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AN ABSTRACT OF THE THESIS OF

KEZANG CHODEN C, for the Master of Science degree in MATHEMATICS, pre-

sented on July 6, 2016, at Southern Illinois University Carbondale.

TITLE: INTEGER-VALUED ARCH AND GARCH MODELS

MAJOR PROFESSOR: Dr. S. Yaser Samadi

The models for volatility, autoregressive conditional heteroscedastic (ARCH) and gen-
eralized autoregressive conditional heteroscedastic (GARCH) are discussed. Stationarity
condition and forecasting for simple ARCH(1) and GARCH(1,1) models are given. The
model for discrete time series is proposed to be negative binomial integer-valued GARCH
model, which is a generalization of the Poisson INGARCH model. The stationarity condi-
tions and the autocorrelation function are given. For parameter estimation, three method-
ologies are presented with a focus on maximum likelihood approach. Simulation study on a
sample size of 100 and 500 are carried out and the results are presented. An application of
the model to a real time series is given indicating that the maximum likelihood estimation

procedure performs better than the Poisson and double Poisson model-based methods.
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CHAPTER 1
INTRODUCTION

The time series of counts are commonly observed and many authors have underlined
the importance of discrete time series in real world. In medicine, especially in epidemiology,
we observe such processes. Some of the examples of discrete time series are monthly re-
ported cases of measles in New York City from 1928-1972, number of death in road accidents
for past 10 years, monthly number of employed persons in US from 1990-2000, etc. Count
time series are non-negative and are often overdispersed. To overcome the overdispersion,
overdispersed Poisson and binomial regression models were considered. But since the mean
and variance of Poisson distribution are equal, it was not a suitable choice. Negative bino-
mial (NB) distribution whose variance is larger than the mean allows overdispersion. One
of the models for overdispersed discrete time series is the integer-valued generalized au-
toregressive conditional heteroscedastic (INGARCH) model with Poisson deviates (Ferland
et.al., 2006) and is defined as

X | Fio1 - P(N) i VEEZ
(1.1)

M=o+ D0 X+ 330 By,

where a, > 0, a; > 0, and §; > 0 and F;_; is the o-field generated by {X;_1, X;_o,...}.

The conditional mean and conditional variance of Equation (1.1) are same, which
brings us to negative binomial INGARCH (NBINGARCH) model that can simultaneously
deal with both overdispersion and potential extreme observations. NBINGARCH model
is main focus of the study here. But before we learn more about the proposed model,
it is important to know what are autoregressive conditional heteroscedastic (ARCH) and
generalized autoregressive conditional heteroscedastic(GARCH) models. So we will briefly

looking at these two models in the beginning of the study. For more detailed information



on these two models, [1] and [2] can be referred.

In Chapter 2, we will familiarize ourselves with the word volatility, which is the key word
in ARCH and GARCH models. We will learn some of it’s characteristics and look at
some plots that will make the concept more clear. In Chapter 3, we will study about
ARCH model, it’s characteristics and method to forecast for simple ARCH(1) model. Also,
we will study simulated plots of size 500. Chapter 4 will help us with GARCH model,
it’s conditions for stationarity, forecast for GARCH(1,1) model and simulated plots of
GARCH(1,1) of size 500. In Chapter 5, NBINGARCH model will be described including
the conditions for the process to be stationary. Three methods of estimation, i.e., the
Yule-Walker (YW), conditional least square (CLS) and the maximum likelihood estimation
(MLE) for particularly NBINARCH(1), NBINARCH(2) and NBINGARCH(1,1) models are
adopted to estimate the value of the parameters. Some results of simulation study of the
three models are presented in Table 6.1, which indicates MLE as a better approach to
estimate parameters. In Chapter 6, analysis of data is studied by simulating the series of
size 100 and 500, which results in a conclusion of Maximum likelihood estimation process as
a better method to estimate the parameters. Maximum likelihood estimator methodology is
applied to the polio data discussed in Zeger (1988). Parameter estimates with Poisson (P),
Double Poisson (DP) and Negative Binomial (NB) for INARCH(1) and INGARCH(1,1)
models are presented in Table 6.3 which indicates a better performance of NB model. Also

model diagnostics study is done on residuals to test the goodness of the fitted model.



CHAPTER 2
VOLATILITY

Volatility in a time series is referred to as the phenomenon where conditional variance
varies over time. The statistical methods for modeling the volatility of an asset return are
referred to as conditional heteroscedasticity models. The study of dynamical pattern in
the volatility of a time series constitutes the main subject of ARCH and GARCH models.
But volatility is a feature that is not easily observed. To identify it, we will be looking at
some features that are commonly seen in asset returns in the following section. To define
asset return, let {p;} be the time series of daily price of some financial asset. The return

on the tth day is given by

Ty = log(pt) - log(ptfl)-

2.1 CHARACTERISTICS OF VOLATILITY

Some of the characteristics commonly seen in asset returns are (see Tsay, 2005)

e There exists volatility clusters. It is a pattern of alternating high and low volatile

period of substantial duration.
e Volatility do not diverge to infinity - that is, volatility varies within some fixed period.

e Volatility reacts differently to big increase and big decrease in price, referred to as the
leverage effect. Leverage effect is the relationship between stock returns and stock
volatility. When volatility rises, expected returns tend to increase, leading to a drop

in the stock price. So volatility and stock returns are negatively correlated.



In order to make ourselves clear with the above mentioned characteristics, let us con-
sider the College Retirement Equities Fund (CREF) over a time period from August 26,
2004 to August 15, 2005 from [1]. CREF Stock Fund is an open ended variable annu-
ity equity mutual fund launched by Teachers Insurance and Annuity Association College
Retirement Equities Fund (TTAA-CREF). The fund invests in the public equity markets
across the globe.The fund primarily invests in value stocks of companies across all market
capitalization.

Figure 2.1 displays the time series plot of the CREF data. It shows a generally

increasing trend.

20
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Figure 2.1: Plot of Daily CREF Stock values.

The CREF stock returns computed by r; = log(p;) — log(p—1) are very small. So the
returns are multiplied by 100 and can be interpreted as percentage changes in the price.
The multiplication also helps in reducing the numerical errors. The plot in Figure 2.2
shows that the returns were more volatile over some time periods and became very volatile
toward the end. This observation is more clear in Figure 2.3, which are plots of absolute

and squared returns.
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Figure 2.2: Plot of Daily CREF Stock returns.

The sample autocorrelation function (ACF) and sample partial autocorrelation func-
tion (PACF) of daily CREF returns in the plots of Figure 2.4 suggests that the returns
have little serial correlation. Let {X; : ¢ = 0,41,£2, ...}, be a random process. Then

autocorrelation function is defined as

cov( Xy, Xs)
Vvar(Xg)var(Xs)

corr(Xy, Xs) = for t,s=0,+1,+2, ..,

where cov(Xy, Xs) is the autocovariance function. Partial autocorrelation is a conditional
autocorrelation defined as the correlation between the series X; and X;_j after removing
the effect of intermediate series X; 1, X; o, ..., Xy k11, where X; , is the k lag of X;. So

the partial autocorrelation between function X; and X;_, is written as

¢kk = COT‘T(Xth—k ’ Xt—h ) Xt—k—i—l)

_ COU(Xt,Xt—k | Xi-1, '--7Xt—k;+1)
\/UCLT‘(Xt | Xt—l, ceey Xt_k+1)UaT(Xt_k | Xt—l, ceey Xt—k+1>

The volatility clustering observed in daily CREF returns indicates that they may not

be independently and identically distributed , otherwise the variance is constant over time.
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Figure 2.3: Daily CREF returns. (a) squared returns (b) absolute returns

The dependency can be checked from the ACF, and PACF of squared and absolute value of
the the return series. If series values are independent, then nonlinear instantaneous trans-
formations such as taking logarithms, absolute values, or squaring preserves independence.
The sample ACF and PACF of absolute and squared daily CREF returns are exhibited
in Figure 2.5 and Figure 2.6. The plots of absolute and squared of daily CREF returns
display some significant autocorrelations and hence provide some evidence that the daily
CREF returns are not independently and identically distributed.

We can now say that financial asset return series, r; is serially uncorrelated (even if

the correlation exist, it is of small degree), but it is a dependent series.
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Figure 2.4: Daily CREF returns. (a) sample ACF (b) sample PACF
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Figure 2.5: Sample ACF and PACF of absolute daily CREF.



ACF

005 010 015 02

000

005

Sample ACF Sample PACF

x4
=
=
1 =2 R N O R D A
----------- I I Y S
= Lo
e =2 R |
— — L=
‘ ‘ ‘ )
| = L 1N
' | | b= “‘I
Lo
=3
=
1
T T T T T T T T T T
(o] 5 10 15 20 25 (o] 5 10 15 20 25
Lag Lag

Figure 2.6: Sample ACF and PACF of square of daily CREF.




CHAPTER 3
ARCH MODELS

3.1 THE MODEL

An ARCH model was first proposed by Engle (1982). It is basically designed to
model financial time series that displays volatility. As discussed in previous section, the
financial asset return series {r;} is serially uncorrelated with zero mean ,even when it
exhibits volatility clustering. This indicates that conditional variance of {r;} given past
returns is not constant. The conditional variance of {r;}, will be denoted as atg‘ +—1» Where
the subscript ¢ — 1 represents that the conditioning is upon returns through time ¢ — 1 .
The ARCH model is a regression model with the conditional variance as response variable

and the past lags of squared return as the covariates. Basically, ARCH(q) model assumes

2 2 2 2
Tt = Oft—1€t,  Ogp1 = Qo+ QuTy g + ol g+ .o + QT

where {g;} is a sequence of independently and identically distributed random variables with
zero mean and unit variance and «g, a;; are non negative numbers of unknown parameters.
More over, ¢, is independent of 7,_;,7 = 1,2,... . So the conditional variance of 7, can be

written as follows,
var(ry | re_j, 5 =1,2,..) = BE(r} | re—j, i = 1,2,..) = [E(rs | re—j, j = 1,2,...)]
= E(of, 1} | 1emjij = 1,2,..) = [E(oy—ree | ri—jn j = 1,2, )]
= o 1 B(e] | rejj =1,2,..) —of, 4 [Eler | r—j, j = 1,2, )]
=01 B(e}) — o1 [E(e)]? = 0
= ajy_[var(e:) + [E(e)]?]

_ 2
= O¢t—1



Since [E(ry | r—j,j = 1,2, ...

)] = 0, it is not wrong to say that

var(ry | re_j, 7 =1,2,..) = B(r? | re_j,j

=1,2,..) =07, ,
Example 3.1. ARCH(1) model is defined as
T't = Ot&t,
(3.1)
atg =aqap+ alrf_l.

If ag = 0.04 and «; = 0.8, the above model becomes

o =0.04+0.8r7_|.

Figure 3.1 shows the time series plot of a simulated series of size 500 from an ARCH(1)
model with g = 0.04 and o7 = 0.8.

arch
0
e

o_

T T T T
100 200 300 400 500

Figure 3.1: Simulated ARCH(1) process

As we can see that there exists volatility clustering and especially in the middle, the

series is very volatile. ARCH(1) process is a good example of a white noise that has

nonconstant conditional variance. In ARCH(1) model, r; is an the ARCH(1) process. To

10



confirm 7; is a white noise, we will find the mean and variance of ;.
E(Tt | Tt—1,Tt—-2, ) = E(Ut\t—lgt | Tt—1,Tt—2, )

= Ut\t—lE(ﬁt | T—1, T2, )

= 0.
So,
E(Tt) = E(E(Tt ’ Tt,1,7"t72, )) = E(O) = O,
and
var(ry | re—1,rm2, ) = E(ry | rey,riee, )? = [E(ry | remr, e, o))
= E(af‘t_lef | 74-1,74—2,...) — 0
= Uf\t—lE(E? | T, T2, ..
= 0152\15—1(1)
So,

var(ry) = Elvar(ry | 11,12, ...)] + var[E(ry | re_1, 712, ...)]

= E(aﬁt,l) + var(0)
Hence ARCH(1) process is a white noise with mean 0 and finite variance. Now, to

show 7, is serially uncorrelated, let us find the covariance of r;. Multiplying both side of

Equation (3.1) by r;_; and finding expectation, we get
E(ryryq) = E[E(ryri—y | o1, m —t —2,...)]
= Eri 1 E(ry | r—q,r —t —2,..0)]
= Blr2(0)] = 0.

11



Covariance between r; and r,_; is

cov(ry,ri_1) = E(ryri_1) — E(ry) E(ri—1) = 0.

So, the correlation between r; and r,_1 given by corr(ry,ry_1) = 7 sz(r;’”*(l) s = 0. We
var(re)var\ret—1

can similarly show that cov(ry,r—;) =0, Vj > 1, and corr((ry,r—;) =0, Vj > 1. The

claim that r; is serially uncorrelated is also supported by the plot in Figure 3.2 of of the

simulated series. Hence ARCH(1) process is a white noise with mean 0 and finite variance.
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Figure 3.2: ACF and PACF Simulated ARCH(1) process

ARCH model is also applicable in other financial time series like changes in dollar
exchange rate over a period of time, the amount that investments or stocks increase (or

decrease) per time period, etc.

3.2 CHARACTERISTICS OF THE ARCH MODEL
The ARCH model is identical to a regression model. Since ARCH model models

volatility and volatility is not easily observable, it provides a draw back in the use of the

12



model. For example, it is not easy to identify the regression relationship graphically. So, it
is relevant to introduce some observable variables that will simplify the conditional variance.
Let n, = r2 — ‘71:2\15—17 where 7, is a serially uncorrelated series with zero mean and also it is

uncorrelated with past returns. That is

E(n) = E(r}) — E(o3,_,)
=E[E(r} |rj,j=1,2,.)]— 0t2|t_1
= Uz€2|t—1 - Ut2|t—1 = 0.

Substituting o7, | = r{ — 7, in Equation (3.1), we get

i =g+ airy, + (3.2)

Since the squared return series must be non-negative, the value of parameters has to be
non-negative. If the return series is stationary with variance o2, then applying expectation

on both sides of Equation (3.2), we have
E(T?) =aqap+ OélE(thfl)
EE(r?|rej,j=1,2,..)] = a0+ a1 E[E(r} | | ri—j,5 = 2,...)]

2 2
Ofjg—1 = Q0 T Q101 o (3:3)

o = Qg + ozla2

Qg
0'2: y
]_—061

and hence 0 < ; < 1., is necessary and sufficient condition for stationarity of the ARCH(1)

model.

13



3.3 FORECASTING
The ARCH model is used in predicting the future conditional variances. The h-step

ahead forecast of conditional variance o2 “ohpe 18 given by

Ut2+h|t = E(r{y, [ r,rea, ). (3.4)

In ARCH(1), if h=1: o7, , = ag + arr} = (1 — a1)o® + arf.
We can use iterated expectation formula in Equation (3.4) to get an expression for h-step

conditional variance as the following.

Ut2+h|t = E[E(r?—i-h | 7615 ) | Terno1, Tern2; -]
= E[E(Uzt2+h|t+h—1€§+h | Peah—1s Tepn—2s ) | 78T,
= E[U§+h|t+h—1E(€§+h> | 7T, ]
= E<Ut2+h\t+h—1 | 7o e, )
= E(ao + anri_y | 1,711, )
=+ 041E(7’t2+h_1 | 7,71, )

2
= @ + 0410t+h_1|t.

14



CHAPTER 4
GARCH MODELS

4.1 THE MODEL

Another approach to model volatility was proposed by Bollerslev(1986) and Tay-
lor(1986), which intorduces p lags of the conditional variance in the ARCH(q) model. It is
called the GARCH(p, ¢) model,where p is the GARCH order. The GARCH(p, ¢) model is
defined as

0t2|t_1 =y + Blatz_ut_z 4.+ ﬁpaf_p“_p_l + 0417“?_1 + .+ aqrf_q. (4.1)

Since the conditional variance is nonnegative, the values of parameters in GARCH model

is restricted to be nonnegative.

Example 4.1. Example 1. GARCH(1,1) is defined as
0'152“71 =aqap+ Blo-?fl\t72 + 0417“371.

Figure 4.1 is the time series plot of simulated GARC H (1, 1) with the parameter values
ap = 0.03, a; = 0.05, and p; = 0.7 of size 500.

It is evident in Figure 4.1 that there exists a volatility clustering. ACF and PACF of
simulated process must be serially uncorrelated but dependent. To further confirm that it
is a volatility model, we can look at ACF and PACF of absolute and squared simulated
data which are exhibited in Figure 4.3 and Figure 4.4.

The fact that GARCH is a model for volatility, encourages us to again introduce the

definition n; = r? — af‘ +—1» which is serially uncorrelated sequence and is uncorrelated with

15
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Figure 4.1: Simulated GARCH(1,1) process

past squared returns. Substituting af‘ ., = a? —n; in Equation (4.1), we get
2 _ 2 2 2 2
i =1 =g+ (i) — me1) + o+ Bp(ri, — me—p) Faur]  + o agri,

Tt2 = o+ (51 + 061)7"752_1 + ...+ (ﬁmam(p,q) + amax(p,q))rtZ—max(p,q) + N — 517715—1 e T Bpntfp-

(4.2)
where [, = 0,for all integers k£ > p and o = 0 for k > ¢. 7, is a serially uncorrelated series
with mean zero.

The model for the squared returns resembles ARMA (max(p, q), p) model. To identify
the values of (max(p, q),p) we can use identification technique of ARMA model. Extended
ACF (EACF) table of squared values can be used to identify the order of the ARMA model
and hence the order of the GARCH model. More appropriately EACF of absolute returns
can also be used to identify the order of GARCH model.

Table 4.1 displays the EACF for the absolute return of simulated GARCH(1,1) model
with ap = 0.03, ay = 0.05, and 5, = 0.7 of size 500.

16
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Figure 4.2: Sample ACF and PACF of Simulated GARCH(1,1) process

From Table 4.1, the suggested model is ARMA(1,1), and hence GARCH(1,1). It also

suggests ARMA(2,2), but it’s always better to adopt the model with less parameters.

4.2 CONDITIONS FOR GARCH MODEL TO BE STATIONARY

If the return series is stationary with variance o2, then taking the expectation of (4.2)

gives us

E(TQ) = Qg+ (61 + O‘l)E(r?) + o+ (ﬁmax(p,q) + amax(p,q))E(rg)

2 &%)
T = maz(p.q) )
1= 000 (e + B)

which is finite if Z?flz(p 0 (B + i) < 1, and is a necessary and sufficient condition

for weak stationary of a GARCH(p, ¢) model. If oy + 8; = 1, then the GARCH(1,1) is no

longer stationary and is called an Integrated GARCH(1,1) model.

17
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Figure 4.3: Sample ACF and PACF of absolute values of Simulated GARCH(1,1) process

4.3 FORECASTING

For simplicity, let us consider p=q. The forecast for h-step ahead conditional variance

2 . .
Oipppe 18 given by
2 2 2 2 2
Opppe = Qo+ Q1T+ T Ty, + 510t71|t72 +ot Bp0‘t+hfp|t+hfp71
p P
=ap+ Y ari+ Y Biot
= Qo it h—i 0t h—ilt+h—i—1
i=1 i=1
Consider the GARCH(1,1) model
2 _ 2 2
Ojjt—1 = Qo + Blo—tfl\th +tonr_y.

. 2 o 2 ag . .
Suppose there are n observations ry,...,r,. Let 0o = 00 = T which is a

condition for stationarity of GARCH(1,1). Then the GARCH(1,1) becomes

0-152\15—1 =(1-a - 51)‘72 + 51‘71&2—1|t—2 + 0‘17}2—1'
The 1-step ahead forecast af+1|t is written as

‘71:2+1\t = (-1 = pi)o’ + 51‘7t2|t—1 +anrf.
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Figure 4.4: Sample ACF and PACF of squared values Simulated GARCH(1,1) process

Table 4.1: EACF of absolute value of simulated GARCH(1,1) model

AR/MA 0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 X X X X X X X X X X X X X X
1 X 0 0 0O 0O0OO0O 0 0O 0O 0 O o0
2 X O 0 0O 0O OO0 0 0 0 0 O o0
3 X o0 X 0 O OO0 00O O O O O
4 0O X X X 0 0 00O OO O O 0 O
5 X X X X X 0 0 0O 0O 0O 0O 0 0 ©
6 X X X 0 X 0 0O 000 0O 0O O ©
7 X X X 0 0 0O OO0 0O 0O O O o
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CHAPTER 5
NEGATIVE BINOMIAL INTEGER-VALUED GARCH (NBINGARCH)
MODEL

Let {X;} be a time series of discrete values. let F;_; be the o-field generated by
{X; 1, X 9,...} and conditional distribution of X; be NB. That is,

Xt | ft—l :NB(rapt)7 (51)

where r > 0 and 0 < p; < 1. Note that p; here represents the probability, not the price at

time t as indicated in volatility section. Then p, satisfies the model

1 P q
; Pr _ At =, + Z a; Xy + Z BiAi—j, (5.2)
t i=1 j=1

where o, > 0, ; > 0, §; > 0,p > 1 and ¢ > 0. The model in Equation (5.2) is denoted as
NBINGARCH(p, q). Since the conditional distribution of X, is NB, the probability mass

function is given by

r+r—1\ , .
P(X, =, | Fia) = (t _1 )pt<1—pt> :
where x,=0,1,2... with
1 _1 N
pt—)\t+1’ 4 = pt_>\t+1.

We can calculate conditional mean and variance of X; as the following.

BX | Foy= "2 o var(x | Aoy = P 41 (53)

Dt P%

Clearly, conditional variance is (1 + A;) times that of conditional expectation. More over,

E(Xy) = E(E(X | Fi-1))
(5.4)

= E(rX) =rE(\),
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Var(X,) = Var(E(X, | Fiu1)) + E(Var(X, | Fi-1))
=Var(rh) + E(r (N + 1))

=r’Var(\) + rE(\)? + rE(\)
(5.5)

= r*Var(\) +rVar(\) + r(E(\)? + rE(\)
=rE\) +1(E(\))? + (r+ 1) Var(\)

> TE()\t) = E(Xt)
From the Equation (5.4) and Equation (5.5) , it is clear that Var(X;) > E(X;). Since
the expected value and variance of the process {X,} is not same unlike Poisson, Negative

Binomial is a better distribution to be used for overdispersion.

5.1 CONDITIONS FOR STATIONARY

For simplicity, we assume p > ¢g. The following theorems provide first and second

order stationary conditions for models in Equation (5.1) and Equation (5.2).

Theorem 5.1. A necessary and sufficient condition for NBINGARCH (p,q) to be first

order stationary is that all roots of the equation

a p
1-— Z(ra,ﬂi)Z_i - Z ra; 2" =0 (5.6)
i=1 i=q+1

lie inside the unit circle. (see Zhu, 2011)
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Proof. let uy = E(X;). Then

E(X:) = E(E(X; | Fio1)) = 7E(\)

P q
=rk <>\t = Q, + Z OéiXt_i + Z Bj)\t—j)
P B ¢
=7ra, + Z ra;E(X—;) + Z rB; E(Ai—j)
i=1 i=1

p q
=T, + Z TQfhi—; + Z Bjbtr—;-
i=1 i=1

From Goldberg(1958), the necessary and sufficient condition for a non-homogeneous dif-
ference equation to have a solution independent of ¢ is that the roots of Equation (5.6) is
inside the unit circle.

[l
Remark 1. If the process {X;} follows a NBINGARCH (p,q) model and is a first order
stationary, then
p q
E(Xy) =p=ra,+ Z ro;p+ Z B
i=1 i=1

T,
- P _ 7 3
L=2 o =2 iy B

For simplicity, in Theorem 5.2, we assume q=0 for second order stationarity condition.

Theorem 5.2. Suppose the process {X;} is first order stationary. Then a necessary and

sufficient condition for the process to be second order stationary is that all roots of 1 —

Ciz7t — ... = Cpz7? = 0 lie inside the unit circle, where for u,l=1...p-1,
p—1
Co=(r+1) [al = > > ebubu | Cp=(r+r*)a,

v=1 [i—jl=v

Bio=roy, Bu=r Z o; — 1 and Bl =1 Z Qg U7él7

li—1|=1 li—l|=u

22



where B and B™' are (p — 1) x (p — 1) matrices such that B = (ﬁij)£;1 and

B~' = (b;)?;". (See Zhu, 2011)

Proof. Let vy = E(XX;—;) for i=0,1,2,....p and C be a constant independent of t. Suppose
the process is second-order stationary, then let vy = 7,,—; for i=0,1,...,p. To show that all
roots lie inside the unit circle, consider the conditional second moment from which we get

obtain second moment, which is a key for second-order stationary condition.
E(X? | Fio1) = Var(X, | Fior) + [E(X, | Feo))?
= T)\t(l + )\t) + (T>\t)2

=7+ (r+1r7)A\2

2
p p
=7 <a0 - Z ozz-Xt_z) + (r + 1% (ao + Z oziXt_i>
i—1 i=1

2
p p p
=rog+r Z X+ (r+7%) |ag + 2a9 Z 0; Xy + (Z aiXt_Z)
i=1

=1 =1

2
P P
=rag+ (r +7*)ag + [r + 2ao(r + r?)] Z ;i X+ (r+77%) (Z OéiXti>
i=1

i=1
P
=rag+ (r+rHad + [r + 2a0(r +1?)] Z a; X+

i=1

p p
(r+1?) Z D G Z a0 X i X
i=1 ij=1
i#]
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For [ =1,2,....,p — 1, let the expected value of (X; X;_;) be denoted by ~;. So,
Y = E[E(Xi Xo—y | Fi1)]
= FEE(X; | Fio1) X
= E[(ry)Xi~]

p
(Olo + Z aiXt—i> Xi

i=1

=rF

p
=raop+ 1k Z o Xy i Xe g+ Z o Xy X

i=l i=1
1#£l

P
=ragp +rE(a X, X, ) + Z B (X X)
=,
p
=Troop +rogYo—1 + 1 Z OGY)i—1| t—i
=,
p
=TQou T+ T Z Qi1 t
i
= Tl + TYo -1 + T Z Qe+t Z Qe+t Z QiYp-1t | 5
li—1|=1 li—1|=1 li—l|=p—1
where v, ;_; are being substituted by ~,, fori =1,2,..,p—1landfor [ =1,2,...,p—1,
p—1

raoft + BiYoet+ D Butur = 0.

u=1

So,
p—1
> Buyu = — (rowope + Bioyo—1)
u=1

- = (Taolu + ﬁlOVO,t—la s, T+ 5p—1,070,t—p+l) .
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when =1, Buvie+ Broya + -+ Bip-1Yp-14 = —(raop + BroYo—1)

when =2, PBoryie+ Bazyar + -+ Bop1Vp—14 = —(raop + Baoyo—2)

when l=p—1, Bp_117e+ Bp—1272: + -+ Bo1p—1Vp—14 = —(raopt + Bp—1.070,4—p+1)

The system of equations can be expressed in the matrix form as

Buu o Pipa Y1t raopt + B10%0,e-1
Bor o Pap- Yot Toopt + B2070,4—2
X =—
Bp—1,1  Bp—ip-1 Vp—1,t raot + Bp—1,070,t—p+1;

where B = ()} ;-1. We can rewrite the matrix as

- - - - -1 - -

Vit Bun o Pip-1 raop + B10%0,t-1
Yot Bor o Bap-i ragt + B2070,0—2
= — X
Vp—1,t Bp—11 - Bp_ip-1 roo + Bp—1,0Y0,t—p+1,

and since B~ = (b;;)"7"

i?j ’
Vit byt 0 bipa ragpt + B1o%0,-1
Yot bar o0 bapo raopt + 520702
= — X
Vo—1,t bp—11 0 bp_1p roopt + Bp—1,070,t—p+1-




Therefore,

(71ta Yoty ,Vp—Lt)T =-B! (TCYOM + 51070,15—1, s Tapp + 5p—1,070,t—p+1)T )
which means

Tt = —bn(?”aou + 51070,t—1) — .. b1,p—1(7“060/~t + 5p—1,070,t—p+1)7

Y1t = —bp—1,1(raop + Bp—1,0%0,t—p+1) — - — bp—1p—1(raopt + Bp—1,070,t—p+1)-

Soforl=1,2,....,p—1

p—1 p—1
Vi = —TQof Z b — Z b1uu0Y0,t—u-
u=1 u=1

The unconditional second moment is computes as the following,
E(X}) =0 = E[E(X} | Fi-y)]

p
=rag+ (r+rHad + [r + 20 (r +1?)] Z o, B( X))+
i=1

p p
(r+72) | Y alB(X7) + ) oy B(X, X, ;)
i#]

P
=rag+ (r+rHad + [r+ 200(r +1?)] Z Qi+
=1

p p
(r+1%) Z iy, + Z Q0 i
i=1

i,5=1
i#£]

p
let C=rag+ (r+r?)ag+ [r+2a0(r +1?)] Z Qi
i=1
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Then,

E(X{) =

C+(T+T2) Z%%t z+zaza]7\z —jl,t

t,j=1
i#j

:C'-I—(?“—f—?”Q) Zau%t u+z Z Qi Yot

v=1 |i—j|=v

Using Equation (5.8), we get

E(X2) =C+(r+1)

Z auﬁ)/l)t u + Z Z OélOé] <_71040,u Z bvu Z bvuﬂuoﬁmt u)

v=1 i j|—v

=(C — 7‘"‘7" T&OMZ Z azajzbvu+ T+T Zau’Y()t uw

= Co+ (r+717)

= Co+ (r+717)

p—1

= Co + Z(?“ +
u=1

p—1

v=1 |imj|=v

T’"‘T’ Z Z Oéajzbvuﬁu()’)@t o

v=1 [i—j|=v

p p—1 [ p-1
2
E QY0 t—u — E E E ;b Buo | Yo,t—u
u=1 u=1 \ v=1 |i—j|=v
_p—l p—1
2 . 2
oy, — atajBuo | Yo—u + Q,Y0,t—p
u=1 v=1 |i7j|:U
p—1
2 2 2 2
) | o — E 5 i ibyu oo | Y0,0—u + (7 +77) 0 0,0—p

v=1 fi—j|=v

=Coh+ Z CuYo,t—u + Cpo,t—p

u=1

p
=Co + Z Cu0,t—u;

u=1

where Cy

=C - (T+T )TQOMZU 12\1 —jl= vO‘O‘JZP 1b’UU7

Cu=(r+r? (au -y D lisjl=u aiajbwﬁvg) and C), = (r 4+ r?)a

Again from Goldberg(1958), the non-homogeneous difference equation will have stable so-

lution if all the roots of 1 — Cyz7t — -+ — Cpz7? = 0 lie inside the unit circle. ]
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Following is a special case of Theorem 5.1 and Theorem 5.2.

Corollary 5.3. Suppose the process {X;} follows a NBINARCH (p). The necessary and
sufficient conditions that X; is a first-order stationary for p=1 and p=2 are ray < 1 and
r(ag + az) < 1 respectively.

If X, is first-order stationary, then, for p=1 and p=2, the second-order stationary condi-

tions are (r +r?)at < 1 and 65 + 61 < 1 respectively, where

2 2
5= (r 4 17) (a% 7“041042), 5y = (r+ 1202 (SeeZhu,2011)

1 —ras
Proof. From Theorem 1, when p=1
l—raz7t =0
z=ra; <l1.

When p=2, for stationary, we require the roots to be less then 1 in absolute value, and
this is possible if and only if ra; + ras < 1, ras —rag < 1, and |ras| < 1. Now, suppose

the process is first order stationary. Then, second-order stationary condition for p=1 is
1-Ciz7t=0
I—(r+rajzt =0
z=(r+7ral < 1.

For p=2, from Theorem 2, the condition for second order sationarity is equivalent to the

following condition

(51 —|—52 < 1, 52 — 51 < 1, ‘52' < 1. (59)

Then §; > 0 holds under the assumption of the first-order stationarity, thus the condition

in (5.9) is equivalent to d; + 09 < 1. O
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Theorem 5.4 provides us with set of equations from which we can find the variance

and ACF.

Theorem 5.4. Suppose that {X;} following the NBINGARCH (p,q) model is second-
order stationary. Let vx (k) = cov(Xy, Xi—k), (k) = cov(M, \i—k), then they satisfy the

following equations

min(k—1,q

P ) k
yx(k) =) ragyx(lk — i) + Bivx(k—4)+ > rBmG —k), k=1
i=1 j=k

j=1
min(k,p) p - q
(k) = Z ragya(k — 1) + Z 717)((2' —k)+ Zﬂj'ydk —jl), k>0. (SeeZhu,2011)
i=1 i=k+1 J=1

Proof. Let I, be the o-field generated by {A, \i—1,. ..}, then we have
E(Xy | Fir, Ih) = E(X¢ | Fir) = A (5.10)

for k > 0, from Equation (5.3) and Equation (5.10), we have

cov(Xy — 1A, r k) = E[(Xy — rA)r i) — E(Xy —rA) E(rh_g)
= E[(X; —rA)rX_x] — Op
= E[(X = rA)(rAe—k — 1)
= E[E((X: = rA) (A — 1) | T2)]
(5.11)
= E[(rh—x — p)E[(Xy —7A) | TL)]]
= E[(rh—r — ) EE(Xy —rN) | Th) | Fii]]
= E[(rh—x — w)[E(E(Xy | Foer, Th) | Zy) — )]

= E[(rA—r — w)[E(rA [ L) —rA]] = 0
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Similarly, for k£ < 0, from Equation (5.2), we have
COU(Xt, Xt—k — T)\t—k) = E[Xt(Xt_k — T)\t_k)] — E(Xt>E(Xt_k — T>\t—k)
= E[Xt(Xt_k - T)\t—k)] - /LO
= E[(Xe — ) (X = 7Ar-1)]
(5.12)
= EE(X; — 1) (Xek = rAt) | Fropal]

= E[(X¢ — ) E[(Xi—p — rX—k) | Frmp—1]]

= E[(Xy — ) (rh—p — E(rM—p | Fiei—1))]

Then from Equation (5.11) and Equation (5.12), we get

cov(rAy, rA\i_k) k>0,
cov( Xy, T A—g) = (5.13)

cov( Xy, Xi_k) k <O0.

For k > 0, from Equation (5.2) and Equation (5.13), we obtain
(k) = cov( N, \i—x)
P q
= COov (Oéo + Z Oél'Xt,Z' + Z ﬂj)\tfj, >\tk>
i=1 j=1
p q
= Cov (Z OéiXt,i, )\tk> + cov (Z ﬁj)\t,j, )\tk>

i=1 j=1
min(k,p) p q
= Z a;cov(Xy_i, M) + Z a;cov( Xy, M) + Z Bicov(Ae—j, Mi—k)
i=1 i=k+1 j=1
min(k,p) p . q
— Zzl ra;cov(N_iy M—k) + i;l ?cov(Xt_i, X k) + ]Zl Bicov(Ai—j, M—k)
min(k,p) P q
= > ramnl= 0+ Y S - k) + 3 Bk - )
i=1 i=k+1 j=1
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Similarly, for k > 1, we have
Ax (k) = cov(Xy, Xiy)
= B[(X; = 1)(Xi— — )]
= E[B[(X; = p)(Xi—r — ) | Fia]
= B[(Xer — p)(rAe — )]
= cov(rAs, Xi_g)

= rcov(A, Xi—g)

p q
= 7'Cov <Oéo + Z CYiXt_i + Z ﬁj)\t—ja Xt—k)

i=1 j=1

p q
= Z ra;cov( X, Xi—g) + Z rBicov(N—j, Xi—k)

=1 j=1
p min(k—1,q) q

= Z ra;cov( Xy, Xo—k) + Z rBjcov(N_j, Xoi—k) + Z rBijcov(N_j, Xi—k)
i=1 j=1 j=k
p min(k—1,q) q

= Z ragcov( X, Xy k) + Z Bicov(Xi—j, Xi—) + Z Tzﬂjcov()\t_j, Ai—k)
i=1 j=1 j=k
P min(k—1,p) q

=Y rax(k—i)+ Y Byx(k—5)+ ) B — k).
i=1 j=1 j=k

]

Example 5.1. Considering the NBINGARCH(1,1) model. Applying Theorem 5.4, we get

Yx (k) = rayyx (b — 1)+ Biyx(k = 1), k>2

= (raq + Bi)yx(k —1).
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When & =2:x(2) = (ray + 81)7x (1)

When k=3:vx(3)=(ras+ 61)vx(2) = (rag + 51)27X(1)

When k=4:vx(4) = (ra; + £1)*vx(1)

So, yx(k) = (roq + 1) 'x(1), k>2,

k) =rap(k = 1) 4+ ik —1), k>1

= (ray + i)k —1)

When k=1:v(1)= (rag + p1)7.(0)
When k=2:7\(1) = (ray + B)7(1) = (rai + £1)*71(0)

So, (k) = (raqg + B1) . (0), Ek>1.

Now from Theorem 5.4, and Equation (5.4) and Equation (5.5),
7x (1) = raryx (0) + r817(0)
_ 1 2 2
=ray | p+ H + (r +75)7(0) ) + 77 5172(0)

=r?(ay + raq + 1)1 (0) + aa (rp + p?).

From Theorem 5.4, and using Equation (5.14) and Equation (5.15), we have
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(5.15)



(0) = %%{(1) + B7a(1)

= % (7"2(041 +ray + B1)7a(0) + aa(rp + MQ)) + Bi(rag + 51)7a(0)

2
= (air 4+ ofr® + a1 f1)7a(0) + af (M + u?) + (raafBi + B7)1(0)

2
= [(roq + B1)* + 1?7 (0) + o? (u + ,u?)

o3 (,u—i— “72>
1= (rag + B1)2 —ra?’

var(As) = 7 (0)

rag

where = Thasy: So substituting this value in Equation (5.5), we have

2
X i 2 a%<ﬂ+u7>
var( t)—,u+7+( + ) [ (roy 1 5.7 —ra?

(14 £)(1 = (ron + B1)* — 7ad) + (u+ L) (r +1%)a3
1-— (7‘(){14-51)2—7’05%

1= (rag + B1)? + 2o} N 12

11— (roqg +B1)? —ra? ’
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We can now find autocovariances and autocorrelations.
vx(1) = raryx (0) + 12817, (0)
vx(2) = raryx (1) + Bin(1) = (ras + i) [raryx (0) + 12617, (0)]
1x(3) = (rax + B1)*[roayx (0) + 7* 17 (0)]
= x(k) = (raq + £1) " [raiyx (0) + 72 B17(0)]

2 “
(p+ )0t +1 = (ras + $1)? g <“+ )
2

1—(rag+ (1) —ra? 1—(ray+ p)? —ra?

kflrozl(r%z% + 1= (ra;+ B1)* + raf) 2
2 2 A+
1 — (raq + f1) ra;

vx (k) = (rag + ) rall = A1t ron)] (u + ’U—Q) . k>1;

= (rag + 51)1671 roy

= (rai + 5)

1—(ray+ p1)? —raoj r
and
Yx (k)
px(k) = vx(0)
B w1 Tar[l — Bi(Br + ray)] p?\ | rfai+1—(rog + Br)? I
= (raa+ ) 11 — (ray + p1)? —ro} ( +_) T 1= (ran + B1)? — ro? (MJr _)

(ray + B traq[l — Bi(raq + B1)]

K) - ,
px (k) 1 — (ray + p1)? + r2a?

k> 1.

(5.16)

Remark 2. From Example 1, we can see that the second-order stationary condition for

NBINGARCH(1,1) model is ra? + (ra; + )% < 1.

Corollary 5.5. Suppose that {X;} following NBINARCH (p) model is second-order sta-

tionary, then the autocovariance function vx (k) satisfies the equation

p

vx (k) = Zrosz(V{? —1i)), k>1. (SeeZhu,2011) (5.17)

=1
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5.2 ESTIMATION PROCEDURES
We will discuss three methods to estimate the parameters: Yule walker, Conditional

least squares and Maximum likelihood estimations. We will bascially use these methods to

estimate parameters for NBINGARCH(p,q) model, when p=1,2 and p=1,q=1.

5.2.1 Yule Walker Estimation
When p=1,q=0, \; = ag + @1 X;_1. From Corollary 5.5

1

yx(k) =) ravyx([k = 1))

=1
vx (k) = ragyx(k —1)

- 10)
' ryx(k—1)

is the sample autocovariance.

where vy (k) = Z:L:k+1(Xt;i‘)(Xt_k_a—;)
If k=1, then
ay = x(1) |
r7x(0)
n X = X_ . . X o 2
where  7x(1) = 2= (Ko — D) (Xia — 7) and yx(0) = > (X — ) .
8 n
z)

L DXy =) (X —
So, = 7 —
oo r Zt:I(Xt - x)Q

From Remark 1,




When p=2,q=0,
M =oag+ a1 X1+ asX_o
vx (k) = roagyx(k — 1) + ragyx (k — 2)
If k=1:vx(1) =rayx(0)+ rasyx(1)
If k=2:vx(2)=ragyx(l) + rasyx(0)

Solving by elimination method, we get

b (0) ~ 1 (2)]

&
' r[v%(0) — 7% (1)]
_ ﬂx(l)(l - PX(Q))
r(1—px(1)
Gy = px(2) — mlﬂX(U) and
r
T
e e o—
— Ty —rog
(1 — rén — i
= g = z( réy 7“042)’

r

where px (1) and px(2) are sample autocorrelation.

When p=q=1,

M =ag+a X1+ B

Since the model has past lag of A, it complicates the estimation process. In order to make
the process simple, Lemma 2 from Ferland et al. (2006) is considered.

Lemma 2 : Suppose that {X;} and {Y;} are zero-mean stationary processes with auto-
covariance function 7(.) and that {Y;} is an ARMA(p,q) process. Then, {X;} is also an
ARMA (p,q) process.

From the lemma and Equation (5.16), Equation (5.2) satisfies the ARMA(1,1) model

(Xt —p) —a(Xioy — p) = e + beg_y, (5.18)
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where a = raq + f1,b = —(1, e is a white noise process with

var(ey) = — L= (roa+ B)° (u+“—2).

11— (rag + B1)?2 —ra? r

To show that we can use ARMA(1,1) to estimate the parameters, we will show that

covariance of ARMA(1,1) is same as the covariance of NBINGARCH(1,1). Multiplying

both sides by X;_j and finding expectation of Equation (5.18), we have
E(Xi X 1) =aB (X 1 X k) + E(er Xi—g) + bE(es_1.X¢— k)
For k=0:E(X;X;) =aE(X;1X}) + E(e;Xy) + bE(ei1Xy)
vx(0) = ayx (1) 4+ var(e;) + bla var(e;) + bvar(e;)]

= ayx (1) +var(e;)(1 + ab + b*)

FO’T’ k' = 1 . E(XtXt_]_) = CLE(Xt_lXt_l) + E(etXt—l) + bE(et_]_Xt_k)

vx(1) = ayx(0) + bvar(e;).

Solving Equation (5.19) and Equation (5.20), we get

7x(0) = a*yx(0) + abvar(e;) +var(e;)(1 4 ab + b*)

 142ab+0?

T var(eg).
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Fork =2:vx(2) = ayx(1)
Fork = 3 :vx(3) = ayx(2) = a’yx(1)
= x (k) = a"x (1)

= " ayx (0) + bvar(e;)]

1+ 2ab + b?
=gF ! (aia—jvar(et) + bvar(et))
—a

o [(a+b+ a*b+ ab?
:ak 1( 2 )’UCLT(@t>

_ ((a +b)(1+ ab)) var(ey)

1 —a?

If a =ra; 4+ /1 and b = —(;, then

g1 (raq + 1 = B1)(1 = Bu(ras + Bi)
1 —(rog + Br)?

g1 (rag + B1)(1 = Bi(raq + By)
L — (ra; + f51)?

vx (k) = (ray + f1) var(e;)

= (raq + p) var(eq).

: 1
N if =
ow, if var(e;) e e

vx (k) = (raq + B1)

ro1 Tl = Bi(Br +ray)] 2
1-— (7‘041 +61)2 - roz% ('u + 7) ’

which is same as the covariance of NBINGARCH(1,1).
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The autocorrelation of NBINGARCH(1,1) is given by

ayx(0)+b var(et))

“(
( 111);2562 <z)12)_ GZ() t))
-
o (

a+ b+ a*b+ ab?
1+ 2ab+ b2
(a+0)(1+ ab)
k> 1.
1+ 2ab+ b? ) -
2
So. Jx = @

Sample autocorrelation can be used to solve for a.

5.2.2 CLS Estimation

The CLS estimates mean to minimize

S, ;) = i (Xt —rog — iroz,»Xt_i> . (5.21)

t=1 =1

When p=1,q=0,

n

S(ag, ) = Z(Xt —rag — ra; X,_1)2.

t=1

35(040, Oél

Jarg = <2Xt—m“ozo—rozlth 1) =0

z”: X =nrag+rogq Z X1 and

85(0&0, Oél

e, =—2r <ZXtXt 1_7"a02Xt 1—7"alth X 1>:0
Z X Xi1 =rag Z X1 +rog Z Xt2—1
t=1 1 —
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Expressing the above information in matrix form, we get

Yo Xe n—1 Yo X |rao

Z?:l XX Z?:l Xi-1 Z?:l Xt2—1 rag

Value for ap and a; is obtained by solving the above matrix.

When p=2,q=0,

n

S(ap, ag, ag) = Z(Xt —rag — rog Xi—; — ragXt,g)Q.

t=1

=92 Z(Xt —rag —roayXe 1 —ranXy o) =0

t=1

n n n
E Xt = Nroy + (03] E Xt—l + Ty E Xt—27
t=1 t=1 t=1

85(@0, aq, 042)
80[0

aS(Oéo, aq, a2>

o = —2r Z(XtXt—l — ’I”CY()Xt_l — TOélth_l — ?"O./QXt_lXt_g) =0
1 t=1

Z(XtXt,1 = Troy Z Xt,1 + rag Z Xt2—l + raog Z thlXt72
t=1 t=1 t=1 t=1

88(060, aq, a2)

Oavg = Z(thtﬁ —ragXi—g —ron X1 X;_9 — TOQXt272> =0

t=1
Z XtXt_g = TQp Z Xt—Q +roy Z Xt—lXt—2 + rao Z Xt272
t=1 t=1 t=1 t=1

So, the matrix form will be

Z?:l Xy n—2 Z?:l Xi1 Z?:l Xt rog

Z?:l(XtXt—l - Z?:l Xt Z?:l Xt2—1 Z?:l Xi1Xpa| |ran

Doy XeXio S Xio Y XeaXeo o YL XT T

Solving the matrix, we will get the value for ag, oy, and as.
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When p=q=1, Equation (5.18) can also be written as
X =rag+ aXi_1 + e + be;_q

We need to find the value of e; before we proceed with the estimation. So we will follow

the following steps in doing so.

L let YV, = X, — > | X;/n, fit the data by using AR(p) model, then obtain the CLS

estimator for the autoregressive coefficient and define €, as the residual of process Y;.

Remark 3. Smaller order of AP model provided better estimates for parameters

unlike fitting higher order as indicated in [3].

2. Minimize
n

S(ag,a,b) = Z(Xt —rag — aXi_y — béy_1)?

t=1

0S (g, a,b n )
% = —9r ;(Xt —roag —aX;_1 — b€t—1) -0
S Z?:l(Xt - aXt—l - bét—l)
p = .
0S(a, a,b i )
% = 2;()(15 — rog — a,Xt_l — bet—l)(Xt—l) — O

1 (X —rag — bé_q
X1

0S(ag,a,b) u

(X —rag —aXy )

€i—1
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The value of «yg,a,b can also be obtained by converting the following system of equations

to matrix form.

ZXt = Z?“Oéo —F&ZXt,l +b2ét,1
Z XtXt,1 = Z 7“060th1 +a ZXE—I + bz ét,1
ZXtétfl = Zméoétfl + aZthlétfl + bz &,

which is equivalent to the matrix

ZXt n—1 ZXt—l Zét—l Qg
XX | T DX X, Y1 X a
> Xiér Yiea Yy Xiaéa o Y é b

3 — 5o ath
So B1 = —b and a; = .
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5.2.3 Maximum likelihood Estimation

We know

t=1 t=1 t=1

:_Zr10g1+)\t +2Xt log A, — log(1 + \y)) +210g (X, 47— 1))—

t=1 t=1 t=1

Zlog ((r—1)! ZlogXt

= Xilogh — > (r+X)log(L+ )+ > log((X,+r—1))—
t=1 t=1

t=1
Zlog r—1)! ZlogXt

log L(0) = Z[Xt log A\t — (r + X3) log(1 + A) + log((Xy +7 — 1)) — log((r — 1)!) — log(X}!)]

t=1
=2l
t=1
(5.22)
The estimates cannot be obtained algebraically. So the numerical optimization method has

to be used. To obtain asymptotic standard errors of MLE, we need the first derivative of

log L(6) with respect to 0;(i = 0,1, ...,p+ q) which is as following

8lt _ (Xt r -+ Xt) 8)\t (5 23)

80,  \ N 1+X ) 06;

and the second derivative obtained as
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a2lt & r+ Xt 5’)\t % i _& i r—+ Xt (9)\t 8)\15
96, 90, JVRNTIWE

80,00,  \ A 14\ 96, 06,
. &_T"‘Xt 5’)\t(9>\t &_ T+Xt %% for ii=01 I
% T 1N 0g00, \ % T (1+ N2/ 96; 06, A G
(5.24)
Moreover, we know
)\t = Qp +Zath 7 +Zﬁj)\t YR
7=1
So,
o O\
o =1+ Z ﬁk o
A A
a L= Zﬂka S i =1,2,..,p, (5.25)
0 () .
_/\t ] Zﬁk 8;]] J :1a27"'7Q'
Taking expectation of Equation (5.23), we get
E 82lt | x . E(Xt ‘ JT:t—l) _ T+ E(Xt ‘ «Ft—l 3)\t (9)\,5
00,00, ' A 1+ )\ 86, 00,
E(Xt ‘ .Ft_l) B r 4+ E(Xt | Ft_1> 5)\75%
A (1+ A)? 00, 00;
. T_)\,g_T"‘?")\t 8)\t8)\t T_)\t_ T"‘T)\t %%
EREY 1+ X/ 06; 60 N (L+M)2) 00, 00;
(L 1y
— T\ T 1N 90 00,
(5.26)
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Similarly, from Equation (5.3), we have

ol, ol B
b [aeia_ejm‘l} =k

Xo_r XN o oo
Ao 14N =t 86, 00,

. E(Xt — T’)\t)Q | .F.tfl) 8)\15%
N A2(1+ \)? 00; 00;
AL A) 9N 0N
N1+ \)2 06; 00,

o\ 1+ M) 06, 00;

(5.27)

So, from Equation (5.26) and Equation (5.27), we obtain the information matrix

equality

From Ferland et al. (2006), asymptotic standard errors of MLEs can be computed

from the following matrix

1h) (5.28)

where
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CHAPTER 6
DATA ANALYSIS

6.1 SIMULATION STUDY

A simulation study is done using R software. The study is conducted for three NBIN-
GARCH(p,q) models, where the value of r is assumed to be given. The value used here for
r are 1 and 2. The three simulated models are NBINGARCH(p=1), NBINGARCH(p=2),
and NBINGARCH (p=1,q=1) with a set of parameters for each value of r. Sample sizes
n=100 and n=500 are considered with each parameter set, and the number of replication
used is 200. The simulation is being done using three methods discussed in the previous
section.

The summary of the simulation results are provided in Table 6.1. It can be seen that
as the sample size increases, the estimates approaches the exact value of the parameters.

All the methods perform well but MLE performs better.

Note 1. Even with a small value of n, Maximum likelihood methodology performs better.

For each model, two sets of values of parameters are used.

1. (g, nq,7) =(2,0.4,1) and (5,0.3,2), for Al= NBINGARCH(1), A2= NBINGARCH(1)

respectively;

2. (ap, a1, az,7)=(2,0.3,0.2,1) and (3,0.2,0.2,2) for Bl= NBINGARCH(2), B2= NBIN-
GARCH(2) respectively;

3. (ao, a1, Br,7)=(2,0.5,0.3,1) and (3,0.2,0.2,2) for C1= NBINGARCH(1,1), C2= NBIN-
GARCH(1,1) respectively.

The mean absolute errors are obtained by finding the absolute difference between the

given value of the parameters and the simulated value of the parameters. The mean abso-
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lute error are represented in parenthesis in Table 6.1.

6.2 REAL DATA ANALYSIS

As a practical demonstration of fitting INGARCH model, the polio data (168 obser-
vations) studied by Zeger (1988) consisting of monthly counts of poliomyelitis cases in the
USA from the year 1970 to 1983 as reported by the Centers for Disease Control is consid-
ered. Poliomyelitis is an acute viral disease, usually affecting children and young adults,
caused by polio viruses and can cause temporary or permanent paralysis. To provide in-
sight to the data structure, Figure 6.1 presents the original series, the ACF and the PACF
of the series.

The empirical mean and variance of the data are 1.333333 and 3.50499 respectively,
indicating that the distribution is overdispersed. The data are fitted by NBINARCH(1)
and NBINGARCH(1,1) models. The approach of Benjamin et.al(2003) and Davis and Wu
(2009) is adopted, which maximizes the likelihood logL(f) with respect to € for different
values of r(=1,2,3,4,5). The value of r is chosen taking into account the smallest Akaike
information criterion (AIC) or Bayesian information criterion (BIC). So, 7 = 2 provides
the smallest AIC and BIC from the Table 6.2.

With the chosen value of r, NBINARCH(1) and NBINGARCH(1,1) models are fitted
to the data. For comparison, Poisson (P) and Double Poisson(DP) models are consid-
ered and the results are displayed in Table 6.3 . In both INARCH(1) and INGARCH(1,1)
models, we can see that NB performs better and between the two models NBINARCH(1)
generates smaller AIC and BIC. Hence NBINARCH(1) model is preferred over NBIN-
GARCH(1,1) model. The asymptotic standard errors (SE) are calculated using Equation
(5.28) and are shown in parenthesis in Table 6.3. For each NBINARCH(1) and NBIN-
GARCH(1,1) model, the calculation of asymptotic standard errors are presented in the

following section.
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6.2.1 INARCH(1) Model
From Equation 5.2,

)\t = Qg + C“lthl'

6.2.1.1 Negative Binomial

The conditional probability mass function of negative binomial model X; | F;_; :

NB(r,p;) is given by
e +r—1\ , .
P(Xt:l‘t|ft1):(tr_l )pt<1_pt)t~

From Equation 5.22, the likelihood function is written as

n

log L(0) = Z[Xt log \i—(r+X¢) log(14+-A¢) +log ((Xi+r—1)!)—log((r—1)!)—log(X}!)]

t=1

Using Equation (5.23), we get

6[,5_ Xt_T+Xt 1
20 \ N 14N\

t—1
oy (Xe rH+X
90T~ \ N, 11 ) |E e

8[,5 (9lt . (Xt T+Xt>2 1 Xt—l

90007 \ N 1+

X1 X7

From Equation (5.24), we get the second derivatives as

32lt . (Xt 7’+Xt ) 1 thl

00007 —  \ X2 (1+ \,)2
t ( + t) Xt—l th_l

th

The matrix for second derivatives obtained above is also called the Hessian matrix (H). So,

_+ Z 8lt 8[15

N 960 00T

1 i 9,
00007
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and the asymptotic standard error is found by solving
Loa a1
—(D,S,, " D,)"".
n

6.2.1.2 Poisson
The conditional probability mass function of Poisson model X; | F;_1 : P()\;) is given
by

e_’\i)\f(t

flxy) = X,

The likelihood function, logL(#) is given by

logL(0) =Y Xilogh, — > _ A — > log(Xh) = 1(0) = > 1L(0),
t=1 t=1 t=1 t=1 t=1

where [;(0) = Xilogh; — Ay — log(X}!). Now, for asymptotic standard errors, following
expressions are required, which are obtained with the use of Equation (5.23) and Equation

(5.24).
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o _ (Xe NOA_ (X L
00 \ )\ 90 \ )\ ’
X1
O _ (Xe [NOA_ (X
96T — \ A, 90— \ ), L X
%% _ (& _ 1)2 1 X1
Xt—l X1521

Pl (X ) PA (X)) o
00007 " 0000T A2 ) 00 96T

Al

X1 X7

So making use of equation (5.28), the asymptotic standard errors can be calculated.

6.2.1.3 Double Poisson

The conditional probability mass function of Double Poisson model X; | Fi_y :

DP()‘t7 7) is

e X XXt e\ 7
fay) = (’71/26_7&) (X—'t) (yt) , v>0, X;,=0,1,2,...
¢ t

The likelihood function, logL(0) is given by
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n n n n
logL(0) = §l09’7 - ’YZ A—(1=7)) Xi+(1—=1) ZthogXt + Z”YXtZOQ)\t - Z log(X¢!)
- =1 =1 =

where [,(0) = 3logy — v\ — (1 —7) Xy + (1 — v) Xlog X, + v Xilogh, — log(X,!).

The fitted values of parameters are found slightly different here. First v is assumed
to be 1, which converts the model to Poisson. So the fitted value of ay and a; is same as
the one obtained by fitting Poison model. Then the fitted value of 7 is found in a following

way

8log—L Z)‘t_l_ZXt Zthog (Xy) +2thog (M) =
=1

n
2 (Z?:l At — Z?:l X+ Z?:l Xilog(Xy) — Z?:l tho!]()‘t»'

2>
I

For the asymptotic standard errors, differentiating [; with respect to each parameter,

we get
ol O\ X; O X,
t:_'Y t_‘_vt t:_,y_‘_h‘
8&0 8@0 )\t 8040 )\t
ol oA Xy O\ v Xt
_ = = X
an 78041 + )\t 8041 7 v >\t S
ol 1
— = — — N+ X, — XlogX, + X,log\
oy  2v
So _ .
—7 + 3L
ol,
%: —’)/Xt1+’7tth ’
9 )\t + Xt — th()gXt + XtZOQ)\t
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alt — X XiXi1 1
90T — |V s X1 75 2y A+ X — Xilog Xy + Xilogh | -

The second derivatives are

82115 ’)/Xt 321t ’}/Xt 82lt Xt
=~y = — thflv =—-1+—,
dag A dayOary A OO0y At
82lt B _’YXtXt—l a2lt . _fthXf?fl azlt —_X 4 XtXt—l
daray X 0a2 X2 Oy Ao
0%l X 0%l X X 0%l 1
s I T e i )

Ovya At Ovya At oy 27y

So the Hessian matrix (H) is

_aXe X _ Xy
A2 22 Xi1 L+ At
0?1
H = | XX X XP -X + XeXe—1
00007 A7 27 t—1 X
_ X XeXyn _ 1
1 + At thl + At 272

We can now calculate asymptotic standard errors making use of Equation (5.28).

6.2.2 INGARCH(1,1) Model
From Equation 5.2,

M =ag+ o X + B

Set A\g = X and %2? =0.

Using Equation (5.25), we get the first derivatives of \; as the following.
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ag = % =1 —i—ﬁlaa)\;_ol
a; = % =X+ 5 85\;11
O i1
51—6—512/\1;—1‘1‘51 28,
The second derivatives of \; are
VI (8)\t> 0
da2  dag \ Doy
V) (8)\t> 0
Jdaglay  Oay \ Doy
2\, o [0\ 2 VIR ) Vi
daedB,  Of (aao) =5 daedBy | Oag
2N 9 (8/\t> 0
Jda 0y Oag \ Doy
2N 0 (mt) 0
da?  Oday \ day
2\ 0 (O Pho1 O\
90108, 0B (3041) =P\ s T o
2\, o [0\ Prho1 0N
0Bi0ay  Dag (851) = b dagdBr | Oag
2\, o [0\ 2 VIR ) Vi
0810 dan (aﬁl) = b 80,08 | da
DV N} Pt Ot
o7~ op, (am) =0 om T

93

(6.1)

(6.2)



6.2.2.1 Negative Binomial
We know

I,(0) = Xilog Ay — (r + Xy) log(1 4+ N\y) + log((X; +r — 1)) — log((r — 1)!) — log(Xy!).

Making use of Equation (5.23) , we get

o _(Xi X\ 0N
20 \ N 14+X ) 00
Qo
. Xt r+ Xt
AN 1+ ) |
b
o (X X,
20" ~\ N Tt ) |0 @k
CL% aoga Clobl
N D A ,
%W - )\_t - 1+ )\t apay aj albl
a0b1 a1b1 b%
and using Equation (5.24), we get
82lt . Xt - T+ Xt (9)\,5 . Xt - T+ Xt 82)\,5 8)\,5
90007 ~ \ N, Tt Jagaer ~ \O02 T 1+ n)2) 09 90T
92N 92 92
ﬁag OapgOay 0B
— Xe r+X 92 %)\, ?xn | — Xe r+Xe
At 14+ X OJandag Do 01 0p1 )\% (1 + )\t)Q
8%\ 92\ 92X
| 96100 910 W i

)

ag
Qpay

aogb

Qpay
af

a by

aogb
a;by

bt

So, now with the use of Equation (5.28), we can calculate the asymptotic standard errors.
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6.2.2.2 Poisson

For Poisson INGARCH model, we know
lt(g) = thOgAt — At — lOg(Xt')

Again, using Equation (5.23) and Equation (5.24), we get the following expressions.

o
O _ (X _[\ON _(Xi_
ol A 00 A¢ a1
b

ol, ol X, 2
20007 )\_t_l apa; a? apb

a01)1 aq b1 b%

Pl (X ) PN (X onoh
20067\ N\ 00007 A2 ) 00 96T

2\ %\ %\
da? Oapla1  OagOf1

Xt Xt
= ——=1 92\ %\ 82\ _ | = ana 0,2 ab
AL da1dag da2 Do 081 A2 001 1 101

9\t 9\t 9\
0B10ag  9B10a1 op3?

CZ(Q) agaq a061

Qo bl aq bl b%

So, using Equation (5.28), the asymptotic standard errors can be determined.

6.2.2.3 Double Poisson

For Double Poisson INGARCH model, we know

1
1(0) = §l09’7 — A — (1 =) Xe + (1 = ) Xilog Xy + 7 Xilogh — log(Xy!).
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Differentiating [, with respect to each parameter, we get

alt 8)\t ’}/Xt aAt Xt 8)\t
8040 (9040 )\t 8@0 )\t (&%)
O On aXiON (X ) on
8041 - 78041 )‘t 8041 =7 )‘t 80&1
PO KON (% )0k
o 0k a0k \n ) 0B,
ol, 1
_— = — — >\t + Xt — thOgXt + th09>\t.
oy 2y
So _ -
Xt O\t
i (T - 1) n
ol _ V(3-8
90 B Xt O\t ’
(-1 8
% - )\t + Xt — thOgXt + XtZOQ)\t

ol,
W:{ﬂ(%_l)% 7(%_1)% 7();_;_1)3_;; = — M+ X, — XilogX, + Xlog, |

. . : i Ol Ol
Multiplying the above two matrices, we obtain gk 774

Now, the second derivatives of [; are

Pl _ (X N PN (X A ON
aaz ~ U\, ooz T\ N2

80&0 0040
(X onon
-7 )\? 8060 8040

9%, X O\ X\ O\ O\
dagdar ! (x - 1) dadar ! (r) g Doy
X 9N O
I ( X ) dag day

Ol (X N PN (X 0N ON
Bo0dBs | \\, 9a0dB: | \ 2 ) 9ay 95,
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P (B2 (K)o

3704% n /\_t B da? A2 87«18041
X\ 0N ONs
- ( X ) day Doy
9%, X, O\ X\ 0N ONs
dandp (AT - 1) a0 ! (A_) 901 0B

() B ()
a5 — T\, opr ~ \O2 ) 9B, 0,

0ly — (& _ 1) %
06,07 At 0B
9%, 1

T Y

So the Hessain matrix (H) is obtained as the following.

9%l 921y 921y 921y

804(2) Odapglar  Oapdf1  Oapdy

9 821, 821, 821, 921,

0%l | Bagdar 902 Ba10Bi  Dardy
= =

9000 93l 92l 92l A2l

D000f1 D10 0B2 910~

9%, 3%, 9%l 92l
OagOy Oa1 Oy 0B10v 02

Now, using Equation 5.28, asymptotic standard errors can be calculated.

To study the goodness of fit of the NBINARCH(1) model, analysis of residuals from

the fitted model is considered. Pearson residual method defined as

X, —
[FA(L + A)J/2
where ):t = ag + a1 X;_1, is used. The ACF, PACF, normal Q-Q and kernel density plots

Tt =

are shown in Figure 6.2. There is no correlation within the residuals from the plots of
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ACF and PACF and is supported by the Ljung-Box statistics of 13.20877 based on k=15
lags. The p-value is 0.51 with degree of freedom of k — 1 = 14 of chi-square distribution.

Ljung-Box statistics is calculated using the formula

koo a2

Q:n(n—l—Z)Z i

=1

n—1

where 7 is the residual ACF’s. The Q-Q plot and kernel plot indicates that the residuals
are highly non-normally distributed and is supported by Shapiro-Wilk normality test with
a p-value of 4.861 x 107'2,

We also consider the normalized conditional randomized quantile residuals of Dunn
and Smyth (1996) and Benjamin et.al (2003). The normalized randomized quantile residual
is given by ryo; = <I)_1(ut), where @~ ! is the inverse cumulative distribution function of
a standard normal variable and u; is a random value from the uniform distribution in
the interval [F(X; — 1,4,7), F(Xy, &, 7)], where F(X;,dp,7)] is the fitted conditional NB
cumulative distribution function. The corresponding residual analysis is given in Figure 6.3.
We see that there is no correlation within the residuals and is supported by the Ljung-Box
statistics of 15.72503 based on 15 lags. The p-value is 0.33 with degree of freedom of 14 of
chi-square distribution. The Q-Q plot and kernel plots appears to be normally distributed
and is supported by Shapiro-Wilk normality test with a p-value of 0.8972. Figure 6.4 shows
a scatter plot of the normalized randomized quantile residuals against time. All of these

indicates that the chosen model provides an adequate fit to the data.
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Table 6.1: Simulated Results for NBINGARCH models

Model n  Method ag(Error) aq (Error) ag or By (Error)
Al 100 YW 2.184435 (0.356641)  0.319169 (0.131690)
CLS 2.186407 (0.358673)  0.322384 (0.131318)
MLE 2.024442 (0.286056)  0.366937 (0.101582)
500 YW 2.070921 (0.193466) 0.373337 (0.071208)
CLS 2.071400 (0.194187)  0.374046 (0.071140)
MLE 1.996345 (0.118478)  0.397673 (0.049042)
A2 100 YW  5.840418 (1.068042)  0.249448 (0.060471)
CLS 5.804475 (1.084485)  0.254096 (0.059203)
MLE  5.148558 (0.715480)  0.282398 (0.048495)
500 YW 5.334206 (0.700325)  0.283283 (0.037134)
CLS 5.336073 (0.703978)  0.283783 (0.036976)
MLE 5.068856 (0.355454)  0.294157 (0.020889)
B1 100 YW 2.397071 (0.538210)  0.236929 (0.124910)  0.129244 (0.115791)
CLS 2.406549 (0.554631)  0.235885 (0.127317)  0.134176 (0.113802)
MLE 2.135391 (0.431835)  0.274392 (0.105936)  0.174367 (0.106789)
500 YW 2.136410 (0.298498)  0.187440 (0.039690)  0.185613 (0.065613)
CLS 2.138010 (0.298928)  0.276881 (0.067319)  0.186501 (0.065580)
MLE 2.021851 (0.204806)  0.303536 (0.048611)  0.197870 (0.047137)
B2 100 YW 4.851662 (1.939932)  0.160993 (0.064587)  0.147203 (0.073094)
CLS 4.851705 (1.957805)  0.159556 (0.066007)  0.155016 (0.069746)
MLE 2.857774 (1.598617)  0.135756 (0.086554)  0.133762 (0.087672)
500 YW 3.913638 (0.981200) 0.183339 (0.040213)  0.178599 (0.042745)
CLS 3.918509 (0.989420)  0.183033 (0.040583)  0.179969 (0.042170)
MLE 2.636327 (0.893688)  0.162735 (0.049617)  0.161340 (0.052444)
C1 100 CLS 3.846397 (2.068827) 0.370303 ( 0.182733)  0.175333 (0.245783)
MLE  2.414842 (0.936882) 0.477183 ( 0.156486)  0.204068 (0.208017)
500 CLS 2.830926 (1.001288)  0.427911 (0.110880)  0.266000 (0.135775)
MLE 2.169787 (0.477650)  0.510534 (0.072072)  0.310405 ( 0.155190)
C2 100 CLS 3.931298 (1.355761)  0.173914 (0.055244)  0.101130 (0.219163)
MLE 3.197880 (0.913585)  0.185840 (0.082177) 0.179380 ( 0.130755)
500 CLS 3.293011 (0.625514)  0.195852 (0.029590)  0.166294 (0.097891)
MLE 3.146980 (0.513980)  0.198687 (0.022328)  0.179760 (0.077436)
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Figure 6.1: Polio data. (a) original series (b) ACF (c¢) PACF
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Table 6.2: AIC and BIC for different values of r with NBINARCH(1) and NBIN-

GARCH(1,1) models.

T

Model 2 3 4 )
NBINARCH(1) AIC 523.5978 520.5613 524.4632 528.5592 532.1036
BIC 532.9697 529.9332 533.8351 537.9311 541.4755
NBINGARCH(1,1) AIC 529.8315 528.3122 532.8693 537.3188 615.9582
BIC 539.2034 537.6841 542.2412 546.6907 625.3301

Table 6.3: Parameter estimates with NB, P and DP INARCH(1) and INGARCH(1,1)

models.
Model do a1 By 7 or¥y AIC BIC
(SE) (SE) (SE) (SE)
INARCH(1) NB 0.427734  0.188481 2 520.5613  529.9332
(0.002645)  (0.003417)
P 0.865626 0.364406 562.2899  568.5379
(0.013139)  (0.016898)
DP 0.865626 0.364406 0.554362  528.5624  537.9343
(0.013116)  (0.016854) (0.003327)
INGARCH(1,1)  NB 0.311908 0.184325 0.181478 2 521.0778  533.5737
(0.006358)  (0.003514)  (0.017588)
P 0.635683 0.351473 0.184559 562.0793  571.4512
(0.034461)  (0.018544)  (0.027449)
DP 0.635683 0.351473 0.184559 0.559420  529.3326  541.8385
(0.036136)  (0.018577)  (0.028609)  ( 0.003724)
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Figure 6.2: Pearson residuals. (a) ACF (b) PACF (c¢) Q-Q plot (d) Kernel density
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