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Abstract

The atmospheric boundary-layer is the lowest 500-2000 m of the Earth’s atmosphere

where much of human life and ecosystem services reside. This layer responds to land

surface (e.g. buoyancy and roughness elements) and slowly evolving free tropospheric

(e.g. temperature and humidity lapse rates) conditions that arguably mediate and

modulate biosphere-atmosphere interactions. Such response often results in spatially-

and temporally-rich turbulence scales that continue to be the subject of inquiry given

their significance to a plethora of applications in environmental sciences and engi-

neering. The work here addresses key aspects of boundary layer turbulence with a

focus on the role of roughness elements (vegetation canopies) and buoyancy (surface

heating) in modifying the well-studied picture of shear-dominated wall-bounded tur-

bulence. A combination of laboratory channel experiments, field experiments, and

numerical simulations are used to explore three distinct aspects of boundary layer

turbulence. These are:

• The concept of ergodicity in turbulence statistics within canopies: It has been

long-recognized that homogeneous and stationary turbulence is ergodic, but less is

known about the effects of inhomogeneity introduced by the presence of canopies

on the turbulence statistics. A high resolution (temporal and spatial) flume ex-

periment is used here to test the convergence of the time statistics of turbulent

scalar concentrations to their ensemble (spatio-temporal) counterpart. The find-

ings indicate that within-canopy scalar statistics have a tendency to be ergodic,
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mostly in shallow layers (close to canopy top) where the sweeping flow events ap-

pear to randomize the statistics. Deeper layers within the canopy are dominated

by low-dimensional (quasi-deterministic) von Kármán vortices that tend to break

ergodicity.

• Scaling laws of turbulent velocity spectra and structure functions in near-surface

atmospheric turbulence: the existence of a logarithmic scaling in the structure

function of the longitudinal and vertical velocity components is examined using

five experimental data sets that span the roughness sub-layer above vegetation

canopies, the atmospheric surface-layer above a lake and a grass field, and an

open channel experiment. The results indicate that close to the wall/surface, this

scaling exists in the longitudinal velocity structure function only, with the vertical

velocity counterpart exhibiting a much narrower extent of this range due to smaller

separation of scales. Phenomenological aspects of the large-scale eddies show that

the length scale formed by the friction velocity and energy dissipation acts as

a dominant similarity length scale in collapsing experimental data at different

heights, mainly due to the imbalance between local production and dissipation of

turbulence kinetic energy.

• Nonlocal heat transport in the convective atmospheric boundary-layer: Failure

of the mean gradient-diffusion (K-theory) in the convective boundary-layer is ex-

plored. Using large eddy simulation runs for the atmospheric boundary layer span-

ning weakly to strongly convective conditions, a generic diagnostic framework that

encodes the role of third-order moments in nonlocal heat transport is developed

and tested. The premise is that these nonlocal effects are responsible for the inher-

ent asymmetry in vertical transport, and hence the necessary non-Gaussian nature

of the joint probability density function (JPDF) of vertical velocity and potential

temperature must account for these effects. Conditional sampling (quadrant anal-
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ysis) of this function and the imbalance between the flow mechanisms of ejections

and sweeps are used to characterize this asymmetry, which is then linked to the

third-order moments using a cumulant-discard method for the Gram-Charlier ex-

pansion of the JPDF. The connection between the ejection-sweep events and the

third-order moments shows that the concepts of bottom-up/top-down diffusion,

or updraft/downdraft models, are accounted for by various quadrants of this joint

probability density function.

To this end, future research directions that build upon this work are also discussed.
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Introduction

1.1 Background and motivation

Almost all problems encountered in natural and engineered environments involve the

flow of a fluid, and almost all such flows exhibit aspects of turbulence. Turbulent

flows are chaotic and complex fluid motions (consider the smoke rising from a fac-

tory stack, flow of a river, wind flow between buildings and trees, or the wake of a

ship or aircraft), and their adequate characterization has important implications on

improving human well-being. For instance, the design of urban infrastructure and

river flow management, air pollution mitigation and atmospheric chemistry, water

and carbon exchange between the land surface and the overlying atmosphere, con-

vective rainfall events and flash flood risk management, seed dispersal and gene flow

are some settings in environmental sciences and engineering where turbulent flow of

air and water is a readily observable phenomenon. While resolving such problems

requires an appreciation of their unique attributes, the fundamental nature and com-

plexity of turbulent flow in all of these contexts bears many similarities in such a

manner that advances in one problem lend themselves to the others. This relevance
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of turbulent flow to such diverse settings has traditionally invited contributions to its

literature from mathematicians and physicists, hydrologists, oceanic and atmospheric

scientists, environmental engineers and scientists, and mechanical and aeronautical

engineers, among others. Nevertheless, owing to its complex multiscale nature, the

topic of turbulence remains an active research venue. It is considered prototypical

of systems that are far from equilibrium, thereby making turbulence a useful anal-

ogy to many human systems (e.g. economic time series). In natural environments,

boundary conditions introduce additional difficulties in comparison to controlled lab-

oratory and/or numerical experiments. Of particular interest here is turbulent flow

close to a boundary, often referred to as smooth or rough wall-bounded flow and

where a boundary-layer emerges as a result of boundary conditions on the flow ve-

locity components. These are the no-slip and no-penetration conditions, i.e. both

the longitudinal (streamwise) and vertical (wall-normal) fluid velocity components

are zero at the wall/boundary. Such flow configuration is well-studied in laboratory

channel flows and numerical experiments, but mapping its arguments to atmospheric

flows close to the land surface is still inconclusive. This is the central tenet of this

dissertation.

Unlike most boundary layers in engineering applications, the atmospheric boundary-

layer (ABL) develops as a result of a combined effect of frictional (exerted by the

land surface) and Coriolis (Earth’s rotation) forces on large-scale atmospheric mo-

tion, often in the presence of density stratification (Monin, 1970). The overland ABL

typically extends from the surface to „1-2 km in depth, and is therefore dynami-

cally coupled to land surface processes (see Fig. 1.1), where mechanical (shear) and

thermal (buoyancy) generation (or destruction) of turbulence play a central role in

shaping the diurnal biosphere-atmosphere interactions (Garratt, 1994). Turbulence

in the ABL is responsible for vertical mixing of momentum, heat, and other scalars

(e.g. CO2, H2O, O3), which in turn, dictates hydrological (e.g. rainfall) (Manoli
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et al., 2016), physico-chemical (e.g. air pollution and aerosol deposition and chem-

istry) (Huang et al., 2014), and ecological (ecosystem function and activity) (Huang

et al., 2015) processes. However, the practical importance of turbulence is often met

with the lack of its explicit resolution in coarse-scale numerical weather prediction

(NWP) and air quality models, hence emphasizing the need for its parametrization in

the ABL (Mellor and Yamada, 1982). Besides the computationally-taxing large eddy

simulation (LES) models, which themselves do not fully resolve all turbulence scales,

the Reynolds-averaged Navier-Stokes (RANS) equations remain the most common

and practical modeling approach to predict mean profiles (e.g. momentum and scalar

fluxes) in the ABL. Essential to these closure models are the second- and third-order

turbulence statistics, such as velocity and scalar variances, skewness, and two-point

correlations (Banerjee et al., 2015; Li et al., 2016). The use of statistical moments

of turbulence and their connection to the scales of motion (eddy size) has a long

history of successful applications in ABL flows (e.g. Deardorff, 1966; Zeman and

Lumley, 1976; Ghannam et al., 2017a). However, the perspective that the verti-

cal structure of the ABL (Fig. 1.1) consists of a surface layer („100 m above the

ground), well-mixed layer (few hundreds of meters), and entrainment zone (tens of

meters) each with distinct and well-studied scaling laws is often challenged when i)

the existence of roughness elements such as tall vegetation canopies alters the tur-

bulence properties compared to predictions of surface layer similarity theory (Monin

and Obukhov, 1954), and ii) the local turbulence statistics at a given height within the

ABL are determined by all scales of motion, i.e. transport processes of momentum

and scalars are nonlocal. In other words, modeling ABL flows as canonical turbu-

lent boundary layers (vertically-layered wall-bounded turbulence), consisting of an

(i) inner region: „ few millimeters above the smooth/rough wall where the action of

viscous dissipation is significant, (ii) inertial/intermediate region: „ several tens of

meters above the inner region in the ABL where the mean velocity follows a logarith-
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mic vertical profile, and (iii) outer region: „ several hundreds of meters above the

inertial sublayer, can all be challenged when surface heating and roughness elements

introduce modifications to these classical scaling laws. This dissertation is dedicated

to explore how these distinct features of ABL flows shape the structure and scaling

laws of turbulence in meteorological and ecological contexts. In this respect, labora-

tory water channel experiments, field measurements, and numerical simulations are

used here to gradually navigate different compartments of ABL flows, namely tur-

bulence aspects within vegetation canopies, in the roughness sub-layer (RSL) above

vegetation and atmospheric surface layer (ASL) above smooth/rough surfaces, and

in the mixed layer (ML) where buoyancy effects are most pronounced (Fig. 1.1).

1.2 Overview

Figure 1.1 provides the outline and context of this dissertation, emphasizing the

connection between the fast time scales („ seconds to minutes) that characterize

turbulent flows in the ABL and the slower (daily to inter-annual) land-atmosphere

exchange of energy and matter. The integrated effect of ABL flows therefore dictates

the feedbacks between terrestrial ecosystems and the climate, and hence a fundamen-

tal understanding of the response of the ABL to surface effects is warranted to quan-

tify such feedbacks. The work here focuses on turbulent flow in different layers of the

ABL, and proceeds from within-canopy turbulence in Chapter 2, to the scaling laws

and structure of near-neutral flows in the roughness sublayer (Chapter 3), and the

nonlocal transport of heat in the mixed layer under convective (buoyancy-dominated)

ABL flows in Chapter 4. Specifically, the organization is as follows

• Chapter 1 introduces the importance of understanding turbulent flows in the con-

text of land-atmosphere interactions. It also introduces salient features of ABL

flows that challenge the classical picture of shear-dominated wall-bounded turbu-
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Figure 1.1: Left: Schematic diagram of the structure of the ABL in the presence of
tall roughness elements (vegetation canopies) and when surface heating (buoyancy)
is active. This is the focus of the dissertation here (see citations in the left panel
within and above the canopy and in the mixed layer of the ABL). Right: connection
between turbulence in the ABL and biosphere-atmosphere exchange (water and car-
bon transport in the soil-plant-atmosphere continuum) to emphasize their coupling
at multiple timescales. Key: ABL=Atmospheric Boundary Layer.

lence, namely the existence of tall roughness elements that are porous and surface

heating (buoyancy). This sets the discussion into a need to probe the vertical

structure of the ABL in contrast to canonical turbulent boundary layers, hence

establishing the three subsequent chapters as different aspects that advance the

understanding of boundary-layer meteorology.

• Chapter 2 discusses the role of flow inhomogeneity introduced by vegetation

canopies in affecting the turbulence statistics in the context of the validity (or lack

thereof) of the ergodic hypothesis. A high-resolution laser-induced fluorescence
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flume experiment is used to examine whether the temporal and spatial statistics

of scalars within the canopy converge to each other. The results are published in

Ghannam et al. (2015).

• Chapter 3 focuses on the scaling laws of turbulence directly above vegetation

canopies. Several field experiments conducted in the roughness-sublayer of dense

canopies are contrasted with atmospheric surface layer experiments under near-

neutral (negligible buoyancy) conditions to explore how the additional length scales

introduced by canopies affect the correlation structure and scaling laws of turbulent

velocities. The results are under peer review in the Journal of Atmospheric Sciences

(Ghannam et al., 2017b).

• Chapter 4 isolates the effects of roughness elements and retains surface forcing

only as it pertains to the role of buoyancy in the failure of the gradient-diffusion

(K-theory), and hence in nonlocal transport of heat in the mixed layer. Numerical

Large Eddy Simulation (LES) runs spanning unstably stratified to convective ABL

flows are used to examine the role of large-scale eddies of size comparable to the

ABL depth in this nonlocal transport. The results are published in Ghannam et al.

(2017a).

• Chapter 5 summarizes these findings and provides an outlook on future research

directions that build upon these published results.

The coupling between ABL flows and land-atmosphere interactions also necessitated

some understanding of surface hydrology and ecology to complement the work at

much longer time scales. These complementary aspects of biosphere-atmosphere

exchange already appeared in Ghannam et al. (2016) and Ghannam and Konings

(2017) and are not included in this dissertation.
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1.3 Intellectual merit and broader impacts

The parametrization of ABL turbulence in current mesoscale and climate models

relies on Mellor-Yamada schemes that use a ‘master’ length scale (often selected

as the distance to the boundary) for describing variations in the production, dissi-

pation, and redistribution of energy, momentum and scalars. This convenience is

driven by the fact that the scales of ABL flows and their connection to the statistics

of turbulence remain challenging, especially in contexts of predictive modeling in

the presence of roughness elements. However, the nonlocal character of momentum

and scalar transport within the ABL (shortcomings of K-theory) has necessitated a

global perspective on ABL flows, where the flow statistics are affected by all scales

of motion including entrainment and roughness sublayer effects. Addressing these

challenges requires a combination of field and laboratory measurements in addition

to models to examine different features of ABL flows. Here, several data sets pre-

sented an opportunity to investigate the effects of dense canopies on flow features,

and combined with the mathematical and statistical theory of turbulence, unfolded

the scaling laws that are distinct from typical surface layer turbulence used in Mellor-

Yamada schemes. The role of coherent structures such as von Kármán vortices and

the ejection-sweep events in determining the dispersion of scalars within canopies

is an important attribute that is relied upon here to reduce the dimensions and

complexity of the problem.

The outcome of this work can be directly used to enhance the representation

of turbulence in numerical weather prediction (NWP) and air quality models by

introducing multiple length scales needed to capture the rich dynamics associated

with ABL and canopy flows. Problems related to spore dispersion within vegetation

canopies, heat and momentum flux parametrization, ozone deposition onto forests,

and nutrient transport within submerged vegetation are particular applications that
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benefit from such improvements. These outcomes, used as dissertation chapters

here, are (or will be) published in peer-reviewed academic journals and presented at

international conferences.
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2

The spatio-temporal statistical structure and
ergodic behavior of scalar turbulence within a rod

canopy

2.1 Introduction

The ergodic hypothesis was first introduced by Boltzmann in 1871 in the study of

equilibrium statistical mechanics. It states that in the course of sufficiently long

time, the phase trajectory of a closed system of interacting particles described by

a macrostate (distribution of microstates), revisits (or passes arbitrarily close to)

every phase point in the manifold (Landau and Lifshitz, 1980). In other terms, the

time average of some observable settles to an equilibrium value when the system

‘forgets’ its initial state, and becomes equivalent to a true (ensemble) average. In

the context of turbulent flows, the ergodic hypothesis is often invoked when inquiring

about the statistics of an ensemble from routinely measured temporal statistics in

field or laboratory settings. In its strictest definition within the statistical fluid

mechanics community, the hypothesis states that the temporal/spatial statistical

moments converge to those of an ensemble of statistically stationary/homogeneous
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flows when the sampling is sufficiently long for the flow to experience all possible

independent realizations (Monin and Yaglom, 1971; Stanisic, 1985). Hence, when

the flow establishes a statistically steady state, temporal and/or spatial statistics

of a measured turbulence quantity such as concentration converge to those of an

ensemble by averaging over intervals much longer than the integral scales, provided

the corresponding auto-correlation function decays to zero at finite lags (and remains

so).

Numerous studies have examined the validity, or lack thereof, of the ergodic

hypothesis across a wide range of turbulence problems, both theoretically and exper-

imentally. Support for the hypothesis has been reported using direct numerical sim-

ulations (DNS) of the Navier-Stokes (N-S) equations for statistically stationary and

homogeneous flows (DaPrato and Debussche, 2003; Galanti and Tsinober, 2004). In

laboratory studies, the ergodic hypothesis has also been explored using velocity time

series measurements in a channel with repeated independent yet similar experiments

(Lesieur, 1990), while Mattingly and Weinan (2001) and Constantin et al. (2013)

addressed its theoretical validity on N-S equations in a stochastic setting. In field

measurements, Higgins et al. (2013) and Chen et al. (2014) recently examined the

minimum requirements of ergodicity of atmospheric water vapor measurements over

a land-lake interface and that of eddy correlation flux measurements, respectively.

Nevertheless, the lack of simultaneous temporal and spatial realizations, especially

inside canopies, largely limits proper testing of the validity of the ergodic hypothesis.

Time averaging thus remains the common framework when reporting the statistical

properties of atmospheric turbulence with spatial patterns retrieved using Taylor’s

frozen turbulence hypothesis (Taylor, 1938a) whenever applicable (Higgins et al.,

2012).

Turbulence near and within roughness elements such as canopies are drawing

increased interest given their prevalence in biosphere-atmosphere studies of gas ex-
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change (e.g. CO2 and water vapor transport) (Finnigan, 2000a), ecological studies

of seed and pollen spread (Nathan et al., 2002), and air quality studies such as the

transport of ammonia (Sutton et al., 1995), to name a few. Turbulent flows within

canopies exhibit features that distinguish them from their classical boundary layer

counterpart. The work that the flow exercises against the foliage drag produces tur-

bulent kinetic energy (TKE) by wakes that leads to a spectral short-circuiting of

the energy cascade (Finnigan, 2000a; Poggi et al., 2006, 2008). Previous flume and

flow visualization experiments showed that the organized vortical motion within the

deep layers of a rod canopy originate from quasi two-dimensional von Kármán vor-

tex streets (Poggi et al., 2004c,a, 2011). The shedding frequency of these vortices is

encoded in the classical dimensionless Strouhal number pSt “ fdr{uq, where f is the

vortex shedding frequency, dr is a characteristic length scale of the obstacle (here rod

diameter of the model canopy), and u is the mean streamwise velocity. The impact of

the aforementioned canopy-induced phenomena on the spatio-temporal statistics and

possible ergodic behavior of passive scalar statistics remains unexplored and frames

the scope of this work. The usefulness of such a discussion is evident when interpret-

ing the statistical moments of turbulence quantities measured in laboratory and field

campaigns as representative of theoretical ones, and to the subsequent comparison

of such measurements with simulations or models. In essence, the gap between the

temporal measurements at a point and the spatio-temporal extent of the equations

of motion governing fluid flows requires an understanding of the conditions under

which the two converge.

To this end, within-canopy laser induced fluorescence (LIF) measurements of dye

concentration are used to examine aspects of the ergodic structure of concentration

statistics at two different depths. The image processing of LIF measurements pro-

vides a practical framework for the concept of ‘similar experiments’ where spatial

and temporal fields are used as proxies for multiple experiments repeated under sim-
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ilar external forcing. Spatial realizations at a time and temporal realizations at a

point are discussed through the corresponding correlation functions, integral scales

and statistical independence in comparison to characteristic time and length scales

associated with physical phenomena such as the size and frequency of von Kármán

vortex streets, and the mean return period of sweeping events from the canopy top.

The Kolmogorov-Smirnoff (KS) statistical test is used to evaluate the degree of con-

vergence of each of the spatial and temporal statistics to those of an ensemble of

realizations constructed from statistically quasi-independent events. This evaluation

determines whether the constructed ensemble distribution represents a transposi-

tion of temporal to spatial statistics and vice versa. Such a transposition is also

explored by computing a local eddy velocity that communicates within-canopy tem-

poral realizations at a given location to downstream locations but with finite time

lag. Using cross-correlation analysis of concentration time series at two points in

the canopy space, a local advection velocity can also be retrieved and compared to

published Laser Doppler Anemometry (LDA) measurements conducted for the same

rod-canopy setup (Poggi et al., 2004c).

2.2 Experimental Facilities

The data used in this work were collected from an open channel flow experiment

with canopy-like roughness introduced as vertical rods mounted to the bottom wall

of the channel. The flume configuration, the rod canopy, the acquisition of the scalar

concentration time series, and the data processing are presented elsewhere (Poggi

et al., 2002, 2004c,a, 2008; Poggi and Katul, 2006). In brief, the experiment was

carried out in a large rectangular constant head recirculating channel, 18 m long,

0.9 m wide, and 1 m deep with glass side walls to permit the passage of laser light.

The rod canopy was composed of vertical stainless steel cylinders 0.12 m tall (“ h)

and 4ˆ 10´3 m in diameter (“ dr), arrayed in a uniform square pattern at np“ 1072
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rods m´2, where np is the canopy density defined as the number of rods per unit

ground area. Using h, dr , and np , the effective frontal area index is 0.81 m2 m´2.

The large np resulted in Cd « 0.3 comparable to those reported for agricultural crops

and dense forests (Katul et al., 2004).

The local instantaneous dye concentration in a plane parallel to the channel bot-

tom was measured using the laser-induced fluorescence (LIF) technique. The concen-

tration measurements were conducted by (i) injecting Rhodamine 6G as a tracer, (ii)

providing a horizontal light sheet between two lines of rods using a lens system, and

(iii) recording a time sequence of images. The light source was provided by a 300 mW

continuous fixed wavelength ion-argon laser (Melles Griot mod. 543-A-A03), and the

images were recorded at a frequency of 30 Hz using a color CCD (Charge-Coupled

Device) video camera (Poggi and Katul, 2006; Poggi et al., 2006). Digital movies

with a spatial resolution of 170ˆ 10´6 m were collected at two levels: z{h “ 0.2 and

z{h “ 0.5, where z is the vertical distance referenced to the channel bottom. Three

72 s video sequences for each of the two depths were then used to compute instan-

taneous two-dimensional planar concentration. Throughout, the heights z{h “ 0.2

and z{h “ 0.5 are referred to as ‘deep’ and ‘mid-canopy’ layers. In addition, the

measurements were collected at two bulk canopy Reynolds numbers, Re˚ “ u˚h{ν of

6000 and 12000, where u˚ “ p´u1w1q1{2 is the friction velocity measured at z{h “ 1,

primed quantities are turbulent excursions, and the overbar indicates time averaging

over the sampling duration. The results for the two Reynolds number were similar

and the subsequent analysis uses only the Re˚ “ 6000 dataset.

It is noteworthy that while the sampling resolution is much higher in space than

in time (around 15 times), the temporal sample size is much longer and thus time

statistics should have higher convergence. Figure 2.1 shows the ensemble-averaged

temporal and spatial spectra of the measured concentration series (z{h “ 0.2), where

the latter was transformed from a wavenumber to frequency domain by the inde-
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pendently measured spatially and temporally averaged velocity reported elsewhere

(Poggi et al., 2004c). Clearly, the spatial spectrum resolves much higher frequen-

cies than its temporal counterpart but the two have similar limited ‘scaling’ at the

overlap frequency. Hence, the ensemble of spatio-temporal realizations of concentra-

tion measurements covers a wide range of turbulent scales that are not necessarily

overlapping for most frequencies.

2.3 Methodology

Because canopy flows are inhomogeneous in z , it is unlikely that ergodicity applies

in a manner similar to previously studied cases obtained for flows with homogeneous

coordinates (DaPrato and Debussche, 2003; Galanti and Tsinober, 2004). However,

connections between temporal and spatial statistics for such a complex flow may still

be explored for some distance from the boundary (i.e. in a plane parallel to the

mean flow at a given z{h), and at some position far from canopy elements. This is

the main guiding principle for the analysis conducted here. Two different aspects of

scalar concentration statistics are analyzed at each z{h: one that is based over the

entire planar flow field at a certain moment in time t ; and another for one position

in space over a long period of time. If canopy scalar turbulence is ergodic, these

two types of statistics should converge. Lack of convergence can also be viewed

as evidence against the ergodic hypothesis (operational or otherwise strict) within

canopies. However, convergence of these two types of statistics cannot be used as

evidence for the validity of ergodicity as such convergence is only necessary but not

sufficient.

The LIF images cover one rod spacing in the streamwise direction. Hence, the

spatio-temporal measurements are confined to what is referred to hereafter as the

‘one-cell configuration’ - a square domain between four corner rods. This one-cell

configuration occurs periodically in uniformly-spaced dense canopies, and closely

14



resembles a domain with homogeneous coordinates for the flow field. Within such a

configuration, once the flow impinges on such a cell, wakes are generated behind the

upstream rods and unless disrupted by a sweeping event from the canopy top, tend to

grow in size until experiencing collisions with their downstream rods counterpart. It

is this alternating character of persistent and spatially coherent von Kármán vortex

streets and sweeping events that the current work seeks to examine as to how it

alters the concentration statistics in general and necessary conditions for ‘operational’

ergodicity in particular. The spatial dimension of the planar images is 171 ˆ 221

(longitudinal x lateral) locations sampled 2100 times (around 72 s). While the same

experiment is repeated three times at each of the two depths (z{h “ 0.2 and z{h “

0.5), our analysis showed no significant differences among the replicates and the

subsequent discussion illustrates the results from one experimental run at each of

the two z{h.

The expansive dataset (array of 171ˆ 221ˆ 2100) can be viewed as two configu-

rations under similar external flow conditions (uniform water level, steady flow rate,

fixed rod arrangement, and comparable initial conditions for dye releases). The first

is a series of spatial realizations at each moment in time (i.e. 2100 ˆ 221 spatial

series each of length 171 points), while the second is 171ˆ 221 spatial locations that

sample a concentration time series for about 72 s.

When discussing integral (temporal or spatial) scales of the flow, concentration

excursions (C 1) from the local (temporal or spatial) mean are used instead of con-

centration differences (∆C) so as to compare with well-established length and time

scales associated with canopy turbulence and eddy sizes. Also, the maximum integral

length and time scales are used as surrogates for delineating statistical independence

of spatial and temporal realizations. While not necessarily exact, the choice of the

maximum integral timescale (out of 171x221 available scales) to separate temporal

events and maximum length scale (out of 221x2100 available scales) to separate spa-
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tial events may warrant independence. Such maximum values of length and time

scales are 5 ´ 10 times their corresponding average value. When evaluating sev-

eral operational aspects of ergodicity (mainly the KS test for distributions), it is

more convenient to consider spatial or temporal differences in LIF concentration

(∆C) (Galanti and Tsinober, 2004) instead of concentration excursions from an ar-

bitrarily set average for both configurations. The choice of concentration difference

(in time or space) rather than absolute concentration excursions eliminates some

potential effects of non-stationarity and inhomogeneity in the mean concentrations

and dominant low frequency/wavenumber scales. Also, LIF measures light intensity

rather than absolute concentration and any minor differences in background light

intensity across experiments might become less relevant to concentration differences.

The differencing operation itself tends to partly ‘de-correlate’ the series (at least

less correlated than C 1) (Katul et al., 2001), which then reduces its integral scales

when constructing ensembles and convergences of spatial and temporal averaging to

ensembles.

Figure 2.2 shows typical 2-D images at the two depths during periods where

the flow is dominated by von Kármán vortices along with a time series of BC{Bt «

∆C{∆t and uBC{Bx « u∆C{∆x, where u is the measured planar- and time-averaged

streamwise velocity at the two depths (0.08 and 0.1m{s at z{h “ 0.2 and z{h “ 0.5,

respectively) presented elsewhere (Poggi et al., 2011). Here, ∆t “ p1{30q s and

∆x “ 170ˆ 10´6 m. The probability density functions (pdf) of these series (see

bottom panel of Fig. 2.2) exhibit a wider spread, particularly in time, relative to

a standard Gaussian distribution. The discrepancies between the two distributions

can be attributed to the use of the mean velocity rather than the time series of the

local velocity, where the former tends to mask extreme events and therefore misses

the tails in the distribution, yet constitutes the basis of Taylor’s frozen turbulence

hypothesis.
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2.4 Results and Discussion

To address the study objective, the spatio-temporal ensemble at the deep and mid-

canopy layers must first be constructed from sub-sampling the differenced concentra-

tion (∆C) series at each z{h so as to ensure replications of independent realizations.

Next, the temporal pdf at each location (and z{h) and the spatial pdf at each moment

in time (and z{h) are compared against the ensemble. It is for this reason that the

integral time and length scales of C are first computed and discussed, followed by the

construction of the ensembles of ∆C at each z{h. Comparisons between spatial or

temporal statistics of ∆C to the constructed ensemble pdf are also presented based

on the KS test. The transposition of spatial statistics to their temporal counterparts

is further explored (at each z{h) by computing local eddy velocity that communicates

time realizations at a given location to downstream locations but with finite time

lag. Using cross-correlation analysis, a local advection velocity was retrieved and its

statistics are compared to independent LDA velocity measurements conducted for

the same configuration and z{h as reported elsewhere (Poggi et al., 2004c).

2.4.1 Integral scales

The integral timescales of C over the spatial domain (top panel in Fig. 2.3) show

longer temporal memory near the obstacles compared to all other downstream loca-

tions (for each z{h). Also, longer memory prevails in the deeper layer when compared

to its mid-canopy counterpart. The maximum correlation in time was 3.2 and 1.4 s

in the deep and mid-canopy layers, respectively. This result is not surprising given

that the vortex streets in the deeper layer persist longer because they are less fre-

quently disrupted by sweeping events from aloft. To the contrary, integral length

scales are somewhat larger in the mid-canopy region. Also, there is no difference

between near-obstacle spatial correlation and elsewhere (see Fig. 2.3) at a given z{h.
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The maximum spatial correlation is around 5ˆ 10´3 m (rod spacing is 30ˆ 10´3 m

and rod diameter is dr “ 4ˆ 10´3 m) and such high correlation values appear to

occur during sweeping events that perturb the dominant vortical motion. Figure 2.4

shows the corresponding probability density functions of the integral time (τ) and

length (l) scales normalized by h{u˚ (where h “ 0.12 m is the canopy height and

u˚ “ 0.045 m s´1 is the friction velocity at the canopy top). The timescale h{u˚

(« 2.67 s) is a measure of periodicity of sweeping events from the canopy top, and

it often exceeds the correlation time τ at the two z{h (i.e. sweeps frequently disturb

persistent vortex streets).

The ensemble pdf was constructed by taking a sub-sample of the ∆C data set.

This subset consists of all spatial and temporal ∆C realizations that are separated

by the maximum auto-correlation length and time scales (inferred from C not ∆C),

so that each point may be viewed as an independent sample. Both ensembles for the

two z{h are shown in Fig. 2.5. The ensemble pdf at z{h “ 0.2 has a heavier tail

than that at z{h “ 0.5. It is to be noted that the integral statistics of ∆C (both

spatial and temporal) are much smaller than their C counterparts, so that using

the maximum integral scales of C when constructing the ensemble ensures stronger

statistical independence.

2.4.2 Temporal and spatial statistics

To test the statistical similarity between the ensemble and temporal distributions of

concentration, the KS test is performed for each time series (171ˆ221 series) against

the ensemble pdf. The KS test is a nonparametric test that quantifies the maximum

distance between the cumulative distribution functions of two samples without any

prior assumptions about the distributions. The result of the KS test is binary (0 or

1) H values with H=1 corresponding to rejecting the null hypothesis that the two

pdfs originate from the same distribution at the 95% confidence level. Close to the
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boundary, the temporal distribution of concentration difference is not captured by

the ensemble pdf at z{h “ 0.2 (Fig. 2.6), while all other time realizations (including

higher order statistics) are represented by the spatio-temporal transposition. Fig-

ure 2.6 also shows that the mid-canopy layer exhibits a stricter ergodic behavior,

where H values are almost zero everywhere. Note that while the ensemble realiza-

tions are drawn from uncorrelated (statistically independent) samples, the KS test is

conducted for all time series (171ˆ 221). A drawback of conducting the KS test on

all series is that the test includes some correlated events. On the other hand, the KS

test is being conducted on a much more expansive set of concentration differences

not used in the computation of the ensemble.

Figure 2.7 shows the similar analysis for spatial series against the ensemble. Each

point in the plot is a binary result of the KS test of a spatial pdf sampled at a par-

ticular time and compared to the same ensemble pdf. While the spatial realizations

are not fully ergodic, H=0 still dominates the statistical test during most times, es-

pecially in the deeper layer. The H=1 regions in Fig. 2.7 (red color) appear during

relatively long periods of sweeping events, where the dye concentration almost ap-

proaches zero (i.e. the dye is entirely washed by sweeps). This is more evident in

the z{h “ 0.5 layer where sweeping events are more frequent.

A plausible explanation for broken ergodicity in the temporal statistics within

the deeper layer (left panel of Fig. 2.6) and the spatial statistics in the mid-canopy

layer (right panel of Fig. 2.7) may be attributed to the relatively larger integral

time scale in the former and larger integral length scale in the latter. Such long

correlation reduces the sample size of available independent realizations in time and

space domains, which is missed when constructing the ensemble distribution.
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2.4.3 Cross-correlation and advection velocity

The cross-correlation function between time series sampled at the first location (sen-

sor) in the one cell configuration and all downstream locations was determined so

as to compute an advection velocity that can be compared to velocity measure-

ments conducted using LDA. While the peak of the cross-correlation function decays

with increased downstream distance, the lag (in time) at which this peak occurs in-

creases. Figure 2.8 shows the results where the peak in cross-correlation function (top

panel) remains significant despite decaying in space. This slow decay and finite cross-

correlation indicates that the quasi-deterministic vortical structure (i.e.von Kármán

streets) can expand beyond the one cell domain and remain sufficiently coherent. For

example, in the deeper layer (z{h “ 0.2), the decrease of the cross-correlation with

increasing spatial lags varies from 1 to 0.7, which is still significant. The maximum

time lags are 0.7 and 0.5 s at z{h “ 0.2 and z{h “ 0.5, respectively. The average time

for a uniform von Kármán vortex to cover a distance of one rod spacing is around

0.3 s, while the periodicity of shedding such vortices is around 0.2 s.

The advection velocity calculated from the above analysis is shown in the bottom

panel of Fig. 2.8. On average, this calculation captures the mean streamwise velocity

measured and reported by Poggi et al. (2004c) and Poggi et al. (2011) (around 0.08

and 0.1 m s´1 at z{h “ 0.2 and z{h “ 0.5, respectively). More important here is

the pdf of these velocities that is shown in Fig. 2.9 along with the LDA velocity

measurements in Poggi et al. (2004c). The reasonable agreement here suggests that

the advection velocity may be inferred from scalar concentration statistics through

a spatio-temporal transposition, which is consistent with an operational view of the

ergodic hypothesis.
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2.5 Conclusions

High resolution spatio-temporal datasets of within-canopy scalar concentration mea-

surements were collected to examine necessary conditions for ergodicity. While lim-

ited in experimental scope (due to the sampling length in time and space), the cur-

rent work is the first to examine the ergodic hypothesis on scalar turbulence statistics

within canopies. The main premise when analyzing this data set is that if a turbulent

flow is both statistically stationary in time and homogeneous in space, then its tem-

poral and spatial statistical properties should be the same if the ergodic hypothesis is

correct. Canopy turbulence is inhomogeneous in the vertical direction necessitating

a modification to this premise. The proposed modification here replaces spatial with

planar statistical properties defined at a given z{h. Even with this modification, the

presence of rods may still break ergodic behavior because canopy turbulence in the

deeper layers of the canopy appears to be dominated by low-dimensional (or even

quasi-deterministic) motion (von Kármán vortex streets) that cannot be ergodic.

However, frequent sweeps from aloft occasionally disturb the onset of such motion,

and other mechanisms responsible for the breakdown of these von Kármán vortices

(e.g. their subsequent collision with other rods) may produce fine-scaled turbulence

that is locally homogeneous away from the rods. These other mechanisms may act

to restore ergodicity but within a smaller or restricted spatial domain.

The experimental results here show a general tendency towards the validity of

this operational version of the ergodic hypothesis, particularly for temporal statis-

tics and in the mid-canopy layers where sweeps tend to frequently disturb the onset

of von Kármán streets. Events associated with broken ergodicity were related to

(i) sweeping and dye washing that homogenized the spatial domain (an unavoidable

experimental limitation) or (ii) long memory in time near physical obstacles that pro-

hibit proper testing of the hypothesis due to insufficient sampling of statistically in-
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dependent events. However, even within the single-cell, the pdf of the independently

measured LDA advection velocity was reasonably recovered from cross-correlation

functions of concentration time series lagged in space. This agreement suggests that

the transposition of spatio-temporal scalar concentration statistics in turbulent flows

within canopies can still be achieved by a local advection velocity. Hence, it can be

surmised that scalar canopy turbulence does exhibit similarity between its temporal

and spatial statistical properties. This transposition is deemed as necessary but not

sufficient for accepting operational ergodicity within canopies.

Broader implications of these findings pertain to how combined eco-physiological

and canopy transport models are compared to tower measurements. Comparisons

between tower-based measurements and modeled scalar (or momentum) flux cal-

culations are often presented using ensemble-averages, where ensemble averaging is

often conducted over many days but presented by time of day (presumably reflecting

similar light conditions) or by atmospheric stability class (Baldocchi and Meyers,

1998; Katul and Albertson, 1998). The work here suggests that such a representa-

tion may be theoretically more sound than comparisons by individual events whose

duration is 30 minutes or so. Conducting time and some ensemble averaging over

‘similar’ conditions (be they light regimes or atmospheric stability classes) is likely to

converge to the spatio-temporal average over which the combined eco-physiological

and canopy transport models are derived from (if operational ergodicity is assumed).

Hence, the work here provides some support to the recent approaches to model-data

comparisons and assessments, where ensemble averaging over similar conditions (or

hydro-meteorological states) is now commonly practiced in canopy turbulence studies

(but without strong rationale).
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Figure 2.1: Ensemble-averaged temporal (171ˆ221 time series) and spatial (221ˆ
2100 spatial series) power spectra of concentration fluctuations. The spatial spectrum
was transformed into a corresponding temporal spectrum by the relation f “ uˆk,
where k is the wavenumber (inverse of spatial resolution), u is the average streamwise
velocity (« 0.1 m s´1) and f is the frequency (s´1). The linear (log scale) fits for parts
of the spectra are also shown to emphasize the overlapping regions (f´1). The f´3
scaling of the spatial spectrum reported in Poggi et al. (2011) and the Kolmogorov
(´5{3) scaling are also shown. The high frequency component of the spatial spectrum
reveals the effect of pixel size (high spatial resolution).

23



Figure 2.2: Top panel: 2D images of the flow field at the two depths (z{h “ 0.2 and
0.5) during quiescent von Kármán vortex events. White circles denote rod locations.
Middle panel: Typical normalized time series of ∆C{∆t (red color) and u∆C{∆x
(black). Bottom panel: The normalized pdf of the time series shown in the middle
panel with a Gaussian pdf shown for reference (blue line).
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Figure 2.3: Integral time pτq and length (l) scales estimated from zero-crossings of
temporal and spatial auto-correlation functions, respectively. Top panel: A total of
171ˆ 221 time series were analyzed. The flow direction is from left to right. Bottom
panel: Evolution of integral length scale over a 20 s time interval. At a given time
(each image), a total of 221 spatial series each of length 171 points downstream.

25



Figure 2.4: The PDF of integral time pτq and length (l) scales normalized by h{u˚
and dr respectively. The h is the canopy height, u˚ is the friction velocity at canopy
top, and dr is rod diameter.
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Figure 2.5: The pdf of the ensembles of independent spatial and temporal realiza-
tions of concentration differences at the two depths z{h “ 0.2, 0.5, with Gaussian
distribution shown for reference.
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Figure 2.6: Binary result of the Kolmogorov-Smirnoff test when comparing the pdf
of each time series at each z{h against the corresponding ensemble pdf. The H value
is binary and is 0 (green color indicates that the null hypothesis cannot be rejected
at the 95% confidence interval) or 1 (red color indicates that the null hypothesis can
be rejected at the 95% confidence interval).
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Figure 2.7: Binary result of the Kolmogorov-Smirnoff test comparing the distribu-
tion of each spatial series at each depth against the corresponding ensemble distri-
bution. The H value is binary and is 0 (green color indicates that the null hypothesis
cannot be rejected at the 95% confidence interval) or 1 (red color indicates that the
null hypothesis can be rejected at the 95% confidence interval.
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Figure 2.8: Lagged cross-correlation of time series in space. Top panel: Peak
of the cross-correlation function between time series at the first point with all the
downstream time series (170 downwind time series). Middle panel: time lag at which
the peak in the cross-correlation function occurs. Bottom panel: Advection velocity
calculated as the ratio of the distance between the first location and any downstream
location to the corresponding lag in the peak of the cross-correlation function.
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Figure 2.9: The pdf of the normalized advection velocity calculated from the lagged
cross-correlations in Fig. 2.8 at z{h “ 0.2 and z{h “ 0.5. The reported pdf of LDA-
measured velocity distribution in (Poggi et al., 2004c), a 3rd order CEM (Cumulant
expansion model) fit, and Gaussian distribution are also shown for comparisons.
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3

Scaling and similarity of the anisotropic coherent
eddies in near-surface atmospheric turbulence

3.1 Introduction

Besides their importance for predicting the exchange of matter and energy at the

land-atmosphere interface, near-surface atmospheric flows offer a unique setting in

the literature of wall-bounded turbulence due to the large separation between iner-

tial/outer (e.g. δ „ 1000 m) and viscous (ν{u˚ „ 1 mm) scales. It is no surprise that

neutrally-stratified atmospheric surface-layer (ASL) flows are emblematic to high

Reynolds number (Re “ u˚δ{ν) experiments that are otherwise difficult to achieve

in canonical turbulent boundary-layers (e.g. Metzger and Klewicki, 2001; Kunkel and

Marusic, 2006; Marusic et al., 2010). Here1, u˚ “
a

ρ´1τs is the friction velocity, δ is

the atmospheric boundary-layer (ABL) height (pipe radius or channel half width in

experimental fluids), τs « ´ ρ uw is the shear stress at the surface, u and w are the

turbulent fluctuations of the longitudinal (streamwise) and vertical (wall-normal) ve-

1 Note that the terminology and nomenclature used by the atmospheric sciences community can
be rather different from their experimental and theoretical fluid mechanics peers. Unless otherwise
stated, meteorological notation and definitions are assumed here. Hutchins et al. (2012) provide a
useful contrast on this issue that can extend substantially beyond a matter of notation.
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locity components around their corresponding time-averaged values U and W , ν and

ρ are the kinematic viscosity and density of the fluid, and over-line or capital letters

denote Reynolds (or time) averaging. Nevertheless, at least from an observational

perspective, mapping the scaling laws of velocity spectra and/or structure functions

of wall turbulence to deep layers of ABL flows has encountered mixed and at times

contradictory findings. The notion that, away from the viscous subrange, the dis-

tance from the wall z " ν{u˚ and δ are the dominant similarity length scales for the

intermediate (z-scaling) and outer regions is particularly challenged in near-surface

atmospheric flows. This challenge will be the focus of the work here.

A relatively consistent and systematic theory of high Re wall-bounded turbulence

seems to be currently endorsable, at least with regards to the mean flow and second-

order turbulence statistics [recent reviews by Marusic et al. (2010) and Jiménez

(2012)]. A central tenet of this theory is the existence of a self-similar inertial sub-

range (overlap or intermediate region) at distance z (ν{u˚ ! z ! δ) normal to the

wall/surface, in which the characteristic velocity and length scales are u˚ and z

(Townsend, 1961). Both experimental and theoretical studies have supported loga-

rithmic scaling laws in this sublayer for the mean U{u˚ “ κ´1 ln pzq ` Cs (Prandtl,

1925; von Kármán, 1930), variance σ2
u “ u2 “ A1 ´ B1 ln pz{δq (Townsend, 1976;

Marusic et al., 2013; Banerjee et al., 2015), and more recently all higher even-order

moments pu2pq1{p “ Ap ´ Bp ln pz{δq (p ě 1) (Meneveau and Marusic, 2013; Katul

et al., 2016) of the longitudinal velocity. The constant B1 « 1.25 is thought to be

universal (Stevens et al., 2014; de Silva et al., 2015), A1 can depend on flow con-

ditions, Cs is a wall/surface roughness constant, and κ « 0.4 is the von Kármán

constant. Of particular interest here is the logarithmic scaling of σ2
u and the as-

sociated k´1 power law in the spectrum Euu pkq at low longitudinal wavenumbers

k (typically in the range 1{δ ă k ă 1{z). The spectrum Euu pkq is defined such
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that σ2
u “

ż 8

0

Euu pkq dk, and the wavenumber k “ 2π f {U corresponds to inverse

longitudinal distance, usually inferred from frequency (f) (time) measurements of

sonic or hot-wire anemometry using Taylor’s frozen turbulence hypothesis (Taylor,

1938b). The two scaling laws follow from Townsend’s model of attached eddies in

the equilibrium/logarithmic region, where larger-than-inertial scale coherent eddies

of size z ă s ă δ are attached to the wall/surface and sense its effects (Townsend,

1961, 1976). Integrating Euu pkq9 k´1 in the range 1{δ ď k ď 1{z (attached eddies)

recovers the σ2
u „ ln pz{δq scaling, and hence the two are equivalent (see also Baner-

jee and Katul, 2013). It is worth noting that the inner (ν{u˚), inertial (z), and outer

(δ) length scales are used here as limits indicative of eddy sizes and transitions in

spectral scaling laws, rather than exact cutoff length scales at which such transitions

occur.

Perhaps the most popular explanation of the origin of the k´1 scaling in Euu pkq

is the dimensional approach of Perry et al. (1986) based on Townsend’s model of

attached (active) eddies (Townsend, 1961, 1976), i.e. the existence of large sep-

aration between the scales of motion or equivalently a sufficiently high Re. This

scaling emerges then as a transition/overlap range between the very large scale mo-

tion (VLSM)2 [Euu9 k0 for k ă 1{δ], and fine-scale isotropic eddies that follow

Kolmogorov’s theory (Kolmogorov, 1941, hereafter K41) [Euu9 k´5{3 for 1{z ! k !

1{η; η “ pν3 {εq1{4 is the Kolmogorov microscale, and ε is the rate of viscous dissi-

pation of turbulence kinetic energy (TKE) assumed equal to the mean rate of TKE

transfer across scales]. Several other phenomenological (Nikora, 1999) and theoretical

(Tchen, 1953; Katul et al., 2012) models also predicted or explained this k´1 scaling

(Table 1 in each of Katul and Chu (1998) and Drobinski et al. (2007) provide a sur-

2 VLSM is commonly referred to as inactive range/eddies because they do not contribute to
stress and energy production. However, this range is part of energy transport and we simply use
VLSM to represent it. Perry and Abell (1977) called these non-universal motion due to the lack of
self-similarity.
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vey of the literature). Physically, deep within the logarithmic layer, the preferential

suppression of the vertical velocity fluctuations (w) distorts large scale coherent ed-

dies of size s ą z in the streamwise direction, and turbulence becomes increasingly

anisotropic as the wall/surface is approached (Davidson and Krogstad, 2014). These

anisotropic/attached eddies are ‘active’ in the shear production (P “ ´uw dU{dz)

of TKE, where the interaction between the momentum flux (´uw) and the mean

flow vorticity (dU{dz) mostly occurs. Hence, very close to the wall/surface, the

spectrum of the longitudinal velocity is expected to exhibit three distinct ranges at

scales larger than η. In pre-multiplied form (i.e. k Euu pkq), these are from small

(high k) to large (low k) scales: (i) k Euu pkq9 ε2{3 k´2{3 for 1{z ! k ! 1{η. These

isotropic eddies are denoted as ‘detached’ here (no wall effects); (ii) k Euu pkq9 k0

for 1{δ ă k ă 1{z commensurate with the anisotropic production range. These are

denoted as ‘attached’ eddies; and (iii) k Euu pkq9 k`1 for k ă 1{δ (VLSM), although

this scaling of the very large scales is uncertain.

At the experimental front, several studies on ASL flows reported a low-wavenumber

k´1 regime in Euu pkq (e.g. Katul and Chu, 1998; Högström et al., 2002; Drobinski

et al., 2004). Both Högström et al. (2002) (their Fig. 5) and Drobinski et al. (2004)

(their Figs. 6 and 7) show that the extent of the k´1 range decreases with increasing

height above the surface, indicating that deep within the logarithmic layer, the emer-

gence of the anisotropic (k´1) range comes at the expense of a narrower isotropic

(k´5{3) extent (Davidson and Krogstad, 2014). Conversely, no k´1 scaling was de-

tected in the Kansas (Kaimal et al., 1972) and some other ASL experiments (Busch

and Panofsky, 1968). It is also noticeable that Drobinski et al. (2004) and Drobin-

ski et al. (2007) observed an Eww pkq9 k
´1 scaling for the vertical velocity spectra

around 30 m above the surface, but not in deeper layers of the near-neutral ASL.

In turbulent boundary-layer and pipe experiments, these mixed findings have also

received attention (e.g. Del Alamo et al., 2004; Vallikivi et al., 2015, and references
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therein), mainly from a perspective of Re (scale separation) dependence.

The elusiveness of a clear k´1 scaling in Euu pkq has recently refocused the atten-

tion on its physical-space equivalent, the second-order structure function Duu prq “

ru px ` rq ´ u pxqs2 (definition in section 3.2) (Davidson et al., 2006; Davidson and

Krogstad, 2009, 2014; de Silva et al., 2015; Chung et al., 2015; Pan and Chamecki,

2016; Chamecki et al., 2017). Here, r “ τ U is the longitudinal separation distance,

and τ “ 1{f is the time separation. The function Duu prq is the Fourier transform

pair of Euu pkq, and hence the k´1 power law is equivalent to a ln prq scaling in Duu prq

in the anisotropic range, while the k´5{3 in the finer-scale locally isotropic range is

equivalent to the r2{3 law that appeared in K41. Davidson et al. (2006) argued that

the one-dimensional spectrum Euu pkq may not be the ideal tool for investigating

and detecting the k´1 scaling due to large scale (three-dimensional) contamination

in the one-dimensional spectra, an effect called aliasing. Indeed, they were able to

detect a logarithmic scaling in the structure function in both smooth- and rough-wall

boundary layers in a wind tunnel experiment (Davidson and Krogstad, 2014). The

structure function has also the advantage of boundedness at large scales (r „ δ or

the integral length scale of the flow), where it flattens at 2σ2
u (section 3.2). Beyond

the existence of this logarithmic scaling, the analysis and experiments by Davidson

and Krogstad (2014) showed that normalizing r by the dissipation-based length scale

lε “ u3˚{ε collapses experimental data at different heights better than z, especially

in the anisotropic range. They attributed this collapse to the imbalance between the

local production (P ) and dissipation (ε) of TKE, and proposed a ln pP {εq correction

to the ln pr{zq scaling. The dimensional analysis and large eddy simulation (LES)

experiments by Pan and Chamecki (2016), and later by Chamecki et al. (2017) also

showed the superiority of lε over the z-scaling.

Although the k´1 or ln prq scaling laws and the associated transition/similarity

length scales are still a subject of debate in canonical turbulent boundary-layers, this
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paper identifies two aspects frequently encountered in atmospheric contexts where

such issues remain inconclusive. These are (i) the existence of vegetation canopies

where the flow in the roughness sublayer (RSL; defined here to extend from the

canopy top until two to five canopy heights (h)) deviates appreciably from its ASL

counterpart, and (ii) nonlocal energy transport, i.e. imbalance between the local

production and dissipation of TKE. While the two aspects may be related, where

typically P {ε ‰ 1 in the RSL of canopy flows, this imbalance is also not uncommon

in deep layers of the ASL (e.g. Högström et al., 2002). The work here uses several

experiments to discuss the existence of this k´1 scaling in near-surface atmospheric

flows, some of its phenomenological aspects, and the possible collapse of experimental

data when plotted with inertial or some other similarity coordinates. The discussion

also includes the scaling laws of the vertical velocity to characterize anisotropy. By

using the notation ‘near-surface’ we intend to contrast deep layers of the neutral

ASL above smooth/rough surfaces (« 1-10 m above water bodies, short grass fields),

denoted as the eddy surface layer (ESL) by Hunt and Carlotti (2001) and Drobinski

et al. (2004), with flows in the immediate vicinity of tall roughness elements (directly

above vegetation canopies) (Fig. 3.1).

Turbulent motion in the RSL above a dense canopy deviates from inertial layer

turbulence, and is more analogous to mixing layers than to rough-wall boundary

layers due to the strong shear at the canopy top (inflection point in the mean velocity

U) (Raupach et al., 1996; Poggi et al., 2004b). This mixing-layer analogy introduces

an additional characteristic shear length scale [ls “ U pdU{dzq´1] dictated by Kelvin-

Helmholtz (K-H) instabilities initiated at the canopy top (Fig. 3.1), besides the

inertial length scale (z). For canopy flows, z is defined to be above the zero-plane

displacement height d0, where the latter is the height from the ground associated

with the mean height of momentum absorption within the canopy. Hence, with the

assumption that u˚ sets the inner boundary condition for all scales of motion and is
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indeed the characteristic velocity scale, the two aspects identified above reduce the

discussion into an issue of length scales that challenge the classical z-scaling. Figure

3.1 shows the conceptual framework used here to distinguish RSL and ASL flows,

where at some height z " ν{u˚ above a smooth/rough-surface ASL, or above d0 for

canopies, eddies larger than z are attached to the surface (above the buffer layer) or

to the displaced wall d0. Detached eddies that are much smaller than z are isotropic

and follow the r2{3 law.

To this end, five datasets (section 3.3) are used here to address the points raised

earlier, namely (i) the extent and height dependence of the ln prq (or k´1) scaling in

the velocity structure functions (spectra), if any; (ii) some of its phenomenological

aspects related to deviations from the characteristics of homogeneous and isotropic

turbulence; and (iii) the collapse of experimental data at different heights using

several dominant length scales. The experiments were conducted in the RSL of

vegetation canopies (two experiments), deep within the ASL (two experiments), and

one lower Re open channel experiment for comparison with atmospheric flows. The

work is limited to neutrally-stratified flows, which are a common occurrence deep

within the ABL above vegetation canopies or water bodies. As opposed to convective

cases where the ABL is dominated by large-scale thermal plumes (Ghannam et al.,

2017a; Salesky et al., 2017), near-neutral flows close to the land surface remain a

challenge in Large Eddy Simulation studies due to the larger impact of the relatively

smaller anisotropic eddies on subgrid-scale formulations.

3.2 Definitions and theoretical framework

The coordinate system is defined such that x, y, and z form the longitudinal (stream-

wise), lateral (spanwise), and vertical (wall-normal) directions, and the correspond-

ing fluctuating velocity components are u, υ, and w with Reynolds (time) aver-

ages U , V , and W . The flow is stationary [Bp.q{Bt “ 0], planar homogeneous
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[Bp.q{Bx “ Bp.q{By “ 0 for averaged quantities], and x is aligned with the mean flow

(U) with no mean subsidence such that V “ W “ 0. With these assumptions, the

second-order structure function for a velocity component α (α “ u or w here) at

some height z is given by

Dααprq “ ∆αprq∆αprq

“ 2σ2
α r1´ ρααprqs ,

(3.1)

where ∆α prq “ α px` rêxq ´ α pxq, x is the position vector, r “ τ U is the longi-

tudinal spatial separation inferred from measured time separation (τ), and êx is the

unit vector in the x direction. Since spatial statistics are inferred from time mea-

surements here, stationarity implies homogeneity in the sense of K41, where all tur-

bulence statistics, or otherwise distributions of velocity differences, are independent

of the time/space origin and are only functions of r. Both this assumption or planar

homogeneity require rαpx` rqs2 “ rαpxqs2 “ σ2
α, and ρααprq “ αpx` rqαpxq{σ2

α is

the correlation coefficient that is the Fourier pair of Eααpkq. The second-order struc-

ture function is a monotonically increasing function, ranging from Dααp0q “ 0 at

r “ 0 [ρααp0q “ 1], to DααpLαq “ 2σ2
α at r “ Lα [ρααpLαq “ 0], where Lα is the

integral length scale of the velocity component α. Dααprq is a measure of the cumu-

lative contribution of eddies of size r or less to the energy (per unit mass) σ2
α, and

r dDααprq{dr is roughly the energy contained in eddies of size r (Townsend, 1976;

Davidson and Krogstad, 2014). The interest here is in the scaling laws of Dααprq at

different heights z in the ASL and RSL, and the transition/similarity length scales

associated with these laws. In light of the earlier discussion, the scaling laws (see

Fig. 3.1) in the isotropic (detached eddies), active/production (attached eddies), and
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VLSM ranges are, respectively

Duuprq “ Cε2{3r2{3, η ! r ! l (3.2)

Duuprq “ A`B ln
´r

l

¯

, l ! r ! δ, and (3.3)

Duuprq “ 2σ2
u “ 2

”

A1 ´B1 ln
´z

δ

¯ı

, r „ Lu ď δ, (3.4)

where C « 2.2 is the Kolmogorov constant, A and B are additional constants, and l

is some characteristic length scale. Since the structure function is commonly plotted

against lnprq, the constant B will be referred to as the slope in Eq. (3.3). The

dimensional analysis by Davidson and Krogstad (2014), Pan and Chamecki (2016),

and Chamecki et al. (2017) showed that l “ lε in Eq. (3.3) is the correct similarity

length scale for the anisotropic range. Eqs. (3.3) and (3.4) follow from each other

at scales r „ Lu „ δ with l „ z, and by matching the two scaling laws, one obtains

B “ 2B1 « 2.5 (e.g. Chung et al., 2015; de Silva et al., 2015). The logarithmic scaling

in Duuprq also follows from the assumption that the kinetic energy of the space-filling

attached eddies scales with the momentum flux, such that r dDuuprq{dr „ u2˚, from

which Eq. (3.3) follows accordingly. Dividing Eq. (3.2) by u2˚ yields

Duuprq

u2˚
“ C

ˆ

r

lε

˙2{3

, (3.5)

and by the universality of C, the dissipation length scale lε pzq “ u3˚{εpzq collapses

the inertial subrange (isotropic detached eddies) of the normalized structure func-

tion at different heights in the constant flux region (du˚{dz « 0). For a logarithmic

Upzq, P “ ´uw dU{dz « u3˚{κz, and a local balance between P and ε implies that

lP 9 lε9κz, where lP “ u3˚{P is the production length scale (Pan and Chamecki,

2016; Chamecki et al., 2017). The latter arguments are the basis for the classical

z-scaling in the intermediate region of wall-bounded shear flows, and both are chal-

lenged here where turbulent flows in the RSL deviate from inertial-layer flows and
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P ‰ ε. Nevertheless, if dU{dz “ u˚{κz is a good approximation (more so for near-

neutral ASL than RSL flows), then lP « κz, lε “ pP {εqκz, and ls “ pU{u˚qκz.

Equation (3.3) can be written with l “ lε or l “ ls as

Duuprq “ A`B ln

ˆ

r

lε

˙

“ A´B ln

ˆ

P

ε

˙

`B ln
´ r

κz

¯

,

(3.6)

and,

Duuprq “ A`B ln

ˆ

r

ls

˙

“ A`B ln
´u˚
U

¯

`B ln
´ r

κz

¯

,

(3.7)

respectively. In other words, besides the typical inertial scaling ln pr{κzq, lε accounts

for the imbalance between P and ε with the term ln pP {εq [this correction appeared in

Davidson and Krogstad (2009) and Davidson and Krogstad (2014)], while ls accounts

for the effects of drag (u˚{U) at the canopy top.

To connect these various length scales (κz, lε, lP , ls) to turbulent eddies and

scaling laws of velocity structure functions, the phenomenology of the attached eddies

(Eq. (3.3)) as a departure from the well-studied locally homogeneous and isotropic

turbulence is also of interest here. The latter fine-scale eddies (r ! l) belong to the

stages of Richardson’s cascade where energy is neither produced nor dissipated but

simply transported from larger eddies (r ą l) that extract energy from the mean

flow down to the viscous scales (r „ η). In this respect, the probability density

functions Gr∆α`prqs (α “ u or w) of the velocity differences are examined in the

locally isotropic (r ! l) and anisotropic (r ą l) ranges (‘+’ sign indicates velocity

normalization by u˚). The skewness Skr∆α`prqs “ r∆α`s3{pr∆α`s2q3{2 and excess

flatness factors F r∆α`prqs “ r∆α`s4{pr∆α`s2q2 (excess ” above the Gaussian value

41



of 3) of these distributions are functions of the longitudinal separation distance r,

and hence are indicative of the transition between locally isotropic (non-Gaussian)

and anisotropic (close to Gaussian) scales. Note that Skr∆u`prqs for the longitudinal

velocity component is equivalent to the structure skewness Sprq defined as (Obukhov,

1949; Monin and Yaglom, 1975)

Sprq “
Duuuprq

rDuuprqs
3{2
, (3.8)

where Duuuprq “ rupx` rq ´ upxqs3 is the third-order structure function. Obukhov

(1949) hypothesized that Sprq is constant in locally homogeneous and isotropic

flows, and proposed this constant-skewness assumption as a closure to the Kármán-

Howarth-Kolmogorov equation (von Kármán and Howarth, 1938; Kolmogorov, 1941)

Duuuprq ´ 6ν
dDuuprq

dr
“ ´

4

5
εr, (3.9)

that relates the second- and third-order structure functions in the universal (inertial

and viscous) isotropic range. At scales η ! r ! l within this range, the effects of

viscosity [second term in Eq. (3.9)] are negligible and Kolmogorov’s ‘4/5’ law is

recovered

Duuuprq “ ´
4

5
εr, (3.10)

such that, using Eqs. (3.2), (3.8), and (3.10), the skewness Sprq in the inertial/isotropic

range is roughly constant (Katul et al., 1997b, 2015)

Spη ! r ! lq « ´0.22, (3.11)

subject to some experimental uncertainty and Re effects. Deviations from these

relatively established results for the inertial subrange are used to examine the phe-

nomenology of the anisotropic range. Experiments, data, and methods of estimating

the TKE dissipation rate ε and the dominant length scales are now presented.
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3.3 Data and methods

This section reviews the main features of the five experiments (published data sets)

used in the analysis. Site characteristics and flow conditions are featured in Table 3.1,

and length scale estimations are summarized here. The two canopy experiments have

an order of magnitude difference in canopy height (h) and are intended to examine

the effects of canopy morphology and distance-from-the-wall on the anisotropic range

of the velocity structure functions. The work is limited to several heights above the

canopy in the RSL. The ASL experiments were conducted above a lake and a short

grass field within 10 m above the surfaces, whereas the open channel flow is used

as a reference canonical turbulent boundary-layer. In RSL and ASL cases, the flow

is near-neutral with atmospheric stability parameter |z{Lo| ă 0.05, where Lo is the

Obukhov length.

3.3.1 Experiments

• Amazonian canopy (AMA): the experiment was part of the GoAmazon (Obser-

vations and Modeling of the Green Ocean Amazon) project, and its details are

documented in Fuentes et al. (2016), Freire et al. (2017), and Gerken et al. (2017).

The data were collected during a field campaign at the Cuieiras Biological Re-

serve, located 60 km north-northwest of the city of Manaus, Amazonas, Brazil,

between March 2014 and January 2015 at a 50 m tall tower surrounded by a dense

primary forest. The average canopy height at the measurement site is h « 35 m,

with leaf area index estimated to be between 5.7 and 7.3 m2 m´2. High-frequency

time series of the three wind velocity components within and immediately above

the canopy were continuously measured by 9 triaxial sonic anemometers (model

CSAT3, Campbell Scientific Inc, Logan, UT) between March 2014 and January

2015. Measurement frequency is 20 Hz, and approximate measurement heights are
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z{h= 0.2, 0.39, 0.52, 0.63, 0.7, 0.9, 1, 1.15, and 1.38. Measurements within the

canopy are used here only for estimating the displacement height (d0), while the

structure function analysis is restricted to heights z{h= 1, 1.15, and 1.38 within

the RSL. A total of 24 data runs/blocks (30-min. each) were analyzed (see Table

3.1).

• Maize canopy (MAI): this experiment was conducted in a large flat field planted

with maize near Mahomet, Illinois, between June and July 2011 (Gleicher et al.,

2014; Duman et al., 2016; Pan et al., 2016). The average canopy height is h « 2.1

m, and the leaf area index during the measurement period is « 3.3 m2 m´2. The

three wind velocity components were sampled using 5 triaxial sonic anemometers

(model CSAT3, Campbell Scientific Inc, Logan, UT) at a 20 Hz frequency. The

approximate measurement heights are z{h= 0.33, 0.67, 1, 1.33, and 1.67, and

similar to the AMA canopy, the analysis is restricted to z{h ě 1. Pan and

Chamecki (2016) used a 7.5-hr stationary turbulence time series (u˚= 0.51 m s´1)

from measurements at this site and noted that the use of Taylor’s hypothesis was

problematic. Here, this 7.5-hr data block is split into 15 runs (30-min. each) to

minimize non-stationarity. These runs are used as replicate realizations (see Table

3.1).

• Lake Geneva (LAKE): the measurements were part of the Lake-Atmosphere Tur-

bulent EXchange (LATEX) field campaign over Lake Geneva, Switzerland (Ver-

cauteren et al., 2008; Bou-Zeid et al., 2008; Li et al., 2016), and were collected on

a 10-m high tower, 100 m away from the shore of the lake. The campaign lasted

from mid August until late October 2006. Four sonic anemometers (Campbell

Scientific CSAT3) were deployed at heights 1.65, 2.30, 2.95, and 3.60 m above the

water surface to sample the three-component wind field at 20 Hz. The four mea-

surement heights are used here and a total of 63 runs (30-min. each) are analyzed
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(Table 3.1).

• Advection horizontal array turbulence study (AHATS): the experiment took place

near Kettleman City, California, during the period from 25 July to 16 August 2008

(UCAR/NCAR Earth Observing Laboratory, 1990; Salesky and Chamecki, 2012).

The field site was surrounded by short grass stubble and was predominantly hor-

izontally homogeneous and level. Data from the AHATS profile tower, consisting

of six CSAT-3 sonic anemometers (Campbell Scientific Inc.) mounted at heights

z « 1.5, 3.30, 4.2, 5.5, 7, and 8 m are used here. The sampling frequency was 60

Hz and a total of 15 runs (36.4 min. each) are analyzed (Table 3.1).

• Open channel (OC): the details of this experiment are documented in Katul and

Chu (1998) and Katul et al. (2012). Briefly, the experiment was conducted at

Cornell University in a 20-m long, 1.0-m wide, and 0.8-m deep open channel tilting

flume with a smooth stainless steel bed. The channel slope was set at 0.0001

mm´1 resulting in hw “ 10.3 cm of water depth. The longitudinal and vertical

velocity components were measured using a two-dimensional split film boundary

layer probe (TSI 1287W model). The sampling frequency was 100 Hz and the

measurement period lasted for 1.365 min. at measurement heights z “ 0.1, 0.2,

0.3, 0.4, 0.6, and 1 cm. Only the highest measurement levels z “ 0.6 and 1 cm

corresponding to z` « 55 and 92 are used here, where z` “ zu˚{ν and u˚ “ 0.9

cm s´1. The mean velocity is U « 0.2 m s´1 and only one run is available.

The multiple runs for each experiment were selected on the basis that (i) the fric-

tion velocity u˚ was relatively constant with height (to within 15%), and hence it is

assumed that the analysis is within the constant flux region, and (ii) the correspond-

ing turbulence intensity Iu “ σu{U is less than 0.25 across these runs, a common

practice to minimize the effects of using Taylor’s frozen turbulence hypothesis. By

assuming that all wavenumbers (eddies) are convected with the same velocity U , the
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longitudinal spatial separation r “ τU and wavenumber k “ 2πf{U are then in-

ferred from the time separation τ (or f) and U . The corrections to the use of Taylor’s

hypothesis suggested by Wyngaard and Clifford (1977) and Hsieh and Katul (1997)

in the inertial subrange are also implemented (discussed in the next sub-section).

In what follows, for presentation and brevity purposes, we show results only from

one individual run at each site (with multiple heights each), and statistics across

all runs are presented whenever applicable. The profiles of the mean flow statistics

(normalized by appropriate powers of u˚) for this sample run are shown in Fig. 3.2.

The height z is normalized by canopy height h in the upper panel of Fig. 3.2 for

canopy experiments, and by zh for the ASL and open channel experiments (lower

panel), where zh is the highest measurement location (zh “ 3.6 m for LAKE, 8 m

for AHATS, and 1 cm for OC; Table 3.1). A distinctive feature of canopy flows is

the strong shear at the canopy top, manifesting itself by a much smaller U{u˚ (or

equivalently higher turbulence intensity) in the RSL (Fig. 3.2a) compared to the

ASL (Fig. 3.2e). All higher-order moments in the RSL (Fig. 3.2b, 3.2c, 3.2d) follow

typical profiles of plant canopies (see a review by e.g. Finnigan, 2000b), and approach

their ASL counterpart as z{h increases. The mixed third-order moments wuu and

wwu in Fig. 3.2d and 3.2e, or more precisely their gradients, are responsible for

nonlocal transport of TKE and velocity variances. These are significant deep within

the RSL and the ASL, and decrease with increasing height z, indicating that P {ε ‰ 1

very close to the wall/surface.

3.3.2 Dissipation and length scale estimation

From Wyngaard and Clifford (1977) and Hsieh and Katul (1997), the structure func-

tions inferred from Taylor’s hypothesis are corrected in the inertial subrange for

finite Iu, such that Eq. (3.2) becomes Duuprq “ CrFupIuqsε
2{3r2{3, where FupIuq “

1 ` p11{9qI2u, and Iu “ σu{U is the turbulence intensity. A similar correction for
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Dwwprq with FwpIuq “ 1 ` p11{36qI2u is also used. Since Iu ă 0.25 for all exper-

iments, FupIuq across all sites and runs is less than 1.08 and hence the corrections

are reasonably small, well within the uncertainty in the value of C « 2.2. The

inertial subrange is identified from the compensated second-order structure function

r´2{3Duuprq, which exhibits a relatively flat/constant range equal to Cε2{3 [see Eq.

(3.2)], typically for 0.3 m ă r ă 2 m in the experiments here (depending on the

measurement height and sampling frequency). After Chamecki and Dias (2004) and

Chamecki et al. (2017), the TKE dissipation rate ε is then estimated by averaging

over this range, which extended for less than half a decade deep within the ASL

and RSL to one/two decades at higher z. Estimating ε from the vertical velocity

structure function Dwwprq in a similar manner did not result in any significant dif-

ferences. However, estimates from Duuuprq “ ´p4{5qεr in the inertial subrange were

unreliable due to the noisy nature of high-order moments computed from measure-

ments. Chamecki et al. (2017), who also used the AHATS data, showed that ε

estimates from Duuuprq were approximately 40% smaller (on average) than the ones

from Duuprq. In the rest of the paper, ε values determined from the inertial subrange

of Duuprq are used.

To estimate the displacement height d0 for the AMA and MAI canopies, the

momentum flux (uw) within the canopy (0 ă z ď h) was fitted to a fourth-order

polynomial in z, and the drag force Fdpzq “ duw{dz is determined (the estimate is

not sensitive to third- or fifth-order polynomial fits). The height d0 is then calculated

from

d0 “

ż h

0

z Fdpzq dz

ż h

0

Fdpzq dz

, (3.12)

as the mean height associated with momentum absorption. The range for the AMA
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canopy is 0.73h ď d0 ď 0.79h (h « 35 m) across the 24 runs, and for the MAI

canopy is 0.69h ď d0 ď 0.74h (h « 2.1 m) across the 15 runs. This indicates that

the distance from the displaced wall (d0) for the AMA canopy is between « 10 and

24 m at the three measurement heights (see Table 3.1), while the range is « 0.6 to 2 m

for the MAI canopy. Similarly, the mean velocity (U) profile was fitted to a second-

order polynomial in lnpzq for all experiments, from which the production and shear

(only for canopies) length scales are calculated as lP “ u3˚{P and ls “ U{pdU{dzq,

where P “ ´uw dU{dz is used. For canopies, the mean velocity log-polynomial fits

are limited to z{h ě 0.9, where three data points are available in this range (see

Table 3.1). The dissipation length scale lε “ u3˚{ε is calculated using the ε estimates

from Duuprq as discussed earlier. These z-dependent length scales, normalized by

the inertial length scale κz, are shown in Fig. 3.3 for the data run presented above

(Fig. 3.2). The ratio lP {κz (filled-triangle symbols) is indicative of deviations from

a logarithmic mean velocity profile, and except for the OC (Fig. 3.3e), where the

highest measurement height is z` « 99, this ratio is close to unity at all heights for

the other experiments (Figs. 3.3a-d). In contrast, lε{κz, which is then approximately

lε{lP “ P {ε, deviates appreciably from unity deep within the RSL (less so for the

ASL), and approaches κz at higher heights, with the exception of the LAKE data

where all measurement heights are within only 4 m from the surface. The shear

length scale ls follows lε closely in the RSL. This finding was also noted in the

LES runs of Pan and Chamecki (2016) for the MAI canopy, although ls estimated

from the data here exceeded lε at the canopy top. These length scales are used

in subsequent sections to explore the phenomenology and the collapse of the large

anisotropic scales.

Before presenting the results, it is noted that when lε is estimated from the inertial

subrange of the longitudinal velocity structure function, it is bound to collapseDuuprq

at small r. This collapse of data is not necessarily the case for larger scales in Duuprq
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and/or Dwwprq that are of interest here.

3.4 Results and discussion

3.4.1 Scaling laws of velocity structure functions and spectra

Since the lnprq and/or k´1 (k0 in premultiplied form) scaling laws can be elusive

when using experimental data, Fig. 3.4 shows both the normalized structure function

Duu{u
2
˚ and premultiplied spectra kEuu{u2˚ at the highest measurement location from

each experiment (height dependence is discussed later). These are plotted against

r{κz and kz on a log-log scale and multiplied by an arbitrary constant (vertical

shift) for clarity. The r2{3 (Fig. 3.4a) and k´2{3 (Fig. 3.4b) power laws expected

in the isotropic range are shown as solid gray lines to depict the extent of this

subrange and deviations therefrom. Note that these are not data fits and are only

used here to indicate the commencement of the logarithmic (or k´1) scaling laws.

Nevertheless, the logarithmic fits in Fig. 3.4a (dashed gray lines) are not forced to

start at these scales (i.e where Duu deviates from the r2{3 scaling), but rather fitted

within a range at larger r and the resulting linear [in lnpr{κzq] fits are extended over

a wider range. The slope B [Eq. (3.3)] of the fits to the anisotropic range in the

measured structure function (Fig. 3.4a) compares well with the values (B « 2.5)

estimated from matching arguments (e.g. de Silva et al., 2015), as introduced earlier

in section 3.2. Both Fig. 3.4a and 3.4b show that this anisotropic range commences

at scales larger than z (around 1.2z to 5z depending on the experiment), as opposed

to the classical z-scaling that typically assumes kz “ 1 (shown as vertical black line

in Fig. 3.4b) sets such a transition (e.g. the experiments by Katul and Chu, 1998).

These are inferred from the approximate start of this range, roughly 3 ă r{κz ă 8

(Fig. 3.4a) and 0.2 ă kz ă 0.3 (Fig. 3.4b), with no significant differences between

RSL and ASL experiments. However, canopy cases (AMA and MAI) show a shorter
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k0 range, extending for less than half a decade in both Euu and Duu. This is due

to the fact that the integral length scale of the longitudinal velocity component Lu

is much smaller in the RSL than in the ASL, typically within h ă Lu ă 3h in the

former and Lu „ δ in the latter.

Conversely, similar analysis for the vertical velocity (Dww and Eww) at the same

measurement height shows a much smaller scale separation (Fig. 3.5). Although the

pre-multiplied spectra for the AMA, LAKE, and AHATS experiments exhibit a

short (less than a decade) k0 range, the slope of the logarithmic fits to the structure

function Dww (Fig. 3.5) is smaller (B ă 1), indicating that Dww attains 2σ2
w rapidly

with increasing scale. For these sites, kz « 1 seems to set the end of the k´2{3 scaling,

while this isotropic range extends to larger scales than z (kz ă 1) in the MAI and

OC experiments. Overall, after repeating such an exercise by examining Dαα and

Eαα (α “ u and w) for all data runs and all experimental sites, we note that using

either approach (from an experimental view) to hunt for the lnprq or k´1 scaling

laws is elusive, and here we contrast both means in pursuit of that. In particular,

the structure function is commonly plotted against lnprq, and hence fitting a linear

trend [Eq. (3.3)] over a short range of scales to find the lnprq law can be misleading.

Theoretically, the separation of scales between the integral length scales Lα and

the upper limit of the inertial subrange, be it « z or some other limit/range l, is

indicative of the cross-over between the r2{3 and 2σ2
α regimes. This scale separation

is height-dependent, and increases with increasing z (always deep within the RSL or

ASL). Figure 3.6 depicts this argument, where both Duu (red lines) and Dww (blue

lines) are plotted at all available measurement heights for each experiment, with the

lowest height at the bottom. In canopy cases (Fig. 3.6a and 3.6b), deviations from

the r2{3 (gray lines) power law in both Duu and Dww have a short extent before

reaching the integral length scales Lu and Lw (shown as short vertical lines). On the

other hand, the ASL and channel experiments (Figs. 3.6c-3.6e) show an extensive
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overlap region for Duu but not Dww. Both integral length scales exhibit a minor

change with height deep within the RSL and ASL. These were calculated empirically

from the correlation coefficient ρααprq introduced in section 3.2.

In addition to the existence and height dependence of the logarithmic scaling

in Duu, the universality (or lack thereof) of the slope B in Eq. (3.3) is also of

interest. This slope has dimensions of energy density, where r dDuuprq{dr “ B

in the production range. The arguments set forth by Townsend’s attached-eddy

model predict a height dependence of TKE“ p1{2qpσ2
u ` σ2

υ ` σ2
wq by virtue of the

lnpz{δq scaling in σ2
u, while the classical view that the kinetic energy scales with u2˚

(constant with height) implies otherwise. To track the consequence of this argument,

we match the energy density in the inertial subrange, r dDuuprq{dr “ p2{3qCε2{3r2{3

[see Eq. (3.2)], with its counterpart B in the production range at some limit r «

l. For l « z, B9ε2{3z2{3 and is therefore height dependent, while l « lε yields

B9ε2{3l
2{3
ε 9u2˚. Figure 3.7 shows a comparison between the slope B obtained from

data fits (blue circles) and from these matching arguments, with B9ε2{3z2{3 in black

color and B9u2˚ in red color. These are shown as function of the friction velocity

u˚ for all the runs available in each experiment, and at the highest height only for

illustration. There is a clear tendency for B to increase with increasing momentum

flux (u˚) in all experiments, indicating lack of universality, despite B being always of

order unity as noted by Davidson and Krogstad (2014). Figure 3.7 depicts that the

ε2{3z2{3 argument captures the variability in B from the data fits across all u˚ values

better than the B9u2˚ counterpart, in support of Townsend’s arguments of energy

dependence on z. This is particularly the case in the RSL of canopies (Fig. 3.7a

and 3.7b), where P {ε ‰ 1 and hence the ε2{3z2{3 dependence accounts for such an

imbalance. To disentangle the origins of this scale separation and transitions between

isotropic and anisotropic scales, some phenomenological aspects of the turbulence

scales are discussed next.
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3.4.2 Phenomenology of the anisotropic range

The age (or extent) of the anisotropic coherent structures that follow the logarithmic

scaling explored earlier is the main theme of this section. As such, the probability

density functions (pdf ) of the velocity differences ∆u`prq and ∆w`prq are shown in

Fig. 3.8 at two separation scales, r ! lε indicative of the detached isotropic eddies,

and r " lε to sample anisotropic eddies. These are for the highest measurement

location at each site as earlier. Both ∆u`prq and ∆w`prq have a zero mean and the

separation scales are chosen for illustration, where the length scale lε is used since it

is typically larger than z (P {ε ą 1), hence r " lε is in the production range. At small

scales, the pdfs Gr∆u`pr ! lεqs and Gr∆w`pr ! lεqs (Fig. 3.8a and 3.8c) exhibit

heavier tails than at larger scales (Fig. 3.8b and 3.8d) for all sites. The tails of small-

scale turbulence are known to decay much slower than Gaussian (Anselmet et al.,

1984; Sreenivasan and Antonia, 1997), and approach a Gaussian distribution at larger

scales. While the excursions/tails of ∆u` and ∆w` appear smaller for canopies at

r ! lε (Fig. 3.8a and 3.8c), these are simply due to a higher u˚, i.e. canopy flows in

fact experience larger excursions in velocity differences at small scales, especially in

the longitudinal velocity component u. The importance of these individual pdfs here

is that they encode the statistical moments of turbulence in ∆u`prq and ∆w`prq.

For instance, the second-moment (variance) of each of these distributions is the value

of the structure functions Duu and Dww at the scale r, which was explored earlier in

Figs. 3.4 and 3.5, such that the variances r∆u`prqs2 and r∆w`prqs2 at some large r

are the cumulative contribution from all the corresponding distributions at smaller

separation distances. To examine how fast the pdfs approach a Gaussian distribution,

the skewness Skr∆α`prqs and excess flatness factors F r∆α`prqs (α “ u and w)

of these distributions are plotted against r{κz in Fig. 3.9. Both Sk and F have a

decreasing trend with increasing scale r, indicating that the pdf of velocity differences
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approaches a Gaussian-like distribution at large r. Also, these moments generally

decay slower (with r) for the longitudinal [∆u`prq] than the vertical [∆w`prq] velocity

differences, due to the larger scale separation in u compared to w. It is interesting to

note that the flatness factors F for both velocity components collapse with κz in all

experiments, and approach zero (equivalent to the Gaussian value 3) around 10κz.

The AMA and AHATS experiments have the largest scale separation between lε

(vertical lines in Fig. 3.9) or κz and the scale r at which the moments approach

their Gaussian counterpart. These experiments have the largest distance from the

wall (z “ 24 m above d0 for AMA and z “ 8 m for AHATS; Table 3.1) compared

to the other experiments, and note that both exhibited a k´1 scaling in Eww (Fig.

3.5). In such contexts, no significant differences on scale separation between the RSL

and ASL seem noticeable, but rather the distance from the wall emerges as a more

important factor.

Besides the individual pdfs that characterize the scale-wise contribution to the

diagonal elements (σ2
u and σ2

w) of the stress tensor through Duu and Dww, another

important attribute is the stress/energy production by the scales of motion. The

anisotropic coherent eddies are known to be the scales where turbulence (momentum

flux ´uw “ u2˚) interacts with the mean flow (dU{dz) to produce energy/variances.

As such, the mixed second-order structure function Duw{u
2
˚ “ ∆u`px` rq∆w`pxq

that involves lagged (in r) cross-correlations between the velocity components is now

explored. Upon expansion, this normalized structure function can be written as

Duwprq

u2˚
“ 2´

upxqwpx` rq

u2˚
´
upx` rqwpxq

u2˚

« 2´ 2
upxqwpx` rq

u2˚
,

(3.13)

where it is assumed that upx` rqwpx` rq “ upxqwpxq by planar homogeneity, and
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the first term on the right hand side is 2upxqwpxq{u2˚ “ 2. Also, after examina-

tion of the data from all experiments and at all available heights, the assumption

upxqwpx` rq « upx` rqwpxq appears reasonable here (data not shown). Hence,

at very small scales (e.g. r ! lε or z; isotropic range), the velocity components u

and w are well correlated and upxqwpx` rq « u2˚, indicating no contribution to the

momentum flux upxqwpxq from these small eddies. As r increases and the velocity

components decorrelate, i.e. the second term in Eq. (3.13) decreases to zero, the

larger-scale eddies cumulatively contribute to the momentum flux. This argument is

investigated here by sampling the isotropic and anisotropic eddies in an analogous

manner to the usual quadrant analysis of (u,w) fluctuations, typically used for charac-

terizing ejection-sweep events. Fig. 3.10 shows such a scale-wise analysis for ∆u`prq

and ∆w`prq. The scatter plots of these quantities against each other in the isotropic

(r ! lε; Fig. 3.10b) and anisotropic (r " lε; Fig. 3.10c) scales suggest that at small

separation distances r, the contributions from the four quadrants in Fig. 3.10b to

the product ∆u`∆w` cancel each other, while at r " lε, the second (∆u` ă 0,

∆w` ą 0) and fourth (∆u` ą 0, ∆w` ă 0) quadrants dominate the contribution

to the negative momentum flux. This picture is consistent across all experiments.

Figure 3.10a shows the joint pdfs of (∆u`, ∆w`) for the scatter plots in Figs. 3.10b

and 3.10c, with the filled/colored contours representing the isotropic scales in Fig.

3.10b, and the gray line contours corresponding with the energy-producing eddies in

Fig. 3.10c. The analysis in Fig. 3.10c (or gray contours in Fig. 3.10a) shows that

within the large-scale coherent eddies, it is the simultaneous occurrence of strong

excursions/gradients in ∆u`, be these positive or negative, accompanied with strong

excursions in ∆w` of the opposite sign, that lead to shear production. By examining

the second (∆u` ă 0, ∆w` ą 0) and fourth (∆u` ą 0, ∆w` ă 0) quadrants

in Fig. 3.10c, it appears that the two mechanisms, namely large negative ∆u` ex-

cursions accompanied by large positive ∆w` ones (second quadrant; analogous to
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ejection events), or the opposite (fourth quadrant; analogous to sweeping events),

are equally likely to produce momentum. As opposed to the usual quadrant analysis

of the ejection-sweep cycle that does not account for scale-wise contributions, the

analysis here samples all eddy sizes and reflects on their role in shear/energy pro-

duction. For instance, the lagged cross-correlation ´upxqwpx` rq{u2˚ (second term

in Eq. (3.13)) is shown in Fig. 3.11 for all experiments and at all heights. The

OC experiment behaves similar to ASL experiments and is no longer included in the

analysis here for brevity. At small scales (« r ă κz in Fig. 3.11), the velocity com-

ponents upxq and wpx` rq are well correlated and upxqwpx` rq « upxqwpxq “ u2˚,

while as r increases, larger eddies accumulate momentum until r „ Lu (shown as

vertical dashed lines in Fig. 3.11). Within the anisotropic range, it is evident that

shear production is stronger at the larger-scale coherent motion and decreases as

eddies cascade to smaller scales until isotropy is attained and no more shear is pro-

duced. It is worth noting that these shear-producing eddies extend to a wider range

(« two decades) in the ASL (Figs. 3.11c and 3.11d) than in the RSL (« one decade)

(Figs. 3.11a and 3.11b), where Lu is smaller in the latter.

The last two components of the phenomenology of the anisotropic range relate the

structure function Duuprq to its third-order counterpart Duuuprq through the struc-

ture skewness Sprq [Eq. (3.8)], and to the vertical velocity structure function Dwwprq.

Both are well-studied in the isotropic range where Sprq « ´0.22 and Duu{Dww « 3{4

(ratio of the Kolmogorov constants for Duu and Dww in the universal isotropic range).

Figure 3.12 shows the negative of the skewness Sprq plotted against r{κz for all the

experiments here. The length scales lε, ls, and Lu for the highest measurement loca-

tion are also shown. The value Sprq « ´0.22 seems a satisfactory approximation at

small scales, particularly for the ASL experiments (Figs. 3.12c and 3.12d), while it

slightly lower in the RSL (Figs. 3.12a and 3.12b). Deviations from this value occur

at or before r « κz, and decay faster in the RSL than in the ASL. There is no strong
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height dependence in Sprq, although it is noticeable that the inertial length scale

κz collapses Sprq at different heights in the ASL but not in the RSL. The negative

values of Sprq in both the isotropic (« ´0.22) and anisotropic ranges indicate that

Duuuprq “ rupx` rq ´ upxqs3 ă 0, and hence at these scales, both negative and pos-

itive excursions in the longitudinal velocity fluctuations tend to decrease. Similar

analysis for Duu{Dww (Fig. 3.13) shows that this ratio is close to the expected ‘3/4’

constant in the isotropic range, and departs fast from this constant around r « κz.

At those larger scales, if Duu exhibits a logarithmic scaling while Dww attains 2σ2
w,

the ratio Duu{Dww should also show a logarithmic scaling in r. This seems to be

the case for all experiments except for AMA, which exhibits a logarithmic scaling

in Dww. The ratio Duu{Dww approaches the constant pσu{σwq2 (calculated from the

data and plotted as dashed horizontal lines in Fig. 3.13) at the very large scales,

indicating a reasonable convergence of the scale-wise fluctuations to bulk turbulence

statistics.

3.4.3 Similarity length scales

Figure 3.14 addresses the collapse of Duu{u
2
˚ at different heights for each experiment.

In Figs. 3.14a and 3.14b, Duu{u
2
˚ at different heights within the RSL (Fig. 3.14a) and

the ASL (Fig. 3.14b) are plotted against r{κz to assess whether the inertial length

scale κz can collapse the experimental data. This is clearly the case for the ASL

experiments in Fig. 3.14b (six heights for AHATS and four heights for LAKE),

where all structure functions fall into one curve at all scales r, while in the RSL shown

in Fig. 3.14a (three heights for each of AMA and MAI), there is clear discrepancy

at different heights. In contrast, the length scale lε performs much better in collapsing

the height-dependentDuu{u
2
˚ in the RSL (compare Fig. 3.14a and 3.14c), albeit there

are small departures at large r. In the ASL, lε performs equally well to κz (compare

Fig. 3.14b and 3.14d), where the structure functions at all heights again collapse into
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a single curve. The large imbalance between P and ε in the RSL (see the inset in Fig.

3.14a) explains why lε may be the correct similarity length scale in such contexts,

while a smaller imbalance in the ASL (inset in Fig. 3.14b) maintains κz (or lε) as

the similarity length scale. A similar and perhaps stronger conclusion can be made

for the vertical velocity structure function Dww{u
2
˚ (shown in Fig. 3.15), where by

comparing Figs. 3.15a and 3.15c for the RSL, a remarkable collapse of the data can

be seen when normalizing r by lε, while in the ASL (Figs. 3.15b and 3.15d), both κz

and lε are comparable in bringing Dww at different heights to a single curve. To this

end, Fig. 3.16 compares the performance of lε with ls in collapsing Duu{u
2
˚ for the

canopy experiments only. While lε performed better than κz in the RSL (see Fig.

3.14), there were still some discrepancies at the large scales. In Fig. 3.16b, the shear

length scale ls commensurate with the Kelvin-Helmoholtz instabilities can remove

such discrepancies.

3.5 Conclusions

This paper examined the scaling laws, phenomenology, and similarity of the large-

scale coherent eddies in the roughness sub-layer (RSL) of dense canopies and in the

atmospheric surface layer (ASL). The focus was on the flow field in near-neutral

conditions, which is a logical first step before exploring the role of thermal stratifi-

cation and scaling laws for scalar transport. The sparse canopy case where ls may

not be the prevalent vorticity thickness was not considered given the expected role

of dispersive stresses in the roughness sublayer. The scaling laws of Duu and Dww

inside canopies is retained for a future study given the additional length scales (such

as von Karman streets and wake effects) involved and the need to by-pass the use of

Taylor’s frozen turbulence hypothesis in such conditions.

The large anisotropic scales of motion are known to exhibit a k´1 power law in

the spectrum of the longitudinal velocity Euupkq at low wavenumbers k, typically at
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kz ă 1, where z is the distance from the wall, or otherwise a logarithmic scaling in the

corresponding structure function Duuprq „ lnprq at large separation distances r ą z.

It was shown in prior studies that the cross-over from the aforementioned large scales

to inertial subrange scales is rather narrow and reasonably delineated by z. This z-

scaling is examined here in the RSL and ASL when production and dissipation of

turbulence kinetic energy are not in local balance, leading to additional length scales

such as the dissipation (lε “ u3˚{ε) and mixing/shear (ls “ UpdU{dzq´1) length

scales. Five experiments (four atmospheric flows and one open channel experiment),

with multiple heights and multiple realizations/runs each, are used here to explore

these aspects. The findings indicate that both the k´1 in Euu and/or lnprq in Duu

exist within the RSL, ASL, and canonical turbulent boundary layers, although the

extent of this anisotropic range varies across experiments, with the RSL exhibiting

shorter extent due to the small separation of scales (the integral length scale is

smaller than its ASL counterpart). Conversely, these scaling laws are absent in

Eww or Dww for the vertical velocity components, except at large distances from the

wall where a short extent of anisotropy emerges. Phenomenological aspects of the

coherent eddies reveal that the statistics of velocity increments ∆u and ∆w approach

a Gaussian-like behavior at large r. These findings are in broad agreement with the

accepted picture of canonical turbulent boundary layers. Eddies associated with

these large anisotropic r are further responsible for momentum/energy production

corroborated by large positive (negative) excursions in ∆u accompanied by negative

(positive) ones in ∆w. In terms of similarity, normalizing the separation distance

r by the inertial length scale κz or lε shows comparable performance in collapsing

the structure functions Duu and Dww at different heights in the ASL, where the

ratio P {ε does not deviate appreciably from unity. In contrast, lε collapses these

structure functions in the RSL better than z, albeit with some discrepancies at the

larger scales. These discrepancies are mediated when the shear length scale ls is used.
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While the work here supports the use of lε for RSL and ASL flows in normalizing

Duu and Dww at large scales instead of z, it appears to be insufficient and may be

complemented by ls for the RSL.

Table 3.1: Site and experimental characteristics. Note that the columns correspond to
z: approximate measurement height (m), h: average canopy height (m), f : sampling
frequency (Hz), time: run/block time length (min), Runs: number of blocks analyzed,
and the ranges of u˚ and U across the runs. Key: AMA ” Amazonian canopy; MAI ”
maize canopy; LAKE ” Lake Geneva; AHATS ” Advection horizontal array turbulence
study; and OC ” open channel experiments. See section 3.3 for further details.

Experiment z h f time Runs u˚
1 U1

(m) (m) (Hz) (min) - (m s´1) (m s´1)
AMA 35, 40.25, 48.3 35 20 30 24 0.2-0.7 1-2.6
MAI 2.1, 2.8, 3.5 2.1 20 30 15 0.43-0.51 1.56-1.95

LAKE 1.7, 2.3, 3, 3.6 - 20 30 63 0.12-0.57 1.2-10.6
AHATS 1.5, 3.3, 4.2, 5.5, 7, 8 - 60 36.4 15 0.2-0.4 2.42-5

OC 0.006, 0.01 - 100 1.365 1 0.009 0.2
1 Range of values of u˚ and U across all the runs calculated from the lowest measurement height
(z{h « 1 for canopies).
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Figure 3.1: Conceptual framework used to distinguish some features of canopy
(roughness sublayer; left) and wall-bounded (e.g. surface layer; right) flows. The
flow in both cases is planar homogeneous with mean longitudinal velocity U . At
some height z above the canopy (left) or surface (right), eddies of size larger than
z are considered attached to a displaced wall (d0) or surface, while typically much
smaller eddies are detached (isotropic here) and follow K41 theory. For canopy flows,
the analysis is restricted to the mixing layer where Kelvin-Helmholtz (K-H) eddies
are active. The velocity (u and w) structure functions are interpreted as functions of
the longitudinal separation distance r “ τU , where τ is time separation. Dimensions
are not-to-scale and h denotes canopy height. The height z and the direction and
magnitude of the velocity components (red and blue arrows) are chosen arbitrarily
for illustration.
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Figure 3.2: Dimensionless profiles of mean flow statistics for a select experimental
run at each site/experiment (see Table 3.1 ) for (a)-(e): mean longitudinal veloc-
ity component; (b)-(f): velocity variances; (c)-(g): velocity skewness; and (d)-(h):
mixed third-order velocity moments. The normalizing scales are the friction ve-
locity (u˚), canopy height (h), and highest measurement location (zh). Top panel
[(a),(b),(c),(d)]: Amazonian (AMA; black; h “ 35 m) and maize (MAI; blue;
h “ 2.1 m) canopy experiments. Bottom panel [(e),(f),(g),(h)]: smooth/rough wall
experiments for open channel (OC; red; zh “ 1 cm), AHATS experiment (AHATS;
green; zh “ 8 m), and Lake Geneva (LAKE; cyan; zh “ 3.6 m). The velocity
components u and w are represented by the circle and triangle symbols respectively.
Note that full profiles are shown for canopy experiments but subsequent analysis is
restricted to flow above the canopy (z{h ě 1).
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Figure 3.3: Profiles of the ratio (l{κz) of several length scales (l) to the inertial
length scale (κz) against (a)-(b): z{h and (c)-(d)-(e): z{zh for the experimental run
in Fig. 3.2. For canopies [(a),(b)], κz is to be interpreted as the height above the
zero-plane displacement.
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Figure 3.4: (a): Normalized structure function (Duu{u
2
˚) of the longitudinal veloc-

ity component against r{κz at each site/experiment (for highest measurement height
only; see Table 3.1). Here, r is the longitudinal separation distance inferred from
Taylor’s frozen turbulence hypothesis and z is the distance from the surface/wall (or
zero-plane displacement for canopies). The solid and dashed gray lines denote the r2{3
(inertial range) and logarithmic law/fits (production range) respectively. (b): The
corresponding normalized and pre-multiplied spectra (kEuu{u2˚) of the longitudinal
velocity component plotted against kz, where k “ 2π {r “ 2π f{U is the longitu-
dinal wavenumber, f is the frequency and U is the mean longitudinal velocity. The
solid gray lines denote the k`1 (nonuniversal/VLSM range), k0 (production range),
and k´2{3 (inertial range) power laws respectively. All plots are shifted vertically for
clarity.
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Figure 3.5: Same as Fig. 3.4 for the vertical velocity component.
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Figure 3.6: Normalized structure functions (Dαα{u
2
˚) with α “ u (red) and α “ w

(blue) plotted against r{κz at all measurement heights for (a): AMA canopy (three
heights), (b): MAI canopy (three heights), (c): LAKE (four heights), (d): AHATS
(six heights), and (e): OC (two heights). The separation distances r “ Lu and
r “ Lw are shown at each height with a vertical dashed black line. The solid gray
lines denote the r2{3 (inertial range) power law. All plots are shifted vertically with
the lowest measurement height at the bottom.
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Figure 3.7: Slope (B) in the logarithmic scaling of the production range in Duu

plotted against u˚ at each site. Data fits are indicated by blue color and energy
density matching, B9z2{3 and B9u2˚ discussed in section 3.4 are shown in black and
red colors respectively.
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Figure 3.8: Probability density functions (pdf ) of the normalized (by u˚) velocity
differences. (a)-(b): ∆u`prq and (c)-(d): ∆w`prq at two selected separation dis-
tances. In (a)-(c), the separation distance is r ! lε (isotropic range) and in (b)-(d)
r " lε (anisotropic range). A Gaussian pdf with zero mean and a variance equal to
that of the data is shown by black lines. Only the highest measurement height at
each site is presented and all plots are shifted vertically for clarity.
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Figure 3.9: (a)-(b) Skewness (Sk) and (c)-(d) excess (above Gaussian value of 3)
flatness factor (F ) of the distributions of velocity differences as a function of r{κz.
Different sites are represented by colors consistent with Fig. 3.8. The vertical lines
correspond to r “ lε at each site.
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Figure 3.10: (a): Joint probability density functions (pdf ) of ∆u`prq and ∆w`prq
in the isotropic (r ! lε indicated by colored contours) and anisotropic (r " lε in-
dicated by gray contours) eddies. The joint pdf in (a) are calculated based on the
scatter plot of ∆u`prq and ∆w`prq in (b) isotropic (r ! lε) and (c) anisotropic
(r " lε) range.
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Figure 3.11: Lagged cross-correlation upxqwpx` rq (note the negative sign) in Eq.
(3.13) normalized by u2˚ at all heights for each experiment. The dashed vertical lines
correspond to the integral length scale Lu at each height, with their colors matching
the legend for heights.
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Figure 3.12: The negative of the structure skewness in Eq. (3.8) for the atmospheric
experiments plotted against r{κz at each measurement height on a log-linear scale.
The length scales lε, ls, and Lu are shown as solid, dashed, and dash-dotted red lines
respectively. These are from the highest measurement height in each experiment for
illustration. The value Sprq « ´0.22 [see Eq. (3.11)] expected in the isotropic range
is shown as black dashed horizontal lines.
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Figure 3.13: Ratio of the structure functions Duu{Dww plotted against r{κz at
each measurement height on a log-linear scale. Similar to Fig. 3.12, the length scales
lε, ls, and Lu are shown as solid, dashed, and dash-dotted red lines respectively. The
horizontal dashed lines represent the ratio Duu{Dww “ pσu{σwq

2 (calculated from
the data) expected at the very large scales, while black horizontal lines correspond
to Duu{Dww “ 3{4 in the isotropic range.
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Figure 3.14: log-log plots of the normalized structure functions Duu{u˚2 at all
available measurement heights plotted against (a)-(b): r{κz and (c)-(d): r{lε. The
canopy experiments AMA and MAI are plotted in (a) and (c), while the ASL
experiments are shown in (b) and (d). Different colors correspond to different heights
in each experiment. Plots are shifted vertically (same multiplication factor for each
experiment) for clarity. The inset plots in (a) and (b) are the vertical profiles of the
ratio P {ε, with circle symbols in the insets within (a) and (b) being for the MAI
canopy and AHATS experiments respectively, and triangle symbols (insets in (a)
and (b)) for the AMA canopy and LAKE experiments respectively.
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Figure 3.15: Same as Fig. 3.14 for Dww{u
2
˚.
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Figure 3.16: log-log plots of the normalized structure functions Duu{u˚2 at all
available measurement heights for the canopy experiments only, plotted against (a):
r{ε, and (b): r{ls.
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4

The nonlocal character of turbulence asymmetry in
the convective atmospheric boundary layer

4.1 Introduction

Despite their introduction some 140 years ago by Boussinesq, eddy diffusivity and

eddy viscosity (or simply K-theory) models remain key concepts in turbulence re-

search. According to McComb (2004), they qualify as the first successful application

of renormalization group (RNG) methods, well before RNG’s formal development

in quantum field theory. The use of K-theory has made it possible to estimate and

model turbulent fluxes in natural systems operating at Reynolds numbers that are

simply too large to resolve in direct numerical simulations. However, the failure of

K-theory in the convective atmospheric boundary layer (CABL) continues to draw

research interest for an alternative that retains their simplicity. The CABL is a

common daytime occurrence over the land surface, and is primarily characterized

by ascending buoyant plumes that originate at the heated surface and evolve to a

length scale comparable to the boundary layer depth h. These semi-organized eddies

are accompanied by weaker subsiding (descending) plumes associated with entrain-
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ment fluxes at the boundary layer top, leading to an asymmetry in the turbulence

structure and hence in the vertical transport of scalars (e.g. heat, humidity) within

the CABL. This perspective of a global boundary layer consisting of large-scale up-

drafts (bottom-up) and downdrafts (top-down) is now known to be the principal flux

transport mechanism of heat in the well-mixed layer. Often referred to as nonlocal

transport, as opposed to local mean gradient-diffusion closures (K-theory) driven by

mean scalar gradients, a variety of modeling approaches has emerged over the past

decades to explain and model the effects of these nonlocal large-eddies on turbulent

fluxes. The tenets of such models descend from different schools of thought in the

atmospheric boundary layer literature, and apart from minor advantages to each

model over the others in certain situations, they involve some commonalities and

invariably have comparable performance. This begs the question as to whether there

is a unifying “umbrella” framework that encodes the mechanisms of vertical trans-

port of scalars in the CABL, attributes the differences among the available models to

derivatives of some parent process, and lends itself to a wider variety of applications

that require more efficient parametrization of boundary layer processes.

In that respect, the vertical transport of heat in the clear-air (dry), horizontally

homogeneous, quasi-stationary, convective atmospheric boundary layer is considered

here. This setting has a long history in the pedagogy of atmospheric boundary

layer turbulence and was considered in the early works of Ertel (1942), Priestley

and Swinbank (1947), Deardorff (1966), and Zeman and Lumley (1976) on failures

of K-theory. It was evident that in the well-mixed portion of convective boundary

layers, finite heat fluxes coexist with negligible vertical gradients in the corresponding

mean potential temperature (often referred to as ’zero-gradient’ flow). The local

eddy-diffusivity approach was therefore insufficient to explain such fluxes in sign and

magnitude. The latter model assumes that the vertical flux of a turbulent scalar

quantity, such as the potential temperature θ, is proportional to the gradient in its
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local mean value (Θ) using a turbulent heat diffusivity KH , such that (e.g. Stull,

1988)

wθ “ ´KH
dΘ

dz
, (4.1)

where w is the turbulent fluctuation in the vertical velocity component and z is

the vertical coordinate. Henceforth, small letters represent instantaneous turbulent

fluctuations in a variable, capital letters are reserved for mean quantities, and over-

bars represent averaging over coordinates of statistical homogeneity (time and planar

space here). Figure 4.1 is a sample result from a Large Eddy Simulation (LES) run

described in later sections that illustrates the limitation of K-theory in CABL, where

dΘ{dz “ 0, yet wθ ą 0. In fact, the upper part of the CABL experiences both pos-

itive gradients and fluxes, which reflects the ability of buoyancy-driven plumes to

transport warm air from the surface to the top of the boundary layer and hence as-

cend counter to the gradient in the mean potential temperature (e.g. Deardorff, 1972;

Wyngaard and Weil, 1991). This observation initiated interest in nonlocal large-eddy

flux transport as means to correct for K-theory and improve the parametrization of

the CABL in regional and general circulation models.

While there is a significant body of literature and reviews on this topic (e.g.

Zilitinkevich et al. (1999) and van Dop and Verver (2001)), a brief summary of the

common modeling approaches correcting for nonlocal effects is presented here:

(i) Eddy Diffusivity-Counter Gradient (EDCG): The premise of this approach is the

addition of a counter-gradient term (γ) to Eq. (4.1) (Deardorff, 1972; Troen and

Mahrt, 1986; Holtslag and Moeng, 1991; Holtslag and Boville, 1993)

wθ “ ´KH

ˆ

dΘ

dz
´ γ

˙

, (4.2)

such that the term KHγ “ wθpNLq represents the nonlocal (NL) component of the
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heat flux. Deardorff (1972) initially suggested

γ “ β
σ2
θ

σ2
w

, (4.3)

where β “ g{T0 is the buoyancy parameter, g is the gravitational acceleration, T0

is a reference absolute temperature, and σ2
θ “ θ2 and σ2

w “ w2 are the variances

in potential temperature and vertical velocity respectively. A limitation to Eq.

(4.3) is the fact that σ2
θ and σ2

w can be large and even comparable to the gradient-

diffusion term in the atmospheric surface layer where K-theory is expected to hold.

Improved parametrization appeared in the works of Troen and Mahrt (1986) and

Holtslag and Moeng (1991), where the former proposed an expression for γ to be

compatible with the surface layer similarity theory resulting in:

γ “ C
wθ0
wsh

, (4.4)

where C is a proportionality constant, wθ0 is the kinematic surface heat flux,

h is the boundary layer height, ws » 0.65w˚ (convective limit) is a mixed-layer

velocity scale, and w˚ “ pβwθ0hq
1{3 is known as Deardorff’s convective velocity

scale (Deardorff, 1970). With a simple parametrization of the gradient in the

third-order moment (wwθ), based on the LES results of Moeng and Wyngaard

(1989), Holtslag and Moeng (1991) expressed the countergradient correction as

γ9w˚
wθ0
σ2
wh
, (4.5)

thereby accounting for the effects of the bulk parameters (w˚, h, and wθ0) of the

CABL in the heat flux profile. In this EDCG framework, the height-dependent

turbulent heat diffusivity is considered proportional to the vertical velocity vari-

ance and an appropriate timescale (KH9τσ
2
w) analogous to a Taylor diffusion (?).
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Nevertheless, rather than a Lagrangian timescale as in Taylor’s original work (?),

τ here is associated with Rotta’s return-to-isotropy timescale (Deardorff, 1972) or

the mean turbulence kinetic energy (TKE) dissipation rate (Holtslag and Moeng,

1991).

(ii) Transport Asymmetry (TA): In a remarkable series of papers, Wyngaard and Brost

(1984), Moeng and Wyngaard (1984), Moeng and Wyngaard (1989), Wyngaard

and Weil (1991), and Wyngaard and Moeng (1992) introduced and formulated

the concept of asymmetry in the vertical diffusion of scalars in the CABL. In

particular, they distinguished bottom-up (driven mostly by surface flux) from

top-down diffusion (driven by entrainment flux), noting that these mechanisms

have different profiles of eddy diffusivity. This concept incorporated the skewness

of the vertical velocity into the nonlocal heat flux representation, where wθpNLq,

with the assumption of a linear flux profile (finite gradient), reads (Eq. (43) in

Wyngaard and Weil, 1991)

wθpNLq “ ´
SwσwTL

2

dwθ

dz
, (4.6)

where Sw “ w3{σ3
w is the skewness of w and TL is a Lagrangian timescale. While

Cuijpers and Holtslag (1998) argued that little improvement is gained by including

Sw and that the vertical velocity variance remains more significant for the nonlocal

flux, we note that Wyngaard and Weil (1991) assumed a skewed but homogeneous

turbulence in most of the CABL, i.e. dSw{dz “ 0 for 0.1h ă z ă 0.9h. Another

feature of Eq. (4.6) is that it implies a zero nonlocal flux (wθpNLq “ 0) in the

surface layer where dwθ{dz “ 0 (see Figure 4.1), as opposed to Eqs (4.4) and

(4.5).

(iii) Third-order Moment parametrization (TOMP): This approach is directly related

to second-order closure models of the heat flux and temperature variance bud-
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gets. The fact that the mixed third-order moments (TOM), namely the flux

of potential temperature flux (wwθ) and flux of potential temperature variance

(wθθ) are responsible for nonlocal transport in the CABL called attention for their

parametrization. The TOM are often obtained by solving the corresponding bud-

get equations that involve fourth-order moments (FOM) with the quasi-normal

approximation (Canuto et al., 1994), or mass-flux decomposition of the higher-

order terms (e.g. Abdella and McFarlane, 1997; Gryanik and Hartmann, 2002).

Examples of such parametrization are (Abdella and McFarlane, 1997)

wwθ “ Swσwwθ, (4.7)

wθθ “ Swσθwθ. (4.8)

Mironov et al. (1999) proposed that the skewness of potential temperature (Sθ “

θ3{σ3
θ) should replace Sw in Eq. (4.8).

(iv) Eddy Diffusivity-Mass Flux (EDMF): This model parametrizes the turbulent flux

in the CABL on the basis of separating the boundary layer into strong and nar-

row updrafts and a surrounding turbulent environment. The formulation of this

method was initially developed for convective transport in cumulus clouds and was

later extended to the full boundary layer (Siebesma and Cuijpers, 1995; Siebesma

and Teixeira, 2000; Siebesma et al., 2007). The total turbulent flux of potential

temperature is then due to the contributions from the updrafts, the surrounding

environment, and a mass-flux term:

wθ “ auwθ
u
` p1´ auqwθ

e

` aupwu ´ wqpΘu ´Θeq,
(4.9)

where the sub- or superscripts u and e denote the strong updrafts and the sur-

rounding environment respectively, au is the fractional area occupied by the up-
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drafts, wu and w are the mean vertical velocity components in the updraft and

the complementary environment, and Θu and Θe are the corresponding mean po-

tential temperatures. Neglecting the first term in Eq. (4.9) (au ! 1), and with

the approximation Θe “ Θ, the EDMF model is usually reduced to

wθ “ ´KH
dΘ

dz
`MpΘu ´Θq, (4.10)

where wθe “ ´KHdΘ{dz represents the eddy-diffusivity term andM “ aupwu´wq

defines the convective mass flux. The second term in Eq. (4.10) is equivalent to

the nonlocal heat flux wθpNLq, and requires parametrization of the mass flux M ,

an updraft model for wu and Θu, besides the eddy-diffusivity KH .

Notwithstanding the differences across the models described above, it is evident

in all cases that the large-eddy coherent motion in the CABL primarily dictates

the vertical diffusion of scalars. It is also apparent that the nonlocal fluxes are

a manifestation of the inherent asymmetry in vertical transport, which is in turn

associated with the TOM (Sw, Sθ, wwθ, and wθθ) and their vertical gradients. This

hints at the importance of the non-Gaussian nature of the turbulence structure in

the CABL as means to explain the nonlocal transport, where such asymmetry must

exhibit itself in the joint probability density function (JPDF) of vertical velocity

and potential temperature. While the latter argument is only intuitive, this JPDF

received little attention in the context of nonlocal scalar flux literature, except for

the work of Wyngaard and Moeng (1992) and ? that provided a reasonable starting

point for the work here.

The second-moment budget of the sensible heat flux in the weakly-to-strongly

convective atmospheric boundary layer is considered here to explore the role and

relative importance of the TOM on nonlocal flux transport. The premise is that

the non-Gaussian JPDF of vertical velocity and potential temperature encodes all
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the properties of these TOM and hence provides a unifying framework to explain all

the underlying physical mechanisms of nonlocal flux corrections to K-theory. Since

the essence of second-order closure modeling is the proper parametrization of the

TOM, the aforementioned models (EDCG, TA, TOMP, and EDMF) seem to be a

natural extension to the characteristics of this JPDF. Although the intent here is not

to provide a fully prognostic closure replacing earlier models for flux parametriza-

tion, we build on the works of Nakagawa and Nezu (1977) and Raupach (1981) on

conditional sampling (quadrant analysis) and the cumulant-discard expansion of the

Gram-Charlier JPDF of w and θ to unfold dynamically interesting connections be-

tween EDCG, TA, TOMP, and EDMF models and the ejection-sweep events in the

flow field. While the aforestated work examined the fractional contributions of each

quadrant to the Reynolds stresses (momentum fluxes), the analysis can be extended

to scalar fluxes (wθ) (Katul et al., 1997a; Cava et al., 2006; Poggi and Katul, 2007).

It is to be noted, however, that the use of the terms ejections and sweeps here is

not a simple mapping of what is commonly understood in the context of momentum

fluxes in the surface layer (i.e. ejection-sweep cycle). Rather, an analogy of the

notation used by Raupach (1981) is made to quadrant analysis of the heat flux for

convenience of notation, and ejection/sweep ‘events’ is used throughout in lieu of

‘cycle’. This point is revisited in subsection 4.2.3 when introducing the nomencla-

ture for the quadrant analysis. Most importantly, conditional sampling of the (w,θ)

JPDF quantifies the fractional contributions of each quadrant to the total heat flux,

and ties these contributions to physical characteristics of the flow field, namely the

ejections, sweeps, inward and outward interactions. Connections between these flow

mechanisms and the TOM then provides a gateway to explain their relative roles in

nonlocal transport and their representation in models such as EDCG, TA, TOMP,

and EDMF. The analysis uses a suite of LES experiments to provide the required

profiles of all moments up to third-order to complement the work, and in the in-
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terest of completeness, the paper also examines the performance of various closure

time/length scales and turbulent diffusivity profiles.

4.2 Theory

As noted earlier, the CABL considered here is a clear-air, stationary (Bp.q{Bt “ 0),

planar homogeneous (Bp.q{Bx “ Bp.q{By “ 0), high Reynolds and Peclet numbers

(negligible molecular viscosity), and with negligible Coriolis force. The coordinate

system is defined such that x, y, and z form the longitudinal, lateral, and vertical

directions, respectively. The usual Reynolds decomposition notation is employed

throughout, where all variables are decomposed into stationary mean (capital letters)

and fluctuating (small letters) quantities. In this section, the characteristics of the

heat flux budget with various simplifying closure assumptions is presented. These

assumptions are then tested and discussed in section 4.4.

4.2.1 The heat flux budget

Using the aforementioned simplifying conditions and adopting the Boussinesq ap-

proximation, the heat flux budget in the convective boundary layer reduces to

Bwθ

Bt
“ 0 “ ´ σ2

w

dΘ

dz
looomooon

M

´
dwwθ

dz
loooomoooon

T

´
1

ρ0
θ

dp

dz
loooomoooon

P

` βθ2
loomoon

B

, (4.11)

where ρ0 is a reference-state air density and p is the pressure fluctuation referenced

to the hydrostatic state and its finite value is attributed to turbulence. The flux

production/destruction terms on the right hand side (rhs) of Eq. (4.11) are, re-

spectively, the mean-gradient production (M), the turbulent flux transport (T), the

pressure gradient-potential temperature covariance (P), and the buoyancy produc-

tion (B). The term P acts as a destruction/sink term for the heat flux wθ, and
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following Rotta (1951), who initially proposed the return-to-isotropy parametriza-

tion to the pressure-velocity gradient covariance in turbulent shear flows, numerous

studies have extended this parametrization to incorporate the contributions from the

mean-gradient, buoyancy, and Coriolis effects (Jones and Musonge, 1984; Moeng and

Wyngaard, 1986; Andrén and Moeng, 1993; Mironov, 2001). Since the Coriolis force

is neglected here, the general form of the parametrization of P is

P “ ´
1

ρ0
θ

dp

dz
“ ´C1

wθ

τ1
´ C2βθ2 ` C3σ

2
w

dΘ

dz
, (4.12)

where the first term on the rhs represents Rotta’s return-to-isotropy (slow) part and

is inversely proportional to a relaxation timescale τ1, and the last two terms are

referred to as the rapid part. Typical values of the constants are C1 “ 3, C2 “ 1{3-

1{2, and C3 “ 2{5. The performance of the parametrization in Eq. (4.12) with

different relaxation timescales will be evaluated with LES simulations in section 4.4.

Using Eq. (4.12) and maintaining the constants for the time being, the flux budget

Eq. (4.11) can be written as

wθ “

C3 ´ 1

C1

τ1σ
2
w

„

dΘ

dz
´

1

pC3 ´ 1qσ2
w

dwwθ

dz
`

1´ C2

pC3 ´ 1qσ2
w

βθ2


,
(4.13)

where, again, C3 ă 1 and has been predicted to be 2{5 for isotropic turbulence

using Rapid Distortion Theory as discussed in ?. Equation (4.13) defines a general

framework for the heat flux within the convective boundary layer and is analogous

to the form of Eq. (4.2) that corrects for countergradient fluxes, with a diffusivity

KH9τ1σ
2
w.

The first term on the rhs of Eq. (4.13) is responsible for the local flux and

the last two terms are the origin of nonlocal fluxes. The ratio of variances term
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(9σ2
θ{σ

2
w) resulting from buoyant production is the countergradient correction ob-

tained by Deardorff (1972) after ignoring the flux transport term, while Holtslag and

Moeng (1991) parametrized the latter with w˚, h, and wθ0 and assumed that the

pressure gradient-temperature covariance cancels the buoyancy effects. The implicit

assumption that the same diffusivity is applicable to the local and nonlocal terms

is debatable (e.g. Frech and Mahrt, 1995), and render the choice of the return-to-

isotropy timescale (τ1) elusive. A local timescale such as τ19TKE{ε, where ε is the

TKE disspiation rate, may not be characteristic of nonlocal fluxes, whereas a large-

eddy turnover timescale such as τ19h{w˚ is not adequate for localized eddies. By

analogy to Eq. (4.2), the countergradient term reads

γ “
1

pC3 ´ 1qσ2
w

dwwθ

dz
´

1´ C2

pC3 ´ 1qσ2
w

βθ2. (4.14)

The contribution of each of these two terms, both in their magnitude and sign

(source/sink) will be discussed later. Equation (4.14) highlights the importance

and the requirement of closure assumptions for the turbulent flux transport term in

the context of nonlocal fluxes.

4.2.2 Local closure to the turbulent flux transport

The most common closure for the turbulent transport of scalar fluxes is again down-

gradient diffusion. The rationale is that, while the gradient in first-order moments is

small in the well-mixed layer and hence Eq. (4.1) is insufficient, the approach can be

valid for the non-vanishing gradients in turbulent second-order moments. This can

be attributed to the fact that the equilibration between such turbulent quantities and

their gradient is attained much faster than the equilibration between mean gradient

and turbulent quantities. This closure results in the conventional form

dwwθ

dz
“ ´

d

dz

ˆ

τ2q
2dwθ

dz

˙

, (4.15)
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where τ2 and q are time and velocity scales respectively. The diffusivity here (KT “

τ2q
2) is not necessarily identical to KH “ τ1σ

2
w, and using Eq. (4.15), the heat flux

budget in Eq. (4.13) can be written as a second-order ordinary differential equation

KT
d2wθ

dz2
`

ˆ

dKT

dz

˙

dwθ

dz
´
C1

τ1
wθ

` pC3 ´ 1qσ2
w

dΘ

dz
` p1´ C2qβθ2 “ 0.

(4.16)

For a turbulent heat flux that is linear in z, a negligible mean gradient term (9dΘ{dz),

and a constant KT , Eq. (4.16) reduces to

wθ “
1´ C2

C1

τ1βθ2, (4.17)

which implies that τ1 ă 0 near the top of the CABL (where wθ ă 0). It also requires

that the quantity τ1θ2 be linear in z. Including the mean gradient term retrieves the

model by Deardorff (1972) shown earlier in Eq. (4.3), and hence it follows that KT

must not be constant.

4.2.3 Conditional sampling and the ejection-sweep events

To characterize the total heat flux wθ at a given height z in the CABL as the sum of

contributions from different physical mechanisms, the JPDF of vertical velocity and

potential temperature fluctuations, denoted by Jpw, θq, and the conditional sampling

of its four quadrants are considered. Such sampling methods were reviewed in ?,

Antonia (1981), and Bogard and Tiederman (1987). In analogy with momentum

transport, four quadrants defined by the Cartesian axes of the scatter plot of w and

θ are shown in Figure 4.2. Quadrants I (w ą 0, θ ą 0) and III (w ă 0, θ ă 0)

contribute to positive heat fluxes but due to different physical mechanisms, namely

warm air parcels moving upward and cold air parcels sinking, respectively. When

the total heat flux wθ is positive, which is the case for roughly the lower 80% of
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the CABL (see Figure 4.1), quadrants I and III have a dominant contribution and

are defined here as ejections and sweeps. While the terms ejections and sweeps

are usually reserved for momentum fluxes, we adopt them here for heat fluxes with

proper handling of the sign of the flux itself. Quadrants II (w ă 0, θ ą 0) and IV

(w ą 0, θ ă 0) both contribute to negative fluxes associated with sinking warm air

and rising cold air, respectively. The latter quadrants dominate in the top « 20%

of the CABL when the total heat flux is negative due to entrainment from the free

troposphere, and therefore events in these two quadrants are labeled as ejections

and sweeps in this context. Additionally, ejections/sweeps as defined here are not

analogous to updrafts/downdrafts used in the context of mass flux models. The latter

are defined by conditioning on the vertical velocity fluctuations only, i.e. updrafts

correspond to w being positive (or larger than some threshold), and downdrafts

correspond to w ă 0. In the quadrant analysis here, updrafts would then be reflected

in quadrants I and IV (both with w ą 0), and hence can contribute to positive

heat fluxes (quadrant I) by carrying positive temperature fluctuations upward and

negative heat fluxes (quadrant IV) by carrying negative temperature fluctuations

upward. A similar picture follows for downdrafts being reflected in quadrants II and

III. On the other hand, ejection and sweep events are hereafter limited to quadrants

I and III respectively (or quadrants II and IV in the entrainment zone where the

net heat flux is negative). This is the main physical difference between ejections and

updrafts, or sweeps and downdrafts.

For the stationary flow in the CABL, the contribution to the total heat flux from

quadrant i can be written as (Raupach, 1981)

xwθyi “
1

Tp

ż Tp

0

wptqθptqIidt, (4.18)

where the angle brackets denote conditional averaging, Tp is the averaging time
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period, and the indicator function Ii is defined such that

Ii “

$

&

%

1; if the events (w, θ) both occur in quadrant i,
0; otherwise,

where i “ I, II, III, IV.
(4.19)

The fraction of heat flux contributed by quadrant i is then given by

Fi “
xwθyi
wθ

, (4.20)

implying that, in the upward (positive) heat flux portion of the CABL, Fi ą 0 when

i is odd (ejections and sweeps) and Fi ă 0 otherwise, with F1 ` F2 ` F3 ` F4 “ 1.

The opposite occurs close to the entrainment zone where the heat flux is downward,

i.e. Fi ą 0 when i is even. It also follows that these fractional contributions are

related to the JPDF by

Fi “
1

wθ

ż 8

´8

ż 8

´8

wθJpw, θqIi dwdθ, (4.21)

and since Jpw, θq can be specified in terms of its moments (ideally infinite set), Eq.

(4.21) provides a link between the fractional contributions (Fi) of each quadrant

to the heat flux and the moments or cumulants of Jpw, θq. For such a quadrant

representation, the interest here is in the imbalance between the contributions of

the rising warm air (quadrant I” ejections) and sinking cold air (quadrant III ”

sweeps) to the positive heat flux, or otherwise the imbalance between quadrants II

and IV in contributing to the negative heat flux. This imbalance reflects the relative

importance of each of these mechanisms and can be quantified as

∆F “
xwθysweeps ´ xwθyejections

wθ

“

"

FIII ´ FI; when wθ ą 0,

FIV ´ FII; when wθ ă 0.

(4.22)
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The importance of the quantity ∆F lies in the fact that it can be represented in

terms of the TOM by a cumulant-discard method (Nakagawa and Nezu, 1977). If

the Gram-Charlier expansion of Jpw, θq is truncated at third-order, which is the

minimum necessary to account for its non-Gaussian nature, ∆F can be written as

(Raupach, 1981)

∆F “
1

R
?

2π

„

R

6
pM03 ´M30q `

1

2
pM21 ´M12q



, (4.23)

where R “ wθ{σwσθ is the correlation coefficient, and the moments Mjk are defined

by

Mjk “
wkθj

σkwσ
j
θ

, (4.24)

and hence M03 “ w3{σ3
w and M30 “ θ3{σ3

θ define the skewness of the vertical veloc-

ity component and potential temperature respectively, while M21 “ wθθ{σwσ
2
θ and

M12 “ wwθ{σ2
wσθ are the central mixed-moment representation of the flux of poten-

tial temperature variance and flux of flux respectively. Equation (4.23) was derived

for momentum transport in the atmospheric boundary layer, where uw ă 0, and

hence it similarly applies to ∆F “ FIV ´ FII in the context of heat flux transport.

Nonetheless, it can be adapted to the positive heat flux case (∆F “ FIII ´ FI) by

simply switching the sign of w in the terms where it occurs an odd number of times.

While the various models introduced above incorporate some TOM in representing

the nonlocal heat flux, Eq. (4.23) encompasses the role of each TOM in shaping the

asymmetry in Jpw, θq and connects this role to the imbalance between different flow

features in contributing to the total heat flux in the CABL.
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4.3 LES runs

The LES code used here solves the three-dimensional filtered equations for momen-

tum and temperature written in rotational form. Spatial derivatives are discretized

through second-order centered finite differences in the vertical and pseudospectral dif-

ferentiation in the horizontal directions. The second-order Adams-Bashforth method

is used for time advancement. The details of the LES code, the numerical scheme

used, the grid generation and subgrid scale (SGS) modeling, and post-processing of

LES output can be found in Kumar et al. (2006) and ?. The SGS model used is the

Lagrangian-averaged scale-dependent dynamic model (Bou-Zeid et al., 2005), which

applies the dynamic procedure (Germano et al., 1991) by averaging over Lagrangian

trajectories to determine the Smagorinsky coefficient. The upper boundary condi-

tion is stress-free, zero temperature gradient, and no flow through the boundary, and

periodic boundary conditions are employed in the horizontal. A damping layer is also

used near the top of the domain to prevent the reflection of gravity waves from the

upper boundary. The wall model is based on imposing Monin-Obukhov similarity in

a local sense.

A total of ten LES runs spanning a range of ´h{L from 7.2 to 48.9 was conducted,

where L “ ´u3˚T0{κgwθ0 is the Obukhov length, κ is the von Kármán constant, and

u˚ is the friction velocity. The LES domain was set to 12 ˆ 12 ˆ 2 km with a

grid resolution of 160 ˆ 160 ˆ 160 (75 ˆ 75 ˆ 12.5 m in the x, y, and z directions

respectively) and a time step of ∆t “ 0.05 s. The initial depth of the boundary

layer was set to h “ 1000 m, and the simulations were forced by a constant pressure

gradient expressed in terms of the geostrophic velocity Ug using the geostrophic

approximation, and a constant surface heat flux was imposed. The range of ´h{L

was obtained by systematically changing Ug between 9 and 15 m s´1 and wθ0 between

0.1 and 0.24 K m s´1. Table 4.1 summarizes the properties of the ten simulations
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including the forcing, characteristic length (´L and h) and velocity (u˚ and w˚)

scales. These parameters are based on averages from hours 4 to 5 of the simulations.

Examination of hourly averages of mean profiles showed that the moments are well

converged after 4 hours physical time, i.e. approximately 20 large eddy turnover times

(h{w˚). The height of the CABL h is defined as the location where the sensible heat

flux is minimum (« ´0.2wθ0).

Figure 4.3 shows the LES-resolved profiles of the variances and third-order mo-

ments of w and θ for the ten simulations, normalized by a combination of (w˚, θ˚).

Figure 4.4 is the same as Figure 4.3 but the profiles are normalized by a (σw, σθ)

combination to show the moments Mjk. It is clear that the TOM are not simply re-

lated by constants as noted by the wind tunnel experiment of Raupach (1981). While

the moments M21 and M12 have fairly similar profiles, their gradients change sign at

different heights in the mixed layer. This also applies for any one moment across the

ten simulations, where the inflection point occurs at higher locations with increasing

w˚{u˚. The skewness of vertical velocity,M03 is not height-independent in the mixed

layer as assumed by Wyngaard and Weil (1991) leading to their parametrization in

Eq. (4.6). The terms in the heat flux budget (Eq. (4.11)) are now shown in Figure

4.5 for cases S1 and S10 for illustration. These cases are the end-members of the

LES simulations here with S1 (w˚{u˚ “ 4.93) and S10 (w˚{u˚ “ 2.61) representing

strongly and weakly convective simulations (see Table 4.1). These are directly ob-

tained from the LES and the pressure term is calculated as a residual for the heat flux

budget. All the terms are comparable in the middle of the CABL (around z{h “ 0.5),

and the turbulent transport (T ) becomes a source for heat flux comparable to the

buoyancy term in this region.
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4.4 Results and Discussion

Using the overall statistics from the LES, a modified Rotta closure for the pressure

gradient-potential temperature covariance term (P ) (Eq. (4.12)), and the singularity

in the timescale (and hence in KH) that was also noted by Wyngaard and Weil

(1991) are first examined. The contribution of the local and nonlocal terms to the

total heat flux in Eq. (4.13) is then presented, followed by an evaluation of the

down-gradient diffusion closure to the flux transport term with various turbulent

diffusivity profiles. Finally, the asymmetry in the (w, θ) scatter plot quantified by

the quantity ∆F is investigated with the relative roles of the TOM in contributing

to this asymmetry. The EDCG, TA, TOMP, and EDMF model parametrization are

compared throughout.

4.4.1 The modified Rotta closure

Figure 4.6 shows a comparison between the LES output and the modeled pressure

term (P). The latter uses the modified Rotta closure (MRC) in Eq. (4.12) with h{σw,

h{
?
TKE, or h{w˚ as relaxation timescales. The constants C1 “ 3, C2 “ 1{2, and

C3 “ 2{5 are used. It is noticeable from Figure 4.6 that these timescales do not result

in significant differences in the modeled profile of P, due to the fact that the Rotta

term in Eq. (4.12) is small relative to the buoyancy and mean gradient counterparts.

Figure 4.6 also shows that in both cases S1 and S10, the MRC reasonably reproduces

the shape of the profile of P obtained from the LES. The return to isotropy timescale

τ1 obtained by rearranging Eq. (4.12) reads

τ1 “
´C1wθ

P ` C2βθ2 ´ C3σ2
wpdΘ{dzq

, (4.25)

which shows that for C2 “ C3 “ 0, i.e. for a simple Rotta closure for the term

P, τ1 becomes negative in the regime of wθ ă 0. This remains the case even when
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including the buoyancy effects with C2 “ 0.38 (Deardorff, 1974) or C2 “ 1{2 (Moeng

and Wyngaard, 1986), and the mean-gradient term with C3 “ 2{5. The fact that the

numerator and denominator in Eq. (4.25) change sign at different heights and in op-

posite directions leads to an apparent singularity in τ1 that was noted by Moeng and

Wyngaard (1986) and Wyngaard and Weil (1991). This singularity was explained

on the basis that bottom-up and top-down diffusion have different eddy-diffusivity

profiles. However, these differences can be accommodated by adapting Eq. (4.25) to

the negative flux portion of the CABL. Since the pressure term acts to decorrelate

the vertical velocity and temperature, a change of sign of all the terms is required in

the negative heat flux regime. This is equivalent to a downward-looking (top-down)

perspective of the entrainment zone with a boundary condition wθi „ ´0.2wθ0. Fig-

ure 4.7 shows the profiles of τ1 calculated from the LES and Eq. (4.25). Acceptable

agreement with the corresponding profiles obtained by Moeng and Wyngaard (1986)

for the heat flux is noted here, but Eq. (4.25) avoids separating the boundary layer

into top-down and bottom-up mechanisms. Further, it is noticeable from Eq. (4.25)

that τ1 „ 0 when wθ „ 0, unless the denominator is identically zero at the same

height and then τ1 becomes indeterminate but still finite. The latter is the case

in our LES runs, where the numerator and denominator approach zero at approxi-

mately the same height, i.e. with a difference less than ∆z{2, where ∆z “ 12.5 m

is the vertical resolution. Such difference can be attributed to numerical artifacts,

especially that the term P is obtained here as a residual to the heat flux budget and

thus incorporates all the uncertainties.

4.4.2 Local closure approach for the flux-transport term

As mentioned earlier, the model in Eq. (4.13) can be used to evaluate the local (first

term) and nonlocal (last two terms) contributions to the total heat flux. First, the

performance of this model in reproducing the heat flux obtained from the LES is
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shown in the top panel of Figure 4.8. The vertical profile of the modeled flux (black

line) is obtained using Eq. (4.13) with a relaxation timescale τ1 “ h{σw, but other

timescales such as h{
?
TKE, or h{w˚ show comparable performance as noted in

section 4.4.1. Since all the terms in Eq. (4.13) are obtained from the LES, except τ1

and the constants, the deviations between modeled and LES fluxes are mostly due to

the performance of the MRC (relaxation timescale τ1). While this remains beyond

the scope of this paper, it is important to consider height-dependent rather than

constant values of C2 and C3 in Eq. (4.12) (see a recent paper by Heinze et al., 2016).

The bottom panel of Figure 4.8 shows the contribution of each term in Eq. (4.13)

to the total heat flux. The gradient diffusion term (9dΘ{dz) becomes negative in

the middle of the CABL, emphasizing the countergradient transport. It is noticeable

that the sum of the nonlocal contributions to the heat flux, wθpNLq “ KHγ, exceeds

their local counterpart in almost all of the CABL, and that the buoyancy and flux

transport terms are comparable to each other.

The solution of Eq. (4.16) is shown in Figure 4.9 for simulations S1 and S10.

Several profiles of the eddy diffusivity KT “ τ2q
2 are tested. With q29σ2

w, the

profiles of τ2 are LB{σw, LB{
?
TKE, h{σw, and h{

?
TKE, where LB is the Blackadar

lengthscale defined by (Blackadar, 1962)

LB “
kz

1` kz{L0

, (4.26)

where k „ 0.4 is the von Kármán constant and L0 is an asymptotic value given by

L0 “

αb

ż h

0

qzdz

ż h

0

qdz

, (4.27)

with αb “ 0.1 (Mellor and Yamada, 1974), and q “ σw here. Figure 4.9 shows

that the CABL height h performs relatively better than LB as a lengthscale for the
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profile of KT , particularly in the strongly convective case S1. An eddy-diffusivity

with the Blackadar lengthscale underestimates the heat flux in the bottom of the

CABL, but performs comparably well to that with h as a lengthscale in the upper

half as LB approaches L0. The timescale τ2 “ h{σw, which is equivalent to the

Lagrangian timescale TL used by Wyngaard and Weil (1991), seems to perform best

with q2 “ σ2
w. Using q2 “ TKE did not result in significant differences (not shown).

4.4.3 Transport asymmetry and the ejection-sweep events

The results of the quadrant analysis of the pw, θq events are shown in Figure 4.10 for

the end-member cases S1 and S10. This conditional sampling technique represents

the average number of events of pw, θq jointly occurring in a quadrant i. The averag-

ing time here is 4 hours and the sampling is conducted at each height (layer) of the

CABL. Note that the quantity Fi in Eq. (4.20) has a singularity when wθ „ 0, and

hence the top panel of Figure 4.10 shows the contribution xwθyi “ Fiwθ of each quad-

rant to the total heat flux. Quadrant I is associated with rising warm air (ejections)

due to positive buoyancy and clearly has the largest contribution to the positive

heat flux. Nevertheless, the contribution of subsiding cold air parcels in quadrant

III (sweeps) to this positive flux is not negligible. Near the top of the boundary layer,

quadrants II (entrained warm air) and IV (rising cold air) have more pronounced

contributions to the heat flux. An important perspective that this analysis empha-

sizes is the fact that the updrafts in EDMF models and/or bottom-up diffusion in

TA models can carry negative temperature fluctuations upward (quadrant IV), and

that downdrafts (top-down) can transport positive temperature fluctuations down-

ward (quadrant II). It is also noticeable that in the lower part of the CABL, where

wθ ą 0, quadrants II and IV still contribute to the heat flux, and hence account for

the effects of top-down diffusion over the entire depth of the boundary layer. The

same applies for quadrants I and III in the negative heat flux portion (upper 20% of
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the CABL) , which indicates that the updrafts/downdrafts and bottom-up/top-down

mechanisms are not decoupled in their contribution to the net heat flux. Quadrant

analysis can then be perceived as a more general framework for examining these in-

dividual mechanisms. The bottom panel of Figure 4.10 shows the imbalance between

the contributions of ejections and sweeps to the heat flux, i.e. quadrants I and III

when wθ ą 0 and quadrants II and IV when wθ ă 0. Note that the quantity ∆F

in Eq. (4.22) does not have a singularity when wθ „ 0, since sweeps and ejections

balance at the same height and hence the numerator becomes zero. For illustration

purposes, the quantity plotted in Figure 4.10 is ∆F0 “ R∆F , where R is the cor-

relation coefficient. This quantity is negative in most of the CABL, indicating that

ejections are dominant over sweeping events for the positive heat flux regime. When

∆F0 becomes positive near the top, R switches sign and quadrant II contributes

more to the downward heat flux than quadrant IV. This asymmetry in heat trans-

port between the different quadrants becomes stronger with increasing w˚{u˚, where

case S1 shows the highest absolute value of ∆F0.

Connections between the asymmetry and the TOM can be achieved through

Eq. (4.23). This truncation at third-order of Jpw, θq appears sufficient to capture

the asymmetry quantified by quadrant analysis of ∆F0 (Figure 4.11). While the

expansion in Eq. (4.23) slightly underestimates the magnitude of ∆F0 (Figure 4.11),

it reproduces the overall profile reasonably, and although this asymmetry increases

with stronger convection (red lines in Figure 4.11), ∆F0 seems to attain a ‘self-

similar’ shape with increasing w˚{u˚. Note that ∆F (and ∆F0) are bounded between

´1 (pure ejection flow) and `1 (pure sweeping flow). Nevertheless, despite being

comprehensive, Eq. (4.23) remains taxing since it involves the correlation coefficient

R and the four TOM (Mjk) that require parametrization. Katul et al. (1997a)

and later Cava et al. (2006) noted that the first term in this cumulant expansion

[9pM03 ´M30)] may be small compared to the contribution of the mixed moments.
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The same analysis is repeated here in Figure 4.12, which indicates that the ejection-

sweep events and the transport asymmetry are mostly due to the fact that the

turbulence transports heat flux and air temperature variance differently. The right

panel of Figure 4.12 shows a comparison of the quantity ∆F0 calculated from the full

expansion in Eq. (4.23) and from the mixed moment term [p1{2
?

2πqpM21 ´M12q]

only. Furthermore, it is interesting to note that this latter result would appear

in its exact form if the TOM parametrization in Eqs (4.7) and (4.8) by Abdella

and McFarlane (1997) (with the correction by Mironov et al. (1999)), namely M03 “

Sw “ wwθ{pσwwθq andM30 “ Sθ “ wθθ{pσθwθq, are substituted in Eq. (4.23). After

some rearrangement, and ignoring the contribution of the difference in skewness term

(9M03 ´M30), Eq. (4.23) can be written as

wwθ “
σw
σθ
wθθ ´ 2

?
2πσw∆Fwθ, (4.28)

and using Eq. (4.8), the flux transport term then reads

dwwθ

dz
“

d

dz
pSpw,θqσwwθq ´ 2

?
2π

d

dz
pσw∆Fwθq, (4.29)

where Spw,θq can be Sw as originally suggested by Abdella and McFarlane (1997) in

Eq. (4.8), or Sθ after Mironov et al. (1999). Recall that the first term on the rhs

of Eq. (4.29), if Sw is used for Spw,θq, is equal to dwwθ{dz from Eq. (4.7), and

hence the model by Abdella and McFarlane (1997) is equivalent to an approximation

for the JPDF such that ∆F “ 0 when wθ ‰ 0. An equally important note is a

comparison with the model of nonlocal flux (wθpNLq) by Wyngaard and Weil (1991)

in Eq. (4.6). This model can be recovered from Eq. (4.29) by setting ∆F “ 0,

and Sw and σw as constants which was assumed by Wyngaard and Weil (1991). The

flux transport term appears in the flux budget as pC3´ 1qτ1{C1dwwθ{dz, and hence

τ1 “ TL “ h{σw here. Next, we consider the relation between the mixed TOM,

98



wθθ “ Cpzqwwθ, where Cpzq is not constant. For instance, Cpzq “ σθ{σw in the

parametrization of Abdella and McFarlane (1997), which would lead to ∆F “ 0 in

Eq. (4.28), and Cpzq “ Sθσθ{Swσw with the correction of Mironov et al. (1999).

Introducing Bpzq “ 1´ Cpzqσw{σθ, Eq. (4.28) can now be written as

wwθ “ ´
2
?

2π

Bpzq
σw∆Fwθ, (4.30)

which defines an alternative parametrization for the turbulent flux of heat flux that

explicitly encodes the role of ejections and sweeps in the heat flux budget. While

Eq. (4.30) serves no prognostic purpose since the profile of ∆F is not known a pri-

ori (but is not zero), it remains useful in diagnosing the failure of the conventional

gradient-diffusion model and in incorporating the role of large-scale motion in con-

tributing to the sensible heat flux. If the representation of wwθ in Eq. (4.30) and

its downgradient-diffusion counterpart in Eq. (4.15) are compared, the quantity ∆F

can be expressed as

∆F “
hpdwθ{dzqBpzq

2p
?

2πqwθ
, (4.31)

where τ2 “ h{σw and q2 “ σ2
w are used as noted earlier. By analogy with Eq.

(4.22), and since h and dwθ{dz are constant, Eq. (4.31) shows that the imbalance

xwθysweeps´xwθyejections scales with Bpzq, i.e. the asymmetry in temperature variance

and flux transport mechanisms. While this conclusion has been alluded to earlier by

ignoring the skewness term and retaining the term 9pM21 ´M12q (see Eq. (4.28)),

the latter comparison in Eq. (4.31) represents an independent confirmation of this

result. With the parametrization in Eq. (4.30), the heat flux budget in Eq. (4.13)

can be written as a first-order differential equation of the form

A1pzq
dwθ

dz
` A2pzqwθ “ A3pzq, (4.32)
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where

A1pzq “
2
?

2π

C1

σw
Bpzq

∆F,

A2pzq “
2
?

2π

C1

d

dz

ˆ

σw∆F

Bpzq

˙

´
1

τ1
,

A3pzq “
C3 ´ 1

C1

σ2
w

dΘ

dz
`

1´ C2

C1

βθ2,

which has the general solution

wθ “

ż z

0

A3pzq

A1pzq
exp

ˆ
ż z

0

A2pzq

A1pzq
dz

˙

dz

exp

ˆ
ż z

0

A2pzq

A1pzq
dz

˙ ` CI , (4.33)

where CI is an integration constant set by the boundary condition pwθqz“0 “ wθ0. To

explore the characteristics of this solution, consider the case where A2{A1 and A3{A1

are nonzero constants, which also implies that A2 and A3 are related by a constant.

This is equivalent to assuming that the quantity wwθ{wθ „ σw∆F {Bpzq and its

gradient that appears in A2 scale with the mean gradient (M) and the buoyancy (B)

terms in A3, which can be seen in the flux budget Eq. (4.11) with the MRC for the

pressure term. The general solution in Eq. (4.33) then becomes

wθ “
A3

A2

ˆ

1´ exp

ˆ

´
A2

A1

z

˙˙

` CI , (4.34)

such that as z Ñ 8 (e.g. z Ñ h), wθ Ñ A3{A2`wθ0, and hence the ratio A3{A2 dic-

tates the boundary condition at 8 (entrainment flux). If we expand the exponential

term in a Taylor series and rearrange Eq. (4.34), the solution is given by

wθ “ p
A3

A1

z ´
A2A3

A2
1

z2

2
` . . . q ` wθ0, (4.35)
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and hence for a linear flux profile, i.e. truncating the expansion at first-order, the

ratio A3{A1 ă 0 sets the slope of wθ. Recall that we initially assumed that A3{A1 is

a nonzero constant. Since pwθqz“h “ wθi, it also follows that

A3

A1

“
wθi ´ wθ0

h
, (4.36)

which shows that the entrainment flux is related to the asymmetry between ejec-

tions and sweeps. Explicit connections between EDMF models and the JPDF are

considered next.

4.4.4 Analogy between EDMF models and the relaxed eddy accumulation method

The convective mass flux term in EDMF models, equivalent to wθpNLq “ MpΘu ´

Θq in Eq. (4.10), where M “ aupwu ´ wq, appears to bear some similarity with

the relaxed eddy accumulation (REA) method used in scalar flux measurements

near the surface (e.g. Businger and Oncley, 1990; Katul, 1994). The REA relies

on conditional sampling of updrafts (rising air parcels) and downdrafts (subsiding

parcels) to estimate a scalar flux as

wθ “ bσw pΘ` ´Θ´q , (4.37)

where the potential temperature fluctuations are used as the scalar of interest here,

b „ 0.52-0.62 (Katul et al., 1996) is a proportionality constant, and Θ` (equiva-

lent to Θu) and Θ´ (equivalent to Θe) are the mean temperatures in the updrafts

and downdrafts respectively. Recall that Θ “ Θe and w “ we in the EDMF are

only approximations to the fact that the updrafts occupy a narrow area and are

surrounded by a slowly subsiding environment, and hence by analogy the mass flux

M „ bσw. This was also noted by Wyngaard and Moeng (1992), and in another

context, Siebesma et al. (2007) used the approximation b « 0.3. Starting with a
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Gaussian JPDF of θ{σθ and w{σw, with the normalized temperature and vertical ve-

locity plotted on the y- and x-axis respectively (see Figure 4.2), then the correlation

coefficient can be approximated by

R “
pΘ` ´Θ´q{σθ
pw` ´ w´q{σw

, (4.38)

where w` “ wu and w´ “ we are the mean vertical velocity components in the

updrafts and downdrafts respectively. Using wθ “ Rσwσθ, the heat flux is given by

wθ “
σw

w` ´ w´
σw pΘ` ´Θ´q , (4.39)

and by analogy to Eq. (4.37), the coefficient b is given as

b “
σw

w` ´ w´
. (4.40)

These relations originally developed by Baker et al. (1992) are used in many contexts.

With this assumption, the mass flux is

M “ au pw` ´ w´q “
σw

w` ´ w´
σw, (4.41)

and hence the fractional area occupied by the updrafts scales as au „ b2. This area

is 0.09 for the value b “ 0.3 used by Siebesma et al. (2007) and ranges between

0.27-0.38 for the usual values of b („ 0.52-0.62). Hence, it can be surmised that the

EDMF models are based on a quasi-Gaussian approximation to the JPDF for the

normalized θ{σθ and w{σw or equivalently, setting ∆F0 “ 0.

4.5 Conclusions

Various models that correct downgradient-diffusion approximations in the convec-

tive atmospheric boundary layer (CABL) employ a countergradient (EDCG), trans-

port asymmetry (TA), third-order moment parametrization (TOMP), or a mass flux
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(EDMF) approach. Reconciling such models and unfolding their similarities has re-

sisted complete theoretical treatment. Using LES runs for the CABL, the role of the

turbulent flux transport term and its contribution to the sensible heat flux budget

was examined, which revealed that the third-order moments do shape such nonlocal

effects. First, a modified Rotta closure for the pressure gradient-potential tempera-

ture term and a downgradient-diffusion approach for closing the flux transport term

were evaluated with a variety of closure time- and length- scales. The analysis indi-

cates that the height of the CABL and the vertical velocity variance are acceptable

closure length and velocity scales. Second, a diagnostic framework that reveals the

role of the third-order moments in shaping the asymmetry in vertical diffusion of

scalars in the CABL was developed and characterized. This framework relies on

conditional sampling and quadrant analysis of the JPDF of vertical velocity and po-

tential temperature, which is indicative of the contributions of each quadrant and

physical flow mechanism to the total heat flux. The imbalance between these quad-

rants is tied to ejections and sweeps in the flow field and was expanded in terms of

the third-order moments of the Gram-Charlier expansion of the JPDF. The EDCG,

TA, TOMP, and EDMF models were linked to different approximations of the JPDF,

particularly to assumptions on the asymmetry and imbalance between ejections and

sweeps. This imbalance is mostly due to the mixed moments rather than the skew-

ness. For instance, the EDCG model that parametrizes the third moments in terms

of bulk properties of the CABL can be viewed as an integrated approach of such

asymmetry. Both TA and TOMP models were retrieved by neglecting the quantity

∆F0, the imbalance between ejections and sweeps, and assuming height-independent

vertical profiles of the skewness and variance of vertical velocity. The EDMF model

was shown to follow from a Gaussian approximation for the JPDF in line with REA

methods. An interesting connection between the coefficient b in REA and the frac-

tional area au occupied by the updrafts suggested that the latter is not necessarily
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negligible as assumed by EDMF models. This may indicate that the neglected term

auwθ
u may still be important, and together with the term p1 ´ auqwθ

e, they are

responsible for local fluxes in the updrafts and the surrounding environment respec-

tively, with eddy diffusivities weighted by the fractional area au. Finally, the LES

runs suggest that the ∆F0 profiles appear to reach a self-similar shape (depends only

on z{h) offering a possibility for a novel closure model for the heat flux budget in

the CABL.
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Figure 4.1: Typical profiles of mean potential temperature Θ (K) (left), its vertical
gradient (dΘ{dz) normalized by θ˚{h (middle), and the heat flux normalized by w˚θ˚
(right). The scaling constants h, w˚ “ pβwθ0hq1{3 and θ˚ “ wθ0{w˚ are the boundary
layer height, Deardorff convective velocity and temperature scales respectively. Note
the zero-gradient heat flux in the mixed layer that cannot be explained by gradient-
diffusion. The surface layer with constant flux (dwθ{dz « 0) and the entrainment
zone (wθ ă 0) are also shown.
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Figure 4.2: Nomenclature for conditional sampling of the w-θ events. Quadrants
I and III contribute to positive (upward) heat fluxes while quadrants II and IV
contribute to negative (downward) fluxes. In the region where the net heat flux
is positive (lower « 80% of the CABL), quadrants I and III are defined here as
ejection and sweep events respectively. Quadrants II and IV correspond to ejection
and sweep events in the negative net heat flux region (upper « 20% of the CABL).
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Figure 4.3: Vertical profiles for the second and third-order moments of vertical
velocity and potential temperature for the ten LES runs. The profiles are normalized
by the appropriate combination of convective velocity (w˚) and temperature (θ˚)
scales, where θ˚ is defined by the relation w˚θ˚ “ wθ0. The red color indicates
the strongly convective cases (S1-S4), blue color for moderately convective (S5-S7),
and green color for weakly convective (S8-S10). See Table 4.1 for details of the
simulations. The horizontal black line corresponds to z{h “ 1.
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Table 4.1: Properties of the numerical simulations.

Parameter Ug wθ0 h |L| ´h{L u˚ w˚ w˚{u˚
m s´1 K m s´1 m m - m s´1 m s´1 -

S1 9 0.24 1238 25.3 48.9 0.43 2.12 4.93
S2 10 0.24 1238 31.3 39.5 0.46 2.12 4.60
S3 11 0.24 1238 38.6 32.1 0.50 2.12 4.30
S4 12 0.24 1238 46.1 26.8 0.53 2.12 4.04
S5 13 0.24 1238 54.6 22.4 0.56 2.12 3.80
S6 14 0.24 1238 64.0 19.3 0.59 2.12 3.62
S7 15 0.24 1238 73.8 16.8 0.61 2.12 3.45
S8 15 0.18 1163 91.8 12.7 0.60 1.89 3.15
S9 15 0.14 1113 113.9 9.8 0.59 1.71 2.89
S10 15 0.10 1075 150.1 7.2 0.58 1.52 2.61

116



5

Conclusions and future directions

The structure and scaling laws of turbulence in the ABL are examined in a context

that challenges the classical view of shear-dominated wall-bounded flows. As opposed

to smooth or rough walls/surfaces in canonical turbulent boundary-layers, the land

surface has two distinct aspects that can alter classical scaling laws. These are the

existence of tall roughness elements (e.g. vegetation canopies) and the effects of

surface heating (typically during daytime). In this context, the work here relied on

laboratory experiments, field measurements, and numerical simulations to explore

the effects of these two aspects on ABL flows. A summary of each chapter along

with the findings is as follows

• Chapter 1 provided the background and motivation for the dissertation, along

with its intellectual merit and broader implications. The study of ABL flows

is contextualized here as an integral component of biosphere-atmosphere inter-

actions and climate change research, where the parametrization of such flows in

coarse-scale numerical weather prediction and climate models requires knowledge

of turbulence processes and dominant length scales that dictate energy and matter

transport, mixing, and dissipation. This context set up the discussion into study-
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ing various layers of the ABL encompassing the statistics of turbulence within and

above the roughness elements (vegetation canopies here), and in the mixed-layer

where the effects of buoyancy on large-eddy heat transport are important.

• Chapter 2 addressed the issue of ergodicity of scalar statistics within canopies. It

has been long-recognized that homogeneous and stationary turbulence is ergodic,

but less is known about the effects of inhomogeneity introduced by the presence

of canopies on the turbulence statistics. A high resolution (temporal and spatial)

flume experiment with vertical stainless-steel rods mounted at the channel bottom

mimicking a dense rigid canopy is used here. Dye was injected in the upstream

water flow, illuminated with laser-induced fluorescence technique, and a sequence

of planar (parallel to channel bottom) images were recorded to provide spatial

(2D) and temporal statistics of the dye concentration. Operational ergodicity was

defined here as the convergence of both temporal and spatial statistics to their

ensemble counterpart. The findings indicate that within-canopy scalar statistics

have a tendency to be ergodic, mostly in shallow layers (close to canopy top) where

the sweeping flow events appear to randomize the statistics. Deeper layers within

the canopy are dominated by low-dimensional (quasi-deterministic) von Kármán

vortices that tend to break ergodicity.

• Chapter 3 used five field and laboratory experiments to examine the existence

of a logarithmic scaling in the structure function of the longitudinal (Duuprq) and

vertical (Dwwprq) velocity components. The experimental data sets spanned the

roughness sub-layer (RSL) above vegetation canopies (two experiments), the at-

mospheric surface-layer (ASL) above a lake and a grass field (two experiments),

and one open channel experiment. The findings indicate that both the k´1 scaling

in Euu and/or lnprq in Duu exist within the RSL, ASL, and canonical turbulent

boundary layers, although the extent of this anisotropic range varies across ex-
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periments, with the RSL exhibiting shorter extent due to the small separation of

scales (the integral length scale is smaller than its ASL counterpart). Conversely,

these scaling laws are absent in Eww or Dww for the vertical velocity components,

except at large distances from the wall where a short extent of anisotropy emerges.

Phenomenological aspects of the coherent eddies reveal that the statistics of ve-

locity increments ∆u and ∆w approach a Gaussian-like behavior at large r. These

findings are in broad agreement with the accepted picture of canonical turbu-

lent boundary layers. Eddies associated with these large anisotropic r are further

responsible for momentum/energy production corroborated by large positive (neg-

ative) excursions in ∆u accompanied by negative (positive) ones in ∆w. In terms

of similarity, normalizing the separation distance r by the inertial length scale κz

or lε shows comparable performance in collapsing the structure functions Duu and

Dww at different heights in the ASL, where the ratio P {ε does not deviate appre-

ciably from unity. In contrast, lε collapses these structure functions in the RSL

better than z, albeit with some discrepancies at the larger scales.

• Chapter 4 reconciled various closure schemes that correct for the failure of

gradient-diffusion (K-theory) when modeling heat transport in the convective at-

mospheric boundary-layer (CABL). Using LES runs for the CABL, the role of the

turbulent flux transport term in the second-order heat budget and its contribu-

tion to the sensible heat flux was examined, which revealed that the third-order

moments do shape such nonlocal effects. First, a modified Rotta closure for the

pressure gradient-potential temperature term and a downgradient-diffusion ap-

proach for closing the flux transport term were evaluated with a variety of closure

time- and length- scales. The analysis indicates that the height of the CABL

and the vertical velocity variance are acceptable closure length and velocity scales.

Second, a diagnostic framework that reveals the role of the third-order moments in
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shaping the asymmetry in vertical diffusion of scalars in the CABL was developed

and characterized. This framework relies on conditional sampling and quadrant

analysis of the joint probability density function (JPDF) of vertical velocity and

potential temperature, which is indicative of the contributions of each quadrant

and physical flow mechanism to the total heat flux. The imbalance between these

quadrants is tied to ejections and sweeps in the flow field and was expanded in

terms of the third-order moments of the Gram-Charlier expansion of the JPDF.

The EDCG, TA, TOMP, and EDMF models were linked to different approxima-

tions of the JPDF, particularly to assumptions on the asymmetry and imbalance

between ejections and sweeps.

The near-term future research directions build upon the findings above and will make

use of the flume experiment to connect the scale-wise statistics of scalars within

canopies to their scaling laws. In particular, the degree of organization or entropy

of the spatial statistics at each scale, spanning the viscous, inertial, and large scale

motion will be connected to their spectral scaling laws counterpart. These are func-

tions of the flow field at each layer within the canopy, where the statistics at the

canopy top are frequently affected by sweeping flow motion from above, while deeper

layers tend to be dominated by von Kármán vortices. In addition, the role of sta-

bility/buoyancy in modifying the results of Chapter 3 will be addressed in a future

study, with a focus on mildly-unstable to convective conditions.

The mid-range future research direction will rely on both closure models and large

eddy simulations to address the concept of baroclinic ABL flows, i.e. when horizontal

temperature gradients exist in the boundary layer under different stability conditions

(mildly stable, near-neutral, and mildly unstable). This is in contrast to the typi-

cally assumed planar homogeneous ABL, and hence is important in contexts when

transitions in land use (e.g. water-land interfaces) are encountered. The outcome
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of this research is intended to serve an improved parametrization the ABL in nu-

merical weather prediction models along with a refined representation of boundary

layer turbulence in modeling scalar transport, shallow cloud formation, and aerosol

deposition.

In the longer range, reducing the dimensionality and complexity of turbulent flows

is warranted in natural settings such as the atmosphere. To find simpler representa-

tions of turbulence, both in its mean flow and statistics, concepts from classical ther-

modynamics (statistical mechanics) and perturbation theory can offer a promising

starting point in deriving more robust laws. The notion that any dynamical system,

when perturbed, tends to restore its equilibrium by following a trajectory in phase

space that maximizes its entropy will be relied upon to infer some characteristics of

turbulence, and compared to the well-studied scaling laws. This requires setting up

models that use thermodynamic equations (that retain the continuum hypothesis)

and entropy budgets in a simplified context, along with numerical simulations to

verify/justify such simplifications.
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