 

Sobic.002G142000 B3  89.82 95.00 AT3G19184 GRMZM2G111123 

Sobic.003G008700 MYB  89.82 95.00 AT4G32730 GRMZM2G531738 

Sobic.006G255300 AUX/IAA  88.85 94.00 AT1G19850 GRMZM2G086949 

Sobic.004G123200 MYB  88.54 97.00 AT5G11510 GRMZM2G073836 

Sobic.006G262100 AUX/IAA  88.29 83.00 AT1G30330 GRMZM2G475882 

Sobic.006G261200 MYB  88.27 98.00 AT1G31310 N/A 

Sobic.010G211200 C2H2  86.08 95.00 AT2G19380 GRMZM2G381638 

Sobic.003G251700 ARF 85.69 65.00 AT2G33860 GRMZM5G874163 

Sobic.008G169400 AUX/IAA  84.15 102.00 AT1G30330 GRMZM2G475882 

Sobic.001G430000 bHLH 81.17 112.00 AT1G68810 GRMZM2G526668 

Sobic.006G133700 bZIP  81.00 113.00 AT1G06070 AC200057.4_FG007 

Sobic.005G098400 AUX/IAA  79.57 108.00 AT1G04550 GRMZM2G148188 

Sobic.001G455300 C2H2  68.08 53.00 AT2G41940 GRMZM2G703281 
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Table 22: Continued 

Feature ID Annotation 
Neighborhood 

connectivitya 

Number 

of 

directed 

edgesb 

Gene ortholog 

Arabidopsis Maize 

Sobic.008G137500 MYB  64.12 42.00 AT2G37630 GRMZM2G403620 

Sobic.002G290900 NAC  56.47 36.00 AT3G17730 GRMZM5G885329 

Sobic.002G221400 C2H2  54.32 25.00 AT2G01940 GRMZM2G465595 

Sobic.002G416400 bHLH 47.73 30.00 AT2G40435 GRMZM2G043493 

Sobic.004G295500 AP2/EREBP 46.79 28.00 AT2G44940 GRMZM5G889719 

Sobic.008G112200 MYB  45.90 29.00 AT5G12870 GRMZM2G052606 

Sobic.001G488900 HB 38.43 21.00 AT1G69780 GRMZM5G803812 

Sobic.002G275500 MYB  31.14 7.00 AT4G22680 N/A 

Sobic.010G224200 MYB  30.15 20.00 AT1G14600 GRMZM2G454449 

Sobic.003G076600 MYB  29.50 18.00 AT5G58900 GRMZM2G311822 

Sobic.003G327000 bZIP  29.44 9.00 AT2G16770 GRMZM2G175870 

Sobic.010G052600 AP2/EREBP 29.33 18.00 AT4G36900 N/A 

Sobic.003G334600 NAC  27.91 11.00 AT5G08790 GRMZM2G347043 

Sobic.005G224800 MYB  27.47 19.00 AT5G59780 GRMZM2G130149 

Sobic.003G353700 MYB  27.36 22.00 AT3G46640 GRMZM2G074908 

Sobic.005G064600 NAC  26.80 5.00 AT5G63790 GRMZM2G126936 

Sobic.006G256200 MYB  26.71 28.00 AT5G06800 GRMZM2G124495 

Sobic.003G000600 WRKY  26.09 23.00 AT1G62300 GRMZM5G871347 

Sobic.005G038700 bZIP  25.83 12.00 AT1G08320 GRMZM2G366264 

Sobic.003G363600 bZIP  25.47 19.00 AT1G08320 GRMZM2G366264 

Sobic.001G084000 WRKY  24.88 16.00 AT1G69310 GRMZM2G143204 

Sobic.001G068300 bHLH 24.16 32.00 AT3G59060 GRMZM2G065374 

Sobic.001G358900 MYB  24.00 6.00 AT1G09540 GRMZM2G171781 

Sobic.009G068900 WRKY  23.90 29.00 AT5G26170 GRMZM2G163054 

Sobic.007G177100 MYB  23.84 19.00 AT4G34990 N/A 

Sobic.001G384300 MYB  22.78 37.00 AT4G28610 GRMZM2G379167 

Sobic.003G417500 C2H2  22.11 38.00 AT1G03840 GRMZM2G151309 

Sobic.003G087600 MYB  21.38 8.00 AT1G68320 GRMZM2G162709 

Sobic.002G424000 bZIP  20.45 38.00 AT5G06950 GRMZM2G056099 

Sobic.008G037900 bZIP  19.33 6.00 AT1G08320 GRMZM2G366264 

Sobic.002G344700 bZIP  19.30 10.00 AT2G41870 GRMZM2G099239 
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Table 22: Continued 

Feature ID Annotation 
Neighborhood 

connectivitya 

Number 

of 

directed 

edgesb 

Gene ortholog 

Arabidopsis Maize 

Sobic.006G218300 NAC  18.88 8.00 AT1G56010 GRMZM2G167018 

Sobic.009G072200 MYB  17.18 17.00 AT5G56840 GRMZM2G071977 

Sobic.002G246600 bHLH 16.75 4.00 AT2G42280 GRMZM5G879527 

Sobic.009G024600 AP2/EREBP 16.63 8.00 AT2G28550 GRMZM5G862109 

Sobic.004G065900 WRKY  15.50 4.00 AT1G80840 GRMZM2G125653 

Sobic.007G009300 AUX/IAA  15.09 11.00 AT1G51950 N/A 

Sobic.009G016600 MYB  15.04 25.00 AT3G46130 GRMZM2G305856 

Sobic.006G184700 AP2/EREBP 14.33 6.00 AT5G52020 GRMZM2G434203 

Sobic.003G341100 WRKY  13.28 25.00 AT2G38470 GRMZM2G449681 

Sobic.001G391500 MYB  13.18 11.00 AT5G49620 GRMZM2G160840 

Sobic.009G221400 MYB  12.50 4.00 AT1G25560 N/A 

Sobic.003G227300 WRKY  12.00 4.00 AT1G29860 GRMZM5G812272 

Sobic.006G183200 HB 10.80 5.00 AT3G61150 GRMZM2G060444 

Sobic.010G192400 bZIP  10.00 5.00 AT5G06839 GRMZM2G380897 

Sobic.003G037400 WRKY  9.50 6.00 AT5G64810 GRMZM5G863420 

Sobic.008G131400 MYB  9.33 6.00 AT5G49620 GRMZM2G160840 

Sobic.003G138400 WRKY  9.17 6.00 AT4G22070 GRMZM5G851490 
aThe average connectivity of all neighbors of each node. 
bThe number of directed edges that are connected to each node. 
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CHAPTER III 

TRANSCRIPTOME ANALYSIS OF A1 CYTOPLASMIC MALE STERILE LINES, 

ISO-CYTOPLASMIC B-LINES, AND F1 SORGHUM HYBRIDS 

Introduction 

In sorghum (Sorghum bicolor (L.) Moench), cytoplasmic male sterility (CMS) was 

first described by Stephens and Holland (1954), who observed that the interaction of Milo, 

or A1 cytoplasm, and nuclear genes of Kafir origin produced plants with male sterility and 

normal female fertility. This system was quickly adopted by sorghum breeders, and by the 

1960’s almost all commercial varieties grown in developed countries were F1 hybrids 

produced using the A1 CMS system. Initial research into the genetics of fertility restoration 

in A1 cytoplasm indicated that it is controlled by two-to-three major nuclear-encoded 

restoration of fertility (Rf) genes, with interference from modifiers or partial fertility (Pf) 

genes (Erichsen and Ross, 1963; Maunder and Pickett, 1963; Miller and Pickett, 1964). 

Fertility restoration is also influenced by environmental conditions; cool conditions 

around flowering favor sterility and high temperatures favor pollen fertility (Downes and 

Marshall, 1971; Brooking, 1976; Brooking, 1979). The combination of moderately 

complex genetic control and environmental variation in pollen sterility and fertility 

restoration make the development of new parental lines both laborious and costly. 

Due to their economic importance, CMS-Rf systems have been extensively examined 

in many crop species (He, et al., 1995; Schnable and Wise, 1998; Hanson and Bentolila, 

2004; Gabay-Laughnan and Newton, 2005; Chase, 2007; Ivanov and Dymshits, 2007; Li, 
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et al., 2007; Carlsson, et al., 2008; Carlsson and Glimelius, 2011; Park, et al., 2013; An, 

et al., 2014; Liu, et al., 2016a; Xie, et al., 2016). An interaction between the mitochondria 

and the nucleus results in an erroneous development of stamens and flowers resulting in 

inhibited production of viable pollen. Numerous investigations of the underlying basis of 

CMS have shown that in each case, a novel mitochondrial genomic lesion, consisting of a 

unique, expressed chimeric open reading frame (ORF), appears to confer the phenotype 

(Rhoads, et al., 1995; Tang, et al., 1996; Tang, et al., 1999; Hanson and Bentolila, 2004; 

Allen, et al., 2007; Yang, et al., 2010; Matsunaga, et al., 2011; Jing, et al., 2012; Kumar, 

et al., 2012). It has been hypothesized that the mitochondrial CMS-causing chimeric ORF 

affects the nuclear genome through retrograde signaling resulting in programmed cell 

death (PCD) and pollen abortion (Rhoads and Subbaiah, 2007; Diamond and McCabe, 

2011; Eckardt, 2011; Schwarzlaender, et al., 2012). 

In sorghum, there are a series of CMS-inducing cytoplasms (Reddy, et al., 2010), but 

nearly all commercial seed production relies on the A1 CMS-Rf system. Despite its crucial 

economic importance, the CMS-inducing mitochondrial gene for A1 cytoplasm is 

unknown. By comparison, considerably more is known about the Rf genes in sorghum, 

beginning with the cloning of the Rf1 gene in sorghum by Klein, et al. (2005). Rf1 was 

found to encode a pentatricopeptide repeat (PPR) protein, and subsequently, two other 

major fertility restoration loci in sorghum, Rf2 and Rf5, were mapped with Rf-like PPR 

candidate genes identified (Jordan, et al., 2010; Jordan, et al., 2011). In recent years, 

numerous PPR proteins have been identified as fertility restorers in CMS systems from 

various plant species (Chen and Liu, 2014; Horn, et al., 2014; Tang, et al., 2014; Huang, 
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et al., 2015; Liu, et al., 2016b). PPR proteins are defined by the presence of canonical 35-

amino acid degenerate motifs, which are found in tandem arrays of up to 30 repeats 

(Barkan and Small, 2014). In Arabidopsis about 450 PPR proteins have been identified 

and most of them are predicted to be targeted to mitochondria and/or chloroplasts. A 

number of functional studies revealed that PPR proteins exhibit sequence-specific RNA 

binding activity, supporting their general importance in organelle RNA metabolism 

(Barkan, et al., 2012; Barkan and Small, 2014). Mitochondrial gene regulation is largely 

controlled by post-transcriptional processes that include frequent RNA editing, trans-

splicing of mitochondrial transcripts, 5’ and 3’ end processing, altered RNA stability, and 

translational control (Schmitz-Linneweber and Small, 2008; Farajollahi and Maas, 2010; 

Hammani and Giege, 2014). As transcripts of CMS-causing ORFs have been altered in 

restored lines of various plant species, it is postulated that PPR-Rf genes restore fertility 

by altering the expression of CMS-associated mitochondrial transcripts, either by 

editing/processing CMS-associated RNA or by altering the translation of these transcripts 

(Tang, et al., 1996; Tang, et al., 1999; Bentolila, et al., 2002; Brown, et al., 2003; Desloire, 

et al., 2003; Kazama and Toriyama, 2003; Koizuka, et al., 2003; Komori, et al., 2004; 

Wang, et al., 2006; Kazama, et al., 2008; Uyttewaal, et al., 2008; Barr and Fishman, 2010; 

Fujii, et al., 2011; Chen and Liu, 2014). 

With the advent of cost-effective whole genome sequencing, comparative sequencing 

of related mitochondrial genomes and transcriptomes has become the preferred first steps 

in the process of identifying CMS-causing genes and the action of Rf genes in ameliorating 

pollen sterility. The use of RNA-seq technology to examine gene expression in crop 



 

80 

 

CMS systems has been reported in different species such as radish (Park, et al., 2013; 

Xie, et al., 2016), cotton (Yang, et al., 2014a), kenaf (Chen, et al., 2014), soybean (An, 

et al., 2014), and onion (Liu, et al., 2016a). Utilizing transcriptome analysis of CMS 

and maintainer lines in soybean, Li, et al. (2015a) identified a group of key nuclear-

encoded genes related to male sterility, that included genes involved in carbohydrate 

and energy metabolism, transcription factors, regulation of pollen development, 

elimination of reactive oxygen species (ROS), cellular signal transduction, and PCD. 

Nuclear genome expression profiles of fertile and sterile floral buds of pol CMS in 

Brassica napus revealed differentially expressed genes that were mainly involved in 

metabolic and protein synthesis pathways while a set of unigenes controlling anther 

development were dramatically down-regulated in sterile buds (An, et al., 2014). In 

onions, Liu, et al. (2016a) reported the differential expression of several mitochondrial 

protein complex subunits including that of F-type ATPase, NADH dehydrogenase, and 

cytochrome c oxidase.  

In the present study, RNA-seq technology was utilized to characterize gene 

expression in the nuclear genome of an A1 cytoplasmic male sterile (CMS) system of 

sorghum. Gene expression was compared in immature panicles of A-lines, their  

iso-cytoplasmic maintainer B-lines, and F1 sorghum hybrids to better understand the 

metabolic pathways that are differentially regulated in CMS sorghum.  
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Materials and Methods  

Plant material and growth conditions 

Sorghum plants from a series of A1 CMS lines (A1-line), maintainer lines  

(B-line), and F1 (restored) hybrids (Table 23) were grown under controlled greenhouse 

conditions with a temperature range of 24/30 ± 2°C (light/dark) with a 14 hr light period 

provided using sodium halide lights and natural sunlight. Plants were grown in 3-gallon 

pots containing Sunshine REPS soil mix (Sun Gro Horticulture Inc., Bellevue, WA) with 

the following added and mixed in; 18 g of Osmocote (16% N, 3.5% P and 10% K), 15 g 

gypsum, 15 g dolomite and 5 g Micromix (6% Ca, 3% Mg, 12% S, 0.1% B, 1% Cu, 17% 

Fe, 2.5% Mn, 0.05% Mo and 1% Zn). The greenhouse experiment was conducted as a 

complete randomized design with four replicates for each line. In a separate field-based 

study, a set of sorghum genotypes, which included CMS line ATx623 and F1 hybrids 

(ATx623×RTx2783, ATx623×RTx436) were grown in the Texas A&M AgriLife 

Research farms at the Brazos River Bottom, Burleson County, TX, and immature panicles 

were harvested for RNA isolation as detailed below. 
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Table 23: List of sorghum genotypes examined in the present study. 

Lines Name Additional descriptors Growing location 

A1-line AQL33 CMS line-highly male sterile Greenhouse 

A1-line A992422 

CMS line-male sterility, reverts 

to fertility under high 

temperatures 

Greenhouse 

B-line BQL33 Iso-cytoplasmic maintainer line Greenhouse 

B-line B992422 Iso-cytoplasmic maintainer line Greenhouse 

F1 hybrid AQL33×QL12  Greenhouse 

F1 hybrid AQL33×QL36  Greenhouse 

F1 hybrid AQL33×R931945-2-2  Greenhouse 

F1 hybrid A992422×QL12  Greenhouse 

F1 hybrid A992422×QL36  Greenhouse 

F1 hybrid A992422×R931945-2-2  Greenhouse 

A1-line ATx623 CMS line-highly male sterile BRBa Field 

F1 hybrid ATx623×RTx2783  BRB Field 

F1 hybrid ATx623×RTx436  BRB Field 
aBRB, Brazos River Bottom  
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RNA isolation, template library preparation and sequencing 

Immature panicles from the early boot stage (cream-colored florets, wispy 

panicles) were harvested, florets stripped and immediately frozen in liquid nitrogen 

(LN2) with subsequent storage at –80oC. For RNA extraction, frozen florets were 

ground under LN2 into a fine powder using a mortar and pestle. RNA was extracted 

from frozen ground tissue using the miRNeasy Mini Kit (Qiagen, Valencia, CA, USA) 

and subsequently treated with TURBO™ DNase (Ambion, Austin, TX, USA). Prior 

to RNA-seq template preparation, RNA quality was assessed using the ND-1000 

NanoDrop spectrophotometer (NanoDrop Technologies, Montchanin, DE, USA), and 

RNA integrity was assessed with the Agilent 2100 Bioanalyzer (Agilent Technologies, 

Santa Clara, CA, USA) by the Texas AgriLife Research Genomic and Bioinformatics 

Services. RNA-seq template libraries were prepared by the Texas AgriLife Research 

Genomic and Bioinformatics Services using the ScriptSeqTM RNA-seq –library 

preparation kit (Epicenter Technologies, Chicago, IL, USA) following the 

manufacturer's protocol and 125 bp strand-specific paired-end (PE) sequencing was 

performed on an Illumina HiSeq2500. Prior to sequencing, each library was bar-coded, 

and fourteen libraries pooled per lane on the Illumina flow cell. Samples were run on 

four lanes and reads from all lanes were combined for higher read depth. 

Gene expression analysis 

Sequence reads were imported into the CLC Genomics Workbench Version 8.5.1 

(Qiagen, Valencia, CA, USA). The quality of the reads was examined using FastQC and 

the reads mapped to the BTx623 sorghum reference genome (Sbicolor_313 v.3.1) using 
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the CLC Genomics Workbench. Differential gene and transcript expression analyses were 

conducted based on reads per kilobase per million (RPKM) value for each annotated gene 

using the proportions-based Kal's test (Kal, et al., 1999). Differentially expressed genes 

(DEGs) were found from the comparisons of A1-lines with B-lines and F1 (restored) 

hybrids. DEGs were defined as having the value of log2 fold change ≥ 1 or ≤ -1 with an 

FDR corrected p-value <0.05. A list of PPR gene family members (see Table 25) that 

have been characterized as putative Rf-like genes was obtained for this analyses from 

Professor Ian Small, The University of Western Australia (personal communication). 

Expression of a putative Rf-like or Pf-like (partial fertility restorer) gene was compared 

between A1-lines and F1 hybrids and between A/B iso-cytoplasmic line pairs to identify 

any with differential expression. 

For functional annotation, gene ontology was performed using AgriGO gene ontology 

analysis tools (Du, et al., 2010), and significantly enriched GO terms (in comparison to 

the genome background) were identified by REVIGO (Supek, et al., 2011). Pathway 

analysis was performed using the Kyoto Encyclopedia of Genes and Genomes (KEGG) 

database (Kanehisa and Goto, 2000) and pathway enrichment analysis completed by 

KOBAS v. 2.0 (Xie, et al., 2011).  

Results and Discussion 

RNA-seq data quality  

The number of paired-end reads that were collected for each RNA-seq library ranged 

from 79 M to 105 M, and the number of mapped reads ranged from 62 M to 95 M with an 
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average of 92% of those reads mapped to gene exons (Table 24). The high percentage of 

reads mapping to exonic regions is expected for high-quality RNA-seq data. 

 

 

 

Table 24: Details of mapped reads of RNA-seq data from different A1-lines, B-lines, 

and F1 hybrids. Unique RNA-seq reads mapping to exons, introns, and intergenic regions 

are shown as the percentage of total reads distributed to these annotated regions of the 

sorghum genome (Sbicolor_313 v.3.1). 

Genotype 
Total 

reads (M) 

Number of 

mapped 

reads (M) 

Exonic 

reads 

(%) 

Intronic 

reads 

(%) 

Intergenic 

reads 

(%) 

AQL33 84.18 64.7 93.82 0.99 5.19 

BQL33 89.74 69.36 93.47 1.02 5.51 

AQL33×QL12 87.98 66.95 93.98 0.95 5.07 

AQL33×QL36 94.45 73.44 93.93 1.25 4.82 

AQL33×R931945-2-2 86.10 65.12 92.37 0.93 6.71 

A992422 81.60 63.09 93.64 0.97 5.39 

B992422 105.70 82.01 93.95 1.02 5.03 

A992422×QL12 95.22 73.19 93.64 1.15 5.21 

A992422×QL36 83.89 64.57 93.84 0.96 5.20 

A992422×R931945-2-2 80.45 62.52 93.36 1.00 5.64 

ATx623 90.52 70.09 93.53 1.06 5.41 

ATx623×RTx2783 85.13 66.02 93.99 1.19 4.83 

ATx623×RTx436 85.60 66.32 93.48 1.09 5.43 
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Differentially expressed Rf and Rf-Like genes 

The CMS phenotype is restored through the action of nuclear-encoded genes that are 

members of the large family of pentatricopeptide repeat (PPR) proteins (Delannoy, et al., 

2007; Hu, et al., 2012). The expression of Rf1 and Rf-like PPR genes in sorghum lines 

ranged from 0 to 6.5 RPKM (Table 25), but none of the annotated Rf-like genes were 

differentially expressed in the present study. The lack of differential expression of Rf1 and 

Rf-like PPR genes between CMS sterile A1-lines and fertile F1 hybrids likely relates to the 

fact that regulation of the action of the Rf genes may not be at the transcriptional level. 

The  regulation of these genes in sorghum may be related to the loss-of-function mutations 

that have been discovered in recessive alleles of cloned rf genes (Hu, et al., 2014; Kitazaki, 

et al., 2015; Gaborieau, et al., 2016). However, as additional genes involved in fertility 

restoration are annotated that include modifier genes (partial restorers), it is likely that 

control of these pf genes resides at the level of gene transcription, and that environmental 

cues (e.g., high temperature immediately preceding anther exertion) are critical to 

expression of pf genes. 
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Table 25: Expression of putative Rf-like and Pf-like (partial fertility restorer) genes in different lines of sorghum.  

  A1-lines B-lines F1  hybrids Gene ortholog 

Feature ID Annotat

ion 
A992

422 

AQL

33 

ATx

623 

B9924 

22 

BQL

33 

A992

422× 

R931

945-

2-2 

A9924

22× 

QL12 

A992

422×

QL3

6 

AQL33

×R9319

45-2-2 

AQL

33×

QL1

2 

AQL

33×

QL3

6 

ATx623×

RTx436 

ATx62

3×RT

X2783 

Arabidopsis Maize 

Sobic.002G054100 N/A 1a 1 2 1 1 2 2 2 2 2 2 2 2 AT1G63130 GRMZM2G021303 

Sobic.002G054200 

similar 

to 

Protein 

Rf1, 

mitocho

ndrial 

precurs

or 

3 3 2 3 3 2 3 4 3 3 4 2 4 AT1G62910 GRMZM2G450166 

Sobic.002G055300 N/A 2 2 2 2 2 2 2 2 2 2 2 2 2 AT5G64320 
AC186379.3_FG00

1 

Sobic.002G057050 N/A 2 2 2 2 2 1 2 2 2 1 1 2 2 AT5G55840 GRMZM2G393935 

Sobic.002G059700 N/A 0 0 0 0 0 0 0 0 0 0 0 0 0 AT1G62910 GRMZM2G450166 

Sobic.002G227400 N/A 0 0 0 0 0 0 0 0 0 0 0 0 0 AT1G62670 GRMZM2G416201 

Sobic.003G138550 N/A 0 0 0 0 0 0 0 0 0 0 0 0 0 AT1G63070 N/A 

Sobic.005G011000 

similar 

to Rf1 

protein, 

mitocho

ndrial, 

putative

, 

express

ed 

1 1 1 2 1 1 1 2 1 1 1 1 1 AT1G63130 GRMZM2G021303 

Sobic.005G024600 N/A 1 1 1 2 1 1 1 2 1 1 1 1 1 AT1G63130 GRMZM2G021303 

Sobic.005G026500 N/A 0 0 0 0 0 0 0 1 0 1 0 1 1 AT1G62670 GRMZM2G416201 
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Table 25: Continued

Feature ID 
Annotat

ion 

A1-lines B-lines F1  hybrids Gene ortholog 

A992

422 

AQL

33 

ATx

623 

B9924

22 

BQL

33 

A992

422× 

R931

945-

2-2 

A9924

22× 

QL12 

A992

422× 

QL3

6 

AQL33

×R9319

45-2-2 

AQL

33×

QL1

2 

AQL 

33× 

QL3

6 

ATx623× 

RTx436 

ATx62

3×RT

X2783 

Arabidopsis Maize 

Sobic.005G026900 

similar 

to PPR 

protein 

1 1 1 2 1 1 1 1 1 1 0 1 1 AT1G63130 GRMZM2G021303 

Sobic.005G027600 
N/A 

2 2 1 2 1 1 2 3 2 3 2 2 2 AT1G63130 GRMZM2G021303 

Sobic.005G027680 
N/A 

1 1 1 1 0 1 1 1 1 1 1 1 1 AT1G62910 GRMZM2G450166 

Sobic.005G027760 N/A 1 1 1 1 1 1 1 1 1 1 1 1 1 AT1G63130 GRMZM2G021303 

Sobic.005G027840 N/A 4 5 3 6 3 2 5 5 4 5 4 4 5 AT1G62910 GRMZM2G450166 

Sobic.005G028200 N/A 2 2 2 3 1 1 2 3 2 3 1 2 2 AT1G63130 GRMZM2G021303 

Sobic.005G028300 

similar 

to Rf1 

protein, 

mitocho

ndrial, 

putative

, 

express

ed 

1 1 1 1 1 1 1 1 1 1 1 1 1 AT1G62670 GRMZM2G416201 

Sobic.005G030850 N/A 1 1 1 1 1 1 1 1 1 1 1 1 1 AT5G65560 GRMZM2G030594 

Sobic.005G168000 N/A 4 3 2 7 2 3 4 5 4 3 3 3 3 AT1G63130 GRMZM2G021303 

Sobic.007G087900 

similar 

to 

Protein 

Rf1, 

mitocho

ndrial 

precurs

or 

2 1 1 2 1 1 2 2 2 1 1 1 1 AT1G63130 GRMZM2G021303 

Sobic.008G099900 N/A 1 0 0 0 0 0 1 0 0 0 0 0 0 AT3G29230 GRMZM2G077320 
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Table 25: Continued 

Feature ID 
Annotat

ion 

A1-lines B-lines F1  hybrids Gene ortholog 

A992

422 

AQL

33 

ATx

623 

B9924 

22 

BQL

33 

A992

422× 

R931

945-

2-2 

A9924

22× 

QL12 

A992

4 

22× 

QL3

6 

AQL33

×R9319

45-2-2 

AQL

33×

QL1

2 

AQL 

33× 

QL3

6 

ATx623× 

RTx436 

ATx62

3× 

RTX2

783 

Arabidopsis Maize 

Sobic.008G100400 

similar 

to 

Pentatri

copepti

de, 

putative 

1 1 1 1 1 1 1 1 1 1 1 1 1 AT3G23330 GRMZM2G115957 

Sobic.008G147400 N/A 1 1 1 1 1 1 1 1 1 1 1 1 1 AT4G35130 GRMZM2G009754 

Sobic.008G149200 

similar 

to 

Putative 

unchara

cterized 

protein 

1 0 0 0 0 0 0 0 1 0 0 0 1 AT1G68930 
AC194339.3_FG00

4 

Sobic.008G163400 

similar 

to 

Pentatri

copepti

de, 

putative

, 

express

ed 

1 1 1 1 1 1 1 1 1 1 1 1 1 AT4G02750 GRMZM2G004888 

Sobic.009G253101 N/A 0 0 0 1 0 0 0 1 1 1 0 1 1 AT1G63130 GRMZM2G021303 

Sobic.010G113900 N/A 3 3 2 3 2 2 2 4 3 3 2 5 3 AT1G62670 GRMZM2G416201 

aEach number shows the RPKM value for each gene
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Transcriptome analysis and gene ontology of iso-cytoplasmic A1 and B paired lines  

In an initial examination of the A1 CMS system of sorghum, the expression of 

nuclear-encoded genes in A1-lines and the corresponding iso-cytoplasmic B-lines was 

compared to identify genes differentially expressed during the early phase of panicle 

maturation. A limited number of differentially expressed genes (DEGs) were detected 

between A1/B paired lines, which in part reflects the fact that each A1/B pair shares the 

same nuclear genome and differ only in their cytoplasm (i.e., A1 sterile vs. fertile 

cytoplasm). In a comparison between AQL33 and its maintainer line BQL33, 51 DEGs 

were detected with eight genes up-regulated and 43 genes down-regulated in AQL33. 

A limited number of DEGs were also detected in a comparison of gene expression in 

immature panicles of A1/B paired lines A992422 and maintainer B992422 with 12 up-

regulated and 10 down-regulated genes in A992422 (Table 26).  

The functions of these DEGs were further studied based on annotation information 

([Sbicolor_313 v.3.1, www.phytozome.jgi.doe.gov, (Paterson, et al., 2009)] and gene 

ontology (GO) analysis. Based on the limited number of DEGs between A1/B paired 

lines, a gene ontology (GO) analysis did not reveal significant enrichment in any GO 

categories (Table 27). Despite this fact, examination of those genes differentially 

expressed between A1/B paired lines revealed a series of genes involved in different 

biological processes (data not shown). Down-regulated genes in AQL33 and A992422 

were involved in biological processes such as metabolic and cellular process, regulation 

of transcription, regulation of gene expression, and regulation of metabolic and 

biosynthetic process. Differentially expressed genes that were up-regulated in AQL33 

http://www.phytozome.net/
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and A992422 lines were involved in biological processes such as response to stress and 

metabolic process. A closer examination and discussion of DEGs between iso-cytoplasmic 

A1 and B line pairs will be addressed in conjunction with those nuclear genes differentially 

expressed between A1 and F1 hybrids. 

Transcriptome analysis and gene ontology of A1-lines versus F1 hybrids 

Pollen-fertile F1 hybrids in sorghum are produced by crossing A1 CMS lines to 

restorer (R) lines that harbor Rf genes capable of restoring pollen fertility. Examination 

of nuclear gene expression between immature panicles of A1 CMS females and their 

corresponding F1 hybrids revealed a number of DEGs, and the quantity of DEGs was 

generally greater than that observed between iso-cytoplasmic A1/B paired lines (Table 

26). Unlike iso-cytoplasmic A1/B paired lines that share the same nuclear genome, A1 

CMS lines and F1 hybrids differ in their nuclear genomes, which likely accounts for the 

greater number of observed differentially expressed genes. Nevertheless, the number of 

DEGs detected in the present comparisons was limited (less than 300 DEGs), which is 

a small proportion of the over 30,000 annotated nuclear genes for sorghum 

[Sbicolor_313 v.3.1, www.phytozome.jgi.doe.gov, (Paterson, et al., 2009)]. As noted 

above, the relatively low number of DEGs may in part relate to the fact that a single 

stage of panicle development was examined in this study, and later (or earlier) stages 

during panicle maturation (e.g., anthesis) may have revealed additional changes in gene 

expression. In addition, while A1 CMS panicles are pollen sterile, other facets of floral 

development progress normally including development of female reproductive 

http://www.phytozome.net/
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structures and thus, expression of various nuclear genes involved in floral development 

are likely unaffected. 

The number of DEGs reported in comparison of CMS and fertile lines in other 

species varies widely. For example, Li, et al. (2015a) reported 365 DEGs (339 down-

regulated and 26 up-regulated in CMS line) between NJCMS1A and its maintainer 

NJCMS1B line during the flowering period (prior to pollen abortion) of soybean. By 

comparison, Mei, et al. (2016) reported 3843 DEGs (2487 up-regulated and 1356 down-

regulated genes in CMS line) in a comparison of radish HYBP-A CMS floral buds with 

HYBP-B maintainer line.  

Differentially expressed genes between three A1-lines and related F1 hybrids were 

significantly enriched in a number of different GO categories and multiple biological 

processes (Table 27). In general, a larger proportion of DEGs were down-regulated in 

CMS A1-lines when compared to pollen-fertile F1 hybrids. A series of GO categories 

whose genes were down-regulated in CMS A1-lines included nucleic acid/DNA binding, 

general category of metabolic processes, catalytic activities, lipid biosynthetic/metabolic 

process, oxidation/reduction, and organelle-related. Examination of these DEGs (and their 

homologs in other plant species) within these categories provided evidence that the down-

regulation of these genes may relate to the eventual abortion of pollen that will occur 

within these panicles and to the large number of metabolic processes intimately linked to 

pollen production (see Appendix A). For instance, the down-regulation of the lipid 

biosynthesis process in CMS A1-lines could be due to the importance of lipids or lipid-

derived structures in pollen grains (Appendix A). Pollen grains contain several lipid 
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structures that play a key role in their development as male gametophytes (Piffanelli, et 

al., 1998), and the role of lipid synthesis for normal pollen development has also been 

hypothesized through mutational analysis (Ariizumi, et al., 2004) and chemical 

application studies (Li, et al., 2015b). Mutations in the novel plant protein NEF1 are 

known to affect lipid metabolism, and pollen cell wall formation which leads to reduced 

fertility in Arabidopsis (Ariizumi, et al., 2004). Li, et al. (2015b) found that the chemical 

hybridization agent monosulfuran ester sodium, induces male sterility in  

Brassica napus L. by blocking lipid and carbohydrate metabolism.  

A number of genes with oxidoreductase activity were down-regulated in CMS  

A1- lines. This is in agreement with Liu, et al. (2013) and Du, et al. (2016) who reported 

the up-regulation of oxidoreductase activity genes in fertile lines of Chili pepper and 

rapeseed, respectively. The down-regulated oxidoreductase genes in CMS A1-lines 

included two dihydroflavonol-4-reductase genes (Sobic.007G206000, 

Sobic.002G251200), oxidoreductase from short chain dehydrogenase/reductase family 

gene (Sobic.004G203900), polyphenol oxidase (Sobic.007G068700), and 3-oxoacyl-

reductase gene (Sobic.008G087300) (Appendix A). The involvement of Arabidopsis 

orthologs of some of these genes in anther and pollen development has been reported 

through isolation and characterization of numerous male sterile or partially sterile mutants 

(Morant, et al., 2007; Beaudoin, et al., 2009; Dobritsa, et al., 2009a; Dobritsa, et al., 2009b; 

Tang, et al., 2009; Dobritsa, et al., 2010; Kim, et al., 2010; Li and Zhang, 2010; Yang, et 

al., 2014c; Hu, et al., 2016). An ortholog of Sobic.002G251200 and Sobic.007G206000 in 

Arabidopsis i.e. DRL1 (AT4G35420), which is an anther specific gene, has been reported 
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to be essential for male fertility in Arabidopsis (Tang, et al., 2009). The insertion mutants 

(drl-1 and drl-2) of the DRL1 gene caused impaired pollen development that lead to 

different levels of male sterility in Arabidopsis (Tang, et al., 2009). In support of these 

findings, the sorghum ortholog of Arabidopsis DRL1 (Sobic.007G206000) was  

up-regulated in F1 hybrids including AQL33×QL36 (2.1-fold change), A992422×QL12 

(15-fold change), A992422×QL36 (3.6-fold change), A992422×R931945-2-2 (6-fold 

change), and ATx623×RTx2783 (2.3-fold change) in comparison with their related  

A1-lines (Appendix A). The other ortholog of DRL1, Sobic.002G251200, was  

up-regulated in F1 hybrids including AQL33×QL36 (2-fold change), A992422×QL12 

(71.5-fold change), A992422×QL36 (12.7-fold change), and A992422×R931945-2-2 

(18.3-fold change) (Appendix A).  

Genes involved in exine (the outer pollen wall) formation were up-regulated in 

 F1 hybrids. These genes included Sobic.001G428300 (annotated as similar to male 

fertility protein) and two putative chalcone synthase genes, i.e. Sobic.002G115700 and 

Sobic.001G215000. The role of Arabidopsis orthologs of these genes in pollen exine 

formation has been reported (Dobritsa, et al., 2009a; Dobritsa, et al., 2010; Kim, et al., 

2010). Dobritsa, et al. (2009a) investigated the role of LAP3 (AT3G59530) in pollen 

development in Arabidopsis using insertion mutation and metabolite profile assays of 

anther tissues containing developing pollen grains. They found that the lap3-2 defect 

leads to a broad range of metabolic changes in anthers including marked changes in 

levels of a straight-chain hydrocarbon nonacosane and naringenin chalcone, obligate 

compounds in the flavonoid biosynthesis pathway. Flavonoids are important for pollen 
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germination and fertility in several plant species (Van Der Meer, et al., 1992), and the 

disruption of key flavonoid biosynthesis enzymes, such as chalcone synthase, can disrupt 

pollen exine development (Zang, et al., 2009; Dobritsa, et al., 2010; Li and Zhang, 2010). 

Two known chalcone synthase genes in Arabidopsis, LAP5 (AT4G34850) and LAP6 

(AT1G02050), encode anther-specific proteins that are essential for pollen exine 

development (Dobritsa, et al., 2010). Based on in vitro assays, it has been suggested that 

LAP5 and LAP6 are multifunctional enzymes and may play a role in both the synthesis of 

pollen fatty acids and phenolics found in exine (Kim, et al., 2010). In support of these 

findings, the sorghum orthologs of Arabidopsis LAP3 (Sobic.001G428300), LAP5 

(Sobic.002G115700), and LAP6 (Sobic.001G215000) were all up-regulated in F1 hybrids. 

Sobic.001G428300 (LAP3 ortholog) was up-regulated in F1 hybrids including 

AQL33×QL36 (2.3-fold change), A992422×QL12 (48-fold change), A992422×QL36 

(10-fold change), and A992422×R931945-2-2 (19-fold change) (Appendix A). 

Sobic.002G115700 (LAP5 ortholog) was up-regulated in F1 hybrids including 

AQL33×QL36 (2.1-fold change), A992422×QL12 (20-fold change), A992422×QL36 

(4.3-fold change), and A992422×R931945-2-2 (7.5-fold change) (Appendix A). 

Similarly, the LAP6 ortholog in sorghum, i.e. Sobic.001G215000, was up-regulated in F1 

hybrids including A992422×QL12 (17-fold change), A992422×QL36 (3.6-fold change), 

and A992422×R931945-2-2 (4.6-fold change) (Appendix A). The two genes, 

Sobic.001G491400 and Sobic.007G029900, encoding cytochrome P450 enzymes, which 

were categorized in the metabolic process and oxidoreductase activity GO categories were 

up-regulated in F1 hybrids. The orthologs of these genes in Arabidopsis, i.e. CYP703B1 
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(AT1G69500) and CYP703A2 (AT1G01280), are involved in a major component of exine 

synthesis (sporopollenin) (Dobritsa, et al., 2009b). The mutants of these genes in 

Arabidopsis have been reported to cause moderate to severe effects in exine deposition 

and pollen grain development (Morant, et al., 2007; Dobritsa, et al., 2009b). Li and Zhang 

(2010) reported the involvement of the rice ortholog of Sobic.001G491400 

(LOC_Os03g07250) in male reproductive development. They identified this gene as a 

common fatty acid in the ω-hydroxylation pathway for synthesizing anther cuticle and 

pollen exine. Sobic.001G491400 was up-regulated in F1 hybrids including AQL33×QL36 

(2.1-fold change), A992422×QL12 (20-fold change), A992422×QL36 (3.3-fold change), 

and A992422×R931945-2-2 (4.5-fold change). Sobic.007G029900 was up-regulated in 

AQL33×QL36 (3.3-fold change), A992422×QL12 (39-fold change), and 

A992422×R931945-2-2 (6.4-fold change) (Appendix A). Two other genes involved in 

pollen development, Sobic.006G079500 and Sobic.003G004900, were up-regulated in F1 

hybrids. The ortholog of these genes in Arabidopsis, i.e. ACOS5 (AT1G62940), has been 

reported to be required for fatty acyl-CoA synthase for pollen development and 

sporopollenin biosynthesis (de Azevedo Souza, et al., 2009). de Azevedo Souza, et al. 

(2009) characterized a mutant of the Arabidopsis ACOS5 gene, acos5-1, and found that  

acos5-1 homozygotes are completely male sterile. The Sobic.006G079500 and 

Sobic.003G004900 genes were up-regulated in F1 hybrids (AQL33×QL12, 

AQL33×QL36, A992422×QL12, A992422×QL36, A992422×R931945-2-2) (Appendix 

A). Sobic.002G384400, which was categorized in the metabolic process and oxidation 

reduction GO categories, was up-regulated in F1 hybrid AQL33×QL36. The ortholog of 
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this gene in Arabidopsis, i.e. Cp51 (AT5G54770) that encodes a cysteine protease is 

involved in anther development. Cp51–RNAi transgenic plants displayed a steady male 

sterility phenotype (Yang, et al., 2014c). 

While a greater proportion of nuclear genes were down-regulated in CMS  

A1-lines, there were a limited number of genes up-regulated in these lines. Three 

phenylalanine ammonia lyase genes (Sobic.004G220400, Sobic.006G148800, 

Sobic.006G148900) were up-regulated in two A1-lines. Sobic.004G220400 showed a 

2.18-fold increase in AQL33. Both Sobic.006G148800 and Sobic.006G148900 showed 2-

fold increases in A992422 (Appendix A). Although expression increased in these genes, 

the magnitude of this change was limited. This is in contrast to the large fold-change 

expression observed for many down-regulated genes in A1 CMS lines. Phenylalanine 

ammonia lyase (PAL) is involved in the first step of the phenylpropanoid pathway and is 

therefore involved in the biosynthesis of polyphenol compounds such as flavonoids and 

phenylpropanoids. The phenylpropanoid natural products may play important roles as 

signal molecules, both in plant development and plant defense (Dixon, et al., 2002; 

Naoumkina, et al., 2010). The up-regulation of the ortholog of these genes in Arabidopsis 

has been reported in response to stress (Leyva, et al., 1995; Hussain, et al., 2016). In plants, 

male reproductive development is sensitive to stress. Upon exposure to stress, 

morphological, structural and metabolic alterations typically occur in male gametophytic 

organs that can lead to meiotic defects or premature spore abortion or male sterility (De 

Storme and Geelen, 2014). 

 

https://en.wikipedia.org/wiki/Phenylpropanoids_metabolism
https://en.wikipedia.org/wiki/Biosynthesis
https://en.wikipedia.org/wiki/Polyphenol
https://en.wikipedia.org/wiki/Flavonoid
https://en.wikipedia.org/wiki/Phenylpropanoid
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Table 26: Number of DEGs in a comparison of different A1-lines, B-lines, and  

F1 hybrids. The significant DEGs were selected based on a log2 fold change ≥ 1 or ≤ -1 

and an FDR corrected p-value <0.05. 

Comparison 

Total 

number 

of DEGs 

Up-regulated 

in A1-line 

Down-regulated 

in A1-line 

AQL33 vs. B-QL33 51 8 43 

AQL33 vs. AQL33×QL12 54 24 30 

AQL33 vs. AQL33×QL36 125 40 85 

AQL33 vs. AQL33×R931945-2-2 258 160 98 

A992422 vs. B992422 22 12 10 

A992422 vs. A992422×QL12 172 61 111 

A992422 vs. A992422×QL36 101 39 62 

A992422 vs. A992422×R931945-2-2 61 7 54 

ATx623 vs. ATx623×RTx2783 83 31 52 

ATx623 vs. ATx623×RTx436 63 47 16 

 

 

 

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway mapping 

To identify DEG-enriched pathways associated with CMS and pollen fertility 

restoration, enrichment pathway analysis was performed. Although the number of DEGs 

were limited between sterile and fertile lines, a series of pathways did contain DEGs 

(Table 28). The up-regulation of genes Sobic.001G318700, Sobic.001G514200, 

Sobic.010G106300, and Sobic.001G514400 in the glutathione metabolism pathway 

was found for some F1 hybrid lines including AQL33×QL12, AQL33×QL36, and 

AQL33×R931945-2-2 (Appendix A). It has been postulated that the activation of 



 

99 

 

glutathione metabolism is a natural cell response to stress that can be induced by CMS 

(Fagard, et al., 2000). Elevated expression of Arabidopsis Glutathione S-transferase Φ8 

GSTF8 (At2g47730), the ortholog of Sobic.001G514200, has been reported as a marker 

for early stress and defense response (Alqurashi, et al., 2016). The effects of the 

glutathione pathway on CMS have also been supported by incorporation of the 

Glutathione S-Transferase (GST) gene into normal restorer line DES-HAF277 of cotton 

using Agrobacterium-mediated transformation, which significantly enhanced its fertility 

restoration potential (Wang and Li, 2002; Jiang, et al., 2007; Bibi, et al., 2014). Within the 

linoleic acid metabolism pathway, two genes (Sobic.001G120400 and 

Sobic.003G385900) were up-regulated in CMS lines when compared to their F1 hybrids 

(Appendix A). Fatty acids are crucial components of cellular membranes that provide 

structural barriers to the environment (Beisson, et al., 2007). They contribute to inducible 

stress resistance through the remodeling of membrane fluidity (Iba, 2002). Free linoleic 

acid is itself a stress signal (Blée, 2002). Arabidopsis gene ATSPLA2-ALPHA 

(AT2G06925) is the ortholog of Sobic.001G120400, and it has been shown to be involved 

in defense mechanisms (Froidure, et al., 2010). This gene is a member of the 

phospholipase A (PLA) superfamily that is involved in plant defense signaling (Canonne, 

et al., 2011). Previous studies indicate that the expression of the Arabidopsis ortholog i.e. 

LOX1 (AT1G55020) of Sobic.003G385900 was induced by abiotic stresses (Melan, et al., 

1993; Bu, et al., 2008). 

The pathway protein processing in endoplasmic reticulum (ER) contained genes that 

were differentially expressed between CMS A1 females and their F1 hybrids. Among 
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those, Sobic.001G420100, Sobic.002G243500, Sobic.003G039400, Sobic.003G082300, 

Sobic.008G136000, and Sobic.010G149300 were up-regulated in A1 CMS parents 

(AQL33, A992422, and ATx623) when contrasted to their corresponding F1 hybrids 

(AQL33×QL12, AQL33×QL36, AQL33×R931945-2-2, A992422×QL36, 

ATx623×RTx436, and ATx623×RTx2783). Genes  Sobic.004G228900, 

Sobic.001G426000, Sobic.003G081900, Sobic.003G350700, Sobic.006G005600, 

Sobic.007G216300, and Sobic.009G163900 showed up-regulation in A1 CMS parent 

AQL33 and several F1 hybrids including A992422×QL36 (Sobic.004G228900, 

Sobic.001G426000, and Sobic.006G005600), A992422×R931945-2-2 

(Sobic.003G081900), AQL33×QL36 (Sobic.003G350700), ATx623×RTx436 

(Sobic.001G426000 and Sobic.009G163900), and ATx623×RTx2783 

(Sobic.009G163900 and Sobic.001G426000) (Appendix A). It has been reported that 

genes that are involved in protein processing in ER play an important role in flower 

formation and development (Ge, et al., 2016), and unfolded proteins in the ER are one 

type of plant sensor that can trigger different signal transduction events (McClung and 

Davis, 2010; Suzuki, et al., 2012). Protein processing in ER has been reported to regulate 

the balance of metabolic processes by modifying specific transcripts, proteins, metabolites 

or lipids (McClung and Davis, 2010; Suzuki, et al., 2012; Min, et al., 2014), and 

transcription factors that are associated with stress resistance have also been found in 

protein processing in the ER (Ge, et al., 2016). From the 13 genes that were categorized 

in protein processing in ER, 11 of them were annotated as heat shock protein genes.  
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Several genes assigned to photosynthesis-related processes were differentially 

expressed in the panicles of A1-lines and their F1 hybrids. Zhu, et al. (2015) reported the 

down-regulation of unigenes related to photosynthesis including photosynthesis-antenna 

proteins in SQ-1 induced male sterile wheat. The enrichment of photosynthesis and the 

photosynthesis-antenna proteins pathway has also been reported in a study of DEGs 

associated with fertility instability of S-type CMS in maize. The authors concluded that 

the DEGs with the function of photosynthesis may also play roles in the regulation of 

fertility instability (Su, et al., 2017). However, it should be noted that sorghum panicles in 

the early boot stage are largely devoid of chlorophyll and thus, contain etioplasts or 

proplastids rather than photosynthetically-active chloroplasts. Thus, the role of 

differentially expressed photosynthesis-related genes in immature panicles in CMS 

remains undetermined at this time.  
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Table 27: Enriched GO terms associated with DEGs in comparison of A1-lines with B-lines and F1 hybrids. The significant 

GO terms (FDR corrected p-value <0.05) were grouped into biological process, molecular function, and cellular component 

categories. P-values indicate the statistical significance of differential expression observed between compared lines for genes 

associated with each GO term. Qnum are the number of probe sets that belong to the GO term from the query list (DEGs). 

B/Rnum values are the number of probe sets that belong to the GO term from the background based on a genome-wide set of 

genes. 

Comparison GO term GO type GO name Regulationa Qnum B/Rnum 
FDR 

 p-value 

AQL33 vs. AQL33×QL12 GO:0003677 Molecular function DNA binding down 10 1598 0.00 

AQL33 vs. AQL33×QL12 GO:0003676 Molecular function nucleic acid binding down 10 2374 0.00 

AQL33 vs. AQL33×QL36 GO:0005515 Molecular function protein binding up 9 2890 0.04 

AQL33 vs. AQL33×QL36 GO:0008152 Biological process metabolic process down 34 8076 0.00 

AQL33 vs. AQL33×QL36 GO:0006629 Biological process 
lipid metabolic 

process 
down 7 681 0.03 

AQL33 vs. AQL33×QL36 GO:0006508 Biological process proteolysis down 6 585 0.03 

AQL33 vs. AQL33×QL36 GO:0055114 Biological process oxidation reduction down 10 1485 0.03 

AQL33 vs. AQL33×QL36 GO:0003824 Molecular function catalytic activity down 33 7817 0.00 

AQL33 vs. AQL33×QL36 GO:0016491 Molecular function 
oxidoreductase 

activity 
down 13 1669 0.00 

AQL33 vs. AQL33×QL36 GO:0009055 Molecular function 
electron carrier 

activity 
down 7 576 0.01 

AQL33 vs. AQL33×QL36 GO:0004175 Molecular function 
endopeptidase 

activity 
down 5 295 0.01 

AQL33 vs. AQL33×QL36 GO:0070011 Molecular function 

peptidase activity, 

acting on L-amino 

acid peptides 

down 6 499 0.01 

AQL33 vs. AQL33×QL36 GO:0008233 Molecular function peptidase activity down 6 520 0.01 

AQL33 vs. 

AQL33×R931945-2-2 
GO:0006457 Biological process protein folding up 5 108 0.00 
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Table 27: Continued

Comparison GO term GO type GO name Regulationa Qnum B/Rnum 
FDR  

p-value 

AQL33 vs. 

AQL33×R931945-2-2 
GO:0006412 Biological process translation down 9 431 0.00 

AQL33 vs. 

AQL33×R931945-2-2 
GO:0003677 Molecular function DNA binding down 17 1598 0.00 

AQL33 vs. 

AQL33×R931945-2-2 
GO:0005198 Molecular function 

structural molecule 

activity 
down 8 343 0.00 

AQL33 vs. 

AQL33×R931945-2-2 
GO:0003735 Molecular function 

structural constituent 

of ribosome 
down 8 304 0.00 

AQL33 vs. 

AQL33×R931945-2-2 
GO:0003676 Molecular function nucleic acid binding down 21 2374 0.00 

AQL33 vs. 

AQL33×R931945-2-2 
GO:0030529 Cellular component 

ribonucleoprotein 

complex 
down 8 333 0.00 

AQL33 vs. 

AQL33×R931945-2-2 
GO:0005840 Cellular component ribosome down 8 304 0.00 

AQL33 vs. 

AQL33×R931945-2-2 
GO:0043232 Cellular component 

intracellular non-

membrane-bounded 

organelle 

down 8 406 0.00 

AQL33 vs. 

AQL33×R931945-2-2 
GO:0043228 Cellular component 

non-membrane-

bounded organelle 
down 8 406 0.00 

AQL33 vs. 

AQL33×R931945-2-2 
GO:0005622 Cellular component intracellular down 16 2129 0.02 

AQL33 vs. 

AQL33×R931945-2-2 
GO:0044444 Cellular component cytoplasmic part down 8 664 0.02 

AQL33 vs. 

AQL33×R931945-2-2 
GO:0032991 Cellular component 

macromolecular 

complex 
down 9 873 0.03 

AQL33 vs. 

AQL33×R931945-2-2 
GO:0043229 Cellular component intracellular organelle down 11 1325 0.04 

AQL33 vs. 

AQL33×R931945-2-2 
GO:0043226 Cellular component organelle down 11 1325 0.03 

A992422 vs. 

A992422xQL12 
GO:0044042 Biological process 

glucan metabolic 

process 
up 5 86 0.00 
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Table 27: Continued

Comparison GO term GO type GO name Regulationa Qnum B/Rnum 
FDR  

p-value 

A992422 vs. 

A992422×QL12 
GO:0006073 Biological process 

cellular glucan 

metabolic process 
up 5 86 0.00 

A992422 vs. 

A992422×QL12 
GO:0044264 Biological process 

cellular 

polysaccharide 

metabolic process 

up 5 167 0.00 

A992422 vs. 

A992422×QL12 
GO:0005976 Biological process 

polysaccharide 

metabolic process 
up 5 197 0.00 

A992422 vs. 

A992422×QL12 
GO:0044262 Biological process 

cellular carbohydrate 

metabolic process 
up 5 381 0.03 

AQL33 vs. 

AQL33×R931945-2-2 
GO:0043226 Cellular component organelle down 11 1325 0.03 

A992422 vs. 

A992422xQL12 
GO:0044042 Biological process 

glucan metabolic 

process 
up 5 86 0.00 

A992422 vs. 

A992422×QL12 
GO:0006073 Biological process 

cellular glucan 

metabolic process 
up 5 86 0.00 

A992422 vs. 

A992422×QL12 
GO:0044264 Biological process 

cellular 

polysaccharide 

metabolic process 

up 5 167 0.00 

A992422 vs. 

A992422×QL12 
GO:0005976 Biological process 

polysaccharide 

metabolic process 
up 5 197 0.00 

A992422 vs. 

A992422×QL12 
GO:0044262 Biological process 

cellular carbohydrate 

metabolic process 
up 5 381 0.03 

A992422 vs. 

A992422×QL12 
GO:0016758 Molecular function 

transferase activity, 

transferring hexosyl 

groups 

up 6 427 0.03 

A992422 vs. 

A992422×QL12 
GO:0016757 Molecular function 

transferase activity, 

transferring glycosyl 

groups 

up 6 529 0.04 

A992422 vs. 

A992422×QL12 
GO:0008152 Biological process metabolic process down 36 8076 0.00 
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Table 27: Continued

Comparison GO term GO type GO name Regulationa Qnum B/Rnum 
FDR  

p-value 

A992422 vs. 

A992422×QL12 
GO:0006629 Biological process 

lipid metabolic 

process 
down 8 681 0.01 

A992422 vs. 

A992422×QL12 
GO:0055114 Biological process oxidation reduction down 11 1485 0.03 

A992422 vs. 

A992422×QL12 
GO:0008610 Biological process 

lipid biosynthetic 

process 
down 5 340 0.03 

A992422 vs. 

A992422×QL12 
GO:0016614 Molecular function 

oxidoreductase 

activity, acting on 

CH-OH group of 

donors 

down 6 264 0.01 

A992422 vs. 

A992422×QL12 
GO:0016491 Molecular function 

oxidoreductase 

activity 
down 13 1669 0.02 

A992422 vs. 

A992422×QL12 
GO:0050662 Molecular function coenzyme binding down 6 411 0.02 

A992422 vs. 

A992422×QL12 
GO:0003824 Molecular function catalytic activity down 33 7817 0.02 

A992422 vs. 

A992422×QL12 
GO:0048037 Molecular function cofactor binding down 6 527 0.04 

A992422 vs. 

A992422×QL36 
GO:0008610 Biological process 

lipid biosynthetic 

process 
down 6 340 0.00 

A992422 vs. 

A992422×QL36 
GO:0006629 Biological process 

lipid metabolic 

process 
down 7 681 0.01 

A992422 vs. 

A992422×R931945-2-2 
GO:0008610 Biological process 

lipid biosynthetic 

process 
down 5 340 0.00 

A992422 vs. 

A992422×R931945-2-2 
GO:0006629 Biological process 

lipid metabolic 

process 
down 5 681 0.02 

A992422 vs. 

A992422×R931945-2-2 
GO:0055114 Biological process oxidation reduction down 7 1485 0.02 
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Table 27: Continued

Comparison GO term GO type GO name Regulationa Qnum B/Rnum 
FDR 

 p-value 

A992422 vs. 

A992422×R931945-2-2 
GO:0003824 Molecular function catalytic activity down 17 7817 0.02 

A992422 vs. 

A992422×R931945-2-2 
GO:0016491 Molecular function 

oxidoreductase 

activity 
down 7 1669 0.02 

ATx623 vs.  

ATx623×RTx2783 
GO:0006412 Biological process translation up 5 431 0.00 

ATx623 vs. 

ATx623×RTx2783 
GO:0008610 Biological process 

lipid biosynthetic 

process 
down 6 340 0.00 

ATx623 vs. 

ATx623×RTx2783 
GO:0044283 Biological process 

small molecule 

biosynthetic process 
down 5 253 0.00 

ATx623 vs. 

ATx623×RTx2783 
GO:0006629 Biological process 

lipid metabolic 

process 
down 6 681 0.02 

ATx623 vs. 

ATx623×RTx436 
GO:0044281 Biological process 

small molecule 

metabolic process 
down 6 720 0.00 

aUp refers to genes whose expression was up-regulated in the A1-line, whereas down refers to genes whose expression was 

down-regulated in the A1-line. 
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Table 28: Pathways enriched in DEGs based on KOBAS in comparison of A1-lines and F1 hybrids. Input number indicates 

the total number of DEGs assigned to the particular pathway. Background indicates the number of non-differentially expressed 

genes mapped to the particular pathway based on the KEGG pathway database. DEG-enriched pathways were determined based 

on an FDR corrected p-value <0.05. 

Comparison Pathway Regulationa Database 
Number of 

DEGs 

Number of 

non-DEGs 

FDR  

p-value 

AQL33 vs. AQL33×QL12 
Protein processing in 

endoplasmic reticulum 
up KEGG PATHWAY 6 200 0.00 

AQL33 vs. AQL33×QL12 Glutathione metabolism down KEGG PATHWAY 1 120 0.01 

AQL33 vs. AQL33×QL36 
Protein processing in 

endoplasmic reticulum 
up KEGG PATHWAY 8 200 0.00 

AQL33 vs. AQL33×QL36 Endocytosis up KEGG PATHWAY 3 163 0.01 

AQL33 vs. AQL33×QL36 Spliceosome up KEGG PATHWAY 3 207 0.01 

AQL33 vs. AQL33×QL36 Linoleic acid metabolism up KEGG PATHWAY 1 12 0.03 

AQL33 vs. AQL33×QL36 
Plant-pathogen 

interaction 
up KEGG PATHWAY 2 159 0.04 

AQL33 vs. AQL33×R931945-2-2 
Protein processing in 

endoplasmic reticulum 
up KEGG PATHWAY 9 200 0.00 

AQL33 vs.  AQL33×R931945-2-2 
Plant-pathogen 

interaction 
up KEGG PATHWAY 3 159 0.03 

AQL33 vs. AQL33×R931945-2-2 Endocytosis up KEGG PATHWAY 3 163 0.03 

AQL33 vs. AQL33×R931945-2-2 
Flavone and flavonol 

biosynthesis 
up KEGG PATHWAY 1 8 0.04 

AQL33 vs. AQL33×R931945-2-2 Galactose metabolism up KEGG PATHWAY 2 71 0.04 

AQL33 vs. AQL33×R931945-2-2 Ribosome down KEGG PATHWAY 10 348 0.00 

AQL33 vs. AQL33×R931945-2-2 
Isoquinoline alkaloid 

biosynthesis 
down KEGG PATHWAY 2 30 0.05 

AQL33 vs. AQL33×R931945-2-2 Glutathione metabolism down KEGG PATHWAY 3 120 0.05 

. 
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Table 28: Continued

Comparison Pathway Regulationa Database 
Number of 

DEGs 

Number of 

non-DEGs 

FDR  

p-value 

A992422 vs A992422×QL12 
Photosynthesis - antenna 

proteins 
down KEGG PATHWAY 4 15 0.00 

A992422 vs A992422×QL12 Photosynthesis down KEGG PATHWAY 4 92 0.00 

A992422 vs A992422×QL36 
Protein processing in 

endoplasmic reticulum 
down KEGG PATHWAY 5 200 0.00 

A992422 vsA992422×R931945-2-

2 
Linoleic acid metabolism up KEGG PATHWAY 1 12 0.00 

ATx623 vs ATx623×RTx2783 RNA transport up KEGG PATHWAY 2 157 0.01 

ATx623 vs ATx623×RTx2783 Linoleic acid metabolism up KEGG PATHWAY 1 12 0.01 

ATx623 vs ATx623×RTx2783 Ribosome up KEGG PATHWAY 2 348 0.01 

ATx623 vs ATx623×RTx2783 Flavonoid biosynthesis down KEGG PATHWAY 3 63 0.00 

ATx623 vs ATx623×RTx2783 
Photosynthesis-antenna 

proteins 
down KEGG PATHWAY 2 15 0.00 

ATx623 vs ATx623×RTx2783 Circadian rhythm - plant down KEGG PATHWAY 2 43 0.01 

ATx623 vs ATx623×RTx436 
Phenylalanine 

metabolism 
up KEGG PATHWAY 2 50 0.04 

ATx623 vs ATx623×RTx436 
Protein processing in 

endoplasmic reticulum 
down KEGG PATHWAY 4 200 0.01 

A992422 vs. A992422×QL12 
Photosynthesis - antenna 

proteins 
down KEGG PATHWAY 4 15 0.00 

A992422 vs. A992422×QL12 Photosynthesis down KEGG PATHWAY 4 92 0.00 

A992422 vs. A992422×QL36 
Protein processing in 

endoplasmic reticulum 
down KEGG PATHWAY 5 200 0.00 

A992422 vs. A992422×R931945-

2-2 
Linoleic acid metabolism up KEGG PATHWAY 1 12 0.00 
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Table 28: Continued

Comparison Pathway Regulationa Database 
Number of 

DEGs 

Number of 

non-DEGs 

FDR 

 p-value 

ATx623 vs. ATx623×RTx2783 RNA transport up KEGG PATHWAY 2 157 0.01 

ATx623 vs. ATx623×RTx2783 Linoleic acid metabolism up KEGG PATHWAY 1 12 0.01 

ATx623 vs. ATx623×RTx2783 Ribosome up KEGG PATHWAY 2 348 0.01 

ATx623 vs. ATx623×RTx2783 Flavonoid biosynthesis down KEGG PATHWAY 3 63 0.00 

ATx623 vs. ATx623×RTx2783 
Photosynthesis-antenna 

proteins 
down KEGG PATHWAY 2 15 0.00 

ATx623 vs. ATx623×RTx2783 Circadian rhythm - plant down KEGG PATHWAY 2 43 0.01 

ATx623 vs. ATx623×RTx436 
Phenylalanine 

metabolism 
up KEGG PATHWAY 2 50 0.04 

ATx623 vs. ATx623×RTx436 
Protein processing in 

endoplasmic reticulum 
down KEGG PATHWAY 4 200 0.01 

aUp refers to genes whose expression was up-regulated in the A1-line, whereas down refers to genes whose expression was  

down-regulated in the A1-line.
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DEGs encoding transcription factors 

Transcription factors (TFs) are essential for the regulation of gene expression (Yu, et 

al., 2003). Our results showed that, of the significant DEGs, there were 28 genes encoding 

transcription factors. These TFs showed up- and down-regulation in different lines (Table 

29). Examples of differentially expressed TFs included myeloblastosis (MYB), basic helix-

loop-helix family (bHLH), and AT-hook-containing TFs (AHLs). Six out of 7 DE MYB 

TFs (Sobic.002G196000, Sobic.003G034300, Sobic.006G115200, Sobic.006G192100, 

Sobic.007G047400, and Sobic.007G132600) showed up-regulation in F1 hybrids and B-

lines compared to A1-lines, with only one MYB TF (Sobic.004G070900) showing higher 

expression (2-fold change) in the A1-line A992422 in comparison with its F1 hybrid i.e. 

A992422×QL12. Plant MYB proteins comprise a large and multifunctional family and 

play important roles in many plant processes such as pollen development (Higginson, et 

al., 2003; Zhang, et al., 2007; Dubos, et al., 2010).   
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Table 29: Differentially expressed transcription factors in different A1-lines, B-lines, and F1 hybrids. An FDR corrected  

p-value <0.05 and the absolute value of log2Ratio ≥1 were used as the thresholds to select significant DEGs.  

FeatureID Comparison Annotation 
Fold 

changea 

FDR 

p-value 

Gene ortholog 

Arabidopsis Maize 

Sobic.001G054800 AQL33 vs. AQL33×QL12 N/A 2.05 0.00 AT2G30620 GRMZM2G003002 

Sobic.001G243000 A992422 vs. A992422×QL36 

similar to HSF-type 

DNA-binding domain 

containing protein, 

expressed 

18.77 0.00 AT3G22830 GRMZM2G010871 

Sobic.001G386000 AQL33 vs. BQL33 
similar to Putative 

uncharacterized protein 
2.57 0.01 AT5G18270 GRMZM2G018436 

Sobic.001G468400 AQL33 vs. BQL33 

similar to Homeobox 

domain containing 

protein, expressed 

2.57 0.00 AT2G18550 GRMZM2G005624 

Sobic.001G468400 AQL33 vs. AQL33×QL36 

similar to Homeobox 

domain containing 

protein, expressed 

2.66 0.00 AT2G18550 GRMZM2G005624 

Sobic.002G087500 A992422 vs. A992422×QL12 Predicted protein -3.65 0.00 N/A N/A 

Sobic.002G242000 A992422 vs. A992422×QL12 

similar to Photosystem 

I reaction center subunit 

V, chloroplast precursor 

3.07 0.00 AT1G55670 GRMZM2G329047 

Sobic.002G324200 AQL33 vs. AQL33×R931945-2-2 

similar to Protein 

translation factor SUI1 

homolog 

-2.91 0.00 AT1G54290 GRMZM2G017966 

Sobic.003G018700 AQL33 vs. AQL33xR931945-2-2 
similar to Transcription 

factor PCF5 
2.58 0.00 AT3G15030 AC205574.3_FG006 

Sobic.003G061400 AQL33 vs. BQL33 similar to ESTs C26093 2.72 0.00 AT2G40200 GRMZM2G016039 

Sobic.004G070900 A992422 vs. A992422×QL12 

similar to MYB 

transcription factor 

TaMYB1 

-2.17 0.03 AT5G67300 GRMZM2G050550 

Sobic.005G018500 A992422 vs. B992422 

similar to NAC domain 

transcription factor, 

putative, expressed 

2.57 0.03 AT1G69490 GRMZM2G042494 
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Table 29: Continued 

FeatureID Comparison Annotation 
Fold 

changea 

FDR 

p-value 

Gene ortholog 

Arabidopsis Maize 

Sobic.005G018500 AQL33 vs. BQL33 

similar to NAC domain 

transcription factor, 

putative, expressed 

4.72 0.00 AT1G69490 GRMZM2G042494 

Sobic.005G019800 AQL33 vs. AQL33×R931945-2-2 

similar to ZF-HD 

protein dimerisation 

region containing 

protein, expressed 

-2.67 0.03 AT3G28917 GRMZM2G172586 

Sobic.005G019800 A992422 vs. B992422 

similar to ZF-HD 

protein dimerisation 

region containing 

protein, expressed 

2.07 0.00 AT3G28917 GRMZM2G172586 

Sobic.005G019800 AQL33 vs. BQL33 

similar to ZF-HD 

protein dimerisation 

region containing 

protein, expressed 

4.50 0.00 AT3G28917 GRMZM2G172586 

Sobic.006G115200 ATx623 vs. ATx623×RTx436 
similar to H0418A01.1 

protein 
-3.24 0.00 AT5G56110 GRMZM2G173633 

Sobic.006G115200 A992422 vs. A992422×QL12 
similar to H0418A01.1 

protein 
12.71 0.02 AT5G56110 GRMZM2G173633 

Sobic.007G000500 AQL33 vs. AQL33×R931945-2-2 

similar to HMG type 

nucleosome/chromatin 

assembly factor D 

3.09 0.00 AT5G23420 GRMZM2G125648 

Sobic.007G132600 AQL33 vs. AQL33×QL36 N/A 16.05 0.00 AT1G66230 GRMZM2G055158 

Sobic.007G132600 ATx623 vs. ATx623×RTx2783 N/A 85.22 0.00 AT1G66230 GRMZM2G055158 

Sobic.008G021800 AQL33 vs. AQL33×QL36 

similar to NAC domain 

transcription factor, 

putative, expressed 

2.13 0.00 AT1G61110 N/A 

Sobic.008G021800 AQL33 vs. BQL33 

similar to NAC domain 

transcription factor, 

putative, expressed 

3.38 0.00 AT1G61110 N/A 
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Table 29 : Continued 

FeatureID Comparison Annotation 
Fold 

changea 

FDR 

p-value 

Gene ortholog 

Arabidopsis Maize 

Sobic.009G016300 AQL33 vs. BQL33 

similar to C2H2 type 

zinc finger transcription 

factor ZFP16 

5.37 0.00 AT5G59820 AC206217.2_FG006 

Sobic.009G184400 A992422 vs. A992422×QL12 

similar to Ethylene-

responsive factor-like 

transcription factor 

ERFL2a 

-2.00 0.01 AT5G44210 GRMZM2G132185 

Sobic.009G195000 A992422 vs. A992422×QL36 
similar to Putative 

uncharacterized protein 
-3.10 0.00 AT5G60970 GRMZM2G035944 

Sobic.010G269700 A992422 vs. A992422×QL36 
similar to Putative 

uncharacterized protein 
-2.26 0.00 AT5G65640 GRMZM2G128807 

Sobic.010G269700 AQL33 vs. AQL33×R931945-2-2 
similar to Putative 

uncharacterized protein 
2.33 0.00 AT5G65640 GRMZM2G128807 

aPositive values indicate greater expression in B-lines or F1 hybrids compared to A1-lines. Negative values indicate greater 

expression in A1-lines compared to B-lines or F1 hybrids. 
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Differentially expressed heat shock protein genes 

In this study, we also found other DEGs potentially related to male-sterility in 

sorghum. There were 11 DEGs related to heat shock proteins among which, three 

(Sobic.010G149300, Sobic.003G039400, and Sobic.003G082300) were only up-regulated 

in A1-line AQL33 compared to its F1 hybrids (Table 30). Heat shock proteins have been 

considered as the hallmark of abiotic stress and play a key role in plant stress 

responsiveness (Kotak, et al., 2007). Our results were similar to Fujii, et al. (2010) and 

Wang, et al. (2016) who reported the association of heat shock proteins to CMS in rice 

and cabbage, respectively. Kuzmin, et al. (2004) showed that mitochondrial deficiencies 

in maize mitochondrial mutants (NCS2, NCS4, and NCS6) lead to constitutive expression 

of genes for heat shock proteins. In CMS, layers of interaction between mitochondrial and 

nuclear genes control male specificity (Chen and Liu, 2014). CMS proteins can cause 

mitochondrial deficiency; in response, mitochondrial retrograde signals can increase the 

expression of heat shock genes (Woodson and Chory, 2008; Chen and Liu, 2014). 
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Table 30: Heat shock proteins genes differentially expressed in different A1-lines, B-lines, and F1 hybrids. An FDR 

corrected p-value <0.05 and the absolute value of log2Ratio ≥1 were used as the thresholds to select significant DEGs.  

Feature ID Comparison Annotation 
Fold 

changea 

FDR 

p-value 

Gene ortholog 

Arabidopsis Maize 

Sobic.001G420100 
AQL33 vs. AQL33×R931945-

2-2 

similar to Heat shock 

cognate 70 kDa protein 
-10.35 0.00 AT3G12580 AC194017.3_FG001 

Sobic.002G243500 AQL33 vs. AQL33×QL36 
similar to Heat shock 

protein 81-2 
-2.94 0.00 AT5G56000 GRMZM2G012631 

Sobic.003G039400 AQL33 vs. AQL33×QL36 

similar to 17.8 kDa 

class II heat shock 

protein 

-13.23 0.00 AT5G12020 GRMZM2G012455 

Sobic.003G039400 
AQL33 vs. AQL33×R931945-

2-2 

similar to 17.8 kDa 

class II heat shock 

protein 

-3.73 0.00 AT5G12020 GRMZM2G012455 

Sobic.003G039400 A992422 vs. A992422×QL12 

similar to 17.8 kDa 

class II heat shock 

protein 

-2.88 0.00 AT5G12020 GRMZM2G012455 

Sobic.003G039400 AQL33 vs. AQL33×QL12 

similar to 17.8 kDa 

class II heat shock 

protein 

-2.49 0.00 AT5G12020 GRMZM2G012455 

Sobic.003G081900 AQL33 vs. AQL33×QL36 
similar to Heat shock 

protein 17.2 
-15.58 0.00 AT1G53540 AC208204.3_FG006 

Sobic.003G081900 
AQL33 vs. AQL33×R931945-

2-2 

similar to Heat shock 

protein 17.2 
-9.03 0.00 AT1G53540 AC208204.3_FG006 

Sobic.003G081900 AQL33 vs. AQL33×QL12 
similar to Heat shock 

protein 17.2 
-2.30 0.00 AT1G53540 AC208204.3_FG006 

Sobic.003G081900 
A992422 vs. 

A992422×R931945-2-2 

similar to Heat shock 

protein 17.2 
9.18 0.00 AT1G53540 AC208204.3_FG006 
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Table 30: Continued 

Feature ID Comparison Annotation 
Fold 

changea 

FDR 

p-value 

Gene ortholog 

Arabidopsis Maize 

Sobic.003G350700 AQL33 vs. AQL33×QL36 
similar to Heat shock 

70 kDa protein 
-5.30 0.00 AT3G12580 AC194017.3_FG001 

Sobic.003G350700 
AQL33 vs. AQL33×R931945-

2-2 

similar to Heat shock 

70 kDa protein 
-4.40 0.00 AT3G12580 AC194017.3_FG001 

Sobic.003G350700 AQL33 vs. AQL33×QL12 
similar to Heat shock 

70 kDa protein 
-2.04 0.00 AT3G12580 AC194017.3_FG001 

Sobic.003G350700 ATx623 vs. ATx623×RTx436 
similar to Heat shock 

70 kDa protein 
2.05 0.03 AT3G12580 AC194017.3_FG001 

Sobic.003G350700 A992422 vs. A992422×QL36 
similar to Heat shock 

70 kDa protein 
2.33 0.00 AT3G12580 AC194017.3_FG001 

Sobic.004G228900 
AQL33 vs. AQL33×R931945-

2-2 

similar to Low 

molecular weight heat 

shock protein precursor 

-17.98 0.03 AT5G51440 GRMZM2G007729 

Sobic.004G228900 A992422 vs. A992422×QL36 

similar to Low 

molecular weight heat 

shock protein precursor 

27.32 0.00 AT5G51440 GRMZM2G007729 

Sobic.006G005600 
AQL33 vs. AQL33×R931945-

2-2 

similar to Heat shock 

protein 82 
-12.59 0.00 AT5G52640 GRMZM5G833699 

Sobic.006G005600 A992422 vs. A992422×QL36 
similar to Heat shock 

protein 82 
5.75 0.00 AT5G52640 GRMZM5G833699 

Sobic.007G216300 AQL33 vs. AQL33×QL36 
similar to Heat shock 

protein 81-2 
-5.26 0.00 AT5G56000 N/A 

Sobic.007G216300 
AQL33 vs. AQL33×R931945-

2-2 

similar to Heat shock 

protein 81-2 
-2.41 0.00 AT5G56000 GRMZM2G012631 

Sobic.007G216300 A992422 vs. A992422×QL36 
similar to Heat shock 

protein 81-2 
2.46 0.00 AT5G56000 GRMZM2G012631 

Sobic.008G136000 AQL33 vs. AQL33×QL36 

similar to Heat shock 

cognate 70 kDa protein 

2 

-2.72 0.00 AT3G12580 AC194017.3_FG001 
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Table 30: Continued

Feature ID Comparison Annotation 
Fold 

changea 

FDR 

p-value 

Gene ortholog 

Arabidopsis Maize 

Sobic.009G163900 AQL33 vs. AQL33×QL36 
similar to Heat shock 

cognate 70 kDa protein 
-8.33 0.00 AT3G12580 AC194017.3_FG001 

Sobic.009G163900 
AQL33 vs. AQL33×R931945-

2-2 

similar to Heat shock 

cognate 70 kDa protein 
-4.08 0.00 AT3G12580 AC194017.3_FG001 

Sobic.009G163900 AQL33 vs. AQL33×QL12 
similar to Heat shock 

cognate 70 kDa protein 
-2.62 0.00 AT3G12580 AC194017.3_FG001 

Sobic.009G163900 ATx623 vs. ATx623×RTx436 
similar to Heat shock 

cognate 70 kDa protein 
3.07 0.03 AT3G12580 AC194017.3_FG001 

Sobic.009G163900 ATx623 vs. ATx623×RTx2783 
similar to Heat shock 

cognate 70 kDa protein 
4.03 0.00 AT3G12580 AC194017.3_FG001 

Sobic.009G163900 A992422 vs. A992422×QL36 
similar to Heat shock 

cognate 70 kDa protein 
4.58 0.00 AT3G12580 N/A 

aPositive values indicate greater expression in B-lines or F1 hybrids compared to A1-lines. Negative values indicate greater 

expression in A1-lines compared to B-lines or F1 hybrids. 
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Conclusion 

This study provided an overview of differential gene expression in the A1 CMS-Rf 

system of sorghum, and provides insight into the complex molecular changes that precede 

pollen abortion in A1 CMS panicles. The expression of the transcriptomes of the A1-lines 

and their corresponding maintainer lines was very similar as genome sequence differences 

between these near-isogenic lines are largely confined to the organellar genomes. Most of 

the DEG-enriched GO terms and pathways were discovered in a comparison of A1 CMS 

lines with their F1 hybrids, and the GO terms reflect the complex changes in panicle 

development that occur prior to pollen maturation/abortion. This study provides insights 

into the complex nuclear gene regulation in CMS lines and fertile maintainer and F1 hybrid 

lines at an early stage of panicle maturation, and further investigation of multiple stages 

of panicle development (especially nearer pollen abortion in A1 CMS lines) are necessary 

to better understand the nuclear-mitochondrial interactions and regulation of the A1 CMS-

Rf system in sorghum. 
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CHAPTER IV 

CONCLUSIONS 

 

This project has two major components with each based on transcriptome analyses. 

In the first study, the transcriptional dynamics were profiled during stem development in 

two sorghum genotypes, R07020 and BTx623. These two genotypes differ in their 

maturity and height genes. R07020 is tall (likely 1-dwarf) and photoperiod-sensitive 

(dominant Ma1 and Ma6, recessive ma5) whereas BTx623 is short (3-dwarf) and 

photoperiod-insensitive (recessive ma1 and ma6, dominant Ma5). In the temperate Texas 

production environment, R07020 is grown as a biomass feedstock and BTx623 is used as 

a parent for either grain or forage hybrids. In the second study, transcriptome analysis of 

immature panicles was conducted to characterize the expression of the nuclear genome in 

a set of CMS lines (A1-lines), maintainer lines (B-lines), and F1 hybrids.  

By employing the comprehensive transcriptome analyses of  R07020 and BTx623, 

differentially expressed genes were identified along the sorghum stem that matures 

basipetally. Monocot stems provide a unique developmental system with intercalary 

meristems present from the immature shoot apex to the mature nodes at the stem base. A 

comparison of gene expression in nodal regions across the stem provided a profile of those 

genes that are differentially expressed as the stem matures. This included a range of 

differentially expressed genes (DEGs) from the apex where cells are rapidly dividing and 

initiating elongation to the non-elongating basal region where cellular processes 

associated with stem maturation occur. Numerous differences punctuate the cellular 
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events occurring in the immature and more mature regions of the stem. The stage of cell 

wall deposition differs prominently between the shoot apex where primary cell walls are 

being deposited and the shoot base where secondary wall maturation is occurring. Apart 

from the genes directly involved in lignin and cellulose biosynthesis, many genes related 

to cell wall deposition, particularly transcription factors, glucosyl transferases, and cell 

wall proteins were differentially expressed along the stem. The preferential expression of 

cell wall related genes differed between the two genotypes, which likely reflected the 

different developmental stages that existed after 60 days of growth in the two genotypes. 

This study provided fundamental information about cell wall biosynthesis genes in 

sorghum. A better understanding of cell wall biosynthesis may allow for breeding plants 

with increased efficiency of biomass conversion to biofuel. Specifically, there is promise 

for producing improved genotypes with altered lignin content (the major limiting factor in 

conversion) and altered lignin composition with the least side effects on the other fitness 

traits of the plant. 

In the second study, a series of DEGs were identified in CMS A1-lines, iso-

cytoplasmic maintainer B-lines, and F1 sorghum hybrids of immature panicles from the 

early boot stage (cream-colored florets, wispy panicles). Functional terms for these DEGs 

were significantly enriched in a series of Gene Ontology (GO) terms and Kyoto 

Encyclopedia of Genes and Genomes (KEGG) pathways. The nuclear transcriptomes of 

A1-lines and maintainer lines were very similar as genome sequence differences between 

these near-isogenic lines are largely confined to organelles. Most of the DEG-enriched 

GO terms and pathways were discovered by comparing A1 CMS lines with their  
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F1 hybrids.  These terms reflect the complex changes in panicle development that occur 

prior to pollen maturation/abortion. Examination of the DEGs (and their homologs) within 

these terms provided evidence that the down-regulated genes in A1-lines may relate to the 

eventual abortion of pollen that will occur within these panicles. These genes are involved 

in processes including lipid biosynthesis, anther and pollen development, flavonoid 

biosynthesis, and the glutathione metabolism pathway or were a member of the 

oxidoreductase gene family. These results suggest that these genes, including those from 

a large number of metabolic processes, are intimately linked to the production of viable 

pollen. The up-regulation of some stress related genes and pathways was found in CMS 

lines, including heat shock protein genes and genes involved in the plant-pathogen 

interaction pathway. The deleterious effects of CMS proteins might trigger stress signals 

in plants and activate plant defense metabolism. This study provided insight into the 

complex nuclear gene regulation in CMS lines and fertile maintainer and F1 hybrid lines 

at an early stage of panicle maturation. Further investigation of multiple stages of panicle 

development (especially near pollen abortion in A1 CMS lines) is necessary to better 

understand the nuclear-mitochondrial interactions and regulation of the A1 CMS-Rf 

system in sorghum. Proteomics analysis may also help to elucidate the effects of CMS and 

Rf genes at the post-transcriptional level. This study provides a fundamental contribution 

to the knowledge of CMS and Rf genes that may allow for the development of more 

effective strategies for breeding CMS A-lines and R-lines. Such strategies are critical to 

the hybrid seed industry.  
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APPENDIX A 

TABLE A-1: SELECTED DEGS IN DIFFERENT LINES OF SORGHUM. THE FDR CORRECTED P-VALUE <0.05 AND 

THE ABSOLUTE VALUE OF LOG2RATIO ≥1 WERE USED AS THE THRESHOLDS TO SELECT SIGNIFICANT DEGS.  

Feature ID Comparison Annotation GO terms 

Fold 

changea 

FDR 

p-value 

Gene ortholog 

Arabidopsis Maize 

Sobic.001G012500 
A992422 vs. 

A992422×QL12 

similar to Glutathione 

S-transferase 1 
protein binding -2.71 0.00 AT3G62760 GRMZM2G116273 

Sobic.001G012500 
AQL33 vs. 

AQL33×QL36 

similar to Glutathione 

S-transferase 1 
protein binding -2.34 0.00 AT3G62760 GRMZM2G116273 

Sobic.001G012500 
ATx623 vs. 

ATx623×RTx2783 

similar to Glutathione 

S-transferase 1 
protein binding 2.02 0.00 AT3G62760 GRMZM2G116273 

Sobic.001G012500 
AQL33 vs. 

AQL33×R931945-2-2 

similar to Glutathione 

S-transferase 1 
protein binding 2.13 0.00 AT3G62760 GRMZM2G116273 

Sobic.001G120400 
A992422 vs. 

A992422×QL36 

similar to 

Phospholipase A2, 

putative, expressed 

lipid catabolic 

process, calcium 

ion binding, 

phospholipase A2 

activity 

-2.14 0.01 AT2G06925 GRMZM2G033820 

Sobic.001G120400 
A992422 vs. 

A992422×QL12 

similar to 

Phospholipase A2, 

putative, expressed 

N/A -2.02 0.01 AT2G06925 GRMZM2G033820 

Sobic.001G215000 
AQL33 vs. 

AQL33×R931945-2-2 
N/A N/A -17.71 00.00 AT1G02050 GRMZM2G380650 
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Table A-1: Continued

Feature ID Comparison Annotation GO terms 
Fold 

changea 

FDR 

p-value 

Gene ortholog 

Arabidopsis Maize 

Sobic.001G215000 
A992422 vs. 

A992422×QL36 
N/A N/A 3.57 0.00 AT1G02050 GRMZM2G380650 

Sobic.001G215000 
A992422 vs. 

A992422×R931945-2-2 
N/A N/A 4.70 0.00 AT1G02050 GRMZM2G380650 

Sobic.001G215000 
A992422 vs. 

A992422×QL12 
N/A N/A 17.03 0.00 AT1G02050 GRMZM2G380650 

Sobic.001G318700 AQL33 vs. AQL33×QL36 

similar to Putative 

uncharacterized 

protein 

protein binding 7.15 0.00 AT1G10370 GRMZM2G016241 

Sobic.001G420100 
AQL33 vs. 

AQL33×R931945-2-2 

similar to Heat shock 

cognate 70 kDa 

protein 

N/A -10.35 0.00 AT3G12580 AC194017.3_FG001 

Sobic.001G426000 AQL33 vs. AQL33×QL36 

similar to 17.4 kDa 

class I heat shock 

protein 3 

N/A -12.38 0.00 AT1G53540 AC208204.3_FG006 

Sobic.001G426000 
AQL33 vs. 

AQL33×R931945-2-2 

similar to 17.4 kDa 

class I heat shock 

protein 3 

N/A -9.06 0.00 AT1G53540 AC208204.3_FG006 

Sobic.001G426000 AQL33 vs. AQL33×QL12 

similar to 17.4 kDa 

class I heat shock 

protein 3 

N/A -2.47 0.00 AT1G53540 AC208204.3_FG006 

Sobic.001G426000 
ATx623 vs. 

ATx623×RTx436 

similar to 17.4 kDa 

class I heat shock 

protein 3 

N/A 2.21 0.00 AT1G53540 AC208204.3_FG006 

Sobic.001G426000 
ATx623 vs. 

ATx623×RTx2783 

similar to 17.4 kDa 

class I heat shock 

protein 3 

N/A 2.48 0.00 AT1G53540 AC208204.3_FG006 

Sobic.001G426000 
A992422 vs. 

A992422×QL36 

similar to 17.4 kDa 

class I heat shock 

protein 3 

N/A 4.34 0.00 AT1G53540 AC208204.3_FG006 
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Table A-1: Continued

Feature ID Comparison Annotation GO terms 
Fold 

changea 

FDR 

p-value 

Gene ortholog 

Arabidopsis Maize 

Sobic.001G428300 
AQL33 vs. 

AQL33×R931945-2-2 

similar to Male 

fertility protein 
N/A -11.94 0.00 AT3G59530 GRMZM2G430601 

Sobic.001G428300 AQL33 vs. AQL33×QL36 
similar to Male 

fertility protein 
N/A 2.33 0.00 AT3G59530 GRMZM2G430601 

Sobic.001G428300 
A992422 vs. 

A992422×QL36 

similar to Male 

fertility protein 
N/A 10.97 0.02 AT3G59530 GRMZM2G430601 

Sobic.001G428300 
A992422 vs. 

A992422×R931945-2-2 

similar to Male 

fertility protein 
N/A 19.33 0.00 AT3G59530 GRMZM2G430601 

Sobic.001G428300 
A992422 vs. 

A992422×QL12 

similar to Male 

fertility protein 
N/A 48.57 0.00 AT3G59530 GRMZM2G430601 

Sobic.001G491400 
AQL33 vs. 

AQL33×R931945-2-2 

similar to Cytochrome 

P450-like protein 

oxidation 

reduction, 

oxidoreductase 

activity 

-21.23 0.00 AT1G69500 AC211006.3_FG004 

Sobic.001G491400 
ATx623 vs. 

ATx623×RTx436 

similar to Cytochrome 

P450-like protein 

oxidation 

reduction, 

oxidoreductase 

activity 

-2.18 0.00 AT1G69500 AC211006.3_FG004 

Sobic.001G491400 AQL33 vs. AQL33×QL36 
similar to Cytochrome 

P450-like protein 

oxidation 

reduction, 

oxidoreductase 

activity 

2.15 0.00 AT1G69500 AC211006.3_FG004 

Sobic.001G491400 
A992422 vs. 

A992422×QL36 

similar to Cytochrome 

P450-like protein 

oxidation 

reduction, 

oxidoreductase 

activity 

3.35 0.03 AT1G69500 AC211006.3_FG004 
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Table A-1: Continued

Feature ID Comparison Annotation GO terms 
Fold 

changea 

FDR 

p-value 

Gene ortholog 

Arabidopsis Maize 

Sobic.001G491400 
A992422 vs. 

A992422×R931945-2-2 

similar to Cytochrome 

P450-like protein 

oxidation 

reduction, 

oxidoreductase 

activity 

4.53 0.00 AT1G69500 AC211006.3_FG004 

Sobic.001G491400 
A992422 vs. 

A992422×QL12 

similar to Cytochrome 

P450-like protein 

oxidation 

reduction, 

oxidoreductase 

activity 

19.81 0.00 AT1G69500 AC211006.3_FG004 

Sobic.001G492400 
AQL33 vs. 

AQL33×R931945-2-2 

similar to Putative 

male sterility protein 

fatty-acyl-CoA 

reductase 
-87.86 0.00 AT3G11980 GRMZM2G120987 

Sobic.001G492400 
ATx623 vs. 

ATx623×RTx436 

similar to Putative 

male sterility protein 

fatty-acyl-CoA 

reductase 
-2.62 0.00 AT3G11980 GRMZM2G120987 

Sobic.001G492400 AQL33 vs. AQL33×QL36 
similar to Putative 

male sterility protein 

fatty-acyl-CoA 

reductase 
3.88 0.00 AT3G11980 GRMZM2G120987 

Sobic.001G492400 
A992422 vs. 

A992422×QL12 

similar to Putative 

male sterility protein 

fatty-acyl-CoA 

reductase 
106.46 0.00 AT3G11980 GRMZM2G120987 

Sobic.001G514200 AQL33 vs. AQL33×QL12 
similar to Glutathione 

S-transferase GST 9 
protein binding 2.40 0.00 AT2G47730 GRMZM2G096247 

Sobic.001G514200 
AQL33 vs. 

AQL33×R931945-2-2 

similar to Glutathione 

S-transferase GST 9 
protein binding 2.88 0.00 AT2G47730 GRMZM2G096247 

Sobic.001G514300 
A992422 vs. 

A992422×QL36 

similar to Glutathione 

S-transferase GST 13 
protein binding -3.38 0.00 AT2G47730 GRMZM2G096247 

Sobic.001G514300 
A992422 vs. 

A992422×QL12 

similar to Glutathione 

S-transferase GST 13 
protein binding -2.28 0.00 AT2G47730 GRMZM2G096247 
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Table A-1: Continued

Feature ID Comparison Annotation GO terms 
Fold 

changea 

FDR 

p-value 

Gene ortholog 

Arabidopsis Maize 

Sobic.001G514300 
AQL33 vs. 

AQL33×R931945-2-2 

similar to Glutathione 

S-transferase GST 13 
protein binding 2.84 0.04 AT2G47730 GRMZM2G096247 

Sobic.001G514400 
AQL33 vs. 

AQL33×R931945-2-2 

similar to Glutathione 

S-transferase GSTF14 
protein binding 3.18 0.00 AT3G03190 GRMZM2G096153 

Sobic.002G115700 
AQL33 vs. 

AQL33×R931945-2-2 

similar to Putative 

chalcone synthase 
N/A -12.35 0.00 AT4G34850 GRMZM2G108894 

Sobic.002G115700 AQL33 vs. AQL33×QL36 
similar to Putative 

chalcone synthase 
N/A 2.17 0.00 AT4G34850 GRMZM2G108894 

Sobic.002G115700 
A992422 vs. 

A992422×QL36 

similar to Putative 

chalcone synthase 
N/A 4.36 0.00 AT4G34850 GRMZM2G108894 

Sobic.002G115700 
A992422 vs. 

A992422×R931945-2-2 

similar to Putative 

chalcone synthase 
N/A 7.59 0.00 AT4G34850 GRMZM2G108894 

Sobic.002G115700 
A992422 vs. 

A992422×QL12 

similar to Putative 

chalcone synthase 
N/A 20.82 0.00 AT4G34850 GRMZM2G108894 

Sobic.002G243500 AQL33 vs. AQL33×QL36 
similar to Heat shock 

protein 81-2 

unfolded protein 

binding, 

response to 

stress, protein 

folding, ATP 

binding 

-2.94 0.00 AT5G56000 GRMZM2G012631 
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Table A-1: Continued

Feature ID Comparison Annotation GO terms 
Fold 

changea 

FDR 

p-value 

Gene ortholog 

Arabidopsis Maize 

Sobic.002G251200 
AQL33 vs. 

AQL33×R931945-2-2 

similar to Dihydro-

flavanoid reductase-

like protein 

coenzyme 

binding, 

catalytic activity 

-19.18 0.00 AT4G35420 GRMZM2G004683 

Sobic.002G251200 AQL33 vs. AQL33×QL36 

similar to Dihydro-

flavanoid reductase-

like protein 

coenzyme 

binding, 

catalytic activity 

2.00 0.00 AT4G35420 GRMZM2G004683 

Sobic.002G251200 
A992422 vs. 

A992422×QL36 

similar to Dihydro-

flavanoid reductase-

like protein 

coenzyme 

binding, 

catalytic activity 

12.73 0.00 AT4G35420 GRMZM2G004683 

Sobic.002G251200 
A992422 vs. 

A992422×R931945-2-2 

similar to Dihydro-

flavanoid reductase-

like protein 

coenzyme 

binding, 

catalytic activity 

18.39 0.00 AT4G35420 GRMZM2G004683 

Sobic.002G251200 
A992422 vs. 

A992422×QL12 

similar to Dihydro-

flavanoid reductase-

like protein 

coenzyme 

binding, 

catalytic activity 

71.74 0.00 AT4G35420 GRMZM2G004683 

Sobic.002G384400 AQL33 vs. AQL33×QL36 

similar to Thiazole 

biosynthetic enzyme 

1-1, chloroplast 

precursor 

N/A 18.51 0.00 AT5G54770 GRMZM2G018375 

Sobic.003G004900 AQL33 vs. AQL33×QL36 
similar to 

H0211A12.17 protein 

metabolic 

process,catalytic 

activity 

3.55 0.00 AT1G62940 GRMZM2G014651 

Sobic.003G004900 
A992422 vs. 

A992422×QL36 

similar to 

H0211A12.17 protein 

metabolic 

process,catalytic 

activity 

4.31 0.01 AT1G62940 GRMZM2G014651 

Sobic.003G004900 
A992422 vs. 

A992422×R931945-2-2 

similar to 

H0211A12.17 protein 

metabolic 

process,catalytic 

activity 

7.81 0.00 AT1G62940 GRMZM2G014651 

Sobic.003G004900 
A992422 vs. 

A992422×QL12 

similar to 

H0211A12.17 protein 

metabolic 

process,catalytic 

activity 

30.44 0.00 AT1G62940 GRMZM2G014651 

Sobic.003G039400 AQL33 vs. AQL33×QL36 

similar to 17.8 kDa 

class II heat shock 

protein 

N/A -13.23 0.00 AT5G12020 GRMZM2G012455 
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Table A-1: Continued

Feature ID Comparison Annotation GO terms 
Fold 

changea 

FDR 

p-value 

Gene ortholog 

Arabidopsis Maize 

Sobic.003G039400 
AQL33 vs. 

AQL33×R931945-2-2 

similar to 17.8 kDa 

class II heat shock 

protein 

N/A -3.73 0.00 AT5G12020 GRMZM2G012455 

Sobic.003G039400 
A992422 vs. 

A992422×QL12 

similar to 17.8 kDa 

class II heat shock 

protein 

N/A -2.88 0.00 AT5G12020 GRMZM2G012455 

Sobic.003G039400 AQL33 vs. AQL33×QL12 

similar to 17.8 kDa 

class II heat shock 

protein 

N/A -2.49 0.00 AT5G12020 GRMZM2G012455 

Sobic.003G071600 
A992422 vs. 

A992422×QL12 
N/A 

oxidoreductase 

activity, lipid 

metabolic 

process,  

cytoplasm 

2.40 0.00 AT3G55360 GRMZM2G467242 

Sobic.003G071600 AQL33 vs. AQL33×QL36 N/A 

oxidoreductase 

activity, lipid 

metabolic 

process, 

cytoplasm 

2.49 0.00 AT3G55360 GRMZM2G467242 

Sobic.003G081900 AQL33 vs. AQL33×QL36 
similar to Heat shock 

protein 17.2 
N/A -15.58 0.00 AT1G53540 AC208204.3_FG006 

Sobic.003G081900 
AQL33 vs. 

AQL33×R931945-2-2 

similar to Heat shock 

protein 17.2 
N/A -9.03 0.00 AT1G53540 AC208204.3_FG006 

Sobic.003G081900 AQL33 vs. AQL33×QL12 
similar to Heat shock 

protein 17.2 
N/A -2.30 0.00 AT1G53540 AC208204.3_FG006 

Sobic.003G081900 
A992422 vs. 

A992422×R931945-2-2 

similar to Heat shock 

protein 17.2 
N/A 9.18 0.00 AT1G53540 AC208204.3_FG006 

Sobic.003G082300 
AQL33 vs. 

AQL33×R931945-2-2 

similar to Putative 

uncharacterized 

protein 

N/A -3.99 0.00 AT1G53540 AC208204.3_FG006 

Sobic.003G082300 AQL33 vs. AQL33×QL12 

similar to Putative 

uncharacterized 

protein 

N/A -2.9 0.00 AT1G53540 AC208204.3_FG006 
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Feature ID Comparison Annotation GO terms 
Fold 

changea 

FDR 

p-value 

Gene ortholog 

Arabidopsis Maize 

Sobic.003G350700 AQL33 vs. AQL33×QL36 
similar to Heat shock 

70 kDa protein 
N/A -5.3 0.00 AT3G12580 AC194017.3_FG001 

Sobic.003G350700 
AQL33 vs. 

AQL33×R931945-2-2 

similar to Heat shock 

70 kDa protein 
N/A -4.4 0.00 AT3G12580 AC194017.3_FG001 

Sobic.003G350700 AQL33 vs. AQL33×QL12 
similar to Heat shock 

70 kDa protein 
N/A -2.04 0.00 AT3G12580 AC194017.3_FG001 

Sobic.003G350700 
ATx623 vs. 

ATx623×RTx436 

similar to Heat shock 

70 kDa protein 
N/A 2.05 0.03 AT3G12580 AC194017.3_FG001 

Sobic.003G350700 
A992422 vs. 

A992422×QL36 

similar to Heat shock 

70 kDa protein 
N/A 2.33 0.00 AT3G12580 AC194017.3_FG001 

Sobic.003G385900 AQL33 vs. AQL33×QL36 
similar to 

Lipoxygenase 

protein binding, 

oxidation 

reduction, metal 

ion binding 

-2.58 0.00 AT1G55020 GRMZM2G017068 

Sobic.003G385900 
A992422 vs. 

A992422×R931945-2-2 

similar to 

Lipoxygenase 

protein binding, 

oxidation 

reduction, metal 

ion binding 

-2.43 0.00 AT1G55020 GRMZM2G017068 

Sobic.003G385900 
ATx623 vs. 

ATx623×RTx2783 

similar to 

Lipoxygenase 

protein binding, 

oxidation 

reduction, metal 

ion binding 

-2.34 0.00 AT1G55020 GRMZM2G017068 

Sobic.004G001700 
AQL33 vs. 

AQL33×R931945-2-2 
N/A N/A -16.65 0.00 AT2G16630 GRMZM2G130813 

Sobic.004G001700 
ATx623 vs. 

ATx623×RTx2783 
N/A N/A 2.12 0.00 AT2G16630 GRMZM2G130813 

Sobic.004G001700 AQL33 vs. AQL33×QL36 N/A N/A 5.50 0.00 AT2G16630 GRMZM2G130813 

Sobic.004G001700 
A992422 vs. 

A992422×QL12 
N/A N/A 70.53 0.00 AT2G16630 GRMZM2G130813 

Sobic.004G203900 AQL33 vs. AQL33×QL36 
similar to B-keto acyl 

reductase 
N/A 2.78 0.00 AT1G67730 AC205703.4_FG006 

Sobic.004G220400 
AQL33 vs. 

AQL33×R931945-2-2 

similar to 

Phenylalanine 

ammonia-lyase 

N/A -2.18 0.00 AT2G37040 GRMZM2G029048 
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Feature ID Comparison Annotation GO terms 
Fold 

changea 

FDR 

p-value 

Gene ortholog 

Arabidopsis Maize 

Sobic.004G228900 
AQL33 vs. 

AQL33×R931945-2-2 

similar to Low 

molecular weight heat 

shock protein 

precursor 

N/A -17.98 0.03 AT5G51440 GRMZM2G007729 

Sobic.004G228900 
A992422 vs. 

A992422×QL36 

similar to Low 

molecular weight heat 

shock protein 

precursor 

N/A 27.32 0.00 AT5G51440 GRMZM2G007729 

Sobic.006G005600 
AQL33 vs. 

AQL33×R931945-2-2 

similar to Heat shock 

protein 82 

unfolded protein 

binding, 

response to 

stress, protein 

folding, ATP 

binding 

-12.59 0.00 AT5G52640 GRMZM5G833699 

Sobic.006G005600 
A992422 vs. 

A992422×QL36 

similar to Heat shock 

protein 82 

unfolded protein 

binding, 

response to 

stress, protein 

folding, ATP 

binding 

5.75 0.00 AT5G52640 GRMZM5G833699 

Sobic.006G079500 AQL33 vs. AQL33×QL36 N/A 

metabolic 

process, 

catalytic activity 

2.76 0.00 AT1G62940 GRMZM2G014651 

Sobic.006G079500 
A992422 vs. 

A992422×QL12 
N/A 

metabolic 

process, 

catalytic activity 

23.35 0.00 AT1G62940 GRMZM2G014651 

Sobic.006G148800 
A992422 vs. 

A992422×QL12 

similar to 

OSJNBa0073E02.14 

protein 

N/A -2.01 0.00 AT2G37040 GRMZM2G029048 

Sobic.006G148900 
A992422 vs. 

A992422×QL12 

similar to 

Phenylalanine 

ammonia-lyase 

N/A -4.05 0.00 AT2G37040 GRMZM2G029048 

Sobic.007G029900 AQL33 vs. AQL33×QL36 

similar to Putative 

cytochrome P450 

family 

N/A 3.35 0.00 AT1G01280 GRMZM5G830329 
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Feature ID Comparison Annotation GO terms 
Fold 

changea 

FDR 

p-value 

Gene ortholog 

Arabidopsis Maize 

Sobic.007G029900 
A992422 vs. 

A992422×R931945-2-2 

similar to Putative 

cytochrome P450 

family 

N/A 6.43 0.00 AT1G01280 GRMZM5G830329 

Sobic.007G029900 
A992422 vs. 

A992422×QL12 

similar to Putative 

cytochrome P450 

family 

N/A 39 0.00 AT1G01280 GRMZM5G830329 

Sobic.007G029900 
AQL33 vs. 

AQL33×R931945-2-2 

similar to Putative 

cytochrome P450 

family 

oxidation 

reduction, 

oxidoreductase 

activity 

-12.9 0.00 AT1G01280 GRMZM5G830329 

Sobic.007G068700 AQL33 vs. AQL33×QL36 
similar to Polyphenol 

oxidase 

oxidation 

reduction, 

metabolic 

process, 

oxidoreductase 

activity 

3.63 0.00 N/A N/A 

Sobic.007G206000 
AQL33 vs. 

AQL33×R931945-2-2 

similar to Putative 

dihydroflavonol 

reductase 

coenzyme 

binding, 

catalytic activity 

-4.50 0.00 AT4G35420 GRMZM2G004683 

Sobic.006G148800 
A992422 vs. 

A992422×QL12 

similar to 

OSJNBa0073E02.14 

protein 

N/A -2.01 0.00 AT2G37040 GRMZM2G029048 

Sobic.007G206000 AQL33 vs. AQL33×QL36 

similar to Putative 

dihydroflavonol 

reductase 

coenzyme 

binding, 

catalytic activity 

2.17 0.00 AT4G35420 GRMZM2G004683 

Sobic.007G206000 
ATx623 vs. 

ATx623×RTx2783 

similar to Putative 

dihydroflavonol 

reductase 

coenzyme 

binding, 

catalytic activity 

2.39 0.00 AT4G35420 GRMZM2G004683 

Sobic.007G206000 
A992422 vs. 

A992422×QL36 

similar to Putative 

dihydroflavonol 

reductase 

coenzyme 

binding, 

catalytic activity 

3.62 0.01 AT4G35420 N/A 

Sobic.007G206000 
A992422 vs. 

A992422×R931945-2-2 

similar to Putative 

dihydroflavonol 

reductase 

coenzyme 

binding, 

catalytic activity 

6.01 0.00 AT4G35420 N/A 
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Feature ID Comparison Annotation GO terms 
Fold 

changea 

FDR 

p-value 

Gene ortholog 

Arabidopsis Maize 

Sobic.007G206000 
A992422 vs. 

A992422×QL12 

similar to Putative 

dihydroflavonol 

reductase 

coenzyme 

binding, 

catalytic activity 

15.10 0.00 AT4G35420 GRMZM2G004683 

Sobic.007G216300 AQL33 vs. AQL33×QL36 
similar to Heat shock 

protein 81-2 

unfolded protein 

binding, 

response to 

stress, protein 

folding, ATP 

binding 

-5.26 0.00 AT5G56000 N/A 

Sobic.007G216300 
AQL33 vs. 

AQL33×R931945-2-2 

similar to Heat shock 

protein 81-2 

unfolded protein 

binding, 

response to 

stress, protein 

folding, ATP 

binding 

-2.41 0.00 AT5G56000 GRMZM2G012631 

Sobic.007G216300 
A992422 vs. 

A992422×QL36 

similar to Heat shock 

protein 81-2 

unfolded protein 

binding, 

response to 

stress, protein 

folding, ATP 

binding 

2.46 0.00 AT5G56000 GRMZM2G012631 

Sobic.008G087300 
ATx623 vs. 

ATx623×RTx2783 

similar to 3-oxoacyl-

reductase, chloroplast, 

putative, expressed 

N/A 4.37 0.00 AT1G24360 GRMZM2G043602 

Sobic.008G087300 AQL33 vs. AQL33×QL36 

similar to 3-oxoacyl-

reductase, chloroplast, 

putative, expressed 

N/A 7.00 0.00 AT1G24360 GRMZM2G043602 

Sobic.008G136000 AQL33 vs. AQL33×QL36 

similar to Heat shock 

cognate 70 kDa 

protein 2 

N/A -2.72 0.00 AT3G12580 AC194017.3_FG001 

Sobic.007G206000 
A992422 vs. 

A992422×R931945-2-2 

similar to Putative 

dihydroflavonol 

reductase 

coenzyme 

binding, 

catalytic activity 

6.01 0.00 AT4G35420 N/A 
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Table A-1: Continued  

 aPositive values indicate greater expression in B-lines or F1 hybrids compared to A1-lines. Negative values indicate greater 

expression in A1-lines compared to B-lines or F1 hybrids. 

Feature ID Comparison Annotation GO terms 
Fold 

changea 

FDR 

p-value 

Gene ortholog 

Arabidopsis Maize 

Sobic.009G162000 AQL33 vs. AQL33×QL36 

similar to Putative 

uncharacterized 

protein 

N/A 8.66 0.00 AT3G11430 GRMZM2G059637 

Sobic.009G163900 AQL33 vs. AQL33×QL36 

similar to Heat shock 

cognate 70 kDa 

protein 

N/A 

-8.33 0.00 AT3G12580 AC194017.3_FG001 

Sobic.009G163900 
AQL33 vs. 

AQL33×R931945-2-2 

similar to Heat shock 

cognate 70 kDa 

protein 

N/A 

-4.08 0.00 AT3G12580 AC194017.3_FG001 

Sobic.009G163900 AQL33 vs. AQL33×QL12 

similar to Heat shock 

cognate 70 kDa 

protein 

N/A 

-2.62 0.00 AT3G12580 AC194017.3_FG001 

Sobic.009G163900 
ATx623 vs. 

ATx623×RTx436 

similar to Heat shock 

cognate 70 kDa 

protein 

N/A 

3.07 0.03 AT3G12580 AC194017.3_FG001 

Sobic.009G163900 
ATx623 vs. 

ATx623×RTx2783 

similar to Heat shock 

cognate 70 kDa 

protein 

N/A 

4.03 0.00 AT3G12580 AC194017.3_FG001 

Sobic.009G163900 
A992422 vs. 

A992422×QL36 

similar to Heat shock 

cognate 70 kDa 

protein 

N/A 

4.58 0.00 AT3G12580 N/A 

Sobic.010G106300 
AQL33 vs. 

AQL33×R931945-2-2 

similar to 

Ribonucleoside-

diphosphate reductase 

small chain 

oxidation 

reduction, 

deoxyribonucleo

side diphosphate 

2.72 0.04 AT3G27060 GRMZM2G060163 

Sobic.010G149300 
AQL33 vs. 

AQL33×R931945-2-2 

similar to SUMO-

conjugating enzyme 

UBC9 

N/A 

-3.22 0.00 AT1G64230 AC233922.1_FG008 

Sobic.009G163900 AQL33 vs. AQL33×QL36 

similar to Heat shock 

cognate 70 kDa 

protein 

N/A 

-8.33 0.00 AT3G12580 AC194017.3_FG001 




