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SUMMARY Assume thar a k-element vector time series follows a wvector autoregressive
(VAR) model. Obtaining simultaneous forecasts of the k elements of the vector time series
is an important problem. Based on the Bonferroni inequaliry, Liitkepohl (1991) derived
the procedures which construct the conservative joint forecast regions for the VAR model.
In this paper, we propose to use an exact method which provides shorter prediction intervals
than does the Bonferroni method. Three tllustrative examples are given for comparison of
the various VAR forecasting procedures.

1 Introduction

Methods of using vector autoregressive (VAR) models for analyzing the dynamics
of economic systems have attracted considerable research interest in recent years.
This is as a result of the influential work of Sim (1980). VAR order selection,
estimation and model adequacy checking have been extensively discussed by
Litkepohl (1991, Chapters 2—5) and Hamilton (1994, Chapters 9-12).

The VAR model with order p for a k-element vector time series Y, = (Y,,,...,Y,;)’
can be written as

ALY, =v+u, (1)
where
AL)=L,—AL—-...-AJLl

is the matrix polynomial in the backward shift operator L, with A, (i=1,...,p)
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being the fixed (& x k) coefficient matrices. Also, v=(v,... ,v;) is a fixed (k x 1)
vector of intercept terms. The vector of innovations is denoted by u, and

u, ¥ N(0,L,)

where X, is non-singular. We also assume that the zeros of the determinantal
polynomial |A(L)| all lie outside the unit circle, i.e. the process is stationary. The
VAR(p) process in equation (1) has a moving average (MA) representation, where
Y, is expressed in terms of past and present vectors u, and the intercept vector v.
The MA representation of equation (1) is given by

Y=p+) ®u, 2
i=0
where p is the mean of the process and v=A(1)u. Furthermore ®; (1=1,2,...)
denotes fixed (k x k) MA coefficient matrices, which can be computed recursively
using

(DO — Ik and q),' = Z (D,‘,j A}. (3)
j=1

The h-step-ahead simultaneous forecast of the values of Y,,,,, (1<m <k) is one
of the major objectives of analyzing vector time series, as argued in Liutkepohl
(1991, p.1). Joint prediction intervals are particularly important to decision-
makers. Analogously to the arguments of Chatfield (1993), there are three reasons
why joint forecast regions might be calculated:

(1) to assess future risk and uncertainty;

(2) to design plans and strategies that can accommodate different scenarios
indicated by the forecast regions;

(3) to compare more thoroughly vector forecasts from different methods.

Unfortunately, VAR predictions are often only given as point forecasts (see, for
example, Boero, 1990; Edlund & Karlsson, 1993; Otter, 1990; Webb, 1995). This
might be because the computation of joint VAR forecast intervals requires the
evaluation of high-dimensional multivariate normal probabilities, which was
extremely difficult in the past. Liitkepohl (1991, p. 89) derived the approximate
joint prediction regions using the conservative Bonferroni method. However, in
recent years, we have witnessed a drastic improvement in the algorithms which can
compute high-dimensional multivariate normal probabilities (Genz, 1992; Joe,
1995). In this paper, we apply these advanced algorithms to compute the exact
joint prediction regions for VAR forecasts.

In the next section, the basic concepts of VAR interval forecasts will be outlined.
The proposed method for calculating the exact joint prediction intervals is described
in Section 3. In Section 4, we illustrate the VAR forecasting procedures using two
examples. Finally, some possible extensions of the proposed procedure to other
vector forecast models are discussed in Section 5.

2 VAR forecasts

Assume that the intercept vector v, the coefficient matrices A; and the variance
covariance matrix X, in equation (1) are known. Let Y,(%) be the A-step-ahead
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linear minimum mean squared error (MSE) forecast of Y,., at time . It is given
by Liitkepohl (1991, p.29) as

YW =v+AYE-1D+... +AY(h—Dp). 4)
The corresponding forecast error is (see Liitkepohl, 1991, p. 32)
h—1
e(h) =Y., — Y(h) = Y @, ;~N(0,Z,(h)) (5)
=0
where
h—1
(B = ) OL®;=/(0;h), 1<i,j<k). (6)
i=0

Let r and % be fixed. For 1 < m < k, define

Y, ,.(h
Syt el )
[Gpm ()]
where Y,,, , and Y, (k) are the mth elements of Y,., and Y,(%) respectively. Note
that the random vector S = (S,,...,S,)" has a multivariate normal distribution with
mean vector zero and variance covariance matrix X, = (p;), where

L O-l'_] (h)
[oi(h)ay;(W)]"

for 1<i,j<k. Hence the 100(1 —a)% joint prediction intervals for Y, ,,
(m=1,...,k) are

Pij 8)

Y, (h) + & [0, (B)]"? ©))
where the constant &, satisfies the implicit equation
Pr(|S,l S am=1.., B)=1—u. (10)

The determination of ¢, in equation (10) requires the computation of k-variate
normal probabilities, which was extremely difficult for £ > 6 in the past (Schervish,
1984). Liitkepohl (1991, p. 34) considered a conservative method to construct the
joint prediction intervals, which was based on the first-order Bonferroni inequality.
The 100(1 — 2)% conservative joint prediction limits for Y,,,, (m=1,...,k) are

K,m(h) i Z(l/Zk) [O-mm (h)] 3 (l 1)

where 2., is the upper o/(2k) percentage point of the standardized normal
distribution. The intervals in equation (11) are conservative, in the sense that they
provide a joint confidence level of at least 1 — . Furthermore, it is easy to show
that 2.5 = &,, which implies that the widths of equation (11) are greater than the
widths of equation (9). Hence, the forecast intervals in equation (11) are less
precise than are the forecast intervals in equation (9). Therefore, the exact joint
prediction intervals are preferred if the required computational effort is reasonable.

Finally, when the parameters in equation (1) are not known, a multivariate least-
squares procedure can be used to estimate them. The formulae to compute the
estimates of v, A; (1=1,...,p), E,, Y,(h), and X (k) are provided in Liitkepohl
(1991, pp. 63-68, 85-89).
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3 Exact prediction limits for VAR forecasts

In this section, the method which computes the exact joint prediction limits in
equation (9) for VAR forecasts is examined. When « and X, are given, we have

Pr(|s,,,l<5,,m=1,...,k):J J Flsrseness)dsy ... dse  (12)

Sa

where f(s;,...,s,) is the k-dimensional multivariate normal density function of
(S15...,S,). Numerically, the evaluation of the multivariate normal probabilities
of equation (12) has long been a very difficult task, which makes the conservative
Bonferroni method in equation (11) very attractive in the construction of joint
prediction limits for VAR forecasts. However, as the computation techniques and
computing power have drastically improved recently, the evaluation of equation
(12) becomes feasible even for k as large as 20 (Genz, 1992; Joe, 1995). The
following steps outline an algorithm which computes the exact prediction intervals
in equation (9) for VAR forecasts of Y,,,,, (m=1,... ,k).

Step 1. Inputv, A; ¢=1,...,p), &, hand a.
Step 2. Compute Y,(%) using equation (4).
Step 3. Evaluate X, (4) using equations (3) and (6).
Step 4. Standardize X, (k) using equation (8) and obtain the matrix X..
Step 5. Use the Secant method (Burden & Faires, 1989) to evaluate &, in
equation (10).
(a) Input two initial guesses to start the Secant algorithm. The sugges-
tions for these two guesses are 2, and 2.y .
(b) Compute equation (12) using the Genz (1992) algorithm, which is
explained in Appendix A.
Step 6. Use equation (9) to generate the required prediction intervals.

If the parameters in equation (1) are unknown then v, A; (i=1,...,p), X,, Y,(h),
X,(h), and X, in the algorithm described are replaced by ¥, A (G=1,...,p), &,
Y.(h), i_‘; (k) and ¥, respectively (refer to Section 2 for the computation of these
estimators).

With reference to Step 5(a), other numerical methods can be applied to solve
equation (10). However, the Secant method converges rapidly and requires no
derivative evaluation. For Step 5(b), the algorithm of Joe (1995) is an alternative
to that of Genz (1992). Both algorithms are efficient and highly accurate. (For
comparisons of these two algorithms, see Joe (1995).)

A copy of the FORTRAN-coded subroutine for the algorithm is available from
the first author on request.

4 Illustrative examples
Example 1

We consider the 95% forecast intervals for the individual components of a known
VAR(1) process with

0.5 0 0 2.25 0.75 105
A =|0.1 0.1 0.3 ], 2 =10.75 1.00 0.50 (13)
0 0.2 0.3 1.05 0.50 0.75
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TABLE 1. Joint forecast regions (95%) for forecasts of the VAR(1) process in equation (13)

Bonferroni Exact
Improvement
h m Interval Length Interval Length (%)
I 1 (—6.591, 0.591) 7.182 (—6.463, 0.463) 6.926 3.6
2 (0.806, 5.594) 4.788 (0.891, 5.509) 4.618 3.6
3 (1.027, 5.173) 4.146 (1.100, 5.100) 4.000 3.6
2 .4 (—5.515, 2.515) 8.030 (—5.358, 2.358) 7.716 3.9
2 (0.319, 5.581) 5.262 (0.422, 5.478) 5.056 3.9
3 (0.277, 4.863) 4.586 (0.366, 4.774) 4.408 3.9

Assume that Y,(1) = (—3.0,3.2,3.1)" and Y,(2) = (—1.50, 2.95,2.57)". Using equa-
tions (3) and (6), the forecast MSE matrices for 2= 1 and 2 are calculated as

L) =L, (14)

2.8125 1.0575 1.2825
r,(2) =X, +®X,® =|1.0575 1.2080  0.6790 |. (15)
1.2825  0.6790  0.9175

Following the algorithm in Section 3, &, =2.309 for 2=1 and &, = 2.301 for
h=2 are obtained. For the Bonferroni method, 2., =2.394. The results are
summarized in Table 1. It should be noted that all the lengths of the component
intervals in the exact regions are shorter than the respective lengths of the intervals
obtained by the conservative method. In fact, the improvements in length are
reported in the last column of the table.

Example 2

Here, four historical UK macro-economic time series are selected from Feinstein
(1972). They are GNP, unemployment rate (UNE), retail price index (RPI) and
wage index (WAG). All the series are taken from Feinstein (1972): GNP. column
9 of Table 1; UNE, column 6 of Table 57; RPI, column 1 of Table 65; and WAG,
column 3 of Table 65. The data set consists of 111 yearly observations from 1885
to 1965. To fit the model with the stationarity assumption, we apply the first
differencing to the logarithmic transformed data, except for the unemployment
rate. Only logarithmic transformation is used for the variable UNE. The resulting
series are denoted by Y,,, Y,,, Y,; and Y, respectively.

A Sims (1980) style of macro-economic VAR model with lag order p=4 is
considered. Following Liitkepohl (1991, Section 3.2), the mulivariate least-squares
estimation results of the system are given in Table 2. The one-period- and
two-period-ahead forecasts are obtained. Their corresponding approximate Z\ h)
matrices are computed. The results are summarized in Table 3. Applying the
algorithm as described in Section 3, the constant ¢, in equation (9) is found to
have values of 2.399 and 2.380 for 2#=1 and % = 2 respectively. The Bonferroni
coeflicient 2z, = 2.498 for x=0.05 and k£ = 4. The 95% joint prediction regions
for Y, (1) and Y, 10(2) are computed in Table 4 using the exact and the conservative
methods. Finally, additional results for time horizons of 7 = 1-6 are displayed in
Table 5. The relative interval width losses from using the Bonferroni method range

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



W/-S. Chan et al.

40

800 800 0£0— 800 0C'0— €20 100— 200 €e'0—9¢'0 000 020 8€'0— 200 [0°0— 200— 91’0 ¥1°0 100 6%0 10°0
80°0 910 8L0— ¢lI0 I1°'0— I2°0 20°0— 100 86'0— 8%'0 <200 910 01’0 61°0— 20'0— T0°0 19°0— 690 100 ¢€€0 200
0€'0— 8L°0— LS'8T 0¢'1— 10— 9%'C 8¢'0 SL'I— 08°'C 9¢v— LV O0— SE'1— G6'C— 92'C S00— ¥S'CT— GL'9 9%'¢— 060 <CO0CT— %0
800 €I'0 0€'T— 610 200 600 2O0— 0T'0— ¥e0— 20 €00 500 92'0— ¢C°'0 10°0— 100 €v’'0— 6¥v’'0 000 8¢0 €00

. 01X =.rw 2% MAN NM.\ ~< 4

BIEP JIWIOUO0D9-0JOBW M) 2] I0J UONBWINSI sarenbs-1sea] ‘7 4714V],

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Exact joint forecast regions 41

TABLE 3. Point forecasts results for the UK macro-economic data

Yo (1) 1) ¥i0(2) E))
0.06 0.22 —1.51 0.16 0.10 0.05 0.30 —2.55 0.23 0.17
0.22 —-1.51 2155 —-0.90 -0.35 0.42 —2.55 4884 —1.94 —1.19
0.05 0.16 —0.90 0.18 0.10 0.03 0.23 —1.94 027 0.17
0.05 0.10 —0.35 0.10 0.09 0.05 0.17 —1.19 0.17 0.18
TABLE 4. Joint forecast regions (95%) for forecasts of the UK macro-economic data
Bonferroni Exact
Improvement
h m Interval Length Interval Length (%)
1 (—1.122, 1.245) 2.367 (—1.075, 1.198) 2.273 4.0
12 (—11.373, 11.816) 23.189 (—10.914, 11.357) 22.271 4.0
3 (—1.026, 1.122) 2.148 (—0.984, 1.079) 2.063 4.0
4 (—0.718, 0.818) 1.536 (—0.688, 0.787) 1.475 4.0
1 (—1.314, 1.408) 2.422 (—1.250, 1.343) 2.593 4.7
il 2 (—17.035, 17.877) 34.912 (—16.211, 17.053) 33.264 4.7
3 (—1.268, 1.327) 2.595 (—1.206, 1.266) 2.472 4.7
4 (—1.018, 1.109) 2.127 (—0.968, 1.059) 2.027 4.7

TaBLE 5. Coefficients for constructing joint prediction regions
(95%) for the UK macro-economic data

Improvement
h Bonferroni 2, Exact (, (%)
1 2.498 2.399 4.0
2 2.498 2.380 4.7
3 2.498 2.370 5.1
4 2.498 2.358 5.6
5 2.498 2.358 5.6
6 2.498 2.362 5.4

from 4.0% to 5.6%, and are potentially significant from an economic point of view.
In summary, the overall performance of the exact method is superior in this
example.

5 Extensions

The procedure described in Section 3 can easily be extended to other Gaussian
vector forecasting models. In this section, we will briefly discuss its extension to
cointegrated processes and dynamic simultaneous eguations systems, which are
commonly used by economic forecasters.

5.1 Contegrated VAR processes

We call the &2-dimensional VAR(p) process in equation (1) cointegrated of rank r if
the matrix

§ £ A SRR (16)
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TABLE 6. Joint forecast regions (95%) for the Germany deutschmark exchange rate data

Bonferroni Exact
Improvement
h m Interval Length Interval Length (%)
1 (423.119, 436.942) 13.823 (423.224, 436.838) 13.614 1.5
1 2 (528.593, 533.372) 4.779 (528.630, 533.337) 4.707 1.5
3 (526.097, 531.862) 5.765 (526.141, 531.819) 5.678 15
1 (419.486, 438.810) 19.624 (419.380, 438.617) 19.237 2.0
2 .2 (527.886, 536.101) 8.215 (527.967, 536.020) 8.053 2.0
3 (525.184, 534.788) 9.604 (525.279, 534.694) 9.415 2.0

has rank r < k. The system is non-stationary and has (& — r) unit roots. Methods for
testing, estimating and forecasting cointegrated models are discussed in Lutkepohl
(1991, Chapter 11) and Hamilton (1994, Chapters 19-20).

When the parameters of the cointegrated VAR model are known, Liitkepohl
(1991, p.375) showed that equations (4)—(6) are still valid for calculating interval
forecasts for the cointegrated system. Furthermore, he also proved that the forecast
errors of the estimated process and the process with known parameters are
asymptotically equivalent. Therefore, for large samples, the unknown coefficient
matrices in equation (6) can be substituted by their estimates. For small-sample
situations, Reimers (1995) added a correction term to equation (6) to take into
account the effects of estimation. The approximate forecast MSE matrix for the
cointegrated VAR system is

£ -1 11k

Y(h)=) LD+ - Q(h) 17

i=0

where T is the sample size and the formulae for calculating Q(h) are derived in
Reimers (1995). Therefore, the exact joint prediction regions can be generated
using the algorithm in Section 3. For comparison purposes, we recalculate the
example of interval forecasts for the Swiss franc exchange via the deutschmark (D),
the price deflator of final demand in Germany (¢) and the price deflator of
final demand in Switzerland (P“*") in Reimers (1995). Let Y, = 100[In(D)],
Y,, = 100[In(P“)] and Y,; = 100[In(P“")]. The results are summarized in Table 6
and, as expected, the Bonferroni interval widths are larger. However, the differences
between the Bonferroni and exact interval widths are less drastic when compared
with previous examples.

5.2 Dynamic simultaneous equations models
A dynamic simultaneous equations system may have the form
ALY, =BL)X,+w (18)
where
AL)=A,—AL—... -AJD, BL)=B,—B,L—... —-B/L? (19)

and Y,=(Y,,,...,Y;,) is a vector of endogenous variables, X, = (X,;,... ,X,,) is
a vector of exogenous variables, A; and B, are (k x k) and (k x v) coefficient
matrices, respectively, and w, is a k-dimensional error vector.

The optimal A-step-ahead forecast of Y,,, and its forecast MSE matrix are

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Exact joint forecast regions 43

discussed in Litkepohl (1991, pp.334-338). Similarly, the corresponding joint
prediction regions can be obtained using the algorithm in Section 3.
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Appendix A: evaluation of the multivariate normal probability in
equation (12)

letZ=(,,...,Z,) ~N,(0,X) and let X be positive definite, to compute

G =P Z<&m=1,::.F)
(A1)

”

= [@m*|E]] "

( exp (- ;Z'E 'Z)dZ

o o

Genz (1992) proposed a transformation technique to evaluate equation (Al). Let
C = {¢;;} be a lower triangular matrix, such that CC'is the Cholesky decomposition
of X. Then, equation (Al) can be transformed to

G(&) =(ey —dy) J (e —dy).. \[ (er —dy) J dw,...dw, (A2)
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where
d =®(—C¢/eyy), elzq)(é/cll)

yz:q) l(d,'+w,‘(e,‘_d,)), izls--~3k_1

i—1 /
d,=‘1><<—5 T Z Ciiy/) / Cn)a 1=2,...,k
i=1 /
1—1 /
;=D i—Zc,jy,- //c,v, , =12 diwx 3R
y=1 /

and @ is the standard normal distribution function. The transformation in equation
(A2) enables us to compute equation (Al) efficiently. Genz (1992) reported that
even a simple Monte Carlo algorithm is very effective; other details of the algorithm
can be found in Genz (1992).
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