
 
 

FLORIDA STATE UNIVERSITY 

 

COLLEGE OF ARTS AND SCIENCES 

 

 

 

 

 

 

IMPROVING SATELLITE-BASED SNOWFALL ESTIMATION: A NEW METHOD FOR  

 

 CLASSIFYING PRECIPITATION PHASE AND ESTIMATING SNOWFALL RATE 

 

 

 

 

 

 

 

By 

 

ELIZABETH M. SIMS 

 

 

 

 

 

 

A Dissertation submitted to the 

Department of Earth, Ocean and Atmospheric Science 

in partial fulfillment of the 

requirements for the degree of  

Doctor of Philosophy 

 

 

 

 

 

 

2017 

  



ProQuest Number:

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that  the author did not send a complete manuscript
and  there  are missing pages, these will be noted. Also, if material had  to be removed,

a note will indicate the deletion.

ProQuest

Published  by ProQuest LLC (  ). Copyright of the Dissertation is held  by the Author.

All rights reserved.
This work is protected against unauthorized copying under  Title 17, United  States Code

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor,  MI 48106 - 1346

10258565

10258565

2017



ii 
 

Elizabeth M. Sims defended this dissertation on March 31, 2017. 

The members of the supervisory committee were: 

 

   

   

 Guosheng Liu 

 Professor Directing Dissertation 

 

 Anke Meyer-Baese  

  University Representative 

 

 Mark A. Bourassa 

 Committee Member 

   

 Ming Cai 

 Committee Member 

   

 Philip G. Sura 

 Committee Member 

 

 

 

 

The Graduate School has verified and approved the above-named committee members, and 

certifies that the dissertation has been approved in accordance with university requirements. 

  



iii 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This dissertation is dedicated to my daughters. 



iv 
 

ACKNOWLEDGEMENTS 

 First and foremost, I would like to thank my major professor, Dr. Guosheng Liu, for his 

support and guidance throughout my Ph.D. career.  He has provided a wealth of knowledge in all 

aspects of my research, and I am truly grateful to have had the opportunity to learn from him. 

 I would also like to thank Dr. Mark Bourassa, Dr. Ming Cai, Dr. Philip Sura, and Dr. 

Anke Meyer-Baese for serving on my Ph.D. committee.  In addition to this role, they have all 

been excellent teachers to me.  I would also like to acknowledge Dr. Fuelberg for serving as a 

proxy committee member for my Prospectus, and express my gratitude to him as he is another 

wonderful teacher. 

 Additionally, I would like to thank my colleagues within Dr. Liu’s lab, past and present, 

for the numerous academic discussions, and for their friendship.  They include Ryan Honeyager, 

Yulan Hong, Dongyang Liu, Holly Nowell, Gauher Shaheen, Mengtao Yin, and Yalei You.  I 

also thank the many professors and classmates who have supported me throughout my time at 

FSU. 

 I would like to thank my family for the encouragement they have always given me.  My 

parents and my brother have provided unconditional support throughout my life.  My husband’s 

encouragement and support have made this process much easier.  Finally, I would like to thank 

my beautiful daughters.  They show me, every day, what life is all about. 

  



v 
 

TABLE OF CONTENTS 

 

 
List of Tables ................................................................................................................................ vii 

List of Figures .............................................................................................................................. viii 

List of Symbols ............................................................................................................................. xii 

List of Abbreviations ................................................................................................................... xiii 

Abstract ........................................................................................................................................ xiv 

 

1. INTRODUCTION ......................................................................................................................1 

 

 1.1 Motivation ............................................................................................................................1 

 1.2 Precipitation Phase Classification ........................................................................................2 

 1.3 Surface Snowfall Rate..........................................................................................................3 

 1.4 Objectives and Paper Organization ......................................................................................4 

 

2. DEVELOPMENT OF A NEW METHOD FOR CLASSIFYING PRECIPITATION PHASE .7 

 

 2.1 Background ..........................................................................................................................7 

 2.2 Data and Methodology .......................................................................................................10 

 2.3 Dependence of Threshold on Geophysical Parameters .....................................................14 

 2.3.1 Temperature and Moisture ......................................................................................14 

 2.3.2 Low-Level Vertical Lapse Rate ..............................................................................17 

 2.3.3 Surface Skin Temperature .......................................................................................18 

 2.3.4 Surface Pressure ......................................................................................................19 

 2.3.5 Land Cover Type.....................................................................................................19 

 2.4 Parameterization ................................................................................................................20 

 2.4.1 Program Description ...............................................................................................20 

 2.4.2 Application of Parameterization Scheme ................................................................21 

 

3. DEVELOPMENT OF THE Ze-S RELATIONS .......................................................................37 

 

 3.1 Background ........................................................................................................................37 

 3.2 Data and Methodology .......................................................................................................41 

 3.3 Physical Properties of Snow Particles................................................................................44 

 3.3.1 Particle Shape ..........................................................................................................44 

 3.3.2 Particle Size Distribution ........................................................................................45 

 3.3.3 Terminal Velocity ...................................................................................................47 

 3.4 Ze-S Relations ....................................................................................................................49 

 

4. DEVELOPMENT OF A GLOBAL SNOWFALL DISTRIBUTION ......................................58 

 

 4.1 CloudSat CPR ....................................................................................................................58 

 4.2 Surface Snowfall Rate Calculation ....................................................................................59 

 4.3 Optimized Ze-S Relation ....................................................................................................60 



vi 
 

 4.3.1 Methodology ...........................................................................................................60 

 4.3.2 Application of Optimized Ze-S Relation .................................................................61 

 4.4 Optimal Particle Shape ......................................................................................................62 

 4.4.1 Methodology ...........................................................................................................63 

 4.4.2 Results .....................................................................................................................64 

 

5. COMPARISON WITH THE CLOUDSAT SNOWFALL PRODUCT ...................................84 

 

 5.1 CloudSat Snowfall Product Algorithm ..............................................................................84 

 5.2 Comparison of Snowfall Rates ..........................................................................................86 

 

6. SUMMARY AND FUTURE WORK .......................................................................................91 

 

 6.1 Classification of Precipitation Phase .................................................................................91 

 6.2 Estimation of Surface Snowfall Rate .................................................................................92 

 6.3 Future Work .......................................................................................................................93 

 

References ......................................................................................................................................95 

 

Biographical Sketch .....................................................................................................................100 

  



vii 
 

LIST OF TABLES 

 

 
Table 1. WMO present weather codes. ...................................................................................... 23 

Table 2. Summary of the data sets used in this portion of the study. ......................................... 25 

Table 3. LUT properties for the parameterization scheme......................................................... 26 

Table 4. Bias, r, RMSE, and slope for the thirty-six Ze-S relations developed in this study. .... 65 

  



viii 
 

LIST OF FIGURES 

 
Figure 1. Precipitation rate versus effective reflectivity for 94 GHz.  The Ze-S relation is 

calculated by Liu (2008a) for three nonspherical snowflake shapes.  The Ze-R  

relation is calculated for spherical liquid particles, using the Marshall-Palmer size 

distribution. ................................................................................................................... 6 

Figure 2. (a) Conditional probability of solid precipitation versus near-surface temperature, 

using global land and ocean surface observations. (b) Same as (a), except for near-

surface wet-bulb temperature. ..................................................................................... 27 

Figure 3. (a) Wet-bulb temperature threshold over land, using surface observations at weather 

stations. (b) Same as (a), but focusing on the United States, showing the regions of 

relatively high wet-bulb temperature threshold in the mountainous regions and 

relatively low wet-bulb temperature threshold in the Southeastern United States. (c) 

Wet-bulb temperature threshold, using shipboard observations, separated into 1° 

latitude by 1° longitude grid boxes. Tw is used for wet-bulb temperature in the 

legend. ......................................................................................................................... 28 

Figure 4. Frequency of temperature inversions in approximately the lowest 500 m of the 

atmosphere, as calculated using the MERRA reanalysis of the temperature profile 

from the MAI6NPANA data product.  Four times daily data from 2006 through 2011 

is used.......................................................................................................................... 29 

Figure 5. Conditional probability of solid precipitation for near-surface wet-bulb temperature 

versus lapse rate within 500 m of the surface over (a) land, and (b) ocean. ............... 30 

Figure 6. Conditional probability of solid precipitation for near-surface wet-bulb temperature 

versus surface skin temperature over (a) land, and (b) ocean. .................................... 31 

Figure 7. (a) Conditional probability of solid precipitation for near-surface wet-bulb 

temperature versus surface pressure over land. (b) Same as (a), but only considering 

the data for observations within 28°N to 50°N and 60°W to 130°W (an approximate 

grid box for the contiguous United States). ................................................................ 32 

Figure 8. Land cover type plotted from AVHRR Global Land Cover Classification data.  Land 

cover values 1-12 and 14 correspond to: evergreen needleleaf forest, evergreen 

broadleaf forest, deciduous needleleaf forest, deciduous broadleaf forest, mixed 

forest, woodland, wooded grassland, closed shrubland, open shrubland, grassland, 

cropland, bare ground, and urban/built, respectively. ................................................. 33 

Figure 9. Wet-bulb temperature threshold versus land cover type, within 28°N to 50°N and 

60°W to 130°W (an approximate grid box for the contiguous United States).  Land 

cover values are the same as those in Figure 8. .......................................................... 34 



ix 
 

Figure 10. (a) Conditional probability of solid precipitation for near-surface wet-bulb 

temperature versus lapse rate versus surface skin temperature, over land. (b) 

Conditional probability of solid precipitation for near-surface wet-bulb temperature 

versus surface skin temperature, at a lapse rate of 5°C km-1. (c) Same as (b), but for 

near-surface wet-bulb temperature versus lapse rate, at a surface skin temperature of 

0°C. (d) Same as (b), but for lapse rate versus surface skin temperature, at a near-

surface wet-bulb temperature of 0°C. ......................................................................... 35 

Figure 11. Annual mean snowfall rate calculated using CloudSat radar reflectivity and Liu’s Ze-

S relation, for (a) a 2°C temperature threshold, and (b) a conditional probability of 

solid precipitation calculated by the parameterization scheme described in this paper.  

In (a), precipitation is classified as solid if the near-surface temperature is less than 

2°C.  In (b), meteorological variables are input to the parameterization scheme, which 

returns a conditional probability of solid precipitation.  Precipitation is classified as 

solid if the probability is greater than 50 percent. ...................................................... 36 

Figure 12. (a) Rosettes, (b) sectors, and (c) dendrites, taken from Liu 2004. .............................. 50 

Figure 13. Annual mean snowfall rate (mm d-1) calculated at Canada station locations, from 

monthly data of surface snowfall observations (Walsh 1996). ................................... 51 

Figure 14. Annual mean snowfall rate (mm d-1) calculated at United States weather stations, 

from the GHCN-D daily snowfall observation data set (Menne et al. 2012). ............ 52 

Figure 15. Aggregate snow particles, taken from Nowell et al. (2013). ...................................... 53 

Figure 16. Terminal velocities of seven types of particles from Locatelli and Hobbs (1974), are 

given by the black curves, with the thicker portion of the curves representing the valid 

range of maximum dimension.  The curves in blue, green, and red represent upper, 

middle, and lower terminal velocities, respectively, developed to compensate for 

overestimation and underestimation in the snowfall rate calculation. ........................ 54 

Figure 17. Ze-S relations for rosettes, sectors, dendrites, and aggregates calculated using three 

terminal velocities developed from Locatelli and Hobbs (1974), and the Sekhon and 

Srivastava (1970) PSD. ............................................................................................... 55 

Figure 18. Ze-S relations for rosettes, sectors, and dendrites, calculated using three terminal 

velocities from Locatelli and Hobbs (1974), and the Field et al. (2007) PSD. ........... 56 

Figure 19. Ze-S relations for rosettes, sectors, and dendrites, calculated using three terminal 

velocities from Locatelli and Hobbs (1974), and the Brandes et al. (2007) PSD. ...... 57 

file:///C:/Users/Beth/Documents/Research/Dissertation/Sims_dissertation.docx%23_Toc475691302


x 
 

Figure 20. Annual mean snowfall rate (mm d-1) calculated using Ze-S relations with the Sekhon 

and Srivastava (1970) PSD, for the following shapes and terminal velocities: (a) R,l, 

(b) R,m, (c) R,u, (d) A,l, (e) A,m, (f) A,u, (g) S,l, (h) S,m, (i) S,u, (j) D,l, (k) D,m, (l) 

D,u, where the shapes are designated as follows: Rosettes-R, Aggregates-A, Sectors-

S, Dendrites-D, and the velocities are designated as: lower-l, middle-m, upper-u.  The 

snow-rain parameterization scheme is used to classify the precipitation phase such 

that observations with conditional probability of solid precipitation greater than or 

equal to 0.5 are classified as solid precipitation. ........................................................ 66 

Figure 21. Same as Figure 20, but for the Field et al. PSD. ......................................................... 68 

Figure 22. Same as Figure 20, but for the Brandes et al. PSD. .................................................... 70 

Figure 23. Annual mean snowfall rate (mm d-1) calculated from CloudSat observations and using 

the Ze-S relations developed with the Sekhon and Srivastava PSD, compared with the 

annual mean snowfall rate calculated from surface observations of snowfall at United 

States weather stations (averaged to 1° latitude by 1° longitude grid boxes) and 

Canadian weather stations.  The particle shape and terminal velocity for (a)-(l) are the 

same as in Figure 20.  The bias, r, RMSE, and slope of the linear regression line are 

given for each figure. .................................................................................................. 72 

Figure 24. Same as Figure 23, but for the Field et al. PSD. ......................................................... 74 

Figure 25. Same as Figure 23, but for the Brandes et al. PSD. .................................................... 76 

Figure 26. (a) Bias, (b) r, (c) RMSE, and (d) slope of the linear regression line for the Ze-S 

relations that utilize the four particle shapes, three PSDs, and the middle terminal 

velocity. ....................................................................................................................... 78 

Figure 27. Annual mean snowfall rate (mm d-1) calculated using the Ze-S relation optimization 

scheme......................................................................................................................... 80 

Figure 28. Annual mean snowfall rate (mm d-1) calculated from CloudSat observations and using 

the optimized Ze-S relation, compared with the annual mean snowfall rate calculated 

from surface observations of snowfall at United States weather stations (averaged to 

1° latitude by 1° longitude grid boxes) and Canadian weather stations. .................... 81 

Figure 29. Global distribution of annual mean snowfall rate (mm d-1) calculated using the Ze-S 

relation optimization scheme. ..................................................................................... 82 

Figure 30. The particle shape that provides the most accurate estimate of surface snowfall rate.

..................................................................................................................................... 83 

file:///C:/Users/Beth/Documents/Research/Dissertation/Sims_dissertation.docx%23_Toc475691310
file:///C:/Users/Beth/Documents/Research/Dissertation/Sims_dissertation.docx%23_Toc475691310
file:///C:/Users/Beth/Documents/Research/Dissertation/Sims_dissertation.docx%23_Toc475691310
file:///C:/Users/Beth/Documents/Research/Dissertation/Sims_dissertation.docx%23_Toc475691310
file:///C:/Users/Beth/Documents/Research/Dissertation/Sims_dissertation.docx%23_Toc475691310
file:///C:/Users/Beth/Documents/Research/Dissertation/Sims_dissertation.docx%23_Toc475691310
file:///C:/Users/Beth/Documents/Research/Dissertation/Sims_dissertation.docx%23_Toc475691310
file:///C:/Users/Beth/Documents/Research/Dissertation/Sims_dissertation.docx%23_Toc475691310
file:///C:/Users/Beth/Documents/Research/Dissertation/Sims_dissertation.docx%23_Toc475691311
file:///C:/Users/Beth/Documents/Research/Dissertation/Sims_dissertation.docx%23_Toc475691312
file:///C:/Users/Beth/Documents/Research/Dissertation/Sims_dissertation.docx%23_Toc475691313
file:///C:/Users/Beth/Documents/Research/Dissertation/Sims_dissertation.docx%23_Toc475691313
file:///C:/Users/Beth/Documents/Research/Dissertation/Sims_dissertation.docx%23_Toc475691313
file:///C:/Users/Beth/Documents/Research/Dissertation/Sims_dissertation.docx%23_Toc475691313
file:///C:/Users/Beth/Documents/Research/Dissertation/Sims_dissertation.docx%23_Toc475691313
file:///C:/Users/Beth/Documents/Research/Dissertation/Sims_dissertation.docx%23_Toc475691313
file:///C:/Users/Beth/Documents/Research/Dissertation/Sims_dissertation.docx%23_Toc475691313
file:///C:/Users/Beth/Documents/Research/Dissertation/Sims_dissertation.docx%23_Toc475691314
file:///C:/Users/Beth/Documents/Research/Dissertation/Sims_dissertation.docx%23_Toc475691315
file:///C:/Users/Beth/Documents/Research/Dissertation/Sims_dissertation.docx%23_Toc475691316
file:///C:/Users/Beth/Documents/Research/Dissertation/Sims_dissertation.docx%23_Toc475691316
file:///C:/Users/Beth/Documents/Research/Dissertation/Sims_dissertation.docx%23_Toc475691316
file:///C:/Users/Beth/Documents/Research/Dissertation/Sims_dissertation.docx%23_Toc475691319
file:///C:/Users/Beth/Documents/Research/Dissertation/Sims_dissertation.docx%23_Toc475691319
file:///C:/Users/Beth/Documents/Research/Dissertation/Sims_dissertation.docx%23_Toc475691320
file:///C:/Users/Beth/Documents/Research/Dissertation/Sims_dissertation.docx%23_Toc475691320


xi 
 

Figure 31. Annual mean snowfall rate (mm d-1) calculated using the surface snowfall rate from 

the CloudSat 2C-SNOW-PROFILE data product....................................................... 88 

Figure 32. Annual mean snowfall rate (mm d-1) calculated using the CloudSat 2C-SNOW-

PROFILE snowfall rate, compared with the annual mean snowfall rate calculated 

from surface observations of snowfall at United States weather stations (averaged to 

1° latitude by 1° longitude grid boxes) and Canadian weather stations. .................... 89 

Figure 33. Difference in annual mean snowfall rates (mm d-1) calculated using the optimized Ze-

S relation and the CloudSat 2C-SNOW-PROFILE snowfall rate.  Blue indicates that 

the optimized Ze-S relation yields a lower annual mean snowfall rate than the 2C-

SNOW-PROFILE annual mean snowfall rate. ........................................................... 90 

 

  



xii 
 

LIST OF SYMBOLS 
 

The following is a short list of the common symbols used throughout this study. 

 

    D  Diameter 

    |K|2  Dielectric factor for water 

    m  Complex index of refraction 

    p  Pressure 

    Pr  Received power 

    R  Rainfall rate 

    r  Correlation coefficient 

    re  Effective radius 

    S  Snowfall rate 

    T  Temperature 

    Tw  Wet-bulb temperature 

    V  Effective volume 

    vt  Terminal velocity 

    w  Weighting factor 

    Ze  Effective radar reflectivity 

    Z  Radar reflectivity 

    η  Radar cross section per unit volume 

    λ  Wavelength 

σb  Backscattering cross section 

  



xiii 
 

LIST OF ABBREVIATIONS 
 

The following is a short list of the common abbreviations used throughout this study. 

 

  ADP  Automated data processing 

  AVHRR Advanced very high resolution radiometer 

  CPR  Cloud profiling radar 

  DDA  Discrete dipole approximation 

  DPR  Dual-frequency precipitation radar 

  GHCN-D Daily global historical climatology network 

  GPM  Global precipitation measurement 

  ICOADS International comprehensive ocean-atmosphere data set 

  IGRA  Integrated global radiosonde archive 

  LUT  Look-up table 

  MERRA Modern-era retrospective analysis for research and applications 

  NCEP  National centers for environmental prediction 

  PRBSNW Conditional probability of solid precipitation 

  PSD  Particle size distribution 

  RMSE  Root mean square error 

  WMO  World meteorological organization 

 

  



xiv 
 

ABSTRACT 

 In order to study the impact of climate change on the Earth’s hydrologic cycle, global 

information about snowfall is needed.  To achieve global measurements of snowfall over both 

land and ocean, satellites are necessary.  While satellites provide the best option for making 

measurements on a global scale, the task of estimating snowfall rate from these measurements is 

a complex problem.  Satellite-based radar, for example, measures effective radar reflectivity, Ze, 

which can be converted to snowfall rate, S, via a Ze-S relation.  Choosing the appropriate Ze-S 

relation to apply is a complicated problem, however, because quantities such as particle shape, 

size distribution, and terminal velocity are often unknown, and these quantities directly affect the 

Ze-S relation.  Additionally, it is important to correctly classify the phase of precipitation.  A 

misclassification can result in order-of-magnitude errors in the estimated precipitation rate. 

 Using global ground-based observations over multiple years, the influence of different 

geophysical parameters on precipitation phase is investigated, with the goal of obtaining an 

improved method for determining precipitation phase.  The parameters studied are near-surface 

air temperature, atmospheric moisture, low-level vertical temperature lapse rate, surface skin 

temperature, surface pressure, and land cover type.  To combine the effects of temperature and 

moisture, wet-bulb temperature, instead of air temperature, is used as a key parameter for 

separating solid and liquid precipitation.  Results show that in addition to wet-bulb temperature, 

vertical temperature lapse rate also affects the precipitation phase.  For example, at a near-

surface wet-bulb temperature of 0°C, a lapse rate of 6°C km-1 results in an 86 percent conditional 

probability of solid precipitation, while a lapse rate of -2°C km-1 results in a 45 percent 

probability.  For near-surface wet-bulb temperatures less than 0°C, skin temperature affects 

precipitation phase, although the effect appears to be minor.  Results also show that surface 
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pressure appears to influence precipitation phase in some cases, however, this dependence is not 

clear on a global scale.  Land cover type does not appear to affect precipitation phase.  Based on 

these findings, a parameterization scheme has been developed that accepts available 

meteorological data as input, and returns the conditional probability of solid precipitation. 

 Ze-S relations for various particle shapes, size distributions, and terminal velocities have 

been developed as part of this research.  These Ze-S relations have been applied to radar 

reflectivity data from the CloudSat Cloud Profiling Radar to calculate the annual mean snowfall 

rate.  The calculated snowfall rates are then compared to surface observations of snowfall.  An 

effort to determine which particle shape best represents the type of snow falling in various 

locations across the United States has been made.  An optimized Ze-S relation has been 

developed, which combines multiple Ze-S relations in order to minimize error when compared to 

the surface snowfall observations.  Additionally, the resulting surface snowfall rate is compared 

with the CloudSat standard product for snowfall rate. 
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation 

Climate change is an increasingly important area of study.  According to the 2013 

Intergovernmental Panel on Climate Change (IPCC), “warming of the climate system is 

unequivocal” (IPCC 2013).  Warming of the land and ocean surface, and the corresponding 

reduction in sea ice, have been observed in recent decades.  Due to the warming of the surface, it 

is possible to have an increase in extreme weather events, including extreme snow events.  As an 

example, the strong relationship between sea-surface temperature and total column water vapor 

(Trenberth et al. 2005) indicates that as sea-surface temperatures rise, and the amount of water 

vapor in the atmosphere increases correspondingly, extreme weather events become increasingly 

likely to occur due to the increase in available energy in the atmosphere.  In addition to extreme 

snow events, other extreme events such as flooding and tropical cyclone occurrence can greatly 

impact human lives and property.  For example, moderate rainfall over time is beneficial to plant 

growth, however, the same amount of rainfall in a short amount of time can cause flooding and 

runoff, ultimately resulting in drier soil and impeded plant growth (Trenberth 2011).  Snowfall 

and the corresponding melting of large snowpacks are sources of freshwater and hydroelectric 

power in many regions (Kim et al. 2008).  On the other hand, extreme snow events can disrupt 

transportation and eventually cause flooding once the snow melts.  Additionally, snow that 

remains on the surface for a long period of time can change the surface albedo and ultimately 

affect the Earth’s radiative balance (Wiscome and Warren 1980, Kuipers Munneke et al. 2008). 
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In order to study how climate change impacts the Earth's water and energy cycle, global 

measurements of both solid and liquid precipitation must be made.  Surface weather stations and 

ground-based radars are capable of providing precipitation measurements, however, their sparse 

coverage over land and lack of coverage over the ocean make them an insufficient means of 

measuring precipitation on a global scale.  The solution to this problem is the use of satellites for 

global precipitation measurement.  Satellites can observe a large area in a short amount of time, 

which is important for numerical weather prediction and global climate modeling (Seo and Liu 

2005).  

1.2 Precipitation Phase Classification 

Knowledge of precipitation phase is critical for radar retrievals, such as those made with 

the CloudSat Cloud Profiling Radar (CPR) (Stephens et al. 2002, Tanelli et al. 2008) and the 

Global Precipitation Measurement (GPM) Mission Dual-Frequency Precipitation Radar (DPR) 

(Iguchi et al. 2002, Smith et al. 2007).  However, the issue of how to distinguish between solid 

and liquid precipitation in satellite measurements has long been an area of uncertainty.  Satellite-

based radar, for example, can measure reflectivity from precipitation particles; however, there is 

no information within the measurement that tells whether the precipitation is solid or liquid.  In 

some cases, the bright band (the region of relatively high reflectivity within a radar profile 

associated with the melting of solid precipitation particles) can be used to determine precipitation 

phase at the surface (Austin and Bemis 1950; Ryzhkov and Zrnic 1998).  However, a bright band 

may not be visible if the melting layer is below 1.2 km above the surface due to surface 

contamination of the radar reflectivity (Liu 2008a).  To convert the measured reflectivity to 

precipitation rate at the surface, it is vital to know whether that precipitation is solid or liquid, 

because solid and liquid particles have very different scattering properties.  For example, one can 
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compare an effective reflectivity-snowfall rate (Ze-S) relation to an effective reflectivity-rainfall 

rate (Ze-R) relation for 94 GHz, the operating frequency of the CloudSat CPR.  Figure 1 shows 

the Ze-S relation calculated by Liu (2008a).  This relation was derived for three nonspherical 

snowflake shapes (rosettes, sectors, and dendrites) (Liu 2004), and size distributions from 

Braham (1990) and Lo and Passarelli (1982).  The figure also shows a Ze-R relation calculated 

for spherical liquid particles, using the Marshall-Palmer size distribution (Marshall and Palmer 

1948).  The figure shows that, for an effective reflectivity of 1 mm6 m-3, the error in precipitation 

rate is approximately one order of magnitude. 

1.3 Surface Snowfall Rate 

 Numerous observation methods exist for determining the amount of snow falling at the 

surface.  Current observation devices include surface snowfall gauges, radiometers, and radars, 

and each has its own advantages and disadvantages.  An advantage of snowfall gauges is that 

they allow for the surface snowfall rate to be calculated directly; the snow accumulated in the 

gauge is measured and divided by the amount of time the snow fell.  However, this method only 

provides an average snowfall rate over the time between measurements, and if the snow is not 

measured immediately after the snow stops falling, the snowfall rate calculation may not be 

accurate.  Additionally, snow gauges may not provide accurate measurements in the presence of 

wind gusts, as light snowfall may be blown away from the gauge.  Furthermore, snow gauges are 

only located over land, and in order to understand the global water cycle, measurements over the 

ocean must be made as well.  Satellite-based radiometers and radars provide an opportunity to 

obtain precipitation measurements on a global scale.  Radiometers, however, have an inherent 

limitation in their ability to measure surface snowfall rate.  While radiometers at frequencies of 

approximately 30 GHz and higher can be used to detect the scattering of ice particles (Mugnai et 
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al. 2005), it is difficult to calculate snowfall rate from brightness temperature over land due to 

the greatly varying radiation emission of the land itself.  Additionally, radiometers are not able to 

make vertical profile measurements of precipitation.  Radars, on the other hand, provide a 

vertical profile of reflectivity, allowing for reflectivity measurements to be made near the surface 

by disregarding the few bins near the surface which are contaminated by ground clutter.  The 

reflectivity measurements can then be used to calculate surface snowfall rate via a Ze-S relation.  

A Ze-S relation can be developed with knowledge of the physical and radiative-scattering 

properties of the snow particles, and this is discussed in detail in Chapter 3.  Satellite-based 

precipitation radars such as the GPM DPR, operating at Ka- and Ku-band frequencies, and the 

W-band CloudSat CPR can provide these reflectivity measurements.  The GPM DPR was 

launched in February 2014 and therefore currently has a limited amount of data available; 

additionally, its minimum detectable reflectivity is 12 dBZ (Hou et al. 2014), which is only 

sensitive enough to measure heavy snowfall.  The CloudSat CPR operates at 94 GHz, and this 

higher frequency makes it more sensitive to light snowfall, as well as more sensitive to particle 

shape.  The minimum detectable reflectivity for the CloudSat CPR is -30 dBZ (Stephens et al. 

2008), well below that of the GPM DPR.  The CloudSat CPR also has data available from June 

2006.  For these reasons, CloudSat CPR reflectivity data are used in this research. 

1.4 Objectives and Paper Organization 

 The overall objective for this research is to develop an improved method for estimating 

surface snowfall rate.  This objective is separated into two main parts: development of an 

improved technique for determining surface precipitation phase, and development of a global 

snowfall distribution using radar reflectivity.  The first goal is discussed in Chapter 2, which 

includes an examination of the background and previous work relating to classification of 
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precipitation phase, as well as the data and methodology used in this part of the research.  The 

geophysical parameters used to determine precipitation phase are discussed in detail, and the 

specifics of a parameterization program that can be used to calculate the conditional probability 

of solid precipitation are given.  The second goal begins with the development of Ze-S relations 

for various particle shapes, size distributions, and terminal velocities, and this is discussed in 

Chapter 3.  This chapter includes background information as well as a discussion of the data and 

methodology used.  In Chapter 4, the development of a global snowfall distribution is discussed.  

The snowfall distributions are first developed using the individual Ze-S relations, and then by 

using an optimized Ze-S relation, which combines the Ze-S relations with the application of 

different weighting factors to each relation in order to minimize the error in calculated snowfall 

rate when compared to surface snowfall observations.  A discussion regarding which particle 

shape provides the best model for different regions of the United States is also included in this 

chapter.  A comparison of the snowfall rate calculated in this study with the snowfall rate 

calculated from the CloudSat standard product for snowfall is given in Chapter 5.  The results of 

this study are summarized in Chapter 6, and opportunities for future work are discussed.  
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Figure 1.  Precipitation rate versus effective reflectivity for 94 GHz.  The Ze-S relation is calculated by 

Liu (2008a) for three nonspherical snowflake shapes.  The Ze-R relation is calculated for spherical liquid 

particles, using the Marshall-Palmer size distribution. 
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CHAPTER 2 

DEVELOPMENT OF A NEW METHOD 

FOR CLASSIFYING PRECIPITATION PHASE 

2.1 Background 

In order to accurately estimate surface precipitation rate, it is necessary to correctly 

classify precipitation phase, because solid and liquid precipitation particles have different 

scattering properties.  Previous researchers have analyzed surface weather observations of 

temperature and precipitation type to determine the temperature threshold for separating solid 

and liquid precipitation at the surface.  Some of these investigators consider observations from 

numerous weather stations and combine them to determine a single temperature threshold (Auer 

1974; Dai 2008; Liu 2008a), while others calculate thresholds for each location studied (U.S. 

Army Corp of Engineers 1956; Kienzle 2008; Matsuo et al. 1981; Ye et al. 2013).  Temperature 

thresholds ranged from -1.0°C to 2.5°C.  Some researchers examined the relation between 

precipitation phase and not only temperature but also relative humidity (Matsuo et al. 1981), dew 

point temperature (Ye et al. 2013), and surface pressure (Dai 2008). 

  The U.S. Army Corps of Engineers (1956) analyzed approximately 2400 occurrences of 

precipitation at a single location with elevation 2200 m, between October and April, for 1946 

through 1951.  They found a temperature threshold of approximately 2°C.  Auer (1974) studied 

approximately 1000 surface weather observations and found the temperature threshold to be 

2.5°C, with snow occurring nearly always at temperatures less than approximately 1°C, and 

snow never occurring at temperatures greater than approximately 6°C.  Matsuo et al. (1981) 

analyzed surface weather observations from three weather stations in Japan.  They studied the 
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relationship between relative humidity and precipitation type, and developed numerical relations 

between air temperature and critical humidity; that is, for a given temperature, they found the 

maximum relative humidity for which snow can occur, and the minimum relative humidity for 

which rain can occur.  Dai (2008) analyzed 3-hourly synoptic weather reports from land stations 

and ships, for the period of January 1977 to February 2007.  He found a temperature threshold of 

1.2°C over land and 1.9°C over the ocean.  Dai also observed that for very high elevations 

(surface pressure less than 750 hPa), the temperature threshold exhibits a pressure dependence, 

and suggested the reason for this is because snowflakes fall faster in lower pressure air and do 

not have sufficient time to melt before reaching the surface.  Liu (2008a) analyzed 3-hourly 

synoptic weather reports from land stations for March 1997 to February 2007, and shipboard 

weather reports for January 1995 to May 2007.  He found the temperature threshold, for both 

land and ocean, is approximately 2°C.  Kienzle (2008) studied daily weather observations from 

15 stations across southwestern Alberta, Canada, and developed a method for calculating the 

proportion of precipitation falling as rain, ranging from 0 to 1.  The method uses a mean daily 

temperature threshold and temperature range for which both solid and liquid precipitation occurs, 

with these variables having specific values for each of the 15 weather stations, calculated from 

the weather observations.  The near-surface mean daily air temperature is then input into the 

equation to calculate the proportion of precipitation falling as rain.  Ye et al. (2013) analyzed 

daily synoptic weather observations for 547 stations in northern Eurasia, for the time period of 

1966 to 2000.  They found a temperature threshold of -1.0°C to 2.5°C, and that there exists a 

geographical and seasonal dependence as well as a dependence on environmental factors such as 

relative humidity and surface air pressure.  They also calculated a dew point temperature 

threshold of -1.5°C to 1.5°C, and found that this threshold does not depend on environmental 
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factors and season as much as temperature threshold does.  They recommended using a 

combination of three temperature thresholds and three dew point temperature thresholds, for 

each station, to separate solid and liquid precipitation. 

 While the above studies focused only on specific locations or limited geophysical 

variables, the objectives of this study are to investigate the influence of various parameters on the 

precipitation phase transition using observations over a global scale, and then to develop a 

parameterization scheme that can be used for precipitation remote sensing purposes.  This study 

applies directly to radar measurements of surface precipitation, but the parameterization scheme 

can also be applied to other types of retrievals to ultimately determine the phase of surface 

precipitation.  Global averages of wet-bulb temperature threshold over land and ocean, as well as 

wet-bulb temperature thresholds for more than 5400 land-based weather stations and more than 

3300 1° latitude by 1° longitude grid boxes over the ocean, are calculated.  The influencing 

parameters investigated are near-surface air temperature, atmospheric moisture, low-level 

vertical temperature lapse rate, surface skin temperature, surface pressure, and land cover type.  

These parameters are chosen since they are either reported to have an impact on the precipitation 

phase transition in the literature, or discovered to have a significant impact in this study.  Wet-

bulb temperature is calculated to account for atmospheric moisture, and this parameter is studied 

because wet-bulb temperature is closer to the actual temperature of a precipitation particle than 

temperature itself.  Lapse rate is studied because the temperature and phase of precipitation 

particles above the surface has direct influence on the phase at the surface.  If, for example, a 

temperature inversion exists in the lowest 500 m, surface precipitation at a temperature close to 

but below the threshold could be classified as snow (if lapse rate is not considered), but may 

actually be rain due to the higher temperature aloft.  Surface pressure is considered in this study 
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because of its relation to particle fall speed; specifically, particles fall faster in lower pressure 

environments, and may not have time to change phase before reaching the surface.  Surface skin 

temperature and land cover type are investigated because their geographical patterns are, for 

some regions, similar to the pattern of wet-bulb temperature threshold.  Results show, however, 

that these parameters have a minor (in the case of skin temperature) or no (in the case of land 

cover type) relation to precipitation phase.  The remainder of this chapter is organized as follows: 

Section 2.2 describes the data and methodology used in this portion of the study.  Section 2.3 

investigates how each of the geophysical parameters affects precipitation phase.  Section 2.4 

describes a parameterization scheme to determine the conditional probability of solid 

precipitation. 

2.2 Data and Methodology 

 Due to evaporation, a falling water drop has its temperature close to the wet-bulb 

temperature, rather than the ambient air temperature. The first study performed in this research 

determines whether temperature or wet-bulb temperature should be used to separate solid and 

liquid precipitation, and what value, or threshold, should be used for the separation.  Wet-bulb 

temperature incorporates both temperature and atmospheric moisture, and allows for determining 

whether the latter affects precipitation phase.  Both land and ocean data are used to calculate the 

temperature threshold and wet-bulb temperature threshold, and these thresholds are calculated 

separately for land and ocean.  The land data are from the National Centers for Environmental 

Prediction (NCEP) Automated Data Processing (ADP) Operational Global Surface Observations, 

from April 1997 through February 2007, at more than 9700 global stations (NCEP 1980); the 

ocean data are from the International Comprehensive Ocean-Atmosphere Data Set (ICOADS), 

from January 1950 through May 2007 (Woodruff et al. 2005).  From these data sets, the 
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variables used in this research are latitude, longitude, near-surface air temperature, near-surface 

dew point temperature, surface pressure, and present-weather code.  To determine the 

temperature threshold for separating solid and liquid precipitation, the conditional probability of 

solid precipitation is calculated, which is the probability of solid precipitation given there is solid 

or liquid precipitation, for numerous temperature ranges near the freezing point.  The conditional 

probability of solid precipitation is calculated as the total number of solid precipitation events 

divided by the total number of precipitation events (solid and liquid).  The precipitation events 

are classified as snow or rain using the World Meteorological Organization (WMO) present 

weather codes given in Table 1, similar to what was done by Dai (2008) and Liu (2008a).  

Observations with present weather codes 60 through 99 are classified as rain, except for those 

with codes 70 through 79, 85, and 86, which are classified as snow.  This method of 

classification ensures that only solid precipitation observations are classified as snow; rain and 

mixed phase precipitation are classified together.  The calculation for conditional probability of 

solid precipitation is made separately for 20 surface air temperature groupings, that is, for all 

observations that fall within -10°C to -9°C, -9°C to -8°C, ..., 9°C to 10°C.  The temperature 

threshold is then calculated by finding the temperature at which the conditional probability of 

solid precipitation equals 50 percent.  The temperature threshold can then be used to separate 

solid and liquid precipitation.  Precipitation occurring at surface air temperatures lower than the 

threshold is likely solid, while precipitation occurring at temperatures higher than the threshold is 

likely liquid.  The same procedure is employed to determine wet-bulb temperature threshold.   

 Results, explained in Section 2.3, show that wet-bulb temperature, rather than 

temperature, should be used to determine precipitation phase.  Therefore, only wet-bulb 

temperature, rather than temperature, is considered when analyzing the rest of the geophysical 
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parameters (low-level vertical temperature lapse rate, surface skin temperature, surface pressure, 

and land cover type). 

 To determine if there is any geographical variation in wet-bulb temperature threshold, 

this threshold is calculated separately for each land-based weather station, and is calculated for 

each 1° latitude by 1° longitude grid box over the ocean. To determine if low-level vertical lapse 

rate affects the wet-bulb temperature threshold, the lapse rate over land is calculated using the 

Integrated Global Radiosonde Archive (IGRA) data set for April 1997 through February 2007 

(Durre et al. 2006).  The IGRA data set contains radiosonde and balloon observations for over 

1500 locations worldwide.  The variables used from this data set include latitude, longitude, 

pressure, and temperature.  To calculate lapse rate, an assumption of atmospheric hydrostatic 

balance is made to convert pressure levels to height.  The low-level lapse rate is calculated 

between the surface and a height of 500 meters.  Land surface observations from the NCEP ADP 

Operational Global Surface Observations data set are then matched with radiosonde/balloon 

observations from the IGRA data set that occur within 3 hours and 0.25° latitude and 0.25° 

longitude of the surface observations.  There are more than 720,000 occurrences of land surface 

observations matched with corresponding radiosonde/balloon observations.  Each observation is 

then classified as having either solid or liquid precipitation.  The observations are then sorted 

into bins by lapse rate and near-surface wet-bulb temperature.  The bin size for lapse rate over 

land is 2°C km-1, ranging from -7.5°C km-1 to 12.5°C km-1; the bin size for near-surface wet-bulb 

temperature is 1°C, ranging from -7.5°C to 7.5°C.  This results in 10 bins for lapse rate and 15 

bins for near-surface wet-bulb temperature.  The conditional probability of solid precipitation is 

then calculated for each bin.  Over the ocean, the low-level vertical lapse rate is calculated using 

the MAI6NPANA product of the Modern-Era Retrospective Analysis for Research and 
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Applications (MERRA) reanalysis data from January 1979 through May 2007 (Rienecker et al. 

2011).  Reanalysis data is used in cases where observational data is not available.  It should be 

noted that the use of reanalysis data results in inherent limitations when it is compared with 

observational data, particularly due to the spatial and temporal resolutions of the modeled fields.  

The MAI6NPANA product includes 6-hourly air temperature at 42 pressure levels at a resolution 

of 1/2° latitude by 2/3° longitude.  The air temperatures at pressure levels 1000 hPa and 950 hPa, 

along with the assumption of hydrostatic balance, are used to compute the lapse rate.  Near-

surface wet-bulb temperatures calculated from shipboard observations are then matched with 

corresponding lapse rates for the same time and location, as is done for the land observations.  

The wet-bulb temperature and lapse rate data over the ocean are then sorted into bins with the 

same ranges and sizes as those for land, and the conditional probability of solid precipitation is 

calculated for each bin.  These probabilities are plotted to show the influence of lapse rate on 

precipitation phase, and are also used in the parameterization discussed in Section 2.4. 

 Surface pressure data along with surface weather reports are also examined to determine 

the effect of surface pressure on wet-bulb temperature threshold over land.  Each observation of 

wet-bulb temperature and corresponding surface pressure is separated into wet-bulb temperature 

bins of size 1°C, ranging from -7.5°C to 7.5°C, and surface pressure bins of size 100 hPa, 

ranging from 550 hPa to 1050 hPa.  The pressure data is from the same NCEP ADP Operational 

Global Surface Observations data set used for calculating the wet-bulb temperature threshold.  

The conditional probability of solid precipitation is then calculated for each bin. 

To determine if surface skin temperature affects the wet-bulb temperature threshold, the 

MERRA reanalysis of surface skin temperature from the MAT1NXSLV product, at the same 

time and location as each land and shipboard weather observation, is compared to the near-
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surface wet-bulb temperature.  The MAT1NXSLV product includes time-averaged hourly 

surface skin temperature at a resolution of 1/2° latitude by 2/3° longitude.  The observations are 

then sorted into bins by skin temperature and wet-bulb temperature.  The bin size for wet-bulb 

temperature is 1°C, ranging from -7.5°C to 7.5°C; the bin size for skin temperature is 10°C, 

ranging from -18.15°C to 21.85°C over land, and from -8.15°C to 21.85°C over the ocean. 

The relationship between land cover type and wet-bulb temperature threshold is also 

investigated.  The land cover data (Hansen et al. 2000) are from the Global Land Cover Facility 

at the University of Maryland, available at http://glcf.umd.edu/data/landcover/.  The land cover 

type is plotted against wet-bulb temperature threshold for weather stations in the United States to 

determine if the wet-bulb temperature threshold depends on land cover type.  Table  summarizes 

the data used in this portion of the study. 

2.3 Dependence of Threshold on Geophysical Parameters 

 Temperature is commonly used to separate solid and liquid precipitation, however, other 

atmospheric variables can influence precipitation phase.  In this section, the relationships 

between precipitation phase and temperature, atmospheric moisture, low-level vertical lapse rate, 

surface skin temperature, surface pressure, and land cover type are investigated. 

2.3.1 Temperature and Moisture 

To determine a temperature threshold for separating solid and liquid precipitation, the 

conditional probability of solid precipitation for temperatures near the freezing point is 

calculated and shown in Figure 2a.  For land, the temperature threshold (50 percent conditional 

probability) is 1.6°C, and for the ocean is 1.9°C.  Any precipitation occurring at surface air 

temperatures below the temperature threshold is likely solid, while any precipitation occurring at 
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surface air temperatures above this value is likely liquid.  The higher temperature threshold over 

the ocean may be due to the fact that the average vertical temperature lapse rate in the lowest 1 

km, for instances in which the near-surface temperature is within -2°C to 4°C over land (-3°C to 

6°C over the ocean), is greater over the ocean (6.6°C km-1) than over land (5.1°C km-1) (Dai 

2008).  This greater lapse rate over the ocean indicates a lower freezing level for a given near-

surface temperature, and therefore solid precipitation particles over the ocean have less time to 

transition to liquid phase before reaching the surface, resulting in a higher temperature threshold 

over the ocean. 

 To determine if atmospheric moisture affects precipitation phase, and ultimately to 

determine whether temperature or wet-bulb temperature should be used to separate solid and 

liquid precipitation, the conditional probability of solid precipitation versus near-surface wet-

bulb temperature is calculated.  Figure 2b shows the wet-bulb temperature threshold is 1.0°C 

over land, and 1.1°C over the ocean.  To demonstrate that there is a smaller range of uncertainty 

in precipitation phase when wet-bulb temperature is used, the difference in temperature at 10 

percent and 90 percent conditional probability of solid precipitation is calculated, as well as the 

difference in wet-bulb temperature at these probabilities.  Over land, the uncertainty range for 

temperature is 3.3°C, while for wet-bulb temperature it is 2.5°C.  Over the ocean, the uncertainty 

range for temperature is 5.0°C, while for wet-bulb temperature it is 3.6°C.  Additionally, wet-

bulb temperature is closer to the actual temperature of falling precipitation particles than is 

temperature.  For these two reasons, wet-bulb temperature, rather than temperature, should be 

used to separate solid and liquid precipitation. 

 Next, the global variation of wet-bulb temperature threshold is investigated.  Figure 3a 

shows the wet-bulb temperature threshold over land, for each weather station.  For each point 
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plotted, there are at least 150 snow or rain observations at that weather station that fall within a 

wet-bulb temperature of -10°C to 10°C.  It is seen from this figure that the wet-bulb temperature 

threshold indeed varies for different locations.  Although the global average for wet-bulb 

temperature threshold over land is 1.0°C as shown in Figure 2b, Figure 3a shows that the wet-

bulb temperature threshold can be significantly higher or lower depending on the location.  

Figure 3b shows the same results as Figure 3a, but focuses on the United States.  This figure 

shows that for the regions near the Rocky Mountains and the Appalachian Mountains, the wet-

bulb temperature threshold is higher than the global average, while for the Southeastern United 

States, the wet-bulb temperature threshold is lower than average.  The above average wet-bulb 

temperature threshold in the mountainous regions of the United States indicates that it is possible 

to have solid precipitation even when the near-surface wet-bulb temperature is relatively high, 

greater than 3°C in some areas.  A contributing factor to this relatively high wet-bulb 

temperature threshold is the relatively low surface pressure in this region.  This is discussed in 

more detail in Section 2.3.4.  In the Southeastern United States, in order to have solid 

precipitation, the near-surface wet-bulb temperature must be relatively low.  Figure 3c shows the 

wet-bulb temperature threshold over the ocean, calculated from the ICOADS data set.  The data 

are separated into 1° latitude by 1° longitude grid boxes.  For each point plotted, there are at least 

30 snow or rain observations within that grid box that fall within a near-surface wet-bulb 

temperature of -10°C to 10°C.  This figure shows that the wet-bulb temperature threshold 

appears to be lower in the regions of warm-water currents, specifically the Gulf Stream in the 

Atlantic Ocean and the Kuroshio Current in the Pacific Ocean.  The influence of surface skin 

temperature on precipitation phase is discussed in Section 2.3.3. 
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2.3.2 Low-Level Vertical Lapse Rate 

 The reason that precipitation can still be solid even when the surface air temperature is 

above 0C is because the melting of snowflakes takes time.  Before it is completely melted to a 

liquid drop, a snowflake may have fallen for a considerable distance.  However, if there is a 

temperature inversion in the near-surface layer, melting has already started well above the 

surface, and the precipitation may well be liquid even though the near-surface wet-bulb 

temperature is colder than the threshold derived earlier.  Therefore, it is expected that the vertical 

distribution of temperature in the low atmosphere can have measurable influence on the rain-

snow separation threshold.  Figure 4 illustrates how often a low-level temperature inversion 

exists in the region of North America.  The figure shows the percent of times the lapse rate, in 

approximately the lowest 500 m of the atmosphere, is negative, as calculated using the MERRA 

reanalysis of the temperature profile from the MAI6NPANA data product (Rienecker et al. 

2011).  Four times daily data from 2006 through 2011 are used.  The figure shows that low-level 

temperature inversions are more common in higher latitudes. 

In this subsection, the relationship between the vertical lapse rate from the surface to a 

height of 500 m and the wet-bulb temperature threshold is investigated.  Figure 5a (Figure 5b) 

shows the conditional probability of solid precipitation over land (ocean), for near-surface wet-

bulb temperature versus lapse rate between the surface and a height of 500 m.  The wet-bulb 

temperature is calculated from weather station observations over land, and shipboard 

observations over the ocean, and the lapse rate is calculated from radiosonde and balloon 

observations over land, and from reanalysis data over the ocean, all described in detail in Section 

2.2.  It should be noted that the differences in Figure 5a and Figure 5b could be due to either the 

different surface types or the different data sets; however, rather than using reanalysis data for 
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both surface types, observations are used over land as they provide for a more accurate 

determination of the relationship between lapse rate and surface wet-bulb temperature.  The lapse 

rate is calculated using air temperature data in the lowest 500 m above ground, and a negative 

lapse rate indicates temperature increasing with height.  Both Figure 5a and Figure 5b show that 

there exists a lapse-rate dependence for precipitation phase.  The figures show that when there is 

a temperature inversion, a lower near-surface wet-bulb temperature is required in order to have 

solid precipitation.  Therefore, the vertical lapse rate should be taken into account when 

determining the wet-bulb temperature threshold, and ultimately the precipitation phase. 

2.3.3 Surface Skin Temperature 

 Figure 3b, which shows the wet-bulb temperature threshold for the United States, shows 

a relatively low threshold in the Southeastern United States.  It was suspected that the relatively 

warm surface skin temperature in the Southeastern United States could be causing the lower wet-

bulb temperature threshold in this region, and that the relatively high sea surface temperature of 

the oceanic warm water currents could cause the lower threshold in those regions.  To determine 

if this is the case, the conditional probability of solid precipitation is calculated for each near-

surface wet-bulb temperature and skin temperature bin as described in Section 2.2, and is shown 

in Figure 6a (land) and Figure 6b (ocean).  Both figures show that, for surface wet-bulb 

temperatures greater than 0°C, skin temperature does not affect precipitation phase.  However, 

for surface wet-bulb temperatures less than 0°C, skin temperature does affect precipitation phase, 

although the effect appears to be minor. 
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2.3.4 Surface Pressure 

 Many of the Midwestern, Mid-Atlantic, and New England States have the same average 

surface pressure as the Southeastern States, but only the southeastern region exhibits the lower-

than-average wet-bulb temperature threshold.  Therefore, it is unlikely that surface pressure is 

the cause of this low wet-bulb temperature threshold for this region.  To determine if surface 

pressure affects the threshold, the conditional probability of solid precipitation is calculated for 

each near-surface wet-bulb temperature and surface pressure bin.  Figure 7a and Figure 7b show 

the conditional probability of solid precipitation for near-surface wet-bulb temperature versus 

surface pressure.  For Figure 7a, global data is used, while for Figure 7b, only data for the 

approximate area around the United States, specifically from 28°N to 50°N latitude, and 60°W to 

130°W longitude, is considered.  In Figure 7b, there appears to exist a precipitation phase 

dependence on surface pressure, when only the data from the United States region is considered.  

Precipitation fall speed increases with decreasing air pressure, at a rate of approximately p-0.4 

(Del Genio et al. 2005).  This translates to a nine percent increase in fall speed when the air 

pressure is 800 hPa compared to 1000 hPa.  Due to this greater fall speed, solid precipitation has 

less time to change to the liquid phase before reaching the surface in regions with lower surface 

pressure.  This explains in part why the wet-bulb temperature threshold is higher in mountainous 

regions.  Figure 7a, however, illustrates that this dependence is not clear on a global scale, and 

no plausible explanation for it can be provided.  For this reason, the influence of surface pressure 

is not implemented into the parameterization scheme to be described in Section 2.4. 

2.3.5 Land Cover Type 

 In continuing to investigate the cause of the relatively low wet-bulb temperature 

threshold over the Southeastern United States, the variation of land cover type over the United 
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States is considered.  Figure 8 shows land cover type plotted from AVHRR (Advanced Very 

High Resolution Radiometer) Global Land Cover Classification data.  To determine if land cover 

type affects the wet-bulb temperature threshold, these two variables are plotted against each 

other in Figure 9.  The figure shows there is no clear correlation between land cover type and 

wet-bulb temperature threshold. 

2.4 Parameterization 

 Based on analysis results described in the previous section, a parameterization scheme 

has been developed for determining whether precipitation is solid or liquid.  The geophysical 

parameters included in the parameterization are near-surface temperature, relative humidity, low-

level (0-500 m) vertical lapse rate, and surface skin temperature.  When all of these parameters 

are available, a more accurate conditional probability of solid precipitation can be calculated.  

Surface pressure (except to calculate wet-bulb temperature) and land cover type are not included 

in the parameterization as their impact on precipitation phase is not clear. 

2.4.1 Program Description 

 Because of the complicated relationship between the solid precipitation probability and 

geophysical variables, the parameterization was developed using look-up tables (LUTs) instead 

of analytical functions.  Inputs to the parameterization scheme can include 2 m temperature, 

relative humidity and surface pressure to calculate wet-bulb temperature, the vertical lapse rate 

between the surface and 500 m, surface skin temperature, and surface type (land or ocean).  At a 

minimum, the 2 m temperature and surface type must be given, but a higher number of input 

variables results in a better estimate.  The conditional probability of solid precipitation is 

calculated using one of ten LUTs, with five LUTs for land and five for ocean; each LUT 
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corresponds to a certain set of input variables.  Table  summarizes each LUT, giving the input 

parameters and their valid ranges.  Figure 10a illustrates one of the LUTs for land, with the 

different colors indicating the conditional probability of solid precipitation for possible values of 

near-surface wet-bulb temperature, lapse rate, and skin temperature.  Figure 10b, Figure 10c, and 

Figure 10d show slices of Figure 10a, for a lapse rate of 5°C km-1, skin temperature of 0°C, and 

near-surface wet-bulb temperature of 0°C, respectively. 

2.4.2 Application of Parameterization Scheme 

To demonstrate an application of the parameterization scheme, the annual mean snowfall 

rate over North America is calculated using two methods.  The first, shown in Figure 11a, uses a 

temperature threshold of 2°C (which is used in Liu 2008a) to separate solid and liquid 

precipitation, while the second, shown in Figure 11b, uses the parameterization scheme to 

calculate the conditional probability of solid precipitation, and if that probability is greater than 

50 percent, the precipitation is classified as solid.  The annual mean snowfall rates in both figures 

are calculated using Liu’s Ze-S relation, 𝑍𝑒 = 11.5𝑆1.25 (Liu 2008a), applied to reflectivity 

measurements made with the CloudSat CPR, for June 2006 through April 2011, obtained from 

the CloudSat 2B-GEOPROF data product (Mace 2007).  The input variables to the 

parameterization scheme are taken from the CloudSat ECMWF-AUX product (Partain 2007), 

which includes meteorological variables from model analyses, interpolated to the CPR bins.  

Figure 11 demonstrates that utilizing the parameterization scheme to determine precipitation 

phase results in a similar overall pattern of snowfall rate compared to that when considering only 

temperature as the threshold for separating solid and liquid precipitation, but also shows that in 

some areas (for example, the area between 60°N and 80°N, and 150°W and 180°W) the 

calculated snowfall rate differs substantially.  Although this calculated snowfall rate may not 
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perfectly convert radar reflectivity to snowfall rate due to the uncertainties in the Ze-S relation, 

such as particle shape, size distribution, and fall speed, this parameterization scheme allows for a 

more accurate determination of precipitation phase, due to the fact that it incorporates not only 

temperature, but also additional meteorological variables that have been shown to have an impact 

on precipitation phase. 
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Table 1.  WMO present weather codes. 

Code Description  

60 Rain, not freezing, intermittent 
Slight at time of observation 

61 Rain, not freezing, continuous 

62 Rain, not freezing, intermittent 
Moderate at time of observation 

63 Rain, not freezing, continuous 

64 Rain, not freezing, intermittent 
Heavy at time of observation 

65 Rain, not freezing, continuous 

66 Rain, freezing, slight  

67 Rain, freezing, moderate or heavy  

68 Rain or drizzle and snow, slight  

69 Rain or drizzle and snow, moderate or heavy  

70 Intermittent fall of snowflakes 
Slight at time of observation 

71 Continuous fall of snowflakes 

72 Intermittent fall of snowflakes 
Moderate at time of observation 

73 Continuous fall of snowflakes 

74 Intermittent fall of snowflakes 
Heavy at time of observation 

75 Continuous fall of snowflakes 

76 Diamond dust (with or without fog)  

77 Snow grains (with or without fog)  

78 
Isolated star-like snow crystals (with or 

without fog) 
 

79 Ice pellets  

80 Rain shower(s), slight  

81 Rain shower(s), moderate or heavy  

82 Rain shower(s), violent  

83 Shower(s) of rain and snow mixed, slight  

84 
Shower(s) of rain and snow mixed, moderate 

or heavy 
 

85 Snow shower(s), slight  

86 Snow shower(s), moderate or heavy  

87 Shower(s) or snow pellets or small hail, with 

or without rain or rain and snow mixed 

Slight 

88 Moderate or heavy 

89 Shower(s) or hail, with or without rain or 

rain and snow mixed, not associated with 

thunder 

Slight 

90 Moderate or heavy 

91 Slight rain at time of observation 

Thunderstorm during the preceding 

hour but not at time of observation 

92 
Moderate or heavy rain at time of 

observation 

93 
Slight snow, or rain and snow mixed or hail 

at time of observation 

94 
Moderate or heavy snow, or rain and snow 

mixed or hail at time of observation 

  



24 
 

Table 1 continued. 

Code Description  

95 

Thunderstorm, slight or moderate, without 

hail but with rain and/or snow at time of 

observation 

Thunderstorm at time of observation 

96 
Thunderstorm, slight or moderate, with hail 

at time of observation 

97 
Thunderstorm, heavy, without hail but with 

rain and/or snow at time of observation 

98 
Thunderstorm combined with duststorm or 

sandstorm at time of observation 

99 
Thunderstorm, heavy, with hail at time of 

observation 
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Table 2.  Summary of the data sets used in this portion of the study. 

Data Set Description Grid Size Citation Website 

NCEP ADP 
Global land 

observations 
N/A NCEP 1980 

http://rda.ucar.edu/data

sets/ds464.0/ 

ICOADS 
Global ocean 

observations 
N/A 

Woodruff et al. 

2005 

http://rda.ucar.edu/data

sets/ds540.0/ 

IGRA 

Radiosonde/ 

balloon 

observations 

N/A Durre et al. 2006 

http://www.ncdc.noaa.g

ov/data-

access/weather-

balloon/integrated-

global-radiosonde-

archive 

MERRA 

(MAI6NPANA) 

Reanalysis of 

temperature 

profile 

1/2° lat by 

2/3° lon 

Rienecker et al. 

2011 

http://disc.sci.gsfc.nasa.

gov/daac-

bin/DataHoldings.pl?L

OOKUPID_List=MAI6

NPANA 

MERRA 

(MAT1NXSLV) 

Reanalysis of 

surface skin 

temperature 

1/2° lat by 

2/3° lon 

Rienecker et al. 

2011 

http://disc.sci.gsfc.nasa.

gov/daac-

bin/DataHoldings.pl?L

OOKUPID_List=MAT

1NXSLV 

UMD Global 

Land Cover 

Classification 

Land cover 

classification 

1 km by 1 

km 

Hansen et al. 

2000 

http://glcf.umd.edu/dat

a/landcover/ 
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Table 3.  LUT properties for the parameterization scheme. 

LUT 

Geophysical 

Parameter(s) 

Minimum 

Valid Value 

(Land) 

Maximum 

Valid Value 

(Land) 

Minimum 

Valid Value 

(Ocean) 

Maximum 

Valid Value 

(Ocean) 

Units 

Temperature -9.5 9.5 -9.5 9.5 °C 

Wet-Bulb 

Temperature 
-9.5 9.5 -9.5 9.5 °C 

Wet-Bulb 

Temperature 

 

Surface Skin 

Temperature 

-7 

 

-13.15 

7 

 

16.85 

-7 

 

-3.15 

7 

 

16.85 

°C 

 

°C 

Wet-Bulb 

Temperature 

 

Lapse Rate 

-7 

 

-6.5 

7 

 

11.5 

-7 

 

-6.5 

7 

 

11.5 

°C 

 

°C km-1 

Wet-Bulb 

Temperature 

 

Surface Skin 

Temperature 

 

Lapse Rate 

-7 

 

 

-13.15 

 

 

-6.5 

7 

 

 

16.85 

 

 

11.5 

-6 

 

 

-3.15 

 

 

-5.5 

6 

 

 

16.85 

 

 

10.5 

°C 

 

 

°C 

 

 

°C km-1 
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Figure 2.  (a) Conditional probability of solid precipitation versus near-surface temperature, using global 

land and ocean surface observations. (b) Same as (a), except for near-surface wet-bulb temperature. 
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Figure 3.  (a) Wet-bulb temperature threshold over land, using surface observations at weather stations. 

(b) Same as (a), but focusing on the United States, showing the regions of relatively high wet-bulb 

temperature threshold in the mountainous regions and relatively low wet-bulb temperature threshold in 

the Southeastern United States. (c) Wet-bulb temperature threshold, using shipboard observations, 

separated into 1° latitude by 1° longitude grid boxes. Tw is used for wet-bulb temperature in the legend. 
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Figure 4.  Frequency of temperature inversions in approximately the lowest 500 m of the atmosphere, as 

calculated using the MERRA reanalysis of the temperature profile from the MAI6NPANA data product.  

Four times daily data from 2006 through 2011 is used. 
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Figure 5.  Conditional probability of solid precipitation for near-surface wet-bulb temperature versus 

lapse rate within 500 m of the surface over (a) land, and (b) ocean.  
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Figure 6.  Conditional probability of solid precipitation for near-surface wet-bulb temperature versus 

surface skin temperature over (a) land, and (b) ocean. 
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Figure 7.  (a) Conditional probability of solid precipitation for near-surface wet-bulb temperature versus 

surface pressure over land. (b) Same as (a), but only considering the data for observations within 28°N to 

50°N and 60°W to 130°W (an approximate grid box for the contiguous United States). 
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Figure 8.  Land cover type plotted from AVHRR Global Land Cover Classification data.  Land cover 

values 1-12 and 14 correspond to: evergreen needleleaf forest, evergreen broadleaf forest, deciduous 

needleleaf forest, deciduous broadleaf forest, mixed forest, woodland, wooded grassland, closed 

shrubland, open shrubland, grassland, cropland, bare ground, and urban/built, respectively. 
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Figure 9.  Wet-bulb temperature threshold versus land cover type, within 28°N to 50°N and 60°W to 

130°W (an approximate grid box for the contiguous United States).  Land cover values are the same as 

those in Figure 8. 
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Figure 10.  (a) Conditional probability of solid precipitation for near-surface wet-bulb temperature 

versus lapse rate versus surface skin temperature, over land. (b) Conditional probability of solid 

precipitation for near-surface wet-bulb temperature versus surface skin temperature, at a lapse rate of 

5°C km-1. (c) Same as (b), but for near-surface wet-bulb temperature versus lapse rate, at a surface skin 

temperature of 0°C. (d) Same as (b), but for lapse rate versus surface skin temperature, at a near-surface 

wet-bulb temperature of 0°C. 
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          (a) 

 

 

 

 

 

 

 

 

 

 

 

          (b) 

 

Figure 11.  Annual mean snowfall rate calculated using CloudSat radar reflectivity and Liu’s Ze-S 

relation, for (a) a 2°C temperature threshold, and (b) a conditional probability of solid precipitation 

calculated by the parameterization scheme described in this paper.  In (a), precipitation is classified as 

solid if the near-surface temperature is less than 2°C.  In (b), meteorological variables are input to the 

parameterization scheme, which returns a conditional probability of solid precipitation.  Precipitation is 

classified as solid if the probability is greater than 50 percent. 
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CHAPTER 3 

DEVELOPMENT OF THE Ze-S RELATIONS 

3.1 Background 

 Knowledge of surface precipitation on a global scale is necessary for 

understanding the Earth’s hydrologic cycle, and satellite-based radar provides the opportunity to 

calculate both rainfall and snowfall rates near the surface.  To estimate precipitation rate near the 

surface from satellite-based radar measurements, equations relating effective radar reflectivity, 

Ze, to rainfall rate, R, and snowfall rate, S, must be used.  These equations are typically in the 

form of Ze=aRb and Ze=aSb, where a and b are constants.  Numerous Ze-R relations exist; for 

example, Battan (1973) lists 69 different Ze-R relations based on particle size distributions 

(PSDs) from around the world.  While raindrops can be modeled as spheres, snow particles have 

varying shapes, and this affects the scattering properties of the particle.  In order to estimate the 

surface snowfall rate from radar reflectivity, physical properties of the falling snow particles 

must be known.  Previous research has been performed in which radar reflectivity is converted to 

snowfall rate.  Matrosov (2007) developed Ze-S relations for snowflakes with the shape of oblate 

spheroids and different snowflake masses, fall velocities, and aspect ratios.  Liu (2008a) 

developed a Ze-S relation based on snow particles in the shapes of rosettes, sectors, and 

dendrites, which are shown in Figure 12.  These particles are described in detail in Liu (2004).  

Kulie and Bennartz (2009) developed Ze-S relations using various particle shapes. 

To develop a Ze-S relation, one can first utilize the individual equations for effective 

radar reflectivity and snowfall rate.  The equation for effective radar reflectivity can be derived 

(e.g. Wexler and Atlas 1963, Meneghini and Kozu 1990, Liou 2002) by first defining the 
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backscattering cross section of a particle, σb, which is the amount of radiation that is scattered 

from the particle in the backward direction, as 

 𝜎𝑏 = 𝑄𝑏𝐴, (1) 

where Qb is the backscattering efficiency, which is a function of the index of refraction, m, and 

the particle shape and size, and A is the two-dimensional projected area of the particle.  The 

radar cross section per unit volume, η, is defined as 

 𝜂 = ∫ 𝜎𝑏(𝐷)𝑁(𝐷)𝑑𝐷, (2) 

where N(D) is the PSD.  It should be noted that the quantity η is also referred to as the “radar 

reflectivity,” however, here it will be referred to as the radar cross section per unit volume to 

avoid confusion with the quantity Z, which here is referred to as “radar reflectivity,” as is 

commonly done in meteorological applications.  Z is defined as 

 𝑍 = ∫ 𝐷6𝑁(𝐷)𝑑𝐷, (3) 

however, this only holds true for particles that can be modeled as Rayleigh scatterers.  The 

Rayleigh approximation is only valid for particles that are spherical and have a size parameter, x, 

such that 

 
𝑥 =

2𝜋𝑟𝑒

𝜆
≪ 1, (4) 

where re is the effective radius of the particle, which is the radius of the sphere that would result 

if the snow particle were melted, and λ is the wavelength of the radiation transmitted by the 

radar.  Most snow particles that are measured with W-band radar cannot be modeled as Rayleigh 

scatterers due to the fact that they are neither spherical nor small enough, in most cases, relative 

to the wavelength of W-band radiation.  Meteorological radars receive backscattered power from 

particles of various sizes (some with x << 1, and some much larger), shapes (spherical and non-
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spherical), and types (solid and liquid), and not all of these particles fall into the Rayleigh 

scattering regime.  To handle the scattering from these various particles, the effective radar 

reflectivity, Ze, is often used in meteorological radar applications.  Ze is defined as 

 𝑍𝑒 = ∫ 𝐷6𝑓(𝐷)𝑁(𝐷)𝑑𝐷, (5) 

where f(D) is the ratio of Mie to Rayleigh scattering, and is defined as  

 
𝑓(𝐷) =

𝜎𝑏,𝑀𝑖𝑒(𝐷)

𝜎𝑏,𝑅𝑎𝑦(𝐷)
=

𝜎𝑏,𝑀𝑖𝑒(𝐷)

𝑄𝑏,𝑅𝑎𝑦(𝐷)𝐴
. (6) 

Qb,Ray(D) is the backscattering efficiency for a Rayleigh scatterer, and is given by 

 𝑄𝑏,𝑅𝑎𝑦(𝐷) = 4𝑥4|𝐾|2, (7) 

where |K|2 is the dielectric factor for water, and is given by 

 
|𝐾|2 = |

𝑚2 − 1

𝑚2 + 2
|

2

, (8) 

where m is the complex index of refraction for water and is dependent on the frequency of the 

incoming radiation.  Replacing x with 
𝜋𝐷

𝜆
 in equation (7) and expanding gives 

 
𝑄𝑏,𝑅𝑎𝑦(𝐷) = 4

𝜋4𝐷4

𝜆4
|𝐾|2. (9) 

The quantity A in equation (6) is the cross-sectional area of a sphere, given by 

 
𝐴 = 𝜋 (

𝐷

2
)

2

. (10) 

Inserting (9) and (10) into (6), f(D) becomes 

 
𝑓(𝐷) =

𝜎𝑏,𝑀𝑖𝑒(𝐷)

4
𝜋4𝐷4

𝜆4 |𝐾|2𝜋 (
𝐷
2)

2 =
𝜆4𝜎𝑏,𝑀𝑖𝑒(𝐷)

𝜋5𝐷6|𝐾|2
. 

(11) 
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Inserting (11) into (5), bringing the constants outside the integral, and replacing σb,Mie with σb, as 

explained below, yields 

 
𝑍𝑒 =

𝜆4

𝜋5|𝐾|2
∫ 𝜎𝑏(𝐷)𝑁(𝐷)𝑑𝐷. (12) 

While Mie theory provides a more general set of equations than the Rayleigh approximation for 

calculating the backscattering cross section, it also falls short of providing an accurate 

backscattering cross section calculation when the size parameter is greater than 2.5 (Kim 2006).  

To handle this issue, the discrete dipole approximation (DDA) method (Purcell and Pennypacker 

1973, Draine and Flatau 1994) is employed.  This method treats particles as an array of 

polarizable dipoles that are subject to incoming radiation from an outside source as well as the 

radiation from the surrounding dipoles.  In this study, the equation for effective radar reflectivity 

in (12) is used with σb calculated by the DDA method rather than the Mie equations. 

The value of Ze is determined from the magnitude of the received power, Pr, at the radar, 

and is given by 

 
𝑃𝑟 =

𝐶

𝑟𝑠
2

|𝐾|2𝑍𝑒 (13) 

(Liou 2002), where C is a constant related to the radar characteristics, specifically, the power 

transmitted by the radar, the duration of the transmitted pulse, the radar wavelength, the antenna 

gain and beamwidth, and the distance at which the scattering takes place, rs. 

Snowfall rate is described by 

 𝑆 = ∫ 𝑉(𝐷)𝑣𝑡(𝐷)𝑁(𝐷)𝑑𝐷, (14) 

where N(D) is the PSD as in the equation for effective radar reflectivity, V(D) is the effective 

volume of the snow particle, and vt(D) is the terminal velocity of the snow particle.  The 
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effective volume is calculated as  
4

3
𝜋𝑟𝑒

3.  PSD and terminal velocity are discussed in detail in 

Sections 3.3.2. and 3.3.3., respectively. 

The research described here utilizes a new approach for calculating surface snowfall rate 

from radar reflectivity.  Because there is a wide range of particle shapes and size distributions, 

several Ze-S relations have been developed in this research.  Additionally, an optimization 

scheme for the Ze-S relations has been developed that yields snowfall rates close to those 

measured at the surface.  This optimized Ze-S relation, along with the improved method for 

determining precipitation phase discussed in Chapter 2, have been developed to yield an accurate 

estimate of surface snowfall rate from satellite-based radar reflectivity. 

The remainder of Chapter 3 is organized as follows: Section 3.2 describes the data and 

methodology used in this portion of the study.  Section 3.3 describes the physical properties of 

snow particles.  Section 3.4 summarizes the Ze-S relations that are developed in this study. 

3.2 Data and Methodology 

In order to determine the accuracy of the snowfall rates calculated from radar reflectivity, 

these snowfall rates must be compared to surface measurements of snowfall rate.  Over Canada, 

monthly data of surface snowfall observations at 140 stations from 1943–1982 (Walsh 1996) are 

used to calculate the annual mean surface snowfall rate.  The data set contains the total snowfall 

for the month (mm) at each station.  First, the monthly average of total snowfall over all years of 

available data is calculated for each month and for each station.  Next, the daily average snowfall 

rate for each month is determined by dividing each month’s total snowfall by the number of days 

in that month.  The daily average snowfall rate is converted to liquid equivalent snowfall by 

multiplying by a factor of 0.1, which assumes a 10 to 1 ratio of snow depth to liquid water 
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content (Potter 1965).  Finally, the annual mean snowfall rate is determined by calculating the 

mean of the daily average snowfall rate for each month, at each station.  The resulting quantity 

has units of mm d-1.   Figure 13 shows the annual mean snowfall rate calculated from the surface 

observations.  For the United States, snowfall data from the Daily Global Historical Climatology 

Network (GHCN-D) (Menne et al. 2012) are used to calculate snowfall rate.  For some of the 

United States stations, snowfall data is recorded as early as 1846, however the majority of the 

stations have data records beginning in the twenty-first century.  The data used in this research is 

included through 2014.  For each station, a requirement of at least 150 observations (of either 

snow or no snow) for every month was set to ensure that the calculated annual mean snowfall 

rate gives a true representation of average snowfall.  The annual mean snowfall rate is calculated 

using a method similar to what is done for the Canada snowfall data, however since the United 

States data set contains daily snowfall data, the average daily snowfall rate is calculated for each 

day, for each station.  The annual mean snowfall rate at each station is calculated as the mean of 

the daily average snowfall rate for each day.  Figure 14 shows the annual mean snowfall rate 

calculated from these data over the United States.  The surface measurements in both the Canada 

data set and the United States data set are made with snowfall gauges, and while they may not 

always be completely accurate as discussed previously, they provide the best option for ground 

validation with the snowfall rates calculated from satellite-based radar reflectivity. 

The radar reflectivity data used in this research are from the CloudSat 2B-GEOPROF 

product (Mace 2007), and span a time range from June 2006 through April 2011.  In using radar 

observations that span approximately five years, and comparing the annual mean snowfall rate 

calculated from these radar observations to the annual mean snowfall rate calculated from 

surface observations spanning several decades, there is an assumption that no trends exist in the 
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data.  In the case that there are any trends within the data, the error introduced is likely less than 

the error due to the assumptions in the particle properties used to develop the Ze-S relations. 

The surface itself causes the reflectivity measurements near the surface to be 

contaminated, so the reflectivity values at the fifth (sixth) bin above the surface over ocean (land) 

are used to calculate the near-surface snowfall rate, as is done in Liu 2008a.  The surface height 

bin is included in the 2B-GEOPROF data product.  The vertical bin sizes are approximately 240 

m, and data from the lowest four (five) bins, corresponding to approximately 1 km (1.2 km), are 

removed to eliminate surface contamination.  Similar to Liu (2008a) and Kulie and Bennartz 

(2009), attenuation corrections are not applied to the reflectivity data used in this study.  

Although attenuation can present a problem for precipitation measurements made with W-band 

radar, this is only the case for liquid precipitation and snowfall that is both heavy and occurring 

within a thick layer (Matrosov 2007).  Most of the snowfall observations within this data set are 

largely immune to the effects of strong attenuation. 

To calculate snowfall rate, one must first determine whether the precipitation within the 

radar volume is solid or liquid.  To do this, ancillary data from the ECMWF-AUX product 

(Partain 2007) are used.  This data set includes the 2 m temperature, skin temperature, surface 

pressure, atmospheric pressure profile, specific humidity profile, and temperature profile, and the 

data are collocated to the latitude, longitude, and range bins of the 2B-GEOPROF data.  Relative 

humidity is calculated from the temperature, pressure, and specific humidity data, and vertical 

temperature lapse rate in approximately the lowest 500 m of the atmosphere is calculated from 

the temperature profile.  The 2 m temperature, skin temperature, relative humidity, and lapse rate 

are input into the snow-rain parameterization program described in Section 2.4, which returns the 

conditional probability of solid precipitation.  If the conditional probability of solid precipitation 
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is less than 0.5, the precipitation is classified as liquid and is assigned a snowfall rate value of 

zero.  If this probability is greater than or equal to 0.5, it is classified as solid, and the snowfall 

rate is calculated using a Ze-S relation (discussed in detail in sections 3.3 and 3.4) and the radar 

reflectivity data.  The snowfall rate calculated from the Ze-S relation has units of mm h-1, so this 

value is multiplied by 24 to convert to mm d-1 for comparison with the surface observations of 

snowfall rate, which are in mm d-1.  The snowfall rates from all CloudSat overpasses within each 

1° latitude by 1° longitude grid box are averaged.  The daily average snowfall rate for each 

month is calculated for each grid box, similar to what was done for the Canada surface 

observation data, and then the daily average snowfall rates for each month are averaged together 

to determine the annual mean snowfall rate, which has units of mm d-1. 

3.3 Physical Properties of Snow Particles 

 The theoretical development of a Ze-S relation requires the equations for effective radar 

reflectivity, Ze, and snowfall rate, S, given by (12) and (14), respectively.  Some of the variables 

in these equations depend on the particle shape, size distribution, and terminal velocity; 

therefore, these particle properties must be as physically realistic as possible in order to 

accurately estimate snowfall rate from radar reflectivity.  The details of these properties are 

described in Sections 3.3.1, 3.3.2, and 3.3.3. 

3.3.1 Particle Shape 

Early research in snow studies assumed spherical (e.g., Matrosov 1992) and spheroidal 

(e.g., Matrosov 2007) snow particles, however more recent research (e.g., Liu 2008a, Kuo et al. 

2016) has shown that in order to calculate an accurate backscattering cross section, a physically 

realistic particle shape must be used.  Snow particle shapes such as the bullet rosette, sector, and 
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dendrite snowflakes (Liu 2004) shown in Figure 12, and the aggregate snowflake, which is 

comprised of bullet rosettes (Nowell et al. 2013) and shown in Figure 15, are more realistic 

forms of solid precipitation.  The backscattering cross section for these particles is more realistic 

than that for spherical particles, and therefore yields a more accurate Ze-S relation, and 

ultimately a better estimate of snowfall rate.  The backscattering cross section is calculated using 

Liu’s scattering database (Liu 2008b), which employs the DDA method. 

3.3.2 Particle Size Distribution 

 The particle size distribution is the number concentration of particles within a size bin D 

to ΔD, where D is the diameter of the particle.  Some studies take D as the melted diameter of 

the particle, while others use the maximum dimension.  PSD can be determined both 

theoretically and through observational studies (Gunn and Marshall 1958, Sekhon and Srivastava 

1970, Houze et al. 1979, Field et al. 2005, Field et al. 2007, Brandes et al. 2007).  In this 

research, three PSDs, given by Sekhon and Srivastava (1970), Field et al. (2007), and Brandes et 

al. (2007), are utilized. 

The Sekhon and Srivastava size distribution was selected for use in this study because it 

is considered a classic example of an exponential snow PSD.  Sekhon and Srivastava analyzed 

the data from Gunn and Marshall (1958), Imai et al. (1955), Magono (1957), and Ohtake (1968) 

to obtain a larger set of snow data, and developed a snow PSD of the form 

 𝑁(𝐷) = 𝑁0 exp(−𝛬𝐷), (15) 

where D is the melted diameter of the particle, and the concentration intercept parameter, N0, and 

the slope term, Λ, are given by 
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 𝑁0 = 2.50 x 103𝑅−0.94 (mm-1 m-3) (16) 

and  

 𝛬 = 22.9𝑅−0.45 (cm-1) (17) 

and R is a parameter related to the precipitation rate in mm h-1. 

The Field et al. size distribution uses a moment estimation parameterization, developed 

from data collected with aircraft-mounted optical array probes which record two-dimensional 

images of hydrometeors.  The data are from field campaigns for tropical regimes (the Tropical 

Rainfall Measuring Mission/Kwajelein Experiment (TRMM/KWAJEX) and the Cirrus Regional 

Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment (CRYSTAL-

FACE)) and midlatitude regimes (the First International Satellite Cloud Climatology Project 

Research Experiment (FIRE) and the Atmospheric Radiation Measurement (ARM) Program).  

The measurements of particle size and number concentration are used to develop the following 

equations that can be used to calculate the PSD.  In this research, only the equations for the 

midlatitude regime are utilized.  The PSD is given by 

 
𝑁(𝐷) = 𝛷23(𝑥)

𝑀2
4

𝑀3
3, (18) 

where M2 and M3 are the second and third moments of the size distribution, respectively, and Φ23 

is an analytic fit to the rescaled size distribution data, given by 

 𝛷23(𝑥) = 141 exp(−16.8𝑥) + 102𝑥2.07 exp(−4.82𝑥), (19) 

where 

 
𝑥 = 𝐷

𝑀2

𝑀3
 (20) 
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and D is the particle maximum dimension.  M2 is a parameter related to the ice water content, 

and M3 can be calculated using the below equations with n = 3. 

 𝑀𝑛 = 𝐴(𝑛) exp[𝐵(𝑛)𝑇] 𝑀2
𝐶(𝑛), (21) 

where T is temperature and is set as -10°C, and A(n), B(n), and C(n) are given as 

 𝐴(𝑛) = exp(13.6 − 7.76𝑛 + 0.479𝑛2) (22) 

 𝐵(𝑛) = −0.0361 + 0.0151n + 0.00149𝑛2 (23) 

 𝐶(𝑛) = 0.807 + 0.00581𝑛 + 0.0457𝑛2. (24) 

The Brandes et al. size distribution was developed using data collected with a ground-

based two-dimensional video disdrometer in eastern Colorado.  The instrument measures the 

size, shape, and velocity of falling hydrometeors, and the size data can be used to determine an 

equation for size distribution.  The size distribution developed by Brandes et al. is exponential 

with the same form as (15), and with D as the melted diameter of the particle.  N0 and Λ are 

given by 

 𝑁0 = 5 x 103𝑆−1.2 (mm-1 m-3) (25) 

 𝛬 = 2.27(𝑇0 − 𝑇)0.18 (mm-1), (26) 

where S is a parameter related to the precipitation rate in mm h-1, as is done by Sekhon and 

Srivastava.  T0 equals 0°C, and N(D) is calculated for T = -10°C, -20°C, and -30°C. 

3.3.3 Terminal Velocity 

 The terminal velocity of a snow particle depends on the size, density, and type of 

precipitation (Locatelli and Hobbs 1974, Braham 1990).  A faster falling precipitation particle 

will result in a greater precipitation rate.  For this research, three terminal velocities have been 

calculated based on some of those presented by Locatelli and Hobbs, shown in Figure 16.  
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Terminal velocities for the following seven particle types from Locatelli and Hobbs are used: 

densely rimed dendrites, densely rimed radiating assemblages of dendrites, unrimed side planes, 

aggregates of unrimed radiating assemblages of dendrites or dendrites, aggregates of densely 

rimed radiating assemblages of dendrites or dendrites, aggregates of unrimed radiating 

assemblages of plates, side planes, bullets and columns, and aggregates of unrimed side planes. 

From these terminal velocities, a middle vt, an upper vt, and a lower vt are calculated.  These are 

given by 

 𝑣𝑡,𝑢𝑝𝑝𝑒𝑟 = 1.05𝐷0.20 (27) 

 𝑣𝑡,𝑚𝑖𝑑𝑑𝑙𝑒 = 0.85𝐷0.23 (28) 

 𝑣𝑡,𝑙𝑜𝑤𝑒𝑟 = 0.70𝐷0.24. (29) 

The upper vt and lower vt represent faster and slower falling particles, respectively, while the 

middle vt falls in between the upper and lower vt.  In the figure, the curves are thicker over the 

range of maximum dimension that is specified in Locatelli and Hobbs as the valid range.  The 

upper vt, middle vt, and lower vt have been developed in order to compensate for overestimation 

and underestimation in the snowfall rate calculation.  Because of the uncertainty in particle 

shape, and therefore terminal velocity, that exists when calculating snowfall rate from effective 

radar reflectivity measurements, assumptions about terminal velocity must be made.  Ze-S 

relations have been developed with these three terminal velocities, with the goal of applying the 

Ze-S relations to yield estimates of snowfall rate that most closely match those obtained with 

surface measurements. 
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3.4 Ze-S Relations 

 To calculate a Ze-S relation in the form Ze=aSb, equations (12) and (14) are solved and a 

least squares regression is fit to the data points.  Thirty-six Ze-S relations have been developed 

from all combinations of the four particle shapes, three PSDs, and three terminal velocities 

described previously.  Figure 17 shows Ze-S relations for rosettes, sectors, dendrites, and 

aggregates using the Sekhon and Srivastava PSD, for snow particles at -10°C, and for the three 

terminal velocities.  The frequency used to calculate Ze is 94 GHz, which is the operating 

frequency of the CloudSat CPR.  Figure 18 shows Ze-S relations for the same properties as those 

in Figure 17, but using the Field et al. size distribution.  Figure 19 shows Ze-S relations 

calculated using the Brandes et al. size distribution.  The Ze-S relation can then be used to 

convert radar reflectivity to snowfall rate.  CloudSat CPR radar reflectivity data, along with the 

ancillary CloudSat ECMWF-AUX data and the parameterization scheme described previously, 

are used to calculate the annual mean snowfall rate from the Ze-S relations, and this snowfall rate 

is then compared to surface observations of snowfall. 
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Figure 12.  (a) Rosettes, (b) sectors, and (c) dendrites, taken from Liu 2004. 
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Figure 13.  Annual mean snowfall rate (mm d-1) calculated at Canada station locations, from monthly 

data of surface snowfall observations (Walsh 1996). 
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Figure 14.  Annual mean snowfall rate (mm d-1) calculated at United States weather stations, from the 

GHCN-D daily snowfall observation data set (Menne et al. 2012). 
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Figure 15.  Aggregate snow particles, taken from Nowell et al. (2013). 
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Figure 16.  Terminal velocities of seven types of particles from Locatelli and Hobbs (1974), are given by 

the black curves, with the thicker portion of the curves representing the valid range of maximum 

dimension.  The curves in blue, green, and red represent upper, middle, and lower terminal velocities, 

respectively, developed to compensate for overestimation and underestimation in the snowfall rate 

calculation. 
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Figure 17.  Ze-S relations for rosettes, sectors, dendrites, and aggregates calculated using three terminal 

velocities developed from Locatelli and Hobbs (1974), and the Sekhon and Srivastava (1970) PSD. 
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Figure 18.  Ze-S relations for rosettes, sectors, and dendrites, calculated using three terminal velocities 

from Locatelli and Hobbs (1974), and the Field et al. (2007) PSD. 
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Figure 19.  Ze-S relations for rosettes, sectors, and dendrites, calculated using three terminal velocities 

from Locatelli and Hobbs (1974), and the Brandes et al. (2007) PSD. 
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CHAPTER 4 

DEVELOPMENT OF A GLOBAL SNOWFALL DISTRIBUTION 

 The ultimate goal of this study is to develop a global snowfall distribution that gives an 

accurate estimation of surface snowfall rate from satellite-based radar reflectivity.  To achieve 

this goal, near-surface radar reflectivity data from the CloudSat CPR is first input to the Ze-S 

relations developed in this study, and an annual mean snowfall rate is calculated.  Next, the 

calculated snowfall rate is compared to surface observations of snowfall, and an optimized Ze-S 

relation is developed, which is a weighted-average of the individual Ze-S relations.  This 

optimized Ze-S relation is designed to yield snowfall rates that closely match those from surface 

observations.  Finally, the optimized Ze-S relation is used with the CloudSat CPR reflectivity 

data to develop a global distribution of the annual mean surface snowfall rate. 

 Chapter 4 is organized as follows: The CloudSat CPR is described in Section 4.1.  The 

calculation of surface snowfall rate is explained in Section 4.2.  Section 4.3 describes the 

optimized Ze-S relation, and Section 4.4 explains the determination of the optimal particle shape 

for locations in the United States. 

4.1 CloudSat CPR 

 The CloudSat satellite (Stephens et al. 2002, Stephens et al. 2008, Tanelli et al. 2008), 

launched in April 2006, carries the CPR, which is the first spaceborne millimeter wavelength 

radar.  CPR was developed with the goal of providing profile observations of both clouds and 

precipitation that can be used for numerical weather prediction and global climate modeling, to 

ultimately increase the understanding of the Earth’s hydrologic cycle.  CPR is a nadir-looking 

radar, operating at 94 GHz with a vertical resolution of 500 m (oversampled to 240 m).  The 
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effective radar footprint is approximately 1.4 km across-track, and 1.7 km along-track.  CloudSat 

flies in a sun-synchronous orbit, and repeats its groundtrack every 16 days, or 233 orbits.  The 

latitudinal range of the satellite is 82°S to 82°N.  The minimum detectable reflectivity for CPR is 

-30 dBZ.  The CloudSat mission was designed for 22 months of operation; CPR has continued 

operation well past that time frame, transmitting continuous data (aside from occasional data 

gaps) until April 2011, and since shortly after that time, still operates only during daylight 

conditions due to spacecraft battery issues. 

4.2 Surface Snowfall Rate Calculation 

 CloudSat radar reflectivity data is input to the Ze-S relations to calculate surface snowfall 

rate.  Figure 20 shows the annual mean snowfall rate in mm d-1 using the Ze-S relations 

developed with the Sekhon and Srivastava PSD.  In the figure, (a) through (l) are for the 

following shapes and terminal velocities: (a) R,l, (b) R,m, (c) R,u, (d) A,l, (e) A,m, (f) A,u, (g) 

S,l, (h) S,m, (i) S,u, (j) D,l, (k) D,m, (l) D,u, where the shapes are designated as follows: 

Rosettes-R, Aggregates-A, Sectors-S, Dendrites-D, and the velocities are designated as: lower-l, 

middle-m, upper-u.  Figure 21 and Figure 22 show the same quantity, but using the Ze-S relations 

developed with the Field et al. and Brandes et al. PSDs, respectively.  Figure 23 shows the 

comparison of the observed annual mean snowfall rate with the calculated annual mean snowfall 

rate, using the Ze-S relations developed with the Sekhon and Srivastava PSD.  The observed 

annual mean snowfall rate is calculated from surface observations of snowfall at United States 

weather stations (averaged to 1° latitude by 1° longitude grid boxes) and Canadian weather 

stations.  Figure 24 and Figure 25 show the same comparisons as in Figure 23, but using the Ze-S 

relations calculated with the Field et al. and Brandes et al. particles size distributions, 

respectively.  The figures show that for some stations and grid boxes, the calculated snowfall rate 
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underestimates the observed snowfall rate, while for others, the calculated snowfall rate 

overestimates the observed snowfall rate.  In general, the Ze-S relations for dendrites greatly 

overestimate the snowfall rate at most locations, those for rosettes underestimate the snowfall 

rate, and those for aggregates and sectors give a more accurate estimate.  The bias, correlation 

coefficient, root mean square error (RMSE), and slope of the linear regression line are given for 

each figure.  These statistics are shown as bar graphs in Figure 26, for the Ze-S relations that 

utilize the middle terminal velocity, and are summarized in Table 4 for all thirty-six Ze-S 

relations.  The Ze-S relations that most accurately estimate the surface snowfall rate are those 

which have bias and RMSE close to 0, and correlation coefficient and slope close to 1. 

 4.3 Optimized Ze-S Relation  

Due to the variations in particle shape, size distribution, and fall speed, it is difficult to 

accurately estimate surface snowfall rate, in all locations and under all conditions, using a single 

Ze-S relation.  To mitigate this problem, a method that combines multiple Ze-S relations has been 

developed in the research. The thirty-six Ze-S relations described previously have been combined 

in an optimization scheme that minimizes the error when the calculated snowfall rate is 

compared to surface observations of snowfall. 

4.3.1 Methodology 

The optimized Ze-S relation is developed using the following methodology.  First, the 

RMSE is calculated for each individual Ze-S relation, and is then used to assign a weight to each 

Ze-S relation; Ze-S relations with lower RMSEs are assigned greater weights, and Ze-S relations 

with higher RMSEs are assigned lower weights.  The optimization scheme is described by 
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(30) 

   

where Ŝj is the snowfall rate calculated with the optimization scheme at station j, Ŝij is the 

snowfall rate calculated from the ith Ze-S relation at station j, and m is the number of Ze-S 

relations.  wi is the weighting factor for the ith Ze-S relation, and is given by 

   

(31) 

 

where RMSEi is the root mean square error calculated for the ith Ze-S relation, and is given by 

   

(32) 

   

where Sj is the observed snowfall rate at station j, and n is the number of stations. 

4.3.2 Application of Optimized Ze-S Relation 

 Applying the optimized Ze-S relation to the CloudSat radar reflectivity data yields the 

annual mean snowfall rate over the United States and Canada shown in Figure 27.  Figure 28 

shows the comparison of this calculated snowfall rate with the observed snowfall rate at the 

United States weather stations (averaged to 1° latitude by 1° longitude grid boxes) and the 

Canadian weather stations.  The bias, correlation coefficient, RMSE, and slope of the linear 

regression line are calculated and shown in the figure.  The goal for this optimized Ze-S relation 

is not to outperform any individual Ze-S relation in terms of statistical analyses; that would not 

be possible due to the fact that all thirty-six Ze-S relations are included in the optimized Ze-S 

Ŝ𝑗 = ∑ 𝑤𝑖Ŝ𝑖𝑗

𝑚−1

𝑖=0

, 
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relation.  Rather, the goal is to develop a Ze-S relation that performs well under most conditions 

and in most locations.  For example, one of the well-performing Ze-S relations is the one that 

employs the Field et al. PSD and the middle terminal velocity, and assumes rosettes as the 

particle shape.  Compared with the other thirty-five Ze-S relations, this one yields the best bias, 

the second best RMSE, but only the fifteenth best slope.  Another Ze-S relation (that which 

utilizes the Sekhon and Srivastava PSD, the lower terminal velocity, and the aggregate particle 

model) produces the best slope, but only the twelfth and twentieth best bias and RMSE, 

respectively.  The optimized Ze-S relation yields the ninth best bias, the seventeenth best RMSE, 

and the sixth best slope.  Thus, the optimized Ze-S relation performs reasonably well in all of the 

statistical parameters measured, whereas each of the individual thirty-six Ze-S relations may 

perform well in some of the statistical calculations, but poorly in others. 

Applying the optimized Ze-S relation to global CloudSat radar reflectivity data yields the 

annual mean snowfall rate shown in Figure 29.  As mentioned previously, the optimized Ze-S 

relation was developed using surface observations from the United States and Canada only.  

Future work in this area of research can include utilizing surface snowfall observations from 

additional locations worldwide, and this is discussed in more detail in Section 6.3. 

4.4 Optimal Particle Shape 

 It is useful to know whether a certain particle model performs better than others for 

different regions, so that future estimations of snowfall rate from satellite-based radar reflectivity 

can be made as accurately as possible.  If an accurate assumption of the particle model can be 

made, then a Ze-S relation based on that particle model can be applied to estimate the snowfall, 

providing a more accurate result.  It can be seen from Figure 17, Figure 18, and Figure 19 that, 

for a given reflectivity value, the range of snowfall rates varies more greatly for particle shape 
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than for size distribution.  This means that choosing the correct particle shape is more important 

than choosing the correct PSD when attempting to accurately estimate the surface snowfall rate. 

4.4.1 Methodology 

 To determine whether a particular shape yields a more accurate estimation of surface 

snowfall rate for a given location, the Ze-S relations have been grouped together according to 

shape and analyzed using a method that takes into account the error in snowfall rate from each 

Ze-S relation when compared to surface observations.  Only the Ze-S relations for the middle 

terminal velocity are considered, in order to minimize the number of variables.  The sector and 

aggregate snowflakes are grouped together due to their similar scattering properties and resulting 

similar estimated snowfall rates for most size distributions, for a given radar reflectivity.  In 

general, rosettes yield the lowest snowfall rate for a given radar reflectivity, sectors and 

aggregates yield a greater snowfall rate, and dendrites yield the greatest snowfall rate.  Figure 30 

shows a map of the United States, with each grid box colored according to a color scale that 

describes whether dendrites, sectors and aggregates, or rosettes are the best particle model for 

that grid box.  The color is determined by first assigning a color index value to each of the three 

shape groupings: dendrites are assigned a color index of 0 (representing dark blue), sectors and 

aggregates are assigned an index of 128 (representing light blue / light green), and rosettes are 

assigned an index of 255 (representing red).  At each location, the difference between the 

observed snowfall rate and the snowfall rate calculated from each Ze-S relation is used to assign 

a weighting factor to each Ze-S relation, and that weighting factor is multiplied with the color 

index for that particular Ze-S relation.  This product is then summed for all twelve Ze-S relations, 

and the result is a color index lying between 0 and 255. 
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4.4.2 Results 

 One important feature shown in Figure 30 is the lack of red grid boxes in the 

Northeastern United States.  This indicates that rosettes, in general, may not be a good particle 

model for the type of snow falling in this part of the country.  Rosettes have a greater density 

than sectors, aggregates and dendrites.  The pattern shown in Figure 30 could indicate that the 

snow particles that typically fall in the Northeastern United States are relatively low in density, 

while the snow particles falling in other parts of the country may have a higher density.  This 

information is useful in that it can allow a Ze-S relation for a particular particle shape to be 

applied for different locations, in order to obtain the most accurate estimate of surface snowfall 

rate. 
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Table 4.  Bias, r, RMSE, and slope for the thirty-six Ze-S relations developed in this study. 

Particle 

Size 

Distribution 

Particle 

Shape 

Terminal 

Velocity 
Bias r RMSE Slope 

Sekhon and 

Srivastava 

(1970) 

Rosette 

Lower -0.19 0.65 0.30 0.35 

Middle -0.15 0.65 0.28 0.41 

Upper -0.11 0.65 0.26 0.49 

Aggregate 

Lower 0.10 0.61 0.40 0.98 

Middle 0.19 0.61 0.50 1.17 

Upper 0.29 0.61 0.63 1.39 

Sector 

Lower 0.08 0.63 0.36 0.93 

Middle 0.17 0.63 0.45 1.11 

Upper 0.26 0.63 0.56 1.30 

Dendrite 

Lower 0.83 0.63 1.33 2.51 

Middle 1.06 0.63 1.65 2.98 

Upper 1.30 0.63 1.99 3.49 

Field et al. 

(2007) 

Rosette 

Lower -0.06 0.66 0.25 0.59 

Middle 0.00 0.66 0.26 0.71 

Upper 0.07 0.66 0.31 0.86 

Aggregate 

Lower -0.11 0.64 0.26 0.52 

Middle -0.05 0.64 0.26 0.63 

Upper 0.01 0.64 0.29 0.77 

Sector 

Lower 0.03 0.64 0.30 0.80 

Middle 0.10 0.64 0.36 0.96 

Upper 0.20 0.65 0.46 1.15 

Dendrite 

Lower 0.69 0.64 1.12 2.19 

Middle 0.89 0.64 1.40 2.62 

Upper 1.13 0.64 1.73 3.11 

Brandes et 

al. (2007) 

Rosette 

Lower -0.16 0.64 0.29 0.40 

Middle -0.13 0.64 0.27 0.48 

Upper -0.08 0.64 0.26 0.57 

Aggregate 

Lower -0.04 0.63 0.27 0.67 

Middle 0.03 0.63 0.31 0.81 

Upper 0.11 0.63 0.38 0.97 

Sector 

Lower 0.06 0.64 0.33 0.88 

Middle 0.14 0.64 0.41 1.05 

Upper 0.24 0.64 0.52 1.25 

Dendrite 

Lower 0.75 0.64 1.21 2.33 

Middle 0.97 0.64 1.51 2.78 

Upper 1.21 0.64 1.85 3.28 
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Figure 20.  Annual mean snowfall rate (mm d-1) calculated using Ze-S relations with the Sekhon and 

Srivastava (1970) PSD, for the following shapes and terminal velocities: (a) R,l, (b) R,m, (c) R,u, (d) A,l, 

(e) A,m, (f) A,u, (g) S,l, (h) S,m, (i) S,u, (j) D,l, (k) D,m, (l) D,u, where the shapes are designated as 

follows: Rosettes-R, Aggregates-A, Sectors-S, Dendrites-D, and the velocities are designated as: lower-l, 

middle-m, upper-u.  The snow-rain parameterization scheme is used to classify the precipitation phase 

such that observations with conditional probability of solid precipitation greater than or equal to 0.5 are 

classified as solid precipitation. 
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Figure 20 continued.
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Figure 21.  Same as Figure 20, but for the Field et al. PSD. 
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Figure 21 continued.
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Figure 22.  Same as Figure 20, but for the Brandes et al. PSD. 
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Figure 22 continued.
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Figure 23.  Annual mean snowfall rate (mm d-1) calculated from CloudSat observations and using the Ze-

S relations developed with the Sekhon and Srivastava PSD, compared with the annual mean snowfall rate 

calculated from surface observations of snowfall at United States weather stations (averaged to 1° 

latitude by 1° longitude grid boxes) and Canadian weather stations.  The particle shape and terminal 

velocity for (a)-(l) are the same as in Figure 20.  The bias, r, RMSE, and slope of the linear regression 

line are given for each figure. 
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Figure 23 continued. 
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Figure 24.  Same as Figure 23, but for the Field et al. PSD. 
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Figure 24 continued.
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Figure 25.  Same as Figure 23, but for the Brandes et al. PSD. 
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Figure 25 continued.
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Figure 26.  (a) Bias, (b) r, (c) RMSE, and (d) slope of the linear regression line for 

the Ze-S relations that utilize the four particle shapes, three PSDs, and the middle 

terminal velocity. 
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Figure 26 continued.
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Figure 27.  Annual mean snowfall rate (mm d-1) calculated using the Ze-S relation optimization scheme. 
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Figure 28.  Annual mean snowfall rate (mm d-1) calculated from CloudSat observations and using the 

optimized Ze-S relation, compared with the annual mean snowfall rate calculated from surface 

observations of snowfall at United States weather stations (averaged to 1° latitude by 1° longitude grid 

boxes) and Canadian weather stations. 

  



82 
 

Figure 29.  Global distribution of annual mean snowfall rate (mm d-1) calculated using the Ze-S relation 

optimization scheme. 
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Figure 30.  The particle shape that provides the most accurate estimate of surface 

snowfall rate. 
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CHAPTER 5 

COMPARISON WITH THE CLOUDSAT SNOWFALL PRODUCT 

5.1 CloudSat Snowfall Product Algorithm 

 The annual mean snowfall rate calculated in this study is compared to the annual mean 

snowfall rate calculated from the standard product for snowfall generated by the CloudSat Data 

Processing Center.  The surface snowfall rate in the CloudSat standard product is generated 

using the CloudSat CPR reflectivity data and the ECMWF-AUX ancillary data, and is available 

in the 2C-SNOW-PROFILE data product (Wood 2013).  The surface snowfall rate in this data 

product is calculated using equations similar to (12) and (14), for effective radar reflectivity and 

snowfall rate, respectively, as described in Section 3.1.  The particle models used with these 

equations are described by power laws relating the mass and area of the particle to its diameter 

(Locatelli and Hobbs 1974, Mitchell 1996), along with data from observations of actual snow 

particles (Hudak et al. 2006, Wood 2011).  The PSD is an exponential model, which is the same 

form as that for the Sekhon and Srivastava and Brandes et al. PSDs.  The terminal velocity used 

to calculate the snowfall rate in the product is a function of the diameter of the snow particle. 

 To eliminate the effects of ground clutter, the 2C-SNOW-PROFILE algorithm for 

calculating snowfall rate employs a slightly different method for choosing the number of bins 

near the surface to exclude.  Four bins above the surface are excluded if the surface type is 

characterized as land, sea-ice, or unknown, and two bins above the surface are excluded if the 

surface type is identified as ocean without sea ice, or inland water.  The surface type is identified 

in this manner in the CloudSat 2C-PRECIP-COLUMN data product (Haynes 2013).   
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 The 2C-SNOW-PROFILE algorithm classifies precipitation as snow in a number of 

situations.  If the ECMWF ancillary data indicate that the air temperature is less than 0°C 

(Haynes et al. 2009), the precipitation is classified as snow.  Additionally, if the precipitation 

flag in the 2C-PRECIP-COLUMN data product indicates that there may be mixed phase 

precipitation, but that the melted fraction (also determined within the 2C-PRECIP-COLUMN 

data product) is less than or equal to 0.1, the precipitation is classified as snow.  In cases where 

there is mixed phase precipitation but the melted fraction is unknown, the temperature profile 

within the ECMWF ancillary data is used to determine the melting depth.  If the melting depth is 

less than 240 m, the precipitation is classified as snow.  Assuming a lapse rate of 6°C km-1, a 

melting depth of 240 m corresponds to a near-surface temperature of approximately 1.5°C.  The 

2C-SNOW-PROFILE algorithm attempts to retrieve the microphysical properties of the snow 

within the radar volume using the measured radar reflectivity.  Specifically, the algorithm 

attempts to determine the PSD, which is then used to calculate the snowfall rate as in equation 

(14). 

 It should be noted that the 2C-SNOW-PROFILE snowfall product has not been validated 

against surface observations.  Therefore, the comparison between it and the snowfall calculations 

made in this study should not be viewed as validation for the results in this study; it only serves 

the purpose of knowing how different the two products are.  In fact, since the algorithm 

developed in this study is optimized using surface snowfall data, and if we consider the surface 

observations used in this study to be more reliable than the CloudSat standard product, the 

retrievals made in this study are better suited as “truth” to validate the CloudSat standard 

product. 
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5.2 Comparison of Snowfall Rates 

 For comparison with the annual mean snowfall rate calculated in this study, the annual 

mean snowfall rate is also calculated using the surface snowfall rate provided by the 2C-SNOW-

PROFILE data product, and is shown in Figure 31.  Figure 32 shows the comparison of the 

annual mean snowfall rate calculated from the CloudSat 2C-SNOW-PROFILE data, with the 

annual mean snowfall rate calculated from the surface observations at United States weather 

stations (averaged to 1° latitude by 1° longitude grid boxes) and Canadian weather stations.  The 

bias, correlation coefficient, RMSE, and slope of the linear regression line for this data set are 

0.22, 0.63, 0.50 and 1.20, respectively.  The same statistics for the comparison of the annual 

mean snowfall rate calculated with the optimized Ze-S relation and that calculated with the 

surface observations are 0.07, 0.64, 0.34 and 0.90, respectively.  These results indicate that, 

statistically, the optimized Ze-S relation yields a more accurate estimate of surface snowfall rate 

than the 2C-SNOW-PROFILE snowfall rate when compared to historical data for surface 

observations of snowfall.  It should be noted that because the surface observations themselves 

are used to determine the weighting factors in the optimized Ze-S relation, it is predictable that 

the optimized Ze-S relation would perform well.  However, these results indicate that the 

optimized Ze-S relation can be used to accurately estimate snowfall rate from radar reflectivity. 

 To determine the geographical locations where the annual mean snowfall rates calculated 

with the optimized Ze-S relation are greater or less than the snowfall rates calculated with the 

2C-SNOW-PROFILE data, the difference in these two quantities is shown for the area around 

North America in Figure 33.  Most of the snowfall areas in the figure are blue, indicating that the 

optimized Ze-S snowfall rate is lower than the 2C-SNOW-PROFILE snowfall rate for most of 

North America.  This may be due to the fact that the optimized Ze-S snowfall rate is calculated 



87 
 

using the parameterization scheme described previously to determine the conditional probability 

of solid precipitation, which accounts for the vertical temperature lapse rate in the 500 m nearest 

to the surface.  The 2C-SNOW-PROFILE algorithm does not include lapse rate information, and 

thus does not account for instances when a temperature inversion may occur.  In these instances, 

the temperature aloft is warmer than the near-surface temperature, and rain falling at the surface 

may be incorrectly classified as snow, resulting in an overestimation of surface snowfall rate. 

The red areas over Greenland in the figure are actually locations where the elevation data 

contained within the CloudSat data set are incorrect (Box and Rinke 2003, Tanelli et al. 2008).  

Due to the inaccuracies in the elevation data, the CloudSat data set contains an incorrect location 

of the surface bin for these radar profiles, causing unexpected surface contamination in the bins 

that are used to calculate surface snowfall rate.  Although this inaccuracy leads to incorrect 

snowfall rates over Greenland, it affects neither the statistical results for the Ze-S relations nor 

the weighting factors for the optimized Ze-S relation, because these are only based on 

comparisons to surface observations over the United States and Canada. 

 The regions where the optimized Ze-S relation snowfall rate and the 2C-SNOW-

PROFILE snowfall rate differ the most (the dark blue areas in Figure 33) are the western coast of 

British Columbia, Canada and the coast along the southeastern portion of Alaska (in the region 

near Juneau, AK).  There is a large concentration of islands in this region, and due to the fact that 

the 2C-SNOW-PROFILE algorithm only excludes two bins above the surface over water, rather 

than excluding four bins as is done in this research, the radar reflectivity used to calculate 

snowfall rate in the 2C-SNOW-PROFILE data set may be contaminated with surface clutter in 

this region, causing an overestimation in snowfall rate by the 2C-SNOW-PROFILE algorithm. 
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Figure 31.  Annual mean snowfall rate (mm d-1) calculated using the surface snowfall rate from the 

CloudSat 2C-SNOW-PROFILE data product. 
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Figure 32.  Annual mean snowfall rate (mm d-1) calculated using the CloudSat 2C-SNOW-PROFILE 

snowfall rate, compared with the annual mean snowfall rate calculated from surface observations of 

snowfall at United States weather stations (averaged to 1° latitude by 1° longitude grid boxes) and 

Canadian weather stations. 
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Figure 33.  Difference in annual mean snowfall rates (mm d-1) calculated using the optimized Ze-S 

relation and the CloudSat 2C-SNOW-PROFILE snowfall rate.  Blue indicates that the optimized Ze-S 

relation yields a lower annual mean snowfall rate than the 2C-SNOW-PROFILE annual mean snowfall 

rate. 
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CHAPTER 6 

SUMMARY AND FUTURE WORK 

6.1 Classification of Precipitation Phase 

 One main goal of this research was to determine whether certain geophysical parameters 

have an effect on precipitation phase, and to develop a parameterization scheme that incorporates 

the significant geophysical parameters in order to estimate the conditional probability of solid 

precipitation.  The geophysical parameters investigated are near-surface air temperature, 

atmospheric moisture, low-level vertical lapse rate, surface skin temperature, surface pressure, 

and land cover type.  Results show that atmospheric moisture impacts precipitation phase, and 

that wet-bulb temperature, rather than temperature, should be used to separate solid and liquid 

precipitation.  This is because wet-bulb temperature is closer to the actual temperature of 

precipitation particles, and because it has a smaller range for which there is uncertainty as to 

whether the precipitation is solid or liquid.  Results indicate that vertical lapse rate, and to a 

somewhat lesser degree surface skin temperature, also have an effect on the wet-bulb 

temperature threshold.  When global data is considered, the influence of surface pressure is 

unclear, although over the United States it does appear to influence precipitation phase.  For this 

reason, surface pressure is not included in the parameterization scheme, except as required to 

calculate wet-bulb temperature.  Results show that land cover type does not affect the wet-bulb 

temperature threshold.  A parameterization scheme has been developed that returns the 

conditional probability of solid precipitation given 2 m temperature, relative humidity and 

surface pressure (to calculate wet-bulb temperature), low-level vertical lapse rate, surface skin 

temperature, and surface type. 
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6.2 Estimation of Surface Snowfall Rate 

 Another main goal of this research was to develop a global surface snowfall distribution 

using radar reflectivity data.  To achieve this goal, first, thirty-six Ze-S relations have been 

developed for four particle shapes (rosettes, sectors, and dendrites (Liu 2004), and aggregates of 

bullet rosettes (Nowell et al. 2013)), three PSDs (from Sekhon and Srivastava 1970, Field et al. 

2007, and Brandes et al. 2007), and three terminal velocities developed from Locatelli and 

Hobbs (1974).  The annual mean snowfall rate has been calculated with the Ze-S relations and 

CloudSat radar reflectivity data, and the result has been compared to surface observations of 

snowfall over the United States and Canada.  Results indicate that, in general, the Ze-S relations 

for dendrites greatly overestimate the snowfall rate at most locations, those for rosettes 

underestimate the snowfall rate, and those for aggregates and sectors give a more accurate 

estimate.  However, there are locations where the dendrites underestimate the snowfall rate, and 

other locations where the rosettes overestimate the snowfall rate, further supporting the fact that 

it is difficult to accurately estimate snowfall rate in all locations using a single Ze-S relation. 

 An effort has been made to identify which particle shape provides the best model for 

different parts of the United States.  Results indicate that rosettes are generally not a good model 

for snow falling in the northeastern part of the United States.  Rosettes have a greater density 

than the other particles studied in this research, and these results could indicate that the snow 

particles that typically fall in this region are relatively low in density, while the snow particles 

falling in other parts of the country may have a higher density.  This type of information can be 

used in future research to allow for Ze-S relations for different particle shapes to be applied for 

different locations, in order to obtain the most accurate estimate of surface snowfall rate. 
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An optimized Ze-S relation has been developed, in which a weighting factor is applied to 

each of the thirty-six Ze-S relations in order to match the surface observations of snowfall as 

closely as possible.  Using this optimized Ze-S relation, a global distribution of surface snowfall 

rate has been developed.  The annual mean snowfall rate calculated with the optimized Ze-S 

relation has been compared to that calculated from surface observations of snowfall over the 

United States and Canada, and to that calculated from the CloudSat standard product for 

snowfall in this region.  Results indicate that the surface snowfall rate calculated with the 

optimized Ze-S relation is generally less than that calculated using the CloudSat standard product 

for snowfall.  This difference may be due to the different particle models, specifically, the 

particle shapes, size distributions, and terminal velocities, that are used in developing the Ze-S 

relations.  Additionally, the CloudSat standard product algorithm only eliminates two bins above 

the surface over water, which may result in overestimation of the snowfall rate due to surface 

contamination, especially in coastal locations.  Finally, the CloudSat standard product algorithm 

does not account for lapse rate when determining surface precipitation phase, and this can result 

in overestimates of surface snowfall rate due to the fact that precipitation may be classified 

incorrectly in the presence of temperature inversions.  This result reinforces the recommendation 

that lapse rate should be taken into account when classifying surface precipitation phase. 

6.3 Future Work 

 In order to achieve the most accurate estimation of surface snowfall rate, the Ze-S relation 

optimization scheme described in this study can be expanded to include surface observations 

from around the globe.  There are a number of optimized Ze-S relations that can be developed to 

achieve the most accurate estimate of snowfall rate.  For example, a single global optimized Ze-S 

relation that utilizes global observations of surface snowfall rate can be developed.  Additionally, 
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regional optimized Ze-S relations can be developed using data from each individual region, with 

the potential to calculate even more accurate surface snowfall rates from radar reflectivity data.  

Finally, optimized Ze-S relations can be developed for different geographical and meteorological 

conditions.  For example, it may be useful to develop separate optimized Ze-S relations for high 

and low elevations.  At higher elevations, the surface pressure is relatively lower, resulting in 

faster falling precipitation particles, and ultimately higher precipitation rates.  Additionally, 

different optimized Ze-S relations can be developed for different temperatures regimes, since 

individual particles such as rosettes, sectors, and dendrites are more common at colder 

temperatures, while aggregate particles are more likely to form at relatively warmer 

temperatures. 

 When optimized Ze-S relations are developed for these different geographical and 

meteorological conditions, care will have to be taken so that the horizontal gradient of surface 

snowfall rate is small.  In other words, the snowfall rate calculated for one location should not 

differ greatly from the snowfall rate at a nearby location.  This could be achieved by developing 

an optimized Ze-S relation that is a function of the geographical and/or meteorological 

condition(s) (e.g. elevation, pressure, or temperature). 
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