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Abstract Choice behavior is typically evaluated by assuming that the data is gener-
ated by one latent decision-making process or another. What if there are two (or more)
latent decision-making processes generating the observed choices? Some choices
might then be better characterized as being generated by one process, and other
choices by the other process. A finite mixture model can be used to estimate the para-
meters of each decision process while simultaneously estimating the probability that
each process applies to the sample. We consider the canonical case of lottery choices
in a laboratory experiment and assume that the data is generated by expected utility
theory and prospect theory decision rules. We jointly estimate the parameters of each
theory as well as the fraction of choices characterized by each. The methodology
provides the wedding invitation, and the data consummates the ceremony followed
by a decent funeral for the representative agent model that assumes only one type of
decision process. The evidence suggests support for each theory, and goes further to
identify under what demographic domains one can expect to see one theory perform
better than the other. We therefore propose a reconciliation of the debate over two of
the dominant theories of choice under risk, at least for the tasks and samples we con-
sider. The methodology is broadly applicable to a range of debates over competing
theories generated by experimental and non-experimental data.

We thank the U.S. National Science Foundation for research support under grants NSF/IIS 9817518,
NSF/HSD 0527675 and NSF/SES 0616746; Ryan Brossette, Harut Hovsepyan, David Millsom and
Bob Potter for research assistance; and Steffen Andersen, Vince Crawford, Curt Eaton, John Hey,
Peter Kennedy, Jan Kmenta, Peter Wakker, two referees, and numerous seminar participants for
helpful comments. Supporting data and instructions are stored at the ExLab Digital Library at
http://exlab.bus.ucf.edu.

G.W. Harrison (X)) - E.E. Rutstrém

Department of Economics, College of Business Administration, University of Central Florida,
Orlando, FL, USA

e-mail: gharrison @research.bus.ucf.edu

E.E. Rutstrém
e-mail: erutstrom @bus.ucf.edu

@ Springer



134 G.W. Harrison and E.E. Rutstrom

Keywords Expected utility theory - Prospect theory - Mixture models

JEL Classification D81 - C91 . C51 - C12

One of the enduring contributions of behavioral economics is that we now have a rich
set of competing models of behavior in many settings, with expected utility theory
and prospect theory as the two front runners for choices under uncertainty. Debates
over the validity of these models have often been framed as a horse race, with the
winning theory being declared on the basis of some statistical test in which the theory
is represented as a latent process explaining the data. In other words, we seem to pick
the best theory by “majority rule.” If one theory explains more of the data than another
theory, we declare it the better theory and discard the other one. In effect, after the
race is over we view the horse that “wins by a nose” as if it was the only horse in the
race. The problem with this approach is that it does not recognize the possibility that
several behavioral latent processes may coexist in a population.

Ignoring this possibility can lead to erroneous conclusions about the domain of
applicability of each theory, and is likely an important reason for why the horse races
pick different winners in different domains. For purely statistical reasons, if we have a
belief that there are two or more latent population processes generating the observed
sample, one can make more appropriate inferences if the data are not forced to fit a
specification that assumes one latent population process.

Heterogeneity in responses is well recognized as causing statistical problems in
experimental and non-experimental data. Nevertheless, allowing for heterogeneity in
responses through standard methods, such as fixed or random effects, is not helpful
when we want to identify which people behave according to what theory, and when.
Heterogeneity can be partially recognized by collecting information on observable
characteristics and controlling for them in the statistical analysis. For example, a
given theory might allow some individuals to be more risk averse than others as a
matter of personal preference. But this approach only recognizes heterogeneity within
a given theory. This may be important for valid inferences about the ability of the
theory to explain the data, but it does not allow for heterogeneous theories to co-exist
in the same sample. One way to allow explicitly for alternative theories is to simply
collect sufficient data at the individual level, and test the different theories for that
individual, as demonstrated in Hey and Orme (1994). This is an approach that is not
always feasible, however, due to the large amount of observations that are needed.

The approach to heterogeneity and the possibility of co-existing theories adopted
here is to propose a “wedding” of the theories. We specify and estimate a grand like-
lihood function that allows each theory to co-exist and have different weights, a so-
called mixture model. The data can then identify what support each theory has. The

'In one experimental treatment Hey and Orme (1994) collected 200 binary choice responses from each
of 80 subjects, and were able to test alternative estimated models for each individual. At the beginning
of their discussion of results (p. 1300), they state simply, “We assume that all subjects are different. We
therefore fit each of the 11 preference functionals discussed above to the subject’s stated preferences for
each of the 80 subjects individually.”
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wedding is consummated by the maximum likelihood estimates converging on prob-
abilities that apportion non-trivial weights to each theory. We then offer the “decent
funeral” requested by Kirman [1992; p. 119], who considers the dangers of using rep-
resentative agent characterizations in macroeconomics and argues that ... it is clear
that the ‘representative’ agent deserves a decent burial, as an approach to economics
analysis that is not only primitive, but fundamentally erroneous.”

A canonical setting for theories of choice under uncertainty has been the choice
over pairs of monetary lotteries in laboratory experiments, reviewed by Camerer
(1995). To keep things sharply focused, only two alternative models are posited here.
One is a simple expected utility theory (EUT) specification, assuming a Constant Rel-
ative Risk Aversion (CRRA) utility function defined over the “final monetary prize”
that the subject would receive if the lottery were played out. The other model is a
popular specification of prospect theory (PT) due to Kahneman and Tversky (1979),
in which the utility function is defined over gains and losses separately, and there
is a probability weighting function that converts the underlying probabilities of the
lottery into subjective probabilities.”

The evidence against EUT is extensive. Luce and Suppes (1965) and Schoemaker
(1982) provide reviews of the earliest literature, and Camerer (1995) and Starmer
(2000) of later developments. To the best of our knowledge, none of these tests allow
for both processes to simultaneously explain the data. For example, there are many
tests that propose extensions of EUT that nest EUT in an alternative model, and some
might argue that these tests therefore allow either model to emerge if it is in fact
generating the data. However, the tests are set up to identify a single explanation
of EUT violations that can accommodate every type of violation, rather than allow
for the possibility that one explanation accounts for certain violations and that other
explanations account for different violations. For some violations it may be easy to
write out specific parametric models of the latent EUT decision-making process that
can account for the data. The problem is that the model that can easily account for one
set of violations need not account for others. For example, the preference reversals of
Grether and Plott (1979) can be explained by assuming risk neutral subjects with an
arbitrarily small error process, since the paired lotteries are designed to have the same
expected value. Hence each subject is indifferent, and the error process can account
for the data.® But then such subjects should not violate EUT in other settings, such as
common ratio tests. However, rarely does one encounter tests that confront subjects
with a wide range of tasks and evaluates behavior simultaneously over that wider
domain.*

2We use the language of EUT, but prospect theorists would instead refer to the utility function as a “value
function,” and to the transformed probabilities as “decision weights.” Our implementation of PT uses the
original version and assumes no editing processes. One could easily extend our approach to allow editing
processes or Cumulative PT formulations.

3Some might object that even if the behavior can be formally explained by some small error, there are
systematic behavioral tendencies that are not consistent with a white-noise error process. Of course, one
can allow asymmetric errors or heteroskedastic errors.

4There are three striking counter-examples to this trend. Hey and Orme (1994) deliberately use lotteries
that span a wide range of prizes and probabilities, avoiding “trip wire” pairs, and they conclude that EUT
does an excellent job of explaining behavior compared to a wide range of alternatives. Similarly, Harless
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Thus we view the state of the evidence as open, in the sense that nobody has
explored the behavior of EUT and alternatives over a wide range of tasks and formally
allowed the observed choices to be generated by both models simultaneously. Our
primary methodological contribution is to illustrate how one can move from results
that rely on assumptions that there is one single, true decision-making model to a
richer characterization that allows for the potential co-existence of multiple decision-
making models. Thus we are interested in investigating the co-existence of latent
EUT and PT data-generating processes, and not just the heterogeneity of behavior
given EUT or PT. Our data indicate that one should not think exclusively of EUT
or PT as the correct model, but as models that are correct for distinct parts of the
sample or the decisions. Thus the correct way to view these data is that they are best
characterized by EUT and PT.

Section 1 discusses our approach in more detail. Section 2 reviews the experimen-
tal data, Sect. 3 the competing models, Sect. 4 presents the results of estimating a
mixture model using both models, Sect. 5 compares our approach to other statistical
procedures that might be used in this setting, and Sect. 6 draws conclusions.

1 Weddings, funerals and heterogeneity

We seek a statistical reconciliation of the debate over two dominant theories of choice
under risk, EUT and PT. We collect experimental data in a setting in which subjects
make risky decisions in a gain frame, a loss frame, or a mixed frame, explained in
detail below. Such settings allow one to test the competing models on the richest do-
main. All data are collected using standard procedures in experimental economics in
the laboratory: no deception, no field referents, fully salient choices, and with infor-
mation on individual characteristics of the subjects. The experimental procedures are
described in Sect. 2.

Our experiments are a replication and extension of the procedures of Hey and
Orme (1994). The major extension is to consider lotteries in which some or all out-
comes are framed as losses, as well as the usual case in which all outcomes are framed
as gains. Each subject received an initial endowment that resulted in their final earn-
ings opportunities being the same across all frames. A minor procedural extension is
to collect individual demographic characteristics from each subject.

Our EUT specification is defined over the “final monetary prize” that the subject
would receive if the lottery were played out. That is, the argument of the utility func-
tion is the prize plus the initial endowment, which are always jointly non-negative.
Our PT specification defines the utility function over gains and losses separately, and
there is a probability weighting function that converts the underlying probabilities of
the lottery into subjective probabilities. The three critical features of the PT model
are (i) that the arguments of the utility function be gains and losses relative to some

and Camerer (1994) consider a wide range of aggregate data across many studies, and find that EUT does
a good job of explaining behavior if one places a value on parsimony. And Loomes and Sugden (1998)
deliberately choose lotteries “...to provide good coverage of the space within each (implied Marschak-
Machina probability) triangle, and also to span a range of gradients sufficiently wide to accommodate most
subjects’ risk attitudes.” (p. 589).
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reference point, taken here to be the endowment; (ii) that losses loom larger than
gains in the utility function; and (iii) that there is a nonlinearity in the transformed
probabilities that could account for apparently different risk attitudes for different
lottery probabilities. There may be some debate over whether the endowment serves
as a “reference point” to define losses, but that is one thing that is being tested with
these different models.> We specify the exact forms of the models tested in Sect. 3.

It is apparent that there are many variants of these two models, and many others
that deserve to be considered. Wonderful expositions of the major alternatives can
be found in Camerer (1995) and Hey and Orme (1994), among others. But this is
not the place to array every feasible alternative. Instead, the initial exploration of
this approach considers two major alternatives and the manner in which they are
characterized. Many of the variants involve nuances that would be hard to evaluate
empirically with the data available here, rich as it is for the task at hand.® But the
methodological point illustrated here is completely general.

Mixture models have a long pedigree in statistics, stretching back to Pearson
(1894). Modern surveys of the development of mixture models are provided by Titter-
ington et al. (1985), Everitt (1996) and McLachlan and Peel (2000). Mixture models
are also virtually identical to “latent class models” used in many areas of statistics,
marketing and econometrics, even though the applications often make them seem
quite different (e.g., Goodman 1974a, 1974b; Vermunt and Magidson 2003). In ex-
perimental economics, El-Gamal and Grether (1995) estimate a finite mixture model
of Bayesian updating behavior, and contrast it to a related approach in which indi-
vidual subject behavior is classified completely as one type of the other. Stahl and
Wilson (1995) develop a finite mixture model to explain behavior in a normal form
game, differentiating between five types of boundedly rational players.”

One challenge with mixture models of this kind is the joint estimation of the prob-
abilities and the parameters of the conditional likelihood functions. If these are condi-
tional models that each have some chance of explaining the data, then mixture models
will be characterized numerically by relatively flat likelihood functions. On the other
hand, if there are indeed K distinct latent processes generating the overall sample,
allowing for this richer structure is inferentially useful. Most of the applications of

5Some might argue that negative lottery prizes would count as losses only when the subject “earns” the
initial stake. This is a fair point, but testable by simple modification of the design. There is evidence from
related settings that such changes in how subjects receive their initial endowment can significantly change
behaviour: see Cherry et al. (2002), Johnson et al. (2006) and George et al. (2007). Moreover, one can
extend the PT specification to estimate the endogenous reference point that subjects employ: see Andersen
et al. (2006a) for example.

6Quite apart from alternative models to EUT and PT, there are alternative parametric specifications within
each of EUT or PT. For example, on the EUT side one may consider specifications that do not assume
CRRA. But the reliable estimation of the parameters of such specifications likely requires a much wider
range of prizes than considered here: hence the design of Holt and Laury (2002), where prizes were scaled
by a factor of 20 for most of their sample in order to estimate such a flexible specification. For an example
on the PT side, there are a plethora of specifications available for the probability weighting function (e.g.,
Wu and Gonzalez 1996 and Prelec 1998).

7 Additional applications of mixture models to experimental data include Stahl (1996, 1998), Haruvy et al.
(2001), Hurley and Shogren (2005), Andersen et al. (2006a, 2006b, 2008), Bardsley and Moffatt (2007),
Bruhin et al. (2007), Conte et al. (2007), and Harrison et al. (2005).
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mixture modeling in economics have been concerned with their use in better charac-
terizing unobserved individual heterogeneity in the context of a given theory about
behavior,® although there have been some applications to hypothetical survey data
that consider individual heterogeneity over alternative behavioral theories.” There
has been no earlier attempt to use mixture models to address the debate over theories
of choice under uncertainty.

2 Experimental design

Subjects were presented with 60 lottery pairs, each represented as a “pie”” showing the
probability of each prize. The subject could choose the lottery on the left or the right,
or explicitly express indifference (in which case the experimenter would flip a coin
on the subject’s behalf). After all 60 lottery pairs were evaluated, three were selected
at random for payment.'” The lotteries were presented to the subjects in color on a
private computer screen,!! and all choices recorded by the computer program. This
program also recorded the time taken to make each choice. An appendix (available
on request) presents the instructions given to our subjects, as well as an example of
the “screen shots” they saw. In addition to the choice tasks, the subjects provided
information on demographic and other personal characteristics.

In the gain frame experiments the prizes in each lottery were $0, $5, $10 and $15,
and the probabilities of each prize varied from choice to choice, and from lottery to
lottery. In the loss frame experiments subjects were given an initial endowment of
$15, and the corresponding prizes from the gain frame lotteries were transformed to
be —$15, —$10, —$5 and $0. Hence the final outcomes, inclusive of the endowment,
were the same in the gain frame and loss frame. In the mixed frame experiments
subjects were given an initial endowment of $8, and the prizes were transformed to

8For example, Heckman and Singer (1984), Geweke and Keane (1999) and Arafia and Le6n (2005). The
idea here is that the disturbance term of a given specification is treated as a mixture of processes. Such
specifications have been used in many settings that may be familiar to economists under other names. For
example, stochastic frontier models rely on (unweighted) mixture specifications of a symmetric “technical
efficiency” disturbance term and an asymmetric “idiosyncratic” disturbance term; see Kumbhakar and
Lovell (2000) for an extensive review.

9For example, Werner (1999) uses mixture models to characterize the “spike at zero” and “non-spike”
responses common in contingent valuation surveys. Wang and Fischbeck (2004) provide an application to
framing effects within prospect theory, using hypothetical field survey data on health insurance choices.
Their approach is to view the frames as different data generation processes for responses.

10The typical application of the random lottery incentive mechanism in experiments such as these would
have one choice selected at random. We used three to ensure comparability of rewards with other ex-
periments in which subjects made choices over 40 or 20 lotteries, and where 2 lotteries or 1 lottery was
respectively selected at random to be played out. Harrison and Rutstrém (2008) discuss these treatments,
which have no effect on observed behavior.

UThe computer laboratory used for these experiments has 28 subject stations. Each screen is “sunken”
into the desk, and subjects were typically separated by several empty stations due to staggered recruitment
procedures. No subject could see what the other subjects were doing, let alone mimic what they were doing
since each subject was started individually at different times.
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be —$8, —$3, $3 and $8, generating final outcomes inclusive of the endowment of
$0, $5, $11 and $16.'2

In addition to the fixed endowment, each subject received a random endowment
between $1 and $10. This endowment was generated using a uniform distribution
defined over whole dollar amounts, operationalized by a 10-sided die. The purpose
of this random endowment is to test for endowment effects on the choices.

The probabilities used in each lottery ranged roughly evenly over the unit interval.
Values of 0, 0.13, 0.25, 0.37, 0.5, 0.62, 0.75 and 0.87 were used.!® The presentation
of a given lottery on the left or the right was determined at random, so that the “left”
or “right” lotteries did not systematically reflect greater risk or greater prize range
than the other.

Subjects were recruited at the University of Central Florida, primarily from the
College of Business Administration, using the online recruiting application at ExLab
(http://exlab.bus.ucf.edu). Each subject received a $5 fee for showing up to the experi-
ments, and completed an informed consent form. Subjects were deliberately recruited
for “staggered” starting times, so that the subject would not pace their responses
by any other subject. Each subject was presented with the instructions individually,
and taken through the practice sessions at an individual pace. Since the rolls of die
were important to the implementation of the objects of choice, the experimenters took
some time to give each subject “hands-on” experience with the (10-sided, 20-sided
and 100-sided) die being used. Subjects were free to make their choices as quickly or
as slowly as they wanted.

Our data consists of responses from 158 subjects making 9311 choices that do not
involve indifference. Only 1.7% of the choices involved explicit choice of indiffer-
ence, and to simplify we drop those.'* Of these 158 subjects, 63 participated in gain
frame tasks, 37 participated in mixed frame tasks, and 58 participated in loss frame
tasks.

3 Meet the bride and groom
3.1 Expected utility specification
We assume that utility of income is defined by U (s, x) = (s +x)" where s is the fixed

endowment provided at the beginning of the experiment (excluding the show-up fee),
x is the lottery prize, and r is a parameter to be estimated. With this specification

12These final outcomes differ by $1 from the two highest outcomes for the gain frame and mixed frame,
because we did not want to offer prizes in fractions of dollars.

13Ty ensure that probabilities summed to one, we also used probabilities of 0.26 instead of 0.25, 0.38
instead of 0.37, 0.49 instead of 0.50 or 0.74 instead of 0.75.

14For the specification of likelihoods of strictly binary responses, such observations add no information.
However, one could augment the likelihood for the strict binary responses with a likelihood defined over
“fractional responses” and assume that the fraction for these indifferent responses was exactly %2. Such
specifications are provided by Papke and Wooldridge (1996), and used by Andersen et al. (2008), but add
needless complexity for present purposes given the small number of responses involved.
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we assume “perfect asset integration” between the endowment and lottery prize.'”

Probabilities for the kth prize, pg, are those that are induced by the experimenter, so
expected utility is simply the probability weighted utility of each outcome in each
lottery. Since there were up to 4 outcomes in each lottery i, EU; = Zk:l, 4lpr x Ug].

A simple stochastic specification was used to specify likelihoods conditional on
the model. The EU for each lottery pair was calculated for a candidate estimate of r,
and the difference VEU = EUg — EU calculated, where EU is the left lottery in
the display and EUr is the right lottery. The index VEU is then used to define the
cumulative probability of the observed choice using the logistic function: G(VEU) =
exp(VEU)/[1 + exp(VEU)].'®

Thus the likelihood, conditional on the EUT model being true, depends on the
estimates of r given the above specification and the observed choices. The conditional
log-likelihood is

In L™ (s y, X) =Y "Il =) [y InG(VEU) + (1 — y;) In(1 — G(VEU))]

1 1

where y; = 1(0) denotes the choice of the right (left) lottery in task i, and X is a vector
of individual characteristics that implicitly conditions VEU. Harrison and Rutstrom
(2008) review procedures for structural estimation of models such as these using
maximum likelihood.

3.2 Prospect theory specification

Tversky and Kahneman (1992) propose a popular parametric specification which is
employed here. There are two components, the utility function and the probability
weighting function.

A power utility function is defined separately over gains and losses: U (x) = x¢ if
x>0, and U(x) = —A(—x)? for x < 0. So « and B are the risk aversion parameters,
and A is the coefficient of loss aversion.

There are two variants of prospect theory, depending on the manner in which
the probability weighting function is combined with utilities. The original version
proposed by Kahneman and Tversky (1979) posits some weighting function which
is separable in outcomes, and has been usefully termed Separable Prospect Theory
(SPT) by Camerer and Ho [1994; p. 185]. The alternative version, proposed by Tver-
sky and Kahneman (1992), posits a weighting function defined over the cumulative
probability distributions. The form of the weighting function proposed by Tversky

15 A valuable extension, inspired by Cox and Sadiraj (2006), would be to allow s and x to be combined in
some linear manner, with weights to be estimated.

16The use of the logistic implies the usual random utility specification due to Marschak (1960). That is,
that the expected utility of a given lottery equals the deterministic EU plus some extreme value error that
is independent of the lottery (e.g., Train 2003; p. 55). This implies a well-known normalization of the
error term to be 2 /3. Hey and Orme (1994; p. 1301) discuss in general terms how one could equivalently
estimate this variance and impose constraints on the range of utility values under EUT. Such constraints
are not applicable under standard specifications of PT with loss aversion (Kobberling and Wakker 2005;
p- 121), so we avoid them.
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and Kahneman (1992) has been widely used for both separable and cumulative ver-
sions of PT, and assumes weights w(p) = p¥ /[p? + (1 — p)Y 17 .

Assuming that SPT is the true model, prospective utility PU is defined in much the
same manner as when EUT is assumed to be the true model. The PT utility function
is used instead of the EUT utility function, and w(p) is used instead of p, but the
steps are otherwise identical.!” The same error process is assumed to apply when
the subject forms a preference for one lottery over the other. Thus the difference in
prospective utilities is defined similarly as VPU = PUg — PU.

Thus the likelihood, conditional on the SPT model being true, depends on the
estimates of «, 8, A and y given the above specification and observed choices.'® The
conditional log-likelihood is

In LT (a, B, 1, v; v, X)

=Y "= "[yInG(VPU) + (1 — y)) In(1 = G(VPU))].

1 1

3.3 The nuptial

If we let 7EYT denote the probability that the EUT model is correct, and 7FT =
(1 — BUT) denote the probability that the PT model is correct, the grand likelihood
can be written as the probability weighted average of the conditional likelihoods.
Thus the likelihood for the overall model estimated is defined by

InL(r o, By w5y, X) =) In[@ VT x PV + (T < D) (1)

1

This log-likelihood can be directly maximized'® to find estimates of the parame-
ters.?’

Twe ignore the editing processes discussed by Kahneman and Tversky (1979). They have not been used
in the empirical implementations of SPT by Camerer and Ho (1994) or in the weighting functions used by
Hey and Orme (1994), to take two prominent examples.

18The SPT specification has three more parameters than the EUT specification. There are numerous meth-
ods for accounting for differences in the number of parameters in different models, illustrated well by Hey
and Orme (1994). Our view is that those corrections can be dangerous if applied mechanically, indepen-
dently of the rationale for their inclusion in the original model. The “menu approach” proposed by Harless
and Camerer (1994) strikes us as the correct way to view the effects of parsimony, as with all specification
searches: the objective is to just document the trade-offs implied by more or less parameters in terms of
some metric such as goodness of fit. The reader is then free to select from that menu in accord with their
own preferences for parsimony. These issues also relate to our discussion in Sect. 5 of the relationship
between mixture models and non-nested hypothesis test procedures.

19Estimation of mixture models requires some attention to the numerical properties of the log-likelihood,
since there may easily be multiple modes. In most cases direct maximum likelihood will be well-behaved,
but it is always useful to trace out the log-likelihood conditional on assumed values of the mixture proba-
bility to ensure that global maxima have been found. This is a simple matter when there are no covariates.

20This approach assumes that any one observation can be generated by both models, although it admits of
extremes in which one or other model wholly generates the observation. One could alternatively define a
grand likelihood in which observations or subjects are classified as following one model or the other on
the basis of the latent probabilities 7BUT and 7PT. El-Gamal and Grether (1995) illustrate this approach
in the context of identifying behavioral strategies in Bayesian updating experiments.
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We allow each parameter to be a linear function of the observed individual char-
acteristics of the subject. This is the X vector referred to above. Six characteristics
are considered: binary variables to identify Females, subjects that self-reported their
ethnicity as Black, those that reported being Hispanic, those that had a Business ma-
jor, and those that reported a low cumulative GPA (below 3'4). We also included Age
in years. The estimates of each parameter in the above likelihood function actually
entails estimation of the coefficients of a linear function of these characteristics. For
example, the estimate of r, 7, would actually be

7 =Fo + (FrEMALE X FEMALE) + (#pLack %X BLACK)
+ (Faispanic x HISPANIC) + (rgyusiness X BUSINESS)
+ (’:GPAlow x GPAlow) + (f AGE X AGE)

where ry is the estimate of the constant. If we collapse this specification by dropping
all individual characteristics, we would simply be estimating the constant terms for
each of r, o, B, A, u. Obviously the X vector could include treatment effects as well
as individual effects, or interaction effects.?!

The estimates allow for the possibility of correlation between responses by the
same subject, so the standard errors on estimates are corrected for the possibility that
the 60 responses are clustered for the same subject. The use of clustering to allow for
“panel effects” from unobserved individual effects is common in the statistical survey
literature.””

3.4 Discussion

Flexible as this specification is, it rests on some assumptions, just as many marriages
start with a pre-nuptial agreement.

First, we only consider two data generating processes, despite the fact that there
are many alternatives to EUT and PT. Still, two processes is double the one process
that is customarily assumed, and that is the main point of our analysis: to assume more
than one data generating process. Furthermore, there is a natural “family similarity”
between many of the alternatives that might make them hard to identify. This simi-
larity is to be expected, given the common core of “empirical facts” about violations

21Haruvy et al. (2001) also explicitly consider within-type diversity in the context of a between-type
mixture model, although applied to a different set of behavioral theories than what we use here. They find
that a measure of the intensity of individual calculator use helps explain the allocation to their types.

22Clustering commonly arises in national field surveys from the fact that physically proximate households
are often sampled to save time and money, but it can also arise from more homely sampling procedures.
For example, Williams (2000; p. 645) notes that it could arise from dental studies that “collect data on
each tooth surface for each of several teeth from a set of patients” or “repeated measurements or recurrent
events observed on the same person.” The procedures for allowing for clustering allow heteroskedasticity
between and within clusters, as well as autocorrelation within clusters. They are closely related to the
“generalized estimating equations” approach to panel estimation in epidemiology (see Liang and Zeger
1986), and generalize the “robust standard errors” approach popular in econometrics (see Rogers 1993).
Wooldridge (2003) reviews some issues in the use of clustering for panel effects, in particular noting that
significant inferential problems may arise with small numbers of panels.
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of EUT that spawned them. But it implies low power for any statistical specifica-
tion that seeks to identify their individual contribution to explaining behavior, unless
one focuses on “trip wire” tasks that are designed just to identify these differences
by setting up one or other models for a fall if choices follow certain patterns. Lim-
iting our attention to the two most popular theories is therefore reasonable as a first
approach.

Second, we adopt specific parameterizations of the EUT and PT models, recogniz-
ing that there exist many variants. Our parameterizations are not obviously restrictive
compared to those found in the literature, but our results are conditional on them.
We believe that allowing for greater flexibility in parametric form would distract at-
tention from the principal methodological point, the formal consideration of multiple
data generating models. Flexible parametric forms come at a price in terms of addi-
tional core parameters to be estimated, and since we are interested in allowing for
heterogeneity with respect to observable characteristics as well as data generating
models, it does not make sense to add that dimension at this stage.

Third, we assume that observable characteristics of the individual have a linear
effect on the parameter, and that there are no interactions. Since these characteristics
will provide some of the most entertaining moments of the marriage, as discussed
below, this assumption would be worth examining in future work (with even larger
data sets). Again, the objective is to show how one can allow for “traditional sources
of heterogeneity” in the form of observable characteristics as well as non-traditional
sources of heterogeneity in the form of competing models of the data generating
process. Our goal is to illustrate how one does this jointly, so that claims about one
source of heterogeneity are not made by assuming away the other source of hetero-
geneity. In this sense our approach encompasses both sources of heterogeneity in a
natural manner.

Fourth, we deliberately avoid treating the model comparison inference as one of
nesting one model in another. One could constrain the PT specification to be a gen-
eralization of a variant of our EUT specification, although that would be somewhat
forced.>> The problem with this approach is that it assumes that there is one true
latent decision-making process for all choices, and that is exactly what we want to
remain agnostic about and let the data decide.

Finally, we do not consider much variation in task domain, other than the obvious
use of gain, loss or mixed frames. Our priors are that the relative explanatory power
of EUT and PT will vary with demographics and task domain, and possibly some
interaction of the two. To provide sharp results we therefore deliberately controlled
the variability of the task domain, and focus on the possible effect of demographics.

These priors also imply that we prefer not to use mixture specifications in which
subjects are categorized as completely EUT or PT. It is possible to rewrite the
grand likelihood (1) such that nfUT = 1 for subject j if Y, ;) IF9T >3 T and
afUT=0if 3o ) IFYT < 32,5, IFT, where the notation i (j) denotes those observa-
tion i of subject j. The problem with this specification is that it assumes that there is

28ety =A=1, a=pB=r, and assume U(s,x) = x" for x > 0 and U(s, x) = —A(—x)" for x < 0.
It will, however, be useful later to quickly compare EUT and Rank-Dependent Utility specifications by
testing the hypothesis that A = 1.
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no effect on the probability of EUT and PT from task domain. It is well known from
experimental evidence that task domain can influence the strength of support for EUT.
For example, Starmer (2000; p. 358) notes from his review that “...behavior on the
interior of the probability triangle tends to conform more closely to the implications
of EUT than behavior at the borders.” Thus we want to allow the same subject to be-
have in accord with EUT for some choices, and in accord with PT for other choices,
even for a relatively homogeneous task such as ours. Our approach allows that, by
being agnostic about the interpretation of the mixing probability.

One could alternatively use a categorization mixture specification in which each
binary choice was classified as wholly EUT or PT. We see no inferential advantage in
this assumption for our purposes. Moreover, we want to allow the observed behavior
to be interpreted in terms of “dual criteria decision making.” This is the idea that the
subject might use more than one criteria for evaluating whether to pick the left or
right lottery. Although historically rare in economics, such models are easy to find
in psychology.>* There is also a wide class of “dual self” models becoming popular
from behavioral economics, building on insights about the manner in which the brain
resolves conflicts (e.g., see Cohen 2005; Benhabib and Bisin 2005; Fudenberg and
Levine 2006).

For all of these reasons we want to avoid restricting the formal estimation and
interpretation of the mixture probability as categorizing choices or subjects. We will,
however, admit of informal interpretations of results in those terms, as long as the
formal difference is noted.

4 Results
4.1 Heterogeneity of process

Table 1 presents maximum likelihood estimates of the conditional models as well as
the mixture model when we assume no individual covariates. The estimates for the
conditional models therefore represent the traditional representative agent assump-
tion, that every subject has the same preferences and behaves in accord with one
theory or the other. The estimates for the mixture model allow each theory to have
positive probability, and therefore take one major step towards recognizing hetero-
geneity in decision making.

The first major result is that the estimates for the probability of the EUT and PT
specifications indicate that each is equally likely for these data. Further, each esti-
mated probability is significantly different from zero.”> EUT wins by a (quantum)
nose, with an estimated probability of 0.55, but the whole point of this approach

243ee Starmer (2000) and Brandstitter et al. (2006) for reviews of many of these models. One important
example is the SP/A model of Lopes (1995) and Lopes and Oden (1999), examined by Andersen et al.
(2006b) from a mixture perspective. This model posits that subjects evaluate each choice using an SP
criteria, which is akin to a rank-dependent utility evaluation, as well as an A criteria, which is a simple
aspiration index akin to a utility threshold.

25The likelihood function actually estimates the log odds in favor of one model or the other. If we denote
the log odds as «, one can recover the probability for the EUT model as *FUT =1/01 +exp(«)). This non-
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146 G.W. Harrison and E.E. Rutstrom

is to avoid such rash declarations of victory. The data suggest that the sample is
roughly evenly split between those observations that are best characterized by EUT
and those observations that are best characterized by PT. In fact, one cannot reject the
formal hypothesis that the probabilities of each theory are identical and equal to Y2
(p-value = 0.490).

The second major result is that the estimates for the PT specification are only
weakly consistent with the a priori predictions of that theory when the specification
is assumed to fit every subject, as in the conditional estimation, but strikingly con-
sistent with the predictions of the theory when it is only assumed to fit some of the
subjects, as in the mixture model. When the conditional PT model is assumed for
all subjects and choices, the loss aversion parameter is greater than 1, but only by a
small amount. The estimated coefficient of 1.380 is significantly different from 1 at
the 5% significance level, since the p-value is 0.090 and a one-sided test is appro-
priate here given the priors from PT that A > 1. But the size of the effect is much
smaller than the 2.25 estimated by Tversky and Kahneman (1992) and since then al-
most universally employed.”® However, when the same PT specification is estimated
in the mixture model, where it is only assumed to account for the behavior of some
of the subjects and choices, the estimated value for A jumps to 5.781, clearly greater
than 1 (although the estimated standard error also increases, from 0.223 to 1.612).
Similarly, the y parameter is estimated to be 0.911 with the conditional PT model,
and is not statistically different from 1 (p-value = 0.151), which is the special EUT
case of the probability weighting function where w(p) = p for all p. But when the
mixture model is estimated, the value of ¢ drops to 0.681 and is significantly smaller
than 1, again consistent with many of the priors from PT. Finally, the risk aversion
coefficients o and S are not significantly different from each other under the condi-
tional model assumption, but are different from each other under the mixture model.
This difference is not critical to PT, and is often assumed away in applied work with
PT, but it is worth noting since it points to another sense in which gains and losses
are evaluated differently by subjects, which is a primary tenet of PT.

4.2 Heterogeneity of process and parameters
Table 2 presents estimates from the mixture model with all individual characteristics

included.?’ Each subject has a different implied coefficient for a core parameter, given
by the set of estimates in Table 2 and their individual characteristics. For example, a

linear function of « can be easily calculated from the estimates, and the “delta method” used to provide
estimates of the standard errors and p-values (Oehlert 1992). Since 7EUT — 1/2 when k = 0, the standard
p-value on the estimate of « provides the estimate for the null hypothesis Hy : 7BUT = 7EUT jisted in
Table 1.

26For example, Benartzi and Thaler (1995; p. 79) assume this value in their evaluation of the “equity
premium puzzle,” and note (p. 83) that it is the assumed value of the loss aversion parameter that drives
their main result.

270ne could further extend this analysis to allow for individual random effects on estimated coefficients
(e.g., Train 2003; Chap. 6), but this would add considerable complexity to the estimation. Our goal is to
demonstrate that one can combine an allowance for heterogeneity of parameters and process, and not to
claim that this is the only way to do so.
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Table 2 Estimates of parameters of mixture model with individual covariates

Parameter Variable Estimate Standard p-value Lower 95% Upper 95%
Error Confidence Confidence
Interval Interval
r Constant —0.246 0.352 0.485 —0.940 0.449
Female —0.273 0.099 0.007 —0.469 —0.076
Black —0.043 0.195 0.824 —0.428 0.341
Hispanic —0.586 0.174 0.001 —0.929 —0.242
Age 0.065 0.018 0.001 0.028 0.101
Business —0.104 0.099 0.291 —-0.299 0.090
GPAlow 0.042 0.083 0.616 —0.122 0.205
o Constant 0.549 0.256 0.034 0.043 1.055
Female —0.201 0.215 0.350 —0.625 0.223
Black —0.101 0.216 0.640 —0.529 0.326
Hispanic —0.128 0.355 0.718 —-0.829 0.572
Business 0.053 0.292 0.857 —0.524 0.629
GPAlow 0.059 0.196 0.765 —0.328 0.446
B Constant —0.202 1.199 0.866 —2.571 2.166
Female 0.453 0.749 0.546 —1.026 1.933
Black 0.300 0.291 0.303 —-0.274 0.875
Hispanic 0.172 0.504 0.733 —0.822 1.167
Age 0.010 0.013 0.442 —0.016 0.036
Business 0.130 0.451 0.774 —0.760 1.020
GPAlow 0.095 0.175 0.587 —0.250 0.440
A Constant 1.592 7.164 0.824 —12.558 15.742
Female —4.007 10.037 0.690 —23.832 15.818
Black —4.494 2.029 0.028 —8.503 —0.486
Hispanic —5.083 2.053 0.014 —9.137 —1.028
Age 0.523 0.566 0.357 —0.595 1.641
Business —2.981 2.226 0.183 —7.378 1.417
GPAlow —-0.297 1.893 0.875 —4.036 3.441
y Constant 0.664 0.257 0.011 0.157 1.171
Female 0.474 0.106 0.000 0.266 0.683
Black 0.009 0.123 0.945 —0.234 0.252
Hispanic 0.971 0.585 0.099 —0.185 2.127
Age —0.020 0.010 0.058 —0.041 0.001
Business 0.333 0.180 0.065 —0.022 0.688
GPAlow —0.140 0.199 0.482 —0.533 0.253
if Constant 0.558 1.268 0.660 —1.946 3.062
Female 1.638 0.507 0.002 0.637 2.640
Black 2.387 1.715 0.166 —1.001 5.775
Hispanic 1.543 3.714 0.678 —5.793 8.880
Age —0.120 0.059 0.045 —0.237 —0.003
Business 0.774 0.592 0.193 —0.395 1.943
GPAlow 0.477 0.612 0.437 —0.732 1.686

Tk is the log odds of the probabilities of each model, where 7EUT = 1 /(1 + exp(x))
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Fig. 1 Probability of competing models

black 21-year-old female that was not hispanic, did not have a business major, and
had an average GPA, would have an estimate of r equal to 7y + FFEMALE + 7BLACK +
7ace X 21. She would have the same estimate of r as anyone else that had exactly
the same set of characteristics. But the set of estimated characteristics is reasonably
large, allowing considerable heterogeneity for a given subject.

The effect of allowing for this observable heterogeneity can be best seen by ex-
amining the distribution of coefficients across the sample, generated by predicting
each parameter for each subject by evaluating the linear function with the character-
istics of that subject. Such predictions are accompanied by estimated standard errors,
just as the coefficient estimates in Table 1 are, so we also take the uncertainty of the
predicted parameter value into account.

Figure 1 displays the main result, a kernel distribution of predicted probabilities
for the competing models. The two panels are, by construction, mirror images of
each other since we only have two competing models, but there is pedagogic value
in displaying both. The support for the EUT specification is extremely high for some
people, but once that support wanes the support for PT picks up. It is not the case that
there are two sharp modes in this distribution, which is what one might have expected
based on a prior that there are two distinct types of subjects. Instead, subjects are
better characterized as either “clearly EUT” or “probably PT,” although there is also
a small proportion who are “clearly PT.” It is as if EUT is fine for city folk, but
PT rules the hinterland.”® No doubt this is due to many subjects picking lotteries

28 Andersen et al. (2006a) report the reverse qualitative pattern when considering dynamic lottery choices
in which subjects could accumulate income. Conte et al. (2007) report roughly equal weight attached to
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Predicted probabilities and standard errors from estimates in Table 2
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Fig. 2 Uncertainty in predicted probability of models

according to their estimate of the expected value of the lotteries, which would make
them EUT-consistent and risk neutral (r = 1). The average probability for the EUT
model is 0.51, as is the median, despite the apparent skewness in the distributions in
Fig. 1.

Figure 2 indicates the uncertainty of these predicted probabilities. Consistent with
the use of discrimination functions such as the logistic, uncertainty is smallest at the
end-points and greatest at the mid-point. Since EUT has relatively more of its sup-
port closer to the upper end-point, this implies that one can express more confidence
when declaring some subjects as better characterized by EUT than one can about the
alternative model. There are some subjects that have significantly higher predicted
standard errors in Fig. 2, reflecting their choices being either sharply consistent with
EUT or sharply inconsistent.

Figures 3 and 4 display illustrative stratifications of the probability of the EUT
model being correct in terms of individual characteristics. The results are striking.
Figure 3 shows that men (52% of our sample) have a much stronger probability of
behaving in accord with the EUT model than women. Figure 4 shows that the eth-
nicity group “Others” (including Whites, Asians and Mixed race and representing
75% of our sample) have a much higher probability of being EUT decision mak-
ers than “Blacks” (11% of the sample) or “Hispanics” (14% of the sample). Con-
sider the implications of these two figures for the dramatic differences that List
(2002, 2003, 2004) finds between subjects in field experiments on the floor of sports-
card shows and conventional lab experiments with college students. The vast majority

an EUT and non-EUT specification, with very few subjects being in-between: subjects are either “clearly
EUT” or “clearly not EUT” in their results. We therefore caution again that the relative explanatory power
of EUT and PT likely interacts with task domain.
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Fig. 4 Ethnicity, EUT and prospect theory

of participants on those shows are white males. No doubt there is much more going
on in these field experiments than simply demographic mix, as stressed by Harrison
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For subjects with at least 25% chance of being EUT-consistent (N=126)
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Fig. 5 CRRA parameter of the EUT model

and List (2004), but one might be able to go a long way to explaining the differences
on these two demographics alone.?”

Figures 5 and 6 display the distributions of the parameters of each model. The
raw predictions for all 158 subjects include some wild estimates, but for completely
sensible reasons. If some subject has a probability of behavior in accord with PT of
less than 0.0001, for example, then one should not expect the estimates of «, 8, A or
y to be precise for that subject. In fact, most of the extreme estimates are associated
with parameters that have very low support for that subject, or that have equally high
standard errors.’’ Thus, we restrict the displays in Figs. 5 and 6 to those subjects
whose probability of behaving in accord with EUT or PT, respectively, is at least V4.

Figure 5 displays results on the risk aversion coefficient for the EUT subjects that
are remarkably similar to those reported in Table 1. The average EUT subject has a
CRRA coefficient r equal to 0.89 when we include observable individual character-
istics and estimate a mixture specification, whereas the estimate from Table 1 was
0.87 when all EUT subjects were assumed to have the same risk attitude. In Fig. 5 we
observe two modes, reflecting the ability to allow for heterogeneity of risk attitudes

29Haigh and List (2005) report contrary evidence, using tasks involving risky lotteries and comparing field
traders from the Chicago Board of Trade and students. However, the behavior they observe can be easily
explained under EUT using a specification of the utility function that allows non-constant relative risk
aversion, such as the expo-power specification favored by Holt and Laury (2002) in their experiments.
Thus one should not count this as contrary evidence to the claim in the text unless one constrains EUT to
the special case of CRRA. Harrison and Rutstrém (2008) discuss this point in more detail.

30This accounts for some extremely wide 95% confidence interval estimates in Table 2. It would also be
possible to constrain estimates to be within ranges predicted a priori, such as y < 1 and A > 1, but such
restrictions are often the result of previous empirical analyses and intuition rather than derived from theory.
As one example of a restriction with a theoretical rationale, Kobberling and Wakker (2005; p. 127ff.) argue
that one should set « = B if one is using the CRRA functional form in a model used to identify loss aversion

(A).
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For subjects with at least 25% chance of being PT-consistent (N=114)
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Fig. 6 Parameters of the PT moodel

in the mixture model by including individual characteristics. Some subjects exhibit
considerable risk aversion (r < 1), and some even exhibit mild risk-loving behav-
ior (r > 1). The most prominent mode is found right around risk-neutrality, » = 1.
From Table 2 we see that the characteristics that drive this heterogeneity include sex,
ethnicity, and age.

Figure 6 displays results for the PT parameters that are generally consistent with
the estimates in Table 1, although there are some differences due to the use of ob-
servable characteristics in the model underlying Fig. 6. The parameters « and S are
generally less than 1, consistent with mildly concave (convex) utility in the gain (loss)
frame. The average estimate for « is 0.44, and the average estimate for 8 is 0.51. The
loss aversion coefficient A tends to be much greater than 1, averaging 5.81, consistent
with the subjects that behave in accord with PT having significant loss aversion.?! Of
course, this applies only to the fraction of the sample deemed to have certain level of
support for PT; the value of A for EUT subjects is 1, by definition, so the weighted
average for the whole sample would be much smaller. The probability weighting co-
efficient y is generally less than 1, and averages 0.89 across the sample.

5 Comparing models

The idea of modeling mixtures of latent processes is a natural one, but how does it
compare to other approaches used to compare models? Whenever one considers two
non-nested models, readers expect to see some comparative measures of goodness of

31The restriction that A = 1 is easily rejected using a Wald test, with a p-value of only 0.014.
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fit. Common measures include R2, pseudo-Rz, a “hit ratio,” some other scalar appro-
priate for choice models (e.g., Hosmer and Lemeshow 2000; Chap. 5), and formal
likelihood-ratio tests of one model against another (e.g., Cox 1961, 1962 or Vuong
1989). From the perspective adopted here, the interpretation of these tests suffers
from the problem of implicitly assuming just one data-generating process. In effect,
the mixture model provides a built-in comparative measure of goodness of fit—the
mixture probability itself. If this probability is close to 0 or 1 by standard tests, one
of the models is effectively rejected, in favor of the hypothesis that there is just one
data-generating process.

In fact, if one traces back through the literature on non-nested hypothesis tests,
these points are “well known.” That literature is generally held to have been started
formally by Cox (1961), who proposed a test statistic that generalized the usual like-
lihood ratio test (LRT). His test compares the difference between the actual LRT of
the two models with the expected LRT, suitably normalized by the variance of that
difference, under the hypothesis that one of the models is the true data-generating
process. The statistic is applied symmetrically to both models, in the sense that each
takes a turn at being the true model, and leads to one of four conclusions: one model
is the true model, the other model is the true model, neither model is true, or both
models are true.’?

However, what is often missed is that Cox (1962; p. 407) briefly, but explicitly,
proposed a multiplicative mixture model as an “alternative important method of tack-
ling these problems.” He noted that this “procedure has the major advantage of lead-
ing to an estimation procedure as well as to a significance test. Usually, however, the
calculations will be very complicated.” Given the computational limitations of the
day, he efficiently did not pursue the mixture model approach further.

The next step in the statistical literature was the development by Atkinson (1970)
of the suggestion of Cox. The main problem with this exposition, noted by virtually
every commentator in the ensuing discussion, was the interpretation of the mixing
parameter. Atkinson (1970; p. 324) focused on testing the hypothesis that this para-
meter equaled Y2, “which implies that both models fit the data equally well, or equally
badly.” There is a colloquial sense in which this is a correct interpretation, but it can
easily lead to confusion if one maintains the hypothesis that there is only one true
data generating process, as the commentators do. In that case one is indeed confus-
ing model specification tests with model selection tests. If instead the possibility that
there are two data generating processes is allowed, then natural interpretations of
tests of this kind arise.>* Computational constraints again restricted Atkinson (1970)
to deriving results for tractable special cases.>*

32This possible ambiguity is viewed as an undesirable feature of the test by some, but not when the test
is viewed as one of an armada of possible model specification tests rather than as a model selection tests.
See Pollak and Wales (1991; p. 227ff.) and Davidson and MacKinnon (1993; p. 384) for clear discussions
of these differences.

330f course, as noted earlier, there are several possible interpretations in terms of mixtures occurring at
the level of the observation (lottery choice) or the unit of observation (the subject or task). Quandt (1974)
and Pesaran (1981) discuss problems with the multiplicative mixture specification from the perspective of
the data being generated by a single process.

34These constraints were even binding on methodology as recently as Pollak and Wales (1991). They
note (p. 228) that “If we could estimate the composite (the mixture specification proposed by Atkinson
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This idea was more completely developed by Quandt (1974) in the additive mix-
ture form we use. He did, however, add a seemingly strange comment that “The re-
sulting pdf is formally identical with the pdf of a random variable produced by a mix-
ture of two distributions. It is stressed that this is a formal similarity only.” (p. 93/4)
His point again derives from the tacit assumption that there is only one data gener-
ating process rather than two (or more). From the former perspective, he proposes
viewing corner values of the mixture probability as evidence that one or other model
is the true model, but to view interior values as evidence that some unknown model is
actually used and that a mixture of the two proposed models just happens to provide
a better approximation to that unknown, true model. But if we adopt the perspective
that there are two possible data generating processes, the use and interpretation of the
mixing probability estimate is direct.

Perhaps the most popular modern variant of the generalized LRT approach of
Cox (1961, 1962) is due to Vuong (1989). He proposes the null hypothesis that both
models are the true models, and then allows two one-sided alternative hypotheses.>
The statistic he derives takes observation-specific ratios of the likelihoods under each
model, so that in our case the ratio for observation i is the likelihood of observation
i under EUT divided by the likelihood of observation i under PT. It then calculates
the log of these ratios, and tests whether the expected value of these log-ratios over
the sample is zero. Under reasonably general conditions a normalized version of this
statistic is distributed according to the standard normal, allowing test criteria to be
developed.® Thus the resulting statistic typically provides evidence in favor of one
of the models which may or may not be statistically significant.

Applying the Vuong test to the EUT and PT models estimated independently in
Table 1, we would conclude that there is overwhelming evidence in favor of the PT
model.>” Since we cannot reject equality between the « and the B parameters, and
A is only weakly significantly different from 1, there is really support for the more
intermediate specification of the Rank-Dependent Utility (RDU) model nested within
PT. However, when we use the Vuong test of the PT-only model against the mixture

1970 and Quandt 1974), then we could use the standard likelihood ratio test procedure to compare the two
hypotheses with the composite and there would no reason to focus on choosing between the two hypotheses
without the option of rejecting them both in favor of the composite. Thus, the model selection problem
arises only when one cannot estimate the composite.” They later discuss the estimation problems in their
extended example, primarily deriving from the highly non-linear functional form (p. 232). As a result, they
devise an ingenious method for ranking the alternative models under the maintained assumption that one
cannot estimate the composite (p. 230).

35Some have criticized the Vuong test because the null hypothesis is often logically impossible, but it can
also be interpreted as the hypothesis that one cannot say which model is correct.

36Clarke (2003) proposes a non-parametric sign test be applied to the sample of ratios. Clarke (2007)
demonstrates that when the distribution of the log of the likelihood ratios is normally distributed then the
Vuong test is better in terms of asymptotic efficiency. But if this distribution exhibits sharp peaks, in the
sense that it is mesokurtic, then the non-parametric version is better. The likelihood ratios we are dealing
with have the latter shape.

37The test statistic has a value of —10.33. There are often additional corrections for degrees of freedom,
using one or other “information criteria” to penalize models with more parameters (in our case, the PT
model). We do not accept the underlying premiss of these corrections, that smaller models are better, and
do not make these corrections. The results reported below would be the same if we did.

@ Springer



Expected utility theory and prospect theory: one wedding 155

model, the test statistic favors the mixture model; the test statistic is —0.56, with a
p-value of 0.71 that the PT-only model is not the better model. Since the estimation
of the mixture model also rejects the restrictions imposed on the PT parameters from
assuming RDU, it is clear that the mixture model is showing something that is very
different from a representative agent model specification that is simply intermediate
between EUT and PT. The inferences that one draws from these test statistics there-
fore depend critically on the perspective adopted with respect to the data generating
process. If we look for a single data generating process in our case, then PT domi-
nates EUT. But if one allows the data to be generated by either model, the evidence is
mixed—if one excuses the pun, and correctly interprets that as saying that both mod-
els receive roughly the same support. Thus one would be led to the wrong qualitative
conclusion if the non-nested hypothesis tests had been mechanically applied.

6 Conclusion

Characterizing behavior in lottery choice tasks as generated by potentially heteroge-
nous processes generates several important insights.

First, it provides a framework for systematically resolving debates over competing
models.*® This method does not rest on exploiting structural aspects of one type of
task or another, which has been a staple in tests of EUT. Such extreme domains are
still interesting of course, just as the experiments employed here deliberately gener-
ated loss frames and mixed frames. But the test of the competing models should not
be restricted only to such “trip-wire” tests, which might not characterize behavior in
a broader domain.

Second, it provides a more balanced metric for deciding which theory does better
in a given domain, rather than extreme declarations of winners and losers. If some
theory has little support, this approach will show that. A corollary is that one should
avoid mechanical use of test statistics that are predicated on the idea that there can
only be one latent data generating process. In fact, mixture models provide a natural
alternative to the formal statistical tests that are popular for discriminating between
non-nested hypotheses (and always have, at least in the older literature).

Third, the approach can provide some insight into when one theory does better
than another, through the effects of individual characteristics and treatments on esti-
mated probabilities of support. This insight might be fruitfully applied to other set-
tings in which apparently conflicting findings have been reported. We fully expect
that the relative explanatory power of EUT and PT will vary with task domain as
well as demographics. This is one reason we reject a priori the restriction, explicit
in categorical mixture specifications, that individuals employ one model or the other
in all task domains. For the same reason we reject the assumption that one model or
the other applies to every individual in a given task domain. The future, constructive
challenge is to characterize those domains so that we know better when to use one

38The approach readily generalizes to other contexts, such as competing models of intertemporal discount-
ing behavior (e.g., Andersen et al. 2008).
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model or the other. To meet that challenge we must remain agnostic about the domain
over which the choice process applies (viz., choices, individuals, or tasks).

Fourth, the approach readily generalizes to include more than two models, al-
though likelihoods are bound to become flatter as one mixes more and more models
that have a modicum of support from the data. The obvious antidote for those prob-
lems is to generate larger samples, to pool data across comparable experiments, and
to marshal more exhaustive numerical methods.
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