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ABSTRACT

A Multidimensional Technique for Measuring Consensus Within

Groups via Conditional Probability

Mushtaq K. Abd Al-Rahem

A recent increase in the use of the term “consensus” in various fields has

led researchers to develop various ways to measure the consensus within and

across groups depending on the areas. Numerous studies use the mean or

the variance alone as a measure of consensus, or lack of consensus. Most of

the time, high variance is viewed as more disagreement in a group. Using

the variance as a measure of disagreement is meaningful in an exact com-

parison cases (same group, same mean). However, it could be meaningless

when it is used to compare groups that have different sizes, or if the mean is

different. In this thesis, we establish the fact that the range of the variance

is a function of the mean, we present a new index of disagreement , φ, and

measure of consensus, ψ = 1 − φ, that depend on both, the mean and the

variance, by utilizing the conditional distribution of the variance for a given

mean. Initially, this new index is developed for comparison of data collected

using a Likert scale of size 5. This new measure is compared with the results

of two other known measures, to show that in some cases they agree, but

in other cases the new measure provides additional information. Next, to

facilitate generalization, a new algorithmic method to determine the index

using a geometric approach is presented. The geometric approach makes it

easier to compute the measure of consensus and provides the foundational

ideas for generalizing the measure to Likert scales for any n. Finally, a mul-

tidimensional computational technique was developed to provided the final

step of generalization to Likert scales of any n.
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Chapter 1

Introduction

The challenge with measuring consensus in groups, as a field of study, and

other sciences that depend on opinions or beliefs is that there is no “ex-

act” right answer, but rather methods that try to describe human behavior

through numbers. For many years, researchers spent much time on different

approaches to create rules or axioms to be a basis for anyone working in this

field. Psychology, for example, has a long history of trying to set or define

measurements. Psychological testing began with Darwin’s first book The

Origin of Species in 1859. It acquired its current widespread definition by

Stanley Stevens in 1946 [37], [43].

One of the most common approaches for measuring thoughts is by turning

them into numbers by the use of scales. Scales developed for this purpose

include; the Borg scale [44], the Guttman scale [27], and the Likert scale

[39]. In early years, Likert data was used in ordinal ways and interval ways.

Therefore, the mean and the variance of this type of data were determined

and handled in meaningful ways [24]. Moreover, Norman [44] gave a con-

vincing argument for the use of parametric methods with Likert data, and

Steven in 1946 presented an article on different kinds of scales and allowable

statistics, where he included an argument about whether Likert data was

ordinal or interval [57].
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In this thesis, as in many other consensus measurement studies, our data

were collected by using the Likert scale. The Likert scale is used when respon-

dents express their strength of agreement regarding several statements. Typ-

ically, response options vary from “Strongly Disagree” to “Strongly Agree.”

Moreover, the central point refers to neutrality, and the ratings were made

to represent unidirectional positions [15], [44].

Even though those who work in the field of consensus share the same

word, consensus, there are variations in the definitions of this term. The

main reason for this diversity of the definition of consensus is the extensive

use of this term in many different subjects, such as Politics, Economics,

and Sciences. An illustration of how several scientific fields use consensus is

presented by Lehrer and Wagner [42].

Although some of the theories presented in literature have proven to be

insufficient, we find various atomistic, and individualistic methods that have

gripped philosophical thought from time to time. Therefore, some factors of

consensus are needed to give an explanation of central concepts or direction

of thinking. In Social Choice Theory, for example, the discussions and anal-

ysis of consensus measurement are introduced by Bosch[13]. Absolute and

intrinsic measures of consensus were proposed, analyzed and axiomatically

characterized.

In this work, the term of “consensus” references to common opinions,

beliefs, or perceptions achieved by a group of individuals, while “disagree-

ment”means the variations of belief, opinion, or attitude. Analytically, con-

sensus and disagreement are opposites. In other words, each one is the inverse

of the other, or, mathematically, you can say each one is the complement of

the other with respect to one or if you add consensus and disagreement you

get one. For instance, if you have a 90% consensus in your group work, it

means that there is 10% disagreement within the same group.

For purposes of organization and to keep clarity in check while going a

little deeper in the introduction, we divide the rest of the preface into two
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sections: the motivation and the literature survey.

1.1 Motivation

From the beginning of humankind, people have not lived in seclusion, but

rather in groups. The rising population has led to the necessity of making

various decisions, most of which are collective. Most of these examples are

evident every day, from important cases such as the relations between coun-

tries or where to build new nuclear plants, to relatively minor decisions like

which restaurant you and your family members or friends will choose for

lunch on a particular day.

Moreover, the cases necessitating the need for group decisions has grown

even more after the technology has made the world a global village. Even

you agree or not, many times you will find yourself in a new group at one of

the social websites or cell phone applications, and you might be a member

of a group decision.

To obtain a better collective decision, which realizes a greater content-

ment among members, it is important that decisions are made with consen-

sus. The reason for this, in many examples, is that it is not advantageous for

the group as a whole if the decision is enjoined by a subset of the individuals

[4], [21].

Even ignoring or missing a person in a group decision might make a

big difference, one percent error in the consensus measurement may lead

to the wrong direction in formulating valuable decisions. Consequently, the

requirement of right tools to measure the consensus in one group or among

individual groups is a major step for getting the agreement or minimizing

the disagreement [4].

As we mentioned above, the population is increasing, and the consequence

is a rising level of diversity of opinions and ideas. In many cases, therefore,

the Yes/No responses seems inadequate more often. In fact, even the five
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items of Likert scale is not sufficient to work within particular situations.

Accordingly, we deliberately spend a lot of time in this endeavor working to

build a robust measure initially for the five point Likert scale and then we

set out to generalize the method to any number of Likert scale choices.

1.2 Literature Survey

Seeing that groups usually do not attain total agreement, some researchers

seek to measure the “distance” from the consensus [30], [41], [13]. Other

studies in this field aim at finding out how much consensus a group possesses

or, the determination of the exact ratio of disagreement the board of directors

maintains. Furthermore, “Do We Have Consensus?” is the central question

of Wisecup [60] for his research in 2011.

In the early years of studying in the area of consensus, researchers were

concerned with exploring consensus in small decision-making groups. Hare

presented one preliminary study in 1952 [30]. The main idea of his work

involved assigning to the group a rank ordering task, and then the consensus

is the difference between the average correlation of the level before and after

the discussion.

Knutson [41] gave groups five choices extending from the highest conser-

vative to the most liberal policy. The procedure of Knutson works determines

the distance from the agreement at the conclusion of a discussion. Each group

member was supposed to select only one of the five alternatives, and then

compute the total number of positions the members were far from the most

agreed-upon policy. In fact, this procedure was first presented by Kline [40]

but for six choices of alternative instead of five. Hill [34] measured the con-

sensus in his paper by asking individual group members to give a rating for

their level of agreement with the final group decision.

Indeed, Hill is not the first or the only one to utilize the use of the percent-

age as the main idea for measuring agreement. Since percentage agreement
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is not hard to compute or to understand, this measure of consensus is one

of the most common tests that is often used. However, the percentage can

produce the best results if used on binary response and has more application

to small group consensus [23],[49].

Spillman, Bezdek, and Spillman [56] believe the measures discussed above

seem incompatible with small groups as an ongoing dynamic process. The

dynamic structure of small group variables must be studied if these groups

are to be considered from a general systems perspective. Therefore, a couple

of years after Hill’s publications, a new way of measuring the consensus was

introduced. The method depends on the application of fuzzy mathematics

in the structure and analysis of singular and group preference matrices. The

characteristics of their work in comparison to all other studies done before

applies at different times during group discussion rather than a single alter-

native at the conclusion of the discussion [41], [56], [40].

Many researchers use statistical concepts in measuring consensus. The

variance that is determined from the Likert data and is also one of the most

common tools for measuring consensus or, to be more precise, the deficiency

of consensus. There are advantages and disadvantages for using the variance

as a measure of consensus. On the one hand, it is significant in an exact

comparison status. But, on the contrary, it could be meaningless when it is

used to compare groups that have different sizes or have differences in mean

value [17].

One of these methods that depend on the variance only for measuring

the consensus is called rWG proposed in [35] by James et al. The rWG index

is computed by comparing the observed within-group variance with an ex-

pected variation from random responses. In other words, you can calculate

rWG index by dividing the variance by an estimate of the amount of vari-

ance that would be expected by chance alone, and then subtract this value

from one. Comparatively, this measure is not difficult to determine and can

almost adapt to a scale from 0 to 1. rWG can be used for across time com-
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parisons with the consideration that this measure is affected by sample size.

Moreover, the major difficulty with the measure is that it cannot be used as

a comparison across different studies [17].

If we have enough knowledge in statistics, we can apply the entropy equa-

tions. In general, entropy in statistical thermodynamics as a measure of the

number of microscopic configurations that a thermodynamic system can have

when in a state specified by certain macroscopic variables[25]. You don’t get

it, right? Me either! Let us focus on the statistical definition then. Entropy,

in statistics, means a logarithmic measure of the number of cases with a

remarkable probability of being taken. Also, defined as the measure of disor-

der of a system, the higher the disorder, the higher the entropy. In general,

Entropy is provided by:

S = kB
∑
i

pi log pi

where kB is the Boltzmann constant and pi is the probability that the system

is in the ith state[22].

The reason for the above description of entropy is that Shannon [54]

introduced a widely used formula for this −
∑
pi log pi where pi refers the

probability that the ith event takes places. This formula is then used by

Tastle and Wierman [59] to present the measure of consensus Cns(X). This

measure of consensus, Cns(X), was developed after they established first

an essential set of rules that they believed should be satisfied before any

measure can be considered a viable solution to the Likert scale consensus

problem [58]. Likert scales in Tastle and Wierman measure are considered

to be ordinal and then it uses the probability distribution and the distance

between categories to produce a value between 0 and 1. Cns(X) defined as:

Cns(X) = 1−
n∑
i=1

pi log2(1−
Xi − µX
dX

)

where pi is the probability of outcome Xi, µX is the mean of X and dX =

6



Xmax −Xmin.

Not only Tastle and Wierman utilize Shannon’s formula to measure con-

sensus, but many other scholars employed entropy to represent the degree of

consensus. Researchers use this formula as a method for selecting the best

classifier in a decision tree [50], to describe status in a social science sys-

tem [9], or as an index to measure consensus for economic theory and policy

among economists [8].

More recently, work presented by Beliakov et al. [10] focuses on the

problem of constructing functions that can measure the degree of consensus

for a set of inputs provided over the unit interval. They introduced two

consensus operators built from aggregation functions and inclusion factors.

Zhang et al. [61] and Alcalde–Unzu and Vorsatz [4] recently proposed rules

that, as they believe, will improve the consensus making process.

There are many other studies for measuring the consensus in numerous

ways. From an approach based on preference relation modeling that examines

consensus in the context of the group decision making process [31],[61], [47],

to geometric cardinal consensus index to measure consensus degree among

decision makers [20]. Moreover, a direct consensus framework that provides

individual preference vectors of alternatives is another approach presented

by Dong and Zhang [21].

This work produces a new index to compare the measure of consensus of a

group using data composed of Likert items. Likert items are usually employed

in many fields to measure situation, priority, and personal reactions. This

thesis is structured as follows: Firstly, the introduction of a new index that

exploits the conditional distribution of the variance for a given mean that

depends on the comparison of data collected using Likert items. A common

5−point Likert scale is used in the second chapter, which is the first paper.

Chapter 3, the second paper, shows that the same values of disagreement can

be computed, and then the consensus, by using simple geometric and numer-

ical steps rather than intense calculus with many cases. Chapter 3, which is

7



divided into several subsections, provides two algorithms along with all the

necessary facts from the areas of computational geometry, conditional prob-

ability, and consensus. A new multidimensional process for generalizing the

consensus measure is presented in the Chapter 4, the third paper. Chapter 4

focuses on the generalization, with consideration of the conditional distribu-

tion of the variance for a given mean, using multidimensional computational

methods to produce comparable results to methods used in Chapters 2 and

3. Chapter 5, the last chapter, provides a brief discussion and various open

problems.

8



Chapter 2

Paper 1: A method for

measuring consensus within

groups: An index of

disagreement via conditional

probability

This paper published in February 2016 in the Information

Sciences journal in ELSEVIER Inc. See references for the full

citation.
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Abstract

This paper presents a new index of disagreement (or measure of consen-

sus) for comparison of data collected using Likert items. This new index,

which assess the level of disagreement among group members, exploits the

conditional distribution of the variance for a given mean. The variance is

often used as a measure of disagreement, with high variance seen as a high

disagreement in a group. However, since the range of the variance is a func-

tion of the mean, this implies that for a mean close to the end points of the

scale, the range of the variance is relatively small and for a mean at the cen-

ter of the scale the range of the variance is larger. The index of disagreement

introduced in this paper takes into account both the mean and the variance

and provides a way to compare two groups that is more meaningful than just

considering the variance or other measures of disagreement or consensus that

only depend on the variance.

10



2.1 Introduction

In this article, consensus refers to a belief, opinion, or perception reached

by a group of persons, specifically the extent to which the group members

can agree on Likert scale items. Disagreement refers to a difference of belief,

opinion, or perception; it is the inverse or opposite of consensus. The new

measure introduced focuses specifically on consensus measured using Likert

scale item responses. The idea of measuring consensus has been appearing

in many forms in recent literature.

One of the easiest and most common measures of consensus is the per-

centage agreement measure. This measure, which is used to describe the

percentage of group members or estimate the percentage of a population

who endorse a particular belief, is easy to compute and to understand. The

measure works best for binary responses, has been used in various situations

and has been applied to small group consensus [23],[49]. Another very com-

mon measure of consensus, or lack of consensus, is variance. There have been

many discussions since Stevens [57] 1946 treatise on types of scales and per-

missible statistics about whether Likert data are ordinal or interval. In the

past, Likert data have been handled in both ways [24] and thus the mean and

variance of this type of data are computed and have been used in meaningful

ways. Norman [44] gives a compelling argument for the use of parametric

methods with Likert data. Thus, variance, computed from Likert data, is of-

ten used to discuss the disagreement or lack of consensus in a group. There

are some disadvantages to using this statistic as a measure of disagreement;

variance is only meaningful in an exact comparison context and cannot be

meaningfully used to compare groups when the mean or the group size are

different [17].

A more refined measure of consensus that can be applied to Likert data

is the within-group agreement index (rWG). This index is calculated by

dividing the variance by an estimate of the amount of variance that would

be expected by chance alone, and then subtracting this value from one [35].
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This measure is relatively easy to compute and roughly conforms to a scale

from 0 to 1, although values sometimes fall outside this range. While this

measure is affected by sample size, it can be used for across time comparisons

and rWG does control for chance. However, this measure cannot be used to

compare across studies [17].

Another measure of consensus from information theory is Entropy or

the measure of the degree of disorder of a system. Shannon [54] proposed

the most widely used formula for this −
∑
pi log pi where pi represents the

probability that the ith event occurs. Others employed entropy to indicate

the degree of consensus as a method to select the best classifier in a decision

tree [50], to describe status in a social science system [9], or as an index to

measure consensus for economic theory and policy among economists [8].

More recently, Tastle and Weirman [[58],[59]] introduce a measure of con-

sensus that build on Shannon’s entropy and also applies to Likert scale re-

sponses; however, unlike some of the previously mentioned measures, these

authors consider Likert data to be ordinal. Their measure uses the prob-

ability distribution and the distance between categories to produce a value

between 0 and 1. They define consensus, Cns(X), as follows:

Cns(X) = 1−
n∑
i=1

pi log2(1−
Xi − µX
dX

)

where pi is the probability of outcome Xi, µX is the mean of X and dX =

Xmax−Xmin. The authors incorporate aspects of the entropy measure in the

calculation and although they consider the data as ordinal, they do employ

the use of the mean.

In an earlier paper, Tastle and Weirman [58] also establish an important

set of rules that they believe must be satisfied before any measure can be

considered a viable solution to the Likert scale consensus problem. The four

rules follow:

1. For a given (even) number of individuals participating in

12



a discussion on some question of interest, if an equal num-

ber of individuals, n/2, separate themselves into two disjoint

groups, each centered on the strongly disagree and strongly

agree categories, the group is considered to have no consen-

sus.

2. If all participants classify themselves in the same category

of the Likert scale, be it to agree or disagree on the question

or matter at hand, or if all are neutral on the matter, then

the consensus of the group is considered to be complete at

100%.

3. If the mix of participants is such that n/2 + 1 participants

assign themselves to any one category, the degree of consen-

sus must be greater than 0, for the balance in the group is

no longer equal.

4. As the number of categories to which participants classi-

fies himself/herself diminishes, the consensus must increase,

eventually approaching 1 on the unit interval. Thus, when

all participants place themselves in a single category, con-

sensus has been maximized and it considered to be perfect,

and that is given a value of 1. (p. 387)

There is also another approach to consensus based on preference rela-

tion modeling that examines consensus in the context of the group decision

making process [31]-[61]. This approach is applied to multi-criteria decision-

making problems where a finite set of alternatives must be compared and/or

ordered and each alternative has multiple criteria to consider [47]. The ap-

proach stresses the importance of coming to an acceptable level of agreement

among a group of experts, for example doctors deciding on a course of patient

treatment, and considers reaching consensus as a systematic course of action

that is implemented in a group under the supervision of a moderator with

13



the intention of reducing discordance. The guiding idea in this approach is to

gather relevant information from experts in each round of discussion [48]. In

some models, this method includes the use of an index of comparability and

an index of concordance to regulate information flow and to invite discordant

and confident experts to explain opinions to the group in order to facilitate

consensus building [47].

Following this same approach of multiperson decision making with pref-

erences, Dong et al. [20] define the geometric cardinal consensus index and

the geometric ordinal consensus index to measure consensus degree among

decision makers. More recently, Dong and Zhang [21] have developed a direct

consensus framework that provides individual preference vectors of alterna-

tives. Standardized individual preference vectors are then aggregated into

the collective preference vector. These help adjust the preference representa-

tion structures that are presented to help decision makers reach consensus.

Zhang, Dong and Xu [61] also recently introduced new rules that they believe

will improve the consensus making process.

There are various ways to define consensus and numerous approaches to

measure consensus within and among groups. The research presented in this

article creates a new index to compare the disagreement (or measure the

consensus) of a group using data collected by Likert items. Likert items

are commonly used in many disciplines to measure attitudes, preferences,

and subjective reactions. For this discussion a common 5-point Likert scale

is used, with the integers 1 through 5 corresponding to the words strongly

disagree through strongly agree.

This new index is based on the fact that when using a Likert scale, treating

the data as interval, and calculating the mean and variance, the range of the

variance is always a function of the mean. For example on a five-point scale,

if the mean is closer to either of the end points (one or five) the variance

must lie within a smaller range of values than if the mean is closer to the

midpoint of three. It is the strong interdependence between the mean and

14



variance for a particular Likert scale that forms the basis for this work.

Thus, any measurement of disagreement or consensus that involves using

the variance is subject to the mean. To overcome this problem, the authors

have developed the new index of disagreement (and its inverse the measure

of consensus) to consider the mean in the calculation and also the range of

values for the variance at that mean. Observations about this relationship

between the mean and the variance of the data expressed for a particular

Likert scale and the implications of this relationship will be developed in this

article. The newly defined index of disagreement and measure of consensus

are comparable across time, groups and studies.

The paper first outlines the mathematical foundations and then give ex-

amples and comparisons with other measures of consensus. Section 2, which

is divided into several subsections, gives the Theoretical Foundations of the

new index of disagreement (Φ) and measure of consensus (Ψ). The subsec-

tions of Section 2 discuss the bounds for the variance, the development of

Φ, and then a discussion of how to compute both Φ and Ψ for a five-point

scale. Section 3 compares Ψ to two other measures, rwg [35] and Cns(X) [59],

showing when they agree and when the new measure will provide additional

or different information. Section 4 discusses conclusions and future work.

2.2 Theoretical Foundations

Consider a survey where in the respondents are asked to choose exactly one

answer from the scales: 1, 2, . . . , n. It is assumed that the scales are defined

to allow meaningful computations of the mean and variance. This means, for

example, that the scale does not represent a categorical variable. Although

there is no theoretical restriction on the number n ( n > 1) of admissible

responses, a number n that is too large would make the survey meaningless.

On the other hand, a too small number n would make the situation triv-

ial. For example, n = 2 yields binomial responses wherein the mean value
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uniquely determines the variance. Since the object of this discussion is to

address the range of variance (as an indicator of consensus) at a given mean,

n = 2 leaves nothing to discuss. Therefore, we will place a restriction that

n > 2. In this paper we will focus on n = 5, because (a) it is one of the most

prevalent modes of questionnaire design and (b) this choice is within mathe-

matical maneuverability. It is noted, however, that while a similar result can

be developed for any number, algebra involved will lose its simplicity for a

larger number n > 5.

Let m and v denote the mean and the variance computed from the survey

defined above. A large value of v suggests a high level of disagreement (equiv-

alently a low level of consensus). For example, a vanishing variance (v = 0)

represents a complete consensus. Therefore, a survey question that yielded

v = 0 indicates a higher consensus than a survey question that yielded, say

v = 2. The latter shows the existence of different responses. However, vari-

ances arising from different survey questions or from the same survey question

for different groups do not always provide a simplistic basis of comparisons of

consensus. This is because the variance ranges in an interval determined by

the mean. It will be seen below that, for a given mean m, variance v varies

between the minimum and the maximum that are determined by m. This

observation leads us to the following question.

Question: Suppose the result of two questionnaires showed means mi and

variances vi, where i = 1 or 2. In notation, we write (v1;m1) and (v2;m2

) . We assume that v1 > v2. Does the second survey question (that had

a smaller variance v2 ) indicate a lower disagreement? Or conversely, does

the first survey question (that had a larger variance v1) represent a higher

disagreement?

It is the thesis of this paper that the above conclusion does not automati-

cally follow and the variance alone is not a total indicator of disagreement (or

consensus). For example, at the mean m2 the variance v2 (the smaller of the
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two) may represent the maximum value the variance may take on, while at

m1 the variance v1 (the larger of the two) may be close to the minimum value

that the variance may take on. It will be seen below that this is considered

as a problem of conditional distribution of variance at a given mean value.

Since variance is used as a measure of disagreement, a low variance sug-

gests a low level of disagreement and a high variance suggests a high disagree-

ment, we will develop an index of disagreement, denoted by Φ(v;m). Consen-

sus will be viewed as the complement of disagreement, Ψ(v;m) = 1−Φ(v;m),

which might be termed as the index of consensus. Since consensus and dis-

agreement are complementary to each other, this reversing does not add any

information.

The new index of disagreement is a conditional distribution of the variance

v for a given mean m. For any given mean m, it has the following properties:

� 0 ≤ Φ(v;m) ≤ 1,

� Φ(v;m) = 1 indicates a maximum disagreement, and

� Φ(v;m) = 0 indicates a minimum disagreement.

The new index of disagreement is based not only on variance, but con-

siders the range of the variance as a function of the mean. Depending on

the values of m1 and m2 , it is possible that a smaller variance represents a

higher disagreement, i.e., Φ(v1;m1) > Φ(v2;m2) is a possibility even when

v1 < v2. It will be seen that Φ(v;m) and v jointly provide a more reasonable

measure of disagreement.

2.2.1 Bounds for the Variance

As mentioned before we consider a survey where a response is made by se-

lecting exactly one value out of the n numerical scales: 1, 2, . . . , n. Let {pi}
denote the distribution of responses so that pi represents the proportion of

responses for the scale value i.
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We have
∑n

i=1 pi = 1. Thus, we have a variable X whose distribution

is Prob(X = i) = pi, where i = 1, 2, . . . , n. For simplicity, the number of

survey respondents is assumed sufficiently large to treat pi as a continuous

variable.

The mean and the variance of X are given by:

m = m(X) =
n∑
i=1

ipi, and

v = v(X) =
n∑
i=1

(i−m)2pi.

Therefore, we have the system of three equations

n∑
i=1

pi = 1,

m =
n∑
i=1

ipi, and (2.1)

v =
n∑
i=1

(i−m)2pi,

with the following restrictions:

0 ≤ pi ≤ 1, i = 1, 2, . . . , n. (2.2)
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Statement 1: For a given mean value m, 1 ≤ m ≤ n, v is bounded by

the following inequalities:

v ≤ (m− 1)(n−m) ≤
(
n− 1

2

)2

(2.3)

and

v ≥ (m− [m])([m] + 1−m), (2.4)

where [m] is the greatest integer ≤ m.

Note: In (3), we have (m − 1)(n − m) =

(
n− 1

2

)2

if and only if

m =
n+ 1

2
.

proof:

The proof for (3) is provided first. Let {p′i} be given by

p′1 =
n−m
n− 1

.

p′n =
m− 1

n− 1
, and

p′i = 0 for 1 < i < n.

Then, we have

n∑
i=1

p′i = 1, m′ =
n∑
i=1

ip′i = m, and

v′ =
n∑
i=1

(i−m)2p′i = (m− 1)(n−m).

Therefore, the upper bound stated in (3) is realized by {p′i}. It has to be

shown that v ≥ v′ for any variance v arising from any {pi}. Since it can be
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verified that (i−m)2(n− 1) ≤ (m− 1)2(n− i) + (n−m)2(i− l), we have

v =
n∑
i=1

(i−m)2pi

≤ (m− 1)2

n− 1

n∑
i=1

(n− i)pi +
(n−m)2

n− 1

n∑
i=1

(i− 1)pi

=
(m− 1)2

n− 1
(n−m) +

(n−m)2

n− 1
(m− 1)

= (m− 1)(n−m) = v′.

The proof for (4) is provided next. Consider {p̂i} where

p̂[m] = [m] + 1−m,

p̂[m]+1 = m− [m], and

p̂i = 0, for all other i.

Then

n∑
i=1

p̂i = 1,
n∑
i=1

ip̂i = m, and

v̂ =
n∑
i=1

(i−m)2p̂i

= ([m]−m)2([m] + 1−m) + ([m] + 1−m)2(m− [m])

= (m− [m])([m] + 1−m).

Therefore, the lower bound stated in (4) is realized by the distribution {p̂i}.
It remains to show that v ≥ v̂ for any variance v arising from any distribution

{pi}.
Using the inequality, (i − m)2 ≥ (m − [m])2([m] + 1 − i) + ([m] + 1 −
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m)2(i− [m]) for any i, we see that

v =
n∑
i=1

(i−m)2pi

≥
n∑
i−1

{(m− [m])2([m] + 1− i) + ([m] + 1−m)2(i− [m])}pi

= (m− [m])2
n∑
i−1

([m] + 1− i)pi + ([m] + 1−m)2
n∑
i−1

(i− [m])pi

= (m− [m])2([m] + 1−m) + ([m] + 1−m)2(m− [m])

= (m− [m])([m] + 1−m)

= v̂,

which completes the proof of Statement 1.

Define Max(v|m) = (m − 1)(n −m) and Min(v|m) = (m − [m])([m] +

1−m). The range of the variance,R(m) = [Min(v|m),Max(v|m)], therefore

is a function of a given mean. When n = 2, it can easily be shown that

Max(v|m) = Min(v|m). Inequalities (3) and (4) suggest that, without ref-

erence to m, a given variance cannot be consider either ”large” or ”small.”

Depending on the value of m) a given value of variance v may be in any part

of the range R(m).

The range of the variance is sketched below for n = 5. The horizontal

axis represents the mean and the vertical axis denotes the variance. The

upper parabola represents the Max(v|m) = (m−1)(n−m), while the undu-

lating graph below represents the Min(v|m) = (m− [m])([m] + 1−m). It is

noted that the graph is symmetrical with respect to the vertical line m = 3.

The graph below in Figure 1 depicts how a given mean dictates a range for

the variance. The range of the variance at any mean will lie between the

parabola and the undulating graph.
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Figure 2.1: The Range of the Variance

For selected values of the mean between 1.0 and 3.0, Table 2.1 numer-

ically illustrates the minimum, maximum, and the width of a range. For

example, the table shows that a wide range (0.0 to 4.0) is allowed for the

variance if the mean is m = 3, while variances corresponding to the mean

m = 1 are afforded with a zero range of variation. The table only presents

mean values from 1.0 to 3.0, since the mean values from 3.0 to 5.0 will be

symmetric with these values in the table. If 3 ≤ m ≤ 5 then, take 6 − m
to find the corresponding value and range for the variance in Table 1. For

example, if m = 4.6 then look at m = 6 − 4.6 = 1.4. Using the table value

of 1.4, we see that the range of variance for 4.6 will also be from 0.24 to

1.44. Both values 4.6 and 1.4 are 1.6 away from the middle of the scale

i = 3. Therefore, again, it is worth reiterating the idea that two variances

associated to different means are not directly comparable because the range

for the variance is dependent on the mean.
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Table 2.1: The Range of Variance for a Given Mean

Mean
Variance

Minimum Maximum Width of Range
1.0 0.00 0.00 0.0
1.1 0.09 0.39 0.3
1.2 0.16 0.76 0.6
1.3 0.21 1.11 0.9
1.4 0.24 1.44 1.2
1.5 0.25 1.75 1.5
1.6 0.24 2.04 1.8
1.7 0.21 2.31 2.1
1.8 0.16 2.56 2.4
1.9 0.09 2.79 2.7
2.0 0.00 3.00 3.0
2.1 0.09 3.19 3.1
2.2 0.16 3.36 3.2
2.3 0.21 3.51 3.3
2.4 0.24 3.64 3.4
2.5 0.25 3.75 3.5
2.6 0.24 3.84 3.6
2.7 0.21 3.91 3.7
2.8 0.16 3.96 3.8
2.9 0.16 3.99 3.9
3.0 0.00 4.00 4.0
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In summary of the above observations, we state the following:

� If two survey questions show the same mean, respective variances in-

dicate the hierarchy of disagreement. A larger (or smaller) variance

shows a higher (or lower) disagreement in such a case.

� A more complex scenario arises when the two survey questions receive

different means. Then, as mentioned above, variance alone is not a

valid indicator in comparing the levels of disagreement. Therefore,

the purpose of this paper is to present a measurement that will be

comparable across means.

2.2.2 Defining the Index of Disagreement

This section goes through the steps necessary to show that Φ(v|m) is a con-

ditional probability density function and give examples of how this measure-

ment along with variance can be used to measure group disagreement for a

Likert item.

It can be verified that the equations in (1) are equivalent to the following:

p1 =
1

2
(v +m2 − 5m+ 6)− 1

2

n∑
i=4

(i2 − 5i+ 6)pi

p2 = −(v +m2 − 4m+ 3) +
n∑
i=4

(i2 − 4i+ 3)pi (2.5)

p3 =
1

2
(v +m2 − 3m+ 2)− 1

2

n∑
i=4

(i2 − 3i+ 2)pi.
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Statement 2: Let t = 1
2
(v +m2 − 3m+ 2), Then

Max(t) =
n− 2

2
(m− 1), and (2.6)

Min(t) =
1

2
([m]− 1)(2m− [m]− 2). (2.7)

From now on, it is assumed that n = 5. We also assume that 1 ≤ m ≤ 3.

It will be seen that this restriction does not affect generality due to the

aforementioned symmetry of the data set with the range of the variance

being the same for m and 6−m.

To simplify notation and avoid the need for subscripting, we let (a, b, c, d, e) =

(p1, p2, p3, p4, p5), so we can rewrite (1) and (2) as below:

a+ b+ c+ d+ e = 1

a+ 2b+ 3c+ 4d+ 5e = m (2.8)

a+ 4b+ 9c+ 16d+ 25e = v +m2

with

0 ≤ a, b, c, d, e ≤ 1,

where m is the mean and v is the variance. The following shows that the

maximum and minimum for the variance holds for a given mean m:

Max(v|m) = (m− 1)(5−m) (2.9)

Min(v|m) = (m− [m])([m] + 1−m)

Let t = 1
2
(v + m2 − 3m + 2). u = m−1

2
, and w = Max{m− 2, 0}. Then, for
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n = 5, (Statement 2) gives:

Max(t) =
3

2
(m− 1) = 3u. (2.10)

Min(t) = 0 for 1 ≤ m ≤ 2 (2.11)

= m− 2 for 2 ≤ m ≤ 3;

i.e. Min(t) = w.

Statement 3: The equations in (8) are equivalent to the following

a =
1

2
(v +m2 − 5m+ 6)− (d+ 3e)

b = −(v +m2 − 4m+ 3) + (3d+ 8e) (2.12)

c =
1

2
(v +m2 − 3m+ 2)− (3d+ 6e).

where

d+ 3e ≤ t− (m− 2)

3d+ 8e ≥ 2t− (m− 1)

3d+ 6e ≤ t

0 ≤ d, e ≤ 1.

Let

Ω1 = {(c, d) | 3d+ 8e ≥ 2t− (m− 1) and 0 ≤ d, e ≤ 1}

Ω2 = {(d, e) | d+ 3e ≥ t− (m− 2) and 0 ≤ d, e ≤ 1}

Ω = (V ) = {(d, e) | 3d+ 6e ≤ t and 0 ≤ d, e ≤ 1}
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and

A1(v) = Area of [Ω1 ∩ Ω]

A2(v) = Area of [Ω2 ∩ Ω]

A(v) = A1(v)− A2(v).

Thus, for a given m, we have

A(v) = Area of{(d, e) | (d, e) satisfies (12)}.

The ratio
A(v)∫
A(v)dv

represents the conditional probability density function

of v|m.

Statement 4: For 1 ≤ m ≤ 3, we have

g1(t) =
A1(v)

36
=
Ã1(t)

36
= t2, w ≤ t ≤ u (2.13)

= t2 − 3(t− u)2, u ≤ t ≤ 2u,

= (t− 3u)2, 2u ≤ t ≤ 3u.

If 1 ≤ m ≤ 2, then g2(t) =
A2(v)

36
=
Ã2(t)

36
= 0. (2.14)

If 2 ≤ m ≤ 3, then (2.15)

g2(t) =
A2(v)

36
=
Ã2(t)

36
= t2 − 6(t− w)2, w ≤ t ≤ 3

2
w

= 3(t− 2w)2,
3

2
w ≤ t ≤ 2w,

= 0, 2w ≤ t ≤ 3u.
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Statement 5: Let g(t) = g1(t)− g2(t). Then,∫ 3u

w

g(t)dt = 2u3 − w3. (2.16)

Therefore,
g(t)

2u3 − w3
is the conditional probability density function of

t = t(v) for a given m.

Definition: The index of disagreement Φ(v|m) is defined as below:

(i) If m = 1, then we define Φ(v|m) = 0.

(ii) If 1 < m ≤ 3, then we define

Φ(v|m) =

∫ τ
w
g(t)dt

2u3 − w3
where τ = 1

2
(V +m2 − 3m+ 2).

(iii) If 3 ≤ m ≤ 5, then w define

Φ(v|m) = Φ(v|6−m).

In addition, the following two functions are defined to be used later.

G1(τ) =

∫ τ

w

g1(t)dt+
1

3
w3 =

1

3
τ 3, w ≤ τ ≤ u

=
1

3
τ 3 − (τ − u)3, u ≤ τ ≤ 2u, (2.17)

= 2u3 +
1

3
(τ − 3u)3, 2u ≤ τ ≤ 3u.

and

G2(τ) =

∫ τ

w

g2(t)dt+
1

3
w3 =

1

3
τ 3 − 2(τ − w)3, w ≤ τ ≤ 3

2
w

= w3 + (τ − 2w)3,
3

2
w ≤ τ ≤ 2w, (2.18)

= w3, 2w ≤ τ ≤ 3u.
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It is noted that G1(w) − G2(w) = 0, G1(3u) − G2(3u) = 2u3 − w3, and∫ τ
w
g(t)dt = G1(τ)−G2(τ).

Statement 6:

0 ≤ Φ(v|m) ≤ 1. (2.19)

Φ(V |m) = 1 shows that (under the given m) V provides the maximum

degree of disagreement, i.e.,v = (m− 1)(5−m). (2.20)

Φ(v|m) = 0 shows that (under the given m) v provides the minimum

degree of disagreement, i.e.,v = (m− [m])([m] + 1−m). (2.21)

Φ(v|m) = 0, m = 1. (2.22)

=
G1(τ)−G2(τ)

2u3 − w3
, 1 < m ≤ 3

= Φ(v|6−m), 3 < m ≤ 5.

It should be noted that variance is an unconditional measure of disagree-

ment; ”unconditional” in the sense that two variances can be compared with-

out regard to the underlying mean values. On the other hand, being a condi-

tional probability distribution, Φ(v|m) is a relative measure of disagreement

computed at a given mean value m. It is the thesis of this paper that dis-

agreement should be measured using both v and Φ(v|m) as is demonstrated

in the example cases to follow.

Case 1: When the magnitudes of v and Φ(v|m) agree.

More precisely, the following is the situation under consideration.

v1 > v2, and Φ(v1|m1) > Φ(v2|m2).
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Here, v1 represents a higher level of dispersion than v2. Further, v1 represents

a higher level of disagreement (i.e., a higher cumulative value in terms of the

conditional distribution) than v2 at their respective locations, i.e., at m1 and

m2. Therefore, the disagreement is considered higher for the combination

(v1,m1) than for (v2,m2).

Example: Consider the situation where (v1,m1) = (1.9, 4.2) and (v2,m2) =

(1.1, 4.6). v1 > v2 since v1 is 1.9 and v2 is 1.1. By computation we get

Φ(v1|m1) = Φ(1.9|4.2) = Φ(1.9|1.8) = 0.91 and

Φ(v2|m2) = Φ(1.1|4.6) = Φ(1.1|1.4) = 0.78;

i.e., Φ(v1|m1) > Φ(v2|m2) . Therefore, v1 represents a larger range of opinions

than v2. One can initially suspect that the higher value of v1 = 1.9 is due to

its association with the lower mean m1 = 4.2, that tends to allow more room

for the range of opinions than the higher mean m2 = 4.6 and therefore that

the higher value v1 = 1.9 is a indication of a higher level of disagreement.

In this case the notion is maintained, as the inequality Φ(v1|m1) > Φ(v2|m2)

does support it.

Case 2: When the magnitudes of v and Φ(v|m) are different.

This implies the following situation:

v1 > v2, but Φ(v1|m1) < Φ(v2|m2).

In this case, v1 represents a higher level of dispersion in opinions than v2.

However, the conditional distributions of the variance at m1 and m2 indicate

that v1 at m1 indicates a lower percentage of the overall available range than

v2 at m2. Because the inequality v1 > v2 is a result of different mean values,

v1 does not necessarily indicate a higher level of disagreement than v2. In

interpreting survey data, we should express this uncertainty. The example

below serves to further illustrate this point.
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Example: Slightly changing the above example, let us consider the case where

(v1|m1) = (1.9, 4.2) is the same as before, but we modify (v2|m2) in this ex-

ample to a new pair (v1|m1) = (1.2, 4.6). It is noted that the value of v2 is

now changed from 1.1 to 1.2. The inequality v1 > v2 still holds since v1 is

1.9 and v2 is 1.2. However, in this case we have the following relationship:

� Φ(v1|m1) = Φ(1.9|4.2) = Φ(1.9|1.8) = 0.91 and

� Φ(v2|m2) = Φ(1.2|4.6) = Φ(1.2|1.4) = 0.94;

i.e., Φ(v1|m1) < Φ(v2|m2). In this example we can see that even though

v1 > v2 this does not necessarily indicate a higher level of disagreement for

v1 than v2, because a higher variance can be reached at m1 = 4.2 than at

m2 = 4.6 (See Table 1). v1 = 1.9 belongs to an upper 9 percent (= 1 -

0.91) of the admissible range at the location m1 = 4.2, while v2 = 1.2 at the

location m2 = 4.6 belongs to a more limited upper 6 percent (= 1 - 0.94) of

the range. In interpreting the survey data, therefore, we should express the

uncertainty arising from this type of a situation.

More examples will be given later in Section 4, when we compare the Φ

measurement with variance and rWG for climate survey data taken from a

study of faculty members in various departments and colleges at a university.

2.2.3 Computing the Disagreement Index Φ and Con-

sensus Measure Ψ

In order to compute Φ we follow the steps below:

1. If m = 1, then Φ(V |m) = 0.

2. If 1 < m ≤ 3. For all V, Min(V |m) ≤ V ≤Max(V |m).

Compute:

u =
m− 1

2
, w = Max{m−1, 0}, τ =

1

2
(V+m2−3m+2), and D = 2u3−w3.
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At this juncture, it should be observed that

1 < m ≤ 2 implies w = 0.

2 < m ≤ 7

3
implies w <

3

2
w ≤ 2w < u < 2u < 3u.

7

3
< m ≤ 5

2
implies w <

3

2
w ≤ u < 2w < 2u < 3u.

5

2
< m ≤ 3 implies w < u ≤ 3

2
w < 2w < 2u < 3u.

3. Compute G1(τ) by (17).

4. Compute G2(τ) by (18).

5. Compute Φ(v|m) = G1(τ)−G2(τ)
D

.

6. If 3 < m ≤ 5, compute Φ(v|m) = Φ(v|6−m).

7. Compute Ψ = 1 - Φ.

Table (2.2) shows the Cumulative Conditional Distributions of Φ and Ψ

for selected values of m and v.

2.3 Comparing Ψ with rWG and Cns(X)

This section considers Likert data from a survey measuring organizational

climate in an academic department. The examples below are not used to draw

conclusions about the data, but merely to show the usefulness of Ψ compared

to other measures of consensus. The post-survey data were analyzed to

determine if there was any evidence that Ψ could provide more or different

information about consensus of a group than variance, rWG or Cns(X). The

different measures of consensus (Ψ, rWG, Cns(X)) can agree or disagree and
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Table 2.2: Sample Cumulative Conditional Distributions for Index of Dis-
agreement Φ(v|m) and Measure of Consensus Ψ

Mean Variance (v) Φ(v|m) Ψ
1.1 0.09 0.000000 1.000000

0.1 0.000167 0.999833
0.2 0.221333 778667
0.3 0.878500 0.121500
0.39 1.000000 0.000000

1.2 0.16 0.000000 1.000000
0.2 0.001333 0.998667
0.3 0.057167 0.942833
0.4 0.284000 0.716000
0.5 0.647333 0.352667
0.6 0.914667 0.085333
0.7 0.995500 0.004500
0.76 1.000000 0.000000

below we consider various cases to compare the measures. Recall that rWG

is inversely related to the variance, so when the variance increases, rWG

decreases. Cns(X) uses the probability distribution and the distance between

categories to compute the consensus measure and the newly introduced Ψ is

computed by considering both the mean and the range of variance at that

specific mean.

Table (2.3) offers an example where the variance of Q38 is larger than for

Q39. In this case all three measures of consensus agree; the smaller variance

goes along with a greater consensus. Looking at this more closely, one notices

that a mean score of 3.8696 is .8696 away from a mean of 3, where the range

of the variance is largest, and the mean 2.2899 is only slightly closer (.7101)

to the mean of 3. In this case when the variance for one question is smaller

than the variance for another question, all measures of consensus go in the

opposite direction and get larger. When the distance from the middle of the

scale is similar for the mean values, then the range of the variance is also
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Table 2.3: Comparison of Cns(X) and rWG with Ψ for Q38 and Q39

Question Mean Variance rWG Cns(X) Ψ
Q38 2.2899 0.8265 0.5867 0.6867 0.9068
Q39 3.8696 0.7621 0.6189 0.7267 0.9188

Table 2.4: Comparison of Cns(X) and rWG with Ψ for Q1 and Q2

Question Mean Variance rWG Cns(X) Ψ
Q1 3.7887 0.7976 0.6012 0.7342 0.9097
Q2 3.3803 0.8390 0.5805 0.6721 0.9351

very similar, so Ψ will agree with the other measures of consensus.

Next, we consider a case Table (2.4) where variance of Q1 is smaller than

the variance of Q2. For this example, both rWG and Cns(X) for Q1 are

larger than for Q2, while Ψ goes in the opposite direction. Since variance for

Q1 is smaller than for Q2 it would seem that consensus should be larger for

Q1 with the lower variance, but the reason that Ψ does not agree with this

(or with rWG and Cns(X)) is due to the different mean scores that provide

different possible ranges for the variance. In this example, the mean score for

Q2 (3.3803) is closer to 3, where the range of the variance is the largest, than

the mean of Q1 at 3.7887 (almost 4). This implies that there is a greater

range for variance for the mean of Q2. Noting that the variance of Q2 is

larger than Q1 does not in itself indicate consensus is smaller as one might

assume. As Ψ considers both the mean and the range of the variance, this

nuance is captured; however, this is not captured by either rWG or Cns(X).

In the final example, we consider a case Table (2.5) where variance of

Q23 is smaller than the variance of Q34. For this example, both rWG and

Cns(X) for Q23 are larger than Q34, while Ψ goes in the opposite direction.

The reason that Ψ does not agree with rWG and Cns(X) again is due to the

different mean scores that provide different possible ranges for the variance.
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Table 2.5: Comparison of Cns(X) and rWG with Ψ for Q23 and Q34

Question Mean Variance rWG Cns(X) Ψ
Q23 1.7429 0.9184 0.5408 0.6735 0.8435
Q34 3.5915 0.9308 0.5346 0.6628 0.8821

In this example, the mean score for Q23 (1.7429) is 1.2571 from the mean

of 3, where the range of the variance is the largest, and the mean of Q34

(3.5915) is only .5915 away from 3. This implies that there is a greater range

for variance for the mean of Q34. So noting that the variance of Q34 is

larger than Q23 again does not indicate consensus is smaller as one might

assume. As previously stated, Ψ considers both the mean and the range of

the variance, and the mean of 3.5915 will have a much larger range for the

variance, than the mean of 1.7429. So even though the variances look very

similar, the one at mean of 1.7429 really implies a much higher variance and

thus a lower consensus.

This section has given a case where Ψ agrees with rWG and Cns(X) and

two cases where Ψ disagrees with the other two. The latter two examples

show that Ψ can indeed provide additional information about the consensus

of a groups’ perceptions on Likert items.

2.4 Conclusions and Future Work

A new index of disagreement (or measure of consensus) has been developed

for the comparison of data collected using Likert items. This paper shows

that variance alone does not tell the entire story about the disagreement or

the consensus of a group on a Likert item. This new index of disagreement

exploits the conditional distribution of the variance for a given mean and

provides more information than the mean and variance alone or even other

measures that are based solely on the variance. The index introduced in this
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paper takes into account both the mean and the variance and can be used

to compare questions with different means or the same question for different

groups.

Although the computation for this new measure may seem daunting at

first, it can easily be computed using an Excel spreadsheet with just a few

columns for calculations or developed as a function in SPSS or your favorite

software package. The authors have developed a simple spreadsheet for com-

puting Ψ and have plans to develop an interactive website for users to enter

the mean and variance to easily compute this measure of consensus.

Future work includes proving that this index can be generalized to larger

values of n and demonstrating with Likert data from several disciplines that

Ψ can add to the interpretation of the consensus within groups, between

groups, or the change in consensus of a group across time.
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Table 2.6: Climate Survey Results.

# SURVEY STATEMENT Mean Variance Ψ

1 My opinions are respected at work. 3.7798 0.8399 0.8960

2 There is a feeling of unity and cohesion in my work-

place.

3.3303 0.8529 0.9310

3 I plan to remain in academia for the rest of my career. 4.3099 0.4740 0.9911

4 I have heard denigrating remarks by faculty, staff, or

students about minority religious groups.

1.6571 0.9005 0.8192

5 At WVU, people use inclusive language (e.g., he/she,

chairperson).

3.5701 0.6436 0.9757

6 There is little collegiality among people at WVU. 2.4811 1.1092 0.8063

7 I feel safe in and around my workplace. 4.2130 0.9542 0.8366

8 I am treated by administration and colleagues with

courtesy and respect.

3.9541 1.0627 0.8008

9 There is a feeling of positive morale. 3.4444 1.165109 0.7864

10 People who make complaints of sexual harassment are

protected from harmful consequences.

3.5050 0.7627 0.9528

11 I have been asked intrusive questions about my per-

sonal life at work.

1.8952 0.8832 0.8857

12 Mentoring at WVU has been beneficial to my career. 3.1495 1.0340 0.8637

13 WVU is a friendly workplace. 3.7156 0.9091 0.8752

14 I have experienced discrimination in the promotion

process because of my gender.

1.9811 0.8949 0.8812

15 I’d recommend WVU to a prospective faculty mem-

ber of my gender.

3.8056 1.0553 0.8054

16 Administrative officials, faculty, or staff tell sexist

jokes.

1.5701 0.4927 0.9863

17 I have heard denigrating remarks by faculty, staff, or

students about race/ethnicity.

1.6698 0.7566 0.9149
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Continuation of Table 2.6

# SURVEY STATEMENT Mean Variance Ψ

18 Work is fairly distributed among colleagues in my

workplace.

2.8224 1.2984 0.7337

19 I have heard denigrating remarks about persons of

my gender.

1.7075 0.7232 0.9353

20 I am expected to work an unhealthy and unreasonable

number of hours to succeed.

2.6944 1.3170 0.7160

21 Sexual harassment complaints are investigated ade-

quately.

3.3402 0.7060 0.9678

22 I have the opportunity to collaborate with other fac-

ulty at WVU.

4.1743 0.4971 .9870

23 Colleagues make me uncomfortable by commenting

on my physical appearance.

1.7358 0.8058 0.9044

24 I believe qualified men are given more career oppor-

tunities than qualified women.

2.4579 1.3826 0.6507

25 Women are adequately represented among the WVU

faculty.

2.5189 1.1091 0.8115

26 When I speak out on issues of concern to me, I am

labeled a troublemaker.

2.4857 1.2907 0.7070

27 My work schedule is sensitive to my social and family

commitments.

3.4860 1.0446 0.8436

28 I am proud to be a member of this faculty. 3.9252 0.8434 0.8954

29 I have heard denigrating remarks by faculty, staff, or

students about gay, lesbian, bisexual, or transgender

persons.

1.8131 0.9837 0.8217

30 There is gender equity in salaries. 2.8738 1.3271 0.7189

31 Faculty are accepted and respected by their peers re-

gardless of gender.

3.9174 0.7802 0.9153
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Continuation of Table 2.6

# SURVEY STATEMENT Mean Variance Ψ

32 Taking time off for family indicates to administration

or colleagues a lack of commitment to my job.

2.5094 1.0523 0.8392

33 Administration respects my religious and cultural

holidays when scheduling work commitments (e.g.,

clinical days, important meetings or events).

3.6916 0.9134 0.8759

34 My talents are recognized by administration or col-

leagues.

3.6389 1.0366 0.8268

35 Sexual harassment incidents occur at WVU. 3.2596 0.7766 0.9450

36 Appropriate accommodations are made for faculty

with physical disabilities.

3.5294 0.7070 0.9653

37 Women’s views are represented fairly on major com-

mittees.

3.5377 0.8986 0.9030

38 Women are interrupted at meetings more often than

men.

2.3558 0.8528 0.9062

39 Contributions made by male and female faculty are

equally valued.

3.8762 0.8945 0.8945

40 I have the same opportunities for informal networking

as my peers.

3.7143 1.0330 0.8211

41 I have equal access to departmental resources (e.g.,

space and laboratory support staff) as my peers.

3.8426 1.0871 0.7885

End of Table
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Chapter 3

Paper 2: A Geometric

Approach for Computing a

Measure of Consensus for

Groups

This paper published in October 2016 in the International

Mathematical Forum in HIKARI Ltd. See references for the full

citation.
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Abstract

Akiyama et al. in [3] present a new important method to determine the

index of disagreement, Φ, and measure consensus, Ψ, for a group of individ-

uals responding to a Likert scale question. Their new measure exploits the

conditional distribution of the variance for a given mean. The index allows

for the comparison of consensus values of different questions for the same

group or the same question for different groups, even though the questions

may have different means. However, in [3] the complicated details make the

new index very difficult to compute. This paper presents a simpler and more

straight forward method to determine the Akiyama et al. measure of con-

sensus, Ψ, by using computational geometry and numerical concepts. This

geometric method is much easier to understand and computes the same values

that Akiyama et al. get using their method. Moreover, this new algorithmic

method is much easier to generalize to values of n larger than n = 5, since

there are many studies that use Likert scales with more than five answer

choices. The algorithms presented in this paper can easily be applied using

any software package with just a few steps for calculations. The authors have

developed a simple spreadsheet for computing Φ and Ψ that allows the users

to enter the mean and variance to get the index of disagreement and measure

of consensus values.
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3.1 Introduction

The term “consensus” has been frequently used in literature in recent years

in many different areas including, politics, science, justice, and social choice.

K. Lehrer and C. Wagner in [42] have a good explanation why many different

areas do not just use, but actually need the term “consensus.” They explain

that various atomistic and individualistic theories have griped philosophical

thought from time to time. However, some of these theories have not proven

to be enough. Therefore, some factor of agreement (or consensus) is needed

to give an explanation of some central visualization or way of thinking. For

example, in politics, there is a tradition that seeks to justify government in

term of consensus. Additionally, the term “consensus” is widely used in the

area of group decision making (GDM) and it can have various meanings,

such as, the full agreement of all the specialist concerning all the feasible

alternatives or it can mean judgments arrived at by ’most of’ those concerned

[12] [16].

Since “consensus” is used in a variety of fields, we can find more than

one formal definition. First, Cambridge dictionaries define it as “a generally

accepted opinion or decision among a group of people” [19]. Second, it may

be defined as ”associated with the state of agreement in a group, or may

impute to a position reached by a group of individuals acting as a whole.”

[60]. Also, simply put, consensus is a priority [33], [59].

In this paper, we use the term consensus to mean an opinion, belief or

understanding reached by a group of persons who can agree on Likert scale

items. Disagreement refers to a difference of belief, opinion, or perception.

Therefore, we can say basically that disagreement is the inverse or comple-

ment of consensus.

When looking at the recent literature in the field of consensus, we can

easily notice that most of the ideas are focused on how we can find more con-

sensus, or how we can build consensus among a group. Justice and Thomas

in [36] did a good job of giving a step by step process in many different cases
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to get the best agreement in a group. While S. Alonso et al. [7], try to use

the occurrence of new electronic technologies to make the agreement among

a large number of individuals easier and possible.

According to the literature above, in many instances it is important to

find or build more consensus. How can we know how much consensus we have

and how much we need? How can we measure consensus without rules or

principles to calculate the percentage of consensus? Therefore, it is very im-

portant to find or build general rules and methods to measure the consensus

and then we can judge if we need more consensus or not.

There are two simple measures that are commonly used to determine

if there is consensus: the percentage agreement measure and the variance.

The percentage agreement measure, which is also the easiest measure, works

perfectly for binary responses and it has been used in a small group consensus

[23] [49]. There are some drawbacks for using the variance as a measure

of disagreement or consensus. It is less accurate or invalid if it is used to

compare groups that have different sizes or different means [17].

Recently, more sophisticated methods for measuring consensus have been

introduced. In the information theory field, there is an expression called

“Entropy” or the measure of the degree of unrest of a system. Shannon’s

[54] vastly used formula for Entropy is
∑
pi log pi (where pi is the probability

of ith event’s outcome). Shannon’s formula has been recently applied to

Likert scale responses by Tastle and Weirman [58] [59]. Additionally, there

are other approaches for measuring consensus like Dong and Zhang [21] who

proposed a direct consensus framework for multi-person decision making with

different preference representation structures. Further, one of the easier ways

to determine consensus is interrater reliability, rWG, that is represented in

[35] by James et al.

In this article, we consider the Akiyama et al.[3] method for measuring

consensus. These researchers have developed an index of disagreement, Φ,

and measure of consensus, Ψ, that exploit the conditional distribution of the
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variance for a given mean. This method has been compared to other measures

of consensus, such as rWG, and shown to give additional information [3].

Moreover, the index allows for the comparison of consensus values of different

questions for the same group or the same question for different groups, even

though the groups are different sizes and the questions may have different

means. While the measure is valuable, the method to find Φ and Ψ in [3] is

quite difficult to understand and hard to compute. The work outline in the

article provides a straightforward algorithmic method to compute this very

valuable measure.

This article will first discuss preliminary concepts of computational ge-

ometry and conditional probability. The outline of the mathematical foun-

dations and discussion of the index in Akiyama et al. [3] will be in section

2. In section 3, we present new algorithms for finding the required area and

computing the consensus values. Also in the same section, we present a com-

parison of the Akiyama et al. [3] calculations of the area by using calculus

methods and our calculations using the algorithms to find the area. Finally,

the conclusion and future work will be the last section.

3.2 Preliminaries

In this section, we present basic facts from the computational geometry,

conditional probability and consensus.

3.2.1 Computational Geometry

Computational geometry is broadly construed as the study of algorithms for

solving geometric problems on a computer. It stood out from the fields of al-

gorithms design and analysis at the end of 1970s [18]. The early algorithmic

solutions for numerous geometric problems were slow or difficult to under-

stand and apply, but in recent years, many of the new algorithmic techniques

have progressed and many of the previous approaches have been simplified.
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The importance of computational geometry is a combination of two main

factors: sound connections between classical mathematics and the theory of

computer science on one side, and many ties with applications on the other

[29] [53].

In subsequent sections, ideas from computational geometry will be used

to simplify methods for finding areas previously found using integral calculus.

One important method that will be employed for this work is the technique

for finding the area of any convex polygon. There are several methods for

doing this and all the methods are easily programmed [18] [45].

It is not difficult to find the area of any polygon by triangulating, and

then do the summing of the triangular areas [18]. The way to triangulate

any convex polygon is by choosing any vertex to be a common vertex with all

diagonals incident to this common vertex. Notice that the common vertex

can be any vertex serving as the center of the convex polygon. Therefore, the

area of a polygon with vertices v0, v1, . . . , vn−1 categorized counterclockwise

can be determined by:

A(P ) = A(v0, v1, v2) + A(v0, v2, v3) + · · ·+ A(v0, vn−2, vn−1) (3.1)

where P is the polygon and v0 is the center vertex.

Although the polygons in this work are convex polygons, the theorem

below generalizes the equation (3.1) to convex and non-convex cases.

Theorem Let a polygon (convex or non-convex) P have vertices v0, v1, . . . , vn−1

labeled counterclockwise, and let p be any point in the plane. Then

A(P ) = A(p, v0, v1)+A(p, v1, v2)+A(p, v2, v3)+· · ·+A(p, vn−2, vn−1)+A(p, vn−1, v0)

(3.2)
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If vi = (xi, yi), this expression is equivalent to the equations

2A(P ) =
n−1∑
i=0

(xiyi+1 − yixi+1) (3.3)

=
n−1∑
i=0

(xi + xi+1)(yi+1 − yi). (3.4)

Proof The proof of this theorem is done by induction on the number of

vertices n of P . For the entire proof see [45].

3.2.2 Conditional Probability

In statistics, there is no difference when determining the probability for one

event or for more than one independent events, like the probability to pass the

test of class A and to get a full grade for the homework of class B. However,

there are many dependent events in life for which we many want to obtain

the probability, such parking in a no-parking zone and getting a parking

ticket or having a high level of education with a wide experience and getting

a job. These kind of probabilities, when the probability of the second event

is dependent on the probability of the first event, are called a conditional

probabilities. The formal notation for the conditional probability is given by

P (B|A), which means the event B happens given that event A has already

occurred [11]. To see the difference between the “regular” probability and

the conditional probability, let’s take a look at the following simple example.

Example Assume we roll two fair six-sided dice, say A is the first die

and B is the second, and we want to predict the outcome of A = 3. In other

words, what is the probability that the first die will be a three?

Basically, A = 3 in exactly 6 of the 36 outcomes, and hence P (A = 3) =

6/36 = 1/6 = 0.167. What about the prediction of A + B ≤ 6, we mean,

what is the probability of A+B ≤ 6? This sum would occur exactly 15 out

of 36 possible roles. Then P (A + B ≤ 6) = 15/36 = 0.417. Now what if we
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want to find the probability of A = 3 given that A+B ≤ 6, so the conditional

probability P (A = 3|A+B ≤ 6) = 3/15.

In previous work [3] it was shown the range of the variance is dependent

on the mean. In other words if you are given a particular mean, m, then the

variance can only take on certain values in a particular range. Thus, there is

a conditional probablity relationship between the mean and variance. Later

in the paper we will continue to discuss the importance of this relationship

in finding the measure of consensus.

3.3 Theoretical Foundations

Since this paper seeks to present a different easier method to find the measure

of consensus first presented by Akiyama et al. [3], it has almost the same

theoretical foundations. However, we need to look at the main idea for the

index of disagreement and discuss the new easier and more generalizable

method of finding areas than what is presented in [3].

Imagine there is a survey that asked respondents to choose precisely one

answer from the numbers 1 to n such that the scale is defined to allow com-

putation of the mean and variance. This means the scale does not represent

a categorical variable, but rather an interval variable. There is no theoretical

limitation in choosing the number n (n > 1) of allowable responses. However,

an n that is too large would make the survey senseless. On the other hand, if

n is too small, it would make the situation trivial. For instance, the number

n = 2 leaves nothing for us to discuss, because our discussion is to address

the range of variance (as an index of disagreement) at a given mean. Thus,

we add the constraint that n > 2. In this paper, we will focus on n = 5,

because this work depends on [3] and n = 5 is one of the most prevalent

modes of questionnaire design.

In [3] it was established that for a given mean m, the variance v, ranges

between a minimum and a maximum value that are determined by m. We
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may believe that if the variance v, calculated from responses to a question

from the survey defined above, for question one is higher than the variance

for question two that this suggests there is a higher level of disagreement

or lower level of consensus for question one than there is for question two.

However, in general this is not necessarily the case because the variance

ranges in an interval determined by the mean, variances arising from the

two survey question for the same group that do not have the same mean

cannot be reasonably compared and do not provide a viable way of comparing

consensus on the two question. This also applies in case that the variance

obtained from different groups for the same question. Thus, any method of

measuring disagreement or consensus should take into consideration the fact

that the range of the variance is a function of the mean.

In this paper, we remind the reader of Akiyama et al. method for finding

an index of disagreement, denoted by Φ(v;m), that takes into account the

relationship between the mean and range for the variance. The measure

of consensus is defined as the complement of disagreement, Ψ(v;m) = 1 −
Φ(v;m). The way the index of disagreement and measure of consensus is

defined allows for the comparison among questions with different means or

of groups across time.

3.3.1 Defining the Index of Disagreement

In order to present the easier method for computing the index of disagree-

ment, we will present selected sections of details from [3] and then explain

the steps for the new ways to compute these same values. Here we should

also note that we are always dealing with probabilities in our discussions so

all points pi will first satisfy, pi ≥ 0 and pi ≤ 1.

One of the steps necessary to build the index of disagreement in [3] is

finding the area A(v) = A1(v)− A2(v) that satisfy the following equations
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p1 =
1

2
(v +m2 − 5m+ 6)− (x+ 3y)

p2 = −(v +m2 − 4m+ 3) + (3x+ 8y) (3.5)

p3 =
1

2
(v +m2 − 3m+ 2)− (3x+ 6y).

We let t = 1
2
(v + m2 − 3m + 2) and since each pi ≥ 0, i = 1, 2, 3, then the

equations in (3.5) will be equivalent to the following

x+ 3y ≤ t− (m− 2)

3x+ 8y ≥ 2t− (m− 1) (3.6)

3x+ 6y ≤ t

0 ≤ x, y ≤ 1.

Thus, the area of A1(v) is defined to be points that satisfy the first and third

inequalities in (3.6), or points that lie between the two lines. While A2(v) is

defined to be points that satisfy the second and third inequalities in (3.6).

Determining this area is very important because the conditional proba-

bility density function of v|m is represented by the ratio
A(v)∫
A(v)dv

.

Akiyama et al. in [3] then state three or four different equations to find

the area of each A1(v) and A2(v). These equations are determined by the

different values of t. For example, the area of A1(v) was determined by:

For 1 ≤ m ≤ 3, we have

A1(v) =
t2

36
, w ≤ t ≤ u

=
t2 − 3(t− u)2

36
, u ≤ t ≤ 2u, (3.7)

=
(t− 3u)2

36
, 2u ≤ t ≤ 3u.

where u = 3(m−1
2

) and w = max{m− 2, 0}
The way of finding the area of A2(v) is almost equally as complicated as
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A1(v), see [3]. At this point we determined that using some simple compu-

tational geometry techniques could provide an easier and clearer method for

finding the required area.

3.4 New Algorithms for Computing the In-

dex of Disagreement

The first step toward computing the index of disagreement is finding the area

of A(v). To determine this area we now apply algorithmic approach for each

A1(v) and A2(v) with the consideration that our area is bounded by lines

x = 0, y = 0, x = 1 and y = 1.

Algorithm

1. Graph each linear equation from (3.6) in the (x, y) plane.

2. Determine the intersection points between any two lines or with x−axis

and y−axis, say si.

3. Avoid any intersection point that lies outside the region [0, 1] × [0, 1].

i.e., x, y < 0 or x, y > 1.

4. Add ±ε to all intersection points which are inside the square interval

of (0, 1). ε is a small positive arbitrary constant.

5. Check si ± ε and keep the points that satisfy all numbers of line equa-

tions and avoid others.

6. Once we have the intersection points of the wanted area, apply any

computational geometry methods to find the area of this polygon.

The method for finding the area using computational geometry is ex-

plained in Section 2.1.
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Now that we have determined and easy way to compute the area A(v), lets

take a look at the definition of the index of disagreement and then determine

an easier way that it can be calculated.

The index of disagreement as defined by Akiyama et al. [3] is stated as

following:

Definition:

The index of disagreement Φ(v|m) is defined as below:

(i) If m = 1, then we define Φ(v|m) = 0.

(ii) If 1 < m ≤ 3, then we define

Φ(v|m) =

∫ τ
w
g(t)dt

2u3 − w3
where τ = 1

2
(V +m2 − 3m+ 2).

(iii) If 3 ≤ m ≤ 5, then w define

Φ(v|m) = Φ(v|6−m).

where g(t) here is represent A(v)
36

.

Since, as we see above, the way of finding g(t) (or A(v)) in [3] has different

cases and depend on different conditions, then finding the integration of g(t)

will have different cases as well. For example, to find the integration of g1(t)

(or
∫
A(v)

36
) Akiyama et al. [3] defined the following function.

G1(τ) =

∫ τ

w

g1(t)dt+
1

3
w3 =

1

3
τ 3, w ≤ τ ≤ u

=
1

3
τ 3 − (τ − u)3, u ≤ τ ≤ 2u, (3.8)

= 2u3 +
1

3
(τ − 3u)3, 2u ≤ τ ≤ 3u.

Since we found the area A(v) by couple steps using the computational

geometry techniques, we will not need many different cases to find the inte-

gration of A(v). In fact, you can use any numerical integration methods to

determine the integration. The denominator 2u3−w3 that stated in the def-

inition above is basically the integration of g(t) from minimum to maximum

value of t. It can be determined by using the numerical integration methods.

51



The following algorithm used to find the disagreement and consensus

values for a given mean and variance.

Algorithm

Input: Mean m and Variance v. Output: Disagreement and Consensus.

1. If m > 3 then m = 6−m.

2. Set N . {N is any large number}.

3. Determined t, w and u

4. h = (t−w)
N

5. For j : 1 to N − 1

Count = w + j ∗ h
If j is odd Then S1 = S1 +D(Count) Else S2 = S2 +D(Count)

6. Int = (h/3) ∗ (D(w) + 4 ∗ S1 + 2 ∗ S2 + D(t)) { D(t) is the area that

calculated by last algorithm}

7. To find the Denom apply steps 4− 6 with t = 3u

8. Disagreement= Int
Denom

and Consensus= 1−Disagreement.

When implementing this algorithm we used the Simpson Method to find

the numerical integration and we can use any other methods by editing steps

5 and 6 only.

Table 3.1 shows the comparison of Akiyama et al. index of disagreement,

Φ, and measure of consensus, Ψ, and our results for ΦCG and ΨCG for selected

values of m and v.
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Table 3.1: Examples of Comparison of Akiyama et al. indicies Φ and Ψ and
our result ΦCG and ΨCG for selected values of m and v

Mean Variance (v) Φ Ψ ΦCG ΨCG

1.1 0.09 0.0000 1.0000 0.0000 1.0000
0.1 0.0001 0.9998 0.0001 0.9998
0.2 0.2213 0.7786 0.2213 0.7786
0.3 0.8785 0.1215 0.8785 0.1215
0.39 1.0000 0.0000 1.0000 0.0000

1.2 0.16 0.0000 1.0000 0.0000 1.0000
0.2 0.0013 0.9986 0.0013 0.9986
0.3 0.0571 0.9428 0.0571 0.9428
0.4 0.2840 0.7160 0.2840 0.7160
0.5 0.6473 0.3526 0.6473 0.3526
0.6 0.9146 0.0853 0.9146 0.0853
0.7 0.9955 0.0045 0.9955 0.0045
0.76 1.0000 0.0000 1.0000 0.0000

3.5 Conclusions and Future Work

The index of disagreement (or measure of consensus) in this paper is impor-

tant because it takes into account the relationship between the mean and

the variance and therefore can meaningfully be used to compare questions

with different means. By using the computational geometry techniques, a

new way to determine the index of disagreement ΦCG(v|m) (or measure of

the consensus ΨCG(v|m)) has been developed. This paper shows that we can

get the same values of disagreement and then the consensus by using simple

geometric and numerical steps without using many cases and conditions.

These new algorithms can easily be computed using your favorite software

package with just a few steps for calculations. The authors have developed a

simple spreadsheet for computing Ψ that allow the users to enter the mean

and variance to easily compute this measure of consensus.

Future work includes proving that this index can be generalized to larger
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values of n and demonstrating with Likert data from several disciplines that

Ψ can add to the interpretation of the consensus within groups, between

groups, or the change in the consensus of a group across time.
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Chapter 4

Paper 3: Using

a-Multidimensional Approach

for Generalizing a Consensus

Measure to Likert Scales of

Any Size n

This paper was submitted in March 2017 in the Knowledge-Based

Systems Journal in ELSEVIER Inc.
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Abstract

Many consensus measures use Likert data for comparison. Although these

measures should work with any number n of choices on the Likert scale, the

measurements have been most widely studied and demonstrated for n =

5. One measure of consensus introduced by Akiyama et al. that depends

on both the mean and variance, gives results that can differentiate between

some group consensus behaviors better than measures that rely on either

just the mean or just the variance separately. However, this measure is more

complicated and not easy to apply and understand. This paper addresses

these two common problems by introducing a new way for calculating the

measure of consensus and the new method presented in this article works

for any number of Likert item choices. Because the Akiyama et al. mea-

sure depends on both the mean and the variance it is more complicated to

compute, so to avoid this, this paper presents new algorithms that are easy

to apply and to understand. The novelty is using a computational approach

in n-Dimensional space. Numerical examples in three-dimensional (for n=6)

and four-dimensional (for n=7) spaces are provided in this paper to assure

the accuracy of results.
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4.1 Introduction

The significance of reaching consensus in a group of persons or among groups

can easy be appreciated by anyone who has ever been involved in a group

decision-making process. Indeed, Some researchers believe that coming to

consensus plays the key role in group decision-making. [26], [61].

The importance of consensus can be further appreciated when we consider

the vast number of fields, other than just group decision making, that use

consensus. For example, politics, economics, social choice and science all use

the idea of consensus [8], [6], [36]. When you consider the work of Lehrer

and Wagner [42], you can see how some factor of agreement (or consensus)

is necessary for some central conceptions of thinking.

Consensus take a significant place in many majors areas, therefore there

is demand for an accurate gauge to measure consensus. The central idea

of many researchers working in this field of study concerns how to build

consensus (or diminish the disagreement) among all people in one group or

in more than one group. Many of these measures have an iterative process

to try to come to agreement or build consensus[31],[32], [46], [61]. If your

task is to build consensus by using a multistage process within a group as in

[21] or even for each person individually as in [60], you will need at the end

of each stage a useful instrument or measurement to measure consensus.

There are several different meanings or definitions in the literature for the

term “consensus” or “disagreement”Ḣowever, these two concepts are always

antonyms, or mathematically each one as the compliment of the other. In

this paper, we use the term consensus to mean an opinion or belief reached by

a group of persons who can agree on Likert scale items. While disagreement

refers to a difference of opinion or perception.

The research to find a mathematical or statistical measure of consen-

sus (or index of disagreement) began with the researchers working to find

a way to build consensus within a group. The simplest and most widely

used measures of consensus are the percent agreement measure and the vari-

57



ance. The percent agreement measure has been used in different cases and

has been applied to small group consensus. This measure gives only a per-

centage of team members who accept a particular opinion [23], [49]. The

variance measure, evaluated from Likert items, is usually used to talk about

the disagreement (or lack of consensus) [44]. This statistical measurement

is significant in precise comparison situations. However, the variance can be

useless in cases of comparing a different size of groups or for groups that have

different means[17].

Another common approach to calculating the consensus is rWG, that rep-

resented in [35] by James et al. This measure is based on the variance and is

sometimes called inter-rater reliability. Two other measures of consensus are

presented by Kendall [38], and Alcalde–Unzu and Vorsatz [5]. The measure

Kendall proposes, usually known as Kendall’s tau (τ), is limited to the status

of two individuals and directly calculates the ratio of pairwise comparisons

of how two people agree. The second measures, symbolically known as (σ),

introduced by Alcalde–Unzu and Vorsatz. This measure determines for any

pair of alternatives the absolute value of the difference between the ratio of

persons who choose one alternative and the proportion of individuals who

choose the other option and then takes the average of these numbers over all

possible pairs of alternatives[5]. The concepts, comparisons, and properties

of these two measures well introduced in [4].

There are many other more advanced methods presented to measure the

consensus within a group of individuals. The method of Beliakov et al.

[10] concentrates on structuring a function that can measure the degree of

consensus from a set of inputs provided as numbers from the unit interval.

In the information theory field, Shannon’s [54] formula for Entropy, or the

measure of the degree of disorder of a system [9], is widely used. The formula

is
∑
pi log pi (where pi is the probability of ith event’s outcome). Tastle

and Weirman [58] [59] apply Shannon’s formula to Likert scales responses.

González-Arteaga [26] provides an approach to consensus measurement based
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on the Pearson correlation coefficient.

Based on what is presented above, there are several ways to define con-

sensus and various ways to measure consensus within and among groups.

However, as far as we can tell, there is no approach using computational

geometry concepts in n−Dimensional space as introduced in this paper. In

this article, we consider a new method to determine the measure of consen-

sus (or conversely the index of disagreement) presented by Akiyama et al.

[3] with the key to this new method using computational geometry concepts

presented in Abdal Rahem and Darrah [2]. The researchers in [3] present the

sophisticated index of disagreement, called Φ, and the measure of consensus,

Ψ, that used the conditional distribution of the variance for a given mean[11].

The distinction of this index is it allows for the comparison of consensus val-

ues of various questions for the same group or the same question for diverse

groups, even comparisons of groups with different sizes and the questions

with different means. However, in [3] this index is proven to work for n = 5

Likert scales only and is difficult to understand and not easy to apply.

Consequently, Abdal Rahem and Darrah in [2] provide a straightforward

algorithmic method to compute the reliable measure introduced in [3]. The

idea of this new approach is much easier to use and understand than the way

of calculating the index of disagreement presented in [3]. However, in [2], the

approach is shown for only two-dimensional space, which relates to n = 5

Likert scale. The aim of the research presented in this article is to break

the limitation of working with n = 5 Likert scale only. Likert items are

used in many disciplines to measure attitudes, preferences, and subjective

reactions[24], [44], [57]. For this discussion, a global Likert scale is used,

with the integers 1 through n corresponding to the words strongly disagree

through strongly agree or any other words the researcher prefers or question

suggests.

The rest of the paper is organized as follows. Section 4.2 presents the

theoretical foundation of our work and defines the index of disagreement
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for any number of Likert scale and provide a visual to illustrate how the

equations in section 4.2 look for any dimension. In Section 4.3 the techniques

are applied to n = 6. Section 4.4 provides an examples of special cases of sets

of probabilities as well as a specific means with different variances of each

fixed mean. Finally, some concluding remarks and future works are discussed

in Section 4.5.

4.2 Theoretical Foundations

The main theoretical foundations of the consensus measurement are intro-

duced in Akiyama et al. [3]. There we introduce the idea that variance is

always a function of the mean. For any fixed mean, there will be a range of

variances that will be possible. Then given a mean m and a variance v, we

find the consensus measure for this two numbers by using conditional prob-

ability to determine the “ratio between a part of the range of the variance

for that mean to the total range of variance for that mean”.

In the first paper [3], this measurement is computed by a series of ana-

lytical steps for n = 5. We first algebraically reduce the computation to a

set of three equations in two dimensions. Then by finding the areas between

pairs of these equations and subtracting these two area, we can find a num-

ber that represents a measurement for area given a particular mean, m, and

variance, v. We use this method to define a function A(v) and integrate this

function from the h(minimum v) to h(v) for the given v. Finally, we divide

this number by the integration over the total range of variance, h(minimum

v) to h(maximum v), to get the index of disagreement Φ. The measure of

consensus, Ψ, will then be 1-Φ.

In the second paper, Abdal Rahem and Darrah [2], simplify the calcula-

tion of these areas and make it possible to generalize to any n, two algorithms

using computational geometry are presented to replace the complicated an-

alytical steps involving calculus. The first algorithm focuses on computing
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A(v) and the second algorithm is for using numerical methods to compute

the ratio of the integration. Also, all the background from computational

geometry and conditional probability are located in [2]. Furthermore, Abdal

Rahem and Darrah [2] provides a basis for the generalization work to n > 5

that follows.

4.2.1 Generalization of Calculations to n > 5 for Index

of Disagreement (conversely Consensus Measure)

Let us start by introducing the notation for the two main variables we will

work with. Suppose m and v refer to the mean and the variance computed

from the survey wherein the respondents are asked to pick out exactly one

answer from the items: 1, 2, . . . , n.

Other common notations used throughout are the probabilities pi, i =

1, 2, . . . , n. Note that, as usual, all probabilities in our discussions are values

pi that satisfy: 0 ≤ pi ≤ 1. Moreover, A(v) refer to an area with points

(x1, x2, . . . , xn−3) in Rn−3 space.

As utilized in [3], the basic equations for the foundation to compute the

index of disagreement are the sum of all probabilities is equal to one, the

equation for computing the mean, and the equation derived from computing

the variance of random variables. Mathematically, we can write the system

of equations as follows:

p1, p2, p3 . . . , pn ≥ 0.

p1 + p2 + p3 · · ·+ pn = 1.

p1 + 2p2 + 3p3 · · ·+ npn = m. (4.1)

p1 + 4p2 + 9p3 · · ·+ n2pn = m2 + v.

Using the notion x1 = p4, x2 = p5, . . .xn−3 = pn, we can solve (4.1) for

p1, p2, p3 in terms of x1, x2, . . . , xn−3 as below:
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p1, p2, p3, . . . , pn ≥ 0.

p1 =
1

2
(v +m2 − 5m+ 6)− f1(x1, x2, . . . , xn−3).

p2 = −(v +m2 − 4m+ 3) + f2(x1, x2, . . . , xn−3). (4.2)

p3 =
1

2
(v +m2 − 3m+ 2)− f3(x1, x2, . . . , xn−3).

Where f1, f2 and f3 are functions of n − 3 variables. Since we have all

the probabilities greater than zero (p1 ≥ 0, p2 ≥ 0, p3 ≥ 0), we can rewrite

the system above as following:

p1, p2, p3, . . . , pn−3 ≥ 0.

1

2
(v +m2 − 5m+ 6)− f1(x1, x2, . . . , xn−3) ≥ 0.

− (v +m2 − 4m+ 3) + f2(x1, x2, . . . , xn−3) ≥ 0. (4.3)

1

2
(v +m2 − 3m+ 2)− f3(x1, x2, . . . , xn−3) ≥ 0.

or equivalently

x1, x2, . . . , xn−3 ≥ 0.

f1(x1, x2, . . . , xn−3) ≤
1

2
(v +m2 − 5m+ 6).

f2(x1, x2, . . . , xn−3) ≥ (v +m2 − 4m+ 3). (4.4)

f3(x1, x2, . . . , xn−3) ≤
1

2
(v +m2 − 3m+ 2).

In order to simplify (4.4), let we define t and a function hm(v) as below:

t = hm(v) =
1

2
(v +m2 − 3m+ 2) (4.5)

where m is our fixed mean and v is any variance in the range with respect

to that mean. Therefore, (4.4) will be:
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x1, x2, . . . , xn−3 ≥ 0.

f1(x1, x2, . . . , xn−3) ≤ t−m+ 2.

f2(x1, x2, . . . , xn−3) ≥ 2t−m+ 1. (4.6)

f3(x1, x2, . . . , xn−3) ≤ t.

A(v) can be defined as the set of all (n − 3)-tuples, (x1, x2, . . . , xn−3),

in the (n − 3)−Dimensional space that satisfy (4.6). Due to the symme-

try of the mean with respect to the midpoint, in the subsequent discussions

we will restrict the range of the mean to 1 ≤ m ≤ n+1
2

. The remaining por-

tion n+1
2
≤ m ≤ n can be treated as the symmetric reflection of 1 ≤ m ≤ n+1

2
.

In order to find the minimum t (min t) and the maximum t (max t),

substitute the minimum v (min v) and maximum v (max v) respectively in

hm. Consequently, t = hm(v) is a linear (one-to-one) mapping of the interval

[min v,max v] onto [min t,max t]. The inverse of t = hm(v) is also a linear

mapping of [min t,max t] onto [min v,max v] given by v = h−1m (t) = 2t−m2+

3m− 2.

For purposes of finding the area A(v) for fixed m, we derive three equa-

tions from (4.6) to get three lines, planes or hyperplanes in Rn−3 space, say

gi(x1, x2, . . . , xn−4) where i = 1, 2, 3 that subdivided the Rn−3 space. For

example, in R2 we have:

g1(x) =
t−m+ 2

3
− x

3

g2(x) =
2t−m+ 1

8
− 3x

8
. (4.7)

g3(x) =
t

6
− x

2
.

and in R3 we get:
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g1(x, y) =
t−m+ 2

6
− (

x+ 3y

6
)

g2(x, y) =
2t−m+ 1

15
− (

3x+ 8y

15
). (4.8)

g3(x, y) =
t

10
− (

3x+ 6y

10
).

We set f3(x1, x2, . . . , xn−3) ≤ t which leads to defining g3(x1, x2, . . . , xn−4),

so we compare g1(x1, x2, . . . , xn−4) and g2(x1, x2, . . . , xn−4) to g3(x1, x2, . . . , xn−4).

If we only compare g1(x1, x2, . . . , xn−4) and g2(x1, x2, . . . , xn−4) to find an area

between them (if its exist) this will not give us any information related to t.

Hence, we define A(v) as follow:

A(v) = A1(v)− A2(v)

where

A1(v) = {(x1, ..., xn−3)| g2(x1, ..., xn−4) ≤ xn−3 ≤ g3(x1, ..., xn−4)} (4.9)

and

A2(v) = {(x1, ..., xn−3)| g1(x1, ..., xn−4) ≤ xn−3 ≤ g3(x1, ..., xn−4)} (4.10)

Note that all xi are probabilities, so we restrict, 0 ≤ x1, x2, . . . , xn−4 ≤ 1.
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Figure 4.1: Example for The Area A1(v) and A2(v) in R2
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Figure 4.2: Example for of Planes used to Compute Areas A1(v) and A2(v)
in R3

Now that we have presented all the equations required for restricting the

target area, the next step is to compute these areas is any dimension.

4.2.2 Determine the Index of Disagreement

Although mathematicians may prefer an analytical process to get an exact

solution, in many cases it is extremely hard, or even impossible to find one.
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The way of finding the area A(v) introduced in Akiyama et al. [3] for n = 5

uses an analytical method to find the exact solution; however, it has many

cases that must be considered. Therefore, the new computational approach

presented in this paper finds a very good solution (as good as is required)

and can be generalized to any n ≥ 5.

To examine what it means to determine these areas or volumes in n-

dimensional space, we can first look at the problem in 2-dimensional space.

The equations gi(x) are line segments and so the intersections are points. To

find the desired area, we simply find the area bounded between two lines that

satisfies 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1, since x and y are probabilities. In this

case, there are two ways to compute the area, analytically [3] and by using

the computational geometry concepts [2].

By adding one more probability, the volume then is in three dimensions.

In this case, the equations gi(x, y) are planes. This means the intersections

are lines instead of points. Moreover, for n = 7, we must work in four dimen-

sions. Thus, the equations gi(x, y, z) are hyperplanes and the intersections

of any two hyperplanes is a 3-dimensional object, and so on.

Consequently, since the region has such a strange shape in general, calcu-

lating its area or volume proves to be very difficult with analytical methods,

especially as we go to higher dimensions. But calculating the area of rectan-

gles or cubes is simple. We will use this method to simplify our calculations

by subdividing the region we want to measure into small squares, cubes, or

hypercubes as is a common method for approximating an area or volume.

One of the popular approaches to finding the area under a curve numerically

is by using the Riemann Sum. Employing the same idea as the Riemann

sum, with some modification to make it more accurate and to better fit with

our problem, we can determine the area or volume of the required region.

Before presenting the steps of the algorithms, recall that the area for any

n is bounded by [0, 1] (i.e. 0 ≤ xi ≤ 1 for any xi ∈ Rn−3).
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Algorithm

Divide the interval [0, 1] for every xi−axis into N subintervals of length

∆, (∆ = 1
N

), where N is a positive integer

For i1 = 1 to N

For i2 = 1 to N
...

For in−3 = 1 to N

sj = si1,i2,...,in−3 .

If sj satisfy (4.9) then A1 = A1 + ∆n−3 (add one hypercube

to the area)

If sj satisfy (4.10) then A2 = A2 + ∆n−3 (add one hypercube

to the area)

A(v) = A1 − A2.

Note that in this approach of finding the area, the larger the N (i.e. the

smaller ∆), the closer the estimate gets to the exact area.

Once you get A(v), you can use the same algorithm for determining the

integration as we presented in [2] to compute the index of disagreement and

the consensus value.

4.3 Index of Disagreement in 3D

In order to ensure that the methods described above produce acceptable

results they are applied to different cases. For n = 5, you can find the

examples with details in Akiyama et al. [3] or Abdal Rahem and Darrah [2].
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For n = 6, our example is in 3-dimensional space, and the equations

fi(x, y, z), i = 1, 2, 3 are as follows:

f1(x, y, z) = x+ 3y + 6z.

f2(x, y, z) = 3x+ 8y + 15z (4.11)

f3(x, y, z) = 3x+ 6y + 10z

Which means the system of inequities in (4.6) becomes:

x, y, z ≥ 0.

x+ 3y + 6z ≤ t−m+ 2.

3x+ 8y + 15z ≥ 2t−m+ 1. (4.12)

3x+ 6y + 10z ≤ t.

For determining the volume restricted by two planes and the z−axis,

apply the algorithm above. This will find the volume by adding each small

cube when sj satisfies one of the systems of equations to get A1 and A2 and

then use those to find A(v).

4.4 Numerical Example

Now we can look at some example to see if the method produces the desired

results. First, we consider some special cases of sets of probabilities. We

use the probabilities to determine the mean and the variance. We apply the

algorithms above to compute the index of disagreement and then consensus

values for these special cases to show that they make sense.

The first we consider the case when all the respondents have chosen the

same response. In other words, when one of the probabilities, say p6, is one

and all others are zeros. This case gives us m = 6 and v = 0, and therefore

the ratio of the index is Φn=6 = 0
0.000443

= 0 which is gives the consensus

value of one, Ψ = 1− 0.
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The second case is when the responses are evenly distributed at opposite

ends of the scale. For example, probabilities are 0.5 for p1 and p6, and all

others are zeros. This time will get the mean m = 3.5 and the variance

v = 6.25. These values of the mean and variance lead to full disagreement

(i.e. Φ = 1) since the ratio is Φ = 0.0052
0.0052

= 1, which then means the consensus

is zero. Notice that the results in these two cases are exactly what we would

expect and also what we computed for n = 5 in these situations using the

original method.

Before looking at several different values for the mean and variance, we

will look at one more special case. Now, suppose all probabilities are equal.

That means pi = 1
6
, i = 1, 2, . . . , 6. The mean in this case is m = 3.5 and

the variance is v = 2.92. These two values for mean and variance imply

Φ = 0.0034
0.0052

= 0.6538. Subsequently, the consensus Ψ = 1 − 0.6538 = 0.3462

compared to Φ = 0.6666 and Ψ = 0.3334 for n = 5 in the similar situation

and again computing these values with the original method.

For selected values of m and v, table (1) shows the different cases of index

of disagreement, for n = 6, Φ and the consensus Ψ.
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Table 1. The Index of Disagreement Φ and The Consensus Ψ for selected

values of m and v.

Mean Variance (v) Φn=6 Ψn=6

1.1 0.09 0.0000 1.0000

0.1 0.0238 0.9762

0.2 0.3562 0.6435

0.3 0.755 0.245

0.39 0.9595 0.0405

0.49 0.0000 1.0000

1.2 0.16 0.0000 1.0000

0.2 0.0134 0.9866

0.3 0.0874 0.9126

0.4 0.2609 0.7391

0.5 0.5275 0.4725

0.6 0.7736 0.2264

0.7 0.9374 0.0626

0.76 0.9899 0.0101

0.96 1.0000 0.0000

The results of all examples above are reasonable and acceptable especially

if we compare these results with similar cases for, n = 5, in [2].

4.5 Conclusions and Future Work

A new approach for generalizing the consensus measure (or index of disagree-

ment) presented in Akiyama et al. [3] has been developed to work for Likert

scales with any number of choices. By using computational geometry and

n-dimensional space concepts, this paper not only has been able to generalize

all the work constructed in [3] and [2] but show comparable results to those
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obtained in last two articles. The difference of this approach compared to

the other consensus measures, which also works for any Likert items, is that

this measure considers the conditional distribution of the variance for a given

mean. In other words, this method provides more information than others

that are only based on just the mean or just the variance.

Another distinguishing feature of this new method is that it is easy to

understand and apply. In fact, we can summarize this work as easy as A, B,

C. (A) Set up the equations gi, (B) Determine the areas, and (C) calculate

the integrations and then the index of disagreement. Additionally, by using

these simple steps in an Excel spreadsheet, you can get all the variable defined

above, and for (B) and (C), all you need to do is enter the algorithms into

any software you prefer. For instance, all the examples in this paper were

computed using Microsoft Excel spreadsheet and Matlab.

In future studies, we plan to develop the same ideas to compute the

consensus measure for continuous scales. We also plan to continue looking

for easier and faster methods to find the areas and volumes described in

the paper by using advanced computation geometry and high-dimensional

statistics concepts [53], [51].
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Chapter 5

Discussions and Open Problems

Since the Likert scale is one of the most popular scales used in different areas,

the consensus measurement presented in this work also be very useful in many

disciplines. Although there are various methods of measuring consensus that

rely on the Likert scale, there remains a need for a measure that gives accurate

results or more information as well as works for any numbers of scales not just

for small n. We have dealt with more than one way to build a new consensus

measurement. The ways of computing the measure of consensus presented in

this thesis relied on calculus, statistical and computational geometry concepts

in two and more dimensional space.

The mean and variance are the standard measures of consensus that work

for any number on the Likert scale and other common scales. However,

Tastle in [59] shows that neither mean nor standard deviation (a square root

of variance) alone are adequate to get an accurate measure of consensus.

Moreover, the second chapter presents a comparison between the new index

of disagreement Φ (or measure of the consensus Ψ) and two other measures,

rWG by James et al.[35] and Cns(X) by Tastle and Wierman [59]. The

comparison shows that the new measure Ψ provides additional or varying

information because it relies on the mean and the variance at the same time.

The outcome of the comparison given initially shows there is a relationship
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between the mean and the variance, for each fixed mean there is a range of

variance values that depend on that mean. This relationship along with the

conditional probability concepts led us to build the new index of disagreement

(or the measure of consensus) with consideration of both the mean and the

variance.

Notice that the focus of the Chapter 2 (or first paper) ensures that the

new index of disagreement was useful and provided additional information,

but it had some complicated steps of calculus. The utility of the measure is

demonstrated in a real life example of Likert data from a survey measuring

organizational climate in an academic department at West Virginia Univer-

sity. After introduction of the measure, the primary objective was to provide

an easier way to apply and work with the new measure with any number of

Likert items.

In order to generalize of the new consensus measurements Ψ presented

in the second chapter for any size of Likert scale, a new way to comput

the measue was introduced in the Chapter 3 (second paper) by using com-

putational geometry and numerical analysis concepts. This new approach

provides a way to get the same useful result of Ψ by using only two easy

algorithmic steps. While the first algorithm focuses on replacing the analyti-

cal steps with computational geometric procedures, the concentration of the

second algorithm was on finding the required integrals by using a numerical

methods.

Any researcher seeking to deal with multidimensional space is able to

notice that working in more than two or three dimensional space has both

advantages and disadvantages. Multidimensional space opens up opportu-

nities to work with various problems, but it may cause some difficulties in

setting up operations or methods to process steps. Two important ideas are

presented in Chapter 4 (or third paper). First, the ability to generalize the

new index of disagreement to work with any number of Likert scale. Sec-

ond, introducing a new method for getting accurate results for the consensus
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values by using simple steps of an algorithmic approach that applies in any

dimensional space.

In addition to all the features that are mentioned above, this work opens

more avenues for further studies and discussions in future. The first perspec-

tive that can be brought into focus is generalizing the index of disagreement

Φ by using the statistical concepts of expectation value E(X). For example,

when n = 5, the last two equations in (2.8) are equal to E(X) and E(X2)

respectively. For higher n you can just add more equations depend on the

definition of rth moment, E(Xr) [28]. In fact, we investigated this direction

and made satisfactory progress of all requirement and logical steps using the

idea of expectation values. We added the equations of E(X3) and E(X4) for

n = 7 which resulted in five lines of equations instead of three in (2.12) that

give A(v). We implemented all these steps using Excel to examine different

cases of the mean and the variance values using this method.

The advanced computation geometry properties or high-dimensional sta-

tistical methods were utilized to develop the algorithms in Chapter 3 for

easier and faster ways can also be done it different ways. The advance com-

putational geometry concepts of convex hull could be used to improve the

first algorithm for finding the area/volume of A(v) [53]. While using the

high-dimensional statistics methods such as the Monte Carlo method would

be a practical improvement to the second algorithm [52].

Another gap for further studies in the future is developing the multidi-

mensional algorithm that is introduced in Chapter 4. This could be done

by the utilizing the idea of finding the area of any polygons in the complex

plane [55], with advanced linear algebra technique [62], or by developing some

advanced optimization methods like a “Hook and Jeeves” method [14].

Finally, expanding the domain of the index of disagreement Φ, presented

in Chapter 2, to work with any continuous or partial scale. Furthermore, we

will work to develop an interactive website for users to enter the mean and

variance that can be used to compute such measures of consensus easily. We
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have already built two programs for finding the index of disagreement and

then the measure of consensus for n = 5, 6, and 7, in two, three and, four

dimensions. The first program is written in Excel spreadsheet by using Visual

Basic (VB) language, while the second program is written in MATLAB.
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