
INTEGER-VALUED ARCH AND GARCH MODELS

by

Kezang Choden C

B.Sc., Sherubtse College, 2004

A Thesis
Submitted in Partial Fulfillment of the Requirements for the

Master of Science Degree

Department of Mathematics
in the Graduate School

Southern Illinois University Carbondale
August 2016



All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed, 

a note will indicate the deletion.

  
All rights reserved.

This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor,  MI 48106 - 1346

ProQuest 10163458

Published by ProQuest LLC (2016).  Copyright of the Dissertation is held by the Author.

ProQuest Number:  10163458



THESIS APPROVAL

INTEGER-VALUED ARCH AND GARCH MODELS

By

Kezang Choden C

A Thesis Submitted in Partial

Fulfillment of the Requirements

for the Degree of

Master of Science

in the field of Mathematics

Approved by:

Dr. S. Yaser Samadi, Chair

Dr. Bhaskar Battacharya

Dr. David J. Olive

Graduate School
Southern Illinois University Carbondale

July 6, 2016



AN ABSTRACT OF THE THESIS OF

KEZANG CHODEN C, for the Master of Science degree in MATHEMATICS, pre-

sented on July 6, 2016, at Southern Illinois University Carbondale.

TITLE: INTEGER-VALUED ARCH AND GARCH MODELS

MAJOR PROFESSOR: Dr. S. Yaser Samadi

The models for volatility, autoregressive conditional heteroscedastic (ARCH) and gen-

eralized autoregressive conditional heteroscedastic (GARCH) are discussed. Stationarity

condition and forecasting for simple ARCH(1) and GARCH(1,1) models are given. The

model for discrete time series is proposed to be negative binomial integer-valued GARCH

model, which is a generalization of the Poisson INGARCH model. The stationarity condi-

tions and the autocorrelation function are given. For parameter estimation, three method-

ologies are presented with a focus on maximum likelihood approach. Simulation study on a

sample size of 100 and 500 are carried out and the results are presented. An application of

the model to a real time series is given indicating that the maximum likelihood estimation

procedure performs better than the Poisson and double Poisson model-based methods.
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CHAPTER 1

INTRODUCTION

The time series of counts are commonly observed and many authors have underlined

the importance of discrete time series in real world. In medicine, especially in epidemiology,

we observe such processes. Some of the examples of discrete time series are monthly re-

ported cases of measles in New York City from 1928-1972, number of death in road accidents

for past 10 years, monthly number of employed persons in US from 1990-2000, etc. Count

time series are non-negative and are often overdispersed. To overcome the overdispersion,

overdispersed Poisson and binomial regression models were considered. But since the mean

and variance of Poisson distribution are equal, it was not a suitable choice. Negative bino-

mial (NB) distribution whose variance is larger than the mean allows overdispersion. One

of the models for overdispersed discrete time series is the integer-valued generalized au-

toregressive conditional heteroscedastic (INGARCH) model with Poisson deviates (Ferland

et.al., 2006) and is defined as


Xt | Ft−1 : P(λt) : ∀t ∈ Z

λt = αo +
∑p

i=1 αiXt−i +
∑q

j=1 βjλt−j,

(1.1)

where αo > 0, αi ≥ 0, and βj ≥ 0 and Ft−1 is the σ-field generated by {Xt−1, Xt−2, ...}.

The conditional mean and conditional variance of Equation (1.1) are same, which

brings us to negative binomial INGARCH (NBINGARCH) model that can simultaneously

deal with both overdispersion and potential extreme observations. NBINGARCH model

is main focus of the study here. But before we learn more about the proposed model,

it is important to know what are autoregressive conditional heteroscedastic (ARCH) and

generalized autoregressive conditional heteroscedastic(GARCH) models. So we will briefly

looking at these two models in the beginning of the study. For more detailed information
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on these two models, [1] and [2] can be referred.

In Chapter 2, we will familiarize ourselves with the word volatility, which is the key word

in ARCH and GARCH models. We will learn some of it’s characteristics and look at

some plots that will make the concept more clear. In Chapter 3, we will study about

ARCH model, it’s characteristics and method to forecast for simple ARCH(1) model. Also,

we will study simulated plots of size 500. Chapter 4 will help us with GARCH model,

it’s conditions for stationarity, forecast for GARCH(1,1) model and simulated plots of

GARCH(1,1) of size 500. In Chapter 5, NBINGARCH model will be described including

the conditions for the process to be stationary. Three methods of estimation, i.e., the

Yule-Walker (YW), conditional least square (CLS) and the maximum likelihood estimation

(MLE) for particularly NBINARCH(1), NBINARCH(2) and NBINGARCH(1,1) models are

adopted to estimate the value of the parameters. Some results of simulation study of the

three models are presented in Table 6.1, which indicates MLE as a better approach to

estimate parameters. In Chapter 6, analysis of data is studied by simulating the series of

size 100 and 500, which results in a conclusion of Maximum likelihood estimation process as

a better method to estimate the parameters. Maximum likelihood estimator methodology is

applied to the polio data discussed in Zeger (1988). Parameter estimates with Poisson (P),

Double Poisson (DP) and Negative Binomial (NB) for INARCH(1) and INGARCH(1,1)

models are presented in Table 6.3 which indicates a better performance of NB model. Also

model diagnostics study is done on residuals to test the goodness of the fitted model.
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CHAPTER 2

VOLATILITY

Volatility in a time series is referred to as the phenomenon where conditional variance

varies over time. The statistical methods for modeling the volatility of an asset return are

referred to as conditional heteroscedasticity models. The study of dynamical pattern in

the volatility of a time series constitutes the main subject of ARCH and GARCH models.

But volatility is a feature that is not easily observed. To identify it, we will be looking at

some features that are commonly seen in asset returns in the following section. To define

asset return, let {pt} be the time series of daily price of some financial asset. The return

on the tth day is given by

rt = log(pt)− log(pt−1).

2.1 CHARACTERISTICS OF VOLATILITY

Some of the characteristics commonly seen in asset returns are (see Tsay, 2005)

• There exists volatility clusters. It is a pattern of alternating high and low volatile

period of substantial duration.

• Volatility do not diverge to infinity - that is, volatility varies within some fixed period.

• Volatility reacts differently to big increase and big decrease in price, referred to as the

leverage effect. Leverage effect is the relationship between stock returns and stock

volatility. When volatility rises, expected returns tend to increase, leading to a drop

in the stock price. So volatility and stock returns are negatively correlated.
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In order to make ourselves clear with the above mentioned characteristics, let us con-

sider the College Retirement Equities Fund (CREF) over a time period from August 26,

2004 to August 15, 2005 from [1]. CREF Stock Fund is an open ended variable annu-

ity equity mutual fund launched by Teachers Insurance and Annuity Association College

Retirement Equities Fund (TIAA-CREF). The fund invests in the public equity markets

across the globe.The fund primarily invests in value stocks of companies across all market

capitalization.

Figure 2.1 displays the time series plot of the CREF data. It shows a generally

increasing trend.

Time
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0

20
0
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0

22
0

Figure 2.1: Plot of Daily CREF Stock values.

The CREF stock returns computed by rt = log(pt)− log(pt−1) are very small. So the

returns are multiplied by 100 and can be interpreted as percentage changes in the price.

The multiplication also helps in reducing the numerical errors. The plot in Figure 2.2

shows that the returns were more volatile over some time periods and became very volatile

toward the end. This observation is more clear in Figure 2.3, which are plots of absolute

and squared returns.
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Figure 2.2: Plot of Daily CREF Stock returns.

The sample autocorrelation function (ACF) and sample partial autocorrelation func-

tion (PACF) of daily CREF returns in the plots of Figure 2.4 suggests that the returns

have little serial correlation. Let {Xt : t = 0,±1,±2, ...}, be a random process. Then

autocorrelation function is defined as

corr(Xt, Xs) =
cov(Xt, Xs)√
var(Xt)var(Xs)

for t, s = 0,±1,±2, ...,

where cov(Xt, Xs) is the autocovariance function. Partial autocorrelation is a conditional

autocorrelation defined as the correlation between the series Xt and Xt−k after removing

the effect of intermediate series Xt−1, Xt−2, ..., Xt−k+1, where Xt−k is the k lag of Xt. So

the partial autocorrelation between function Xt and Xt−k is written as

φkk = corr(Xt, Xt−k | Xt−1, ..., Xt−k+1)

=
cov(Xt, Xt−k | Xt−1, ..., Xt−k+1)√

var(Xt | Xt−1, ..., Xt−k+1)var(Xt−k | Xt−1, ..., Xt−k+1)
.

The volatility clustering observed in daily CREF returns indicates that they may not

be independently and identically distributed , otherwise the variance is constant over time.
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Figure 2.3: Daily CREF returns. (a) squared returns (b) absolute returns

The dependency can be checked from the ACF, and PACF of squared and absolute value of

the the return series. If series values are independent, then nonlinear instantaneous trans-

formations such as taking logarithms, absolute values, or squaring preserves independence.

The sample ACF and PACF of absolute and squared daily CREF returns are exhibited

in Figure 2.5 and Figure 2.6. The plots of absolute and squared of daily CREF returns

display some significant autocorrelations and hence provide some evidence that the daily

CREF returns are not independently and identically distributed.

We can now say that financial asset return series, rt is serially uncorrelated (even if

the correlation exist, it is of small degree), but it is a dependent series.
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Figure 2.4: Daily CREF returns. (a) sample ACF (b) sample PACF
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Figure 2.5: Sample ACF and PACF of absolute daily CREF.
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Figure 2.6: Sample ACF and PACF of square of daily CREF.

8



CHAPTER 3

ARCH MODELS

3.1 THE MODEL

An ARCH model was first proposed by Engle (1982). It is basically designed to

model financial time series that displays volatility. As discussed in previous section, the

financial asset return series {rt} is serially uncorrelated with zero mean ,even when it

exhibits volatility clustering. This indicates that conditional variance of {rt} given past

returns is not constant. The conditional variance of {rt}, will be denoted as σ2
t|t−1, where

the subscript t − 1 represents that the conditioning is upon returns through time t − 1 .

The ARCH model is a regression model with the conditional variance as response variable

and the past lags of squared return as the covariates. Basically, ARCH(q) model assumes

rt = σt|t−1εt, σ2
t|t−1 = α0 + α1r

2
t−1 + α2r

2
t−2 + ...+ αqr

2
t−q,

where {εt} is a sequence of independently and identically distributed random variables with

zero mean and unit variance and α0, αi are non negative numbers of unknown parameters.

More over, εt is independent of rt−j, j = 1, 2, ... . So the conditional variance of rt can be

written as follows,

var(rt | rt−j, j = 1, 2, ...) = E(r2
t | rt−j, j = 1, 2, ...)− [E(rt | rt−j, j = 1, 2, ...)]

= E(σ2
t|t−1ε

2
t | rt−j, j = 1, 2, ...)− [E(σt|t−1εt | rt−j, j = 1, 2, ...)]2

= σ2
t|t−1E(ε2

t | rt−j, j = 1, 2, ...)− σ2
t|t−1[E(εt | rt−j, j = 1, 2, ...)]2

= σ2
t|t−1E(ε2

t )− σ2
t|t−1[E(εt)]

2 − 0

= σ2
t|t−1[var(εt) + [E(εt)]

2]

= σ2
t|t−1

9



Since [E(rt | rt−j, j = 1, 2, ...)] = 0, it is not wrong to say that

var(rt | rt−j, j = 1, 2, ...) = E(r2
t | rt−j, j = 1, 2, ...) = σ2

t|t−1

Example 3.1. ARCH(1) model is defined as

rt = σtεt,

σ2
t = α0 + α1r

2
t−1.

(3.1)

If α0 = 0.04 and α1 = 0.8, the above model becomes

σ2
t = 0.04 + 0.8r2

t−1.

Figure 3.1 shows the time series plot of a simulated series of size 500 from an ARCH(1)

model with α0 = 0.04 and α1 = 0.8.

0 100 200 300 400 500

−2
−1

0
1

t

arc
h

Figure 3.1: Simulated ARCH(1) process

As we can see that there exists volatility clustering and especially in the middle, the

series is very volatile. ARCH(1) process is a good example of a white noise that has

nonconstant conditional variance. In ARCH(1) model, rt is an the ARCH(1) process. To
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confirm rt is a white noise, we will find the mean and variance of rt.

E(rt | rt−1, rt−2, ...) = E(σt|t−1εt | rt−1, rt−2, ...)

= σt|t−1E(εt | rt−1, rt−2, ...)

= 0.

So,

E(rt) = E(E(rt | rt−1, rt−2, ...)) = E(0) = 0,

and

var(rt | rt−1, rt−2, ...) = E(rt | rt−1, rt−2, ...)
2 − [E(rt | rt−1, rt−2, ...)]

2

= E(σ2
t|t−1ε

2
t | rt−1, rt−2, ...)− 0

= σ2
t|t−1E(ε2

t | rt−1, rt−2, ...)

= σ2
t|t−1(1)

= σ2
t|t−1.

So,

var(rt) = E[var(rt | rt−1, rt−2, ...)] + var[E(rt | rt−1, rt−2, ...)]

= E(σ2
t|t−1) + var(0)

= σ2
t|t−1.

Hence ARCH(1) process is a white noise with mean 0 and finite variance. Now, to

show rt is serially uncorrelated, let us find the covariance of rt. Multiplying both side of

Equation (3.1) by rt−1 and finding expectation, we get

E(rtrt−1) = E[E(rrrt−1 | rt−1, r − t− 2, ...)]

= E[rt−1E(rt | rt−1, r − t− 2, ...)]

= E[rt−1(0)] = 0.

11



Covariance between rt and rt−1 is

cov(rt, rt−1) = E(rtrt−1)− E(rt)E(rt−1) = 0.

So, the correlation between rt and rt−1 given by corr(rt, rt−1) = cov(rt,rt−1)√
var(rt)var(rt−1)

= 0. We

can similarly show that cov(rt, rt−j) = 0, ∀j ≥ 1, and corr((rt, rt−j) = 0, ∀j ≥ 1. The

claim that rt is serially uncorrelated is also supported by the plot in Figure 3.2 of of the

simulated series. Hence ARCH(1) process is a white noise with mean 0 and finite variance.
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Figure 3.2: ACF and PACF Simulated ARCH(1) process

ARCH model is also applicable in other financial time series like changes in dollar

exchange rate over a period of time, the amount that investments or stocks increase (or

decrease) per time period, etc.

3.2 CHARACTERISTICS OF THE ARCH MODEL

The ARCH model is identical to a regression model. Since ARCH model models

volatility and volatility is not easily observable, it provides a draw back in the use of the

12



model. For example, it is not easy to identify the regression relationship graphically. So, it

is relevant to introduce some observable variables that will simplify the conditional variance.

Let ηt = r2
t − σ2

t|t−1, where ηt is a serially uncorrelated series with zero mean and also it is

uncorrelated with past returns. That is

E(ηt) = E(r2
t )− E(σ2

t|t−1)

= E[E(r2
t | rt−j, j = 1, 2, ...)]− σ2

t|t−1

= σ2
t|t−1 − σ2

t|t−1 = 0.

Substituting σ2
t|t−1 = r2

t − ηt in Equation (3.1), we get

r2
t = α0 + α1r

2
t−1 + ηt (3.2)

Since the squared return series must be non-negative, the value of parameters has to be

non-negative. If the return series is stationary with variance σ2, then applying expectation

on both sides of Equation (3.2), we have

E(r2
t ) = α0 + α1E(r2

t−1)

E[E(r2
t | rt−j, j = 1, 2, ...)] = α0 + α1E[E(r2

t−1 | rt−j, j = 2, ...)]

σ2
t|t−1 = α0 + α1σ

2
t−1|t−2

σ2 = α0 + α1σ
2

σ2 =
α0

1− α1

,

(3.3)

and hence 0 ≤ α1 < 1., is necessary and sufficient condition for stationarity of the ARCH(1)

model.
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3.3 FORECASTING

The ARCH model is used in predicting the future conditional variances. The h-step

ahead forecast of conditional variance σ2
t+h|t is given by

σ2
t+h|t = E(r2

t+h | rt, rt−1, ...). (3.4)

In ARCH(1), if h=1: σ2
t+1|t = α0 + α1r

2
t = (1− α1)σ2 + α1r

2
t .

We can use iterated expectation formula in Equation (3.4) to get an expression for h-step

conditional variance as the following.

σ2
t+h|t = E[E(r2

t+h | rt, rt−1, ...) | rt+h−1, rt+h−2, ...]

= E[E(σ2
t+h|t+h−1ε

2
t+h | rt+h−1, rt+h−2, ...) | rt, rt−1, ...]

= E[σ2
t+h|t+h−1E(ε2

t+h) | rt, rt−1, ...]

= E(σ2
t+h|t+h−1 | rt, rt−1, ...)

= E(α0 + α1r
2
t+h−1 | rt, rt−1, ...)

= α0 + α1E(r2
t+h−1 | rt, rt−1, ...)

= α0 + α1σ
2
t+h−1|t.

14



CHAPTER 4

GARCH MODELS

4.1 THE MODEL

Another approach to model volatility was proposed by Bollerslev(1986) and Tay-

lor(1986), which intorduces p lags of the conditional variance in the ARCH(q) model. It is

called the GARCH(p, q) model,where p is the GARCH order. The GARCH(p, q) model is

defined as

σ2
t|t−1 = α0 + β1σ

2
t−1|t−2 + ...+ βpσ

2
t−p|t−p−1 + α1r

2
t−1 + ...+ αqr

2
t−q. (4.1)

Since the conditional variance is nonnegative, the values of parameters in GARCH model

is restricted to be nonnegative.

Example 4.1. Example 1. GARCH(1,1) is defined as

σ2
t|t−1 = α0 + β1σ

2
t−1|t−2 + α1r

2
t−1.

Figure 4.1 is the time series plot of simulated GARCH(1, 1) with the parameter values

α0 = 0.03, α1 = 0.05, and β1 = 0.7 of size 500.

It is evident in Figure 4.1 that there exists a volatility clustering. ACF and PACF of

simulated process must be serially uncorrelated but dependent. To further confirm that it

is a volatility model, we can look at ACF and PACF of absolute and squared simulated

data which are exhibited in Figure 4.3 and Figure 4.4.

The fact that GARCH is a model for volatility, encourages us to again introduce the

definition ηt = r2
t − σ2

t|t−1, which is serially uncorrelated sequence and is uncorrelated with

15
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Figure 4.1: Simulated GARCH(1,1) process

past squared returns. Substituting σ2
t|t−1 = a2

t − ηt in Equation (4.1), we get

r2
t − ηt = α0 + β1(r2

t−1 − ηt−1) + ...+ βp(r
2
t−p − ηt−p) + α1r

2
t−1 + ...+ αqr

2
t−q

r2
t = α0 + (β1 + α1)r2

t−1 + ...+ (βmax(p,q) + αmax(p,q))r
2
t−max(p,q) + ηt − β1ηt−1 − ...− βpηt−p.

(4.2)

where βk = 0,for all integers k > p and αk = 0 for k > q. ηt is a serially uncorrelated series

with mean zero.

The model for the squared returns resembles ARMA(max(p, q), p) model. To identify

the values of (max(p, q), p) we can use identification technique of ARMA model. Extended

ACF (EACF) table of squared values can be used to identify the order of the ARMA model

and hence the order of the GARCH model. More appropriately EACF of absolute returns

can also be used to identify the order of GARCH model.

Table 4.1 displays the EACF for the absolute return of simulated GARCH(1,1) model

with α0 = 0.03, α1 = 0.05, and β1 = 0.7 of size 500.
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Figure 4.2: Sample ACF and PACF of Simulated GARCH(1,1) process

From Table 4.1, the suggested model is ARMA(1,1), and hence GARCH(1,1). It also

suggests ARMA(2,2), but it’s always better to adopt the model with less parameters.

4.2 CONDITIONS FOR GARCH MODEL TO BE STATIONARY

If the return series is stationary with variance σ2, then taking the expectation of (4.2)

gives us

E(r2
t ) = α0 + (β1 + α1)E(r2

t ) + ...+ (βmax(p,q) + αmax(p,q))E(r2
t )

σ2 =
α0

1−
∑max(p,q)

i=1 (αi + βi)
,

which is finite if
∑max(p,q)

i=1 (βi + αi) < 1, and is a necessary and sufficient condition

for weak stationary of a GARCH(p, q) model. If α1 + β1 = 1, then the GARCH(1,1) is no

longer stationary and is called an Integrated GARCH(1,1) model.
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Figure 4.3: Sample ACF and PACF of absolute values of Simulated GARCH(1,1) process

4.3 FORECASTING

For simplicity, let us consider p=q. The forecast for h-step ahead conditional variance

σ2
t+h|t is given by

σ2
t+h|t = α0 + α1r

2
t+h−1 + · · ·+ αpr

2
t+h−p + β1σ

2
t−1|t−2 + · · ·+ βpσ

2
t+h−p|t+h−p−1

= α0 +

p∑
i=1

αir
2
t+h−i +

p∑
i=1

βiσ
2
t+h−i|t+h−i−1.

Consider the GARCH(1,1) model

σ2
t|t−1 = α0 + β1σ

2
t−1|t−2 + α1r

2
t−1.

Suppose there are n observations r1, ..., rn. Let σ2
1|0 = σ2 = α0

1−α1−β1 , which is a

condition for stationarity of GARCH(1,1). Then the GARCH(1,1) becomes

σ2
t|t−1 = (1− α1 − β1)σ2 + β1σ

2
t−1|t−2 + α1r

2
t−1.

The 1-step ahead forecast σ2
t+1|t is written as

σ2
t+1|t = (1− α1 − β1)σ2 + β1σ

2
t|t−1 + α1r

2
t .
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Figure 4.4: Sample ACF and PACF of squared values Simulated GARCH(1,1) process

Table 4.1: EACF of absolute value of simulated GARCH(1,1) model

AR/MA 0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 x x x x x x x x x x x x x x

1 x o o o o o o o o o o o o o

2 x o o o o o o o o o o o o o

3 x o x o o o o o o o o o o o

4 o x x x o o o o o o o o o o

5 x x x x x o o o o o o o o o

6 x x x o x o o o o o o o o o

7 x x x o o o o o o o o o o o
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CHAPTER 5

NEGATIVE BINOMIAL INTEGER-VALUED GARCH (NBINGARCH)

MODEL

Let {Xt} be a time series of discrete values. let Ft−1 be the σ-field generated by

{Xt−1, Xt−2, ...} and conditional distribution of Xt be NB. That is,

Xt | Ft−1 : NB(r, pt), (5.1)

where r > 0 and 0 ≤ pt ≤ 1. Note that pt here represents the probability, not the price at

time t as indicated in volatility section. Then pt satisfies the model

1− pt
pt

= λt = αo +

p∑
i=1

αiXt−i +

q∑
j=1

βjλt−j, (5.2)

where αo > 0, αi ≥ 0, βj ≥ 0,p ≥ 1 and q ≥ 0. The model in Equation (5.2) is denoted as

NBINGARCH(p, q). Since the conditional distribution of Xt is NB, the probability mass

function is given by

P (Xt = xt | Ft−1) =

(
xt + r − 1

r − 1

)
prt (1− pt)xt ,

where xt=0,1,2... with

pt =
1

λt + 1
, qt = 1− pt =

λt
λt + 1

.

We can calculate conditional mean and variance of Xt as the following.

E(Xt | Ft−1) =
n(1− pt)

pt
= nλt, V ar(Xt | Ft−1) =

n(1− pt)
p2
t

= nλt(λt + 1). (5.3)

Clearly, conditional variance is (1 + λt) times that of conditional expectation. More over,

E(Xt) = E(E(Xt | Ft−1))

= E(rλt) = rE(λt),

(5.4)
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V ar(Xt) = V ar(E(Xt | Ft−1)) + E(V ar(Xt | Ft−1))

= V ar(rλt) + E(rλt(λt + 1))

= r2V ar(λt) + rE(λt)
2 + rE(λt)

= r2V ar(λt) + rV ar(λt) + r(E(λt)
2 + rE(λt)

= rE(λt) + r(E(λt))
2 + (r + r2)V ar(λt)

> rE(λt) = E(Xt).

(5.5)

From the Equation (5.4) and Equation (5.5) , it is clear that V ar(Xt) > E(Xt). Since

the expected value and variance of the process {Xt} is not same unlike Poisson, Negative

Binomial is a better distribution to be used for overdispersion.

5.1 CONDITIONS FOR STATIONARY

For simplicity, we assume p ≥ q. The following theorems provide first and second

order stationary conditions for models in Equation (5.1) and Equation (5.2).

Theorem 5.1. A necessary and sufficient condition for NBINGARCH(p, q) to be first

order stationary is that all roots of the equation

1−
q∑
i=1

(rαiβi)Z
−i −

p∑
i=q+1

rαiZ
−i = 0 (5.6)

lie inside the unit circle. (see Zhu, 2011)
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Proof. let µt = E(Xt). Then

E(Xt) = E(E(Xt | Ft−1)) = rE(λt)

= rE

(
λt = αo +

p∑
i=1

αiXt−i +

q∑
i=1

βjλt−j

)

= rαo +

p∑
i=1

rαiE(Xt−i) +

q∑
i=1

rβjE(λt−j)

= rαo +

p∑
i=1

rαiµt−i +

q∑
i=1

βjµt−j.

(5.7)

From Goldberg(1958), the necessary and sufficient condition for a non-homogeneous dif-

ference equation to have a solution independent of t is that the roots of Equation (5.6) is

inside the unit circle.

Remark 1. If the process {Xt} follows a NBINGARCH(p, q) model and is a first order

stationary, then

E(Xt) = µ = rαo +

p∑
i=1

rαiµ+

q∑
i=1

βjµ

=
rαo

1−
∑p

i=1 rαi −
∑q

i=1 βj
.

For simplicity, in Theorem 5.2, we assume q=0 for second order stationarity condition.

Theorem 5.2. Suppose the process {Xt} is first order stationary. Then a necessary and

sufficient condition for the process to be second order stationary is that all roots of 1 −

C1z
−1 − ...− Cpz−p = 0 lie inside the unit circle, where for u,l=1...p-1,

Cu = (r + r2)

α2
u −

p−1∑
v=1

∑
|i−j|=v

αiαjbvuβu0

 , Cp = (r + r2)α2
p,

βl0 = rαl, βll = r
∑
|i−l|=l

αi − 1 and βlu = r
∑
|i−l|=u

αi, u 6= l,
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where B and B−1 are (p − 1) × (p − 1) matrices such that B = (βij)
p−1
i,j and

B−1 = (bij)
p−1
i,j . (See Zhu, 2011)

Proof. Let γit = E(XtXt−i) for i=0,1,2,...,p and C be a constant independent of t. Suppose

the process is second-order stationary, then let γst = γs,t−i for i=0,1,...,p. To show that all

roots lie inside the unit circle, consider the conditional second moment from which we get

obtain second moment, which is a key for second-order stationary condition.

E(X2
t | Ft−1) = V ar(Xt | Ft−1) + [E(Xt | Ft−1)]2

= rλt(1 + λt) + (rλt)
2

= rλt + (r + r2)λ2
t

= r

(
α0 +

p∑
i=1

αiXt−i

)
+ (r + r2)

(
α0 +

p∑
i=1

αiXt−i

)2

= rα0 + r

p∑
i=1

αiXt−i + (r + r2)

α2
0 + 2α0

p∑
i=1

αiXt−i +

(
p∑
i=1

αiXt−i

)2


= rα0 + (r + r2)α2
0 + [r + 2α0(r + r2)]

p∑
i=1

αiXt−i + (r + r2)

(
p∑
i=1

αiXt−i

)2

= rα0 + (r + r2)α2
0 + [r + 2α0(r + r2)]

p∑
i=1

αiXt−i+

(r + r2)

 p∑
i=1

α2
iX

2
t−i +

p∑
i,j=1
i 6=j

αiαjXt−iXt−j


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For l = 1, 2, ..., p− 1, let the expected value of (Xt Xt−l) be denoted by γlt. So,

γlt = E[E(XtXt−l | Ft−1)]

= E[E(Xt | Ft−1)Xt−l]

= E[(rγt)Xt−l]

= rE

[(
α0 +

p∑
i=1

αiXt−i

)
Xt−l

]

= rα0µ+ rE

∑
i=l

αiXt−iXt−l +

p∑
i=1
i 6=l

αiXt−iXt−l


= rα0µ+ rE(αlXt−lXt−l) +

p∑
i=1
i 6=l

αiE(Xt−iXt−l)

= rα0µ+ rαlγ0,t−l + r

p∑
i=1
i 6=l

αiγ|i−l|,t−i

= rα0µ + rαlγ0,t−l + r

p∑
i=1
i 6=l

αiγ|i−l|,t

= rα0µ+ rαlγ0,t−l + r

 ∑
|i−l|=1

αiγ1t + · · ·+
∑
|i−l|=l

αiγlt + · · ·+
∑

|i−l|=p−1

αiγp−1,t

 ,

where γs,t−i are being substituted by γs,t for i = 1, 2, ..., p− 1 and for l = 1, 2, ..., p− 1,

rα0µ+ βl0γ0,t−l +

p−1∑
u=1

βluγut = 0.

So,

p−1∑
u=1

βluγut = − (rα0µ+ βl0γ0,t−l)

= − (rα0µ+ β10γ0,t−1, · · · , rα0µ+ βp−1,0γ0,t−p+l) .
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when l = 1, β11γ1t + β12γ2t + · · ·+ β1,p−1γp−1,t = −(rα0µ+ β10γ0,t−1)

when l = 2, β21γ1t + β22γ2t + · · ·+ β2,p−1γp−1,t = −(rα0µ+ β20γ0,t−2)

...

when l = p− 1, βp−1,1γ1t + βp−1,2γ2,t + · · ·+ βp−1,p−1γp−1,t = −(rα0µ+ βp−1,0γ0,t−p+1)

The system of equations can be expressed in the matrix form as



β11 · · · β1,p−1

β21 · · · β2,p−1

...
. . .

...

βp−1,1 · · · βp−1,p−1


×



γ1t

γ2t

...

γp−1,t


= −



rα0µ+ β10γ0,t−1

rα0µ+ β20γ0,t−2

...

rα0µ+ βp−1,0γ0,t−p+1,


where B = (βij)

p−1
i,j . We can rewrite the matrix as

γ1t

γ2t

...

γp−1,t


= −



β11 · · · β1,p−1

β21 · · · β2,p−1

...
. . .

...

βp−1,1 · · · βp−1,p−1



−1

×



rα0µ+ β10γ0,t−1

rα0µ+ β20γ0,t−2

...

rα0µ+ βp−1,0γ0,t−p+1,


and since B−1 = (bij)

p−1
i,j ,



γ1t

γ2t

...

γp−1,t


= −



b11 · · · b1,p−1

b21 · · · b2,p−1

...
. . .

...

bp−1,1 · · · bp−1,p−1


×



rα0µ+ β10γ0,t−1

rα0µ+ β20γ0,t−2

...

rα0µ+ βp−1,0γ0,t−p+1.


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Therefore,

(γ1t, γ2t, · · · , γp−1,t)
T = −B−1 (rα0µ+ β10γ0,t−1, · · · , rα0µ+ βp−1,0γ0,t−p+l)

T ,

which means

γ1t = −b11(rα0µ+ β10γ0,t−1)− ...− b1,p−1(rα0µ+ βp−1,0γ0,t−p+1),

...

γp−1,t = −bp−1,1(rα0µ+ βp−1,0γ0,t−p+1)− ...− bp−1,p−1(rα0µ+ βp−1,0γ0,t−p+1).

So for l = 1, 2, ..., p− 1

γlt = −rα0µ

p−1∑
u=1

blu −
p−1∑
u=1

bluβu0γ0,t−u. (5.8)

The unconditional second moment is computes as the following,

E(X2
t ) = γ0t = E[E(X2

t | Ft−1)]

= rα0 + (r + r2)α2
0 + [r + 2α0(r + r2)]

p∑
i=1

αiE(Xt−i)+

(r + r2)

 p∑
i=1

α2
iE(X2

t−i) +

p∑
i,j=1
i 6=j

αiαjE(Xt−iXt−j)


= rα0 + (r + r2)α2

0 + [r + 2α0(r + r2)]

p∑
i=1

αiµ+

(r + r2)

 p∑
i=1

α2
i γ0,t−i +

p∑
i,j=1
i 6=j

αiαjγ|i−j|,t



let C = rα0 + (r + r2)α2
0 + [r + 2α0(r + r2)]

p∑
i=1

αiµ
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Then,

E(X2
t ) = C + (r + r2)

 p∑
i=1

α2
i γ0,t−i +

p∑
i,j=1
i 6=j

αiαjγ|i−j|,t


= C + (r + r2)

 p∑
u=1

α2
uγ0,t−u +

p−1∑
v=1

∑
|i−j|=v

αiαjγv,t


Using Equation (5.8), we get

E(X2
t ) = C + (r + r2)

 p∑
u=1

α2
uγ0,t−u +

p−1∑
v=1

∑
|i−j|=v

αiαj

(
−rα0µ

p−1∑
u=1

bvu −
p−1∑
u=1

bvuβu0γ0,t−u

)
= C − (r + r2)rα0µ

p−1∑
v=1

∑
|i−j|=v

αiαj

p−1∑
u=1

bvu + (r + r2)

p∑
u=1

α2
uγ0,t−u−

(r + r2)

p−1∑
v=1

∑
|i−j|=v

αiαj

p−1∑
u=1

bvuβu0γ0,t−u

= C0 + (r + r2)

 p∑
u=1

α2
uγ0,t−u −

p−1∑
u=1

p−1∑
v=1

∑
|i−j|=v

αiαjbvuβu0

 γ0,t−u


= C0 + (r + r2)

p−1∑
u=1

α2
u −

p−1∑
v=1

∑
|i−j|=v

αiαjβv0

 γ0,t−u + α2
pγ0,t−p


= C0 +

p−1∑
u=1

(r + r2)

α2
u −

p−1∑
v=1

∑
|i−j|=v

αiαjbvuβv0

 γ0,t−u + (r + r2)α2
pγ0,t−p

= C0 +

p−1∑
u=1

Cuγ0,t−u + Cpγ0,t−p

= C0 +

p∑
u=1

Cuγ0,t−u,

where C0 = C − (r + r2)rα0µ
∑p−1

v=1

∑
|i−j|=v αiαj

∑p−1
u=1 bvu ,

Cu = (r + r2)
(
α2
u −

∑p−1
v=1

∑
|i−j|=v αiαjbvuβv0

)
and Cp = (r + r2)α2

p.

Again from Goldberg(1958), the non-homogeneous difference equation will have stable so-

lution if all the roots of 1− C1z
−1 − · · · − Cpz−p = 0 lie inside the unit circle.
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Following is a special case of Theorem 5.1 and Theorem 5.2.

Corollary 5.3. Suppose the process {Xt} follows a NBINARCH(p). The necessary and

sufficient conditions that Xt is a first-order stationary for p=1 and p=2 are rα1 < 1 and

r(α1 + α2) < 1 respectively.

If Xt is first-order stationary, then, for p=1 and p=2, the second-order stationary condi-

tions are (r + r2)α2
1 < 1 and δ2 + δ1 < 1 respectively, where

δ1 = (r + r2)

(
α2

1 +
2rα2

1α2

1− rα2

)
, δ2 = (r + r2)α2

2. (SeeZhu, 2011)

Proof. From Theorem 1, when p=1

1− rα1z
−1 = 0

z = rα1 < 1.

When p=2, for stationary, we require the roots to be less then 1 in absolute value, and

this is possible if and only if rα1 + rα2 < 1, rα2 − rα1 < 1, and |rα2| < 1. Now, suppose

the process is first order stationary. Then, second-order stationary condition for p=1 is

1− C1z
−1 = 0

1− (r + r2)α2
1z
−1 = 0

z = (r + r2)α2
1 < 1.

For p=2, from Theorem 2, the condition for second order sationarity is equivalent to the

following condition

δ1 + δ2 < 1, δ2 − δ1 < 1, |δ2| < 1. (5.9)

Then δ1 > 0 holds under the assumption of the first-order stationarity, thus the condition

in (5.9) is equivalent to δ1 + δ2 < 1.
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Theorem 5.4 provides us with set of equations from which we can find the variance

and ACF.

Theorem 5.4. Suppose that {Xt} following the NBINGARCH(p, q) model is second-

order stationary. Let γX(k) = cov(Xt, Xt−k), γλ(k) = cov(λt, λt−k), then they satisfy the

following equations

γX(k) =

p∑
i=1

rαiγX(|k − i|) +

min(k−1,q)∑
j=1

βjγX(k − j) +
k∑
j=k

r2βjγλ(j − k), k ≥ 1;

γλ(k) =

min(k,p)∑
i=1

rαiγλ(k − i) +

p∑
i=k+1

αi
r
γX(i− k) +

q∑
j=1

βjγ(|k − j|), k ≥ 0. (SeeZhu, 2011)

Proof. Let It be the σ-field generated by {λt, λt−1, . . . }, then we have

E(Xt | Ft−1, It) = E(Xt | Ft−1) = rλt (5.10)

for k ≥ 0, from Equation (5.3) and Equation (5.10), we have

cov(Xt − rλt, rλt−k) = E[(Xt − rλt)rλt−k]− E(Xt − rλt)E(rλt−k)

= E[(Xt − rλt)rλt−k]− 0µ

= E[(Xt − rλt)(rλt−k − µ)

= E[E((Xt − rλt)(rλt−k − µ) | It)]

= E[(rλt−k − µ)E[(Xt − rλt) | It)]]

= E[(rλt−k − µ)E[E((Xt − rλt) | It) | Ft−1]]

= E[(rλt−k − µ)[E(E(Xt | Ft−1, It) | It)− rλt]]

= E[(rλt−k − µ)[E(rλt | It)− rλt]] = 0

(5.11)
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Similarly, for k < 0, from Equation (5.2), we have

cov(Xt, Xt−k − rλt−k) = E[Xt(Xt−k − rλt−k)]− E(Xt)E(Xt−k − rλt−k)

= E[Xt(Xt−k − rλt−k)]− µ0

= E[(Xt − µ)(Xt−k − rλt−k)]

= E[E[(Xt − µ)(Xt−k − rλt−k) | Ft−k−1]]

= E[(Xt − µ)E[(Xt−k − rλt−k) | Ft−k−1]]

= E[(Xt − µ)(rλt−k − E(rλt−k | Ft−k−1))]

(5.12)

Then from Equation (5.11) and Equation (5.12), we get

cov(Xt, rλt−k) =


cov(rλt, rλt−k) k ≥ 0,

cov(Xt, Xt−k) k < 0.

(5.13)

For k ≥ 0, from Equation (5.2) and Equation (5.13), we obtain

γλ(k) = cov(λt, λt−k)

= cov

(
αo +

p∑
i=1

αiXt−i +

q∑
j=1

βjλt−j, λt−k

)

= cov

(
p∑
i=1

αiXt−i, λt−k

)
+ cov

(
q∑
j=1

βjλt−j, λt−k

)

=

min(k,p)∑
i=1

αicov(Xt−i, λt−k) +

p∑
i=k+1

αicov(Xt−i, λt−k) +

q∑
j=1

βjcov(λt−j, λt−k)

=

min(k,p)∑
i=1

rαicov(λt−i, λt−k) +

p∑
i=k+1

αi
r
cov(Xt−i, Xt−k) +

q∑
j=1

βjcov(λt−j, λt−k)

=

min(k,p)∑
i=1

rαiγλ(k − i) +

p∑
i=k+1

αi
r
γX(i− k) +

q∑
j=1

βjγλ(|k − j|).
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Similarly, for k ≥ 1, we have

λX(k) = cov(Xt, Xt−k)

= E[(Xt − µ)(Xt−k − µ)]

= E[E[(Xt − µ)(Xt−k − µ) | Ft−1]]

= E[(Xt−k − µ)(rλt − µ)]

= cov(rλt, Xt−k)

= rcov(λt, Xt−k)

= rcov

(
αo +

p∑
i=1

αiXt−i +

q∑
j=1

βjλt−j, Xt−k

)

=

p∑
i=1

rαicov(Xt−i, Xt−k) +

q∑
j=1

rβjcov(λt−j, Xt−k)

=

p∑
i=1

rαicov(Xt−i, Xt−k) +

min(k−1,q)∑
j=1

rβjcov(λt−j, Xt−k) +

q∑
j=k

rβjcov(λt−j, Xt−k)

=

p∑
i=1

rαicov(Xt−i, Xt−k) +

min(k−1,q)∑
j=1

βjcov(Xt−j, Xt−k) +

q∑
j=k

r2βjcov(λt−j, λt−k)

=

p∑
i=1

rαiγX(|k − i|) +

min(k−1,p)∑
j=1

βjγX(k − j) +

q∑
j=k

r2βjγλ(j − k).

Example 5.1. Considering the NBINGARCH(1,1) model. Applying Theorem 5.4, we get

γX(k) = rα1γX(k − 1) + β1γX(k − 1), k ≥ 2

= (rα1 + β1)γX(k − 1).
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When k = 2 : γX(2) = (rα1 + β1)γX(1)

When k = 3 : γX(3) = (rα1 + β1)γX(2) = (rα1 + β1)2γX(1)

When k = 4 : γX(4) = (rα1 + β1)3γX(1)

So, γX(k) = (rα1 + β1)k−1γX(1), k ≥ 2,

γλ(k) = rα1γλ(k − 1) + β1γλ(k − 1), k ≥ 1

= (rα1 + β1)γλ(k − 1)

When k = 1 : γλ(1) = (rα1 + β1)γλ(0)

When k = 2 : γλ(1) = (rα1 + β1)γλ(1) = (rα1 + β1)2γλ(0)

So, γλ(k) = (rα1 + β1)kγλ(0), k ≥ 1.

(5.14)

Now from Theorem 5.4, and Equation (5.4) and Equation (5.5),

γX(1) = rα1γX(0) + r2β1γλ(0)

= rα1

(
µ+

1

r
µ2 + (r + r2)γλ(0)

)
+ r2β1γλ(0)

= r2(α1 + rα1 + β1)γλ(0) + α1(rµ+ µ2).

(5.15)

From Theorem 5.4, and using Equation (5.14) and Equation (5.15), we have
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γλ(0) =
α1

r
γX(1) + βγλ(1)

=
α1

r

(
r2(α1 + rα1 + β1)γλ(0) + α1(rµ+ µ2)

)
+ β1(rα1 + β1)γλ(0)

= (α2
1r + α2

1r
2 + α1β1)γλ(0) + α2

1

(
µ+

µ2

r

)
+ (rα1β1 + β2

1)γλ(0)

= [(rα1 + β1)2 + rα2
1]γλ(0) + α2

1

(
µ+

µ2

r

)

var(λt) = γλ(0) =
α2

1

(
µ+ µ2

r

)
1− (rα1 + β1)2 − rα2

1

,

where µ = rα0

1−(rα1+β1)
. So substituting this value in Equation (5.5), we have

var(Xt) = µ+
µ2

r
+ (r + r2)

 α2
1

(
µ+ µ2

r

)
1− (rα1 + β1)2 − rα2

1


=

(µ+ µ2

r
)(1− (rα1 + β1)2 − rα2

1) + (µ+ 1
r
µ2)(r + r2)α2

1

1− (rα1 + β1)2 − rα2
1

=
1− (rα1 + β1)2 + r2α2

1

1− (rα1 + β1)2 − rα2
1

(
µ+

µ2

r

)
.
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We can now find autocovariances and autocorrelations.

γX(1) = rα1γX(0) + r2β1γλ(0)

γX(2) = rα1γX(1) + β1γλ(1) = (rα1 + β1)[rα1γX(0) + r2β1γλ(0)]

γX(3) = (rα1 + β1)2[rα1γX(0) + r2β1γλ(0)]

⇒ γX(k) = (rα1 + β1)k−1[rα1γX(0) + r2β1γλ(0)]

= (rα1 + β1)k−1

rα1

(µ+ µ2

r
)[r2α2

1 + 1− (rα1 + β1)2]

1− (rα1 + β1)2 − rα2
1

+ r2β1

α2
1

(
µ+ µ2

r

)
1− (rα1 + β1)2 − rα2

1


= (rα1 + β1)k−1 rα1(r2α2

1 + 1− (rα1 + β1)2 + rα1β1)

1− (rα1 + β1)2 − rα2
1

(
µ+

µ2

r

)
γX(k) = (rα1 + β1)k−1 rα1[1− β1(β1 + rα1)]

1− (rα1 + β1)2 − rα2
1

(
µ+

µ2

r

)
, k ≥ 1;

and

ρX(k) =
γX(k)

γX(0)

= (rα1 + β1)k−1 rα1[1− β1(β1 + rα1)]

1− (rα1 + β1)2 − rα2
1

(
µ+

µ2

r

)
÷ r2α2

1 + 1− (rα1 + β1)2

1− (rα1 + β1)2 − rα2
1

(
µ+

µ2

r

)
ρX(k) =

(rα1 + β1)k−1rα1[1− β1(rα1 + β1)]

1− (rα1 + β1)2 + r2α2
1

, k ≥ 1.

(5.16)

Remark 2. From Example 1, we can see that the second-order stationary condition for

NBINGARCH(1,1) model is rα2
1 + (rα1 + β1)2 < 1.

Corollary 5.5. Suppose that {Xt} following NBINARCH(p) model is second-order sta-

tionary, then the autocovariance function γX(k) satisfies the equation

γX(k) =

p∑
i=1

rαiγX(|k − i|), k ≥ 1. (SeeZhu, 2011) (5.17)
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5.2 ESTIMATION PROCEDURES

We will discuss three methods to estimate the parameters: Yule walker, Conditional

least squares and Maximum likelihood estimations. We will bascially use these methods to

estimate parameters for NBINGARCH(p,q) model, when p=1,2 and p=1,q=1.

5.2.1 Yule Walker Estimation

When p=1,q=0, λt = α0 + α1Xt−1. From Corollary 5.5

γX(k) =
1∑
i=1

rα1γX(|k − 1|)

γX(k) = rα1γX(k − 1)

α1 =
γX(k)

rγX(k − 1)
.

where γX(k) =
∑n

t=k+1(Xt−x̄)(Xt−k−x̄)

n
is the sample autocovariance.

If k=1, then

α1 =
γX(1)

rγX(0)
,

where γX(1) =

∑n
t=2(Xt − x̄)(Xt−1 − x̄)

n
and γX(0) =

∑n
t=1(Xt − x̄)2

n
.

So, α̂1 =

∑n
t=2(Xt − x̄)(Xt−1 − x̄)

r
∑n

t=1(Xt − x̄)2

From Remark 1,

µ =
rα0

1− rα1

⇒ α0 =
µ(1− rα1)

r

α̂0 =
x̄(1− rα̂1)

r
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When p=2,q=0,

λt = α0 + α1Xt−1 + α2Xt−2

γX(k) = rα1γX(k − 1) + rα2γX(k − 2)

If k = 1 : γX(1) = rα1γX(0) + rα2γX(1)

If k = 2 : γX(2) = rα1γX(1) + rα2γX(0)

Solving by elimination method, we get

α̂1 =
γX(1)[γX(0)− γX(2)]

r[γ2
X(0)− γ2

X(1)]

=
ρX(1)(1− ρX(2))

r(1− ρ2
X(1))

,

α̂2 =
ρX(2)− rα̂1ρX(1)

r
, and

µ =
rα0

1− rα1 − rα2

⇒ α̂0 =
x̄(1− rα̂1 − rα̂2)

r
,

where ρX(1) and ρX(2) are sample autocorrelation.

When p=q=1,

λt = α0 + α1Xt−1 + β1λt−1.

Since the model has past lag of λ, it complicates the estimation process. In order to make

the process simple, Lemma 2 from Ferland et al. (2006) is considered.

Lemma 2 : Suppose that {Xt} and {Yt} are zero-mean stationary processes with auto-

covariance function γ(.) and that {Yt} is an ARMA(p,q) process. Then, {Xt} is also an

ARMA(p,q) process.

From the lemma and Equation (5.16), Equation (5.2) satisfies the ARMA(1,1) model

(Xt − µ)− a(Xt−1 − µ) = et + bet−1, (5.18)
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where a = rα1 + β1, b = −β1, et is a white noise process with

var(et) =
1− (rα1 + β1)2

1− (rα1 + β1)2 − rα2
1

(
µ+

µ2

r

)
.

To show that we can use ARMA(1,1) to estimate the parameters, we will show that

covariance of ARMA(1,1) is same as the covariance of NBINGARCH(1,1). Multiplying

both sides by Xt−k and finding expectation of Equation (5.18), we have

E(XtXt−k) = aE(Xt−1Xt−k) + E(etXt−k) + bE(et−1Xt−k)

For k = 0 : E(XtXt) = aE(Xt−1Xt) + E(etXt) + bE(et−1Xt)

γX(0) = aγX(1) + var(et) + b[a var(et) + b var(et)]

= aγX(1) + var(et)(1 + ab+ b2)

(5.19)

For k = 1 : E(XtXt−1) = aE(Xt−1Xt−1) + E(etXt−1) + bE(et−1Xt−k)

γX(1) = aγX(0) + b var(et).

(5.20)

Solving Equation (5.19) and Equation (5.20), we get

γX(0) = a2γX(0) + ab var(et) + var(et)(1 + ab+ b2)

=
1 + 2ab+ b2

1− a2
var(et).
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Fork = 2 : γX(2) = aγX(1)

Fork = 3 : γX(3) = aγX(2) = a2γX(1)

⇒ γX(k) = ak−1γX(1)

= ak−1[aγX(0) + b var(et)]

= ak−1

(
a

1 + 2ab+ b2

1− a2
var(et) + b var(et)

)
= ak−1

(
a+ b+ a2b+ ab2

1− a2

)
var(et)

= ak−1

(
(a+ b)(1 + ab)

1− a2

)
var(et).

If a = rα1 + β1 and b = −β1, then

γX(k) = (rα1 + β1)k−1 (rα1 + β1 − β1)(1− β1(rα1 + β1)

1− (rα1 + β1)2
var(et)

= (rα1 + β1)k−1 (rα1 + β1)(1− β1(rα1 + β1)

1− (rα1 + β1)2
var(et).

Now, if var(et) = 1−(rα1+β1)2

1−(rα1+β1)2−rα2
1

(
µ+ µ2

r

)
, then

γX(k) = (rα1 + β1)k−1 rα1[1− β1(β1 + rα1)]

1− (rα1 + β1)2 − rα2
1

(
µ+

µ2

r

)
,

which is same as the covariance of NBINGARCH(1,1).
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The autocorrelation of NBINGARCH(1,1) is given by

ρX(k) = ak−1

(
aγX(0) + b var(et)

γX(0)

)
= ak−1

(
a+

b var(et)(1− a2)

(1 + 2ab+ b2)var(et)

)
= ak−1

(
a+ b+ a2b+ ab2

1 + 2ab+ b2

)
= ak−1

(
(a+ b)(1 + ab)

1 + 2ab+ b2

)
, k ≥ 1.

So, ρX(2)
ρX(1)

= a.

Sample autocorrelation can be used to solve for a.

5.2.2 CLS Estimation

The CLS estimates mean to minimize

S(α0, αi) =
n∑
t=1

(
Xt − rα0 −

p∑
i=1

rαiXt−i

)2

. (5.21)

When p=1,q=0,

S(α0, α1) =
n∑
t=1

(Xt − rα0 − rα1Xt−1)2.

∂S(α0, α1)

∂α0

= −2r

(
n∑
t=1

Xt − nrα0 − rα1

n∑
t=1

Xt−1

)
= 0

n∑
t=1

Xt = nrα0 + rα1

n∑
t=1

Xt−1 and

∂S(α0, α1)

∂α1

= −2r

(
n∑
t=1

XtXt−1 − rα0

n∑
t=1

Xt−1 − rα1

n∑
t=1

Xt−1Xt−1

)
= 0

n∑
t=1

XtXt−1 = rα0

n∑
t=1

Xt−1 + rα1

n∑
t=1

X2
t−1
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Expressing the above information in matrix form, we get


∑n

t=1 Xt∑n
t=1 XtXt−1

 =

 n− 1
∑n

t=1 Xt−1∑n
t=1Xt−1

∑n
t=1 X

2
t−1


rα0

rα1


Value for α0 and α1 is obtained by solving the above matrix.

When p=2,q=0,

S(α0, α1, α2) =
n∑
t=1

(Xt − rα0 − rα1Xt=1 − rα2Xt−2)2.

∂S(α0, α1, α2)

∂α0

= −2r
n∑
t=1

(Xt − rα0 − rα1Xt−1 − rα2Xt−2) = 0

n∑
t=1

Xt = nrα0 + α1

n∑
t=1

Xt−1 + rα2

n∑
t=1

Xt−2,

∂S(α0, α1, α2)

∂α1

= −2r
n∑
t=1

(XtXt−1 − rα0Xt−1 − rα1X
2
t−1 − rα2Xt−1Xt−2) = 0

n∑
t=1

(XtXt−1 = rα0

n∑
t=1

Xt−1 + rα1

n∑
t=1

X2
t−1 + rα2

n∑
t=1

Xt−1Xt−2

∂S(α0, α1, α2)

∂α2

= −2r
n∑
t=1

(XtXt−2 − rα0Xt−2 − rα1Xt−1Xt−2 − rα2X
2
t−2) = 0

n∑
t=1

XtXt−2 = rα0

n∑
t=1

Xt−2 + rα1

n∑
t=1

Xt−1Xt−2 + rα2

n∑
t=1

X2
t−2

So, the matrix form will be


∑n

t=1Xt∑n
t=1(XtXt−1∑n
t=1XtXt−2

 =


n− 2

∑n
t=1Xt−1

∑n
t=1Xt−2∑n

t=1Xt−1

∑n
t=1X

2
t−1

∑n
t=1Xt−1Xt−2∑n

t=1Xt−2

∑n
t=1Xt−1Xt−2

∑n
t=1X

2
t−2




rα0

rα1

rα2


Solving the matrix, we will get the value for α0, α1, and α2.
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When p=q=1, Equation (5.18) can also be written as

Xt = rα0 + aXt−1 + et + bet−1

We need to find the value of et before we proceed with the estimation. So we will follow

the following steps in doing so.

1. let Yt = Xt −
∑n

i=1 Xi/n, fit the data by using AR(p) model, then obtain the CLS

estimator for the autoregressive coefficient and define êt as the residual of process Yt.

Remark 3. Smaller order of AP model provided better estimates for parameters

unlike fitting higher order as indicated in [3].

2. Minimize

S(α0, a, b) =
n∑
t=1

(Xt − rα0 − aXt−1 − bêt−1)2

.

∂S(α0, a, b)

∂α0

= −2r
n∑
t=1

(Xt − rα0 − aXt−1 − bêt−1) = 0

α̂0 =

∑n
t=1(Xt − aXt−1 − bêt−1)

r

∂S(α0, a, b)

∂a
= 2

n∑
t=1

(Xt − rα0 − aXt−1 − bêt−1)(Xt−1) = 0

â =

∑n
t=1(Xt − rα0 − bêt−1

Xt−1

∂S(α0, a, b)

∂b
= 2

n∑
t=1

(Xt − rα0 − aXt−1 − bêt−1)(−êt−1)

b̂ =
−
∑n

t=1(Xt − rα0 − aXt−1)

êt−1

.
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The value of α0, a, b can also be obtained by converting the following system of equations

to matrix form. ∑
Xt =

∑
rα0 + a

∑
Xt−1 + b

∑
êt−1∑

XtXt−1 =
∑

rα0Xt−1 + a
∑

X2
t−1 + b

∑
êt−1∑

Xtêt−1 =
∑

rα0êt−1 + a
∑

Xt−1êt−1 + b
∑

ê2
t−1,

which is equivalent to the matrix


∑
Xt∑

XtXt−1∑
Xtêt−1

 =


n− 1

∑
Xt−1

∑
êt−1∑

Xt−1

∑
X2
t−1

∑
êt−1Xt−1∑

êt−1

∑
Xt−1êt−1

∑
ê2
t−1




rα0

a

b


So β̂1 = −b̂ and α̂1 = â+b̂

r
.
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5.2.3 Maximum likelihood Estimation

We know

P (Xt = xt | Ft−1) =

(
xt + r − 1

r − 1

)
prt (1− pt)xt

L(θ) =
n∏
t=1

(
xt + r − 1

r − 1

)
prt (1− pt)xt

logL(θ) =
n∑
t=1

r log(pt) +
n∑
t=1

Xt log(1− pt) + log
n∏
t=1

(
Xt + r − 1

r − 1

)

=
n∑
t=1

log
1

1 + λt
+

n∑
t=1

Xt log
λt

1 + λt
+ log

n∏
t=1

(Xt + r − 1)!

(r − 1)!Xt!

= −
n∑
t=1

r log(1 + λt) +
n∑
t=1

Xt(log λt − log(1 + λt)) +
n∑
t=1

log((Xt + r − 1)!)−

n∑
t=1

log((r − 1)!)−
n∑
t=1

log(Xt!)

=
n∑
t=1

Xt log λt −
n∑
t=1

(r +Xt) log(1 + λt) +
n∑
t=1

log((Xt + r − 1)!)−

n∑
t=1

log((r − 1)!)−
n∑
t=1

log(Xt!)

logL(θ) =
n∑
t=1

[Xt log λt − (r +Xt) log(1 + λt) + log((Xt + r − 1)!)− log((r − 1)!)− log(Xt!)]

=
n∑
t=1

lt(θ).

(5.22)

The estimates cannot be obtained algebraically. So the numerical optimization method has

to be used. To obtain asymptotic standard errors of MLE, we need the first derivative of

logL(θ) with respect to θi(i = 0, 1, ..., p+ q) which is as following

∂lt
∂θi

=

(
Xt

λt
− r +Xt

1 + λt

)
∂λt
∂θi

. (5.23)

and the second derivative obtained as

43



∂2lt
∂θi∂θj

=

(
Xt

λt
− r +Xt

1 + λt

)
∂λt
∂θi

∂λt
∂θj

+

(
−Xt

λ2
t

+
r +Xt

(1 + λt)2

)
∂λt
∂θi

∂λt
∂θj

=

(
Xt

λt
− r +Xt

1 + λt

)
∂λt
∂θi

∂λt
∂θj
−
(
Xt

λ2
t

− r +Xt

(1 + λt)2

)
∂λt
∂θi

∂λt
∂θj

, for i, j = 0, 1, ...p+ q.

(5.24)

Moreover, we know

λt = α0 +

p∑
i=1

αiXt−i +

q∑
j=1

βjλt−j.

So,

∂λt
∂α0

= 1 +

q∑
k=1

βk
∂λt−j
∂α0

∂λt
∂αi

= Xt−i +

q∑
k=1

βk
∂λt−j
∂αi

, i = 1, 2, ..., p,

∂λt
∂βj

= λt−j +

q∑
k=1

βk
∂λt−j
∂βj

, j = 1, 2, ..., q.

(5.25)

Taking expectation of Equation (5.23), we get

E

[
∂2lt
∂θi∂θj

| Ft−1

]
=

(
E(Xt | Ft−1)

λt
− r + E(Xt | Ft−1

1 + λt

)
∂λt
∂θi

∂λt
∂θj
−(

E(Xt | Ft−1)

λ2
t

− r + E(Xt | Ft−1)

(1 + λt)2

)
∂λt
∂θi

∂λt
∂θj

=

(
rλt
λt
− r + rλt

1 + λt

)
∂λt
∂θi

∂λt
∂θj
−
(
rλt
λ2
t

− r + rλt
(1 + λt)2

)
∂λt
∂θi

∂λt
∂θj

= −r
(

1

λt
− 1

1 + λt

)
∂λt
∂θi

∂λt
∂θj

(5.26)
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Similarly, from Equation (5.3), we have

E

[
∂lt
∂θi

∂lt
∂θj
| Ft−1

]
= E

[(
Xt

λt
− r +Xt

1 + λt

)2

| Ft−1

]
∂λt
∂θi

∂λt
∂θj

=
E(Xt − rλt)2 | Ft−1)

λ2
t (1 + λt)2

∂λt
∂θi

∂λt
∂θj

=
rλt(1 + λt)

λ2
t (1 + λt)2

∂λt
∂θi

∂λt
∂θj

= r

(
1

λt
− 1

1 + λt

)
∂λt
∂θi

∂λt
∂θj

.

(5.27)

So, from Equation (5.26) and Equation (5.27), we obtain the information matrix

equality

−E
[
∂2lt
∂θi∂θj

| Ft−1

]
= E

[
∂lt
∂θi

∂lt
∂θj
| Ft−1

]
, i, j = 0, 1, ..., p+ q.

From Ferland et al. (2006), asymptotic standard errors of MLEs can be computed

from the following matrix

1

n
(D̂nŜ

−1
n D̂n)−1, (5.28)

where

Ŝn =
1

n

n∑
t=1

∂lt
∂θ

∂lt
∂θT

, D̂n = − 1

n

n∑
t=1

∂2lt
∂θ∂θT

.
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CHAPTER 6

DATA ANALYSIS

6.1 SIMULATION STUDY

A simulation study is done using R software. The study is conducted for three NBIN-

GARCH(p,q) models, where the value of r is assumed to be given. The value used here for

r are 1 and 2. The three simulated models are NBINGARCH(p=1), NBINGARCH(p=2),

and NBINGARCH(p=1,q=1) with a set of parameters for each value of r. Sample sizes

n=100 and n=500 are considered with each parameter set, and the number of replication

used is 200. The simulation is being done using three methods discussed in the previous

section.

The summary of the simulation results are provided in Table 6.1. It can be seen that

as the sample size increases, the estimates approaches the exact value of the parameters.

All the methods perform well but MLE performs better.

Note 1. Even with a small value of n, Maximum likelihood methodology performs better.

For each model, two sets of values of parameters are used.

1. (α0, α1, r) = (2,0.4,1) and (5,0.3,2), for A1= NBINGARCH(1), A2= NBINGARCH(1)

respectively;

2. (α0, α1, α2, r)=(2,0.3,0.2,1) and (3,0.2,0.2,2) for B1= NBINGARCH(2), B2= NBIN-

GARCH(2) respectively;

3. (α0, α1, β1, r)=(2,0.5,0.3,1) and (3,0.2,0.2,2) for C1= NBINGARCH(1,1), C2= NBIN-

GARCH(1,1) respectively.

The mean absolute errors are obtained by finding the absolute difference between the

given value of the parameters and the simulated value of the parameters. The mean abso-
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lute error are represented in parenthesis in Table 6.1.

6.2 REAL DATA ANALYSIS

As a practical demonstration of fitting INGARCH model, the polio data (168 obser-

vations) studied by Zeger (1988) consisting of monthly counts of poliomyelitis cases in the

USA from the year 1970 to 1983 as reported by the Centers for Disease Control is consid-

ered. Poliomyelitis is an acute viral disease, usually affecting children and young adults,

caused by polio viruses and can cause temporary or permanent paralysis. To provide in-

sight to the data structure, Figure 6.1 presents the original series, the ACF and the PACF

of the series.

The empirical mean and variance of the data are 1.333333 and 3.50499 respectively,

indicating that the distribution is overdispersed. The data are fitted by NBINARCH(1)

and NBINGARCH(1,1) models. The approach of Benjamin et.al(2003) and Davis and Wu

(2009) is adopted, which maximizes the likelihood logL(θ) with respect to θ for different

values of r(= 1, 2, 3, 4, 5). The value of r is chosen taking into account the smallest Akaike

information criterion (AIC) or Bayesian information criterion (BIC). So, r̂ = 2 provides

the smallest AIC and BIC from the Table 6.2.

With the chosen value of r, NBINARCH(1) and NBINGARCH(1,1) models are fitted

to the data. For comparison, Poisson (P) and Double Poisson(DP) models are consid-

ered and the results are displayed in Table 6.3 . In both INARCH(1) and INGARCH(1,1)

models, we can see that NB performs better and between the two models NBINARCH(1)

generates smaller AIC and BIC. Hence NBINARCH(1) model is preferred over NBIN-

GARCH(1,1) model. The asymptotic standard errors (SE) are calculated using Equation

(5.28) and are shown in parenthesis in Table 6.3. For each NBINARCH(1) and NBIN-

GARCH(1,1) model, the calculation of asymptotic standard errors are presented in the

following section.
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6.2.1 INARCH(1) Model

From Equation 5.2,

λt = α0 + α1Xt−1.

6.2.1.1 Negative Binomial

The conditional probability mass function of negative binomial model Xt | Ft−1 :

NB(r, pt) is given by

P (Xt = xt | Ft−1) =

(
xt + r − 1

r − 1

)
prt (1− pt)xt .

From Equation 5.22, the likelihood function is written as

logL(θ) =
n∑
t=1

[Xt log λt−(r+Xt) log(1+λt)+log((Xt+r−1)!)−log((r−1)!)−log(Xt!)] =
n∑
t=1

lt(θ).

Using Equation (5.23), we get

∂lt
∂θ

=

(
Xt

λt
− r +Xt

1 + λt

) 1

Xt−1


∂lt
∂θT

=

(
Xt

λt
− r +Xt

1 + λt

)[
1 Xt−1

]

∂lt
∂θ

∂lt
∂θT

=

(
Xt

λt
− r +Xt

1 + λt

)2

 1 Xt−1

Xt−1 X2
t−1

 .
From Equation (5.24), we get the second derivatives as

∂2lt
∂θ∂θT

= −
(
Xt

λ2
t

− r +Xt

(1 + λt)2

) 1 Xt−1

Xt−1 X2
t−1

 .
The matrix for second derivatives obtained above is also called the Hessian matrix (H). So,

Ŝn =
1

n

n∑
t=1

∂lt
∂θ

∂lt
∂θT

D̂n = − 1

n

n∑
t=1

∂2lt
∂θ∂θT

,
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and the asymptotic standard error is found by solving

1

n
(D̂nŜ

−1
n D̂n)−1.

6.2.1.2 Poisson

The conditional probability mass function of Poisson model Xt | Ft−1 : P(λt) is given

by

f(xt) =
e−λtλXt

t

Xt!
.

The likelihood function, logL(θ) is given by

logL(θ) =
n∑
t=1

Xtlogλt −
n∑
t=1

λt −
n∑
t=1

log(Xt!) =
n∑
t=1

lt(θ) =
n∑
t=1

lt(θ),

where lt(θ) = Xtlogλt − λt − log(Xt!). Now, for asymptotic standard errors, following

expressions are required, which are obtained with the use of Equation (5.23) and Equation

(5.24).
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∂lt
∂θ

=

(
Xt

λt
− 1

)
∂λt
∂θ

=

(
Xt

λt
− 1

) 1

Xt−1

 ,
∂lt
∂θT

=

(
Xt

λt
− 1

)
∂λt
∂θ

=

(
Xt

λt
− 1

)[
1 Xt−1

]
,

∂lt
∂θ

∂lt
∂θT

=

(
Xt

λt
− 1

)2

 1 Xt−1

Xt−1 X2
t−1

 .
∂2lt
∂θ∂θT

=

(
Xt

λt
− 1

)
∂2λt
∂θ∂θT

−
(
Xt

λ2
t

)
∂λt
∂θ

∂λt
∂θT

= −
(
Xt

λ2
t

) 1 Xt−1

Xt−1 X2
t−1

 = H

So making use of equation (5.28), the asymptotic standard errors can be calculated.

6.2.1.3 Double Poisson

The conditional probability mass function of Double Poisson model Xt | Ft−1 :

DP(λt, γ) is

f(xt) =
(
γ1/2e−γλt

)(e−XtXXt
t

Xt!

)(
eλt
Xt

)γXt

, γ > 0, Xt = 0, 1, 2, ....

The likelihood function, logL(θ) is given by
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logL(θ) =
n

2
logγ − γ

n∑
t=1

λt − (1− γ)
n∑
t=1

Xt + (1− γ)
n∑
t=1

XtlogXt +
n∑
t=1

γXtlogλt −
n∑
t=1

log(Xt!)

=
n∑
t=1

lt(θ),

where lt(θ) = 1
2
logγ − γλt − (1− γ)Xt + (1− γ)XtlogXt + γXtlogλt − log(Xt!).

The fitted values of parameters are found slightly different here. First γ is assumed

to be 1, which converts the model to Poisson. So the fitted value of α0 and α1 is same as

the one obtained by fitting Poison model. Then the fitted value of γ is found in a following

way

∂logL(θ)

∂γ
=

n

2γ
−

n∑
t=1

λt +
n∑
t=1

Xt −
n∑
t=1

Xtlog(Xt) +
n∑
t=1

Xtlog(λt) = 0

γ̂ =
n

2 (
∑n

t=1 λt −
∑n

t=1Xt +
∑n

t=1Xtlog(Xt)−
∑n

t=1 Xtlog(λt))
.

For the asymptotic standard errors, differentiating lt with respect to each parameter,

we get

∂lt
∂α0

= −γ ∂λt
∂α0

+
γXt

λt

∂λt
∂α0

= −γ +
γXt

λt
.

∂lt
∂α1

= −γ ∂λt
∂α1

+
γXt

λt

∂λt
∂α1

=

(
−γ +

γXt

λt

)
Xt−1.

∂lt
∂γ

=
1

2γ
− λt +Xt −XtlogXt +Xtlogλt

So

∂lt
∂θ

=


−γ + γXt

λt

−γXt−1 + γXtXt−1

λt

1
2γ
− λt +Xt −XtlogXt +Xtlogλt

 ,
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∂lt
∂θT

=

[
−γ + γXt

λt
−γXt−1 + γXtXt−1

λt
1

2γ
− λt +Xt −XtlogXt +Xtlogλt

]
.

The second derivatives are

∂2lt
∂α2

0

= −γXt

λ2
t

,
∂2lt

∂α0∂α1

= −γXt

λ2
t

Xt−1,
∂2lt
∂α0∂γ

= −1 +
Xt

λt
,

∂2lt
∂α1α0

=
−γXtXt−1

λ2
t

,
∂2lt
∂α2

1

=
−γXtX

2
t−1

λ2
t

,
∂2lt
∂α1γ

= −Xt−1 +
XtXt−1

λt
,

∂2lt
∂γα0

= −1 +
Xt

λt
,

∂2lt
∂γα1

= −Xt−1 +
XtXt−1

λt
,

∂2lt
∂γ2

= − 1

2γ2
.

So the Hessian matrix (H) is

H =
∂2lt
∂θ∂θT

=


−γXt

λ2t
−γXt

λ2t
Xt−1 −1 + Xt

λt

−γXtXt−1

λ2t

−γXtX2
t−1

λ2t
−Xt−1 + XtXt−1

λt

−1 + Xt

λt
−Xt−1 + XtXt−1

λt
− 1

2γ2

 .

We can now calculate asymptotic standard errors making use of Equation (5.28).

6.2.2 INGARCH(1,1) Model

From Equation 5.2,

λt = α0 + α1Xt−1 + β1λt−1.

Set λ0 = X̄ and ∂λ0
∂θi

= 0.

Using Equation (5.25), we get the first derivatives of λt as the following.
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a0 =
∂λt
∂α0

= 1 + β1
∂λt−1

∂α0

a1 =
∂λt
∂α1

= Xt−1 + β1
∂λt−1

∂α1

b1 =
∂λt
∂β1

= λt−1 + β1
∂λt−1

∂β1

.

(6.1)

The second derivatives of λt are

∂2λt
∂α2

0

=
∂

∂α0

(
∂λt
∂α0

)
= 0

∂2λt
∂α0∂α1

=
∂

∂α1

(
∂λt
∂α0

)
= 0

∂2λt
∂α0∂β1

=
∂

∂β1

(
∂λt
∂α0

)
= β1

∂2λt−1

∂α0∂β1

+
∂λt−1

∂α0

∂2λt
∂α1∂α0

=
∂

∂α0

(
∂λt
∂α1

)
= 0

∂2λt
∂α2

1

=
∂

∂α1

(
∂λt
∂α1

)
= 0

∂2λt
∂α1∂β1

=
∂

∂β1

(
∂λt
∂α1

)
= β1

∂2λt−1

∂α1∂β1

+
∂λt−1

∂α1

∂2λt
∂β1∂α0

=
∂

∂α0

(
∂λt
∂β1

)
= β1

∂2λt−1

∂α0∂β1

+
∂λt−1

∂α0

∂2λt
∂β1∂α1

=
∂

∂α1

(
∂λt
∂β1

)
= β1

∂2λt−1

∂α1∂β1

+
∂λt−1

∂α1

∂2λt
∂β2

1

=
∂

∂β1

(
∂λt
∂β1

)
= β1

∂2λt−1

∂β2
1

+ 2
∂λt−1

∂β1

.

(6.2)
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6.2.2.1 Negative Binomial

We know

lt(θ) = Xt log λt − (r +Xt) log(1 + λt) + log((Xt + r − 1)!)− log((r − 1)!)− log(Xt!).

Making use of Equation (5.23) , we get

∂lt
∂θ

=

(
Xt

λt
− r +Xt

1 + λt

)
∂λt
∂θ

=

(
Xt

λt
− r +Xt

1 + λt

)

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and using Equation (5.24), we get
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So, now with the use of Equation (5.28), we can calculate the asymptotic standard errors.
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6.2.2.2 Poisson

For Poisson INGARCH model, we know

lt(θ) = Xtlogλt − λt − log(Xt!).

Again, using Equation (5.23) and Equation (5.24), we get the following expressions.
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So, using Equation (5.28), the asymptotic standard errors can be determined.

6.2.2.3 Double Poisson

For Double Poisson INGARCH model, we know

lt(θ) =
1

2
logγ − γλt − (1− γ)Xt + (1− γ)XtlogXt + γXtlogλt − log(Xt!).
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Differentiating lt with respect to each parameter, we get
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,
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Multiplying the above two matrices, we obtain ∂lt
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.

Now, the second derivatives of lt are
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So the Hessain matrix (H) is obtained as the following.
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Now, using Equation 5.28, asymptotic standard errors can be calculated.

To study the goodness of fit of the NBINARCH(1) model, analysis of residuals from

the fitted model is considered. Pearson residual method defined as

r1t =
Xt − r̂λ̂t

[r̂λ̂t(1 + λ̂t)]1/2
,

where λ̂t = α̂0 + α̂1Xt−1, is used. The ACF, PACF, normal Q-Q and kernel density plots

are shown in Figure 6.2. There is no correlation within the residuals from the plots of
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ACF and PACF and is supported by the Ljung-Box statistics of 13.20877 based on k=15

lags. The p-value is 0.51 with degree of freedom of k − 1 = 14 of chi-square distribution.

Ljung-Box statistics is calculated using the formula

Q = n(n+ 2)
k∑
i=1

r̂2
i

n− i
,

where r̂ is the residual ACF’s. The Q-Q plot and kernel plot indicates that the residuals

are highly non-normally distributed and is supported by Shapiro-Wilk normality test with

a p-value of 4.861× 10−12.

We also consider the normalized conditional randomized quantile residuals of Dunn

and Smyth (1996) and Benjamin et.al (2003). The normalized randomized quantile residual

is given by r2t = Φ−1(ut), where Φ−1 is the inverse cumulative distribution function of

a standard normal variable and ut is a random value from the uniform distribution in

the interval [F (Xt − 1, α̂, r̂), F (Xt, α̂, r̂)], where F (Xt, α̂0, r̂)] is the fitted conditional NB

cumulative distribution function. The corresponding residual analysis is given in Figure 6.3.

We see that there is no correlation within the residuals and is supported by the Ljung-Box

statistics of 15.72503 based on 15 lags. The p-value is 0.33 with degree of freedom of 14 of

chi-square distribution. The Q-Q plot and kernel plots appears to be normally distributed

and is supported by Shapiro-Wilk normality test with a p-value of 0.8972. Figure 6.4 shows

a scatter plot of the normalized randomized quantile residuals against time. All of these

indicates that the chosen model provides an adequate fit to the data.
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Table 6.1: Simulated Results for NBINGARCH models

Model n Method α0(Error) α1(Error) α2 or β1(Error)

A1 100 YW 2.184435 (0.356641) 0.319169 (0.131690)

CLS 2.186407 (0.358673) 0.322384 (0.131318)

MLE 2.024442 (0.286056) 0.366937 (0.101582)

500 YW 2.070921 (0.193466) 0.373337 (0.071208)

CLS 2.071400 (0.194187) 0.374046 (0.071140)

MLE 1.996345 (0.118478) 0.397673 (0.049042)

A2 100 YW 5.840418 (1.068042) 0.249448 (0.060471)

CLS 5.804475 (1.084485) 0.254096 (0.059203)

MLE 5.148558 (0.715489) 0.282398 (0.048495)

500 YW 5.334206 (0.700325) 0.283283 (0.037134)

CLS 5.336073 (0.703978) 0.283783 (0.036976)

MLE 5.068856 (0.355454) 0.294157 (0.020889)

B1 100 YW 2.397071 (0.538210) 0.236929 (0.124910) 0.129244 (0.115791)

CLS 2.406549 (0.554631) 0.235885 (0.127317) 0.134176 (0.113802)

MLE 2.135391 (0.431835) 0.274392 (0.105936) 0.174367 (0.106789)

500 YW 2.136410 (0.298498) 0.187440 (0.039690) 0.185613 (0.065613)

CLS 2.138010 (0.298928) 0.276881 (0.067319) 0.186501 (0.065580)

MLE 2.021851 (0.204806) 0.303536 (0.048611) 0.197870 (0.047137)

B2 100 YW 4.851662 (1.939932) 0.160993 (0.064587) 0.147203 (0.073094)

CLS 4.851705 (1.957805) 0.159556 (0.066007) 0.155016 (0.069746)

MLE 2.857774 (1.598617) 0.135756 (0.086554) 0.133762 (0.087672)

500 YW 3.913638 (0.981200) 0.183339 (0.040213) 0.178599 (0.042745)

CLS 3.918509 (0.989420) 0.183033 (0.040583) 0.179969 (0.042170)

MLE 2.636327 (0.893688) 0.162735 (0.049617) 0.161340 (0.052444)

C1 100 CLS 3.846397 (2.068827) 0.370303 ( 0.182733) 0.175333 (0.245783)

MLE 2.414842 (0.936882) 0.477183 ( 0.156486) 0.204068 (0.208017)

500 CLS 2.830926 (1.001288) 0.427911 (0.110880) 0.266000 (0.135775)

MLE 2.169787 (0.477650) 0.510534 (0.072072) 0.310405 ( 0.155190)

C2 100 CLS 3.931298 (1.355761) 0.173914 (0.055244) 0.101130 (0.219163)

MLE 3.197880 (0.913585) 0.185840 (0.082177) 0.179380 ( 0.130755)

500 CLS 3.293011 (0.625514) 0.195852 (0.029590) 0.166294 (0.097891)

MLE 3.146980 (0.513980) 0.198687 (0.022328) 0.179760 (0.077436)
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Figure 6.1: Polio data. (a) original series (b) ACF (c) PACF
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Table 6.2: AIC and BIC for different values of r with NBINARCH(1) and NBIN-

GARCH(1,1) models.

r

Model 1 2 3 4 5

NBINARCH(1) AIC 523.5978 520.5613 524.4632 528.5592 532.1036

BIC 532.9697 529.9332 533.8351 537.9311 541.4755

NBINGARCH(1,1) AIC 529.8315 528.3122 532.8693 537.3188 615.9582

BIC 539.2034 537.6841 542.2412 546.6907 625.3301

Table 6.3: Parameter estimates with NB, P and DP INARCH(1) and INGARCH(1,1)

models.

Model α̂0 α̂1 β̂1 r̂ orγ̂ AIC BIC

(SE) (SE) (SE) (SE)

INARCH(1) NB 0.427734 0.188481 2 520.5613 529.9332

(0.002645) (0.003417)

P 0.865626 0.364406 562.2899 568.5379

(0.013139) (0.016898)

DP 0.865626 0.364406 0.554362 528.5624 537.9343

(0.013116) (0.016854) (0.003327)

INGARCH(1,1) NB 0.311908 0.184325 0.181478 2 521.0778 533.5737

(0.006358) (0.003514) (0.017588)

P 0.635683 0.351473 0.184559 562.0793 571.4512

(0.034461) (0.018544) (0.027449)

DP 0.635683 0.351473 0.184559 0.559420 529.3326 541.8385

(0.036136) (0.018577) (0.028609) ( 0.003724)
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Figure 6.2: Pearson residuals. (a) ACF (b) PACF (c) Q-Q plot (d) Kernel density
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Figure 6.3: Randomized quantile residuals. (a) ACF (b) PACF (c) Q-Q plot (d) Kernel

density
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