SOME METABABOLIC CHANGES IN NEWLY BORN PUPPIES OF DIABETIC BITCHES

'Hussein A. A. Abdel-Maksoud, 'Yakout A. Y. El-Senosy and 'Mohamed M.
Ghanem

Dept. Biochemistry and Dept Animal Med. Fac. Vet. Med. (Moshtohor)

Zagazig University / Benha Branch.

The present study is designed to explain some of the major metabolic complications in puppies of diabetic bitches. For this aim, twelve newly born puppies (n = 17) of six pregnant diabetic bitches and six non-diabetic ones were collected in El-Bayda pet animals clinic at Omer El-Mokhtar University - Faculty of Veterinary Medicine - Republic of Libya. Venous blood samples were collected from each puppy during the 75 hours after birth. The present data revealed hypoglycemia, hyperinsulinemia, hyperlactacidemia, hypocalcemia, hypomagnesemia, hyperbilirubinemia. Also, a significant increase was observed in hepatic function enzymes [alanine aminotransferase (ALT), asparate aminotransferase (AST) and gamma glutamyl transferasre (GGT)], alkaline phosphatase (ALP) and hematocrit values (PCV) in puppies of diabetic dams on comparison with the mean values of the puppies of nondiabetic ones. On the other hand, manganese (Mn), zinc (Zn) and copper (Cu) levels were non-significantly changed. Moreover, acid phosphatase (ACP), urea, creatinine and plasma immunoglobulins (IgG, IgA and IgM) concentrations were non-significantly changed. This study highlights the great risk of maternal diabetes on the newly born puppies.

INTRODUCTION

Diabetes mellitus (DM) is a state of chronic hyperglycemia. Many factors have been involved in the pathogenesis of DM including environmental, immunological and genetic. These factors may cause hyperglycemia by reducing endogenous insulin or by opposing its action. The lack of insulin leads to abnormalities of carbohydrate, protein and lipid metabolism.

The increased incidence of DM that is complicating pregnancy is of concern since it is associated with an increase in mortality and morbidity of the fetus and neonate (Whu, Y···). Despite the current improvement of diabetes care in pregnancy, neonatal complications are still more frequent than in the general population (Oberhoffer *et al*, 1997). Many of these complications are related to the severity of the maternal hyperglycemia during pergnancy (Weintrob *et al*, Y···) and to the metabolic status of the diabetic mother (Rosenn *et al*, Y···). Diabetes in pregnant females can be detrimental to her fetus for many reasons. First, she has an increased spontaneous abortion rate (Mills *et al*, 1994). Second, 7% to 4% prevalence of major congenital anomalies has been found in the newborns of diabetic dams mainly cardiovascular, central nervous and musculoskeletal systems. (Kitzmiller *et al*, Y···).

The major negative consequences of neonates of diabetic mothers are macrosomia, neonatal morbidities and respiratory distress syndrome Hod *et al*, 1991), hypoglycemia (Otaga, Y···), hyperbilirubinemia, disturbed hepatic function and hypocalcemia (Whu, Y···Y) and cardiomyopathy which

is secondary to the anabolic effect of fetal hyperinsulinemia (Cowett and Schwartz, ۲۰۰۲).

Accordingly, the aim of the present investigation is to study some of the major metabolic changes that may occur in the newly born puppies of diabetic bitches after birth.

MATERIALS AND METHODS

Animals

Twelve newly born puppies of six pregnant diabetic bitches and six non- diabetic ones were admitted at El-Bayda pet animals clinic at Omer El-Mokhtar University - Faculty of Vetrinary Medicine - Republic of Libya. Diabetes mellitus in bitches was diagnosed on the basis of the clinical signs and determination of fasting blood glucose level and insulin level. The major clinical signs observed were polyuria, polydipsia, obesity and cataract. All diabetic bitches had hyperglycemia, glucosuria and hypoinsulinemia.

Samples

Venous blood samples were collected from each puppy during the first YE hours after birth. Blood samples were withdrawn by a vein puncture from the cephalic veins according to **Kirk and Bistner** (YANA). The blood samples were divided into Y portions, the first on EDTA for whole blood analysis, the other one was allowed to coagulate at room temprature and then the clear sera were separated by aspiration after centrifugation at Y··· rpm for Y· minutes.

Analysis of Sera and Whole Blood Samples

The collected sera were freshly used for quantitative determination of glucose (Barham and Trinder, ۱۹۷۲), lactate (Tietz ۱۹۷۲), Insulin (Mullner, et

al, 1991), calcium (Grindler and King, 1977), magnesium (Bohuon, 1977), total bilirubin (Jendrassik and Grof, 1947), urea (Patton and Crouch, 1977), creatinine (Henry, 1975), immunoglobulin concentration (Macini, et al, 1970), gamma glutamyl transferase (GGT) {EC 7,7,7,7} (Persijn and Van, 1977), alanine amino transferase (ALT) {EC 7,7,1,7}, asparate amino transferase (AST) { EC 7,7,1,1}, alkaline phosphatase (ALP) {EC 7,1,7,1} (Belifield and Goldburg, 1971), acid phosphatase (ACP) {EC 7,1,7,7} (Zoss, 1945) and trace elements (Zn, Cu, and Mn) by using Pg atomic absorption spectrophotometer (Pye Unicum) model 7771 USA according to Fernandy and Kahen (1971). The whole blood EDTA samples used for determination of Packed cell volume (PCV) (Dacie and Lewis, 1970)

Statistical Analysis

The obtained data were statistically analyzed and the significant difference between groups was evaluated by t-test as explained by Snedecor and Cochran (۱۹۸۲). All differences were considered significant at p<٠,٠¢.

RESULTS

The recorded data in the provided tables revealed significant increases $(P<\cdot,\cdot\circ)$ in the mean values of serum insulin, PCV % (table \(\)), total bilirubin, AST, ALT and GGT (table \(\)) in the experimental group (newly born puppies of diabetic dams) compared to the control group (newly born puppies of non-diabetic dams). Moreover, there was a highly significant increase $(P<\cdot,\cdot)$ in serum lactate (table \(\)) and ALP (table \(\)) in the experimental group compared to control group.

On the other hand, there were significant decreases ($P<\cdot,\cdot\circ$) in the mean values of serum glucose (table 1), calcium and magnesium (table 7) of the experimental group (newly born puppies of diabetic dams) on comparison with the values recorded in the control (newly born puppies of non-diabetic dams).

Meanwhile the reported data showed non-significant increases in serum copper (table Υ), ACP (table Υ) and IgA (table ξ); and non-significant decreases in serum zinc, manganese (table Υ), IgG and IgM (table ξ) of the experimental group (newly born puppies of diabetic dams) on comparison with the values recorded in the control (newly born puppies of non-diabetic dams).

Table (1):

The mean values \pm S.E of Glucose, Lactate, Insulin and PCV% in newly born puppies of non-diabetic dams and of diabetic dams.

Parameter Groups	Glucose (mg / dl)	Lactate (mg / dl)	Insulin (µ IU /ml)	PCV %
Control (puppies of non – diabetic dams)	¥9,Λ• ± 1,Υ	£1,9 · ± 1, · 9	9,77 ± +,71	₩1,91 ± ۲,7•
Experimantal (puppies of diabetic dams)	0+,+F±1,+9*	79,8° ± 7,11**	11,79 ± 1,+1*	00,1X ± ٣,11*

^{*} Significantly different at P < ...

Table (*):-

The mean values \pm S.E of Calcium, Magnesium, Zinc, Copper and Manganese in newly born puppies of non-diabetic dams and of diabetic dams.

Parameters Groups	Calcium	Magnesium	Zinc	Copper	Manganese
	(mg / dl)	(mg / dl)	(µg/dl)	(µg/dl)	(μg/dl)
Control (puppies of non – diabetic dams)	۹,۳۰ ± ۰,۸۷	۲,٦٦ ± ٠,١٦	19,7·±·,0·	77,77 ± 1,1.	۸,۱・± ۰,۱۸

^{**} Highly significantly different at P < . , . \

Experimantal (puppies	7,71 ±	1 . A 1 tusk	111 4 . 11	7V.11 ± 1.£•	V Vo + . Y.
of diabetic dams)	· , ለ ም ^ቀ	1,• × ± •,11	1 A, V ± • , V 1	1 4,11 ± 1,2	v, v = ± ·, , ·

^{*} Significantly different at P < ...

<u>Table (٣):-</u>

The mean Values \pm S.E of Total bilirubin, AST, ALT, GGT, ALP and ACP in newly born puppies of non-diabetic dams and of diabetic dams.

Parameters Groups	Total bilirubin (mg / dl)	AST (U/L)	ALT (U/L)	GGT (U/L)	ALP (U/L)	ACP (U/L)
Control (puppies of non – diabetic dams)	•,97 ± •,•*	11, E+ ± ., 97	77,11 ± 1,17	Y,٣・± ・,٦٩	1,1V± •,•A	•,٦٩± •,•٢
Experimantal (puppies of diabetic dams)	て, % サ ・, アマ*	۳۸,٦۱ ± ۲,۱۰*	٤٧,1℃± ४,४४*	17,11± 1,11*	V,10± 1,•Y**	1,00±

^{*} Significantly different at P < ...

Table (٤):-

The mean values \pm S.E of Immunoglobulins (IgA, IgG and IgM) in newly born puppies of non-diabetic dams and of diabetic dams.

Parameters Groups	IgA (mg / dl)	IgG (mg/dl)	IgM (mg/dl)
Control (puppies of non – diabetic dams)	77,70 ± 7,11	771, £ + ± 7,11	٤0,77 ± ٢,17
Experimantal (puppies of diabetic dams)	V1, ζ· ± ۲, ٩·	70.,19 ± £,17	™9,11 ± 7,71

DISCUSSION

The recorded data revealed that there was hypoglycemia in the experimental group which coincided with the results obtained by Amina et al,

^{**} Highly significantly different at P < . , . \

observed in newly born infants of diabetic mothers. The detected hypoglycemia could be attributed to the hypertrophy and hyperplasia of the Langerhans islets, which might be connected with insulin resistance in pripheral tissues as a significant risk associated with diabetic mother in pregnancy (Dooley and Sugamori, ۲۰۰۱). This result was also confirmed by the opinion of Rakhab and Chernev (۲۰۰۰) who proved that the hypoglycemia of the infants of diabetic mothers is probably due to the high insulin levels caused by the hyperplasia of the pancreatic beta-cells that was normally found in these infants.

The observed hyperinsulinemia was similar to the recorded data in infants of diabetic mothers by Oberhoffer *et al, (\99\)* who showed a proportional increase in serum insulin with maternal glycated hemoglobin in them, it was also stated by Simmons, (\99\) that the hyperinsulinemia depended on the degree of maternal hyperglycemia which might be related to the primary source of glucose in the early postnatal hours is mobilized from the hepatic glycogen with appropriated catecholamins and glucagon response however this response is blunted in diabetic mothers. Furthermore the conversion of triacylglycerol to fatty acids and glycerol which is ultimately converted to glucose is prevented because of the high insulin and low catecholamine and glucagon levels in the circulation (Whu, \(\cdot\cdot\cdot\)).

Regarding the highly significant elevation of the serum lactate level, the presented data agreeded with the results of Pribylova and Dovrakova $(7 \cdot \cdot 7)$ who found a positive correlation between maternal glycated

hemoglobin and plasma lactate in all diabetic females and their infants. The recorded hyperlactacidemia might be attributed to that the maternal hyperglycemia resulted in fetal hyperinsulinemia thereby, increasing metabolic rate and oxygen demand which exceeds oxygen availability leading to fetal hypoxia and increase lactic acid (Amina *et al*, $\land \cdot \cdot \cdot$).

The recorded hypocalcemia, hypomagnesemia and increased ALP activity were similar to the results observed by Rakhab and Chernev ($\Upsilon \cdots$) who found a negative correlations between maternal hyperglycemia and serum calcium, magnesium and the activity of serum ALP. These changes could be probably secondary to the transient functional hypoparathyrodism that might be also secondary to the maternal and fetal hypomagnesemia

The recorded significant increase in serum total bilirubin and the activities of the hepatic function enzymes AST, ALT and GGT indicated the direct evidence for fetal hypoxia and polythycemia which are hepatic stressors as stated by Ylevin *et al*, ($\Upsilon \cdots \Upsilon$) who observed that the polythycemia resulted from increased hemoglobin which then increase bilirubin due to the elevated turnover of heme and decrease clearance of bilirubin

These changes could also be related to the increased hemolysis, elevated red cells masses, ineffective erythrobiosis, prematurity, increased bruising and trauma and retardation of enzymes system maturation (Weintrob *et al*, ۲۰۰۲).

The regarded sigificant increase in PCV % was similar to the data recorded by Cordero *et al*, (Y··Y) who stated that there were a significant increase in Hb, PCV, and RBCs in infants of diabetic mothers which might be attributed to the fetal hypoxia and polycythemia.

The detected non-significant changes in serum IgA, copper, ACP, IgG, IgM, zinc and manganese suggest that these changes could be independent on the maternal diabetes, which means that maternal diabetes of bitches is not associated with changes of these parameters in newly born puppies.

In conclusion, this study provided an insight on the great risk of maternal diabetes of bitches on their newly born puppies. Therefore, it is recommended that the thorough control of diabetes mellitus in pregnant bithches is crucial order to avoid the short-term complications in the newly born puppies.

REFERENCES

- 1. Amina, M., Azza, A., Hisham, A. and Khaled, F. (****). Some metabolic complications in infants of diabetic mothers. The Egy. J. Bio. 14: 111-177.
- Y. Barham, D. and Trinder, P. (۱۹۷۲). An improved colour reagent for the detrmination of blood glucose by the oxidase system. Analyst V9: 1 ξ γ - ξ 9.
- T. Belifield, D. and Goldburg, S. (1941). In Enzymes. 17th Ed. pp. 671. (Cited in Biochemical Kits).
- 5. Bohuon, C. (1977). Anal. Chim. Acta. V: ALL-ALY.
- o. Cordero, L., Treuer, S., Landon, M and Gabbe, S. (Y. T). Management of infants of diabetic mothers. Arch. Pediatr. Adolesc. Med. 107: Y£9-0£.
- 7. Cowett, R., and Schwartz, R. (Y., Y). The infants of diabetic mother. Pediatr.Clin. North. Am. £9: \\Y\\\"-Y\\\.
- V. Dacie, J. V. and Lewis, S. M. (\\alpha\varphi^o). In 'Practical Haematology oth Ed., Longman group limited, Churchill living stone, chapter \(\cdot\), pp. \(\tau\varphi\)

- ۸. Dooley, J. and Sugamori, M. (۲۰۰۱). Pregnancy outcome in aboriginal women with NIDDM in the Sioux Lookout Zone. Int. J. Circumpolar. Health ۵۷: ۳٥٩–٦٤.
- 9. Fernandy, F. and Kahen, H. (1941). Clinical methods for atomic absorption spectrophotoscopy. Clin. Chem. News 7: 75.
- 1. Grindler, E. M. and King, J. D. (1947). Rapid colorimetric determination of calcium in biologic fluids with methythymol blue. Am. J. Clin. Pathol. 94: 777.
- 11. Henry, R. (^{19γ}ξ). In' Clinical chemistry principles and techniques ' ^{7nd} Ed. Harper and Row:pp.οξ⁷.
- 17. Hod, M., Merlob, P. and Ovadia, J. (1991). Gestational diabetes mellitus: A survey of perinatal complications in the 1914. Diabetes $\xi \cdot : \forall \xi 9 \cdot .$
- 17. Kirk, R. and Bistner, S. (1944). In "Handbook of veterinary procedures and emergency treatment .oth Ed.W.B. Saunders Co., Philadelphia, London, Toronto, Mexico .pp. 70.
- 15. Jendrassik, L. and Grof, P. (19AT). Biochem. J. 797: AY-A9.
- Ye. Kitzmiller, H., Buchnan, T., Kjos, S. and Ratner, R. (Y.Y). Preconception care of diabetes, congenital malformatios and spontaneous abortion. Diabetes Care Y9: 015- Y.
- 17. Macini, G., Carbonara, A. O. and Heremans, J. E. (1970). Immunochemical quantitation of antigens by single radial immunodiffusion. Immunochem. 7: 770-70£.
- YV. Mills, J., Simpson, L., Driscoll, D. and Knopp, R. (199A). Incidence of spontaneous abortion among normal women and insulin-dependent diabetic women whose pregnancies were identified within YV days of conception. N. Engl. J. Med. TV9: YVV-YV.
- 1A. Mullner, S., Naubauer, H. and Koning, W. (1991). A radioimmunoassay for the determination of insulin in several animal species Insulin derivatives. J. Immunol. Meth. 15:: 711-19A

- 19. Oberhoffer, R., Tsng, R. and Miodovnik, M. (1997). Cardiac and extracardiac complications in infants of diabetic mothers and their relation to parameters of carbohydrate metbolism. Eur. J. Pediatr. 107: 1944-14.5.
- Y. Otaga, S. E. (Y. Y). The infants of diabetic mothers: Pregnncy as a tissue culture experience. Isr.G. Med. Sci. TV: OYE-TT.
- YI. Patton, C. F. and Crouch, S. R. (1974). Anal. Chem. 59: 575-79.
- YY. Persijn J. P. and van der Slik, W. (1977). A new method for the determination of gamma glutamyl transferase in serum. J. Clin. Chem. Clin. Biochem. 15: 571 Y.
- YT. Pribylova, H. and Dovrakova, L. (Y··T). Long-term prognosis of infants of diabetic mothers: Relationship between metabolic disorders in newborns and adult offsperng. Acta Diabetologica TT: T·-T9.
- YE. Rakhab, M. and Chernev, T. (Y···). Pregnancy out come (perinatal mortality and morbidity) in women with diabetes. Akush. Ginekol. Sofiia TY: YY-TT
- Yo. Rosenn, B., Miodovnik, M. and Tsand, R.(Y··Y). Common clinical manifestations of maternal diabetes in new born infants: implications for the practicing pediatrician. Pediatr. Ann. Yo: YYo-YY
- Y7. Simmons, D.(1999). Association between neonatal blood pressure and umblical cord insulin concentration. Diabet. Med. 15: 197-7. T.
- YV. Snedecor, G. W. and Cochran, W. G. (19AY). "Statistical methods" 7th Ed. The Iowa State Univ. Press, Anes. Iowa, USA.
- YA. Tietz N. (19AY): Determination of Lactate. Fundamentals of clin.chem.. Pp. 2+A, W.B. Sanders Comp.Londone, Philadelphia.
- 79. Weintrob, N., Karp, M. and Hod, M.(7..7). Short and long –range complications in offspring of diabetic mothers .J.Diabetes Complications 1:: 795–7.1

- w. Whu, P. Y. (۲. . w). Infant of diabetic mother: A continuing challenge for perinatal-neonatal medecine. Acta Pediatr. Sin. wv: wy-19.
- ۳۱. Ylevin, L., Rigg, A. and Marshall, R. (۲۰۰۱). Pregnancy and diabetes. Arch. Intern. Med. ۱ عند ۱۹۵۰ العام ۱۹۵ العام ۱۹۵۰ العام
- ۳۲. Zoss, D. W. (۱۹۸٤). Methods of enzymatic analysis. Am. J. Clin. Pathol. ٥٤: ٩٢-١٠٦.

الملخص العربي

بعض التغيرات الايضية في الكلاب المولودة حديثا لأمهات مصابة بداء السكرى حسين عبد المقصود على * , ياقوت عبد الفتام السنوسي * , محمد محمدى غانم ** قسمى الكيمياء الحيوية وه م طب الحيوان م بكلية الطب البيطري بشتهر جامعة الزقازيق * فرع بنها

صممت هذه الدراسة لمعرفة تأثير الاصابة بمرض الـسكرى لانـاث الكـلاب المواودة حديثا لذلك تم اختيار اثنى الموامل على بعض التغيرات الايضية في الكلاب المولودة حديثا لذلك تم اختيار اثنى عشر من عشائر اناث الكلاب بمستشفى البيضا للحيوانات الاليفة بكلية الطب البيطرى بجامعة عمر المختار بليبيا – قسمت الى مجموعتين كلا منهما تحتوى علـي سـتة كلبات الاولى امهات سليمة و الثانية مصابة بداء السكرى – جمعت عينات الدم مـن الكلاب المولودة خلال ال ٢٤ ساعة الاولى بعد الولادة. و قد اظهرت النتائج زيـادة معنوية فـي الانـسولين و حمـض الاكتيـك و البيليـروبين و نـشاط انزيمـات (الجاماجلوتاميل ترانسفيريز و الالانـين امينـو ترانـسفيريز و الاسـبارات امينـو ترانسفيريز و الاسـبارات امينـو الكالسيوم و الماغنسيوم . بالاضافة لذلك سجلت تغيرات غير معنوية في مستويات المنجنيز و الزنك و النحاس و الاسيد فوسفتيز و كـذلك البولينـا و الكريـاتينين و الاجسام المناعية بالسكرى ان لم يتم التحكم فيه على الصغار المولودين حديثا .